Automated Phenotyping of Mouse Social Behavior
by
Nicholas Edelman

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2011
(© Massachusetts Institute of Technology 2011. All rights reserved.

Department of Electrical Engineering and Computer Science
September 21, 2011

Certified Dy . ...
Tomaso Poggio

Eugene McDermott Professor

Thesis Supervisor

Accepted Dy ...
Dr. Christopher J. Terman
Chairman, Masters of Engineering Thesis Committee






Automated Phenotyping of Mouse Social Behavior
by
Nicholas Edelman

Submitted to the Department of Electrical Engineering and Computer Science
on September 21, 2011, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Inspired by the connections between social behavior and intelligence, I have developed
a trainable system to phenotype mouse social behavior. This system is of immediate
interest to researchers studying mouse models of social disorders such as depression
or autism. Mice studies provide a controlled environment to begin exploring the
questions of how to best quantify social behavior.

For the purposes of evaluating this system and to encourage further research,
I introduce a new video dataset annotated with five social behaviors: nose-to-nose
sniffing, nose-to-head sniffing, nose-to-anogenital sniffing, crawl under / crawl over,
and upright head contact. These four behaviors are of particular importance to
researchers characterizing mouse social avoidance [9].

To effectively phenotype mouse social behavior, the system incorporates a novel
mice tracker, and modules to represent and to classify social behavior. The mice
tracker addresses the challenging computer vision problem of tracking two identical,
highly deformable mice through complex occlusions. The tracker maintains an ellipse
model of both mice and leverages motion cues and shape priors to maintain tracks
during occlusions. Using these tracks, the classification system represents behavior
with 14 spatial features characterizing relative position, relative motion, and shape. A
regularized least squares (RLS) classifier, trained over representative instances of each
behavior, classifies the behavior present in each frame. This system demonstrates the
enormous potential for building automated systems to quantitatively study mouse
social behavior.

Thesis Supervisor: Tomaso Poggio
Title: Eugene McDermott Professor
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Chapter 1

Introduction

When studying human disorders including Parkinson’s, Epilepsy, depression, and
autism, biologists develop mouse models of these human disorders in order to inves-
tigate potential causes and cures [22], O, 20| I8, I7]. For instance, biologists may
hypothesize a specific gene leads to autistic-like symptoms, and by suppressing the
activity of that gene, the autistic symptoms can be mitigated. To test this hypothesis,
biologists may create a mouse line with this gene mutation. Evaluating the efficacy
of this mouse line as a model for autism requires a quantitative assessment of mouse
behavior.

Human behavioral assessment, the primary means for assessing behavior in mouse
models, cannot keep up with the growth in the field. New mouse lines and experiments
are created faster than the capacity of human behavioral analysis [33]. The time
scales of manual behavior assessment are expressed in minutes instead of days, and
thus lack the statistical power of long-term study. The short time scales stem from
the painstaking manual video analysis needed to reliably assess mouse behavior.

Automated behavioral analysis addresses the problems of time, cost, and repro-
ducibility inherent to human behavioral analysis. Due to these problems and due to
the relatively controlled laboratory environment inhabited by mice, much research
has gone into establishing automated systems to phenotype mouse behavior. Early
techniques employed sensors capable of assessing position, coarse movements, and

instances of specific actions including eating and drinking [11l [32]. More recently,
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computer vision systems have been developed to support more flexible and complex
behavior analysis. One of the most advanced systems developed by Jhuang et al. [14]
for singly housed mice detects fine-grained behaviors such as grooming and can be

trained to recognize new behaviors from annotated videos.

For human diseases with a social component such as depression and autism, mouse
models for these social disorders must include a social component as well. The com-
plex interactions between mice present significant challenges for building automated
systems. Mice frequently occlude one another, move erratically, and have identical
appearances. Despite these challenges, automating the analysis of social behaviors
empowers researchers to more quickly and effectively study human disorders that
have a significant social component, and in the process, accelerate the path to cures

for these social disorders in humans.

Beyond studying social disorders, a system for studying multiple mice would ben-
efit long-term health monitoring. Mice naturally live in groups, so over the long-term,
most mice are housed in groups to promote healthy mental conditions. Therefore, any
system which monitors mice for days or even weeks needs to be capable of monitoring

multiple interacting mice.

More broadly, mice provide a controlled laboratory environment to begin explor-
ing the questions of how to best quantify social behavior in mice and eventually in
humans. Understanding human social behavior requires comprehension of many fac-
tors including facial expressions, body language, and spoken language. In contrast,
mice live in controlled laboratory environments and exhibit relatively simple social
behavior such as sniffing, following, and huddling. These conditions simplify many
of the associated computer vision and representational challenges. Automating social
behavior analysis is an important step towards developing a quantitative understand-
ing of the connections between social behavior and intelligence in mice, humans, and

other animals.
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1.1 Contributions

In this thesis, I develop a computer vision system to automatically recognize mouse

social behavior. The following describes the major contributions:
1. Mouse tracking and social interaction dataset

(a) Collected a dataset consisting of 22 ten minute recordings of two interacting
mice. Two synchronized cameras film all recordings simultaneously from
the top-view and side-view perspectives. The top-view is most informative
for tracking and parts recognition, and the side-view is most informative

for recognizing fine-grained behaviors such as grooming.

(b) Introduced a dataset containing continuous annotations of five mouse social
behaviors: nose-to-nose sniffing, nose-to-head sniffing, nose-to-anogenital
sniffing, crawl under / crawl over, and upright head contact. The dataset

is designed to evaluate and encourage mouse social behavior research.
2. Tracker for multiple identical mice
(a) Proposed a mice detection scheme based on background subtraction and

color clustering.

(b) Developed a novel top-view ellipse tracker which addresses the challeng-
ing task of tracking multiple identical, deformable mice through complex

occlusions.

