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Abstract

In this thesis, we design and implement a network-coding-enhanced network architecture
for next generation wireless networks. The architecture applies intra-session random linear
network coding as a packet erasure code below the IP layer. Using WiMAX as a case
study, a series of point-to-point single-interface experiments are conducted to compare the
performance of the architecture to that of HARQ and ARQ mechanisms. The performance
measures are packet loss percentage, throughput and file transfer delay. The experiments use
the Global Environment for Network Innovations (GENI) WiMAX platforms. UDP traffic is
considered; Iperf and UDP based File Transfer Protocol (UFTP) are used as measurement
applications. The proposed architecture substantially decreases packet loss percentage from
around 11-32% to nearly 0%. Compared to HARQ and ARQ mechanisms, the architecture
can offer up to 5.9 times gain in throughput and 5.5 times reduction in end-to-end file transfer
delay.
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Chapter 1

Introduction

This chapter briefly states the background and motivation for this study, followed by a

description of its scope. It then provides an overview of related work on network coding in

conjunction with retransmission schemes. Finally, a short outline of the rest of the thesis is

given.

1.1 Background and Motivation

The growing market of mobile devices is placing increasing demands on wireless networks.

Indeed, at the end of 2009, the number of mobile phone subscribers exceeded 4.6 billion

worldwide [65], and the global mobile data traffic has been predicted to double every year

through 2014 [30]. The significant growth in mobile data traffic requires higher communi-

cation capacity. As a consequence, a crucial challenge for next generation wireless networks

is to cope with the rapid increase in multimedia traffic with minimal impact on equipment

complexity [30].

In past years, Network Coding (NC) has been recognized as one of the solutions to cope

with network congestion [25, 26]. It uses network resources better [17] and improves dissem-

ination of content in the network [43]. NC also allows tailoring the encoding to the dynamics

of the network topology, which is an essential feature for mobile wireless networks [48]. Many
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studies have shown that NC for Wireless Local Area Networks (WLANs) significantly en-

hances network throughput, robustness, and security; in particular, the network throughput

gain is considerable [54, 71]. Random Linear Network Coding (RLNC) [13, 28], where the

NC coefficients are selected randomly over a chosen Galois field, has proven particularly

effective in optimizing network resource consumption in WLANs [17, 31]. In fact, using NC,

COPE [35] shows 3-4x throughput gain in WLANs.

Despite the demonstrated effectiveness of NC in WLANs, NC for Wireless Metropoli-

tan Area Networks (WMANs) has just recently gained attention, as the telecommunication

industry moves toward next generation wireless networks such as 4G WiMAX and 4G LTE-

Advanced. 4G requires stationary speeds of 1 Gbps and mobile speeds of 100 Mbps, while

3G only requires stationary speeds of 2 Mbps and mobile speeds of 384 Kbps [5]. That is, 4G

requires 500 and 260 times faster speeds than 3G in stationary and mobile cases, respectively.

Thus, it is essential to investigate potential applications of NC in these next generation wire-

less networks to ensure that the needs of subscribers are served by the deployed networks.

1.2 Scope

Network Coding can be applied across the OSI model [69] from the physical [31] to the

network and application layers [58]. In this thesis, we design and implement an NC-enhanced

network architecture below the IP layer to minimize packet loss and maximize throughput

while reducing delay, thus improving both Quality of Service (QoS) for the operator and

Quality of Experience (QoE) for the end-user. Intra-session random linear network coding

is used as a packet erasure code. Using WiMAX as a case study, we compare the packet

loss percentage, throughput and file transfer delay of the proposed architecture with those of

the Hybrid Automatic Repeated reQuest (HARQ) and Automatic Repeated reQuest (ARQ)

mechanisms in WiMAX (See Chapter 3). The Global Environment for Network Innovations

(GENI) WiMAX platforms will be used to conduct experiments. Since the GENI WiMAX

Base Stations (BSs) only support Chase Combining HARQ, only Chase Combining HARQ is

considered, and not Incremental Redundancy HARQ. User Datagram Protocol (UDP) traffic
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is considered; Iperf and UDP based File Transfer Protocol (UFTP) are used as measurement

applications.

1.3 Related Work

Network Coding (NC) was originally proposed to mix packets at nodes to maximize the

capacity of a wired network [7]. COPE [35] is considered the first system that has successfully

implemented NC to wireless networks to improve the throughput using overheard packets.

However, even before the advent of NC [7] and COPE [35], Metzner [49] presented a similar

coding scheme to be used in conjunction with retransmission schemes in single-hop broadcast

settings. In [49], the authors propose a scheme where the retransmitted frame is simply the

NACKed frames of various receivers XORed together. We call such a scheme XOR NC.

Since then, NC in conjunction with retransmission schemes such as ARQ and HARQ has

been widely studied [6, 18, 19, 29, 32–34, 36–40, 42, 47, 49–53, 57, 59, 61–63, 67, 68, 70, 72–

74]. We briefly describe these articles.

Jolfael et al. [34] apply XOR NC to ARQ for use in a point-to-multipoint communication

over broadcast links while Yong et al. [72] consider XOR NC and ARQ in multicast settings.

Larsson et al. [36, 38] study XOR NC and multi-user ARQ in multiple unicast settings and

suggest that linear coding in some other field may also be used instead of XOR NC. Larsson

et al. [37] also consider adaptive linear NC and ARQ in multicast settings, where coefficients

for the linear combination of data packets are adaptively selected from a sufficiently large

finite field.

NC-HARQ [62] applies NC to HARQ in single-hop wireless networks. NC-HARQ uses

XOR NC in conjunction with the Forward Error Correction (FEC) of HARQ, where lost

packets from different receivers are XORed together and applied FEC. NC-HARQ, in effect,

combines network and channel coding. In NC-HARQ, lost packets from different receivers

are XORed together. Thobaben et al. [61] and Larsson et al. [39] consider NC-HARQ and

multi-user HARQ in multiple unicast settings. Peng et al. [51] consider NC-HARQ in both

broadcast and unicast scenarios. Tran et al. [63] extend NC-HARQ to adjust the amount of
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FEC in real time to adapt to the channel conditions in single-hop wireless networks. This

technique increases the throughput efficiency up to 3.5 times over ARQ and 1.5 times over

HARQ. Zhang et al. [74] extend NC-HARQ to add XOR operations to combine dynamically

lost packets from the same receiver in addition to XOR operations that combines lost packets

from different receivers. Lu et al. [42] look at NC-HARQ for wireless video broadcast.

Abuzeid et al. [6] compare NC-HARQ and Incremental Redundancy HARQ in cooperative

wireless communication systems.

MRNC [32, 33] considers RLNC at the MAC layer, where a data segment is divided and

coded together. N-in-1 NC [40] extends MRNC. In N-in-1 NC, a data segment is first divided,

coded and transmitted. For retransmissions, instead of coding a single data segment, N data

segments are coded together. N-in-1 NC achieves a throughput gain of up to 106% against

the conventional Chase Combining HARQ.

Lun et al. [45, 46] shows a capacity-achieving coding scheme based on RLNC, where coded

packets are formed from random linear combinations of previously received packets and sent

out whenever there is a transmission opportunity. Dana et al. [14] derive the capacity for

a class of wireless erasure networks with broadcast and no interference at reception and

show that linear coding at nodes in wireless erasure networks suffices to achieve the capacity

region. Ghaderi et al. [19] analytically quantify the reliability gain of network coding for

reliable multicasting in wireless networks and show that network coding achieves asymptotic

performance results similar to that of rateless erasure coding. Sundararajan et al. [59]

theoretically extend ARQ with RLNC [13, 28]. Nguyen et al. [50] provide theoretical results

comparing the bandwidth efficiency of RLNC to that of ARQ. Pu et al. [52] develop an

information-theoretic performance bound to predict the coding gains of Chase Combining

HARQ in broadcast settings.

Recently, Manssour et al. [47] proposed a novel retransmission scheme for wireless uni-

cast communication using a combination of channel coding and network coding and showed

68.75% throughput gains compared to Chase Combining HARQ. Qureshi et al. [53] presents

BENEFIT, an efficient NC-based transmission algorithm, in a single-hop wireless multicast
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network. BENEFIT starts retransmitting as soon as certain conditions are met and in effect

reduces the time to decode the packet. While all previous contributions consider digital net-

work coding, SYNC [73] considers symbol level network coding at the physical layer, where

corrupted packets may be useful.

Fan et al. [18], Sun et al. [57] and Vien et al. [68] consider a scenario where two nodes

communicate with the base station with the assistance of a relay. Fan et al. [18] introduce a

NC Based Cooperative multicast scheme (NCBC) while Sun et al. [57] discuss cooperative

HARQ based on NC (C-HARQ-NC). Vien et al. [68] investigate ARQ based on NC for

two-way wireless relay networks. Recently, Vien et al. also discussed NC based Block ARQ

(BACK) for wireless relay networks [67]. Hong et al. [29] propose NC-HARQ for mobile

relay systems.

Jin et al. [32, 33] and Yazdi et al. [70] consider NC in conjunction with ARQ and/or

HARQ in WiMAX. Jin et al. [33] introduce MAC layer Random Network Coding (MRNC),

which offers a 10% gain in throughput over HARQ in single-hop transmissions. Adap-

tive MRNC [32] extends MRNC with adaptive schemes and outperforms regular MRNC by

28.4% and HARQ by 57.7% in terms of throughput. Adaptive MRNC uses the channel state

information feedback to adjust dynamically packet size according to the current channel con-

ditions. Recently, Yazdi et al. [70] extended MRNC to restrict the number of retransmissions

to an upper bound which is important for delay sensitive applications.

Despite a number of studies on the HARQ and ARQ mechanisms, most of those studies

are limited to simulations and analysis; there is lack of experimental data. All work cited

above give analytical and/or simulation results, but none provides experimental results. In

this thesis, we provide experimental results in a point-to-point setting. Our design uses

RLNC in GF(28) as a packet erasure code. Ho et al. [27] show that using a Galois field

of a limited size is sufficient to implement network coding in a practical network setting.

We compare the performance of our design to that of ARQ and Chase Combining HARQ

mechanisms in WiMAX.
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1.4 Outline

The remainder of the thesis is organized as follows.

Chapter 2 gives a brief introduction to network coding. We present the definition, an

example and a classification of network coding. In particular, Random Linear Network

Coding (RLNC) is described in detail. This chapter also discusses using random linear

network coding as a packet erasure code.

Chapter 3 gives a brief introduction to Worldwide Interoperability for Microwave Access

(WiMAX). It discusses two retransmission mechanisms in WiMAX: Automatic Repeated

reQuest (ARQ) and Hybrid Automatic Repeated reQuest (HARQ). Adaptive Modulation

and Coding (AMC) in WiMAX is also discussed in this chapter.

Chapter 4 presents the network-coding-enhanced network architecture and its applica-

tions in point-to-point single- and multiple-interface networks.

Chapter 5 describes the design of the network coding application. The encoder and

decoder processes are depicted and the design parameters are defined. The encoder, decoder

and feedback mechanisms are also discussed in this chapter.

Chapter 6 discusses some of our design and implementation decisions. In particular,

we discuss the implementation of our network coding scheme, our decoding algorithm and

random seeds used to generate the code. The NC header structure and the data padding

are also discussed.

Chapter 7 discusses the preliminary experiments performed using WiMAX technology.

The objective of the preliminary experiments is to measure the communication channel and

the network performance of different configurations of WiMAX Base Stations (BSs), focusing

on switching on and off HARQ and ARQ. The measurements are collected at two different

sites: Raytheon BBN Technologies (BBN) in Cambridge, Massachusetts and the University

of California, Los Angeles (UCLA), California.

Chapter 8 discusses the network coding experiments and results. The objective of the

network coding experiments is to validate the potential for Network Coding (NC) to replace

the HARQ and ARQ mechanisms. Four fixed downlink Modulation and Coding Schemes
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(MCSs) and base station transmission power levels are considered: 64 QAM CTC 1/2 at

13 dBm, 64 QAM CTC 2/3 at 17 dBm, 64 QAM CTC 3/4 at 18 dBm and 64 QAM CTC

5/6 at 20 dBm. The measurements are remotely conducted at the Rutgers University, New

Jersey.

In Chapter 9, the contributions of this thesis are summarized, and a number of important

future work topics are listed.
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Chapter 2

Network Coding

In communication networks, files commonly are divided into packets in order to be trans-

mitted from one node to another. Traditionally, packets are stored and then forwarded.

Network coding has been proposed to replace this traditional “store and forward” model

and to improve the throughput and robustness of networks. This chapter gives a brief intro-

duction to network coding, presenting the definition, example and classification of network

coding. In particular, Random Linear Network Coding (RLNC) is discussed in detail. Then,

this chapter discusses random linear network coding as a packet erasure code.

Ahlswede et al. [7] first introduced network coding in 2000. Since then, it has been studied

widely by the research community. Network Coding (NC) is a particular data processing

technique in networks where network nodes transmit any combination of a set of available

packets. Figure 2-1 shows the potential benefit of network coding in a simple example. The

example shows that with network coding, one transmission can be avoided by combining

two packets at node 3. In this example, network coding potentially delivers information to

more than one node by sending the combination of b1 and b2 to node t1 and node t2. Node

t1 gains information about b2, and node t2 gains information about b1. Compared to the

store and forward model (Figure 2-1a), network coding avoids one transmission per unit time

(Figure 2-1b), thus increasing throughput.
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Figure 2-1: The butterfly network. (a) store-and-forward is applied. (b) network coding is
applied. The source, node s, transmits b1 and b2 to t1 and t2. With network coding, one
transmission can be avoided by combining the two packets at node 3.

