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The Sun’s equator and the planets’ orbital planes are nearly aligned, which is
presumably a consequence of their formation from a single spinning gaseous disk.
For exoplanetary systems this well-aligned configuration is not guaranteed:
dynamical interactions may tilt planetary orbits, or stars may be misaligned with
the protoplanetary disk through chaotic accretion1 , magnetic interactions2 or
torques from neighbouring stars. Indeed, isolated ‘hot Jupiters’ are often
misaligned and even orbiting retrograde3,4. Here we report an analysis of transits of
planets over starspots5–7 on the Sun-like star Kepler-30 (ref. 8), and show that the
orbits of its three planets are aligned with the stellar equator. Furthermore, the
orbits are aligned with one another to within a few degrees. This configuration is
similar to that of our Solar System, and contrasts with the isolated hot Jupiters. The
orderly alignment seen in the Kepler-30 system suggests that high obliquities are
confined to systems that experienced disruptive dynamical interactions. Should this
be corroborated by observations of other coplanar multi-planet systems, then
star–disk misalignments would be ruled out as the explanation for the high
obliquities of hot Jupiters, and dynamical interactions would be implicated as the
origin of hot Jupiters.

Kepler-30 is a star of nearly solar mass and radius, but it is probably younger than the
Sun, judging from its faster rotation and more prominent starspots8.  The starspots are
crucial to measuring the stellar obliquity (the angle between the rotational and orbital
angular momentum vectors).  Starspots produce two effects: quasi-periodic variation



(QPV) in flux caused by rotation, and shorter-term “anomalies” in flux caused by the
transit of a planet in front of a spot.  The obliquity can be measured if one observes a
sequence of anomalies5,7, or a few single anomalies and the accompanying QPV6, as long
as the effects of a single spot or compact group of spots can be isolated.  This technique
has been previously applied to solitary short-period planets, but not longer-period planets
or systems of multiple planets.  The other widely used technique for measuring stellar
obliquities, the Rossiter-McLaughlin effect9, relies on precise spectroscopy during
transits and would be impractical for a star as faint as Kepler-30.

We analyzed 2.5 years of nearly continuous photometric time-series data from the Kepler
space telescope10. The dataset includes 27 transits of Kepler-30b (‘planet b’; orbital
period, ≈ 29 days, radius, ≈ 4 RE, where RE is the Earth’s radius), 12 transits of Kepler-
30c  (‘planet c’; 60 days; 13 RE), and 5 transits of Kepler-30d (‘planet d’; 143 days; 10
RE). After removing instrumental artifacts (see Supplementary Information) we detected
QPV with an amplitude (peak-to-peak) of 1.5%. The stellar rotation period is 16.0 ± 0.4
days based on a Lomb-Scargle periodogram11 (Supplementary Information).

To enable the obliquity analysis we searched for anomalies during transits that are large
enough in amplitude and long enough in duration to be caused by the same spots that
produce the QPV.  Many such anomalies were identified during transits of the largest
planet, c. A strong correlation exists between the timing of the anomaly relative to mid-
transit, and the phase of the QPV: anomalies observed near mid-transit are found when
the QPV is near a local minimum, while anomalies occurring before (or after) mid-transit
are found before (or after, respectively) a local minimum. This is the signature of a low-
obliquity star6.

We used both of the above-mentioned methods to establish the quantitative bounds on the
obliquity: (1) quantifying the relationship between the anomalies and QPV; and
(2) modeling a particular pair of transits for which the anomalies can be attributed to
transits over the same spot. To support both of these methods we determined the basic
transit parameters -such as the planet-to-star radius ratio (Rpl/Rstar) and impact parameter-
by fitting the transit data with a standard model for the loss of light during a planetary
transit12.  We excluded the anomalies from the fit, and accounted for transit depth
variations due to unocculted spots (see Supplementary Information, and Supplementary
Figure 1).  Results are given in Table 1.

The premise of the first method is that any spot that causes an anomaly must also contrib-
ute to the QPV.  For a given spatial orientation of the star, geometry dictates a specific
relationship between the timing of the anomaly and the phase of the QPV.  However, all
spots contribute to the QPV, not just the occulted spot.  Therefore, to measure the obliq-
uity, we must associate each anomaly with a particular component of the QPV.  Out of
concern that such associations are ambiguous, we exhaustively tried all plausible associa-
tions.  We rank-ordered the anomalies in order of the loss of light produced by the spot,
and focused attention on the five strongest anomalies.  We measured the time of each
anomaly relative to mid-transit, as well as the time of the transit relative to each local
minimum in the QPV within a rotation period (see Supplementary Information).  For one



of the anomalies there is only one plausible choice for the associated local minimum,
while in each of the other 4 cases there are two candidate local minima, giving a set of 16
possible associations.  We find that only one of these 16 is compatible with a single
orientation of the host star, and in that case the stellar equator is aligned on the sky with
the planet’s orbit (see Fig. 1, and Supplementary Figure 2).  We explored all allowed
orientations with a Monte Carlo Markov Chain (MCMC) algorithm13, finding the sky-
projected obliquity to be 4° ± 10°.

For the second method, we searched for pairs of anomalies produced by the same spot.
Between successive transits of planet c, a spot will rotate 3.77 times around the star,
thereby advancing in longitude by 0.77 of a full circle or 277°, relative to the meridian
defined by the sky projection of the stellar rotation axis.  An advance by 277° is
equivalent to regression by 83°. Therefore, if a spot persists for at least 4 rotations, and if
the spot’s trajectory is parallel to the planet’s trajectory (i.e. if the obliquity is low), then
an anomaly observed in the second half of a transit should be followed by an anomaly in
the first half of the next transit.  The two anomalies should differ by 83° in the suitably
defined “anomaly phase” (see Fig. 1).

Two of the five strongest anomalies have this expected phase relationship (see Figure 2),
corroborating the finding of a low obliquity. The QPV produced by this spot is coherent
over the interval spanned by the two transits, confirming the persistence of the spot (see
Supplementary Table 2).  Figure 2 shows a spot model fitted to the transit data. For
completeness, three spots were included in the model, although only the largest spot
(labelled 1) bears information on the stellar obliquity, since it was transited twice by
planet c.  The model parameters include the spin orientation of the star, the rotation
period, and the spot properties (sizes, locations, and intensities).  Because the rotation
period and spot properties are constrained externally from the QPV, the model could be
used to constrain the spin orientation, with results given in Table 1 (see Supplementary
Information for details), including a sky-projected obliquity –1 ± 10 degrees.  This low
sky-projected obliquity is likely to be representative of the true obliquity14.