(c) Developed an orientation tracker based on motion cues alone.

(d) Evaluated the ellipse and orientation trackers on data containing a wide
range of mouse interactions.

3. Trainable system to automatically phenotype mouse social behaviors

(a) Proposed 14 spatial features for representing mouse social behavior.

(b) Developed a RLS-based [23] classification system to phenotype four mouse

social behaviors.
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(c) Evaluated the classification system over continuously annotated videos

containing these social behaviors.

1.2 Outline

In Chapter [2], T provide a detailed description of related work relevant to single mouse
behavior recognition and to automatic recognition of social behavior in mice, flies,
and other animals. In Chapter 3| I discuss the dataset collection and annotation
process for the new mouse social behavior dataset. In Chapter I describe the
system developed to detect and track multiple identical mice. Once the mice are
tracked, the tracks are transformed into a representation suitable for classification.
In Chapter I detail the feature representation and the classification techniques
applied to recognize social behavior. In Chapter [ I conclude with a discussion of

future work and a summary of the thesis’s contributions.
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Chapter 2

Background and Related Work

2.1 Automated Mouse Behavioral Phenotyping

The controlled laboratory environment and the prominent role of mice in biological
research has stimulated significant interest in automating mouse behavioral pheno-
typing. Approaches range from primitive sensors to detect eating and drinking to
more sophisticated computer vision systems capable of detecting behaviors such as
grooming and sniffing. This section reviews the various approaches to phenotyping

mouse behavior.

2.1.1 Single Mouse Systems

Most early approaches to automating mice behavioral analysis relied on sensors. Sen-
sors systems include cages outfitted with photobeams and capacitance sensors to
detect eating and drinking [I1], and infrared sensors to detect active versus inac-
tive periods [32]. The sensor-based approaches are limited in the complexity of the
behaviors they can represent. Sensor-based approaches are well suited for assessing
position in the cage and for addressing coarse movements, but they are not suited for
measuring more fine-grained behavior such as grooming and sniffing.

Advances in visual tracking techniques have led researchers to design a variety

of vision-based systems for automating mouse behavioral phenotyping. Most vision-
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based approaches rely on visual tracking features [28]. Visual tracking features enable
these systems to track the position of the mouse over time; however, these systems
lack the ability to analyze fine-grained behaviors such as grooming and sniffing. As
part of the Smart Vivarium project [2], Dollar et al. [I0] developed the first sys-
tem capable of analyzing fine-grained behaviors in the home-cage environment. The
system computed spatio-temporal interest point descriptors to represent five basic
behaviors: eating, drinking, grooming, exploring, and resting. Using a computa-
tional model of motion processing in the primate visual cortex, Jhuang et al. [I4]
achieved state of the art performance on Dollar et al.’s five behaviors and applied this
model to achieve human level performance for eight mice behaviors: drinking, eating,
grooming, hanging, micromovement, resting, rearing, and walking. HomeCageScan,
a commercial system developed by Cleversys Inc., recognizes a wide range of mouse
behaviors and has been used in a variety of behavioral studies [25, [30]. In the evalu-
ation of Jhuang et al. [I4], the authors’ system outperformed HomeCageScan across

these eight stereotypical behaviors.

2.1.2 Mouse Social Behavior Systems

Recent interest in long-term mice health monitoring and in social disorders such as
autism has created a need to automate the analysis of mouse social behavior. In
contrast to the rapid innovation seen in visual tracking for singly housed mice, there
has been relatively little work automating the analysis of mice social behavior. As
part of the Smart Vivarium project, the researchers developed trackers for multiple
mice [4, 5], but did not apply these trackers to social behavior analysis. For measuring
social approach, Pratte and Jamon [22] tagged three mice with fluorescent paper and
tracked the distances between the papers with Noldus Ethovision [28]. Nadler et al.
utilized photocell break-beam sensors to measure the time mice spent together in each
chamber. In other recent studies, researchers computed visual statistics ranging from
the distance between center of mass points [12] to number of connected components
[T7]. These coarse visual features indicated how often two mice interacted. Two

commercial systems, SocialScan [13], a commercial system developed by Cleversys
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Inc., and Ethovision XT, a commercial system developed by Noldus Inc., perform
social behavior tracking from a top-view configuration. Both systems claim to be

able to assess social behaviors including nose-to-nose and nose-to-tail interactions.

2.2 Automated Social Behavior Phenotyping in Other

Animals

Automated social behavior analysis of animals other the mice has also generated sig-
nificant research interest. Research in this field is very diverse, ranging from vision-
based social behavioral analysis of zebrafish [21] to a stereo vision system for recon-
structing the motion from honey bee clusters [I6]. The section describes recent ant

and Drosophila (fly) social behavior literature most relevant to this thesis.

In a study of ant social behavior [I], researchers developed a system to track a
large group of interacting ants using an MCMC-based particle filter [35]. The system
identified three ant social behaviors: head-to-head, head-to-body, and body-to-body
encounters. From the data, the researchers concluded that ants deliberately avoided
encounters with other ants and performed head-to-head encounters at a statistically
higher rate than other encounter types. Although the system performed quite well, the
MCMC-based particle filter relies on a rigid target assumption which is not applicable
to highly deformable mice.

