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Abstract

The BCS theory injected two powerful ideas into the collective con-
sciousness of theoretical physics: pairing and spontaneous symmetry
breaking. In the 50 years since the seminal work of Bardeen, Cooper,
and Schrieffer, those ideas have found important use in areas quite
remote from the stem application to metallic superconductivity. This
is a brief and eclectic sketch of some highlights, emphasizing relatively
recent developments in QCD and in the theory of quantum statis-
tics, and including a few thoughts about future directions. A common
theme is the importance of symmetry transmutation, as opposed to the
simple breaking of electromagnetic U(1) symmetry in classic metallic
superconductors.

1

http://arxiv.org/abs/1008.1741v2


The Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [1]
has been fruitful in many ways. Most obviously, of course, it provided pro-
found and at many points surprising concrete insights into the supercon-
ducting state of solids, right from the start. It predicted for instance the
very different effect of the onset of superconductivity on acoustic versus
electromagnetic relaxation, due to the different signs in coherence factors,
which is a delicate quantum-mechanical effect. And it provided the intel-
lectual foundation for such wonders as the Josephson effects and Andreev
reflection.

The influence of BCS theory on the broader discipline of theoretical
physics has been no less profound. Two key ideas abstracted from BCS
theory, that have been widely transplanted and borne abundant fruit, are
pairing and dynamical symmetry breaking. Pairing was an essentially new
idea, introduced by Cooper and brought to fruition by BCS. The symmetry
breaking aspect was mostly implicit in the original BCS work, and in earlier
ideas of Fritz London and Landau-Ginzburg; but the depth and success of
the BCS theory seized the imagination the theoretical physics community,
and catalyzed an intellectual ferment. The concept of spontaneous symme-
try breaking was promptly made explicit, generalized, and put to use by
several physicists including Anderson, Josephson, Nambu, and Goldstone.
The flexibility and transformative power of these ideas revealed itself grad-
ually, in applications to phenomena that at first sight appear to have little
or nothing in common with superconductivity.

From a wealth of possible material, I’ve chosen to discuss some relatively
recent developments close to my own work, that I think well illustrate how
naturally the basic BCS concepts combine with other ideas of fundamen-
tal and emergent symmetry, often with dramatic consequences. A common
theme is that symmetry breaking forms a special case of a more general
phenomenon: symmetry transmutation.

1 QCD Meets BCS: Color-Flavor Locking, Con-
finement, and Chiral Symmetry Breaking

Quantum chromodynamics or QCD, having run the gauntlet of many exquisite
quantitative confrontations with observation, is now established as the fun-
damental theory of the strong interaction [2]. QCD is a challenging theory to
understand, however, and not primarily because of its technical complexity1.

1“Technical complexity” is a time-dependent concept. I’ve heard graduate students

accustomed to a diet of high supersymmetry, Calabi-Yau manifolds and intersecting D-
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The real challenge comes in relating the wonderfully “trivial” basic equations
to observed reality. The primary ingredients of QCD are massless gluons and
nearly massless quarks (u, d, s; the heavy quarks c, b, t are a separate, and
much easier, study). The observed hadrons, of course, are neither massless
like gluons nor fractionally charged like quarks. Many techniques have been
deployed to bridge the chasm separating theory world and physical world,
but in my opinion none is clearer nor more elegant than the straightfor-
ward application of BCS ideas to the regime of high density. (Here by “high
density” I intend large baryon number density, at low temperature.) [3]

1.1 QCD Meets BCS

A wise principle states “It is more blessed to ask forgiveness than permis-
sion.” In that spirit, we consider the possibility of constructing a description
of high-density QCD based on its elementary degrees of freedom, quarks and
gluons.

At first sight this approach looks extremely promising. High density
means large fermi surfaces. Neglecting interactions, the low-energy excita-
tions are associated with modes near the fermi surface: a mode just above
the fermi surface, empty in the ground state, becomes occupied, or a mode
just below becomes empty. Since the fermi surface is large, all modes near
the fermi surface carry large momentum and energy. Thus scattering among
the low-energy excitations will either involve only small angles, and leave the
distribution of particles over modes nearly unchanged, or else bring in large
momentum transfers, and therefore weak coupling (asymptotic freedom). It
appears, therefore, that perturbation theory should be a good approxima-
tion.

But when one actually does the calculations, one finds infrared diver-
gences. They arise from two sources:

• The preceding argument only concerns the quarks. Its central point is
that Pauli blocking removes the infrared divergences that usually arise
through low-virtuality quarks. Gluons, however, are not subject to any
such effect. Color electric forces are screened by the quark medium,
but color magnetic forces remain long-ranged, and lead to infrared
divergences.

branes refer to QCD as “trivial”, with no evident ironic intent.
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• Interacting fermions are subject to the Cooper instability. One has
many near-zero energy excitations at zero momentum, associated with
particle-particle or hole-hole pairs carrying equal and opposite three-
momenta ±~p. Thus in perturbing around the many-body state which
is the ground state of the non-interacting theory, that is the fully oc-
cupied fermi sphere, one is engaging in highly degenerate perturbation
theory. As a general matter, degenerate perturbation theory can re-
sult in significant restructuring of the ground state. In this specific
context, Bardeen, Cooper, and Schrieffer (BCS) taught us that even
a small attractive interaction will lead to a drastic re-arrangement of
the ground state, by inducing pairing and superfluidity.