Furthermore, all three planetary orbits must be nearly coplanar.  The mere existence of
multiple transiting planets suggests coplanarity15, although the possibility remains that the
orbits are mutually inclined with nodes (lines of intersection) that happen to lie along the
line of sight.  However, for Kepler-30, such mutual inclinations would be detectable
through variations in transit times and durations caused by nodal precession.  To quantify
this argument, we performed a 4-body integration of Newton’s equations16-18. To be
compatible with the observed transit times and durations, the mutual inclinations must be
smaller than a few degrees. A by-product of our dynamical analysis combined with the
transit analysis and the known mass of the star7 is the determination of the planetary
masses and radius (Fig. 3, Table 1).

Such an orderly arrangement might seem to be a natural consequence of the standard
model of planet formation, based on core accretion within a flat disk19.  Recently, though,
the host stars of many “hot Jupiter” systems have been found with high obliquities, in
some cases even spinning backward relative to the planetary orbit3,4.  Indeed, it has been



argued that stars with hot Jupiters had initially random obliquities, and the only reason
low obliquities are sometimes observed is the obliquity-damping effect of planet-star
tidal interactions4.

The observed high obliquities in hot-Jupiter systems have been interpreted as evidence
that hot Jupiters attained their close-in orbits through dynamical interactions (which can
strongly perturb a planet’s orbital orientation) followed by tidal capture.  This view is in
opposition to the previous paradigm for the origin of hot Jupiters, in which a gradual
transfer of energy and angular momentum to the protoplanetary disk causes their orbits to
shrink (and maintain a fixed orientation).

One reason why this scenario involving dynamical and tidal interactions has not gained
universal acceptance is that obliquity measurements were previously confined to giant
planets with small periastron distances.  One would like to make sure that the high
obliquities are indeed confined to systems that have experienced dynamical interactions.
Otherwise it remains possible that stars and their disks are generally misaligned for
reasons unrelated to planets, such as chaotic accretion1, magnetic interactions2 or
differential torques produced by a neighboring star.

Kepler-30 is the type of system that needed to be checked: the coplanarity of the
planetary orbits suggests a quiescent history without disruptive dynamical interactions,
and the planets are too far from the star for strong tidal interactions. The system was
selected by virtue of significant spot-crossing anomalies, and not by any criterion that
would have biased the result toward low obliquity.  Therefore the observed low obliquity
is a clue that the primordial stellar misalignments are not the correct explanation for the
high obliquities of hot Jupiter hosts, and that hot Jupiters arise from dynamics and tidal
capture.  There is only a 6% chance of observing such a low obliquity for Kepler-30 if
obliquities were drawn from a random initial distribution.  To strengthen our
interpretation, additional observations of coplanar multiple-planet system are warranted,
and are predicted to yield low obliquities.
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Host star parameters*

KIC/KOI number 3832472 / 806

Kepler magnitude 15.4

Mass [solar mass] 0.99 ± 0.08

Radius [solar radius] 0.95 ± 0.12

Effective temperature [K] 5498 ± 54

Gyrochronology age estimate [Gyr] 2.0 ± 0.8

Quadratic LD coeff. u1 0.38 ± 0.09

Quadratic LD coeff. u2 0.40 ± 0.19

Linear LD coeff. u 0.54 ± 0.02

Stellar density [g/cm3] 2.00 ± 0.10

Planetary parameters†

Parameter [units] Planet 30b Planet 30c Planet 30d

Orbital period [days] 29.334 ± 0.008 60.3231 ± 0.0002 143.343 ± 0.009

Mid-transit time [BJD] 2455246.65 ± 0.04 2455357.8870 ± 0.0005 2455273.530 ± 0.010

Eccentricity e 0.042 ± 0.003 0.0111 ± 0.0010 0.022 ± 0.005

Periapse angle ω [deg.] -31 ± 7 -49 ± 6 -163 ± 7

Nodal angle Ω [deg.] 0.03 ± 0.17 0 (Relative to 30c) 1.3 ± 0.5

Planetary mass [M⊕] 11.3 ± 1.4 640 ± 50 23.1 ± 2.7

| I – 90° | [deg] 0.18 ± 0.16 0.32 ± 0.03 0.16 ± 0.02

Impact parameter 0.38 (+0.12, -0.20) 0.40 (+0.04, -0.06) 0.38 (+0.08, -0.14)

(Rpl/Rstar)2 0.00165 ± 0.00008 0.0162 ± 0.0008 0.0083 ± 0.0004

Planet density [g/cm3] 1.02 ± 0.13 1.88 ± 0.17 0.19 ± 0.02

Planet radius [RE] 3.9 ± 0.2 12.3 ± 0.4 8.8 ± 0.5

Starspot parameters and spin-axis orientation‡

Spot rotational period [days] 16.0 ± 0.4

Spot intensity relative to unspotted photosphere 0.85 ± 0.03

Inferred spot temperature [Kelvins] 5298 ± 65

Angular radius of spot [degrees] 21 (+7, -3)

Sky-projected obliquity, recurrence method [degrees] -1 ± 10

Sky-projected obliquity, 5-anomaly method [degrees] 4 ± 10



Table 1.  Parameters of the host star Kepler-30, starspots and planets.

*Most of the host star parameters are obtained from the literature, and are based on the
analysis of high-resolution spectra in conjunction with stellar-evolutionary models8. The
limb darkening (LD) coefficients are obtained from the light curve analysis (see
Supplementary Information). The stellar density is obtained from the dynamical
modelling of transit timings and durations.