Recent successes in automating Drosophila social behavior offers inspiration for fu-
ture social behavior research. In [§], the authors developed a computer vision system
to quantify Drosophila actions associated with courtship, aggression, and locomo-
tion. Sample behaviors include aggressive tussling, courtship, lunging, circling, and
copulation. The behaviors were represented in terms of Drosophila spatial features
such as velocity, acceleration, relative head-to-head orientation, and change in orien-
tation. For most behaviors, an expert manually selected the appropriate parameters
ranges to classify each behavior, resulting in 90 — 100% detection rates. For certain

complex behaviors such as lunging, a combination of expert selection and a k-nearest-
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neighbor classifier proved to be sufficient. In subsequent work by Branson et al. [6],
the authors developed an automated computer vision system to track and identify
fly behavior. The behavior set included walking, backing up, touching, jumping, and
other relatively simple behaviors. As in [§], the behaviors were represented in terms
of spatial features such as velocity, relative angles, and relative distances. Instead
of having trained experts specify parameter ranges, the system learned parameter
ranges from representative videos of each behavior. The parameter range selection
applied a genetic algorithm to minimize a cost function involving missed detections,
spurious detections (false positives), and mislabeled frames.

Drosophila behavior definitions based on parameter ranges have the advantage of
interpretability over traditional machine learning systems. When a behavior is clas-
sified in terms of parameter ranges, a researcher can grasp why the system classified
a frame, and correct or refine the parameter ranges to suit a particular experiment.
Although interpretable, parameter ranges fail to capture more complex behavior like
fly lunging. Furthermore, the rigid fly shape lends itself to parameter intervals, which

may not be appropriate for a deformable mouse.
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Chapter 3

Mouse Social Behavior Dataset

Most existing mouse behavior datasets record singly housed mice in the home-cage
environment [14]. In order to phenotype mouse social behavior, I needed to collect a
new mouse social behavior dataset to train and evaluate the system. Any dataset has
two competing goals. On one hand, the dataset should be representative of the desired
test conditions. In this case, the test conditions constitute real cages where mice are
interacting. On the other hand, too much environmental variability runs the risk of
making a system overly complex and infeasible to design without significant technical
advances. In this chapter, I describe the process of collecting and annotating a mouse
social behavior dataset and discuss how the challenges of mice tracking factored into

the dataset collection process.

3.1 Previous Mouse Datasets

The UCSD Smart Vivarium project [2] sought to develop the computational tools for
recognizing mouse behavior. Through this project, the first mouse datasets became
available. Branson et al. collected video clips to develop a tracker for multiple mice [5,
4]. Dollér et al. created a dataset consisting of 406 one to ten second clips containing
five mouse behaviors: drinking, eating, exploring, grooming, and sleeping [10]. More
recently, Jhuang et al. collected and annotated 4200 short clips (approximately 2.5

hour of videos), and over 10 hours of continuously annotated videos of eight mouse
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behaviors [14]. None of these available datasets include annotations for mouse social

behavior.

3.2 Affect of Mice Tracking Challenges on Data

Collection

In a common behavioral experiment, experimenters assess the difference between a
wild-type and mutant strain. Typically, the mutant strain varies from the wild-type
strain by a single gene mutation or alteration. As a result, the strains have nearly
identical appearances. The identical appearances complicate tracking and detection.
During close interactions and occlusions, mice identities are hard to distinguish. While
mice do frequently occlude from the side-view perspective, mice occlude far less often
from the top-view perspective. When the mice are occluding in the top-view per-
spective, there is often a side-view perspective in which the mice are not occluding
and vice versa. As a result, the dataset uses two frame-synchronized cameras record-
ing simultaneously from the top-view and side-view of the cage. Although due to
time and complexity constraints the system only incorporates the top-view perspec-
tive, I expect that fusing information from both perspectives will improve tracking

performance.

Since the mice look nearly identical, markers are needed to distinguish mouse
identities at the end of each experiment. Previous experiments have used mouse
markers to distinguish mice with similar sizes and fur color. For 1—2 day experiments,
livestock markers can be used to paint blobs; for short-term experiments, permanent
markers, highlight markers, or colored flourescent tags illuminated with UV light are
sufficient; and for longer-term experiments, mice can be dyed with brightly colored
human hair dye [28]. Certain markers, such as permanent marker pens or paint blobs,
have smells or colors which could impact behavior. To reduce the chance of markers
impacting behavior, one mouse’s tail in each experiment is marked with a simple

water-based black marker. This enabled the experimenter to identify the mouse
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identities at the end of each experiment. Even if the automated detection system
could identify a mouse’s tail pixels, the black marker’s color was not sufficiently
distinctive from the other dark brown mouse colors to reliably identify the black
marker with the automated system. As a result, the automated system does not use

the black marker to resolve identities.

3.3 Data Collection

The MIT Committee of Animal Protocol (CAC) approved all experiments involv-
ing micd] All experiments recorded the first 10 minutes of interaction for pairs of
C57BL/10J background mice. To capture peak activity, all recordings occurred dur-
ing the night cycle. At a distance of a few feet from the cage, 250W Damar Red bulbs
brightly illuminated the cage. Red illumination was selected because the mouse visual
system cannot perceive red.

All recordings used two Point Grey Research Firefly MV color cameras connected
to a PC workstation (Dell) by means of Firewire 1394b 15ft cables. One camera was
mounted on a tripod facing the side of the cage, and the second camera was mounted
from a custom structure facing down to the top of the cage. Both cameras wrote
compressed 640x480 video at 30 fps and operated on the same Firewire bus. Using
the Point Grey Research software API, I wrote custom software to frame-synchronize
the two cameras streams.

n = 22 recordings of pairs of C57BL/10J background mice with nearly identical
brown coats were recorded. To maintain mouse identities, one mouse’s tail in each
video was marked with a water-based black marker. Each recording included two
simultaneous, frame-sychronized recordings from the top-view and side-view of the
cage (2 videos per recording x 22 recordings = 44 videos). Each video recording lasted
for at least 10 minutes. For each recording, two mice were transferred simultaneously
from a singly housed cage to the recording cage. A mouse was never used in more

than two recordings.

