
Automated Phenotyping of Mouse Social Behavior

by

Nicholas Edelman

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2011

c© Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 21, 2011

Certified by. .
Tomaso Poggio

Eugene McDermott Professor
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Automated Phenotyping of Mouse Social Behavior

by

Nicholas Edelman

Submitted to the Department of Electrical Engineering and Computer Science
on September 21, 2011, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Inspired by the connections between social behavior and intelligence, I have developed
a trainable system to phenotype mouse social behavior. This system is of immediate
interest to researchers studying mouse models of social disorders such as depression
or autism. Mice studies provide a controlled environment to begin exploring the
questions of how to best quantify social behavior.

For the purposes of evaluating this system and to encourage further research,
I introduce a new video dataset annotated with five social behaviors: nose-to-nose
sniffing, nose-to-head sniffing, nose-to-anogenital sniffing, crawl under / crawl over,
and upright head contact. These four behaviors are of particular importance to
researchers characterizing mouse social avoidance [9].

To effectively phenotype mouse social behavior, the system incorporates a novel
mice tracker, and modules to represent and to classify social behavior. The mice
tracker addresses the challenging computer vision problem of tracking two identical,
highly deformable mice through complex occlusions. The tracker maintains an ellipse
model of both mice and leverages motion cues and shape priors to maintain tracks
during occlusions. Using these tracks, the classification system represents behavior
with 14 spatial features characterizing relative position, relative motion, and shape. A
regularized least squares (RLS) classifier, trained over representative instances of each
behavior, classifies the behavior present in each frame. This system demonstrates the
enormous potential for building automated systems to quantitatively study mouse
social behavior.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor

3

Acknowledgments

This thesis would not have been possible without the invaluable contributions of

many individuals. I am lucky to have great mentors, colleagues, friends, and family

members who have been so helpful and supportive during this entire process.

First off, I would not be here without Tomaso Poggio (better known as Tommy) if

he hadn’t taken a chance on the inexperienced Master’s student that I was and given

me the opportunity to work at CBCL. I have grown more intellectually in my time at

CBCL than at any other time in my life, and the course of my life has changed for the

better. Tommy always made time to discuss my research and had invaluable advice

and perspective at every meeting. He has shaped my approach and my thinking.

I would also like to thank Thomas Serre for always challenging me to pursue hard

problems and for his ambitious attitude. In every conservation, he would challenge

what I thought was possible and encourage me to do better.

A huge thanks to the support and the good times from everyone at CBCL. I

am especially grateful to Hueihan Jhuang for being a great mentor and an inspira-

tional researcher. I can’t thank her enough for her patience and invaluable feedback.

Without her support, I would not have achieved and learned as much as I did.

I cannot thank Swarna Pandian enough. Swarna is a biologist deeply interested

in mouse social behavior. Throughout our collaboration, she suffered through camera

problems, frame by frame video annotations, and long hours in the behavioral studies

room to make this research a reality. This research would not have been possible

without her dedication.

Many thanks to Olga Wichrowska, my loving girlfriend, for sticking through the

good and bad times during this thesis journey. Even during my lowest lows, Olga,

despite living 2, 500 miles away, kept me grounded and maintained my spirit.

Of course, I have to thank everyone in the my Cambridge family, better known as

the Toolshed: Eddie, Forrest, Keja, Amrit, Lisa and Olga. I could always count on

good times back at the Shed. Thank you for being awesome.

Finally, I would like to thank my parents, my brother, my grandma, and the rest

4

of my family for constantly supporting me. My family has inspired me to pursue my

dreams and set me on the path to make those dreams a reality.

5

Contents

1 Introduction 13

1.1 Contributions . 15

1.2 Outline . 16

2 Background and Related Work 17

2.1 Automated Mouse Behavioral Phenotyping 17

2.1.1 Single Mouse Systems . 17

2.1.2 Mouse Social Behavior Systems 18

2.2 Automated Social Behavior Phenotyping in Other Animals 19

3 Mouse Social Behavior Dataset 21

3.1 Previous Mouse Datasets . 21

3.2 Affect of Mice Tracking Challenges on Data Collection 22

3.3 Data Collection . 23

3.4 Dataset Annotations . 24

3.4.1 Social Behavior Annotation 24

3.4.2 Parts Annotation . 24

3.5 Conclusions . 25

4 Mice Tracking 27

4.1 Challenges of Tracking Mice . 27

4.2 Tracking System . 28

4.2.1 Tracking System Overview . 29

6

4.2.2 Background Modeling . 31

4.2.3 Tracking Outside of Occlusions 34

4.2.4 Detecting Occlusion Events 36

4.2.5 Tracking During Occlusions 37

4.3 Parts Tracking . 39

4.3.1 Identifying Nose, Head, and Tail Base 40

4.4 Results . 42

4.5 Conclusions . 45

5 Automated Phenotyping of Mouse Social Behavior 47

5.1 Phenotyping Challenges . 48

5.2 System to Phenotype Mouse Social Behavior 49

5.2.1 System Overview . 49

5.2.2 Feature Representation . 50

5.2.3 Training and Testing Dataset 50

5.2.4 Behavior Classification . 53

5.2.5 Sequence Smoothing . 54

5.3 Results . 55

5.4 Conclusions . 58

6 Conclusions and Future Work 61

6.1 Future Work . 61

6.1.1 Contour and Shape Matching 61

6.1.2 Fusing Information from Multiple Cameras 62

6.1.3 Develop a Reliable Orientation Detector 62

6.1.4 More Complex Behaviors Need Richer Feature Representations 63

6.2 Extensions . 63

6.2.1 Long-term Social Interaction Monitoring 63

6.2.2 Long-term Health Monitoring 64

6.2.3 Phenotyping Human Behaviors 64

6.3 Conclusions . 64

7

List of Figures

3-1 The left image shows the original image, and the right image illustrates

the corresponding head, body, and tail parts annotation. 25

3-2 Sample images of all five annotated behaviors as described in Table 3.1. 26

4-1 Representative frames illustrating challenging tracking sequences. . . 29

4-2 Identifying mouse foreground pixels - The current frame is subtracted

from the background model and pixels above a threshold τ are classi-

fied as foreground. Color clustering cleans the foreground further by

removing lighter colored pixels. 31

4-3 Sample result of color clustering on the foreground pixels. The mouse

cluster is shown in green and the background cluster is shown in red.

The plot illustrates that color clustering selected the dark pixels, the

pixels cluster closest to (0, 0, 0) in the CIELAB color space. 33

4-4 EM GMM foreground clustering outside of occlusions. The left image

shows a sample foreground input. From this input, the EM GMM

algorithm clusters the foreground. The center image shows the first

three standard deviations of each cluster. Then in the right image, the

foreground pixels are assigned to the highest probability cluster. . . . 34

8

4-5 Each image from left to right doubles the patch size over the same

mouse-to-mouse boundary, illustrating the challenge of detecting this

boundary. In this image, the mice are approximately 220 pixels long 70

pixels wide. In the first 20 x 20 pixel crop, the mouse-to-mouse bound-

ary is not visible. The mouse-to-mouse boundary becomes visually

apparent only after the patch size reaches 80 x 80 pixels. 38

4-6 Occlusion Tracker - The figure illustrates the operation of the occlu-

sion tracker. (a) shows the current frame. (b) overlays the current

foreground and the previous frame’s ellipses. In (c), the upper-right

mouse’s new foreground is computed using the ellipse overlap condition

from equation 4.13 coupled with a largest connected component algo-

rithm. Then an ellipse is fit to the boundary of this mouse’s computed

foreground. The computed foreground and ellipse fit for the lower-left

mouse are not shown. 39

4-7 The figure illustrates an error with the occlusion tracker. (a) shows

the current frame. (b) shows the ellipse track of mouse 1 spanning two

mice. (c) shows mouse 2 with an oversized foreground and an ellipse

track clearly spanning two mice. 40

4-8 Examples illustrating the complete tracking system. The top frame

shows the original frame and the below frame shows the results of

complete tracking system. 42

4-9 Examples illustrating the three tracking scores. The top frame shows

the original image, and the bottom frame shows the tracks. For the

tracks scored 1, both ellipse tracks follow the mouse boundaries; for

the tracks scored 2, both tracks are centered over each mouse, but the

left mouse’s track incorrectly includes the head of the other mouse;

and for the tracks scored 3, both tracks clearly span multiple mice. . 43

9

4-10 Examples illustrating the three orientation scores. The top frame

shows the original image, and the bottom frame shows the tracked

orientations. For the left frame with an orientation score of 0, both el-

lipse orientations are correct; for the middle frame with an orientation

score of 1, one of the orientations is incorrect; and for the right frame

with an orientation score of 2, both orientations are incorrect. 44

5-1 The number of frames for each of the four social behaviors in the test

set. The mapping from numbers to behavior labels is as follows: 2 =

NN, 3 = NH, 4 = NA, 5 = U. 52

5-2 The number of frames for each of the four social behavior in the training

set. The mapping from numbers to behavior labels is as follows: 2 =

NN, 3 = NH, 4 = NA, 5 = U. 53

5-3 Each linear kernel classifier is tested on its left-out training data, and

the resulting confusion matrix is calculated by averaging all 10 tests

on the left-out training data. 56

5-4 Each gaussian kernel classifier is tested on its left-out training data,

and the resulting confusion matrix is calculated by averaging all 10

tests on the left-out training data. 57

5-5 Confusion matrix for the linear kernel averaged across all 10 test videos. 57

5-6 Confusion matrix for the gaussian kernel averaged across all 10 test

videos. 58

5-7 Confusion matrix containing the social behaviors lumped into one class

and the background class for the linear kernel averaged across all 10

test videos. 59

5-8 Confusion matrix containing the social behaviors lumped into one class

and the background class for the gaussian kernel averaged across all

10 test videos. 59

10

List of Tables

3.1 The mouse social behaviors annotated in the dataset. Relevant defini-

tions from Defensor et al. [9] are repeated for completeness. 25

4.1 The average tracking scores for the EM GMM tracker and the occlusion

tracker. 45

4.2 The average number of incorrect orientations for the EM GMM tracker

and the occlusion tracker . 45

5.1 The feature representation for the behaviors. Mouse i refers to the

mouse represented by this feature vector, and mouse j refers to the

other mouse. 51

5.2 Total performance, number of frames classified correctly / number

frames, averaged for all 10 test videos. 58

5.3 The predicted and labeled average number of sequences for each behav-

ior averaged across all 10 test videos. The prediction uses the results

from the linear kernel. The results from the gaussian kernel are similar,

but include fewer predicted sequences instances. 60

11

List of Algorithms

1 The operation of the mice tracker. 30

12

Chapter 1

Introduction

When studying human disorders including Parkinson’s, Epilepsy, depression, and

autism, biologists develop mouse models of these human disorders in order to inves-

tigate potential causes and cures [22, 9, 20, 18, 17]. For instance, biologists may

hypothesize a specific gene leads to autistic-like symptoms, and by suppressing the

activity of that gene, the autistic symptoms can be mitigated. To test this hypothesis,

biologists may create a mouse line with this gene mutation. Evaluating the efficacy

of this mouse line as a model for autism requires a quantitative assessment of mouse

behavior.