†Most of the planet parameters are obtained from the four-body dynamical model (see
Fig. 3, Supplementary Table 4), with the exceptions of the impact parameters and
(Rpl/Rstar)2, which are obtained strictly from the light curve analysis. Periods and epochs
are best-fits to constant-period models, with error bars reflecting the 1 s.d. spread in the
transit timing measurements. |I _ 90°| is the deviation of the orbital inclination I from 90°
(edge-on). The results for the planetary masses and radii take into account the uncertainty
in the assumed stellar mass. The results for (Rpl/Rstar)2 are assigned a relative error of 5%
to account for possible contamination of the Kepler photometric aperture by background
stars. The mass and radius of planet c agree with theoretical models of gas giant planets20

(see Supplementary Information).

‡The spot parameters are obtained from the spot model (see Fig. 2). In all cases the
quoted results and statistical uncertainties are based on the 15.85%, 50% and 84.15%
levels of the cumulative a posteriori probability distribution (marginalizing over all other
parameters), as determined with the MCMC algorithm.



Figure 1: Evidence for a low obliquity based on transits over several starspots at
differing stellar longitudes.

a, A portion of the Kepler light curve, with a box highlighting a transit of Kepler-30c
show in panel b. The transit occurred just after a local minimum in the QPV. The time of
the transit is measured with respect to the selected flux minimum, divided by the rotation
period and expressed in degrees, giving the “transit phase” φtra = 22° ± 10°.  The transit
phase is also computed relative to all other local minima within one rotation period. BJD,
barycentric Julian day. b, A flux anomaly is observed during the transit. The black line is
a model without starspots and the red line is a model with one spot.  The “anomaly
phase”, which can be directly compared to the transit phase, is defined by sin φanom =
2x/L, where x is the distance from the spot to the center of the transit chord, and L is
length of the transit chord.   In this case φanom = 15° ± 2°, in agreement with φtra and
consistent with a low obliquity. c, Colored lines show the expected relation between φanom 
and φtra, for different orientations of the star.  Since the association between anomalies
and minima may be ambiguous, φtra was computed for all plausible associations, for the
five largest spot anomalies.  Only one such set of associations is consistent with a single
choice of the stellar orientation.  Shown here for that unique choice of associations (see
table 3S) is the observed relation between φanom and φtra implying a projected obliquity
λ = 4° ± 10°. This error, and the errors on all phases, is ± 1 s.d.



Figure 2. Evidence for a low obliquity, based on a consecutive pair of transits over a
single starspot.

a, Data points (black) are a portion of the Kepler light curve, showing the QPV with an
approximate 16-day period. The red curve is a model consisting of three spots (shifted
vertically for clarity). The model does not take into account spot evolution or differential
rotation and is not expected to fit perfectly. Three particular transits are highlighted with
boxes and labelled for subsequent discussion. b, Light curve of a transit of planet c. The
solid dots are data points, the black curve is a transit model with no spots, and the red
curve is the best-fitting model with three spots. Residuals from the best-fitting model are
displayed near the bottom of the plot. c, Same as the previous panel, but for the next
transit of planet c. d, Same as the previous panel, but for the next transit of planet d. The
key parameter of the model, the projected obliquity, was constrained to be smaller than
10°. e, Illustration of the stellar disk, dark spots and transit chord for the time range
plotted in panel b. The white arrows convey the direction of stellar rotation. The black
disk represents the transiting planet. f, g, Same as panel e, but for the time ranges plotted
in panels c, d respectively. Panels e and f show that spot 1 was twice eclipsed by planet c,
with nearly four stellar rotation periods between the transits. Then, one stellar rotation
later, spot 1 was also eclipsed by planet d (panel g). (The smaller spot, 3, may also have
been eclipsed by both planets during this time interval, though the eclipse by planet d is
not securely detected.)



Figure 3. Evidence for coplanar planetary orbits based on an analysis of transit
times and durations. Throughout, sub-panels and diagram components using colours
red, green, and blue refer to planets Kepler-30 b, c, and d, respectively. a, The deviation
of individual observed (O) transit times (see Supplementary Table 1 with all errors
defined as ±1 s.d.) from a constant-period calculation (C) versus time. For planets c and
d, suspected starspot-crossing anomalies were masked out before the analysis. Calculated
transit times based on a model including planet–planet dynamical interactions8,18

(Supplementary Information) are shown as open diamonds. Residuals (Res.) between the
data and the model are shown below each O _ C plot. b, Observed and modelled transit
durations. Here the transit duration is defined as the length of time when the centre of the
planet is projected in front of the stellar disk. c, Diagram of the paths of the planets (black
circles with coloured rims) across the face of the star. The error bars show the uncertainty
in the impact parameters of the orbits, which are constrained from the timescale of
ingress and egress. For planets b and d, three lines are shown, delimiting the 1 s.d. region
allowed for the rotations around the line of sight, relative to planet c. The lack of secular
changes in the durations (b) implies coplanarity to within a few degrees. The error bar on
the stellar limb (upper right) is the uncertainty in the stellar radius. The stellar spin axis is
denoted (upper middle); its projected orientation is determined from the starspot analysis
to be aligned with the planets to within 10° (1 s.d.).



SUPPLEMENTARY INFORMATION

1.  The Kepler photometric time series

Basic characteristics.  This work is based on photometric time-series data from the
Kepler space telescope10 obtained between 13 May 2009 and 28 September 2011 (Kepler
quarters 1 through 10). Until 29 September 2011 the observing mode resulted in one
photometric measurement every 29.4 min, whereupon the observing mode was changed
to produce a time series with a finer sampling of 58.8 sec.

Removal of artifacts.  We attempted to remove instrumental artifacts as follows.  First
we separated the transit segments from the rest of the time series.  A transit segment was
defined as the data obtained during a given transit along with 3 hours of data before the
transit, and 3 hours of data after the transit.  For the transit segments, instrumental
artifacts were well described by a linear function of time.  The parameters of this linear
model were determined by fitting a straight line to the out-of-transit data.  As for the rest
of the data, we subtracted the projections between the data vector and the 4 most
significant co-trending basis vectors made available by the Kepler project21.  For some
time ranges this correction was not applied, because the data had already been corrected
by the Kepler project using the PDC-MAP algorithm22,23.