!The data collection process is joint work with Swarna Pandian, spandian@mit.edu.
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3.4 Dataset Annotations

The 10 minute videos were annotated with two types of annotations: social behaviors

and mouse part labels.

3.4.1 Social Behavior Annotation

A mouse behavior expert annotated 12 of the 22 videos with social behaviors. The
annotated behaviors followed the study of Defensor et al., in which the authors studied
social avoidance and gaze aversion-like behavior in BTBR T+ tf/J mice [9]. The
mouse behavior expert annotated the five social behaviors defined by Defensor et al.:
nose tip-to-nose tip (NN), nose-to-head (NH), nose-to-anogenital (NA), crawl under /
crawl over (CUCO), and upright (U). The relevant behavior definitions are repeated
in Table [3.1, and Figure shows sample images of each behavior.

When studying these behaviors, the behavior researchers compare mouse strains
to draw broader conclusions about mouse behavioral patterns. For instance, in the
Defensor et al. study, BTBR, a mouse studied as a model for autism, exhibited
an avoidance of frontal reciprocal orientations, which the authors claim is a mouse
analogue to human gaze avoidance [9]. In terms of the defined behaviors, BTBR
exhibited decreased frontal behaviors (NN, NH,U) and increased avoidance of frontal
behaviors (NA, CUCO). Automatic, quantitative assessment of these behaviors would
allow researchers to perform this study faster and more reliably across many more

mouse strains.

3.4.2 Parts Annotation

Accurate identification of mouse parts, such as the head, body, and tail, is important
for classifying social behavior. Mistaking the head for the tail could cause nose-to-nose
sniffing to be classified as nose-to-anogenital sniffing. To support the development
of accurate mouse parts classification algorithms, I annotated 118 frames sampled
randomly from the mouse recordings and sampled equally from the top-view and

the side-view perspectives. In each sampled frame, I separately annotated the head,

24



Behavior Name Behavior Description

Nose tip-to-nose tip (NN) mouse’s nose tip and/or vibrissae contacts
the nose tip and/or vibrissae of the other
mouse

Nose-to-head (NH) mouse’s nose or vibrissae contacts the dor-

sal, lateral, or ventral surface of the other
mouse’s head

Nose-to-anogenital (NA) mouse’s nose or vibrissae contacts the base
of the tail or the anus of the other mouse
Crawl over / crawl under (COCU) | one of the mouse’s forelimbs crosses the mid-
line of the dorsal surface of the other mouse
Upright (U) mouse displays a reared posture oriented to-
wards the other mouse with head and/or vib-
rissae contact

Table 3.1: The mouse social behaviors annotated in the dataset. Relevant definitions
from Defensor et al. [9] are repeated for completeness.

body, and tail of each of the two mice using the LabelMe annotation software [20].
For each mouse part, I annotated the polygon enclosing each part. Figure [3-1] shows
a sample parts annotation. The images included a range of occlusions, so in some

images, occlusions prevented all parts of both mice from being labeled.

N\

Figure 3-1: The left image shows the original image, and the right image illustrates
the corresponding head, body, and tail parts annotation.

3.5 Conclusions

In this chapter, I presented a method for simultaneously recording mice from multiple

perspectives. Using this method, I recorded n = 22 mice pairs for 10 minutes simulta-
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NA

CUCO

Figure 3-2: Sample images of all five annotated behaviors as described in Table

neously from both a top-view and a side-view perspective. These videos were used to
create a mouse parts dataset supporting the development of mouse parts detectors,
and a mouse social behavior dataset for training and evaluating machine learning
algorithms to recognize mouse social behavior. While this dataset collection and an-
notation was essential to developing this system, the hope is that publicly releasing
the dataset encourages other researchers to improve the algorithms and methods pre-
sented in this thesis. In future work, the top-view and side-view perspectives will be
combined to improve performance. The top-view is most informative for tracking and
parts identification, and the side-view is most informative for recognizing fine-grained

behaviors such as grooming.
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Chapter 4

Mice Tracking

(Classifying mice social behavior requires a computer vision system capable of detect-
ing and tracking the mice in each frame. Solving the mice tracking problem reduces
to the very challenging problem of tracking multiple, textureless, near-identical de-
formable objects. Unlike traditional single target phenotyping, social behavior phe-
notyping is most interested in the interactions between targets, but at the same time,
these close interactions are the most difficult tracking problems. In this chapter, I
describe the challenges of tracking multiple mice and propose a tracking system to

address these challenges.

4.1 Challenges of Tracking Mice

Many computer vision techniques for detection and tracking do not translate to the
mice tracking problem. Figure illustrates a set of representative frames demon-
strating the mouse tracking challenge. The following details the primary mice tracking

challenges:

e Complex Occlusions - mice walk over one another, roll around each other and
interact in many complex ways. These occlusions reduce the signal available to

the tracker.

e Featureless - the interior of the mouse is nearly featureless and local features
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points (e.g. SIFT [15]) are not reliable over many frames due to self-occlusion

and occlusions between mice.

e Highly Deformable - mice deform into many shapes, sizes, and orientations.
Consequently, sliding window object detection systems are not effective for de-

tecting and tracking mice.

e Long-Term Tracking - the system must track over long-term experiments with
minimal human intervention; otherwise, the system is unlikely to be adopted

by the research community.

e [dentical Appearances - people typically wear different clothing or exhibit other
dissimilarities which can be distinguished using simple appearance models such
as a color histogram. In contrast, mice have identical appearances, which makes

appearance a weak cue for resolving pixel identities during mice interactions.

e Unpredictable Motion - mice move erratically and change directions abruptly.

This complicates the use of motion models to predict future mouse locations.