Human behavioral assessment, the primary means for assessing behavior in mouse

models, cannot keep up with the growth in the field. New mouse lines and experiments

are created faster than the capacity of human behavioral analysis [33]. The time

scales of manual behavior assessment are expressed in minutes instead of days, and

thus lack the statistical power of long-term study. The short time scales stem from

the painstaking manual video analysis needed to reliably assess mouse behavior.

Automated behavioral analysis addresses the problems of time, cost, and repro-

ducibility inherent to human behavioral analysis. Due to these problems and due to

the relatively controlled laboratory environment inhabited by mice, much research

has gone into establishing automated systems to phenotype mouse behavior. Early

techniques employed sensors capable of assessing position, coarse movements, and

instances of specific actions including eating and drinking [11, 32]. More recently,

13

computer vision systems have been developed to support more flexible and complex

behavior analysis. One of the most advanced systems developed by Jhuang et al. [14]

for singly housed mice detects fine-grained behaviors such as grooming and can be

trained to recognize new behaviors from annotated videos.

For human diseases with a social component such as depression and autism, mouse

models for these social disorders must include a social component as well. The com-

plex interactions between mice present significant challenges for building automated

systems. Mice frequently occlude one another, move erratically, and have identical

appearances. Despite these challenges, automating the analysis of social behaviors

empowers researchers to more quickly and effectively study human disorders that

have a significant social component, and in the process, accelerate the path to cures

for these social disorders in humans.

Beyond studying social disorders, a system for studying multiple mice would ben-

efit long-term health monitoring. Mice naturally live in groups, so over the long-term,

most mice are housed in groups to promote healthy mental conditions. Therefore, any

system which monitors mice for days or even weeks needs to be capable of monitoring

multiple interacting mice.

More broadly, mice provide a controlled laboratory environment to begin explor-

ing the questions of how to best quantify social behavior in mice and eventually in

humans. Understanding human social behavior requires comprehension of many fac-

tors including facial expressions, body language, and spoken language. In contrast,

mice live in controlled laboratory environments and exhibit relatively simple social

behavior such as sniffing, following, and huddling. These conditions simplify many

of the associated computer vision and representational challenges. Automating social

behavior analysis is an important step towards developing a quantitative understand-

ing of the connections between social behavior and intelligence in mice, humans, and

other animals.

14

1.1 Contributions

In this thesis, I develop a computer vision system to automatically recognize mouse

social behavior. The following describes the major contributions:

1. Mouse tracking and social interaction dataset

(a) Collected a dataset consisting of 22 ten minute recordings of two interacting

mice. Two synchronized cameras film all recordings simultaneously from

the top-view and side-view perspectives. The top-view is most informative

for tracking and parts recognition, and the side-view is most informative

for recognizing fine-grained behaviors such as grooming.

(b) Introduced a dataset containing continuous annotations of five mouse social

behaviors: nose-to-nose sniffing, nose-to-head sniffing, nose-to-anogenital

sniffing, crawl under / crawl over, and upright head contact. The dataset

is designed to evaluate and encourage mouse social behavior research.

2. Tracker for multiple identical mice

(a) Proposed a mice detection scheme based on background subtraction and

color clustering.

(b) Developed a novel top-view ellipse tracker which addresses the challeng-

ing task of tracking multiple identical, deformable mice through complex

occlusions.

(c) Developed an orientation tracker based on motion cues alone.

(d) Evaluated the ellipse and orientation trackers on data containing a wide

range of mouse interactions.

3. Trainable system to automatically phenotype mouse social behaviors

(a) Proposed 14 spatial features for representing mouse social behavior.

(b) Developed a RLS-based [23] classification system to phenotype four mouse

social behaviors.

15

(c) Evaluated the classification system over continuously annotated videos

containing these social behaviors.

1.2 Outline

In Chapter 2, I provide a detailed description of related work relevant to single mouse

behavior recognition and to automatic recognition of social behavior in mice, flies,

and other animals. In Chapter 3, I discuss the dataset collection and annotation

process for the new mouse social behavior dataset. In Chapter 4, I describe the

system developed to detect and track multiple identical mice. Once the mice are

tracked, the tracks are transformed into a representation suitable for classification.

In Chapter 5, I detail the feature representation and the classification techniques

applied to recognize social behavior. In Chapter 6, I conclude with a discussion of

future work and a summary of the thesis’s contributions.

16

Chapter 2

Background and Related Work

2.1 Automated Mouse Behavioral Phenotyping

The controlled laboratory environment and the prominent role of mice in biological

research has stimulated significant interest in automating mouse behavioral pheno-

typing. Approaches range from primitive sensors to detect eating and drinking to

more sophisticated computer vision systems capable of detecting behaviors such as

grooming and sniffing. This section reviews the various approaches to phenotyping

mouse behavior.

2.1.1 Single Mouse Systems

Most early approaches to automating mice behavioral analysis relied on sensors. Sen-

sors systems include cages outfitted with photobeams and capacitance sensors to

detect eating and drinking [11], and infrared sensors to detect active versus inac-

tive periods [32]. The sensor-based approaches are limited in the complexity of the

behaviors they can represent. Sensor-based approaches are well suited for assessing

position in the cage and for addressing coarse movements, but they are not suited for

measuring more fine-grained behavior such as grooming and sniffing.

Advances in visual tracking techniques have led researchers to design a variety

of vision-based systems for automating mouse behavioral phenotyping. Most vision-

17

based approaches rely on visual tracking features [28]. Visual tracking features enable

these systems to track the position of the mouse over time; however, these systems

lack the ability to analyze fine-grained behaviors such as grooming and sniffing. As

part of the Smart Vivarium project [2], Dollár et al. [10] developed the first sys-

tem capable of analyzing fine-grained behaviors in the home-cage environment. The

system computed spatio-temporal interest point descriptors to represent five basic

behaviors: eating, drinking, grooming, exploring, and resting. Using a computa-

tional model of motion processing in the primate visual cortex, Jhuang et al. [14]

achieved state of the art performance on Dollár et al.’s five behaviors and applied this

model to achieve human level performance for eight mice behaviors: drinking, eating,

grooming, hanging, micromovement, resting, rearing, and walking. HomeCageScan,

a commercial system developed by Cleversys Inc., recognizes a wide range of mouse

behaviors and has been used in a variety of behavioral studies [25, 30]. In the evalu-

ation of Jhuang et al. [14], the authors’ system outperformed HomeCageScan across

these eight stereotypical behaviors.

2.1.2 Mouse Social Behavior Systems

Recent interest in long-term mice health monitoring and in social disorders such as

autism has created a need to automate the analysis of mouse social behavior. In

contrast to the rapid innovation seen in visual tracking for singly housed mice, there

has been relatively little work automating the analysis of mice social behavior. As

part of the Smart Vivarium project, the researchers developed trackers for multiple

mice [4, 5], but did not apply these trackers to social behavior analysis. For measuring

social approach, Pratte and Jamon [22] tagged three mice with fluorescent paper and

tracked the distances between the papers with Noldus Ethovision [28]. Nadler et al.

utilized photocell break-beam sensors to measure the time mice spent together in each

chamber. In other recent studies, researchers computed visual statistics ranging from

the distance between center of mass points [12] to number of connected components

[17]. These coarse visual features indicated how often two mice interacted. Two

commercial systems, SocialScan [13], a commercial system developed by Cleversys

18

Inc., and Ethovision XT, a commercial system developed by Noldus Inc., perform

social behavior tracking from a top-view configuration. Both systems claim to be

able to assess social behaviors including nose-to-nose and nose-to-tail interactions.

2.2 Automated Social Behavior Phenotyping in Other

Animals

Automated social behavior analysis of animals other the mice has also generated sig-

nificant research interest. Research in this field is very diverse, ranging from vision-

based social behavioral analysis of zebrafish [21] to a stereo vision system for recon-

structing the motion from honey bee clusters [16]. The section describes recent ant

and Drosophila (fly) social behavior literature most relevant to this thesis.

In a study of ant social behavior [1], researchers developed a system to track a

large group of interacting ants using an MCMC-based particle filter [35]. The system

identified three ant social behaviors: head-to-head, head-to-body, and body-to-body

encounters. From the data, the researchers concluded that ants deliberately avoided

encounters with other ants and performed head-to-head encounters at a statistically

higher rate than other encounter types. Although the system performed quite well, the

MCMC-based particle filter relies on a rigid target assumption which is not applicable

to highly deformable mice.

Recent successes in automating Drosophila social behavior offers inspiration for fu-

ture social behavior research. In [8], the authors developed a computer vision system

to quantify Drosophila actions associated with courtship, aggression, and locomo-

tion. Sample behaviors include aggressive tussling, courtship, lunging, circling, and

copulation. The behaviors were represented in terms of Drosophila spatial features

such as velocity, acceleration, relative head-to-head orientation, and change in orien-

tation. For most behaviors, an expert manually selected the appropriate parameters

ranges to classify each behavior, resulting in 90 − 100% detection rates. For certain

complex behaviors such as lunging, a combination of expert selection and a k -nearest-

19

neighbor classifier proved to be sufficient. In subsequent work by Branson et al. [6],

the authors developed an automated computer vision system to track and identify

fly behavior. The behavior set included walking, backing up, touching, jumping, and

other relatively simple behaviors. As in [8], the behaviors were represented in terms

of spatial features such as velocity, relative angles, and relative distances. Instead

of having trained experts specify parameter ranges, the system learned parameter

ranges from representative videos of each behavior. The parameter range selection

applied a genetic algorithm to minimize a cost function involving missed detections,

spurious detections (false positives), and mislabeled frames.

Drosophila behavior definitions based on parameter ranges have the advantage of

interpretability over traditional machine learning systems. When a behavior is clas-

sified in terms of parameter ranges, a researcher can grasp why the system classified

a frame, and correct or refine the parameter ranges to suit a particular experiment.

Although interpretable, parameter ranges fail to capture more complex behavior like

fly lunging. Furthermore, the rigid fly shape lends itself to parameter intervals, which

may not be appropriate for a deformable mouse.

20

Chapter 3

Mouse Social Behavior Dataset

Most existing mouse behavior datasets record singly housed mice in the home-cage

environment [14]. In order to phenotype mouse social behavior, I needed to collect a

new mouse social behavior dataset to train and evaluate the system. Any dataset has

two competing goals. On one hand, the dataset should be representative of the desired

test conditions. In this case, the test conditions constitute real cages where mice are

interacting. On the other hand, too much environmental variability runs the risk of

making a system overly complex and infeasible to design without significant technical

advances. In this chapter, I describe the process of collecting and annotating a mouse

social behavior dataset and discuss how the challenges of mice tracking factored into

the dataset collection process.

3.1 Previous Mouse Datasets

The UCSD Smart Vivarium project [2] sought to develop the computational tools for

recognizing mouse behavior. Through this project, the first mouse datasets became

available. Branson et al. collected video clips to develop a tracker for multiple mice [5,

4]. Dollár et al. created a dataset consisting of 406 one to ten second clips containing

five mouse behaviors: drinking, eating, exploring, grooming, and sleeping [10]. More

recently, Jhuang et al. collected and annotated 4200 short clips (approximately 2.5

hour of videos), and over 10 hours of continuously annotated videos of eight mouse

21

behaviors [14]. None of these available datasets include annotations for mouse social

behavior.