2.  Stellar rotation period

Period determination.  To estimate the stellar rotation period, we divided each quarterly
time series by its mean, and then computed a Lomb-Scargle periodogram11 of the entire
time series.  A clear peak is observed at 16 days. We interpret this peak as the stellar
rotation period.  This conclusion was corroborated by a visual inspection of the time
series, in which there are at least ten clear cases of flux minima with a consistent
amplitude separated by 16 days, for intervals as long as a year. Evidently, there are large
and long-lived starspots.  Some of these groups of flux minima are studied in more detail
in the next section. We adopt an uncertainty of 0.4 days in the rotation period, based on
the range of periods giving a periodogram power at least one-third as large as the peak
power.  Thus the stellar rotation period was estimated to be 16.0 ± 0.4 days.

Gyrochoronology.  The stellar rotation period can be used to estimate the main-sequence
age of the star, because Sun-like stars are observed to slow their rotation according to a
simple law in which the rotation period is proportional to the inverse of the square root of
the age24. We used a polynomial relationship25 between stellar age, rotation, and mass to
estimate the age of Kepler-30.  The inputs were the rotation period, taken to be a
Gaussian random variable with mean 16.0 days and standard deviation 0.4 days, and the
stellar mass, taken to be 0.99 solar masses with a standard deviation of 0.08 solar masses.
The resulting distribution of stellar ages has a mean of 2 Gyr and standard deviation of
0.8 Gyr, indicating a star younger than the Sun.  The uncertainty of 0.8 Gyr reflects only
the uncertainties in the rotation period and stellar mass, and not any systematic errors in
the polynomial relationship itself.



3.  Transit light curve analysis

Overview.  The analysis of the transit data had several steps, to take advantage of the fact
that certain model parameters were assumed to have the same values for all transits,
while other parameters were allowed to be specific to each transit.  The common
parameters were determined by constructing and analyzing a composite transit light curve
for each planet, the results of which were then used as constraints in the fit to each
individual transit light curve.  We performed two iterations of this entire process, the
second time enforcing an additional constraint that the orbits are nearly circular, based on
the results of the dynamical integration described in Section 6 of this supplement.

Transit model.  In all cases the transit data were fitted with a standard transit model12

using a quadratic law to describe the stellar limb darkening, with two free parameters for
the limb-darkening coefficients.  The planet-to-star radius ratio, scaled stellar radius
(R/a), and the cosine of the orbital inclination (cos I) were additional free parameters.
When data with a cadence of 30 minutes is used, we evaluate the model with a fine time
sampling and then time-average the model before comparing it to the data26.

Spot corrections.  For planets c and d, the signal-to-noise ratio of the transit data was
large enough to justify corrections for spot effects.  Spot-crossing flux anomalies were
visually identified and excluded from the fit (see Figure 1S).  To account for the effect of
unocculted starspots we added a new parameter (Lspot) specific to each transit representing
the light lost due to spots, defined as

Fcorr = (Ftrans – Lspot) / (1 – Lspot)

where Ftrans is the standard transit model with no spots, and Fcorr is the model that is
compared to the data27.  We allow the Lspot parameters to vary freely except for the case of
the shallowest transit, for which this parameter was held fixed at zero.  Thus we assumed
that the effect of unocculted spots was minimal for that transit, and indeed the shallowest
transits of both planets c and d occur near a local maximum in the relative flux, as
expected if our assumption were correct.

Parameter estimation.  We determined the best-fitting model parameters by minimizing
a standard χ2 function.  The weight of each data point was proportional to the square root
of the effective exposure time, and the proportionality constants were determined by the
condition χmin

2 = Ndof
 (number of degrees of freedom) for the best model.  Construction of

composite light curves allows for a drastic reduction in data volume and consequent
speed-up of the MCMC algorithm.  We assumed that the limb-darkening parameters,
radius ratios, and R/a parameters were constant across all transits of a given planet, but
that cos I (and therefore the transit duration) could vary from one transit to the next.  To
construct composite light curves, the best-fitting values of the midtransit times were used
to calculate the time relative to the nearest mid-transit, and the best-fitting Lspot
parameters were used to correct the data to zero loss loss-of-light due to unocculted spots.
The data were then binned in time with a bin size of 5 minutes.  The MCMC algorithm
was then used to explore the allowed regions for the global parameters (Table 1). The



same MCMC algorithm was also used to obtain the individual transit durations and
transit midpoints of each event, using constraints on the other parameters based on the
analysis of the composite light curves.  The results for the transit midpoints and durations
were used as inputs to the dynamical model described in Section 6 (see also Table 1S).

Iteration with dynamical modeling.  There is a well-known relationship between the
orbital parameters, transit parameters, and stellar mean density28, usually described as a
relation between the R/a parameter and the stellar mean density for an assumed circular
orbit.  Therefore, in a system with multiple transiting planets, an additional constraint is
available on the orbital and transit parameters by requiring the individual planet models
to agree on the stellar mean density.  This only useful when the orbital eccentricities of
the planets are known or bounded strongly.  In the first iteration of our transit analysis,
the planets’ orbital eccentricities were unknown and were therefore analyzed individually
with no common linkage based on the stellar mean density.  Subsequently, the dynamical
modeling described in Section 6 revealed that the orbital eccentricities must be small.
After this finding, we performed a second iteration of the entire process: we repeated our
transit analysis with constraints on the orbital eccentricities, thereby gaining additional
leverage over the transit parameters, and then refined the dynamical model with the
improved parameter set.  The output orbital eccentricities were consistent with the results
of the first iteration, obviating the need for additional iteration.  (We note that iterative
procedure could have been avoided by directly coupling the light curve model and
dynamical model, a technique that has become known as “photodynamics”29, at the cost
of increased computation time.)

Limb darkening results.  The fitted limb darkening coefficients u1 = 0.38 ± 0.09 and
u2 = 0.40 ± 0.19 can be compared with tabulated values based on theoretical models of
the atmosphere of the host star30.  According to those models, a Sun-like star with log g =
4.5, Teff = 5500 and Z = 0.2 (parameters similar to those of Kepler-30) is expected to have
limb-darkening coefficients u1 = 0.47 and u2 = 0.22, in agreement with our results.