4.2 Tracking System

The tracker design accounts for two primary constraints: fully automated operation
and a requirement that there are always k tracks, where k£ is the number of mice.
The fully automated operation constraint ensures that the tracks are acquired fully
automatically and recover from any errors without human intervention. The k tracks
constraint ensures the system generates track hypotheses for all mice even during the
most complex interactions. Notice the constraints do not include real-time operation
and strict identity maintenance. Removing the real-time constraint allows the tracker
to leverage past and future information and to employ algorithms which would not
be computationally feasible in a real-time setting. Not requiring strict identity main-
tenance addresses the reality of mouse tracking: certain interactions (e.g. fighting)

are so complex that identity tracking cannot be assured.
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Figure 4-1: Representative frames illustrating challenging tracking sequences.

Refer to Algorithm [1] for a concise overview of the entire mice tracker operation.
Section provides an overview of the tracker. In the subsequent sections, I de-
tail the implementation of each subcomponent. Section describes the mouse
detection system based on background modeling techniques. Then in Section £.2.3], T
describe the tracker designed for physically separated mice. Section[4.2.4]discusses the
process for detecting occlusions, and once an occlusion is detected, Section de-
scribes the tracker designed to operate during mouse occlusions. Section [4.4] presents

detailed performance metrics for the entire tracking system.

4.2.1 Tracking System Overview

The mice tracking system consists of three major components: a mouse detection sys-
tem, a tracker outside of occlusions, and a tracker during occlusions. A non-adaptive

background model is a simple yet effective technique for detecting candidate mouse lo-
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1 bg < generateBg(videoFn);

2 isOcclusion < false;

3 ellipses «— empty;

4 while (frame = getNextFrame (videoFn)) do

5 % Section 4.2.2;

6 fg < computeFg(frame,bg) ;

7 if not isOcclusion then

8 % Section 4.2.3;

9 clusterLabels «— gmmCluster(fg,ellipses) ;

10 fg connectLabels| < connectedComponents(fg,clusterLabels) ;

11 else

12 % Section ;

13 [fg connectLabels| - occlusionConnectedComponents(fg,prevEllipses);
14 end

15 ellipses «<— fitEllipsesToConnectedComponents(fg, connectLabels);

16 % Section ;

17 fisherCriteria <— computeFisherCriteria(ellipses);

18 isOcclusion < not ellipsesIdentical(ellipses) and fisherCriteria < e
19 end

Algorithm 1: The operation of the mice tracker.

cations. Since lighting conditions are known and constant, the background is approx-
imately constant throughout an entire video. A static background is thus sufficient
for detecting the hypothesized foreground locations. Once the hypothesized fore-
ground locations are identified, a Gaussian Mixture Model (GMM) [3], 29] foreground
clustering algorithm effectively tracks the mice outside occlusions. Once clustered, a
largest connected component algorithm combined with the morphological open oper-
ation selects the mouse pixels in each cluster. When the mice are closely interacting
or occluding, GMM clustering does not result in good mouse segmentations. Unable
to develop an algorithm to reliably detect the contour between interacting mice, I
instead developed an occlusion tracker which leveraged each mouse’s previous loca-
tion and a known mouse size. Although this technique did not accurately maintain
identities through all interactions, the technique handled many complex interactions

and occlusions.
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Computed Background Original Frame Background Subtraction Color Clustering

Figure 4-2: Identifying mouse foreground pixels - The current frame is subtracted
from the background model and pixels above a threshold 7 are classified as foreground.
Color clustering cleans the foreground further by removing lighter colored pixels.

4.2.2 Background Modeling

Background subtraction generates a model of the cage background 4, which removes
instances of moving objects (leftmost image in Figure [4-2)). In the mouse dataset, the
dark brown mice are darker than the rest of the background. Under this assumption,

the background model is generated using the following algorithm:
1. Sample 100 frames distributed throughout the video.

2. Represent each pixel by a 100-dimensional vector consisting of one intensity

value from each of the 100 sampled frames.

3. Use k-means with 2 clusters independently for each pixel’s feature vector. Select

the brighter cluster center as the background cluster.

To generate the hypothesized foreground pixels for each frame observation y,
subtract the current frame observation y; from the background model y,. Values
higher than a certain threshold are labeled as foreground (second from right in Figure
. Formally, let 7 be the foreground threshold and let v, be the resulting binary

foreground image defined by the following equation:

Yrg = Ybg — Yt < T (4.1)

Since the mice are filmed from a static camera in a controlled indoor environment,

the assumptions of a static background and fixed camera generally hold. As a result,
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this algorithm generates a robust background. The second image from the right in

Figure [4-2] illustrates a sample result of this method.

Problems with Background Subtraction Background modeling has a few defi-

clencies:

e Mouse colored background pixels - when nearly all the frame samples contain
a mouse at a given pixel location, the background value at this pixel locations

will be mouse colored.

o Sensitivity to free threshold parameter T - if T is set too high, not enough of the
mouse is classified as foreground, and in contrast, if 7 is set too low, too many

background pixels are classified as foreground.

e No identity information - the resulting foreground only produces candidate
mouse pixels and does not provide mouse identity labels for those foreground

pixels.

The first deficiency, mouse colored background pizels, can typically be solved by
either sampling over more frames, or by sampling over a frame range when the mice
are very active. The third deficiency, no identity information, is not handled as part
of the foreground computation layer; rather, the identity information is inferred by
the clustering algorithm described in Section [4.2.3] The second deficiency, sensitivity
to the free threshold parameter T, is mitigated by color clustering. The following

details the procedure to improve background subtraction with color clustering:

Color Clustering to Improve Background Subtraction Color clustering re-
duces background subtraction’s sensitivity to the free parameter 7. When performing
color clustering, 7 is set to a low value in order to generate an excess number of hy-
pothesized foreground pixels. Color clustering then selects the foreground pixels more
likely to be mouse colored. Figure shows the result of color clustering. The darker
pixels are more likely to belong to a mouse, so the color clustering selects the darker

cluster, the cluster closest to (0,0,0), as the mouse cluster. In many instances such
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as in Figure the color clustering removes many reflections, because the reflections
are lighter colored than the mouse. The following describes the procedure for color

clustering:

1. Convert the color frame to CIELAB. The CIELAB color space is designed to

approximate the color perception of human vision [31].