2.1 Intra-Session and Inter-Session Network Coding

Network coding can be classified into two types: intra-session network coding and inter-

session coding. Intra-session network coding is network coding where combinations are

restricted to packets belonging to the same session or connection. In Inter-session network

coding, however, combinations are allowed among packets belonging to possibly different

sessions or connections. This thesis focuses on intra-session network coding.

2.2 Random Linear Network Coding

The most common class of network coding used in practical applications is Random Linear

Network Coding (RLNC) [13, 28]. RLNC is an extension of Linear Network Coding (LNC).

LNC is NC where all combinations are linear combinations: multiplying each term by a con-

stant and adding the results. RLNC is LNC where the coefficients of the linear combinations

are chosen randomly. This section describes RLNC encoding and decoding in detail. Then,

it discusses systematic network coding used in conjunction with RLNC in practice.
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2.2.1 Encoder

The encoder encodes information as follows.

cj =
n∑
i

ajisi, (2.1)

where si is a vector of source bytes (a packet), cj is a vector of coded bytes (a coded packet)

and aji’s are random coefficients. Alternatively, Equation (2.1) can be written in matrix

form as

C = AS, (2.2)

where C is the matrix of coded vectors cj’s, A is the matrix of coefficients aji’s, and S is the

matrix of source vectors si’s. In this thesis, network coding is applied on packets.

2.2.2 Decoder

The decoder decodes by gathering n linearly independent coded packets, cj, and solving

Equation (2.2):

S = A−1C. (2.3)

If A is invertible, the uncoded information can be recovered, and the uncoded information

is found in S. All calculation is done over a finite field. For more information on finite fields,

see Appendix A.

2.2.3 Systematic Network Coding

In practice, RLNC is used with systematic network coding to help speed up the decoding time

[44]. Systematic network coding is a type of network coding consisting of two phases. In the

first phase, all n packets are transmitted uncoded. Uncoded packets have a unit coefficient

vector of the form: (0, 0, ..., 1, ..., 0). Then, redundancy coded packets are transmitted in the

second phase.
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Assuming we use Gauss-Jordan elimination [56] to decode, systematic network coding

helps speed up the decoding time in three ways. First, uncoded packets are used to perform

a forward elimination only in the coded packets, not in the other uncoded packets. Second,

no operations have to be performed for the columns that are known to be zero in the uncoded

packet. Third, a back substitution step is not needed for the uncoded packets. Additionally,

uncoded packets can be used to recover partial information when there are not enough

linearly independent packets.

2.3 Network Coding as Packet Erasure Codes

Network coding helps improve not only throughput, as shown in Figure 2-1, but also robust-

ness against packet loss. In this section, we explore the use of network coding as a packet

erasure code to enhance robustness in packet erasure networks. Packet erasure networks are

networks with a communication channel where a packet is either received or lost. Packet

erasure codes transform a message of k packets into a longer message of n packets such that

the uncoded message can be recovered from a subset of the n packets. The fraction k
n

is

called the code rate.

As a packet erasure code, network coding introduces redundancy packets so that the

uncoded packets can be recovered when a sufficient number of coded packets (degrees of

freedom) is received. Hence, a sender can potentially generate an unlimited number of

packets; a receiver can continue receiving packets until it is able to decode. Additional

packets that are linearly independent from already received packets always contain new

information. Each additional packet reduces the code rate but increases the likelihood of

decoding in a packet erasure network.

In addition to providing redundancy, network coding simplifies the acknowledgement

process. In packet erasure networks, an acknowledgement (ACK) mechanism is often used

to counter packet loss. Typically, an ACK packet is transmitted from the receiver to the

sender to acknowledge the arrival of any particular packet or group of packets (See Chap-

ter 3). Network coding removes the requirement for ACKs prior to decoding, thus potentially
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simplifying the ACK procedure (See Chapter 5). By introducing redundancy packets and

simplifying acknowledgements, network coding, therefore, can be used to protect against

packet loss and improve network robustness.

Despite its advantages, network coding has limitations. One such limitation is the “all-

or-nothing” property: if n packets are combined using network coding, at least n packets

are needed in order to be able to recover the n uncoded packets. In this chapter, we define

network coding, linear network coding and random linear network coding as well as intra-

session and inter-session network coding. We also discuss the use of network coding as a

packet erasure code. In this thesis, we use intra-session random linear network coding as a

packet erasure code to help enhance robustness in packet erasure networks. The next chapter

gives an overview of WiMAX.
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Chapter 3

Worldwide Interoperability for

Microwave Access (WiMAX)

Worldwide Interoperability for Microwave Access (WiMAX) is intended for Wireless Metropoli-

tan Area Networks (WMANs). WiMAX provides a robust, reliable, and cost-effective means

to deliver broadband services in metropolitan and rural areas. Figure 3-1 represents the ba-

sic WiMAX network architecture. Subscriber Stations (SSs) such as mobile phones, laptops

and cars communicate with the internet and with other SSs through Base Stations (BSs).

Access Service Network Gateway (ASNGW) acts as a traffic aggregation point within an

Access Service Network (ASN).

Figure 3-1: WiMAX Network Architecture. Access Service Network Gateway (ASNGW)
acts as a traffic aggregation point within an Access Service Network (ASN).
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WiMAX [8] is a similar technology to the Long-Term Evolution (LTE) [20]; Chang et

al. [12] compare WiMAX and LTE. In this chapter, the WiMAX IEEE 802.16 standard

is discussed. In particular, we discuss the basics of Automatic Repeated reQuest (ARQ),

Hybrid Automatic Repeated reQuest (HARQ) and Adaptive Modulation and Coding (AMC)

in the WiMAX IEEE 802.16 standard. Part of the information in this chapter is drawn from

[22] and [8].

The WiMAX IEEE 802.16 standard contains specifications for the PHYsical layer (PHY)

and the Medium Access Control layer (MAC). Figure 3-2 shows a typical WiMAX network

stack. The PHY supports Single Carrier (SC), Orthogonal Frequency Division Multiplex-

ing (OFDM), and Orthogonal Frequency Division Multiple Access (OFDMA). The MAC

supports both Time Division Duplexing (TDD) and Frequency Division Duplexing (FDD).

Figure 3-2: WiMAX Network Stack.

The MAC includes a convergence sublayer that can interface with a variety of higher-layer

protocols such as Ethernet and IP. Besides providing a mapping to and from the higher layers,

the convergence sublayer supports header suppression to reduce higher layer overhead in each

packet. The MAC also performs fragmentation and packing. Fragmentation is a process in

which a MAC Service Data Unit (MSDU) is divided into one or more MSDU fragments.

Packing is a process where multiple MSDUs are assembled into a single MAC Protocol Data

Unit (MPDU).
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To alleviate the impact of wireless errors on the network performance, WiMAX adopts

two retransmission mechanisms: Automatic Repeated reQuest (ARQ) at the upper MAC

and Hybrid Automatic Repeated reQuest (HARQ) at the lower MAC and PHY. Both ARQ

and HARQ mechanisms retransmit data when data is not correctly delivered to the receiver.

ARQ and HARQ are discussed in Section 3.1 and 3.2, respectively.

To improve overall system capacity, WiMAX supports a number of advanced link adap-

tation techniques such as Adaptive Modulation and Coding (AMC). In AMC, modulation

and coding are dynamically adapted to the current channel condition; AMC is discussed in

Section 3.3.

3.1 Automatic Repeated reQuest (ARQ)

Automatic Repeated reQuest (ARQ) is an error control technique for data transmission in

which the receiver asks the transmitter to resend the blocks of data in which errors are

detected. The receiver verifies each block using the cyclic redundancy check code (CRC). If

errors are detected, the receiver sends a negative acknowledgement (NACK); otherwise, it

sends a positive acknowledgement (ACK). The transmitter retransmits the block only if it

receives a NACK or its retransmission timer expires. If the transmitter receives an ACK,

then the block are successfully transmitted. A retransmission timer is specified using the

ARQ RETRY TIMEOUT parameter, which is the minimum time interval during which a

transmitter waits before the retransmission of an unacknowledged ARQ block.

ARQ in the MAC can be enabled or disabled. For ARQ-enabled MAC, MSDUs are first

partitioned into fixed-length ARQ blocks, where the last ARQ block is padded. Then, a

Block Sequence Number (BSN) is assigned to each ARQ block. The length of ARQ blocks

is specified using the ARQ BLOCK SIZE parameter. After the ARQ block partitioning,

fragmentation and packing are applied, ARQ blocks are assembled into MPDUs. Figure 3-3

shows the operation of an ARQ-enabled upper MAC. For the ARQ-disabled MAC, MSDUs

are fragmented and/or packed into MPDUs. Figure 3-4 shows the operation of ARQ-disabled

upper MAC.
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Figure 3-3: WiMAX MAC layer with ARQ enabled.

Figure 3-4: WiMAX MAC layer with ARQ disabled.

In the WiMAX ARQ scheme, a transmitter and a receiver each maintain a sliding window

of ARQ blocks that shifts each time the transmitter receives an ACK. ARQ window size is

specified using the ARQ WINDOW SIZE parameter.

The WiMAX IEEE 802.16 standard defines various ARQ parameters. However, there is

no specification about how to use them. In the next section, we introduce the main ARQ

parameters. Other parameters are summarized in Table 3.1.

3.1.1 ARQ Parameters

To distinguish between the ARQ window at the transmitter and the ARQ window at the

receiver, the ARQ window at the transmitter is called the ARQ-Tx window, and the ARQ

window at the receiver is called the ARQ-Rx window. There are two variables related to

the ARQ-Tx window: ARQ TX WINDOW START and ARQ TX NEXT BSN. ARQ TX -

WINDOW START indicates the starting point of the ARQ-Tx window, whereas ARQ TX -
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NEXT BSN indicates the BSN of the next ARQ block to be sent in the ARQ-Tx window. The

transmitter updates the ARQ TX WINDOW START and ARQ TX NEXT BSN variables,

when it receives an ARQ feedback message which includes ACK to indicate the successful

reception of an ARQ block and NACK to request the retransmission of an ARQ block owing

to unsuccessful reception. The time delay before a receiver sends an ARQ feedback message

is specified in ARQ TX ACK DELAY.

There are also two variables related to the ARQ window at the receiver (ARQ-Rx win-

dow): ARQ RX WINDOW START and ARQ RX HIGHEST BSN. ARQ RX WINDOW -

START represents the starting point of the ARQ-Rx window, and ARQ RX HIGHEST BSN

represents the BSN of the next ARQ blocks to be received in the ARQ-Rx window. The

receiver first updates ARQ RX WINDOW START and ARQ RX HIGHEST BSN variables,

when it receives ARQ blocks. Then, it sends an ARQ feedback message which includes ACK

or NACK.

3.1.2 ARQ Parameter Sensitivity

We now discuss the effects of setting short or long ARQ RETRY TIMEOUT and ARQ TX -

ACK DELAY values. For ARQ RETRY TIMEOUT, on one hand, a short ARQ RETRY -

TIMEOUT value may cause unnecessary retransmissions, which wastes resources at the

transmitter. On the other hand, a long ARQ RETRY TIMEOUT value may increase the

delay of data that has not arrived successfully at the receiver.

For ARQ TX ACK DELAY, on one hand, a short ARQ TX ACK DELAY value results

in a large number of transmissions of ARQ feedback messages. ARQ feedback messages are

sent using the same resources that are used for data transmissions. Thus, a short ARQ TX -

ACK DELAY value increases the control overhead, which decreases the system throughput.

On the other hand, a long ARQ TX ACK DELAY value may increase the delay of data,

especially if the data is not delivered to the receiver successfully. In addition, it may decrease

the system throughput because of the ARQ stall problem that occurs when the transmitter

cannot send data because the ARQ window freezes.
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Table 3.1: ARQ Parameters and Description

Parameters Description
ARQ RETRY TIMEOUT The minimum time interval a transmitter will wait

before retransmission of an unacknowledged block
for retransmission. The interval begins when the
ARQ block was last transmitted. On connec-
tions that use both HARQ and ARQ, the ARQ -
RETRY TIMEOUT value should be set accord-
ingly to allow HARQ retransmission operation of
the ARQ block to be completed before ARQ re-
transmission occurs. An ARQ block is unacknowl-
edged if it has been transmitted but no acknowl-
edgment has been received.

ARQ BLOCK SIZE ARQ block size. Before transmission, MSDUs are
partitioned into a sequence of ARQ blocks of this
size.

ARQ WINDOW SIZE The window size or the number of queued ARQ
acknowledgement blocks at any given time for a
connection.

ARQ TX ACK DELAY The time delay before a receiver sends an ARQ
feedback message.

ARQ ACK PROC TIME The time allowed for ACK to be processed.
ARQ BLOCK LIFETIME The maximum time interval an ARQ block will be

managed by the transmitter, once initial transmis-
sion of the block has occurred. If transmission (or
subsequent retransmission) of the block is not ac-
knowledged by the receiver before the time limit is
reached, the block is discarded.

ARQ DLV ORDER The in-order delivery capability. It indicates
whether to enable in-order delivery. If enabled,
the data units will be buffered and reordered be-
fore delivery.

ARQ RX PURGE TIMEOUT The time interval the receiver will wait after suc-
cessful reception of a block that does not result
in advancement of ARQ RX WINDOW START
value.