3.2 Affect of Mice Tracking Challenges on Data

Collection

In a common behavioral experiment, experimenters assess the difference between a

wild-type and mutant strain. Typically, the mutant strain varies from the wild-type

strain by a single gene mutation or alteration. As a result, the strains have nearly

identical appearances. The identical appearances complicate tracking and detection.

During close interactions and occlusions, mice identities are hard to distinguish. While

mice do frequently occlude from the side-view perspective, mice occlude far less often

from the top-view perspective. When the mice are occluding in the top-view per-

spective, there is often a side-view perspective in which the mice are not occluding

and vice versa. As a result, the dataset uses two frame-synchronized cameras record-

ing simultaneously from the top-view and side-view of the cage. Although due to

time and complexity constraints the system only incorporates the top-view perspec-

tive, I expect that fusing information from both perspectives will improve tracking

performance.

Since the mice look nearly identical, markers are needed to distinguish mouse

identities at the end of each experiment. Previous experiments have used mouse

markers to distinguish mice with similar sizes and fur color. For 1−2 day experiments,

livestock markers can be used to paint blobs; for short-term experiments, permanent

markers, highlight markers, or colored flourescent tags illuminated with UV light are

sufficient; and for longer-term experiments, mice can be dyed with brightly colored

human hair dye [28]. Certain markers, such as permanent marker pens or paint blobs,

have smells or colors which could impact behavior. To reduce the chance of markers

impacting behavior, one mouse’s tail in each experiment is marked with a simple

water-based black marker. This enabled the experimenter to identify the mouse

22

identities at the end of each experiment. Even if the automated detection system

could identify a mouse’s tail pixels, the black marker’s color was not sufficiently

distinctive from the other dark brown mouse colors to reliably identify the black

marker with the automated system. As a result, the automated system does not use

the black marker to resolve identities.

3.3 Data Collection

The MIT Committee of Animal Protocol (CAC) approved all experiments involv-

ing mice1. All experiments recorded the first 10 minutes of interaction for pairs of

C57BL/10J background mice. To capture peak activity, all recordings occurred dur-

ing the night cycle. At a distance of a few feet from the cage, 250W Damar Red bulbs

brightly illuminated the cage. Red illumination was selected because the mouse visual

system cannot perceive red.

All recordings used two Point Grey Research Firefly MV color cameras connected

to a PC workstation (Dell) by means of Firewire 1394b 15ft cables. One camera was

mounted on a tripod facing the side of the cage, and the second camera was mounted

from a custom structure facing down to the top of the cage. Both cameras wrote

compressed 640x480 video at 30 fps and operated on the same Firewire bus. Using

the Point Grey Research software API, I wrote custom software to frame-synchronize

the two cameras streams.

n = 22 recordings of pairs of C57BL/10J background mice with nearly identical

brown coats were recorded. To maintain mouse identities, one mouse’s tail in each

video was marked with a water-based black marker. Each recording included two

simultaneous, frame-sychronized recordings from the top-view and side-view of the

cage (2 videos per recording x 22 recordings = 44 videos). Each video recording lasted

for at least 10 minutes. For each recording, two mice were transferred simultaneously

from a singly housed cage to the recording cage. A mouse was never used in more

than two recordings.

1The data collection process is joint work with Swarna Pandian, spandian@mit.edu.

23

mailto:spandian@mit.edu

3.4 Dataset Annotations

The 10 minute videos were annotated with two types of annotations: social behaviors

and mouse part labels.

3.4.1 Social Behavior Annotation

A mouse behavior expert annotated 12 of the 22 videos with social behaviors. The

annotated behaviors followed the study of Defensor et al., in which the authors studied

social avoidance and gaze aversion-like behavior in BTBR T+ tf/J mice [9]. The

mouse behavior expert annotated the five social behaviors defined by Defensor et al.:

nose tip-to-nose tip (NN), nose-to-head (NH), nose-to-anogenital (NA), crawl under /

crawl over (CUCO), and upright (U). The relevant behavior definitions are repeated

in Table 3.1, and Figure 3-2 shows sample images of each behavior.

When studying these behaviors, the behavior researchers compare mouse strains

to draw broader conclusions about mouse behavioral patterns. For instance, in the

Defensor et al. study, BTBR, a mouse studied as a model for autism, exhibited

an avoidance of frontal reciprocal orientations, which the authors claim is a mouse

analogue to human gaze avoidance [9]. In terms of the defined behaviors, BTBR

exhibited decreased frontal behaviors (NN,NH,U) and increased avoidance of frontal

behaviors (NA, CUCO). Automatic, quantitative assessment of these behaviors would

allow researchers to perform this study faster and more reliably across many more

mouse strains.

3.4.2 Parts Annotation

Accurate identification of mouse parts, such as the head, body, and tail, is important

for classifying social behavior. Mistaking the head for the tail could cause nose-to-nose

sniffing to be classified as nose-to-anogenital sniffing. To support the development

of accurate mouse parts classification algorithms, I annotated 118 frames sampled

randomly from the mouse recordings and sampled equally from the top-view and

the side-view perspectives. In each sampled frame, I separately annotated the head,

24

Behavior Name Behavior Description
Nose tip-to-nose tip (NN) mouse’s nose tip and/or vibrissae contacts

the nose tip and/or vibrissae of the other
mouse

Nose-to-head (NH) mouse’s nose or vibrissae contacts the dor-
sal, lateral, or ventral surface of the other
mouse’s head

Nose-to-anogenital (NA) mouse’s nose or vibrissae contacts the base
of the tail or the anus of the other mouse

Crawl over / crawl under (COCU) one of the mouse’s forelimbs crosses the mid-
line of the dorsal surface of the other mouse

Upright (U) mouse displays a reared posture oriented to-
wards the other mouse with head and/or vib-
rissae contact

Table 3.1: The mouse social behaviors annotated in the dataset. Relevant definitions
from Defensor et al. [9] are repeated for completeness.

body, and tail of each of the two mice using the LabelMe annotation software [26].

For each mouse part, I annotated the polygon enclosing each part. Figure 3-1 shows

a sample parts annotation. The images included a range of occlusions, so in some

images, occlusions prevented all parts of both mice from being labeled.

Figure 3-1: The left image shows the original image, and the right image illustrates
the corresponding head, body, and tail parts annotation.

3.5 Conclusions

In this chapter, I presented a method for simultaneously recording mice from multiple

perspectives. Using this method, I recorded n = 22 mice pairs for 10 minutes simulta-

25

Figure 3-2: Sample images of all five annotated behaviors as described in Table 3.1.

neously from both a top-view and a side-view perspective. These videos were used to

create a mouse parts dataset supporting the development of mouse parts detectors,

and a mouse social behavior dataset for training and evaluating machine learning

algorithms to recognize mouse social behavior. While this dataset collection and an-

notation was essential to developing this system, the hope is that publicly releasing

the dataset encourages other researchers to improve the algorithms and methods pre-

sented in this thesis. In future work, the top-view and side-view perspectives will be

combined to improve performance. The top-view is most informative for tracking and

parts identification, and the side-view is most informative for recognizing fine-grained

behaviors such as grooming.

26

Chapter 4

Mice Tracking

Classifying mice social behavior requires a computer vision system capable of detect-

ing and tracking the mice in each frame. Solving the mice tracking problem reduces

to the very challenging problem of tracking multiple, textureless, near-identical de-

formable objects. Unlike traditional single target phenotyping, social behavior phe-

notyping is most interested in the interactions between targets, but at the same time,

these close interactions are the most difficult tracking problems. In this chapter, I

describe the challenges of tracking multiple mice and propose a tracking system to

address these challenges.

4.1 Challenges of Tracking Mice

Many computer vision techniques for detection and tracking do not translate to the

mice tracking problem. Figure 4-1 illustrates a set of representative frames demon-

strating the mouse tracking challenge. The following details the primary mice tracking

challenges:

• Complex Occlusions - mice walk over one another, roll around each other and

interact in many complex ways. These occlusions reduce the signal available to

the tracker.

• Featureless - the interior of the mouse is nearly featureless and local features

27

points (e.g. SIFT [15]) are not reliable over many frames due to self-occlusion

and occlusions between mice.

• Highly Deformable - mice deform into many shapes, sizes, and orientations.

Consequently, sliding window object detection systems are not effective for de-

tecting and tracking mice.

• Long-Term Tracking - the system must track over long-term experiments with

minimal human intervention; otherwise, the system is unlikely to be adopted

by the research community.

• Identical Appearances - people typically wear different clothing or exhibit other

dissimilarities which can be distinguished using simple appearance models such

as a color histogram. In contrast, mice have identical appearances, which makes

appearance a weak cue for resolving pixel identities during mice interactions.

• Unpredictable Motion - mice move erratically and change directions abruptly.

This complicates the use of motion models to predict future mouse locations.

4.2 Tracking System

The tracker design accounts for two primary constraints: fully automated operation

and a requirement that there are always k tracks, where k is the number of mice.

The fully automated operation constraint ensures that the tracks are acquired fully

automatically and recover from any errors without human intervention. The k tracks

constraint ensures the system generates track hypotheses for all mice even during the

most complex interactions. Notice the constraints do not include real-time operation

and strict identity maintenance. Removing the real-time constraint allows the tracker

to leverage past and future information and to employ algorithms which would not

be computationally feasible in a real-time setting. Not requiring strict identity main-

tenance addresses the reality of mouse tracking: certain interactions (e.g. fighting)

are so complex that identity tracking cannot be assured.

28

Figure 4-1: Representative frames illustrating challenging tracking sequences.

Refer to Algorithm 1 for a concise overview of the entire mice tracker operation.

Section 4.2.1 provides an overview of the tracker. In the subsequent sections, I de-

tail the implementation of each subcomponent. Section 4.2.2 describes the mouse

detection system based on background modeling techniques. Then in Section 4.2.3, I

describe the tracker designed for physically separated mice. Section 4.2.4 discusses the

process for detecting occlusions, and once an occlusion is detected, Section 4.2.5 de-

scribes the tracker designed to operate during mouse occlusions. Section 4.4 presents

detailed performance metrics for the entire tracking system.

4.2.1 Tracking System Overview

The mice tracking system consists of three major components: a mouse detection sys-

tem, a tracker outside of occlusions, and a tracker during occlusions. A non-adaptive

background model is a simple yet effective technique for detecting candidate mouse lo-

29

bg ← generateBg(videoFn);1

isOcclusion ← false;2

ellipses ← empty;3

while (frame = getNextFrame(videoFn)) do4

% Section 4.2.2 ;5

fg ← computeFg(frame,bg) ;6

if not isOcclusion then7

% Section 4.2.3 ;8

clusterLabels ← gmmCluster(fg,ellipses) ;9

[fg connectLabels] ← connectedComponents(fg,clusterLabels) ;10

else11

% Section 4.2.5 ;12

[fg connectLabels]← occlusionConnectedComponents(fg,prevEllipses);13

end14

ellipses ← fitEllipsesToConnectedComponents(fg, connectLabels);15

% Section 4.2.4 ;16

fisherCriteria ← computeFisherCriteria(ellipses);17

isOcclusion ← not ellipsesIdentical(ellipses) and fisherCriteria < αocc;18

end19

Algorithm 1: The operation of the mice tracker.

cations. Since lighting conditions are known and constant, the background is approx-

imately constant throughout an entire video. A static background is thus sufficient

for detecting the hypothesized foreground locations. Once the hypothesized fore-

ground locations are identified, a Gaussian Mixture Model (GMM) [3, 29] foreground

clustering algorithm effectively tracks the mice outside occlusions. Once clustered, a

largest connected component algorithm combined with the morphological open oper-

ation selects the mouse pixels in each cluster. When the mice are closely interacting

or occluding, GMM clustering does not result in good mouse segmentations. Unable

to develop an algorithm to reliably detect the contour between interacting mice, I

instead developed an occlusion tracker which leveraged each mouse’s previous loca-

tion and a known mouse size. Although this technique did not accurately maintain

identities through all interactions, the technique handled many complex interactions

and occlusions.