2. Apply background subtraction to generate a set of hypothesized foreground

locations, y¢g.
3. Represent each foreground pixel with its three-dimension color vector.

4. Cluster all the foreground pixels’ color vectors into two color clusters using

k-means.

5. Since the mice are dark colored, all the foreground pixels assigned to the darker
cluster (closer to (0,0,0)) are assigned as mouse foreground, ym,ouse, and the

rest are assigned as background.

Figure 4-3: Sample result of color clustering on the foreground pixels. The mouse
cluster is shown in green and the background cluster is shown in red. The plot
illustrates that color clustering selected the dark pixels, the pixels cluster closest to
(0,0,0) in the CIELAB color space.
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4.2.3 Tracking Outside of Occlusions

Given the hypothesized foreground locations from the background modeling phase,
these foreground locations must be assigned to the k& mouse identities. Foreground
pixels are assigned to mouse identities using two simple operations. First the fore-
ground pixel locations are clustered using the Expectation Maximization (EM) algo-
rithm applied to a k-cluster Gaussian Mixture Model (GMM) [3]. Figure[d-4]shows an
example of this clustering. Once clustered, a morphological open operation removes
some isolated foreground pixels. Then a connected component algorithm processes

each cluster, and the largest connected component in the cluster is labeled as the

mouse.

Foreground Input GMM Fit GMM Fg Assignment

Figure 4-4: EM GMM foreground clustering outside of occlusions. The left image
shows a sample foreground input. From this input, the EM GMM algorithm clusters
the foreground. The center image shows the first three standard deviations of each
cluster. Then in the right image, the foreground pixels are assigned to the highest
probability cluster.

EM GMM foreground clustering This section describes the algorithmic details
of the EM GMM foreground clustering. The algorithm closely follows the formulation
in [3]. Let X be an n x 2 feature matrix containing the n foreground pixels, and let
k be the number of mice to track. Each foreground pixel, x;, is represented by its
(x,y) image location. The EM algorithm alternates until convergence between an
expectation step (E step) and a maximization step (M step).

In the E step, the means, p;’s, and covariances, X;’s, for each cluster j are given

from the previous M step. Each of the n foreground points is then assigned a weight
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in each cluster. The weight, w;;, of point x; in cluster j is computed from the cluster’s

Gaussian pdf:
1

1 _
= ——exp(—=(xi — )" 55 (%1 — 1)) (4.2)
21|%; ]2

W; 45
! 2

Each point’s weights are then normalized to sum to one. In this way, each point’s

cluster membership is a valid pdf. Formally, the new normalized weight, ;;, of point

7 in cluster j is computed as:
Wy 5

> 1 Wi 4

’LUij =

In the M step, the means (y;’s) and covariances (£;’s) are updated using the new

normalized weights:

2 iy WisXi
M= (4.4)
T T Wy
Y. — Z?:l wij(xi - Mj)(xi - Mj)T (45)
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This process alternates between the E-step and the M-step until the log-likelihood,
L, converges below a given threshold. The log-likelihood L is averaged across all &

mouse clusters:
k 1 n
L = -1 Dji 4.6

= % Z Z log(w;;) (4.7)

One weakness of EM algorithm is the algorithm’s susceptibility to local minima.
Two steps are in place to avoid local minima. On the first iteration, the cluster means
and covariances are initialized using k-means. On subsequent iterations, the previous
frame’s means (u;’s) and covariances (X;’s) initialize the EM search in the current
frame. Seeding the means and covariances with these values generally results in good

cluster fits.
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4.2.4 Detecting Occlusion Events

Detecting occlusion events requires finding a good measure for distance between the
mouse pixel distributions. One simple solution for detecting occlusion events is to
compute the distance between mouse cluster centers and then to set an empirical dis-
tance threshold for detecting occlusions. If mice were spherical, this solution would
perform well. However, as evident from the center image in Figure [4-4] mice pixels
distributions are typically elliptical. Fisher’s linear discriminant helps address the
problem of computing the distances between distributions with non-spherical covari-
ances. Fisher’s linear discriminant selects a projection w from the D-dimensional
data space onto single dimensional space that maximizes the distance between the
two classes while minimizing the covariance within each class. It does this by max-
imizing Fisher’s criterion, J(w), the ratio of the between-class variance, Sg, to the
within-class variance, Sy, [3]:
wl Sgw

J(w) = TS (4.8)

The maximal value of J(w) can be used as distance metric between non-spherical
distributions. In terms of two class means, p; and puo, and two class covariances, 3,
and Yo, the Fisher criterion can be maximized to produce Fisher’s linear discriminant

as follows [3]:

Sp = (2 — pur)(p2 — 11)" (4.9)

Sw = 214 22 (4.10)
nq N9

w o< Sy (p2 — ) (4.11)

Defining the maximal value of J(w) to be the distance between the classes, I
define J(w) < @y as the criterion for mice entering an occlusion state. In order to
calculate the maximal J(w), I must express the connected component of each mouse
in terms of a mean, u, and a covariance, . To achieve this, an ellipse is fit to the
boundary pixels of each connected component. The center of the ellipse defines the p.

>’ is computed from the ellipse parameters #, the rotation from the x-axis; a, half the
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ellipse z-axis length after rotation; and b, half the ellipse y-axis length after rotation.
Let R be the rotation matrix in terms of §. Then a basic relation exists to convert
ellipse parameters to a covariance :

a? 0

Y=R RT (4.12)
0 b

Once ¥ and p are found for each cluster, the maximal J(w) < a,. can be calcu-

lated pairwise for all clusters to determine when two mice enter an occlusion state.