ARQ SYNC LOSS TIMEOUT The maximum time interval ARQ TX WIN-
DOW START or ARQ RX WINDOW START
parameters can stay at the same value before
declaring a loss of synchronization between trans-
mitter and receiver.
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3.2 Hybrid Automatic Repeated reQuest (HARQ)

Hybrid Automatic Repeated reQuest (HARQ) is an error correction and control technique.

It combines Forward Error Correction (FEC) [10] and ARQ to ensure a more reliable trans-

mission. Unlike in ARQ, where all transmissions are processed independently, in HARQ,

subsequent retransmissions are jointly processed with all the previous transmissions. In-

stead of discarding each erroneously received block, subsequent retransmitted blocks are

combined with the previous erroneously received retransmitted blocks to improve reliabil-

ity. Two extensively investigated implementations of HARQ are Chase Combining (CC)

and Incremental Redundancy (IR). Reference [16] compares performance of these different

implementations. In CC, a retransmitted block is identical to the initial transmitted block.

In IR, each retransmitted block is a different version of the coded block. Typically, a version

of the coded block is created via a process called puncturing, where some of the output

error-correcting coded bits are removed [66]. Different versions have different puncturing

patterns. Consequently, at every retransmission the receiver gains knowledge of extra infor-

mation. In WiMAX, at most four different encoded retransmitted blocks can be generated

and retransmitted.

Figure 3-5 and 3-6 show the lower MAC layer, with HARQ enabled and disabled, re-

spectively. For both cases, the MAC Protocol Data Unit (MPDU), or a concatenation of

MPDUs, is padded so that the size of the resulting block of MPDUs is in the set {4, 10, 16,

22, 34, 46, 58, 118, 238, 358, 598, 1198, 1798, 2398, 2998} bytes. Subsequently, a CRC field is

added, so that the resulting data unit length is in the set {6, 12, 18, 24, 36, 48, 60, 120, 240,

360, 600, 1200, 1800, 2400, 3000} bytes. The length of the data unit is mainly determined

by the modulation and coding scheme selected. For the HARQ-disabled MAC, the data unit

then undergoes modulation. For the HARQ-enabled MAC, before modulation, the data unit

undergoes randomization, fragmentation and FEC. Four subpackets are generated and will

be transmitted if needed. Various HARQ parameters are summarized in Table 3.2.
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Figure 3-5: WiMAX MAC layer with HARQ enabled.

Figure 3-6: WiMAX MAC layer with HARQ disabled.

3.2.1 HARQ and SNR

We now discuss some advantages and disadvantages of HARQ. Dias et al. [15] shows that at

low SNR, both CC and IR HARQ techniques provide a significant benefit. However, at high

SNR, there is no apparent benefit from HARQ, since most of the FEC blocks are decoded
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Table 3.2: HARQ Parameters and Description

Parameters Description
HARQ MAX UL BURST The maximum number of HARQ UpLink (UL)

bursts per frame.
HARQ MAX DL BURST The maximum number of HARQ DownLink (DL)

bursts per frame.
HARQ UL ACK DELAY The frame offset of UL ACK delay with respect to

UL Burst.
HARQ DL ACK DELAY The frame offset of DL ACK delay with respect to

DL Burst.
HARQ PDU SN Indicate whether PDU SN extended subheader

should be applied by the transmitter on every PDU
on this connection. This SN may be used by the
receiver to ensure PDU ordering.

HARQ MAX RETRANSMIS-
SION

The maximum number of retransmissions.

without error at the first transmission. Furthermore, HARQ incurs some overhead in terms

of the redundant traffic, with its retransmissions and ACK or NACK packets. In addition,

ACK or NACK packets may incur errors and delays because of poor channel conditions.

Such errors and delays in acknowledgment packets may lead to additional redundant packet

transmissions that are unnecessary.

3.2.2 HARQ and ARQ

Both ARQ and HARQ techniques pursue reliable delivery of data in the MAC of WiMAX.

The WiMAX IEEE 802.16 standard specifies that a connection can be supported by both

ARQ and HARQ schemes. However, [9] observes that ARQ and HARQ techniques have their

own weaknesses. One such weakness is delay which may be caused by 1) in-order delivery

and 2) intertwined ARQ and HARQ retransmissions. First, ARQ and HARQ that assure

in-order delivery have to buffer all the out of order data units and reorder them, resulting

in delay. Second, ARQ retransmissions are scheduled when HARQ retransmissions fail to

deliver the data units. ARQ takes more retransmission time than HARQ, thus causing delay.

Such delay increases the Round-Trip Time (RTT), resulting in a long delay of IP packets
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service time [55].

3.3 Adaptive Modulation and Coding (AMC)

WiMAX supports a variety of modulation and coding schemes such as BPSK, QPSK, 16

QAM, and 64 QAM with Convolutional Codes (CC) or Convolutional Turbo Codes (CTC)

at rates 1/2, 2/3, 3/4 and 5/6. In IEEE 802.16e-2005, 52 possible schemes are available and

defined as burst profiles listed in Table 3.3. However, most implementations have fewer than

52 schemes.

Depending on channel conditions, the scheme can change on a per-user or per-frame basis.

Using a channel quality feedback indicator such as Signal to Interference plus Noise Ratio

(SINR) and Packet Error Rate (PER), Subscriber Stations (SSs) can provide the Base Station

(BS) with feedback on the downlink channel quality. Based on the received signal quality,

the BS can estimate the uplink channel quality. The BS takes into account the channel

quality of each user’s uplink and downlink and assigns a modulation and coding scheme that

maximizes the throughput for the available SINR. To avoid an excessive number of dropped

packets, the BS transmits at a lower rate when the channel is poor, and it transmits at as

high a data rate as possible when the channel is good.

To achieve lower data rates, small constellations and low-rate error-correcting codes are

used. To achieve the higher data rates, large constellations and high-rate less robust error

correcting codes are used. AMC allows real-time trade-off between throughput and robust-

ness on each link, significantly increasing the overall system capacity.

Figure 3-7 shows a block diagram of an AMC system. The transmitter attempts to

transmit as fast as possible through a channel with a variable SINR, subject to the data

being demodulated and decoded reliably at the receiver. To do so, feedback is crucial.

Taking a channel quality feedback indicator such as channel SINR and PER, the AMC

controller attempts to efficiently control the coding rate, transmit rate and transmit power.

In this chapter, we covered the basics of Automatic Repeated reQuest (ARQ), Hybrid

Automatic Repeated Request (HARQ) and Adaptive Modulation and Coding (AMC) in
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Figure 3-7: Adaptive modulation and coding block diagram.

Table 3.3: Available Uplink and Downlink Burst Profiles in IEEE 802.16e-2005. CC is Con-
volutional Code. CTC is Convolutional Turbo Code. 44-49 uses the optional interleaver with
the convolutional codes. BTC is Block Turbo Code. ZCC is Zero-terminating Convolutional
Code. 38-43 use the B code of Low-Density Parity-Check code (LDPC); other burst profiles
with LDPC use A code

# Format # Format # Format
0 QPSK CC 1/2 18 64 QAM CTC 1/2 36 64 QAM LDPC 2/3
1 QPSK CC 3/4 19 64 QAM CTC 2/3 37 64 QAM LDPC 3/4
2 16 QAM CC 1/2 20 64 QAM CTC 3/4 38 QPSK LDPC 2/3
3 16 QAM CC 3/4 21 64 QAM CTC 5/6 39 QPSK LDPC 3/4
4 64 QAM CC 1/2 22 QPSK ZCC 1/2 40 16 QAM LDPC 2/3
5 64 QAM CC 2/3 23 QPSK ZCC 3/4 41 16 QAM LDPC 3/4
6 64 QAM CC 3/4 24 16 QAM ZCC 1/2 42 64 QAM LDPC 2/3
7 QPSK BTC 1/2 25 16 QAM ZCC 3/4 43 64 QAM LDPC 3/4
8 QPSK BTC 3/4 26 64 QAM ZCC 1/2 44 QPSK CC 1/2
9 16 QAM BTC 3/5 27 64 QAM ZCC 2/3 45 QPSK CC 3/4
10 16 QAM BTC 4/5 28 64 QAM ZCC 3/4 46 16 QAM CC 1/2
11 64 QAM BTC 5/8 29 QPSK LDPC 1/2 47 16 QAM CC 3/4
12 64 QAM BTC 4/5 30 QPSK LDPC 2/3 48 64 QAM CC 2/3
13 QPSK CTC 1/2 31 QPSK LDPC 3/4 49 64 QAM CC 3/4
14 Reserved 32 16 QAM LDPC 1/2 50 QPSK LDPC 5/6
15 QPSK CTC 3/4 33 16 QAM LDPC 2/3 51 16 QAM LDPC 5/6
16 16 QAM CTC 1/2 34 16 QAM LDPC 3/4 52 64 QAM LDPC 5/6
17 16 QAM CTC 3/4 35 64 QAM LDPC 1/2

WiMAX IEEE 802.16 standard [21]. In this thesis, the BS specifically implements IEEE

802.16e-2005 standard [22]. Its PHY uses OFDMA with a 10 Mhz channel bandwidth at

2.59 Ghz and a single antenna (without Multiple-Input Multiple-Output (MIMO) support).

Its MAC uses TDD, and its HARQ only supports CC.
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Chapter 4

Network-Coding-Enhanced Network

Architecture

This chapter presents our NC-enhanced network architecture and its applications in point-

to-point single- and multiple-interface networks.

4.1 NC-Enhanced Network Architecture

In the NC-enhanced network architecture, a network coding application is inserted into the

network stack as shown in Figure 4-1. We use a Linux packet filtering framework (netfilter)

[3] to intercept, copy and forward IP packets to the network coding application. Owing to

this framework, the NC architecture is IP-based. After processing the filtered IP packets,

the network coding application injects processed IP packets into the IP layer.

The network coding application is designed as a user-space application and can act as

either a decoder or encoder process. Figure 4-2 shows the end-to-end packet flow path.

Source applications in user space send outgoing IP packets to the Operating System (OS).

Using netfilter, a network coding encoder process in user space intercepts those packets,

codes them and sends coded IP packets to the operating system. Coded IP packets then

traverse the WiMAX stack, passing through the Convergence Sublayer (CS), the upper MAC
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Figure 4-1: Network Architecture. Shows where our network coding application is inserted
in the system. 1) IP packets are intercepted. 2) Netfilter copies and forwards IP packets to
the network coding application. 3) The network coding application injects IP packets into
the IP layer.

Figure 4-2: IP Packet Path. Shows the path of IP packets through the system. 1) Appli-
cations sends IP packets 2) Outgoing IP packets are intercepted. 3) Netfilter copies and
forwards IP packets to network coding encoder process. 4) Network coding encoder process
injects coded IP packets into the IP layer. 5,6,7) IP packets pass through WiMAX stack. 8)
Incoming IP packets are intercepted. 9) Netfilter copies and forwards IP packets to network
coding decoder process. 10) Network coding decoder process injects coded IP packets into
the IP layer. 11) Applications receives IP packets.
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sublayer where ARQ is run, the lower MAC sublayer where HARQ is run and the PHY layer.

At the receiver, the OS receives incoming coded IP packets. Using netfilter, a network coding

decoder process in user space intercepts those packets, decodes them and sends them to the

OS, which forwards them to the destination applications.

The next section describes potential applications of this architecture in point-to-point

single- and multiple-interface networks.

4.2 Applications

In this section, first, a straightforward application of the NC-enhanced network architecture

in a point-to-point single-interface network is described, followed by the application in point-

to-point multiple-interface networks.

4.2.1 Point-to-Point Single-Interface Networks

A point-to-point single-interface network provides communications between two endpoints

(single-hop or multi-hop) using only a single interface at each endpoint. The interface may

be different at the source and destination, e.g., Wi-Fi on one and WiMAX on the other.

In a point-to-point single-interface network, the architecture can be applied directly as

shown in Figure 4-2. Although the figure depicts two WiMAX interfaces, the architecture is

independent of the type of network interfaces used. In other words, Ethernet, Wi-Fi or LTE

could be used instead of WiMAX.

4.2.2 Point-to-Point Multiple-Interface Networks

A point-to-point multiple-interface network provides communications between two endpoints

(single-hop or multi-hop) using multiple interfaces on at least one endpoint. A number of

recent wireless devices support multiple network interfaces. Yet, most applications only use

one interface at a time.
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Figure 4-3 shows how the NC architecture can enable such devices and applications to

use multiple network interfaces at the same time. In Figure 4-3, there are two endpoints,

both using Wi-Fi and WiMAX interfaces. With multiple network interfaces, the network

coding encoder process can send coded IP packets to both Wi-Fi and WiMAX interfaces,

and the network coding decoder process can receive coded IP packets from both interfaces.

Not only can the architecture be applied through multiple network interfaces, but it can

also be applied from multiple interfaces to a single interface and vice versa. For example, a

device using Wi-Fi and WiMAX can send to a device using Ethernet only.

Figure 4-3: Multiple Interface Networks. Shows the application of architecture in multiple
interface networks. 1) Applications sends IP packets 2) Outgoing IP packets are intercepted.
3) Netfilter copies and forwards IP packets to network coding encoder process. 4) Network
coding encoder process injects coded IP packets into the IP layer and sends them via Wi-
Fi and WiMAX. 5,6,7) IP packets pass through WiMAX and Wi-Fi stacks. 8) Incoming
IP packets are intercepted. 9) Netfilter copies and forwards IP packets to network coding
decoder process. 10) Network coding decoder process injects coded IP packets into the IP
layer. 11) Applications receives IP packets.