In conventional superconductors it is quite subtle to find an effective
attractive interaction between electrons. The primary interaction between
electrons is the Coulomb interaction, and it is of course repulsive. To find an
attractive interaction one must bring in phonons, retardation, and screening,
and concentrate on modes within a thin shell around the Fermi surface. For
many “unconventional” superconductors, famously including the cuprates,
the mechanism of attraction remains unclear at present, despite much effort
to identify it. But in all known cases the superconducting transition tem-
perature (which reflects the attractive dynamics) is far below the melting
temperature (which reflects the primary dynamics).

In QCD the situation is more straightforward, because the primary in-
teraction – the QCD analogue of the Coulomb interaction – can already be
attractive. Two separated quarks, each in the triplet 3 representation, can
be brought together in the antisymmetric 3̄. The disturbance in the gluon
field due to color charge is then half what it was before. Since the energy
has decreased, the force is attractive. Nothing like this can happen when
there’s just one type of charge, of course. The existence of three different
color charges is crucial here. (On the other hand, with larger numbers of
colors antisymmetrization yields relatively less reduction in flux, and so the
attractive force is relatively weaker.)

By zeroing the spin – that is, once again, choosing the antisymmetric
channel – we also remove the sources of magnetic disturbance. Thus on very
general grounds we expect a powerful attractive interaction between quarks
in the channel where both colors and spins are antisymmetric. This intuition
is borne out by calculations using one-gluon exchange, instanton models, and
direct numerical simulations, though those simulations could and should be
sharpened.

Thus color superconductivity occurs straightforwardly, and should be
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robust physically, at high density. What does it mean? Here is a list of phys-
ical effects we can anticipate, by translating intuition from superconductivity
into the language of particle physics:

• Gluons acquire mass – that is a way to state the equations of the
Meissner effect. If all the gluons acquire mass, their exchange will no
longer produce infrared divergences.

• Quarks acquire mass – that is a way to state the equations of the energy
gap. If all the quarks acquire mass, Cooper’s infrared divergence will
be removed.

• Thus we construct a new ground state, around which our weak-coupling
expansion works.

• This ground state does not contain massless gluons nor exhibit long-
range forces. In that sense, it exhibits confinement. We also have the
classic phenomenon of confinement – that is, absence of fractional elec-
tric charge in the spectrum, as I’ll explain shortly.

• The energy gap for quarks suggests that chiral symmetry, which is
associated with massless quarks, may be broken.

In short, we have the prospect of a phase that exhibits the main non-
perturbative features of QCD – confinement and chiral symmetry breaking
– in a transparent, fully controlled theoretical framework. Let me emphasize
that here I am speaking of a phase of QCD itself, not of some idealization
of a model of a caricature of QCD. Now let’s discuss how it’s realized, more
concretely.

1.2 Color-Flavor Locking

For concreteness, and because my emphasis here is on QCD rather than
astrophysics, I will assume as the initial default that all quarks are massless,
that they are subject to a common chemical potential, and that electro-
magnetism can be treated as a perturbation. I’ll circle back to revisit these
assumptions, and ask your forgiveness, in due course.

Because the most attractive channel for quarks is antisymmetric both in
color and spin, Fermi statistics requires another source of antisymmetry. One
possibility is antisymmetry in the spatial wave-function of the quark pairs.
For example, we might have p-wave pairing. But for simple, purely attractive
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interaction potentials, s-wave tends to be favored, because it allows pairs
from all directions over the Fermi surface to act in phase. So s-wave pairing,
if possible, is likely to be favorable.

The remaining possible source of antisymmetry is flavor. Thus we must
pair off different flavors of quarks to take best advantage of the attractive
interaction between quarks. This requirement brings in some significant com-
plications. Obviously, it means that the one-flavor case is not representative,
and that we cannot build up the analysis one flavor at a time. The two-flavor
case also does not go smoothly. Antisymmetry in flavor and spin (and lack
of orbital structure) reduces the quark-quark channel to a single vector in
color space. Therefore condensation in this channel can break color sym-
metry only partially, in the pattern SU(3) → SU(2). Some gluons remain
massless, and some quarks remain gapless, so infrared divergences remain.

1.2.1 Ground State

Simplicity and self-consistency (that is, consistent use of weak coupling) first
arrive when we consider three flavors.

I’ll describe the full structure of the condensate momentarily, but since
that’s a little intimidating let me begin with a sketch. Since the spin (singlet)
and spatial (s-wave) structures are unremarkable I’ll suppress them, and also
chirality. The favored condensate should be antisymmetric in color and in
flavor, which suggests the form

〈qαa qβb 〉 ∼ ǫαβ∗ǫab∗

where the Greek indices are for color, the Latin indices are for flavor, and
* is a wildcard. Now by setting the wild cards equal, and contracting, we
maintain as much residual symmetry as possible. Any fixed choices for the
wildcards will break both color and flavor symmetries. But by locking color
to flavor we maintain symmetry under the combined (so-called diagonal)
symmetry group. Thus we arrive at

〈qαa qβb 〉 ∼ ǫαβ∗ǫab∗ → ǫαβiǫabi ∝ (δαa δ
β
b − δαb δ

β
a ) (1)

This condensate breaks local color times global flavor SU(3) × SU(3) to a
diagonal,“modified flavor” global SU(3).

It also spontaneously breaks baryon number symmetry. To a particle
physicist encountering these ideas for the first time, that might sound dra-
matic – and it is, but not in the sense that it allows the material to decay.
With the sample enclosed in a finite volume, outside of which the order pa-
rameter vanishes, there is a strict conservation law for the integrated baryon
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number. As in the theory of liquid helium 4, where one speaks of a conden-
sate of helium atoms, the true implication is that there is easy transport
of baryon number within the sample. More specifically, there is a massless
Nambu-Goldstone field, which supports the supercurrents characteristic of
superfluidity.