30

Figure 4-2: Identifying mouse foreground pixels - The current frame is subtracted
from the background model and pixels above a threshold τ are classified as foreground.
Color clustering cleans the foreground further by removing lighter colored pixels.

4.2.2 Background Modeling

Background subtraction generates a model of the cage background ybg, which removes

instances of moving objects (leftmost image in Figure 4-2). In the mouse dataset, the

dark brown mice are darker than the rest of the background. Under this assumption,

the background model is generated using the following algorithm:

1. Sample 100 frames distributed throughout the video.

2. Represent each pixel by a 100-dimensional vector consisting of one intensity

value from each of the 100 sampled frames.

3. Use k-means with 2 clusters independently for each pixel’s feature vector. Select

the brighter cluster center as the background cluster.

To generate the hypothesized foreground pixels for each frame observation yt,

subtract the current frame observation yt from the background model ybg. Values

higher than a certain threshold are labeled as foreground (second from right in Figure

4-2). Formally, let τ be the foreground threshold and let yfg be the resulting binary

foreground image defined by the following equation:

yfg = ybg − yt < τ (4.1)

Since the mice are filmed from a static camera in a controlled indoor environment,

the assumptions of a static background and fixed camera generally hold. As a result,

31

this algorithm generates a robust background. The second image from the right in

Figure 4-2 illustrates a sample result of this method.

Problems with Background Subtraction Background modeling has a few defi-

ciencies:

• Mouse colored background pixels - when nearly all the frame samples contain

a mouse at a given pixel location, the background value at this pixel locations

will be mouse colored.

• Sensitivity to free threshold parameter τ - if τ is set too high, not enough of the

mouse is classified as foreground, and in contrast, if τ is set too low, too many

background pixels are classified as foreground.

• No identity information - the resulting foreground only produces candidate

mouse pixels and does not provide mouse identity labels for those foreground

pixels.

The first deficiency, mouse colored background pixels, can typically be solved by

either sampling over more frames, or by sampling over a frame range when the mice

are very active. The third deficiency, no identity information, is not handled as part

of the foreground computation layer; rather, the identity information is inferred by

the clustering algorithm described in Section 4.2.3. The second deficiency, sensitivity

to the free threshold parameter τ , is mitigated by color clustering. The following

details the procedure to improve background subtraction with color clustering:

Color Clustering to Improve Background Subtraction Color clustering re-

duces background subtraction’s sensitivity to the free parameter τ . When performing

color clustering, τ is set to a low value in order to generate an excess number of hy-

pothesized foreground pixels. Color clustering then selects the foreground pixels more

likely to be mouse colored. Figure 4-3 shows the result of color clustering. The darker

pixels are more likely to belong to a mouse, so the color clustering selects the darker

cluster, the cluster closest to (0, 0, 0), as the mouse cluster. In many instances such

32

as in Figure 4-2, the color clustering removes many reflections, because the reflections

are lighter colored than the mouse. The following describes the procedure for color

clustering:

1. Convert the color frame to CIELAB. The CIELAB color space is designed to

approximate the color perception of human vision [31].

2. Apply background subtraction to generate a set of hypothesized foreground

locations, yfg.

3. Represent each foreground pixel with its three-dimension color vector.

4. Cluster all the foreground pixels’ color vectors into two color clusters using

k-means.

5. Since the mice are dark colored, all the foreground pixels assigned to the darker

cluster (closer to (0, 0, 0)) are assigned as mouse foreground, ymouse, and the

rest are assigned as background.

Figure 4-3: Sample result of color clustering on the foreground pixels. The mouse
cluster is shown in green and the background cluster is shown in red. The plot
illustrates that color clustering selected the dark pixels, the pixels cluster closest to
(0, 0, 0) in the CIELAB color space.

33

4.2.3 Tracking Outside of Occlusions

Given the hypothesized foreground locations from the background modeling phase,

these foreground locations must be assigned to the k mouse identities. Foreground

pixels are assigned to mouse identities using two simple operations. First the fore-

ground pixel locations are clustered using the Expectation Maximization (EM) algo-

rithm applied to a k-cluster Gaussian Mixture Model (GMM) [3]. Figure 4-4 shows an

example of this clustering. Once clustered, a morphological open operation removes

some isolated foreground pixels. Then a connected component algorithm processes

each cluster, and the largest connected component in the cluster is labeled as the

mouse.

Figure 4-4: EM GMM foreground clustering outside of occlusions. The left image
shows a sample foreground input. From this input, the EM GMM algorithm clusters
the foreground. The center image shows the first three standard deviations of each
cluster. Then in the right image, the foreground pixels are assigned to the highest
probability cluster.

EM GMM foreground clustering This section describes the algorithmic details

of the EM GMM foreground clustering. The algorithm closely follows the formulation

in [3]. Let X be an n x 2 feature matrix containing the n foreground pixels, and let

k be the number of mice to track. Each foreground pixel, xi, is represented by its

(x, y) image location. The EM algorithm alternates until convergence between an

expectation step (E step) and a maximization step (M step).

In the E step, the means, µj’s, and covariances, Σj’s, for each cluster j are given

from the previous M step. Each of the n foreground points is then assigned a weight

34

in each cluster. The weight, wij, of point xi in cluster j is computed from the cluster’s

Gaussian pdf:

wij =
1

2π|Σj|
1
2

exp(−1

2
(xi − µj)

TΣ−1j (xi − µj)) (4.2)

Each point’s weights are then normalized to sum to one. In this way, each point’s

cluster membership is a valid pdf. Formally, the new normalized weight, w̃ij, of point

i in cluster j is computed as:

w̃ij =
wij∑n
j=1wij

(4.3)

In the M step, the means (µj’s) and covariances (Σj’s) are updated using the new

normalized weights:

µj =

∑n
i=1 w̃ijxi∑n
i=1 w̃ij

(4.4)

Σj =

∑n
i=1 w̃ij(xi − µj)(xi − µj)

T∑n
i=1 w̃ij

(4.5)

This process alternates between the E-step and the M-step until the log-likelihood,

L, converges below a given threshold. The log-likelihood L is averaged across all k

mouse clusters:

L =
k∑

j=1

1

k
log(

n∏
i=1

w̃ij) (4.6)

=
1

k

k∑
j=1

n∑
i=1

log(w̃ij) (4.7)

One weakness of EM algorithm is the algorithm’s susceptibility to local minima.

Two steps are in place to avoid local minima. On the first iteration, the cluster means

and covariances are initialized using k-means. On subsequent iterations, the previous

frame’s means (µj’s) and covariances (Σj’s) initialize the EM search in the current

frame. Seeding the means and covariances with these values generally results in good

cluster fits.

35

4.2.4 Detecting Occlusion Events

Detecting occlusion events requires finding a good measure for distance between the

mouse pixel distributions. One simple solution for detecting occlusion events is to

compute the distance between mouse cluster centers and then to set an empirical dis-

tance threshold for detecting occlusions. If mice were spherical, this solution would

perform well. However, as evident from the center image in Figure 4-4, mice pixels

distributions are typically elliptical. Fisher’s linear discriminant helps address the

problem of computing the distances between distributions with non-spherical covari-

ances. Fisher’s linear discriminant selects a projection w from the D-dimensional

data space onto single dimensional space that maximizes the distance between the

two classes while minimizing the covariance within each class. It does this by max-

imizing Fisher’s criterion, J(w), the ratio of the between-class variance, SB, to the

within-class variance, SW [3]:

J(w) =
wTSBw

wTSWw
(4.8)

The maximal value of J(w) can be used as distance metric between non-spherical

distributions. In terms of two class means, µ1 and µ2, and two class covariances, Σ1

and Σ2, the Fisher criterion can be maximized to produce Fisher’s linear discriminant

as follows [3]:

SB = (µ2 − µ1)(µ2 − µ1)
T (4.9)

SW =
Σ1

n1

+
Σ2

n2

(4.10)

w ∝ S−1w (µ2 − µ1) (4.11)

Defining the maximal value of J(w) to be the distance between the classes, I

define J(w) < αocc as the criterion for mice entering an occlusion state. In order to

calculate the maximal J(w), I must express the connected component of each mouse

in terms of a mean, µ, and a covariance, Σ. To achieve this, an ellipse is fit to the

boundary pixels of each connected component. The center of the ellipse defines the µ.

Σ is computed from the ellipse parameters θ, the rotation from the x-axis; a, half the

36

ellipse x-axis length after rotation; and b, half the ellipse y-axis length after rotation.

Let R be the rotation matrix in terms of θ. Then a basic relation exists to convert

ellipse parameters to a covariance Σ:

Σ = R

 a2 0

0 b2

RT (4.12)

Once Σ and µ are found for each cluster, the maximal J(w) < αocc can be calcu-

lated pairwise for all clusters to determine when two mice enter an occlusion state.

4.2.5 Tracking During Occlusions

During occlusions and close interactions, standard segmentation and contour detec-

tion algorithms cannot reliably detect the boundaries between the mice. Figure 4-5

illustrates the challenge of identifying this boundary. Human observer can only iden-

tify the mouse boundary locations after the patch size grows very large. At least

qualitatively, the large amount of context required to discern the boundary suggests

that the human visual system relies on high-level contour or model information to

detect the boundary between mice. This observation may explain why boundary de-

tection techniques could not detect this boundary. Boundary detection techniques

typically represent the boundaries in terms of local luminance, chrominance, and tex-

ture differences, but for the boundary between mice, these local differences are weak

or nonexistent.

Since I could not reliably detect the boundaries between mice, the occlusion tracker

leverages a set of simple heuristics that generally perform well without any input

about the mouse-to-mouse boundaries. The occlusion tracker makes two major as-

sumptions: both mice can be modeled by a fixed sized ellipse, and a mouse’s previous

ellipse location is a good cue for the mouse’s current location. Once an occlusion

event is detected by the criterion described in Section 4.2.4, the occlusion tracker

begins to track the mice.