In this chapter, we described how an IP-based NC-enhanced network architecture is con-

structed as well as how it is applied in point-to-point single and multiple interface networks.

The following chapter will detail the design of a network coding application.

54



Chapter 5

Network Coding Application Design

This chapter presents the design of our network coding application. First, the encoder and

decoder processes are described. Then, the design parameters are defined. Finally, the

encoder, decoder and feedback mechanisms are discussed.

5.1 Encoder and Decoder Processes

The encoder or decoder processes have a master thread and a number of worker threads.

Encoder and decoder worker threads operate in pairs identified by the Thread ID (TID) as

shown in Figure 5-1. Figure 5-2 and 5-3 depict the encoder and decoder processes. The

number of encoder worker threads in the encoder process must match the number of de-

coder worker threads in the decoder process. Each encoder-decoder thread pair encodes and

decodes independently from other pairs. The encoder master thread load-balances encoder

worker threads by distributing packets in a round-robin fashion. The decoder master thread

dispatches incoming coded IP packets from an encoder worker thread to the corresponding

decoder worker thread according to the TID.
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Figure 5-1: Encoder-decoder worker thread pair. Shows a pair of encoder-decoder threads,
exchanging coded IP packets and an ACK packet.

Figure 5-2: Encoder Process. Shows an encoder master thread and p different encoder worker
threads. The master thread load-balances worker threads in a round-robin fashion.

Figure 5-3: Decoder Process. Shows a decoder master thread and p different decoder worker
threads.
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5.2 Design Parameters and Variables

The proposed network coding application has a number of key design parameters defined

in Table 5.1. These parameters can be specified by users. In addition, a few key design

variables used throughout this and later chapters are defined in Table 5.2. We shall refer

back to these parameters and variables as we describe the encoder, decoder and feedback

mechanisms in the next sections.

Table 5.1: List of network coding application parameters and their description.

Parameters Description
p the number of concurrent encoder-decoder thread pairs
h the processing length threshold of the buffer list
i the processing time interval of the buffer list
u the maximum length of segments
n the preferred number of segments
k the number of rounds of redundancy transmission
m the number of redundancy packets per round
t the time interval between each round

Table 5.2: List of network coding application variables and their description.

Variables Description
sl the calculated segment length
ns the calculated number of segment
tl the total length of an outgoing IP packet

5.3 Encoder, Decoder and Feedback Mechanisms

5.3.1 Encoder Mechanism

The full encoder mechanism is shown in Figure 5-4. Incoming IP packets are first buffered

at the master thread. The successive buffered IP packets form a buffer list. At the master

thread, Algorithm 1 and Algorithm 2 run concurrently and determine when the buffer list

is distributed to the worker threads. While Algorithm 1 applies a timeout mechanism,
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Algorithm 2 applies a size trigger for buffer list concatenation. Together, they ensure that

concatenation occurs before time interval i or buffer length threshold h are reached.

Figure 5-4: Encoder Mechanism. Shows the successive steps of the proposed encoder mech-
anism. 1) Incoming IP packets are buffered at the master thread forming a coding buffer
list. Algorithm 1 and Algorithm 2 run concurrently and determine when the buffer list
is distributed to the worker threads. 2) At each worker thread, the list is concatenated
into coding block. 3) The number of segments (ns) and segment length (sl) are calculated
according to Algorithm 3, and byte padding is added. 4) The block is segmented. 5) The
resulting segments are coded according to Algorithm 4. 6) Encapsulation produces the coded
IP packet.

Algorithm 1 An algorithm to decide when to concatenate the coding buffer list. i is the
input time interval to concatenate the buffer list. The algorithm is run in its own separate
thread.

1: while true do
2: wait for duration i
3: concatenate the coding buffer list
4: end while
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Algorithm 2 An algorithm to decide when to concatenate the coding buffer list. bl is the
current length of the buffer list. pl is the length of an incoming IP packet. h is the processing
length threshold of the buffer list. The algorithm is run for every IP packet.

1: bl ← bl + pl
2: if bl > h then
3: concatenate the coding buffer list
4: end if

At each worker thread, the buffer list is concatenated into a coding block. After that, the

number of segments (ns) and segment length (sl) are calculated according to Algorithm 3.

Algorithm 3 first adds 1 byte for the padding boundary to the length of coding block length

(bl). Then, the segment length (sl) is initialized at bl
n

, and the number of segments (ns) is

initialized at the preferred number of segments (n). sl and ns are adjusted (line 5 and 6) to

make sl less than or equal to the maximum length of segments (u).

Algorithm 3 An algorithm to determine the segment length (sl) and the number of segments
(ns), given the length of the coding block (bl), the maximum length of segments (u), the
preferred number of segments (n) and the length of the NC header without coding coefficients
(l).

1: bl ← bl + 1 . 1 byte for the padding boundary.
2: sl ← bl

n

3: ns ← n
4: while sl > u do
5: ns ← ns + 1
6: sl ← d blns

e
7: end while

Then, byte padding is added so that the padded block is a multiple of ns. The block is

then segmented and the resulting segments are coded according to Algorithm 4. Algorithm 4

first generates ns uncoded or coded segments, depending on whether systematic network

coding is used or not. Then, for additional segments, coded segments are generated with

random coefficients. Finally, encapsulation produces the coded IP packet from the segment

generated. Figure 5-5 shows the mechanism as a protocol in terms of Service Data Units

(SDUs) and Protocol Data Units (PDUs).

The structure of the NC header used in the encapsulation process is shown in Figure 5-
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Algorithm 4 Encoding Algorithm. ns is the number of segments. k is the number of rounds
of redundancy transmission. m is the number of redundancy packets per round. t is the
time interval between each round. The algorithm is terminated immediately when ACK of
the same coding block is received.

1: for x = 1→ ns do
2: generate an uncoded or coded segment.
3: end for
4: while ACK has not yet been received. do
5: for y = 1→ k do
6: for z = 1→ m do
7: generate a coded segment.
8: end for
9: wait for duration t . terminate immediately when an ACK is received.
10: end for
11: end while

Figure 5-5: Service Data Units (SDUs) to Protocol Data Units (PDUs).
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6. The encapsulation header contains the IP header, Thread ID (TID), Block ID (BID),

Segment ID (SID), the number of segments (ns), and coding coefficients. The segment

length (sl) is not included in the encapsulation because it can be derived from the packet

length field in the IP header. TID is used to identify which packet belongs to which thread.

BID is used to identify which block in a thread a packet belongs to. For a particular thread,

BID is incremented for every coding block. BID is used to differentiate coded IP packets of

different blocks of the same thread. When a packet with a different BID from the current

block arrives, and the decoder has not yet decoded the current block, the decoder will drop

the current undecoded block and start decoding the new block. GID is used to keep track

of how many segments for a particular block have been generated. For a particular coding

block, GID is incremented for every IP packet generated. ns, sl and coding coefficients are

necessary for decoding.

Figure 5-6: NC Header Encapsulation. The NC header contains the IP header, Thread
ID (TID), Block ID (BID), Segment ID (SID), the number of segments (ns), and coding
coefficients.

5.3.2 Decoder Mechanism

Incoming coded IP packets are decapsulated, decoded, desegmented, depadded and decon-

catenated to get the uncoded IP packets as shown in Figure 5-7. Decapsulation strips off the

NC header. For each coded block, incoming coded IP packets are decoded progressively using

Algorithm 5, which is based on Gauss-Jordan elimination [56]. Once the block is decoded,

it is desegmented, depadded and deconcatenated, yielding the uncoded IP packets.
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Figure 5-7: Decoder Mechanism. Shows the successive steps of the decoder mechanism.
Incoming coded IP packets are decapsulated, decoded, desegmented, depadded and decon-
catenated to get the uncoded IP packets.

Algorithm 5 Decoding algorithm. M is the current coefficient matrix of incoming coded
packets. M[r + 1] refers to row r + 1 of M. rank(M) is the rank of M. This algorithm runs
per coded block.

1: r ← 0
2: Mns×(ns+sl) ← 0
3: for each incoming coded IP packet P do
4: M[r + 1]← coefficients and segment of P
5: Gauss-Jordan elimination on (r + 1)× (ns + sl) of M
6: if rank(M) = r + 1 then
7: r ← r + 1
8: if r = ns then
9: done decoding
10: end if
11: end if
12: end for
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5.3.3 Feedback Mechanism

Once a decoder decodes a block, it sends an ACK packet to the corresponding encoder

identified by TID. Figure 5-8 shows the structure of an ACK packet. If the encoder worker

threads are still running the coding algorithm on the block with the same BID as that in the

ACK packet, the worker will terminate Algorithm 4 on that block. Note that the encoder

does not require ACK packets to operate, since ACK packets can have errors or be lost.

Figure 5-8: Structure of an ACK packet. An ACK packet contains the IP header, Thread
ID (TID), Block ID (BID).

5.4 Design Analysis

This section discusses the design presented. We first discuss the advantages of NC over ARQ

and HARQ. Then, we analyze the code rate and overhead of the design. Finally, we look at

potential limitations of the design.

First, the design has advantages over ARQ and HARQ in that NC does not rely on

an acknowledgement (ACK). ACK can have errors, get lost or get delayed. In ARQ and

HARQ, a packet is unacknowledged if it has been transmitted but no acknowledgement has

been received. In NC, a successfully transmitted packet is useful as long as it is linearly

independent from the ones already received.
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5.4.1 Code Rate

Code Rate (CR) of the presented design is defined as the ratio of the number of segments

(ns) by the sum of the number of segments and the redundancy segments (ns + k ×m):

CR ≡ ns

ns + k ×m
.

5.4.2 Overhead

The total NC header length is l + ns, where l is the length of the NC header without coding

coefficients and ns is the number of segments. The NC header overhead ratio is

l + ns

sl
, (5.1)

where sl is the segment length. If ns is 120, l is 24, and sl is 1400, the overhead is 10.29%. This

overhead can be reduced in three ways: 1) by increasing the maximum length of segments

(u), thus increasing sl, 2) by reducing ns and 3) by sending a seed of a pseudo-random

number generator instead of a coefficient vector. If 3) is implemented, the overhead becomes

l + q

sl
, (5.2)

where q is the size of the seed value, which is typically 4 bytes. If l is 24, and sl is 1400,

the overhead is 2% which is much lower. Next, we discuss potential limitations of the design

and their mitigation.

5.4.3 Limitations

Potential limitations arise from coded packet duplication and reordering. With intra-session

network coding, every packet received contains the same amount of new information. As

long as there are enough independent segments, the block can be decoded. Thus, coded

packets within the same block can be reordered or duplicated, and the block can still be
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decoded. Nevertheless, there are problems when packets from different blocks duplicate or

reorder. Let’s begin with the definition of a defective block.

Definition 1. A block is defective if it cannot be fully decoded.

The decoder needs to have enough consecutive coded packets from the same block to

fully decode the block. Thus, when there are not enough consecutive coded packets from the

same block, the block is defective (Definition 1). Figure 5-9 shows the effects of reordering

or duplication on the input packet stream at the receiver.

Figure 5-9: Duplication and reordering. Segments of block 1 and 2 from the same thread
are reordered or duplicated. Block 1 becomes defective; block 2 loses a coded packet.

Duplication and reordering shorten the number of consecutive packets of the same block

as depicted in Figure 5-9. Since a new BID triggers the drop of the previous undecoded

block, duplication and reordering increase the chance of having defective blocks. This issue

can be mitigated by increasing the number of concurrent encoder-decoder thread pairs (p).

In Figure 5-10, block 1 and 2 from the white thread are interleaved with block 1 from the

grey thread; block 1 and 2 from the white thread are less likely to reorder or duplicate among

themselves and thus to be defective. Nevertheless, note that increasing p will increase the

reordering of the uncoded packets since each encoder-decoder thread pair operates indepen-

dently.
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Figure 5-10: Mitigation by increasing the number of threads. Segments of blocks from one
thread (white) are interleaved with those of blocks from another thread (gray). Segments of
block 1 from thread 1 are reordered or duplicated with those of block 1 from thread 2. None
is defective.

5.5 Extension

One possible extension is to add an adaptive controller. Figure 5-11 shows the design with

such a controller. Based on the feedback, the controller can adjust the design parameters

accordingly. For example, based on channel SINR, the controller can predict packet loss

and adjust the number of redundant coded packets in advance. Such an extension is left for

further study.

Figure 5-11: A block diagram of the design with a controller.

In this chapter, we presented the design of the network coding application, including

the encoder and decoder process, the design parameters, the encoder, decoder and feedback
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mechanisms and the potential limitations of the design. A design with an adaptive controller

was suggested. The next chapter discusses the implementation of the design.
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Chapter 6

Implementation

This chapter discusses some of our design and implementation decision. In particular, we

discuss our implementation of network coding, decoding algorithm and random seeds used

to generate the code. Then, we discuss the implementation of the NC header and the data

padding.

6.1 Network Coding

We implement Random Linear Network Coding (RLNC) in a Galois Field of size 28 or

GF(28), which is considered sufficient for practical applications [13, 28] and aligns nicely in

a single byte unit. In our implementation, systematic network coding is used. Algorithm 4

first generates ns uncoded segments; their coding coefficients only have one entry of value

one, and other entries are zero. Then, for additional segments, coded segments are generated

with random coefficients. Systematic network coding has been shown to help speed up the

decoding time [44] which is important to maintain low end-to-end delay.