Now comes the full structure, in all its glory:

〈1|(qαa )iL(~k)(q
β
b )

j
L(−~k)|1〉 =

ǫij
(

v1(|~k|)(δαa δβb − δαb δ
β
a ) + v2(|~k|)(δαa δβb + δαb δ

β
a )

)

=

−
(

L ↔ R
)

. (2)

Here some further words of explanation are in order. The mid-Latin
indices i, j are for spin. The “L” and “R” are for left and right chirality.
The relative sign between left and right condensates reflects conservation of
parity. The functions v1(|~k|), v2(|~k|) are, for weak coupling, peaked near the
Fermi surface. Our preceding discussion anticipated the v1 term, but the
v2 term is also allowed by the residual symmetry. That latter term indeed
emerges from calculations based on the microscopic theory, though with
v1 >> v2.

Tracking chiral flavor symmetry and baryon number together with color,
the implied breaking pattern is:

SU(3)color × SU(3)L × SU(3)R × U(1)B → SU(3)∆ × Z2 (3)

The residual SU(3)∆ global symmetry, and the Z2 of fermion (quark) num-
ber, can be used to classify the CFL state’s low-energy excitations. There
is no residual local symmetry: All the color gluons have acquired mass. A
more refined analysis reveals that all the quarks have acquired gaps.

Finally, as a consequence of the underlying – spontaneously broken –
baryon number and chiral symmetries we also have generalized ground states,
obeying

〈U, θ|(qαa )iL(~k)(q
β
b )

j
L(−~k)|U, θ〉 =

ǫijeiθ
(

v1(|~k|)(Uα
aU

β
b −Uα

b U
β
a) + v2(|~k|)(Uα

aU
β
b +Uα

b U
β
a)
)

=

−
(

L ↔ R
)

(4)

for an any SU(3) matrix U. These generalized ground states are related
to one another by global baryon number (phase) or chiral transformations.
Low-frequency, long-wavelength modulation of the fields θ and U, which
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represents slow motion within the vacuum manifold, generates the Nambu-
Goldstone bosons.

One more comment about the ground state is in order. Throughout this
discussion I’ve used the language of gauge symmetry breaking and gauge
non-singlet order parameters. This is quite familiar and traditional in BCS
theory, and also in the standard model of electroweak interactions. Strictly
speaking, however, it based on a lie, for local gauge invariance is never bro-
ken. Matrix elements of gauge-variant expectation values always vanish in
the physical Hilbert space. Indeed, the physical Hilbert space of a gauge
theory is defined by restricting to gauge-invariant states. The usual proce-
dures of “spontaneous symmetry breaking” using gauge-variant operators
are a tool – a way of implementing favorable correlations in weak coupling.
Their physical content emerges when we use them as a calculational device,
in weak coupling, to draw consequences for gauge-invariant quantities such
as the physical spectrum or the expectation values of gauge-invariant op-
erators. In the CFL phase, we can identify two non-zero gauge invariant
vacuum expectation values that break chiral or baryon-number symmetries.
They are

〈qLqLq̄Rq̄R〉
〈qqqqqq〉 (5)

with the color indices suitably contracted. These expectation values arise as
powers of the primary, gauge-variant condensates. (After including instanton
effects, we also get 〈qLq̄R〉.) By way of contrast, neither conventional s-wave
spin-singlet BCS condensation nor doublet condensation in the standard
electroweak model support true order parameters.

1.2.2 Elementary Excitations

We can analyze the elementary excitations from the point of their spin and
quantum numbers under the residual SU(3)∆ symmetry. There are three
types:

1. Excitations produced by the quark fields: They are spin-1
2
fermions that

decompose as 3× 3̄ → 8+1 under SU(3)color×SU(3)flavor → SU(3)∆.
The singlet turns out, at weak coupling, to be significantly heavier than
the octet.

2. Excitations produced by the gluon fields: They are spin-1 bosons that
form an octet.

8



3. Collective excitations: They are a pseudoscalar octet of Nambu-Goldstone
bosons, plus the singlet superfluid mode.

Overall, there is a striking resemblance between this calculated spec-
trum of low-lying excitations and what one might expect for the elementary
excitations in the “nuclear physics” of QCD – that is, the nuclear physics
of QCD with three massless flavors – based on standard concepts in QCD
phenomenology and modeling. The calculated elementary excitations map
nicely onto the entries in the expected hadron spectrum. Even the super-
fluid mode makes sense, because we would expect, in this idealized “nuclear
physics”, pairing to occur in the dibaryon channel.

Since conventional (heuristic) “nuclear physics” and the asymptotic (cal-
culated) CFL state match so well with regard both to their ground state
symmetry and to their low-lying spectrum, it is hard to avoid the conjecture
that there is no phase transition separating these states. Consider cranking
up the chemical potential, starting from zero. First there’s Void. At a crit-
ical value nuclear matter appears, with a first-order transition. After that,
there’s just smooth evolution.

This conjecture of quark-hadron continuity is both (superficially) para-
doxical and conceptually powerful.

The claim that the baryons of conventional “nuclear physics” are sup-
posed to go over smoothly into excitations produced directly by single quark
fields is paradoxical. After all, baryons are famous for containing three
quarks, and three can’t evolve smoothly into one! Well, actually it can. When
space is filled with a condensate of quark pairs, the difference between three
and one is negotiable.