Given the current frame’s foreground pixels, the occlusion tracker leverages the

37

Figure 4-5: Each image from left to right doubles the patch size over the same mouse-
to-mouse boundary, illustrating the challenge of detecting this boundary. In this
image, the mice are approximately 220 pixels long 70 pixels wide. In the first 20
x 20 pixel crop, the mouse-to-mouse boundary is not visible. The mouse-to-mouse
boundary becomes visually apparent only after the patch size reaches 80 x 80 pixels.

ellipse models from the previous frame to assign foreground pixels to each mouse in

the current frame. For each mouse i, the occlusion tracker calculates Mi,t, the set of

hypothesized foreground pixels for mouse i at time t. Mi,t is initialized to FGt, the set

of all foreground pixels at time t. The occlusion tracker discards all foreground pixels

from Mi,t which overlap with another mouse’s, i 6= j, previous ellipse, and do not

overlap with the current mouse’s previous ellipse. Foreground pixels are permitted

to be assigned to multiple mice. Formally, let Ei,t−1 be the set of pixels covered by

the previous ellipse of the ith mouse, k be the number of mice, and Di be the set of

integers from 1 to k excluding i. Mi,t is then defined by the following equation:

Mi,t = FGt − ((
⋃
j∈Di

Ej,t−1)− Ei,t−1) (4.13)

For each set of hypothesized mouse foreground pixels Mi,t, a largest connected

component algorithm further curates the pixels in each Mi,t. Figure 4-6 illustrates

an example of the occlusion tracker applied to two closely interacting mice. The

algorithm is designed so that each mouse acquires foreground pixels along its motion

direction and loses foreground pixels from the places it left in the previous frame.

However, sometimes the mice move in a way that causes the occlusion tracker to add

pixels from the other mouse’s new locations. Figure 4-7 highlights an example in

38

which the occlusion tracker does not add the correct pixels.

To prevent a mouse’s ellipse track from growing too large (or too small), the

occlusion tracker enforces an empirical ellipse size. First, an ellipse is fit to the

boundary of mouse’s new connected component. Then assuming an accurate center

for the ellipse fit, the ellipse major and minor axes are resized to the size of a standard

occlusion ellipse. The standard occlusion ellipse’s major and minor axis sizes are

determined by sampling many frames in which the mice are not in an occlusion state

and then computing an empirical average of the major and minor axis parameters.

Although this size will not be accurate in many cases such as when the mouse is

reared or elongated, the size constraints enforce a primitive mouse model. The model

prevents a mouse track from growing (or shrinking) to unrealistic mouse dimensions.

For quantitative benchmarks of this occlusion tracker, refer to Section 4.4.

Figure 4-6: Occlusion Tracker - The figure illustrates the operation of the occlusion
tracker. (a) shows the current frame. (b) overlays the current foreground and the
previous frame’s ellipses. In (c), the upper-right mouse’s new foreground is computed
using the ellipse overlap condition from equation 4.13 coupled with a largest connected
component algorithm. Then an ellipse is fit to the boundary of this mouse’s computed
foreground. The computed foreground and ellipse fit for the lower-left mouse are not
shown.

4.3 Parts Tracking

The mouse tracking system produces ellipses tracks for each mouse. Although it

is generally safe to assume the nose and tail are near the endpoints of the ellipse’s

major axis, the ellipse model does not differentiate between nose and tail endpoints.

39

Figure 4-7: The figure illustrates an error with the occlusion tracker. (a) shows the
current frame. (b) shows the ellipse track of mouse 1 spanning two mice. (c) shows
mouse 2 with an oversized foreground and an ellipse track clearly spanning two mice.

Accurate classification of sniffing behavior requires accurate identification of the nose

and tail endpoints. An inaccurate nose and tail identification could misclassify a

nose-to-nose (NN) interaction as a nose-to-anogenital (NA) interaction.

4.3.1 Identifying Nose, Head, and Tail Base

The orientation tracker only uses the mouse’s motion to identify the nose and tail

base. The orientation trackers assigns the nose to the endpoint on the ellipse major

axis which most frequently coincided with the dominant motion direction; the tail

base to the opposite major axis endpoint; and the head center to a point 15% down

the major axis from the nose endpoint. The 15% value is derived from an empirical

average calculated over the labeled parts training data (see Section 3.4.2). The rest

of this section describes the methods underlying the orientation tracker.

The orientation tracker measures which ellipse endpoint is consistently closer to

the motion direction. To compute this motion assignment, the orientation tracker

maintains two queues, one for each ellipse major axis endpoint. In each frame, the

algorithm calculates the velocity vt at time t between the previous ellipse center

ct−1 and the current ellipse center ct. If the velocity is above an empirical motion

threshold, a score is added to each ellipse endpoint’s queue. Using the empirical

motion threshold prevents noisy small motions from cluttering the queues, such as

when the mouse is resting. For each endpoint i, the score calculates the euclidean

40

distance between the previous frame’s ellipse endpoint, pi,t−1, and the current frame’s

ellipse center, ct, multiplied by the velocity, vt. The queue stores the following scores,

si,t, for each endpoint i:

si,t = vt||pi,t−1 − ct||2 (4.14)

The score measures, on average, how close an endpoint lies to the dominant motion

direction. The smaller the score, the closer the endpoint is to the dominant motion

direction. When the mouse moves quickly, the proportionality to velocity penalizes

endpoints that are far from the motion direction. The orientation tracker assumes

that the mouse is likely moving forward when it is moving quickly. The velocity term

thus gives more weight to instances where the mouse is likely moving forward.

Ellipse endpoint identities must be maintained from frame to frame, so one end-

point queue only corresponds to one endpoint. Endpoint identities are maintained

recursively. In the current frame, each ellipse endpoint is assigned the queue of the

closest previous ellipse endpoint.

Once an endpoint queue reaches a preset size, the head direction is inferred as the

orientation with the lowest mean queue value. A queue having the lowest mean is

interpreted as the endpoint which most often lies in the dominant motion direction.

The queue size represents a tradeoff between robust orientation estimation and ro-

bustness to switched endpoint identities. If the queue is very large, short instances in

which the mouse quickly moves backwards will not impact the orientation inference,

but this comes at the cost of the orientation tracker taking a long time to recover in

the event of the endpoint identities being switched.

Occlusions present an additional complexity to this motion tracking algorithm.

Since during occlusions the ellipse motion and position are less reliable, orientation

scores are not added to the queue when the mouse is in an occlusion state. However,

it is still important to maintain the endpoint identities, so even during occlusions, the

endpoint identities are updated to match the closest endpoint from the previous frame.

The need to maintain endpoint identities during occlusion is a known source of error.

The unreliability of occlusion tracks can cause the mouse endpoint identities to switch.

41

Since the endpoint system maintains a fixed queue, the orientation tracking does

recover over time. Figure 4-8 shows examples of complete tracking system including

the orientation tracker. In Section 4.4, I quantitatively evaluate the results of this

mouse tracking system.

Figure 4-8: Examples illustrating the complete tracking system. The top frame shows
the original frame and the below frame shows the results of complete tracking system.

4.4 Results

To evaluate the complete tracking system, three separate components need to be

evaluated: the EM GMM tracker outside of occlusions, the occlusion tracker, and

the orientation tracker. Evaluating frame-by-frame performance over the 10 social

behavior videos would be impractical. Each video is approximately 10 minutes long,

which constitutes around 180, 000 frames (10 videos x 600 seconds per video x 30

fps). I chose a sampling approach to evaluate the tracker. From each of the 10 social

behavior videos, I randomly sampled 50 frames from the occlusion tracker and 50

frames from the EM GMM tracker for a total of 1000 video frames ((50 occlusion

tracker frames per video + 50 EM GMM tracker frames per video) x 10 videos). For

each sampled frame, I overlaid the computed tracks and annotated a tracking score

and an orientation score. The tracking score measured the quality of each track in

terms of three possible integers: 1 - both ellipse tracks follow the mouse boundaries;

2 - both tracks are centered over the mice but at least one track does not follow the

42

mouse boundary; or 3 - one or both tracks span multiple mice, or fail to track at

least one mouse. Figure 4-9 provides examples to illustrate each tracking score. The

orientation score measures the number of incorrect orientations: 0, 1, or 2 for the two

mice case in these videos. An orientation is judged as incorrect if the wrong ellipse

endpoint is assigned to the nose, or if the track was too poor for the orientation

to even be meaningful. Figure 4-10 provides examples to illustrate each orientation

score.

Figure 4-9: Examples illustrating the three tracking scores. The top frame shows the
original image, and the bottom frame shows the tracks. For the tracks scored 1, both
ellipse tracks follow the mouse boundaries; for the tracks scored 2, both tracks are
centered over each mouse, but the left mouse’s track incorrectly includes the head of
the other mouse; and for the tracks scored 3, both tracks clearly span multiple mice.

The tracking scores paint a picture of a tracker which performs very robustly out-

side of occlusions, and tracks the mouse’s general location when the occlusion tracker

is active. The tracking scores are shown in Table 4.1. For 91.6% of the EM GMM

tracker samples, I assigned the EM GMM tracker a tracking score of 1, indicating

that the tracker almost always accurately tracked the mouse boundaries. On the

other hand, the occlusion tracker most frequently received a score of 2, indicating

that it tracked the mouse locations but did not accurately fit the mouse boundary.

43

Figure 4-10: Examples illustrating the three orientation scores. The top frame shows
the original image, and the bottom frame shows the tracked orientations. For the
left frame with an orientation score of 0, both ellipse orientations are correct; for the
middle frame with an orientation score of 1, one of the orientations is incorrect; and
for the right frame with an orientation score of 2, both orientations are incorrect.

Although the size prior is important for ensuring the occlusion tracks do not grow too

large or too small, enforcing a single ellipse size resulted in poor fits in many tracking

instances. Overall, relatively few tracks received a score of 3, indicating incorrect

tracks. For the EM GMM tracker, only 0.4% of the samples received a score of 3,

and for the occlusion tracker, only 13.4% of the samples received a score of 3.

Although the mouse tracker generally performed well, the orientation tracker fre-

quently tracked the wrong orientation. Table 4.2 paints a disappointing picture of

the orientation tracker’s performance. In around 50% of the sampled frames, the

orientation tracker labeled at least one of the mouse orientations incorrectly for both

the EM GMM tracker and the occlusion tracker. I noticed a few key instances that

caused the orientation tracker to reverse endpoint identities. When the mouse rears

to a vertical position and then curls back down, or when the mouse enters into certain

complex interactions, the orientation tracker would sometimes swap ellipse endpoint

identities. Swapping endpoint identities causes the tail base ellipse endpoint to have

44

the queue of motion values previously associated to the head ellipse endpoint and

vice versa. Although the queue creates orientation robustness when the endpoints

are correctly tracked, it introduces a time lag into the recovery when the endpoint

identities are swapped. Even though the endpoint identity switch typically occurs

when the occlusion tracker is active, the queue’s time lag causes the incorrect orien-

tation to persist while the EM GMM tracker is active. This explains why both ellipse

trackers exhibited poor orientation performance.

Tracking Performance
Tracker Score Frequency
EM GMM 1 91.6%
EM GMM 2 8%
EM GMM 3 0.4%
Occlusion 1 19%
Occlusion 2 67.6%
Occlusion 3 13.4%

Table 4.1: The average tracking scores for the EM GMM tracker and the occlusion
tracker.