4.  Obliquity determination from transits over starspots at differing
longitudes

Identifying significant anomalies: first method.  When a planet transits a spot, the
observed flux is higher than when the planet is transiting the brighter unspotted surface of
the star. This is what causes the flux anomalies in the transit light curves.  To simplify the
analysis we wanted to identify those particular anomalies caused by the largest spots,
which are expected to produce the most significant modulation of the out-of-transit flux.
One can estimate the total flux deficit caused by the spot—or at least of the portion of the
spot transited by the planet—by computing the difference between observed and modeled
flux during an anomaly, and then multiplying by an appropriate scale factor31.  However,
this will underestimate the effect of spots that are transited near the limb, due to the effect
of geometrical foreshortening.  For this reason we employ a modified spot metric,

        Δ F = [ Σ(fobs– ftheo) Δt / τ] / (1-r2)1/2



where τ is the ingress time of the transiting planet, r is the projected distance from the
center of the spot to the center of the star (in units of the stellar radius), Δt is the time
spacing between observations, and fobs and ftheo are the observed flux and the (spot-free)
modeled flux respectively. The sum is evaluated for all data points during the spot
anomaly. We ranked all spot anomalies according to this metric, and identified the six
most significant spots, for which Δ F > 0.4%.

Identifying significant anomalies: second method.  As an alternative means of
classifying the spot anomalies, we also fitted a parameterized model to the anomaly data.
Our spot model is based on the premise of a limb-darkened star with circular starspots5.
In addition to the usual transit parameters, which were held fixed in this analysis, there
were four parameters for each spot (size, relative intensity, and two-dimensional location
in the rotating frame of the star). We specify the spot size by the angular radius, defined
as the opening angle of the cone that connects the boundary of the circular spot with the
stellar center.  Since the rotation period is slow enough that the spot does not move
appreciably over the duration of a planetary transit, the model coordinates of the spot are
assumed to be constant throughout the transit, coinciding with the projected center of the
planet at the midpoint of the anomaly.  The size and the relative intensity of the spot are
free parameters, as are the transit midpoint and out-of-transit flux level, since those latter
two parameters are correlated with the spot parameters. The model flux is calculated as
the surface integral of the intensity of the visible hemisphere of the star, excluding the
area blocked by the planet.  The parameters of the best-fitting model are used to estimate
the loss of light due to the entire spot, assuming a circular shape. This is in distinction
with the first method, which is less model-dependent but gives only the loss of light due
to the portion of the spot that was transited by the planet.

Both methods of ranking the spots give agreement on the top six spots.  These spots
should produce the largest quasi-periodic flux variations outside of transits.  The six
largest anomalies should each correspond to a flux variation exceeding 1%, which is
readily detectable in the Kepler data.

Associating flux anomalies with nearby local minima in the out-of-transit flux.
Spots cause a modulation in the disk-integrated flux, as they are carried across the disk by
stellar rotation.  Due to limb darkening, the loss of light due to a particular spot is largest
when that spot is closest to the center of the stellar disk.  The quasi-periodic variation
thereby encodes some information about the location of the spot, which we use in the
obliquity determination.  For each of the six transits with the most significant anomalies,
we search all of the data within one stellar rotation period to identify local flux minima
deeper than 0.4%, i.e., deep enough to be caused by the same spot that is the origin of the
transit anomaly. This search becomes more complicated if the transits are located close to
a large data gap, like safe mode events, since the shape of the flux minima might be
compromised. For this reason we discarded one of the transits with one large anomaly
that happened close to the beginning of quarter 10. We checked that dropping this
anomaly did not affect the conclusions of this paper.



For one of the remaining 5 transits, only one minimum is identified, and we conclude that
the spot that caused the flux anomaly is the same that caused the flux minimum.  The
alternative interpretations are unlikely.  For example there could be bright spots (faculae)
situated in such a way as to cancel out the loss of light from the dark spot, but such large
faculae have never been observed in active stars32, and no evidence is found for transits
over faculae. Another possibility is that two large spots can combine to cause the same
effect as one larger spot.  This is possible, but in these cases the two spots would
necessarily have a similar rotational phase, and thus the computation of transit phases
described below would be largely unaffected.  In the other 4 large flux anomalies, there
were two local minima in the vicinity of the transit.  For these we tried all possible
associations between flux anomalies and local minima, as described below.

Computing φtra, the phase of each transit within a stellar rotation cycle.  For each
transit we computed the phase of the transit (φtra) relative to each of the candidate
minima.  The phase is defined as the time of the transit, relative to the time of the flux
minimum, divided by the rotation period and expressed in degrees.  To measure this
transit phase we first needed to measure the times of minimum light.  This was done by
fitting a parabolic function to the data near the minimum. These timings, along with
formal statistical uncertainties, can be found in Table 2S.

In the cases where PDC-MAP data were available, we repeated this procedure with both
the flux series obtained with our detrending algorithm (fitting the co-trending vectors)
and the PDC-MAP flux series.  We found differences up to 0.1 days, several times larger
than the formal statistical uncertainties.  This demonstrates that the times of minimum
light are dependent on the details of the detrending algorithm.  Therefore, to obtain more
robust results, we analyzed not only the local minimum closest in time to the transit, but
the entire periodic sequence of local minima that occur within 4 stellar rotation periods of
the transit in question.  The large spots evidently lasted for several rotation periods,
enabling this analysis.  The timings of all those minima are also given in Table 2S.  We
then fitted the times of minimum light for each spot with a linear function of cycle
number.  The standard deviation of the residuals—which was up to 20 times larger than
the formal statistical uncertainty in each time of minimum light—was adopted as a more
realistic estimate of the uncertainty of each of the timings.  The slope of the line is
interpreted as the period of rotation of the given spot, in all cases close to the value
16.0 ± 0.4 days established in Section 1.

The transit phase is then defined

  φtra
j = 360° * (t0- tj)/ P

where P is the rotation period of the spot, tj represents the time of minimum light, and t0
is the mid-transit time. The uncertainty in this phase (δφtra

j) is obtained by propagating the
uncertainties of all the input parameters.