Quark-hadron continuity is a powerful conceptual claim: It implies that
the calculable forms of confinement and chiral symmetry breaking we con-
struct by adapting the methods of BCS theory are in the same universality
class as confinement and chiral symmetry breaking at low energies, within
nuclear (or rather “nuclear”) matter.

1.2.3 Electric Charge

Absence of long-range forces and massless gluons is a rather bloodless char-
acterization of confinement. What we’d really like to explain is: Why don’t
fractionally charged particles appear in the spectrum, given that they’re in
the Lagrangian?

To address that question, we must couple electromagnetism into our
theory. Of course, electromagnetism is connected with the photon, which
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couples as

γ : e







2
3

0 0
0 −1

3
0

0 0 −1
3






(6)

to flavor indices, in an evident notation. The symmetry associated with this
generator is broken in the CFL ground state. However there is a related
gluon, which couples as

Γ : g







2
3

0 0
0 −1

3
0

0 0 −1
3






(7)

to color indices. The combination

γ̃ =
gγ + eΓ
√

g2 + e2
(8)

leaves the mixed Kronecker deltas that characterize the CFL ground state
invariant, so it defines a massless gauge boson. γ̃ is a modified photon, that
defines the meaning of electromagnetism to an observer living within the
CFL ground state. Formally, for g >> e, it goes over into the ordinary
photon. However in that limit the small part Γ couples much more strongly
than the large part γ, and basic properties of the modified photon are, in
fact, modified.

Since the electron sees only γ, we read off its effective γ̃ charge as
− e√

g2+e2
. Excitations produced by quark fields get a contribution of ei-

ther 2
3
e × g√

g2+e2
or −1

3
e × g√

g2+e2
from γ and a contribution of either

−2
3
g × e√

g2+e2
or 1

3
g × e√

g2+e2
from Γ. Adding the two contributions, you

see that the quarks are either neutral, or their total γ̃ charge is ±1 times
the charge of the electron. The possible charges of quarks in the CFL phase
match the observed charges of baryons, which is a nice check on the quark-
hadron continuity conjecture. Precisely these integer charge assignments ap-
peared in the early work of Han and Nambu, who introduced color degrees
of freedom together with a non-trivial embedding of electromagnetism to
achieve them. Similarly, the gluon and pseudoscalar meson charges are all
integral (and match what you find in the particle data tables).

A similar transmutation of the charge spectrum occurs in the standard
model of electroweak interactions. In that context, the SU(2) gauge sym-
metry of weak isospin and the U(1) gauge symmetry of hypercharge are
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separately broken, but a linear combination survives to become electromag-
netism. To reproduce the known electric charges of quarks, leptons, and W
bosons one must postulate a very peculiar spectrum of fractional hyper-
charges. Unified theories of the strong, weak, and electromagnetic interac-
tions, based on symmetry groups such as SU(5) or SO(10), which extend
the standard model SU(3) × SU(2) × U(1), arrive quite naturally at that
very peculiar spectrum. That is perhaps the most compelling evidence that
such theories are on the right track [4].

1.2.4 Material Properties

What happens to matter, if you keep squeezing? Ultimately – that is, for
chemical potentials well above the strange quark mass but well below the
charm quark mass – it goes into the CFL phase, in which

• Hadronic matter forms a transparent insulator. We’ve discussed how
the photon gets modified. Some of the massless Nambu-Goldstone
bosons are electrically charged, but once we take into account non-zero
quark masses, these bosons (apart from the superfluid mode, which is
electrically neutral) acquire mass. Thus all the charged excitations
have a gap, and we get an insulator. Note especially that while it is
a color superconductor, hadronic mater in the CFL phase is not an
electrical superconductor.

• It is a superfluid.

• It is vastly different from ordinary nuclear matter. It contains an equal
mix of strange quarks, for one thing, and strong trans-baryon corre-
lations among the quarks. One might expect, and model calculations
tend to show, that there is a sharp transition between the two phases of
hadronic matter, namely nuclear and CFL, including an abrupt jump
in density.

The first two items suggest that by squeezing we ultimately arrive at material
similar to liquid helium 4, but of course with vastly higher density. The third
item suggests possibilities for astrophysical signatures. (As I’ll discuss mo-
mentarily, at present we cannot preclude the possibility of additional phases
of hadronic at intermediate densities.) I expect that eventually observation
of gravitational waves from the final infall of neutron star - neutron star or
neutron star - black hole binaries, in particular, will bring our knowledge of
neutron star interiors to a new, much higher level. Then predictions of this
sort will be tested.
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1.3 Beyond Color-Flavor Locking

As I emphasized earlier, ordinary real-life nuclear matter is quite differ-
ent from CFL. In practice, the effect of the strange quark’s mass on QCD
phenomenology is far from negligible. At low density the energetic cost of
the strange quark outweighs its possible advantage in interaction energy,
and ordinary nuclear matter has zero strangeness. Because the condensa-
tion mechanism at the heart of CFL necessarily connects three different
flavors, and must bring in strange quarks, it does not apply to ordinary
nuclear matter. CFL will set in when the chemical potential is sufficiently
high that the strange quark mass is relatively negligible. That will occur for
asymptotically high chemical potentials – or, equivalently, sufficiently high
densities. Unfortunately, at present our calculational ability is not up to the
task of predicting what happens subasymptotically. It is possible that nu-
clear matter transitions directly to CFL; it is also possible that there are
additional intermediate states. Even if the transition is abrupt, as I suspect
it is, presently we can’t predict the chemical potential at which it occurs,
nor the jump in density that accompanies it. These uncertainties hamstring
our ability to make crisp astrophysical applications.