Orientation Performance
Tracker Incorrect Orientations Frequency
EM GMM 0 55.4%
EM GMM 1 38.8%
EM GMM 2 5.8%
Occlusion 0 50%
Occlusion 1 37.4%
Occlusion 2 12.6%

Table 4.2: The average number of incorrect orientations for the EM GMM tracker
and the occlusion tracker

4.5 Conclusions

I have presented a new system for tracking multiple identical mice through complex

interactions. The tracker has been evaluated over 1000 frames randomly sampled from

45

the mouse social behavior dataset. The tracking system performs very well outside of

close interactions and nearly always has a good ellipse around each mouse’s boundary.

During interactions, the mice are generally tracked, but the ellipse track does not

tightly fit the mouse boundary. In contrast to the ellipse tracker, the orientation

tracker is far less robust, and in around half the sampled frames, the orientation

tracker labeled at least one of the mice with the incorrect orientation. Despite these

deficiencies, the tracker is immediately applicable to studies requiring only coarse

position statistics, or to studies in which some inaccuracy can be tolerated, such

as a system working in tandem with a human observer to identify candidate social

behavior instances.

46

Chapter 5

Automated Phenotyping of Mouse

Social Behavior

When one mouse sniffs another mouse, humans can reliably identify and classify this

behavior. It is not immediately obvious how to design an automated system to per-

form the same task. The automated system must solve two related problems: feature

representation and classification. Feature representation selects an appropriate set of

properties to represent the behaviors. When designing a feature representation, the

specific behavior set determines the appropriate feature set. For instance, suppose

the behavior set includes just two behaviors: moving and not moving for a single

mouse. In this case, a single feature computing the change in center of mass from

frame to frame would be sufficient to characterize the difference between moving and

not moving. This example demonstrates that the underlying characteristics of each

behavior, and more importantly, the differential characteristics between behaviors

guide the appropriate feature choices. After selecting a suitable feature representa-

tion, the classification system uses this feature representation to produce a behavior

label for each frame. In this chapter, I discuss the challenges of phenotyping mouse

social behavior and detail the system designed to phenotype mouse social behavior.

47

5.1 Phenotyping Challenges

Mouse social behavior phenotyping presents three primary challenges:

1. Accurate mice tracking through occlusions and complex interactions

2. Selecting an appropriate feature representation

3. Identifying an appropriate classification framework

All three challenges are tightly coupled and significantly impact the final system

performance. Inaccurate tracks have a cascade effect on the system. No matter how

good the feature representation and the classification framework, the representation

will not be accurate if the tracks are wrong. The features that are tracked, in turn,

limit the features which can be represented. For instance, if only the mouse center

of mass is tracked, the distance between the mouse noses cannot be computed from

the mouse centers. Section 4.1 reviews the challenging problem of tracking multiple

identical, interacting mice, and Section 4.2 describes the tracking system.

Even with accurate tracks, there are many possible feature representations and

classification choices. For example, the two tracks (in this case ellipses) can be used

to directly compute the feature representation, or alternatively, the tracks can in-

stead be used to target the computation of other features such as edge or template

based features. With an unconstrained set of feature choices, it is intractable to se-

lect an optimal feature representation. The final feature set choice thus involves a

combination of quantitative methods, intuition, and heuristics regarding the feature

representation choice that will result in good separation between the behaviors.

In this setting, the classification framework describes two inter-related choices:

the classifier and the training set. The training set must be selected very carefully. A

training set which covers only an aspect of the behavioral variations may not perform

well on testing data containing other behavioral variations. A further complication

arises from the dependency of features on tracks. The training data should only

contain valid tracks; otherwise, the classifier may learn inappropriate feature ranges

that are a result of tracking errors and not representative of the behaviors.

48

5.2 System to Phenotype Mouse Social Behavior

The system to automatically phenotype mouse social behavior has been designed to

distinguish spatial characteristics present in the social behavior dataset described in

Section 3.4.1. From this dataset, I chose to recognize a generic background class (BG)

and four out of the five social behaviors: nose tip-to-nose tip sniffing (NN), nose-to-

head sniffing (NH), nose-to-anogenital sniffing (NA), and upright head contact (U).

Since the crawl under / crawl over (CUCO) behavior has few examples, I do not

address the CUCO behavior in this study. Both NN and U are mutual behaviors, so

one behavior label per frame is sufficient. Although NA and NH can occur at the

same time, the dual occurrence was very rare. Thus, I chose to label each frame with

only one label. For each frame, The system produces a single background or social

behavior label.

The subsequent sections detail the implementation of the system to automatically

phenotype these four behaviors. Section 5.2.1 provides a system overview. Then

in Section 5.2.2, I describe the feature representation and the motivation for this

representation. Section 5.2.3 describes the training and testing datasets. Section

5.2.4 discusses the classification framework used to generate a behavior labels for

each frame. Once the behavior labels have been generated, Section 5.2.5 describes

the algorithm to smooth the classification labels and to reduce spurious classifications.

In Section 5.3, I evaluate the complete system performance. Then in Section 5.4, I

conclude.

5.2.1 System Overview

The mouse social behavior phenotyping system consists of three major components:

a multiple mice tracker, a feature representation module, and a classification system

to produce the final behavior labels. Chapter 4 details the multiple mice tracker. The

tracker represents each mouse by an ellipse and identifies one endpoint of the major

axis as the nose and the other as the tail base. Using the mouse ellipses, the feature

representation module computes spatial features, such as the distance between mice

49

centers and the distance between the nose of mouse i and the tail base of mouse j.

The feature representation module computes a distinct feature vector for each mouse.

The classification system then learns a regularized least squares (RLS) classifier [23]

from curated behavior examples. Once a video’s behavior labels are computed, a

sequence smoothing algorithm removes spurious detections from the label sequence

and produces the final detection sequence.

5.2.2 Feature Representation

The feature representation module computes spatial features directly from each mouse’s

ellipse tracks. During sniffing (NA,NH,NA), the mouse’s nose must be near the body

part being sniffed on the other mouse. Thus, the distance from the mouse’s nose

to the other body parts is a good proxy for sniffing behaviors. During the upright

behavior (U), both mice display a reared posture oriented to the other mouse while

exhibiting head contact. For this behavior, a number of cues ranging from the ellipse

size to relative distance between the parts could be discriminative in selective cases.

A typical mouse social behavior exhibits many variations, so in very few cases will

a single feature be discriminative enough to separate the cases. I selected a feature

set including many selectively discriminative signals. The final feature set is shown

in Table 5.1.

5.2.3 Training and Testing Dataset

The testing dataset consists of 10 of the 12 annotated videos described in Section 3.4.1.

In 2 of the 12 videos, the mice fought for a significant portion of the video. Fighting is

characterized by tussling and wrestling behavior and very rapid translational motion.

Since fighting is not one of the labeled behaviors, these 2 videos were excluded from

the test dataset. The remaining test videos contained a total of 243, 003 frames in

which 96.65% of those frames were the background behavior (BG). Figure 5-1 shows

a histogram of the number of labeled frames for the remaining four behaviors.

The training set required careful design to account for the unbalanced class labels,

50

Feature Feature Description
1 distance between ellipse centers
2 distance between noses
3 distance from mouse i’s nose to mouse j’s head
4 distance from mouse i’s nose to mouse j’s tail base
5 orientation (0 − π) between the vector from mouse i’s tail to head and

the vector from mouse i’s center to mouse j’s center
6 orientation (0 − π) between the vector from mouse i’s tail to head and

the vector from mouse i’s nose to mouse j’s nose
7 orientation (0 − π) between the vector from mouse i’s tail to head and

the vector from mouse i’s nose to mouse j’s head
8 orientation (0 − π) between the vector from mouse i’s tail to head and

the vector from mouse i’s nose to mouse j’s tail base
9 change in center distance (feature 1) between adjacent frames
10 change in nose-to-nose distance (feature 2) between adjacent frames
11 change in nose-to-head distance (feature 3) between adjacent frames
12 change in nose-to-tail base distance (feature 4) between adjacent frames
13 mouse i’s ellipse area
14 mouse i’s major axis length

Table 5.1: The feature representation for the behaviors. Mouse i refers to the mouse
represented by this feature vector, and mouse j refers to the other mouse.

unreliable tracks, and asymmetrical actions (NH,NA). In the naive training scheme,

performance is evaluated using a leave-one-video-out classifier trained independently

for each frame. There are two problems with this scheme. For one, the classes are

heavily unbalanced. However, the bigger problem is caused by unreliable tracks. For

instance, when the orientation tracking for one of the mice is reversed, this can cause

a large value for feature 2, the distance between the noses, even when the noses are

in fact close together. Thus, tracking errors result in feature errors, and the features

errors ultimately result in poor classification performance.

To address the problem of unreliable tracks and of asymmetrical actions, I col-

lected a more balanced training dataset which only contained reliably tracked positive

examples. In addition, the dataset included labels for the mouse performing the ac-

tion and the mouse being acted upon. For each positive example in the training set,

I visualized the frames with the overlaid tracks. If the tracks did not have a tight fit

or the orientation was incorrect, I discarded those tracks. In addition, for behaviors

51

Figure 5-1: The number of frames for each of the four social behaviors in the test set.
The mapping from numbers to behavior labels is as follows: 2 = NN, 3 = NH, 4 =
NA, 5 = U.

NH and NA, there are two asymmetric tracks: one track for the mouse being sniffed

and one track for the mouse performing the sniffing. I decided to only train on the

track for the mouse performing the sniffing. Thus for NH and NA, I marked the

track corresponding to the mouse performing the sniffing action. For mutual actions,

NN and U, I added the feature vectors of both mice as positive examples. Negative

examples consisted of 15 frame sequences. Half of these negative examples were se-

quences starting 10 frames after the positive examples, and the other half were from

elsewhere in the video. Selecting negative examples close to the positive examples

was motivated by a desire to collect hard negative examples close to the decision

boundary. Selecting negative sequences elsewhere in the video was motivated by a

desire to capture more of the variation in the background class. In this new dataset,

the background behavior (BG) corresponds to 58.38% of the examples as opposed

to 96.65% in the original test set. The positive class is decreased by 73.25% (7421

examples in the original test dataset and 1985 examples in the new training dataset).

Figure 5-2 shows a histogram of the number of labeled frames for each social behavior

52

in the training set.

Figure 5-2: The number of frames for each of the four social behavior in the training
set. The mapping from numbers to behavior labels is as follows: 2 = NN, 3 = NH, 4
= NA, 5 = U.

5.2.4 Behavior Classification

The classification system learns to label behaviors using a regularized least squares

(RLS) classifier [23]. Refer to [23, 24] for a more in depth discussion of RLS. RLS

is a kernel based supervised learning algorithm, which has the same generalization

bounds of the popular SVM algorithm [23, 34]. In this system, RLS is trained with

both a linear and gaussian kernel, and the performance of the two kernels is compared

in Section 5.3.

The classification system recognizes a generic background class (BG), and four out

of the five social behaviors from the social behavior dataset described in Section 3.4.1:

nose tip-to-nose tip sniffing (NN), nose-to-head sniffing (NH), nose-to-anogenital sniff-

ing (NA), and upright head contact(U). Both the training and test set are described

in detail in Section 5.2.3. Training and testing follows a leave-one-video-out protocol.