Computing φanom, the phase of each anomaly within the transit.  The timing of the
spot-crossing anomaly relative to the mid-transit time also bears information about the



location of the spot, in this case with respect to the transit chord.  Each spot-crossing
anomaly was assigned an anomaly phase (φanom), defined as

φanom = sin-1(x/(1-b2)0.5)

where x is the location of the spot measured along the transit chord, in units of the stellar
radius, and b is the impact parameter of the transit.  To determine this phase and its
uncertainty (δφanom), we use the spot transit model previously mentioned, in which x is a
free parameter.  We used an MCMC algorithm to determine the allowed range of this
parameter, and then propagate the uncertainty appropriately to obtain δφanom (see Table
3S).

Using the relation between φtra and φanom to determine the obliquity.  Given a certain
spin-orbit orientation and a particular impact parameter, there is a one-to-one geometrical
relationship between these two phases.  Symbolically we write this relationship as

φtra,theo = f(λ, is, φanom, b)

and, for each of the 16 possible associations between flux anomalies and local minima,
we define the goodness-of-fit as

χ2 (λ, is, b, φanom,  j)= Σ[(φtra,theo -φtra
j)/ δφtra

j]2 + Σ[(φanom,param -φanom)/ δφanom]2 + [(b – bc)/ δbc]2

where λ is the sky-projected stellar obliquity, is is the inclination of the stellar rotation
axis with respect to the line of sight, the index j ranges over the 16 possible associations,
and bc and δbc are the measured impact parameter of planet c and its associated
uncertainty (Table 1). For each of the 16 possible associations, we evaluate the minimum
of the χ2 function in a 2D uniform grid in λ and is, with λ ranging from –180° to +180°
and is ranging from 0° to 180°, with a spacing of less than half degree. With eight
parameters and eleven measurements, we have three degrees of freedom. We only find
one association that gives an acceptable fit, with a minimum χ2 ≈ 5.2 and a p-value of
0.16.  The next best association gives a minimum χ2 ≈ 26.5, with a p-value of 0.000008.
This test thereby uniquely determines the associations between flux anomalies within a
transit, and nearby minima in the out-of-transit flux (see Table 3S for final value of the
phases). Once this is decided, we used an MCMC algorithm to obtain the final value of λ
and its uncertainty, using the correct association. (As expected is is unconstrained by this
analysis.)

5.  Obliquity determination from two transits over a single starspot

A second, independent determination of the obliquity was undertaken, based on the
observed recurrence of flux anomalies by the same spot in two different transits.  For this
task the spot model was changed appropriately.  To give an acceptable fit to the light
curves it was necessary to include three spots in the model, even though only one of those
spots (the one that was transited twice) is of interest.  The largest spot, labeled 1 in Figure



2, is the crucial spot that was transited twice by planet b.  The smaller spots 2 and 3 were
included for completeness but do not have any bearing on the stellar obliquity. These two
spots are fixed to the transit chord as previously explained.  For simplicity, all the spots
were assigned the same intensity, since for spots 2 and 3 this parameter is degenerate
with the spot angular radius.  More information is available for spot 1 because Kepler-
30c transited this spot twice. The model is also modified (relative to the model described
in Section 2) to account for the changing position of the spot on the disk of the star. We
model the trajectory of the spot with the two angles specifying the stellar orientation, the
rotation period of the star, and a particular time when the spot is closest to the center of
the star.

The transit data alone would not allow the spot parameters to be determined uniquely,
especially because the transits are well separated in time and the spots are large.
However, we can apply some crucial constraints on the model based on the analysis of
the out-of-transit quasiperiodic flux variations.  Specifically, Gaussian priors were
imposed on the stellar rotation period, and on the amplitudes and phases of the out-of-
transit flux variations implied by the spot locations (Table 2S). To compute the amplitude
of the quasi-periodic flux variations for a given set of spot parameters, we used the
Dorren model33, an analytic expression that gives the loss of light from a circular spot of a
certain size, brightness contrast and location.  This model uses a linear law for the limb
darkening profile.  We assumed that the limb-darkening law was the same for spots as for
the surrounding photosphere. The spots were required to have a lower intensity than the
surrounding photosphere, and a maximum angular size of 60° to protect against
outlandish solutions.  The individual transit times and out-of-transit flux levels were
allowed to vary freely.  The allowed regions for the parameters were determined with an
MCMC algorithm13, and are given in Table 1.  We used the best-fitting (zero obliquity)
solution to plot the quasi-periodic flux variations using the same Dorren model, and in
Figure 2a the result is plotted in red.  The spot model captures the general amplitude of
the modulations and the phase of the largest spot, but does not fit perfectly. This was
expected, since we are not modeling all the smaller spots that may exist on the surface or
trying to fit the quasi periodic flux variations point by point, nor are we taking into
account spot evolution or differential rotation.

6. Dynamical modeling

Overview. A dynamical model was fitted to the observed transit times and durations, in
order to determine the planet masses and especially the mutual inclinations between the
planetary orbital planes.  The model consisted of four spherical bodies (the star and three
planets) dynamically interacting according to Newton’s equation of motion.  This model
was advanced, using a root-finding technique34, to each moment of closest sky-projected
separation between each of the planets and the star.  This moment is the model mid-
transit time.  This distance of closest sky-projected separation, in units of stellar radii, is
the model impact parameter b (averaged over the transits which are observed).  The
model transit duration is the width of the star along that transit chord, 2 R* √(1-b2),
divided by the sky-projected relative velocity of the planet and the star (v).  These three



types of quantities are compared to the measurements (Table 1S), and the χ2 function (the
sum of the squares of the differences between model and data, normalized by the
observational errors) is minimized using the Levenberg-Marquardt algorithm35.

Model parameters. The parameter set used in the model are osculating orbital elements
in Jacobian coordinates: each planet’s orbit is referenced to the center of mass of all
bodies on interior orbits, with instantaneous Keplerian orbits defined using the total mass
of all interior bodies and that planet.  The numerical integrations use Cartesian,
astrocentric coordinates (at a common dynamical epoch BJD 2455550), coordinates into
which the parameter set is converted prior to the integration.  The parameters are orbital
period, P; mid-time of a transit near the dynamical epoch, T0; the parameters (e sin ω)
and (e cos ω), where e is the eccentricity and ω is the angle between the periastron and
the node, the latter being the location the planet passes through the sky plane moving
towards the observer; the inclination of the orbital plane with respect to the plane of the
sky, i; the rotation angle of the node about the line of sight, Ω.  Finally, we fit the mass of
each planet with respect to the star, Mp/M*. We have used this method previously to fit
transit midtimes8,18,36, and in Table S4, we give the resulting orbital parameters.