BCS pairing works best when the modes being paired have close to zero
(free) energy. Ideally, many pairs should share the same quantum numbers,
so that we can get enhancement factors from their coherent contributions.
In that case, superconductivity can be triggered by arbitrarily weak inter-
actions. On the other hand if the Fermi surfaces of the quark species we’d
like to pair don’t match, so that modes at ~k and −~k can’t both be close
to their respective Fermi surfaces simultaneously, then some compromise is
necessary. There are several possibilities:

• Meson condensates, involving the Nambu-Goldstone bosons, can soak
up some of the unwanted flavor imbalance.

• Less desirable forms of pairing, such as p-wave, that can work with a
single flavor, might occur. p-wave pairing (in three dimensions) leaves
gapless fermions, which might themselves pair, forming a secondary
condensate at a lower energy scale.

• Pairing can occur at one or several non-zero wave-vectors, i.e. involv-
ing modes (~k + ~κ,−~k). These phases, which break translation invari-
ance, are known as LOFF (Larkin-Ovchinnikov-Ferrell-Fulde) phases,
or crystalline superconductivity.

• Pairing can occur between modes that are (nominally) particle and
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hole; i.e. one can dig into a Fermi ball, or supply a shell, to take
advantage of potential energy gains at the cost of kinetic energy. If
a vestige of the original Fermi surface remains, one has a breached
(gapless) phase, where a superfluid condensate coexists with a normal
fluid component.

One bright spot is that cold atom physicists are beginning to explore
traps loaded with several fermion species. In that context it is totally natural
to have Fermi surfaces of different sizes and couplings that are not small, so
that similar complications arise, but now in systems that are experimentally
accessible and allow controlled manipulation of the underlying parameters.
There has already been a fruitful cross-migration of ideas and information
between these fields, and I expect that will continue.

2 Gauge-Rotation Locking and Quantum Statis-

tics: Anyons [5]

2.1 Gauge-Rotation Locking

Consider a U(1) gauge theory that is spontaneously broken by a condensate
associated with a field of ρ of charge mq, with m an integer. Assume the
theory also contains particles of charge q, associated with a field η, which
does not condense. Gauge transformations that multiply ρ by e2πikwill mul-
tiply η by e2πik/m. For integer k such transformations leave the condensate
invariant, but not necessarily η. We are therefore left with an unbroken
gauge group Zm, the integers modulo m, that is not entirely trivial, at least
mathematically. On the other hand, no conventional long-range gauge inter-
action survives the symmetry breaking. Does the residual symmetry have
any physical consequences?

Indeed it does. They are subtle, but very interesting indeed.
The theory supports vortices with flux quantized in units of

Φ0 =
2π

mq
(9)

(in units with h̄ ≡ 1).
The flux is associated with a gauge potential, whose azimuthal piece we

can take to have the form

Aθ(r, θ) =
Φ

2π
f(r)

f(0) = 0

13



f(∞) = 1 (10)

and a condensate of the form

ρ(r, θ) = g(r)e
iΦ
Φ0

θ

g(0) = 0

g(∞) = 1 (11)

This condensate is neither rotationally invariant nor gauge invariant. It
is, however, invariant under the combined rotation+gauge transformation

L̃ = L+ Λ ≡ −i
∂

∂θ
− Φ

Φ0

Q

m
(12)

where Q is the charge operator. Here Λ is a generator of spatially constant
gauge transformations. Thus there is a residual modified rotational symme-
try, locking naive spatial rotations to appropriate gauge transformations,
under which the vortex is invariant. Indeed, from a strictly logical perspec-
tive it would be preferable to postulate the symmetry, and use it to motivate
the vortex ansatz.

For the condensate field ρ, which has charge m, the new contribution
to the angular momentum is an integer. Indeed, its “role in life” is to con-
vert the spatial form of the condensation, which whirls in the partial wave
with angular momentum Φ

Φ0
, so that it represents, at spatial infinity, the

state of rest. More formally, the kinetic angular momentum, which is the
gauge invariant version, gets annulled at infinity, by cancellation between
the ordinary gradient and vector potential terms in the covariant deriva-
tive Dθ = ∂θ + iQAθ. The square of angular momentum contributes to the
energy density, so this cancellation must occur at spatial infinity, in order
that the total energy of the vortex (in two dimensions), or the energy per
unit length (in three dimensions) remains finite. For broken global symme-
tries this cancellation is not an option. In that case the vortices in that case
have logarithmically divergent energy, and carry angular momentum; these
facts underly the vastly different phenomenology associated with vortices in
superconductors versus liquid helium.

For the quanta of fields whose charge is not an integer multiple of the
charge Q of ρ, on the contrary, the new contribution to the angular mo-
mentum is not necessarily an integer, due to the factor Q/m. So composites
formed from particles of these kind and vortices will, in general, carry frac-
tional angular momentum.

Since one expects, on very general grounds, that there ought to be a
tight connection between the spin of a particle and its quantum statistics,
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we are led to look into the quantum statistics of these objects, anticipating
something unusual.

2.2 Anyons

Traditionally, the world has been divided between bosons (Bose-Einstein
statistics) and fermions (Fermi-Dirac statistics). Let’s recall what these are,
and why they appear to exhaust the possibilities.