6.2 Decoding Algorithm

A progressive Gauss-Jordan elimination as described in Section 5.3.2 with a single twist

is used for decoding. Since systematic network coding is used, the blocks that cannot be
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Figure 6-1: Segmented IP packets.

Figure 6-2: Segmented IP packets. Segment 2 is lost. IP Packets 1, 4 and 5 can be recovered.

decoded still contain useful information and some packets can still be extracted from them

because of the structure of the block itself. In order to do this we need to know where an

IP packet starts in a segment. Hence we added an additional 2 byte field in the NC header

called start. In other words, start allows us to pinpoint the start of an IP packet in a

segment. Figure 6-1 and 6-2 show an example of how start is used. In Figure 6-2, although

segment 2 is lost, IP packets 1, 4 and 5 can still be recovered.

6.3 Random Seeds

In this section, we describe the use of random seeds instead of the actual coefficient vectors

to reduce the overhead of NC header [32, 33, 60]. In order to support random seeds, we

added new fields to the NC header: type and either segment number (segn) or seed. The

parameter type is used to distinguish whether a packet is an uncoded packet or a coded one.

The parameter segn is used in a systematic packet to specify the segment number or the

position of the one in the (..., 0, 1, 0, ...) coefficient vector. The parameter seed is used in a

coded packet as a random seed. We use a simple pseudo-random number generator described

in Algorithm 6.
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Algorithm 6 A simple pseudo-random number generator known as Gerhard’s generator. a
is initialized to 1. Given the seed a, the function generates a pseudo-random number from
1 to lim.
1: a← 1
2: function rand(lim)
3: a← (a× 32719 + 3) mod 32749
4: return (a mod lim) + 1
5: end function

6.4 NC Header

In our implementation, the length of each field in the NC header and ACK packet is chosen

as follows. The IPv4 header (Figure 6-3) is used; it is 20 bytes. Figure 6-4 and 6-5 show the

headers for a systematic packet and a coded packet respectively. The length of TID, BID,

SID and ns are 1 byte each. type and segn are also 1 byte each; seed is 2 bytes. The length

of the coding coefficients is ns bytes. Thus, the total length of the NC header is 24+ns bytes.

The header contains the following information. The IP Version is set to 4. The Internet

Header Length (IHL) is set to 5 words. The Type of Service (ToS) is set to 0. The total

length (tl) is set to 24 + ns + sl. The ID, the flags and the fragment offset are set to 0. The

Time To Live (TTL) is set to 255. The Protocol is set to 252. This protocol number was

chosen arbitrarily. The checksum is calculated according to RFC 1071 [23]: “the checksum

field is the 16-bit one’s complement of the one’s complement sum of all 16-bit words in the

header. For purposes of computing the checksum, the value of the checksum field is zero.”

Finally, sl needed to decode can be calculated from the Total Length (tl) as follows.

sl = tl − 24− ns.

With these choices, there are limitation on the values of TID, BID, SID, sl, ns, type, segn

and seed, thus restricting the scope of the values of the design parameters. For example,

the values of TID, BID, SID, ns, type and segn are limited to 255. The limits should be

considered when choosing these parameters.
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Figure 6-3: Structure of IPv4 header.

Figure 6-4: Structure of the NC header of a systematic packet.
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Figure 6-5: Structure of the NC header of a coded packet.

6.5 Padding

Coding blocks have to be padded such that their length is a multiple of the number of

segments (ns). Our algorithm is the ANSI X.923 byte padding algorithm [4] which is well

known. In ANSI X.923, bytes filled with zeros are appended to the data and the last byte

stores the number of padded bytes.

In this chapter, our implementation is discussed in detail, including the detailed packet

and header structure as well as the chosen network coding and padding algorithms. Some im-

plementation aspects that were not included in our implementation are the use of Streaming

SIMD Extension (SSE) instruction set, the use of Graphical Processing Unit (GPU) accel-

eration and the use of Jacobi method for iterative matrix inversion instead of Gauss-Jordan

elimination, all of which leading to a further to speed up gain in decoding. Haley et al.

[24] show how the Jacobi method for iterative matrix inversion can be applied to finite field

matrices. The next chapter discusses experimental results which will clearly demonstrate

that we did not need further decoding performance.
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Chapter 7

Preliminary Experiments

In this chapter, the preliminary experiments on WiMAX technology are discussed. The

experimental setup, the results of our measurements and their discussion are presented. The

objective of the preliminary experiments is to measure the communication channel and the

network performance of different configurations of WiMAX Base Stations (BSs), focusing on

turning on and off HARQ and ARQ. Note that these experiments are done without network

coding. The network coding experiments will be discussed in the next chapter.

The WiMAX downlink is selected to evaluate the performance and User Datagram Pro-

tocol (UDP) traffic is used as representative of real-time traffic through the system. The

Global Environment for Network Innovations (GENI) WiMAX platforms are used. The plat-

forms leverage commercial 802.16e WiMAX Base Stations (BSs) from NEC without MIMO

support. The Subscriber Station (SS) uses Intel WiMAX 6250 Series modem card. The

SS is installed with Ubuntu 10.10 and has Intel WiMAX Linux driver version 1.5.1. More

information about the platforms can be found in [1].

We collected measurements from WiMAX BSs from two different sites: at Raytheon BBN

Technologies (BBN) in Cambridge, Massachusetts and at the University of California, Los

Angeles (UCLA). The first set of measurements was collected at BBN over several days in

May, June and July of 2011. The second set of measurements was collected on the UCLA

campus from August 2, 2011 to August 5, 2011. The objective functions are the throughput.
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Table 7.1: Base Station Parameters.

Parameters Value
PHY OFDMA
Frequency 2.59 Mhz
Bandwidth 10 Mhz
Duplexing mode TDD
Frames per second 200 (5 ms per frame)
Uplink Modulation Coding Scheme (MCS) Adaptive
Downlink Modulation Coding Scheme (MCS) Adaptive
HARQ TYPE CC
HARQ MAX UL BURST 1
HARQ MAX DL BURST 1
HARQ UL ACK DELAY 3 frames
HARQ DL ACK DELAY 1 frame
HARQ PDU SN ON
HARQ MAX RETRANSMISSION 4
ARQ RETRY TIMEOUT 1000 ms
ARQ BLOCK SIZE 256 Bytes
ARQ WINDOW SIZE 1024
ARQ TX ACK DELAY 100 ms
ARQ ACK PROC TIME 0 ms
ARQ BLOCK LIFETIME 5000 ms
ARQ DLV ORDER ON
ARQ RX PURGE TIMEOUT 5000 ms
ARQ SYNC LOSS TIMEOUT 10000 ms

7.1 Setup

All experiments use the same default set of BS parameter values. Adaptive coding modula-

tion is used by default. BS parameters are shown in Table 7.1. The only changes applied to

the BS default parameter values is to enable or disable HARQ and ARQ as required by our

experimental setup; they have their own set of values also described in Table 7.1.

When HARQ is turned on, the HARQ parameters are set as shown in Table 7.1. Chase

Combining HARQ is used. The maximum number of HARQ UpLink (UL) bursts per frame

is set to 1. The maximum number of HARQ DownLink (DL) bursts per frame is also set to

1. The frame offset of UL ACK delay with respect to UL Burst is set to 3. The frame offset

of DL ACK delay with respect to DL Burst is set to 1. The PDU SN extended sub-header
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reordering is enabled. The maximum number of retransmissions is set to 4.

When ARQ is turned on, the ARQ parameters are set as shown in Table 7.1. The

minimum time interval a transmitter will wait before retransmission of an unacknowledged

block is set to 1000 ms. The interval begins when the ARQ block was last transmitted.

ARQ block size is set to 256 bytes. Before transmission each SDU block is partitioned into

a sequence of ARQ blocks of this size. Transmission window size or the number of queued

ARQ acknowledgement blocks at any given time for a connection is set to 1024. The time

delay before the receiver sends an acknowledgement is set to 100 ms. ACK processing time

is set to 0. The maximum time interval an ARQ block will be managed by the transmitter

ARQ state machine, once initial transmission of the block has occurred is set to 5000 ms. If

transmission (or subsequent retransmission) of the block is not acknowledged by the receiver

before the time limit is reached, the block is discarded. In-order delivery is enabled. The

time interval the receiver will wait after successful reception of a block that does not result in

advancement of ARQ RX WINDOW START value is set to 5000 ms. Lastly, the maximum

time interval ARQ TX WINDOW START or ARQ RX WINDOW START parameters can

stay at the same value before declaring a loss of synchronization between transmitter and

receiver is set to 10000 ms.

Figure 7-1: Preliminary Experiment Setup.

In the experimentation, we located a node at the BS and a static SS as shown in Figure 7-

1 provided the other node. The experiments focus on the downlink channel from the BS

to the static SS. Channel performance was measured using flows of UDP traffic at a few

offered bandwidths and packet sizes. Iperf [2] is used to generate these flows and measure
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the channel characteristics. Iperf is a network testing tool that can create UDP traffic and

measure the throughput of a network. We measure throughput in two configurations: 1)

when HARQ and ARQ are turned off and 2) when HARQ and ARQ are turned on.

7.2 Results

Results from three different experiments are given: two of these experiments were performed

at BBN and one experiment was performed at UCLA. At BBN, the BS is located on top

of the BBN building; the SS is static and located on the fifth floor inside the building. At

UCLA, the BS is on top of Boelter Hall; the SS is static, 100 feet away from the BS and

within the BS’s line-of-sight.

7.2.1 BBN Experiment #1

The results of the first experiment at BBN are illustrated in figure 7-2. In this experiment,

we measure the throughput over 60 seconds at 5 Mbps offered load for different packet sizes.

The average Round-Trip Time (RRT) between the BS and the SS is around 80 ms. Received

Signal Strength Indication (RSSI) is -78 dBm and Carrier to Interference-plus-Noise Ratio

(CINR) is 10 dB.

We notice two interesting points from these results. First, when HARQ and ARQ are

turned off, the 1440 bytes packet size has around 37% higher throughput than that of the

70 bytes packet size. Second, when HARQ and ARQ are turned on, the throughput reduces

significantly in all packet sizes. The percentage reduction in throughput for each packet size

is given in Table 7.2.
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70	  
Bytes	  

140	  
Bytes	  

280	  
Bytes	  

360	  
Bytes	  

720	  
Bytes	  

1440	  
Bytes	  

HARQ	  and	  ARQ	  OFF	  at	  
5	  Mbps	  (Mbps)	   2.19	   2.66	   2.19	   2.78	   2.76	   3.00	  

HARQ	  and	  ARQ	  ON	  at	  
5	  Mbps	  (Mbps)	   0.40	   0.62	   0.70	   0.57	   0.57	   0.47	  

0.00	  

0.50	  

1.00	  

1.50	  

2.00	  

2.50	  

3.00	  

3.50	  

Figure 7-2: BBN Experiment #1. Shows average downlink throughput (Mbps) over 60
seconds for different packet sizes (bytes) at 5 Mbps offered load when HARQ and ARQ are
off and HARQ and ARQ are on. The BS is located on top of the BBN building; the SS is
static and on the fifth floor inside the BBN building.

Table 7.2: BBN Experiment #1. Shows percentage reduction in throughput for different
packet sizes.

Packet Size Percentage Reduction
70 bytes 82%
140 bytes 77%
280 bytes 68%
360 bytes 79%
720 bytes 79%
1440 bytes 84%
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7.2.2 BBN Experiment #2

In order to confirm the results of the first experiment, a second set of measurements was

taken. In this experiment, the average RTT between the BS and the SS is around 80 ms.

RSSI is around -76 dBm and CINR is around 11 dB. The offered load is 5 Mbps; the

throughput is averaged over 60 seconds. The results are shown in Figure 7-3.

70	  
Bytes	  

140	  
Bytes	  

280	  
Bytes	  

360	  
Bytes	  

720	  
Bytes	  

1440	  
Bytes	  

HARQ	  and	  ARQ	  OFF	  at	  
5	  Mbps	  (Mbps)	   3.03	   3.69	   3.72	   3.84	   4.21	   4.29	  

HARQ	  and	  ARQ	  ON	  at	  
5	  Mbps	  (Mbps)	   0.38	   0.51	   0.59	   0.41	   0.67	   0.64	  

0.00	  
0.50	  
1.00	  
1.50	  
2.00	  
2.50	  
3.00	  
3.50	  
4.00	  
4.50	  
5.00	  

Figure 7-3: BBN Experiment #2. Shows average downlink throughput (Mbps) over 60
seconds for different packet sizes (bytes) at 5 Mbps offered load when HARQ and ARQ are
off and HARQ and ARQ are on. The BS is located on top of the BBN building; the SS is
static and on the fifth floor inside the BBN building.

We notice similar results as in the first experiment. When HARQ and ARQ are turned

off, the 1440 bytes packet size has around 42% higher throughput than that of 70 bytes

packet size. This experiment also confirms the previous observations that turning on HARQ

and ARQ reduces the throughput for various packet sizes. The percentage reduction in

throughput for each packet size is given in Table 7.3.
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Table 7.3: BBN Experiment #2. Shows percentage reduction in throughput for different
packet sizes.

Packet Size Percentage Reduction
70 bytes 87%
140 bytes 86%
280 bytes 84%
360 bytes 89%
720 bytes 84%
1440 bytes 85%

7.2.3 UCLA Experiment

In the summer of 2011, we conducted another set of measurements at UCLA with different

offered loads and packet sizes. In this experiment, the average RTT is also around 80ms.