Obtaining the density of the host star. An additional step of this analysis was to find
the density of the star, ρ*.  In practice, we fix the stellar mass at 0.99 MSol and use stellar
radius R* as an additional fit parameter, which we convert to ρ* using the adopted stellar
mass.  The rationale of this approach is that under the transformation of masses M*-
>αM*, Newton’s equations have the scaling property of time t->α1/2t and of
distances/radii R*->α1/3R* and thus M*/R*

3 -> M*/R*
3, meaning that photometric data

uniquely constrain only densities.  While fitting a certain timing dataset, the fit can still
be rescaled to various masses and radii.  Another way to demonstrate this is to note the
dependencies of parameters which together determine the stellar radius: R*=D/(2v√(1-
b2)).  The shape of transits determines the parameter b and duration D; they are
independent of M*.  The sky-projected orbital velocity v comes from the numerical
integration.  The orbital period is fixed by the observations, so v scales the same way as
semi-major axis with stellar mass, i.e. v ~ M*

1/3.  Thus the inferred R* scales as M*
1/3, so

with the integrations assuming a certain M*, what is really being constrained is the stellar
density.

The best fitting model. For this analysis, the average impact parameters we used were
given in Table 1.  The resulting goodness-of-fit statistic and number of data points for
were χ2/#:
Times of planet b :         18.3/ 27
Times of planet c :         12.9 / 12
Times of planet d :         0.02 / 5
Durations of planet b:    39.9 / 27
Durations of planet c:     16.1 / 12
Durations of planet d:      10.5 / 5
Impact parameter of planet b:    1.4 / 1
Impact parameter of planet c:    0.1 / 1



Impact parameter of planet d: 0.03 / 1
The total χ2  of 99.4 for 70 degrees of freedom is marginally acceptable: according to the
chi-squared test, it has a p-value of 0.012. The durations and impact parameter of planet b
have high deviations from their measured errors (Table 1, 1S). Kepler 30 b is a special
case because its ingress and egress have very low signal-to-noise per transit, so the
determination of errors of durations and impact parameter is especially difficult.

Mutual events. Note that planets c and d have nearly the same impact parameter, and
there is evidence that they cross the same spot.  This suggests that if they transited the
star at the same time, their disks might intersect, in projection. Such a geometry would
lead to a momentary brightening, relative to the two-planet eclipse model, called a mutual
event37.  In the current dataset, no such anomalies exist, and the best-fitting model has no
such events spanning ~8 years of data possible from Kepler.  However, ground-based
telescopes may survey this system thereafter38, presuming the planets have not nodally
precessed onto differing transit chords by then.

Planet parameters. Although the main motivation for our dynamical analysis was the
determination of mutual inclinations, a by-product is the determination of the planetary
masses and densities, which were heretofore poorly known. From table 4S, we obtain the
planet to star mass ratio that combined with the stellar mass obtained from the spectra
(Table 1) gives us the mass of the planets. This same mass ratio, together with the new
precise density of the star, and the planet to star radius ratio, allows us to get the
densities. Then it is straightforward to obtain the planetary radius from these. We confirm
that b is akin to Neptune, and c is a gas giant similar to Jupiter. Planet d has the lowest
mean density of any exoplanet smaller than Jupiter39, although we caution that the mass
of planet d is less robustly constrained than the other two planet masses. The constraint
on d’s mass relies on the analysis of its gravitational pull on c, which is itself engaged in
a resonance with b, making the effects difficult to isolate.

To test the robustness of these measurements, we adopt a theoretical stance and assume
that the mass and radius of Kepler 30c should conform to theoretical models of giant
planets, which are thought to be reliable for cool (not strongly irradiated) giant planets20.
Thus, the massive giant planet can be used as a reference object, instead of the usual
practice of using the star as the only reference object. With an orbital period of 60 days
around a Sun-like star, and being so massive, in theory the size of this planet depends
chiefly on its age and the composition of the solid core at its center. With the estimate of
the age from the rotational period and the mass fixed to 2 Jupiter masses, we estimate the
largest size possible as the cool Jupiter with no core and age of 1 Gyr, which is 1.14 times
the radius of Jupiter. On the other end, to provide a lower bound on the planet radius, we
choose a cool Jupiter with a very large core, 100 times the mass of Earth, and as old as
4.5 Gyrs, giving a size of 0.97 Jupiter radii. Putting these results together, we set a value
for the radius of 1.05 ± 0.09 Jupiter radii for Kepler 30c, or what is the same, 11.8 ± 1.0
Earth radii. With this estimate, and the knowledge of the relative sizes of the planets, one
can determine the sizes of the smaller planets, whose radii depend strongly on
composition and thus are not well constrained by theory.  For Kepler 30b we obtain a
radius of 3.8 ± 0.3 Earth radii, and for Kepler 30d we obtain a radius of 8.4 ± 0.8 Earth



radii. All these values agree with the observed values, showing the robustness of our
analysis. Even using this slightly smaller radius for the Kepler 30d, we obtain a density of
0.21 ± 0.07 g/cm3 that is still the lowest among all exoplanets smaller than Jupiter. We
emphasize that in this analysis, theoretical models for giant planets influence the planet
properties, whereas the original values reported in Table 1, which have smaller
uncertainties, are also independent of such models.
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Table 1S. Transit Durations and midpoint times obtained from the transit model.

The errors are estimated using an MCMC algorithm. The transit durations of each planet
are constant within the errors, which is used to constrain the mutual inclinations. The
transits are not equally spaced, due to gravitational interactions between the planets. We
used this information to constrain the masses and orbits of the planets (see Figure 3).