4.2.5 Tracking During Occlusions

During occlusions and close interactions, standard segmentation and contour detec-
tion algorithms cannot reliably detect the boundaries between the mice. Figure [4-5
illustrates the challenge of identifying this boundary. Human observer can only iden-
tify the mouse boundary locations after the patch size grows very large. At least
qualitatively, the large amount of context required to discern the boundary suggests
that the human visual system relies on high-level contour or model information to
detect the boundary between mice. This observation may explain why boundary de-
tection techniques could not detect this boundary. Boundary detection techniques
typically represent the boundaries in terms of local luminance, chrominance, and tex-
ture differences, but for the boundary between mice, these local differences are weak
or nonexistent.

Since I could not reliably detect the boundaries between mice, the occlusion tracker
leverages a set of simple heuristics that generally perform well without any input
about the mouse-to-mouse boundaries. The occlusion tracker makes two major as-
sumptions: both mice can be modeled by a fixed sized ellipse, and a mouse’s previous
ellipse location is a good cue for the mouse’s current location. Once an occlusion
event is detected by the criterion described in Section the occlusion tracker
begins to track the mice.

Given the current frame’s foreground pixels, the occlusion tracker leverages the
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20%20 40x40 80x80 160x160

Figure 4-5: Each image from left to right doubles the patch size over the same mouse-
to-mouse boundary, illustrating the challenge of detecting this boundary. In this
image, the mice are approximately 220 pixels long 70 pixels wide. In the first 20
x 20 pixel crop, the mouse-to-mouse boundary is not visible. The mouse-to-mouse
boundary becomes visually apparent only after the patch size reaches 80 x 80 pixels.

ellipse models from the previous frame to assign foreground pixels to each mouse in
the current frame. For each mouse 7, the occlusion tracker calculates M, ,, the set of
hypothesized foreground pixels for mouse ¢ at time t. M, is initialized to F'GY, the set
of all foreground pixels at time ¢. The occlusion tracker discards all foreground pixels
from M, which overlap with another mouse’s, ¢ # j, previous ellipse, and do not
overlap with the current mouse’s previous ellipse. Foreground pixels are permitted
to be assigned to multiple mice. Formally, let £;;_; be the set of pixels covered by
the previous ellipse of the i mouse, k& be the number of mice, and D; be the set of

integers from 1 to k excluding 7. M, is then defined by the following equation:

Miy=FGy— (| Eja-1) = Eii) (4.13)

JED;

For each set of hypothesized mouse foreground pixels M, a largest connected
component algorithm further curates the pixels in each M,;. Figure illustrates
an example of the occlusion tracker applied to two closely interacting mice. The
algorithm is designed so that each mouse acquires foreground pixels along its motion
direction and loses foreground pixels from the places it left in the previous frame.
However, sometimes the mice move in a way that causes the occlusion tracker to add

pixels from the other mouse’s new locations. Figure highlights an example in
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which the occlusion tracker does not add the correct pixels.

To prevent a mouse’s ellipse track from growing too large (or too small), the
occlusion tracker enforces an empirical ellipse size. First, an ellipse is fit to the
boundary of mouse’s new connected component. Then assuming an accurate center
for the ellipse fit, the ellipse major and minor axes are resized to the size of a standard
occlusion ellipse. The standard occlusion ellipse’s major and minor axis sizes are
determined by sampling many frames in which the mice are not in an occlusion state
and then computing an empirical average of the major and minor axis parameters.
Although this size will not be accurate in many cases such as when the mouse is
reared or elongated, the size constraints enforce a primitive mouse model. The model
prevents a mouse track from growing (or shrinking) to unrealistic mouse dimensions.

For quantitative benchmarks of this occlusion tracker, refer to Section [4.4]

(a) Original Frame (b) Foreground + Previous Ellipses (c) Updated Foreground + Ellipse Fit

Figure 4-6: Occlusion Tracker - The figure illustrates the operation of the occlusion
tracker. (a) shows the current frame. (b) overlays the current foreground and the
previous frame’s ellipses. In (c), the upper-right mouse’s new foreground is computed
using the ellipse overlap condition from equation [4.13|coupled with a largest connected
component algorithm. Then an ellipse is fit to the boundary of this mouse’s computed
foreground. The computed foreground and ellipse fit for the lower-left mouse are not
shown.

4.3 Parts Tracking

The mouse tracking system produces ellipses tracks for each mouse. Although it
is generally safe to assume the nose and tail are near the endpoints of the ellipse’s

major axis, the ellipse model does not differentiate between nose and tail endpoints.
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(a) Original Frame (b) Updated Foreground + Ellipse 1 (c) Updated Foreground + Ellipse 2

Figure 4-7: The figure illustrates an error with the occlusion tracker. (a) shows the
current frame. (b) shows the ellipse track of mouse 1 spanning two mice. (c) shows
mouse 2 with an oversized foreground and an ellipse track clearly spanning two mice.

Accurate classification of sniffing behavior requires accurate identification of the nose
and tail endpoints. An inaccurate nose and tail identification could misclassify a

nose-to-nose (NN) interaction as a nose-to-anogenital (NA) interaction.

4.3.1 Identifying Nose, Head, and Tail Base

The orientation tracker only uses the mouse’s motion to identify the nose and tail
base. The orientation trackers assigns the nose to the endpoint on the ellipse major
axis which most frequently coincided with the dominant motion direction; the tail
base to the opposite major axis endpoint; and the head center to a point 15% down
the major axis from the nose endpoint. The 15% value is derived from an empirical
average calculated over the labeled parts training data (see Section . The rest
of this section describes the methods underlying the orientation tracker.