53

In this protocol, an RLS classifier is trained using examples from 9 of the 10 videos

and tested on the left-out video. The final performance is obtained by averaging the

performance from the ten classifiers on the ten left-out test videos.

The obvious testing procedure is not straightforward. For each frame, there are

two mice and thus two feature vectors and behavior labels describing the frame.

These behavior labels are not always in agreement. I experimented with two schemes

to select the best behavior label. In one scheme, I selected the behavior label which

received a higher RLS score. In the second scheme, I selected the behavior label which

received a higher RLS score unless one of the labels was background. If one of the

labels was background, I always chose the social behavior label over the background

label. In the end, I selected the first scheme, because it empirically resulted in better

performance.

5.2.5 Sequence Smoothing

The sequence smoothing module smooths each video’s final behavior labels to remove

spurious detections. The sequence smoothing module suppresses short detections

with a set of heuristics. Any sequence longer than 2 frames activates the sequence

smoother. Then the sequence smoother searches forward until 5 consecutive frames (2

consecutive frames for a background sequence) do not contain the behavior label that

started this sequence. Any consecutive sequence less than 5 frames (2 consecutive

frames for a background sequence) is replaced by the behavior label that started

this sequence. Once a sequence search terminates, the sequence smoother continues

operation after the last frame in the previous sequence. Qualitatively, the sequence

smoother resulted in behavior sequences that included fewer short isolated behavior

detections. Quantitatively, as evident from the total performance listed in Table 5.2,

the module has very little impact on performance.

54

5.3 Results

When evaluating the tracking system, I trained leave-one-video-out classifiers using

only the curated training dataset described in Section 5.2.3. To evaluate these clas-

sifiers, I compared two performance metrics:

1. validation set performance - measures the per class performance of each classifier

on the left-out curated training data.

2. test set performance - measures the per class performance of each classifier on

the entire left-out video.

For each of these evaluation settings, I also compared the performance of the linear

and the gaussian kernels, and I evaluated how well the background class performed

against a single lumped social behavior class.

The average per class performance on the left-out training data captures the per-

formance on curated video clips known to have good tracks. Performance is computed

by evaluating the classifier trained on 9 out of the 10 video training sets and testing

this classifier on the left-out training set. Since the tracks are known to be good, the

confusion matrix for the linear kernel (Figure 5-3) and gaussian kernel (Figure 5-4)

approximate the system performance in the case of consistently good tracks. A few

important patterns emerge from this data. The upright behavior is mostly classified

as nose-to-nose sniffing. In both these behaviors, the mice often exhibit mutual nose

contact, but during the upright behavior, the mice must be reared. When viewed

from the top, the main signal to detect rearing is a mouse’s ellipse profile shrinking

to a small size. Although the feature representation does capture ellipse size, the

occlusion tracker described in Section 4.2.5 makes the ellipse size signal unreliable.

The occlusion tracker assumes fixed mouse dimensions, so the ellipse size will never

shrink during close interactions.

The overall system performance metrics measure the average per class and total

performance on the left-out test videos. These metrics capture how well the classifier

generalizes to unseen data. Furthermore, this test situation reflects real-world system

55

Figure 5-3: Each linear kernel classifier is tested on its left-out training data, and
the resulting confusion matrix is calculated by averaging all 10 tests on the left-out
training data.

operation. As in the test videos, a deployed system would need to continuously

annotate videos and report the behavior patterns. The total per frame average system

performance is 73.3% for the linear kernel and 91.3% for the gaussian kernel. However,

I argue that the linear kernel is the more appropriate choice. The background class

constitutes to more than 95% of the dataset. A simple classifier which always returned

the background class would achieve 95% performance. The linear kernel (Figure 5-5)

and the gaussian kernel (Figure 5-6) confusion matrices demonstrate that the linear

kernel performs over 10% better than the gaussian kernel on every social behavior

class other than upright. The gaussian kernel does not generalize as well to new

examples of the behaviors. A few important patterns emerge from the linear kernel’s

confusion matrix. In contrast with testing on the left-out training data, testing on

the left-out test set results in substantial confusion between NN and NA. As noted

in the tracker evaluation in Section 4.4, the tracker does a poor job maintaining the

correct orientation. In most annotated orientation failures, only one of the two tracks

was improperly oriented. This tracking failure would explain the confusion between

NN and NA sniffing behaviors. In addition, NH is most commonly classified as NN.

The occlusion tracker’s enforced size (described in Section 4.2.5) results in unreliable

head and nose locations, explaining the confusion between NH and NN.

56

Figure 5-4: Each gaussian kernel classifier is tested on its left-out training data, and
the resulting confusion matrix is calculated by averaging all 10 tests on the left-out
training data.

Figure 5-5: Confusion matrix for the linear kernel averaged across all 10 test videos.

Differentiating between the social behavior classes requires accurate tracks. Nose

tip-to-nose tip sniffing and nose-to-head sniffing cannot be differentiated without a

fine knowledge of the difference between nose and head locations. Since the social

behaviors can be confused because of tracking errors, looking at just the social be-

haviors lumped into one class versus the background behavior provides insight into

how well the system may perform with better tracks. Figures 5-7 and 5-8 illustrates

this performance for the linear and gaussian kernels respectively. As with the test

videos, the gaussian kernel did not generalize well and only 34.5% of the labeled so-

cial behavior frames were in fact social behavior frames. In contrast, the linear kernel

57

Figure 5-6: Confusion matrix for the gaussian kernel averaged across all 10 test
videos.

Classifier Mean Performance stdev
Linear Kernel 0.7325 0.0469
Gaussian Kernel 0.9128 0.0466
Linear Kernel + Sequence Smoothing 0.7297 0.0485
Gaussian Kernel + Sequence Smoothing 0.9190 0.0810

Table 5.2: Total performance, number of frames classified correctly / number frames,
averaged for all 10 test videos.

correctly classified social behavior 73.6% of the time.

In the social proximity study that developed this behavioral assay [9], the assay

counted the number of instances of each behavior rather than the number of total

frames. Table 5.3 compares the average number of labeled sequences to the average

number of predicted sequences for each behavior. The results suggest that the auto-

mated system breaks behaviors into pieces and has many more false positives than a

human annotator.

5.4 Conclusions

I have presented a new system to classifying five social behaviors in mice related to

patterns of social behavior [9]. The system builds upon the mice tracker described

in Chapter 4 and develops a framework for representing and classifying social be-

havior. The representation system computes spatial features from the ellipse tracks

58

Figure 5-7: Confusion matrix containing the social behaviors lumped into one class
and the background class for the linear kernel averaged across all 10 test videos.

Figure 5-8: Confusion matrix containing the social behaviors lumped into one class
and the background class for the gaussian kernel averaged across all 10 test videos.

and the classification system learns an RLS classifier to label each frame. With-

out considering the tracker, the average per frame classification is quite good, so

any improvement in the mouse tracker should result in substantial improvements in

classification performance. Even with these deficiencies, the system is immediately

applicable to improving the quality and speed of mouse social behavior phenotyping.

In the study of Dankert et al. characterizing fly social behavior, the authors noted

that human experts missed nearly 30 − 40% of behavior events [8]. Although this

system does not perfectly classify social behavior, the high false positive rate would

assist human annotators with identifying missed behavior events.

59

Behavior Number Predicted Number Labeled
BG 231.8 20.5
NN 122.4 7.2
NH 129.8 4.6
NA 205.1 6.5
U 31.8 1.6

Table 5.3: The predicted and labeled average number of sequences for each behavior
averaged across all 10 test videos. The prediction uses the results from the linear
kernel. The results from the gaussian kernel are similar, but include fewer predicted
sequences instances.

60

Chapter 6

Conclusions and Future Work

In this thesis, I have described a system to automatically phenotype mouse social

behavior. To develop this system, I introduced a new social behavior dataset, a novel

multiple mice tracker, and a classification system to phenotype social behavior based

on these mice tracks. I then demonstrated the system performance on a real-world

social interaction dataset. In this Chapter, I describe future directions to improve

the system performance in Section 6.1, and then in Section 6.2, I discuss extensions

to further the impact of this line of research. Finally, in Section 6.3, I conclude by

highlighting the major contributions.

6.1 Future Work

Much work still needs to be done to create a system which matches or exceeds human

performance at phenotyping mouse social behavior. In this section, I propose research

directions for achieving the goal of human level performance.

6.1.1 Contour and Shape Matching

In this thesis, I assumed an ellipse model of mouse shape, but an ellipse model

cannot handle many mouse deformation or provide information about the mouse

orientation. Accurate mouse contour and shape matching to known templates could

61

improve occlusion reasoning and localization of mouse parts. In earlier work, the

authors attempted to associate each mouse with a contour template from a manually

selected set of contour templates [4]. To achieve a more reliable contour fit, I propose

developing a scheme to learn a large bank of contours and shapes combined with

an efficient contour and shape matching strategy. In this scheme, the parts and

orientation could be inferred directly from the matched templates. The main challenge

is developing an algorithm to find the best joint fit during complex interactions.

6.1.2 Fusing Information from Multiple Cameras

Fusing information from multiple cameras simplifies the tracking problem altogether.

A wide body of surveillance literature exists for selecting the most reliable camera

when one has multiple cameras with overlapping fields of view [19]. This same tech-

nique, albeit with some modifications, should work similarly in the mouse tracking

domain. Beyond just tracking improvements, the top-view is most informative for

tracking and parts recognition, and the side-view is most informative for recognizing

fine-grained behaviors such as grooming. Fusing information from these views would

enable more sophisticated behavior recognition.

6.1.3 Develop a Reliable Orientation Detector

The orientation detector performs worse than any other system component. In around

50% of the sampled frames both inside and outside occlusions, the orientation tracker

mislabeled at least one mouse’s orientation. Developing a better orientation detector

would substantially reduce the confusion between the behaviors and lead to better

classification. In the study of mouse shape and contour orientation cues in [7], the

authors discovered that a composite approach combining multiple cues resulted in

better orientation performance than any of the cues alone. Developing strategies for

combining multiple orientation cues is a promising direction for future work.

62

6.1.4 More Complex Behaviors Need Richer Feature Repre-

sentations

Currently the system represents each behavior with computed spatial features from

the elliptical mouse tracks. For many behaviors, spatial statistics are not sufficient

to robustly differentiate the behaviors. Although cooperative grooming and sniffing

share similar spatial characteristics, the two behaviors differ in motion. In contrast,

other behaviors such as huddling are mainly characterized by shape and spatial cues.

Since the goal is to build a trainable system to learn a wide range of mouse social

behaviors, the final system must use a feature set capable of representing the most

common behavior variations. As in the state of the art system by Jhuang et al. [14],

the system should learn the appropriate feature set from the training examples, and

for mouse social behaviors, this feature set will likely need to include motion, shape,

and spatial features.

6.2 Extensions

Beyond general improvements, I propose selected extensions designed to increase the

impact of this research.

6.2.1 Long-term Social Interaction Monitoring

The current paradigm for social behavior studies records mice interacting on the or-

der of tens of minutes. Any longer interaction time would be intractable for human

annotators. In contrast, an automated social behavior phenotyping system could

record behavior over long periods of time and make statistically significant observa-

tions about long-term social interactions. The implications of this technique are not

yet known, because current techniques do not support such long-term monitoring of

social interactions.