If two identical particles start at positions (A,B) and transition to
(A′, B′), we must consider both (A,B) → (A′, B′) and (A,B) → (B′, A′)
as possible accounts of what has happened. According the rules of quan-
tum mechanics, we must add the amplitudes for these possibilities, with
appropriate weights. The rules for the weights encode the dynamics of the
particular particles involved, and a large part of what we do in fundamental
physics is to determine such rules and derive their consequences.

In general, discovering the rules involves creative guesswork, guided by
experiment. One important guiding principle is correspondence with classical
mechanics. If we have a classical Lagrangian Lcl., we can use it, following
Feynman, to construct a path integral, with each path weighted by a factor

ei
∫

dtLcl. ≡ eiScl. (13)

where Scl. is the classical action. This path integral provides – modulo several
technicalities and qualifications – amplitudes that automatically implement
the general rules of quantum mechanics. Specifically: it sums over alternative
histories, takes products of amplitudes for successive events, and generates
unitary time evolution.

The classical correspondence, however, does not instruct us regarding the
relative weights for trajectories that are topologically distinct, i.e. trajecto-
ries that cannot be continuously deformed into one another. Since only small
variations in trajectories are involved in determining the classical equations
of motion, from the condition that Scl. is stationary, the classical equations
cannot tell us how to interpolate between topologically distinct trajectories.
We need additional, essentially quantum-mechanical rules for that.

Now trajectories that transition (A,B) → (A′, B′) respectively (A,B) →
(B′, A′) are obviously topologically distinct. The traditional additional rule
is: For bosons, add the amplitudes for these two classes of trajectories2; for
fermions, subtract.

2As determined by the classical correspondence, or other knowledge of the interactions.
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Those might appear to be the only two possibilities, according to the
following (not-quite-right) argument. Let us focus on the case A = A′, B =
B′. If we run an “exchange” trajectory (A,B) → (B,A) twice in succession,
the doubled trajectory is a direct trajectory. The the square of the factor we
assign to the exchange trajectory must be the square of the (trivial) factor
1 we associate to the direct trajectory, i.e. it must be ±1.

The argument in the preceding paragraph is not conclusive, however, be-
cause there can be additional topological distinctions among trajectories, not
captured by the permutation among endpoints. This distinction is especially
important in 2 spatial dimensions, so let us start there. (I should recall that
quantum-mechanical systems at low energy can effectively embody reduced
dimensionality, if their dynamics is constrained below an energy gap to ex-
clude excited states whose wave functions have structure in the transverse
direction.)

The topology of trajectory space is then specified by the braid group.
Suppose that we have N identical particles. Define the elementary operation
σj to be the act of taking particle j over particle j + 1, so that their final
positions are interchanged, while leaving the other particles in place. (See
Figure 1.) We define products of the elementary operations by performing
them sequentially. Then we have the obvious relation

σjσk = σkσj; |j − k| ≥ 2 (14)

among operations that involve separate pairs of particles. We also have the
less obvious Yang-Baxter relation

σjσj+1σj = σj+1σjσj+1 (15)

which is illustrated in Figure 1. The topologically distinct classes of trajec-
tories are constructed by taking products of σjs and their inverses, subject
only to these relations.

In three dimensions there is more room to maneuver the strands, and
we have an additional relation

σ2
j = 1 (16)

When these relations are added to the previous ones, we find that the braid
group reduces to the ordinary so-called symmetric group SN of permuta-
tions on N letters. An interesting intermediate possibility is to demand the
relation that rotations through 4π are trivial but rotations through 2π might
not be, as in the mathematics of spinors. Then one would impose

σ4
j = 1 (17)
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Figure 1: The elementary acts of crossing one particle trajectory over another
generate the braid group. The Yang-Baxter relation σ1σ2σ1 = σ2σ1σ2, made
visible here, is its characteristic constraint. The top configuration can slide
smoothly into the bottom one, with endpoints held fixed.

in place of Eqn. (16). This distinction will come up again shortly.
The defining equations Eqn. (14, 15) for the braid group allow a con-

tinuous range of 1-dimensional unitary representations, of the very simple
form

σj = eiθ (18)

for all j, with θ an arbitrary real number. One can have any phase, not just
the ±1 characteristic of bosons and fermions. For that reason I christened
particles carrying more general quantum statistics anyons.

With this very general background in mind, let us return to our fractional
angular momentum vortices. A particle or group of particles with charge bq
moving around a flux Φ acquires, according the minimal coupling gauge
Lagrangian, phase

exp ibq(

∮

dt~v · ~A) = exp ibq(

∮

d~x · ~A) = eiΦbq (19)

(Note that in two dimensions the familiar flux tubes of three-dimensional
physics degenerate to points, so it is proper to regard them as particles.) If

the flux is aΦ0, then the phase will be e2πi
ab

m . Note that this phase does not
depend on the velocity, curvature, or any details of the particles’ dynamics,
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other than the topology of how their world-lines interweave. For that reason,
we say we have a topological interaction.

Composites with (flux, charge) = (aΦ0, bq) will be generally be particles
with unusual quantum statistics. For as we implement the interchange σj ,
each charge cluster feels the influence of the other’s flux, and non-trivial
phase is required. A close analysis shows that the anomalous statistics is
just such as to preserve a spin-statistics connection, in the form

e2πiJ = eiθ (20)

Evidently quantum statistics, both conventional and unconventional, can
be regarded as a special type of long-range interaction. It is remarkable that
this interaction is not associated with the exchange of any massless parti-
cle. Indeed, our specific model, with broken gauge symmetry, can be fully
gapped. One can also have topological interactions, involving similar accu-
mulations of phase, for non-identical particles. What governs these topolog-
ical interactions are the quantum numbers, or more formally the superse-
lection sectors, of the particles, excitations, or clusters involved, not their
detailed internal structure.