The orientation tracker measures which ellipse endpoint is consistently closer to
the motion direction. To compute this motion assignment, the orientation tracker
maintains two queues, one for each ellipse major axis endpoint. In each frame, the
algorithm calculates the velocity v; at time ¢ between the previous ellipse center
ci_1 and the current ellipse center c;. If the velocity is above an empirical motion
threshold, a score is added to each ellipse endpoint’s queue. Using the empirical
motion threshold prevents noisy small motions from cluttering the queues, such as

when the mouse is resting. For each endpoint 7, the score calculates the euclidean
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distance between the previous frame’s ellipse endpoint, p;¢—1, and the current frame’s
ellipse center, c¢, multiplied by the velocity, v;. The queue stores the following scores,
sit, for each endpoint i:

Sit = Ve||Pit—1 — Cll2 (4.14)

The score measures, on average, how close an endpoint lies to the dominant motion
direction. The smaller the score, the closer the endpoint is to the dominant motion
direction. When the mouse moves quickly, the proportionality to velocity penalizes
endpoints that are far from the motion direction. The orientation tracker assumes
that the mouse is likely moving forward when it is moving quickly. The velocity term

thus gives more weight to instances where the mouse is likely moving forward.

Ellipse endpoint identities must be maintained from frame to frame, so one end-
point queue only corresponds to one endpoint. Endpoint identities are maintained
recursively. In the current frame, each ellipse endpoint is assigned the queue of the

closest previous ellipse endpoint.

Once an endpoint queue reaches a preset size, the head direction is inferred as the
orientation with the lowest mean queue value. A queue having the lowest mean is
interpreted as the endpoint which most often lies in the dominant motion direction.
The queue size represents a tradeoff between robust orientation estimation and ro-
bustness to switched endpoint identities. If the queue is very large, short instances in
which the mouse quickly moves backwards will not impact the orientation inference,
but this comes at the cost of the orientation tracker taking a long time to recover in

the event of the endpoint identities being switched.

Occlusions present an additional complexity to this motion tracking algorithm.
Since during occlusions the ellipse motion and position are less reliable, orientation
scores are not added to the queue when the mouse is in an occlusion state. However,
it is still important to maintain the endpoint identities, so even during occlusions, the
endpoint identities are updated to match the closest endpoint from the previous frame.
The need to maintain endpoint identities during occlusion is a known source of error.

The unreliability of occlusion tracks can cause the mouse endpoint identities to switch.
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Since the endpoint system maintains a fixed queue, the orientation tracking does
recover over time. Figure shows examples of complete tracking system including

the orientation tracker. In Section .4 I quantitatively evaluate the results of this

mouse tracking system.

Figure 4-8: Examples illustrating the complete tracking system. The top frame shows
the original frame and the below frame shows the results of complete tracking system.

4.4 Results

To evaluate the complete tracking system, three separate components need to be
evaluated: the EM GMM tracker outside of occlusions, the occlusion tracker, and
the orientation tracker. FEvaluating frame-by-frame performance over the 10 social
behavior videos would be impractical. Each video is approximately 10 minutes long,
which constitutes around 180,000 frames (10 videos x 600 seconds per video x 30
fps). I chose a sampling approach to evaluate the tracker. From each of the 10 social
behavior videos, I randomly sampled 50 frames from the occlusion tracker and 50
frames from the EM GMM tracker for a total of 1000 video frames ((50 occlusion
tracker frames per video 4+ 50 EM GMM tracker frames per video) x 10 videos). For
each sampled frame, I overlaid the computed tracks and annotated a tracking score
and an orientation score. The tracking score measured the quality of each track in
terms of three possible integers: 1 - both ellipse tracks follow the mouse boundaries;

2 - both tracks are centered over the mice but at least one track does not follow the
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mouse boundary; or 3 - one or both tracks span multiple mice, or fail to track at
least one mouse. Figure provides examples to illustrate each tracking score. The
orientation score measures the number of incorrect orientations: 0, 1, or 2 for the two
mice case in these videos. An orientation is judged as incorrect if the wrong ellipse
endpoint is assigned to the nose, or if the track was too poor for the orientation

to even be meaningful. Figure provides examples to illustrate each orientation

score.

Figure 4-9: Examples illustrating the three tracking scores. The top frame shows the
original image, and the bottom frame shows the tracks. For the tracks scored 1, both
ellipse tracks follow the mouse boundaries; for the tracks scored 2, both tracks are
centered over each mouse, but the left mouse’s track incorrectly includes the head of
the other mouse; and for the tracks scored 3, both tracks clearly span multiple mice.

The tracking scores paint a picture of a tracker which performs very robustly out-
side of occlusions, and tracks the mouse’s general location when the occlusion tracker
is active. The tracking scores are shown in Table f.1l For 91.6% of the EM GMM
tracker samples, I assigned the EM GMM tracker a tracking score of 1, indicating
that the tracker almost always accurately tracked the mouse boundaries. On the
other hand, the occlusion tracker most frequently received a score of 2, indicating

that it tracked the mouse locations but did not accurately fit the mouse boundary.
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Figure 4-10: Examples illustrating the three orientation scores. The top frame shows
the original image, and the bottom frame shows the tracked orientations. For the
left frame with an orientation score of 0, both ellipse orientations are correct; for the
middle frame with an orientation score of 1, one of the orientations is incorrect; and
for the right frame with an orientation score of 2, both orientations are incorrect.

Although the size prior is important for ensuring the occlusion tracks do not grow too
large or too small, enforcing a single ellipse size resulted in poor fits in many tracking
instances. Overall, relatively few tracks received a score of 3, indicating incorrect
tracks. For the EM GMM tracker, only 0.4% of the samples received a score of 3,