63

6.2.2 Long-term Health Monitoring

Although systems exist for monitoring singly housed mice, phenotyping groups of

mice presents interesting social behavior phenotyping challenges. With the system

proposed in this thesis, each mouse needs a feature vector for every other mouse, or

N(N − 1) = O(N2) total feature vectors (where N is the number of mice), to encode

all the possible behavior combinations. Much experimentation needs to be done to

determine the best classification and representation schemes as the number of mice

is scaled to three, four, or even colonies of mice.

6.2.3 Phenotyping Human Behaviors

Many of the techniques to phenotype mice behavior apply to humans as well. Motor

deficiencies, such as seizure monitoring and autistic motor movements, provide con-

trolled settings to begin analyzing human behavior. Recent technical and algorithmic

advances from the Microsoft Kinect have dramatically improved the state of the art in

human parts detection [27]. Knowing accurate part locations will support significant

advances in human behavior recognition.

6.3 Conclusions

In this thesis, the major contributions are three-fold:

1. Mouse tracking and social interaction dataset - The dataset includes two inter-

acting mice filmed simultaneously from the top-view and side-view perspectives

using two synchronized cameras. The videos are continuously annotated with

five social behaviors. Fusing information from top-view and side-view perspec-

tives has the potential to support sophisticated and robust behavior recognition.

2. Tracker for multiple identical mice - The tracker addresses the challenging task

of tracking multiple identical, deformable mice through complex occlusions. The

tracker accurately tracks the mouse ellipse model outside of interactions, and

during interactions, the tracker generally follows the mouse location but without

64

a tight ellipse fit. The tracker is appropriate for long-term tracking studies

requiring coarse position statistics, or in studies in which some inaccuracy can

be tolerated.

3. Trainable system to automatically phenotype mouse social behaviors - The sys-

tem represents behavior in terms of spatial features derived from the ellipse

tracks. The system learns to classify these behaviors from sample clips demon-

strating each of the four social behaviors. Although the deficiencies in the

tracker and the classification framework limit the system performance, the sys-

tem is immediately valuable as an automated assistant that suggests potential

social behavior annotations.

The system illustrates many of the challenges to building a general purpose sys-

tem for automatically phenotyping mouse social behavior. Although the system does

not yet achieve human level performance, the system can already be deployed in a

limited set of applications. The hope is that the new mouse tracking and social be-

havior dataset will encourage other researchers to extend and to improve the system

presented in this thesis. The thesis demonstrates the potential for building automated

systems to phenotype social behavior. The research lays the groundwork for auto-

mated mouse social behavior phenotyping systems which will match and eventually

exceed human performance.

65

Bibliography

[1] T. Balch, F. Dellaert, A. Feldman, A. Guillory, C. Isbell, Z. Khan, S. Pratt,
A. Stein, and H. Wilde. How multi-robot systems research will accelerate our
understanding of social animal behavior. Proceedings of the IEEE, 94(7), July
2006.

[2] S. Belongie, K. Branson, P. Dollár, and V. Rabaud. Monitoring animal behavior
in the smart vivarium. Measuring Behavior (MB), 2005.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer
Science+Business Media, 2006.

[4] Kristin Branson and Serge Belongie. Tracking multiple mouse contours (with-
out too many samples). IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2005.

[5] Kristin Branson, Vincent Rabaud, and Serge Belongie. Three brown mice: See
how they run. Joint International Workshop on Visual Surveillance and Perfor-
mance Evaulation of Tracking and Surveillance (VS-PETS), 2003.

[6] Kristin Branson, Alice A. Robie, John Bender, Pietro Perona, and Michael H.
Dickinson. High-throughput ethomic in large groups of Drosophila. Nature Meth-
ods, May 2009.

[7] P. A. Crook, T. C. Lukins, J. A. Heward, and J. D. Armstrong. Identifying
semi-invariant features on mouse contours. British Machine Vision Conference
(BMVC), 2008.

[8] H. Dankert, L. Wang, E. Hoopfer, D. Anderson, and P. Perona. Automated
monitoring and analysis of social behavior in drosophila. Nature Methods, 2009.

[9] Erwin Defensor, Brandon Pearson, Roger Pobbe, Valerie Bolivar, D. Blanchard,
and Robert Blanchard. A novel social proximity test suggests patterns of social
avoidance and gaze aversion-like behavior in btbr t+ tf/j mice. Behavioural Brain
Research, 2011.

[10] Piotr Dollár, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior
recognition via sparse spatio-temporal features. Joint International Workshop
on Visual Surveillance and Performance Evaluation of Tracking and Surveillance
(VS-PETS), 2005.

66

[11] E.H. Goluding, A.K. Schenk, et al. A robust automated system elucidates mouse
home cage behavioral structure. Proceedings of the National Academy of Sciences
of the United States of American, 2008.

[12] Cynthia T. Hsu, Dollár, Daniel Chang, and Andrew D. Steele. Daily timed sexual
interaction induces moderate anticipatory activity in mice. PLoS ONE, 2010.

[13] Cleversys Inc. SocialScan. http://www.cleversysinc.com/products/

software/socialscan/, 2010. [Online; access 14-June-2011].

[14] H. Jhuang, E. Garrote, X. Yu, V. Khilani, T. Poggio, A. Steele, and T. Serre.
Automated home-cage behavioral phenotyping of mice. Nature Communications,
2010.

[15] David G. Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision (IJCV), 60:91–100, 2004.

[16] Michael Maurer, Matthias Rüther, Horst Bischof, and Gerald Kastberger. Rigid
body reconstruction for motion analysis of giant honey bees using stereo vi-
sion. In Proc. Visual Observation and Analysis of Animal and Insect Behavior
(VAIB’10), ICPR Workshop, 2010.

[17] Tsuyoshi Miyakawa, Lorene M. Leiter, David J. Gerber, Raul R. Gainetdi-
nov, Tatyana D. Sotnikova, Hongkui Zeng, Marc G. Caron, and Susumu Tone-
gawa. Conditional calcineurin knockout mice exhibit multiple abnormal behav-
iors related to schizophrenia. Proceedings of the National Academy of Sciences,
100(15):8987–8992, 2003.

[18] J. J. Nadler, S. S. Moy, G. Dold, , N. Simmons, A. Perez, N. B. Young, R. P.
Barbaro, J. Piven, T. R. Magnuson, and J. N. Crawley. Automated apparatus for
quantitation of social approach behaviors in mice. Genes, Brain and Behavior,
3(5):303–314, 2004.

[19] Nam T. Nguyen, Svetha Venkatesh, Geoff West, and Hung H. Bui. Multiple
camera coordination in a surveillance system. ACTA Automatica Sinica, 29:408–
422, 2003.

[20] Joao Peca, Catia Feliciano, Jonathan T Ting, Wenting Wang, Michael F Wells,
Talaignair N Venkatraman, Christopher D Lascola, Zhanyan Fu, and Guoping
Feng. Shank3 mutant mice display autistic-like behaviours and striatal dysfunc-
tion. Nature, 472, 2011.

[21] Sean D. Pelkowski, Mrinal Kapoor, Holly A. Richendrfer, Xingyue Wang,
Ruth M. Colwill, and Robbert Creton. A novel high-throughput imaging system
for automated analyses of avoidance behavior in zebrafish larvae. Behavioural
Brain Research, 223(1):135 – 144, 2011.

[22] Michel Pratte and Marc Jamon. Detection of social approach in inbred mice.
Behavioural Brain Research, 203(1):54 – 64, 2009.

67

http://www.cleversysinc.com/products/software/socialscan/
http://www.cleversysinc.com/products/software/socialscan/

[23] Ryan M. Rifkin. Everything Old is New Again: A Fresh Look at Historical
Approaches in Machine Learning. PhD thesis, Massachusetts Institute of Tech-
nology, 2002.

[24] Ryan M. Rifkin and Ross A. Lippert. Notes on regularized least squares. Tech-
nical Report MIT-CSAIL-TR-2007-025, MIT Computer Science and Artificial
Intelligence Laboratory, 2007.

[25] J V Roughan, S L Wright-Williams, and P A Flecknell. Automated analysis
of postoperative behaviour: assessment of homecagescan as a novel method to
rapidly identify pain and analgesic effectives in mice. Lab Animal, 2008.

[26] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: a
database and web-based tool for image annotation. International Journal of
Computer Vision, May 2008.

[27] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, and Mark Finoc-
chio. Real-time human pose recognition in parts from single depth images. IEEE
Conference on Computer Vision and Pattern Recogntion (CVPR), 2011.

[28] A. J. Spink, R. A. Tegelenbosch, M. O. Buma, and L. P. Noldus. The ethovision
video tracking system - a tool for behavioral phenotyping of transgenic mice.
Physiology and Behavior, 2001.

[29] C. Stauffer and W.E.L. Grimson. Adaptive background mixture models for real-
time tracking. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 1999.

[30] Andrew D Steele, Walker S Jackson, Oliver D King, and Susan Lindquist. The
power of automated high-resolution behavior analysis revealed by its application
to mouse models of huntingtons and prion diseases. Proceedings of the National
Academy of Sciences, 104(6), 2007.

[31] Richard Szeliski. Computer Vision: Algorithms and Applications. 2010.

[32] P. Tamborini, H. Sigg, et al. Quantitative analysis of rat activity in the home cage
by infrared monitoring. application to the acute toxicity testing of acetanilide and
phenylmercuric acetate. Archives of Toxicology, 63:85–96, 1989.

[33] L. H. Tecott and E. J. Nestler. Neurobehavioral assessment in the information
age. Nature Neuroscience, 7:462–466, 2004.

[34] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. 1995.

[35] T. Balch Z. Khan and F. Dellaert. MCMC-based particle filtering for tracking a
variable number of interacting targets. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 27(11), November 2005.

68

	Introduction
	Contributions
	Outline

	Background and Related Work
	Automated Mouse Behavioral Phenotyping
	Single Mouse Systems
	Mouse Social Behavior Systems

	Automated Social Behavior Phenotyping in Other Animals

	Mouse Social Behavior Dataset
	Previous Mouse Datasets
	Affect of Mice Tracking Challenges on Data Collection
	Data Collection
	Dataset Annotations
	Social Behavior Annotation
	Parts Annotation

	Conclusions

	Mice Tracking
	Challenges of Tracking Mice
	Tracking System
	Tracking System Overview
	Background Modeling
	Tracking Outside of Occlusions
	Detecting Occlusion Events
	Tracking During Occlusions

	Parts Tracking
	Identifying Nose, Head, and Tail Base

	Results
	Conclusions

	Automated Phenotyping of Mouse Social Behavior
	Phenotyping Challenges
	System to Phenotype Mouse Social Behavior
	System Overview
	Feature Representation
	Training and Testing Dataset
	Behavior Classification
	Sequence Smoothing

	Results
	Conclusions

	Conclusions and Future Work
	Future Work
	Contour and Shape Matching
	Fusing Information from Multiple Cameras
	Develop a Reliable Orientation Detector
	More Complex Behaviors Need Richer Feature Representations

	Extensions
	Long-term Social Interaction Monitoring
	Long-term Health Monitoring
	Phenotyping Human Behaviors

	Conclusions