The phase factors that accompany winding have observable consequences.
They lead to a characteristic “long range” contribution to the scattering
cross-section, specifically

dσ

dφ
= sin2(π

ab

m
)

1

2πk

1

sin2 φ
2

(21)

It diverges at small momentum transfer and in the forward direction. A
cross section of this kind was first computed by Aharonov and Böhm [6] in
their classic paper on the significance of the vector potential in quantum
mechanics. If we could do experiments in the style of high-energy physics,
forming beams of quasiparticles and scattering them, we’d be in great shape.
Unfortunately, as a practical matter the highly characteristic cross-sections
associated with anyons may not be easy to access experimentally for the
examples that occur as excitations in exotic states of condensed matter
(although it could be worth a try!).

Interferometry appears more practical. The basic concept is simple and
familiar, both from optics and (for instance) from SQUID magnetometers.
One divides a coherent flow into two streams, which follow different paths be-
fore recombining. The relative phase between the paths determines the form
of the interference, which can range from constructive to destructive recom-
bination of the currents. We can vary the superselection sector of the area
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Figure 2: A schematic interference experiment to reveal quantum statistics.
One measures how the combined current depends on the occupation of the
quasiparticle island.

bounded by the paths, and look for corresponding, characteristic changes in
the interference. (See Figure 2.) Though there are many additional refine-
ments, this is the basic concept behind both Goldman’s suggestive experi-
ments [8] and other planned anyon detection experiments [9].

Elementary excitations in the fractional quantum Hall effect are pre-
dicted to be anyons. A proper discussion of that field would require a major
digression, which would not be appropriate here. For the central calculation
see [7], for extensive discussion and review, see [5]. I’d like to emphasize, in
any case, that the general concept of anyons is by no means restricted to the
quantum Hall effect; on the contrary, I believe the subject will reach a new
level of interest and importance as more robust, user-friendly realizations
are discovered. This is a most important area for future research.

2.3 Nonabelian Anyons

The preceding field-theoretic setting for abelian anyons immediately invites
nonabelian generalization. We can have a nonabelian gauge theory broken
down to a discrete nonabelian subgroup; vortex-charge composites will then
exhibit long range, topological interactions of the same kind as we found in
the abelian case, for the same reason.

Though the starting point is virtually identical, when we consider inter-
actions among several anyons the mathematics and physics of the nonabelian
case quickly becomes considerably more complicated than the abelian case,
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and includes several qualitatively new effects. First, and most profoundly, we
will find ourselves dealing with irreducible multidimensional representations
of the braiding operations. Thus by winding well-separated particles3 around
one another, in principle arbitrarily slowly, we can not only acquire phase,
but even navigate around a multidimensional Hilbert space. For configura-
tions involving several well-separated particles, the size of the many-body
“ground state” Hilbert spaces can get quite large: roughly speaking, they
grow exponentially in the number of particles. Since all the states in this
Hilbert space are related by locally trivial – but globally non-trivial – gauge
transformations, they should be very nearly degenerate. This situation is
reminiscent of what one would have if the particles had an internal of free-
dom – a spin, say. However here the emergent degrees of freedom here are
not localized on the particles, but more subtle and globally distributed.

The prospect of contructing very large Hilbert spaces that we can nav-
igate in a controlled way using topologically defined (and thus forgiving!),
gentle operations in physical space, and whose states differ in global prop-
erties not easily obscured by local perturbations, has inspired visions of
topological quantum computing. (Preskill [10] has written an excellent intro-
ductory review.) The journey from this exalted vision to real-world engi-
neering practice will be challenging, to say the least, but thankfully there
are fascinating prospects along the way.

The tiny seed from which all this complexity grows is the phenomenon
displayed in Figure 3. To keep track of the topological interactions, it is suffi-
cient to know the total (ordered) line integral of the vector potential around
simple circuits issuing from a fixed base point. This will tell us the group
element a that will be applied to a charged particle as it traverses that loop.
(The value of a generally depends on the base point and on the topology of
how the loop winds around the regions where flux is concentrated, but not
on other details. More formally, it gives a representation of the fundamental
group of the plane with punctures.) If a charge that belongs to the repre-
sentation R traverses the loop, it will be transformed according to R(a).
With these understandings, what Figure 3 makes clear is that when two
flux points with flux (a, b) get interchanged by winding the second over the
first, the new configuration is characterized as (aba−1, a). Note here that we
cannot simply pull the “Dirac strings” where flux is taken off through one
another, since nonabelian gauge fields self-interact! So motion of flux tubes

3From here on I will refer to the excitations simply as particles, though they may be

complex collective excitations in terms of the underlying electrons, or other degrees of

freedom.
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Figure 3: By a gauge transformation, the vector potential emanating from
a flux point can be bundled into a singular line. This aids in visualizing
the effects of particle interchanges. Here we see how nonabelian fluxes, as
measured by their action on standardized particle trajectories, are modified
by particle interchange.

in physical space generates non-trivial motion in group space, and thus in
the Hilbert space of states with group-theoretic labels.