RSSI is around -44 dBm and CINR is around 30 dB. The average transmission power of the

SS is around -54 dBm. The offered load is 20 Mbps; the throughput is averaged over 120

seconds. The results are shown in Figure 7-4.

512	  Bytes	   1440	  Bytes	  
HARQ	  and	  ARQ	  OFF	  at	  

20	  Mbps	  (Mbps)	   13.30	   16.08	  

HARQ	  and	  ARQ	  ON	  at	  
20	  Mbps	  (Mbps)	   1.32	   1.43	  

0.00	  
2.00	  
4.00	  
6.00	  
8.00	  
10.00	  
12.00	  
14.00	  
16.00	  
18.00	  

Figure 7-4: UCLA Experiment. Shows average downlink throughput (Mbps) over 120 sec-
onds for different packet sizes (bytes) at 20 Mbps offered load when HARQ and ARQ are off
and HARQ and ARQ are on. The BS is on top of Boelter Hall at UCLA; the SS is static,
100 feet away from the BS and within BS’s line-of-sight.

This experiment shows similar and consistent results with those of the BBN experiments:
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1) when HARQ and ARQ are off, the larger packets have a higher throughput than that of

the smaller packets, and 2) turning on HARQ and ARQ reduces the throughput for all sizes

The percentage reduction in throughput for each packet size is given in Table 7.4.

Table 7.4: UCLA Experiment. Shows percentage reduction in throughput for different packet
sizes.

Packet Size Percentage Reduction
512 bytes 90%
1440 bytes 91%

7.3 Discussion

From the results, we infer that, first, the longer the packet, the better the throughput and

second that HARQ and, second, that ARQ significantly reduce the throughput. The first

point is most likely due to the overhead cost of transmitting each packet. Given the fixed

offered bandwidth, with smaller packet size, more packets are transmitted; thus, greater

overhead is incurred. For the second point, we see significant reduction in throughput when

HARQ and ARQ are on: over 68% reduction in throughput in all experiments. This shows

that HARQ and ARQ may not be optimal schemes, and that the retransmission incur both

reduced available bandwidth for other transmissions as well as added delay per packet trans-

mitted. This is consistent with other research in this field [32, 33]. Hence, our experimental

results clearly show that there is a potential for alternative schemes to do better than HARQ

and ARQ in terms of overall performance.

As a conclusion, in this chapter, we presented and discussed the results of the uncoded

experiments. The preliminary results show that the HARQ and ARQ mechanisms may not

be the optimal mechanisms to cope with the residual errors at the MAC layer and that there

is a potential for network coding to act as packet erasure codes in wireless networks. The

following chapter confirms this potential experimentally.
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Chapter 8

Network Coding Experiments

In this chapter, the network coding experiments are discussed. The experimental setup,

performance metrics, the results of our measurements and their discussion are presented.

The objective of the network coding experiments is to validate the potential for network

coding (NC) to replace HARQ and ARQ.

As in the preliminary experiments, the WiMAX downlink is selected to evaluate the

performance and User Datagram Protocol (UDP) traffic is used as representative of real-

time traffic through the system and the Global Environment for Network Innovations (GENI)

WiMAX platforms are used.

In the network coding experiments, the objective functions are the loss percentage, the

throughput and the file transfer delay. The results will be a function of the measurement

application parameters, NC parameters and BS parameters (power level, uplink/downlink

modulation and coding schemes, HARQ, ARQ). We conduct the experiments remotely using

the GENI platform at Rutgers University in New Jersey.

8.1 Setup

Four fixed downlink MCSs and base station transmission power levels are considered: 64

QAM CTC 1/2 at 13 dBm, 64 QAM CTC 2/3 at 17 dBm, 64 QAM CTC 3/4 at 18 dBm
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and 64 QAM CTC 5/6 at 20 dBm. The uplink MCS is fixed at QPSK CTC 1/2. With 10

Mhz channel bandwidth, each modulation and code rate has a different PHY-layer data rate

as shown in Table 8.1 [8].The BS parameters are shown in Table 8.2. Table 8.2 also shows

HARQ and ARQ parameters when they are turned on.

Table 8.1: PHY-layer data rate with 10 Mhz Channel bandwidth for different modulation
and code rate.

Modulation and Code Rate
PHY-Layer Data Rate (Mbps)
Downlink Uplink

QPSK, 1/2 5.040 1.344
64 QAM, 1/2 15.120 4.032
64 QAM, 2/3 20.160 5.376
64 QAM, 3/4 22.680 6.048
64 QAM, 5/6 25.200 6.720

When HARQ is turned on, the HARQ parameters are set as shown in Table 8.2. Chase

Combining HARQ is used. The maximum number of HARQ UpLink (UL) bursts per frame

is set to 1. The maximum number of HARQ DownLink (DL) bursts per frame is set to 1.

The frame offset of UL ACK delay with respect to UL Burst is set to 3. The frame offset

of DL ACK delay with respect to DL Burst is set to 1. The PDU SN extended sub-header

reordering is enabled. The maximum number of retransmissions is set to 4.

When ARQ is turned on, the ARQ parameters are set as shown in Table 8.2. The

minimum time interval a transmitter will wait before retransmission of an unacknowledged

block is set to 100 ms. The interval begins when the ARQ block was last transmitted. ARQ

block size is set to 256 bytes. Before transmission each SDU block is partitioned into a

sequence of ARQ blocks of this size. Transmission window size or the number of queued

ARQ acknowledgement blocks at any given time for a connection is set to 1024. The time

delay before the receiver sends an acknowledgement is set to 100 ms. ACK processing time

is set to 0. The maximum time interval an ARQ block will be managed by the transmitter

ARQ state machine, once initial transmission of the block has occurred is set to 500 ms. If

transmission (or subsequent retransmission) of the block is not acknowledged by the receiver

before the time limit is reached, the block is discarded. In-order delivery is enabled. The
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Table 8.2: Base Station Parameters.

Parameters Value
PHY OFDMA
Frequency 2.59 Mhz
Bandwidth 10 Mhz
Duplexing mode TDD
Frames per second 200 (5 ms per frame)
Power level Fixed and Varied
Downlink Modulation Coding Scheme (MCS) Fixed and Varied
Uplink Modulation Coding Scheme (MCS) Fixed at QPSK CTC 1/2
HARQ TYPE CC
HARQ MAX UL BURST 1
HARQ MAX DL BURST 1
HARQ UL ACK DELAY 3 frames
HARQ DL ACK DELAY 1 frame
HARQ PDU SN ON
HARQ MAX RETRANSMISSION 4
ARQ RETRY TIMEOUT 100 ms
ARQ BLOCK SIZE 256 Bytes
ARQ WINDOW SIZE 1024
ARQ TX ACK DELAY 0 ms
ARQ ACK PROC TIME 0 ms
ARQ BLOCK LIFETIME 500 ms
ARQ DLV ORDER ON
ARQ RX PURGE TIMEOUT 500 ms
ARQ SYNC LOSS TIMEOUT 1000 ms
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time interval the receiver will wait after successful reception of a block that does not result in

advancement of ARQ RX WINDOW START value is set to 500 ms. Lastly, the maximum

time interval ARQ TX WINDOW START or ARQ RX WINDOW START parameters can

stay at the same value before declaring a loss of synchronization between transmitter and

receiver is set to 1000 ms.

Figure 8-1: NC Experiment Setup.

We setup 2 nodes: a node at the BS and another node (SS) as shown in Figure 8-1. UDP

traffic is considered; Iperf [2] and UFTP [11] are used as measurement applications. UFTP is

a file transfer application that uses UDP based File Transfer Protocol. Iperf, UFTP and NC

parameters are set as shown in Table 8.3, 8.4 and 8.5 respectively. For the Iperf parameters,

the packet length is set to 1400 bytes. The offered load is set to 6 Mbps and the duration

is set to 60 seconds. For the UFTP parameters, the packet length is also set to 1400 bytes.

The offered load is set to 6 Mbps and the file size is 50 MB. For the NC parameters, the

number of concurrent encoder-decoder thread pairs (p) is set to 1. The processing length

threshold of the buffer list (h) is set to 22400 bytes. The processing time interval of the

buffer list (i) is set to 1 s or 1000000000 ns. The maximum length of segments (u) is set to

1400 bytes. The preferred number of segments (n) is set to 120. The number of rounds of

redundancy transmission (k) is set to 1. The number of redundancy packets per round (m)

varies; we will experiment with different values of m. The time interval between each round

is set to 0 ns.
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Table 8.3: Iperf Parameters.

Parameters Value
Packet length 1400 bytes
Offered load 6 Mbps
Duration 60 seconds

Table 8.4: UFTP Parameters.

Parameters Value
Packet length 1400 bytes
Offered load 6 Mbps
File size 50 MB

Table 8.5: NC parameters.

Parameters Value
p 1
h 22400 bytes
i 1000000000 ns
u 1400 bytes
n 120
k 1
m Varied
t 0 ns
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The offered load is fixed at 6 Mbps which is well below the downlink PHY-layer data

rate of 64 QAM, 1/2, 64 QAM, 2/3, 64 QAM, 3/4 and 64 QAM, 5/6. For each MCS, 11

configurations are considered and shown in Table 8.6, where m is the number of redundancy

packets per round. For each NC configuration, the approximate NC Code Rate (CR) defined

in 5.4.1 is calculated and shown in Table 8.7. For instance, in NC-10, n is 120 and m is 10;

130 packets are sent, thus achieving a CR of 12/13. In theory, for the best performance, we

want to match the CR with the throughput percentage of Baseline. For each configuration,

we report

1. 6 Mbps offered load downlink Iperf loss percentage.

2. 6 Mbps offered load downlink Iperf throughput, lost bandwidth and extra bandwidth.

3. 6 Mbps offered load downlink Iperf Throughput to Loss plus Extra Ratio (TLER).

4. 6 Mbps offered load downlink UFTP file transfer delay.

Table 8.6: Experiment Configurations.

Configuration ARQ HARQ NC
Baseline OFF OFF OFF
HARQ OFF ON OFF
HARQ-ARQ ON ON OFF
NC-10 OFF OFF ON, m = 10
NC-15 OFF OFF ON, m = 15
NC-20 OFF OFF ON, m = 20
NC-24 OFF OFF ON, m = 24
NC-30 OFF OFF ON, m = 30
NC-40 OFF OFF ON, m = 40
NC-60 OFF OFF ON, m = 60
NC-120 OFF OFF ON, m = 120
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Table 8.7: Code Rate (CR) for NC Configurations.

NC Configuration Code Rate (CR)
NC-10 12/13 = 0.92
NC-15 8/9 = 0.89
NC-20 6/7 = 0.86
NC-24 5/6 = 0.83
NC-30 4/5 = 0.80
NC-40 3/4 = 0.75
NC-60 2/3 = 0.67
NC-120 1/2 = 0.50

8.2 Performance Metrics

This section describes the four performance metrics measured in our experimentations.

8.2.1 Iperf loss percentage

The first metric is the loss percentage reported by Iperf. The loss percentage is the percentage

of the number of packets lost over the total number of packets sent by Iperf (at the application

layer) over the duration of the experiment.

8.2.2 Iperf throughput, lost bandwidth and extra bandwidth

The second metric is the throughput reported by Iperf. The throughput is the number of

packets successfully received by Iperf over the duration of the experiment (at the application

layer). Two related values are the lost bandwidth and the extra bandwidth. The lost

bandwidth is calculated by subtracting the throughput from the offered load. The extra

bandwidth is the additional bandwidth used beyond the offered capacity for the propose of

redundancy. For Baseline, the extra bandwidth is 0. For HARQ and HARQ-ARQ, since we

do not know the extra bandwidth used, we assume the best case scenario where the extra

bandwidth is also 0. For NC, we simply approximate the extra bandwidth as

m

n
× o,
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where m is the number of redundancy packets per round, n is the preferred number of

segments and o is the offered load. Note that for the exact calculation, the calculated

number of segments ns should be used instead of n and the actual extra bandwidth should

also include the NC header overhead.

8.2.3 Iperf Throughput to Loss plus Extra Ratio (TLER)

The third metric is the Iperf Throughput to Loss plus Extra Ratio (TLER). TLER is calcu-

lated as follows.

TLER ≡ T

L + E
,

where T is the throughput, L is the lost bandwidth and E is the extra bandwidth. An

efficient scheme should give high throughput while keeping low lost and extra bandwidth.

Thus, TLER is a measure of an efficiency of a scheme.

8.2.4 UFTP file transfer delay

The fourth and last metric is the file transfer delay reported by UFTP. In UFTP, a file is

divided and packetized into UDP packets of a specified length [11]. The transmitter first

sends the packets; the receiver receives them and responds with NACKs for missing packets.

The transmitter then resends the missing packets. The file transfer is completed when the

transmitter receives zero NACKs from the receiver.

8.3 Results

In this section, we first present separately the results of 4 fixed MCSs and power levels.

For each one, in addition to the loss percentage, throughput, TLER and file transfer delay,

we report the Carrier to Interference plus Noise Ratio (CINR), Received Signal Strength

Indication (RSSI) and Average Tx Power measured at the SS. After this, we summarize the

results.
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8.3.1 64 QAM CTC 1/2 at 13 dBm

The MCS and power level considered in this section is 64 QAM CTC 1/2 at 13 dBm. The

measured CINR, RSSI and Average Tx Power at the SS are shown in Table 8.8.

CINR 13 dB
RSSI -76 dBm
Average Tx Power -63 dBm

Table 8.8: 64 QAM CTC 1/2 at 13 dBm. Shows Carrier to Interference plus Noise Ratio
(CINR), Received Signal Strength Indication (RSSI) and Average Tx Power measured at
the SS.

Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
Loss	  (%)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   11.19	   66.5	   82.32	   2.69	   0.4	   8.19	   0.88	   3.67	   2.18	   1.47	   1.74	  
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Figure 8-2: 64 QAM CTC 1/2 at 13 dBm. Shows 6 Mbps offered load downlink Iperf loss
percentage.

Figure 8-2 shows the loss percentage. Notice that all the NC configurations reduce the

loss percentage while HARQ and HARQ-ARQ increase it. NC-15 is the best in terms of the

loss percentage.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
Extra	  (Mbps)	   0.00	   0.00	   0.00	   0.50	   0.75	   1.00	   1.20	   1.50	   2.00	   3.00	   6.00	  

Loss	  (Mbps)	   0.67	   4.03	   4.98	   0.16	   0.02	   0.51	   0.07	   0.23	   0.14	   0.09	   0.11	  

Throughput	  (Mbps)	   5.33	   1.97	   1.02	   5.84	   5.98	   5.50	   5.93	   5.77	   5.86	   5.91	   5.89	  
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Figure 8-3: 64 QAM CTC 1/2 at 13 dBm. Shows 6 Mbps offered load downlink Iperf
throughput, lost bandwidth and extra bandwidth.

Figure 8-3 shows the throughput, the lost bandwidth and extra bandwidth. The NC-15

results are the best in terms of the throughput. Figure 8-4 alternatively shows the through-

put, lost bandwidth and extra bandwidth on a 100% scale. On one hand, the throughput

percentage of NC-15 matches that of Baseline (around 89%) and the loss percentage is re-

duced to nearly 0%. Thus, m greater than 15 may not be necessary. On the other hand,

the throughput percentages of HARQ and HARQ-ARQ are around 33% and 17% and the

loss percentages are around 67% and 83% respectively. NC-10 is the best in terms of the

throughput percentage. NC-15 has a CR of 0.89, which roughly matches the throughput

percentage of Baseline (88.83%); it has the lowest lost bandwidth.

Notice that NC-10 has a higher throughput percentage than that of Baseline while in

theory, NC-10 should not have a higher throughput percentage than that of Baseline. This

effect may be caused by 1) the experimental variations and 2) the under-approximate extra

bandwidth.
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Base	  
line	   HARQ	   HARQ-‐ARQ	  

NC-‐10	  
(0.92)	  

NC-‐15	  
(0.89)	  

NC-‐20	  
(0.86)	  

NC-‐24	  
(0.83)	  

NC-‐30	  
(0.80)	  

NC-‐40	  
(0.75)	  

NC-‐60	  
(0.67)	  

NC-‐	  
120	  
(0.50)	  

Extra	  (%)	   0.00	   0.00	   0.00	   7.69	   11.11	   14.29	   16.67	   20.00	   25.00	   33.33	   50.00	  

Loss	  (%)	   11.17	   67.12	   83.02	   2.46	   0.34	   7.21	   0.94	   3.11	   1.75	   1.03	   0.89	  

Throughput	  (%)	  	  	  	  	  	  	  	  	   88.83	   32.88	   16.98	   89.85	   88.55	   78.50	   82.39	   76.89	   73.25	   65.63	   49.11	  
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Figure 8-4: 64 QAM CTC 1/2 at 13 dBm. Shows 6 Mbps offered load downlink Iperf through-
put, lost bandwidth and extra bandwidth on a 100% scale. For each NC configuration, its
Code Rate (CR) is noted in parentheses.

Figure 8-5 shows the TLER. Notice that both HARQ and HARQ-ARQ have very low

TLERs. The TLERs for the NC configurations decrease as m increases. All the NC config-

urations have significantly higher TLERs than those of HARQ and HARQ-ARQ. NC-10 has

the highest TLER, which is higher than that of Baseline; it is considered the most efficient

configuration.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
TLER	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   7.96	   0.49	   0.20	   8.85	   7.73	   3.65	   4.68	   3.33	   2.74	   1.91	   0.96	  
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1.00	  
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Figure 8-5: 64 QAM CTC 1/2 at 13 dBm. Shows 6 Mbps offered load downlink Iperf
Throughput to Loss plus Extra Ratio (TLER).

Figure 8-6 shows the file transfer delay. HARQ and HARQ-ARQ have very high file

transfer delays. That of HARQ-ARQ is around twice as much as that of HARQ and that

of HARQ is around twice as much as that of Baseline. The delays of Baseline and the NC

configurations are comparable. NC-40 and NC-60 give the best performance in terms of the

delay, i.e., a 12% reduction from that of Baseline.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	  

NC-‐	  
120	  

File	  Transfer	  Delay	  (s)	   83.75	   210.18	  408.37	   75.03	   74.02	   85.03	   74.03	   80.02	   74.01	   74.01	   85.01	  
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Figure 8-6: 64 QAM CTC 1/2 at 13 dBm. Shows 6 Mbps offered load downlink UFTP 50
MB file transfer delay.

8.3.2 64 QAM CTC 2/3 at 17 dBm

The MCS and power level considered in this section is 64 QAM CTC 2/3 at 17 dBm. The

measured CINR, RSSI and Average Tx Power at the SS are shown in Table 8.9.

CINR 17 dB
RSSI -76 dBm
Average Tx Power -63 dBm

Table 8.9: 64 QAM CTC 2/3 at 17 dBm. Shows Carrier to Interference plus Noise Ratio
(CINR), Received Signal Strength Indication (RSSI) and Average Tx Power measured at
the SS.

Figure 8-7 shows the loss percentage. Notice that the loss percentages of all NC config-

urations except NC-10 are nearly 0%, while those of HARQ and HARQ-ARQ are around

50-80%, a much higher percentage than that of Baseline (around 10%).
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
Loss	  (%)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   12.45	   51.63	   77.18	   2.64	   0.23	   0.13	   0.03	   0.10	   0.29	   0.08	   0.16	  
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Figure 8-7: 64 QAM CTC 2/3 at 17 dBm. Shows 6 Mbps offered load downlink Iperf loss
percentage.

Figure 8-8 shows the throughput, lost bandwidth and extra bandwidth. Figure 8-9

alternatively shows the throughput, lost bandwidth and extra bandwidth on a 100% scale.

Notice that on one hand, the throughput percentage of NC-15 matches that of Baseline

(around 88%) and the loss percentage is reduced to nearly 0%. Thus, m greater than 15

may not be necessary. The throughput percentages of HARQ and HARQ-ARQ, on the

other hand, are around 50% and 20% and the loss percentages are around 50% and 80%

respectively. NC-20 has a CR of 0.86, which is slightly below the throughput percentage of

Baseline (87.58%); it is one of the configurations that has the lowest lost bandwidth.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
Extra	  (Mbps)	   0.00	   0.00	   0.00	   0.50	   0.75	   1.00	   1.20	   1.50	   2.00	   3.00	   6.00	  

Loss	  (Mbps)	   0.75	   3.14	   4.67	   0.16	   0.06	   0.01	   0.05	   0.02	   0.03	   0.01	   0.01	  

Throughput	  (Mbps)	   5.26	   2.86	   1.33	   5.84	   5.94	   5.99	   5.95	   5.98	   5.97	   5.99	   5.99	  
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Figure 8-8: 64 QAM CTC 2/3 at 17 dBm. Shows 6 Mbps offered load downlink Iperf
throughput, lost bandwidth and extra bandwidth.

97



Base	  
line	   HARQ	   HARQ-‐ARQ	  

NC-‐10	  
(0.92)	  

NC-‐15	  
(0.89)	  

NC-‐20	  
(0.86)	  

NC-‐24	  
(0.83)	  

NC-‐30	  
(0.80)	  

NC-‐40	  
(0.75)	  

NC-‐60	  
(0.67)	  

NC-‐	  
120	  
(0.50)	  

Extra	  (%)	   0.00	   0.00	   0.00	   7.69	   11.11	   14.29	   16.67	   20.00	   25.00	   33.33	   50.00	  

Loss	  (%)	   12.42	   52.28	   77.80	   2.42	   0.92	   0.09	   0.71	   0.24	   0.35	   0.14	   0.09	  

Throughput	  (%)	  	  	  	  	  	  	  	  	   87.58	   47.72	   22.20	   89.89	   87.97	   85.63	   82.63	   79.76	   74.65	   66.52	   49.91	  
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Figure 8-9: 64 QAM CTC 2/3 at 17 dBm. Shows 6 Mbps offered load downlink Iperf through-
put, lost bandwidth and extra bandwidth on a 100% scale. For each NC configuration, its
Code Rate (CR) is noted in parentheses.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
TLER	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   7.05	   0.91	   0.29	   8.89	   7.31	   5.96	   4.76	   3.94	   2.94	   1.99	   1.00	  

0.00	  

1.00	  

2.00	  

3.00	  

4.00	  

5.00	  
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Figure 8-10: 64 QAM CTC 2/3 at 17 dBm. Shows 6 Mbps offered load downlink Iperf
Throughput to Loss plus Extra Ratio (TLER).

Figure 8-10 shows the TLER. Notice that both HARQ and HARQ-ARQ have very low

TLERs. The TLERs for the NC configurations decrease as m increases. All the NC config-

urations have significantly higher TLERs than those of HARQ and HARQ-ARQ. NC-10 has

the highest TLER, which is higher than that of Baseline; it is considered the most efficient

configuration. NC-15 also has a higher TLER than that of Baseline; however, NC-15 is not

as efficient as NC-10.

Figure 8-11 shows the file transfer delay. HARQ and HARQ-ARQ have very high file

transfer delays. The delays of Baseline and the NC configurations are comparable. NC-60

gives the best performance in terms of the delay, i.e., an 11% reduction from that of Baseline.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	  

NC-‐	  
120	  

File	  Transfer	  Delay	  (s)	   78.88	   150.03	  315.82	   75.03	   74.00	   72.01	   72.02	   73.02	   74.01	   70.03	   85.02	  
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Figure 8-11: 64 QAM CTC 2/3 at 17 dBm. Shows 6 Mbps offered load downlink UFTP 50
MB file transfer delay.

8.3.3 64 QAM CTC 3/4 at 18 dBm

The MCS and power level considered in this section is 64 QAM CTC 3/4 at 18 dBm. The

measured CINR, RSSI and Average Tx Power at the SS are shown in Table 8.10.

CINR 18 dB
RSSI -75 dBm
Average Tx Power -63 dBm

Table 8.10: 64 QAM CTC 3/4 at 18 dBm. Shows Carrier to Interference plus Noise Ratio
(CINR), Received Signal Strength Indication (RSSI) and Average Tx Power measured at
the SS.

Figure 8-12 shows the loss percentage. Notice that all the NC configurations reduce the

loss percentage, while HARQ and HARQ-ARQ increase it. In terms of the loss percentage,

while NC-30 is the best, it is comparable to NC-15, NC-20, NC-40, NC-60 and NC-120.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
Loss	  (%)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   14.60	   46.37	   77.46	   11.99	   1.69	   0.60	   0.11	   0.00	   0.14	   0.28	   0.28	  

0.00	  

10.00	  

20.00	  

30.00	  

40.00	  

50.00	  

60.00	  

70.00	  

80.00	  

90.00	  

Figure 8-12: 64 QAM CTC 3/4 at 18 dBm. Shows 6 Mbps offered load downlink Iperf loss
percentage.

Figure 8-13 shows the throughput, lost bandwidth and extra bandwidth. Figure 8-14

alternatively shows the throughput, lost bandwidth and extra bandwidth on a 100% scale.

Notice that on one hand, the throughput percentage of NC-20 matches that of Baseline

(around 85%) and the loss percentage is reduced to nearly 0%. Thus, m greater than 20

may not be necessary. The throughput percentages of HARQ and HARQ-ARQ, on the

other hand, are around 52% and 21% and the loss percentages are around 48% and 79%

respectively. NC-24 has a CR of 0.83, which slightly below the throughput percentage of

Baseline (85.43%); it has the lowest lost bandwidth.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
Extra	  (Mbps)	   0.00	   0.00	   0.00	   0.50	   0.75	   1.00	   1.20	   1.50	   2.00	   3.00	   6.00	  

Loss	  (Mbps)	   0.87	   2.82	   4.68	   0.81	   0.10	   0.04	   0.01	   0.05	   0.02	   0.07	   0.02	  

Throughput	  (Mbps)	   5.13	   3.18	   1.32	   5.20	   5.90	   5.96	   5.99	   5.95	   5.98	   5.94	   5.98	  
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Figure 8-13: 64 QAM CTC 3/4 at 18 dBm. Shows 6 Mbps offered load downlink Iperf
throughput, lost bandwidth and extra bandwidth.
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Base	  
line	   HARQ	   HARQ-‐ARQ	  

NC-‐10	  
(0.92)	  

NC-‐15	  
(0.89)	  

NC-‐20	  
(0.86)	  

NC-‐24	  
(0.83)	  

NC-‐30	  
(0.80)	  

NC-‐40	  
(0.75)	  

NC-‐60	  
(0.67)	  

NC-‐	  
120	  
(0.50)	  

Extra	  (%)	   0.00	   0.00	   0.00	   7.69	   11.11	   14.29	   16.67	   20.00	   25.00	   33.33	   50.00	  

Loss	  (%)	   14.57	   46.98	   78.03	   12.38	   1.51	   0.53	   0.08	   0.64	   0.21	   0.72	   0.17	  

Throughput	  (%)	  	  	  	  	  	  	  	  	   85.43	   53.02	   21.97	   79.92	   87.38	   85.19	   83.25	   79.36	   74.79	   65.94	   49.83	  
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Figure 8-14: 64 QAM CTC 3/4 at 18 dBm. Shows 6 Mbps offered load downlink Iperf
throughput, lost bandwidth and extra bandwidth on a 100% scale. For each NC configura-
tion, its Code Rate (CR) is noted in parentheses.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
TLER	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   5.86	   1.13	   0.28	   3.98	   6.92	   5.75	   4.97	   3.84	   2.97	   1.94	   0.99	  
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Figure 8-15: 64 QAM CTC 3/4 at 18 dBm. Shows 6 Mbps offered load downlink Iperf
Throughput to Loss plus Extra Ratio (TLER).