Planet Transit # Time [BJD-2454900] Error Transit Duration [days] Error
b 0 83.719 0.007 0.184 0.013

1 112.858 0.007 0.213 0.014
2 142.027 0.008 0.201 0.015
3 171.159 0.007 0.225 0.013
4 200.326 0.012 0.164 0.020
5 229.490 0.008 0.193 0.014
6 258.684 0.006 0.182 0.011
7 287.895 0.007 0.207 0.013
9 346.419 0.008 0.209 0.015

11 405.094 0.007 0.191 0.013
12 434.432 0.007 0.202 0.012
13 463.924 0.007 0.224 0.013
14 493.316 0.006 0.233 0.011
15 522.874 0.006 0.210 0.011
16 552.316 0.008 0.205 0.015
17 581.892 0.006 0.221 0.012
18 611.352 0.006 0.206 0.013
19 640.923 0.008 0.186 0.014
20 670.380 0.007 0.232 0.014
21 699.923 0.006 0.206 0.012
22 729.366 0.005 0.193 0.010
23 758.817 0.005 0.186 0.009
24 788.230 0.007 0.229 0.013
25 817.599 0.006 0.191 0.010
26 846.940 0.006 0.214 0.011
27 876.243 0.005 0.191 0.009
28 905.525 0.006 0.201 0.012

c 0 176.8927 0.0007 0.2437 0.0015
1 237.2268 0.0007 0.2450 0.0016
2 297.5542 0.0009 0.2383 0.0019
3 357.8826 0.0007 0.2414 0.0015
4 418.2062 0.0007 0.2421 0.0015
5 478.5308 0.0010 0.2429 0.0021
6 538.8514 0.0007 0.2394 0.0016
7 599.1696 0.0006 0.2440 0.0013
9 719.7957 0.0006 0.2418 0.0013

10 780.1152 0.0006 0.2428 0.0013



11 840.4375 0.0005 0.2405 0.0013
12 900.7677 0.0006 0.2425 0.0013

d 0 87.2631 0.0015 0.316 0.003
1 230.3777 0.0014 0.333 0.003
2 373.6182 0.0015 0.328 0.003
3 516.8893 0.0015 0.333 0.003
5 803.2728 0.0013 0.334 0.003



Table 2S. Measured timings for relevant flux minima used to estimate the rotational
phases of the spots occulted during transit.

The flux minima are grouped according to periodicity, and each group represents one
large active region or spot. MCMC errors are based in a parabola fit to each flux minima,
whereas the final errors used are based on the standard deviation of the residuals of the
linear fit to all the timings of a given group. The rotation period and its error are based on
that same linear fit.

The nine timings that occur close to one of the five transits that show large spot-crossing
events are underlined. Written in bold and enclosed in boxes are the five flux minima
uniquely determined (SI).

Spot group Epoch Timing MCMC error Final error Period Period error
I 0 150.242 0.007 0.40 16.11 0.08
I 2 182.153 0.010 0.40 16.11 0.08

3 198.270 0.013
4 213.745 0.016
5 230.999 0.046
6 246.851 0.034

II 0 144.264 0.016 0.44 16.01 0.08
1 160.129 0.011
2 175.927 0.014
4 209.054 0.063
5 224.423 0.016
6 239.824 0.025

III 0 264.863 0.021 0.40 15.94 0.06
Spot 1 1 280.107 0.010

See figure 2 2 296.037 0.012
3 312.369 0.008
4 328.385 0.010
5 344.021 0.012
6 359.480 0.015
7 376.611 0.037

IV 0 259.306 0.044 0.42 14.78 0.18
1 273.199 0.012
2 288.296 0.020
3 303.549 0.027

V 0 350.727 0.010 0.13 15.67 0.02
1 366.291 0.011
2 382.016 0.011
3 397.571 0.012
4 413.266 0.010



5 428.724 0.009
6 444.762 0.008
7 460.272 0.006
8 476.165 0.008

VI 0 681.771 0.014 0.57 15.16 0.12
2 712.747 0.014
3 726.574 0.069
5 758.225 0.154
6 772.537 0.033

VII 0 639.490 0.022 0.37 15.61 0.04
3 686.184 0.023
4 702.226 0.014
5 718.260 0.019
6 733.743 0.027
7 748.411 0.026
8 764.116 0.038
9 780.078 0.019
10 795.897 0.011



Table 3S. Final transit and anomaly phases for each of the largest spots occulted by
planet Kepler 30c.

Kepler Transit # φanom [deg] Error φtra [deg] Error

0 15 2 22 10

2 59 9 34 9

3 -39 12 -36 9

5 48 7 54 3

10 5 3 1 8

Table 4S.  Dynamical fit to Transit Times and Durations (Table 1S) and Impact
Parameters (Table 1).

planet P (days) T0 (BJD-2454900) e cos ω e sin ω i (deg) Ω (deg) Mp/M* (x10-6)

b 29.33434 346.6476 0.03616 -0.02204 90.179 0.035 34.29

+/- 0.00815 0.0401 0.00185 0.00638 0.167 0.167 3.03

c 60.323105 357.887042 0.00728 -0.008332 90.3227 0.00 1935

+/- 0.000244 0.000520 0.00133 0.000767 0.0302 (def) 167

d 143.34394 373.53020 -0.02060 -0.00635 89.8406 1.319 70.09

+/- 0.00858 0.00969 0.00510 0.00239 0.0202 0.475 5.76



Figure 1s.  Transit curve analysis allowed us to determine the orbital parameters
and also the sizes of the planets, properly taking into account the effect spots.

The upper panel shows three different transits in which spot anomalies are observed. The
solid dots represent the observed fluxes used to determine the transit parameters. The
open dots represent the observed fluxes affected by spot-crossing events, points that were
not used in the transit analysis. The line represents the final transit model that fits through
the solid dots.

The lower panel shows the folded light curve for the three planets in which the solid dots
represent all observations and the lines represent the final transit model. The effect of the
spots seems to be present for the three planets, but it becomes much more evident for
Kepler 30c, the largest planet.



Figure 2s: Continuation of Figure 1, the transit phases and anomaly phases for the
four other spot-crossing events.

The upper panels are the equivalent of Figure 1a, the lower panels the equivalent of
Figure 1b, for all four other spot-crossing events. It is important to note that except for
the one on the right side, the other three are based in a model with two spots on the transit
chord. In those cases, only one out of the two anomalies happens to be caused by a large
enough spot, and that is the one connected with the blue vertical line on the lower panels.
See table 2S and 3S for more information.