As a small taste of the interesting things that occur, consider the slightly
more complicated situation displayed in Figure 4, with a pair of fluxes
(b, b−1) on the right. It’s a fun exercise to apply the rule for looping repeat-
edly, to find out what happens when we take this pair all the way around a
on the right. One finds

(a, (b, b−1)) → (a, (aba−1, ab−1a−1)) (22)

i.e., the pair generally has turned into a different (conjugated) pair. Iterating,
we eventually close on a finite-dimensional space of different kinds of pairs.
There is a non-trival transformation R̃(a) in this space that implements the
effect of the flux a on pairs that wind around it. But this property – to be
transformed by the group operation – is the defining property of charge! We
conclude that flux pairs – flux and inverse flux – act as charges. We have
constructed, as John Wheeler might have said, Charge Without Charge.

Its abstract realization through flux tubes makes it manifest that non-
abelian statistics is consistent with all the general principles of quantum
field theory. Practical physical realization in condensed matter is a different
issue, for in that context, nonabelian gauge fields aren’t ready to hand.

Fortunately, and remarkably, there may be other ways to get there. At
least one state of the quantum Hall effect, the so-called Moore-Read state
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Figure 4: Winding a flux-antiflux pair around a test flux, and seeing that its
elements get conjugated, we learn that the pair generally carries charge.

at filling fraction 5
2
, has been identified as a likely candidate to support

excitations with nonabelian statistics [11].
The nonabelian statistics of the Moore-Read state is closely tied up with

spinors [12] [13]. I’ll give a proper discussion of this, including an extension
to 3 + 1 dimensions, elsewhere [14]. Here, I’ll just skip to the chase. Taking
N γj matrices satisfying the usual Clifford algebra relations

{γj , γk} = 2δjk (23)

the braiding σj are realized as

σj = eiπ/4
1√
2
(1 + γjγj+1) (24)

It’s an easy exercise to show that these obey Eqns. (14, 15), and σ4
j = 1

(Eqn. (17)) but not σ2
j = 1 (Eqn. (16)).

2.4 Pairing, Statistical Transmutation, and Zero Modes

Finally, it’s appropriate to mention that there’s a deep connection between
BCS theory and the sorts of quantum Hall states that support nonabelian
anyons. They are connected adiabatically – in a conceptual parameter space
– through statistical transmutation.
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The imposition of a constant magnetic field on an two-dimensional elec-
tron gas is not a uniformly small perturbation, even if the magnitude of
the field B is tiny. That is because in formulating quantum mechanics the
Hamiltonian is fundamental, and in the Hamiltonian the vector potential ~A
appears. Stokes’ law informs us that the vector potential associated with a
constant field strength grows linearly with the size of the sample. Thus large
quantities appear in Hamiltonian, and the perturbation associated with a
tiny magnetic field is not uniformly small. And indeed we know that such
a perturbation can induce a qualitative change in the spectrum, changing
(say) the conventional parabolic free-electron spectrum into the quantized
Landau levels, which feature a gap above a highly degenerate ground state.

The idea of statistical transmutation is that we can cancel off the grow-
ing part of the magnetic vector potential, if we associate to each electron an
appropriate change in quantum statistics. Indeed, as I’ve reviewed above,
one can effectively implement changes in the quantum statistics of particles
by attaching notional flux and charge to those particles. (In the early days I
called this “fictitious flux”, to distinguish it from electromagnetic flux.) Now
if we add up the notional gauge potentials from a constant density of elec-
trons, we’ll get – again according to Stokes’ law – notional gauge potentials
that grow linearly with the distance. If we add the right amount of flux – in
other words, if we make a judicious change in quantum statistics – we can
arrange to make a cancellation between the parts of the real and notional
gauge potentials which grow with distance. The perturbation implement-
ing this combined operation – a small magnetic field applied together with

an appropriate small change in quantum statistics – will then be uniformly
small.

The required relation between field and statistics can be neatly expressed
as a connection between the filling fraction

ν ≡ ρ

eB
, (25)

where ρ is the electron number density, and the quantum statistics parameter
θ. We require

∆
1

ν
= ∆

θ

π
(26)

Since gapped systems which lie along the lines defined by Eqn. (26) are
related by a sequence of infinitesimal perturbations, we can expect that
they lie in the same universality class, and will share universal properties.

∆θ = 2π corresponds, on the one hand, to no net change in statistics,
and on the other, to ∆ 1

ν = 2. In this way our “notional” adiabatic path
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through anyons can connect proper (fermionic) electron states. A notable
example: the fractional Laughlin states at 1

ν = 2m + 1 can be connected
adiabatically to the integer quantum Hall state at ν = 1 (in other words,
m = 0). To my mind, this is the most profound4 way to understand the
existence of gapped many-body states at those filling fractions, and their
other most distinctive properties.

1
ν = 0 corresponds to zero magnetic field. In zero magnetic field, for

appropriate attractive interactions, electrons can form a gapped supercon-
ductor, specifically a px + ipy superconductor, through BCS pairing in the
l = 1 channel. According to the Eqn. (26), that BCS superconductor can be
adiabatically connected to ν = 1

2
quantum Hall states, which should share

its universal properties. (The observed ν = 5
2
state plausibly contains 2 inert

Landau levels, so its active dynamics involves ν = 1
2
.) Prominent among the

universal properties we can calculate in the BCS state are: the existence of
a gap; the existence of neutral ‘pair-breaking’ excitations; and the existence
Majorana zero modes on vortices, leading to nonabelian statistics for those
vortices. The nonabelian statistics that arises here is of the kind I sketched
earlier, in Eqn. (24). The Clifford algebra is realized here, concretely, as the
algebra of the operator coefficients that multiply the vortex-centered zero
modes in the expansion of the electron field. All the aforementioned features
should carry over into appropriate ν = 1

2
states.
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