Figure 8-15 shows the TLER. Notice that both HARQ and HARQ-ARQ have very low

TLERs. The TLER for the NC configurations decreases as m increases with the exception

of NC-10. All the NC configurations have significantly higher TLERs than those of HARQ

and HARQ-ARQ. NC-15 has the highest TLER, which is higher than that of Baseline; it is

considered the most efficient configuration.

Figure 8-16 shows the file transfer delay. Notice that HARQ-ARQ has a very high file

transfer delay. NC-30 gives the best performance in terms of the delay, i.e., a 39% reduction

from that of Baseline.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	  

NC-‐	  
120	  

File	  Transfer	  Delay	  (s)	   116.84	  133.63	  333.71	   87.03	   75.06	   74.01	   74.02	   71.02	   73.03	   73.03	   92.99	  
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Figure 8-16: 64 QAM CTC 3/4 at 18 dBm. Shows 6 Mbps offered load downlink UFTP 50
MB file transfer delay.

8.3.4 64 QAM CTC 5/6 at 20 dBm

The MCS and power level considered in this section is 64 QAM CTC 5/6 at 20 dBm. The

measured CINR, RSSI and Average Tx Power at the SS are shown in Table 8.11.

CINR 18 dB
RSSI -73 dBm
Average Tx Power -63 dBm

Table 8.11: 64 QAM CTC 5/6 at 20 dBm. Shows Carrier to Interference plus Noise Ratio
(CINR), Received Signal Strength Indication (RSSI) and Average Tx Power measured at
the SS.

Figure 8-17 shows the loss percentage. Notice that all the NC configurations reduce the

loss percentage while HARQ and HARQ-ARQ increase it. However, HARQ-ARQ has a lower

loss percentage than that of HARQ. NC-10 has the highest loss percentage while NC-40 has

the lowest one.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
Loss	  (%)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   31.57	   38.60	   34.59	   53.86	   23.77	   24.59	   12.68	   7.26	   2.26	   4.69	   5.50	  
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Figure 8-17: 64 QAM CTC 5/6 at 20 dBm. Shows 6 Mbps offered load downlink Iperf loss
percentage.

Figure 8-18 shows the throughput, lost bandwidth and extra bandwidth. Figure 8-19

alternatively shows the throughput, lost bandwidth and extra bandwidth on a 100% scale. In

terms of the throughput, NC-40 is the best while NC-10 is the worst. The performance among

the NC configurations varies. The higher the m, the lower the loss percentage. In terms of

the throughput percentage, the performance of HARQ and HARQ-ARQ is comparable to

that of Baseline, NC-15, NC-20 and NC-60. NC-40 has a CR of 0.75, which is slightly above

the throughput percentage of Baseline (68.43%); it has the lowest lost bandwidth.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
Extra	  (Mbps)	   0.00	   0.00	   0.00	   0.50	   0.75	   1.00	   1.20	   1.50	   2.00	   3.00	   6.00	  

Loss	  (Mbps)	   1.89	   2.35	   2.07	   3.30	   1.54	   1.48	   0.76	   0.44	   0.14	   0.29	   0.33	  

Throughput	  (Mbps)	   4.11	   3.66	   3.93	   2.70	   4.46	   4.53	   5.24	   5.57	   5.87	   5.71	   5.67	  
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Figure 8-18: 64 QAM CTC 5/6 at 20 dBm. Shows 6 Mbps offered load downlink Iperf
throughput, lost bandwidth and extra bandwidth.
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Base	  
line	   HARQ	   HARQ-‐ARQ	  

NC-‐10	  
(0.92)	  

NC-‐15	  
(0.89)	  

NC-‐20	  
(0.86)	  

NC-‐24	  
(0.83)	  

NC-‐30	  
(0.80)	  

NC-‐40	  
(0.75)	  

NC-‐60	  
(0.67)	  

NC-‐	  
120	  
(0.50)	  

Extra	  (%)	   0.00	   0.00	   0.00	   7.69	   11.11	   14.29	   16.67	   20.00	   25.00	   33.33	   50.00	  

Loss	  (%)	   31.57	   39.08	   34.57	   50.75	   22.77	   21.07	   10.54	   5.80	   1.69	   3.19	   2.77	  

Throughput	  (%)	  	  	  	  	  	  	  	  	   68.43	   60.92	   65.43	   41.55	   66.12	   64.64	   72.79	   74.20	   73.31	   63.48	   47.23	  

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

90%	  

100%	  

Figure 8-19: 64 QAM CTC 5/6 at 20 dBm. Shows 6 Mbps offered load downlink Iperf
throughput, lost bandwidth and extra bandwidth on a 100% scale. For each NC configura-
tion, its Code Rate (CR) is noted in parentheses.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	   NC-‐	  

120	  
TLER	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   2.17	   1.56	   1.89	   0.71	   1.95	   1.83	   2.68	   2.88	   2.75	   1.74	   0.90	  

0.00	  

0.50	  

1.00	  

1.50	  

2.00	  

2.50	  

3.00	  

3.50	  

Figure 8-20: 64 QAM CTC 5/6 at 20 dBm. Shows 6 Mbps offered load downlink Iperf
Throughput to Loss plus Extra Ratio (TLER).

Figure 8-20 shows the TLER. Notice that the TLERs of HARQ and HARQ-ARQ are on

par with and sometimes better than some of the NC configurations. The TLERs of high-m

NC configurations, i.e., NC-30, NC-40, NC-60 and NC-120, decreases as m increases. NC-

30 has the highest TLER, which is higher than that of Baseline; it is considered the most

efficient configuration.

Figure 8-21 shows the file transfer delay. NC-40 is the best in terms of the delay, i.e., a

46% reduction from that of Baseline.
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Base	  
line	   HARQ	   HARQ-‐ARQ	   NC-‐10	   NC-‐15	   NC-‐20	   NC-‐24	   NC-‐30	   NC-‐40	   NC-‐60	  

NC-‐	  
120	  

File	  Transfer	  Delay	  (s)	   141.99	  164.68	  139.34	  268.07	  122.03	  110.02	   98.03	   81.02	   76.06	   80.03	   98.03	  

0.00	  

50.00	  

100.00	  

150.00	  

200.00	  

250.00	  

300.00	  

Figure 8-21: 64 QAM CTC 5/6 at 20 dBm. Shows 6 Mbps offered load downlink UFTP 50
MB file transfer delay.

8.3.5 Summary

In this section, we compare all 4 MCSs and power levels and 4 configurations: Baseline,

HARQ, HARQ-ARQ and NC-Best (the best configuration of all the NC configurations).

Figure 8-22 shows the 6 Mbps offered load downlink Iperf loss percentages for all four

modulation and coding schemes, power levels and configurations. It is worth noticing that

as the code rate increases, in the baseline, the loss percentage increases. In HARQ and

HARQ-ARQ, the loss percentage decreases. In NC-Best, the loss percentage stays close to

0%.
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Baseline	   HARQ	   HARQ-‐ARQ	   NC-‐Best	  
64	  QAM	  1/2	  at	  13	  dBm	   11.19	   66.5	   82.32	   0.40	  

64	  QAM	  2/3	  at	  17	  dBm	   12.45	   51.63	   77.18	   0.03	  

64	  QAM	  3/4	  at	  18	  dBm	   14.60	   46.37	   77.46	   0.00	  

64	  QAM	  5/6	  at	  20	  dBm	   31.57	   38.60	   34.59	   2.26	  
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90	  

Figure 8-22: Loss (%) Comparison. Shows 6 Mbps offered load downlink Iperf loss per-
centages for all 4 Modulation and Coding Schemes and power levels and 4 configurations.
NC-Best is the best configuration of all the NC configurations.

Baseline	   HARQ	   HARQ-‐ARQ	   NC-‐Best	  
64	  QAM	  1/2	  at	  13	  dBm	   5.33	   1.97	   1.02	   5.98	  

64	  QAM	  2/3	  at	  17	  dBm	   5.26	   2.86	   1.33	   5.99	  

64	  QAM	  3/4	  at	  18	  dBm	   5.13	   3.18	   1.32	   5.99	  

64	  QAM	  5/6	  at	  20	  dBm	   4.11	   3.66	   3.93	   5.87	  
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5.00	  
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Figure 8-23: Throughput (Mbps) Comparison. Shows 6 Mbps offered load downlink Iperf
throughputs for all 4 Modulation and Coding Schemes (MCSs) and power levels and 4
configurations. NC-Best is the best configuration of all the NC configurations.

Figure 8-23 shows 6 Mbps offered load downlink Iperf throughputs for all 4 Modulation

and Coding Schemes (MCSs) and power levels and 4 configurations. Notice that as the
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NC-‐Best/
Baseline	   NC-‐Best/HARQ	   NC-‐Best/

HARQ-‐ARQ	  
64	  QAM	  1/2	  at	  13	  dBm	   1.12	   3.03	   5.87	  

64	  QAM	  2/3	  at	  17	  dBm	   1.14	   2.09	   4.50	  

64	  QAM	  3/4	  at	  18	  dBm	   1.17	   1.88	   4.55	  

64	  QAM	  5/6	  at	  20	  dBm	   1.43	   1.60	   1.49	  

Max	   1.4	   3.0	   5.9	  

0.00	  
1.00	  
2.00	  
3.00	  
4.00	  
5.00	  
6.00	  
7.00	  

Figure 8-24: Throughput Ratio. Shows the throughput ratios of NC-Best/Baseline, NC-
Best/HARQ and NC-Best/HARQ-ARQ for all 4 Modulation and Coding Schemes (MCSs)
and power levels.

code rate increases, in Baseline, the throughput decreases. In HARQ and HARQ-ARQ,

the throughput increases. In NC-Best, the throughput stays close to 6 Mbps. Figure 8-24

compares the throughput of NC-Best to that of Baseline, HARQ and HARQ-ARQ. NC-Best

can deliver the throughput up to 1.4 times that of Baseline, 3.0 times that of HARQ and

5.9 times that of HARQ-ARQ.

Figure 8-25 shows 6 Mbps offered load downlink Iperf Throughput to Loss plus Extra

Ratio (TLER) for all 4 Modulation and Coding Schemes (MCSs) and power levels and 4

configurations. Notice that as the code rate increases, in Baseline, the TLER decreases. In

HARQ and HARQ-ARQ, the TLER increases. In NC-Best, TLER decreases.
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Baseline	   HARQ	   HARQ-‐ARQ	   NC-‐Best	  
64	  QAM	  1/2	  at	  13	  dBm	   7.96	   0.49	   0.20	   8.85	  

64	  QAM	  2/3	  at	  17	  dBm	   7.05	   0.91	   0.29	   8.89	  

64	  QAM	  3/4	  at	  18	  dBm	   5.86	   1.13	   0.28	   6.92	  

64	  QAM	  5/6	  at	  20	  dBm	   2.17	   1.56	   1.89	   2.88	  

0.00	  
1.00	  
2.00	  
3.00	  
4.00	  
5.00	  
6.00	  
7.00	  
8.00	  
9.00	  
10.00	  

Figure 8-25: TLER Comparison. Shows 6 Mbps offered load downlink Iperf Throughput to
Loss plus Extra Ratio (TLER) for all 4 Modulation and Coding Schemes (MCSs) and power
levels and 4 configurations. NC-Best is the best configuration of all the NC configurations.

Baseline	   HARQ	   HARQ-‐
ARQ	   NC-‐Best	  

64	  QAM	  1/2	  at	  13	  dBm	   83.75	   210.18	   408.37	   74.01	  

64	  QAM	  2/3	  at	  17	  dBm	   78.88	   150.03	   315.82	   70.03	  

64	  QAM	  3/4	  at	  18	  dBm	   116.84	   133.63	   333.71	   71.02	  

64	  QAM	  5/6	  at	  20	  dBm	   141.99	   164.68	   139.34	   76.06	  

0.00	  
50.00	  
100.00	  
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400.00	  
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Figure 8-26: File Transfer Delay (s) Comparison. Shows 6 Mbps offered load downlink UFTP
50 MB file transfer delays for all 4 Modulation and Coding Schemes (MCSs) and power levels
and 4 configurations. NC-Best is the best configuration of all the NC configurations.

Figure 8-26 shows the 6 Mbps offered load downlink UFTP 50 MB file transfer delays for

all 4 modulation and coding schemes (MCSs), power levels and configurations. Notice that
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Baseline/NC-‐
Best	   HARQ/NC-‐Best	   HARQ-‐ARQ/

NC-‐Best	  
64	  QAM	  1/2	  at	  13	  dBm	   1.13	   2.84	   5.52	  

64	  QAM	  2/3	  at	  17	  dBm	   1.13	   2.14	   4.51	  

64	  QAM	  3/4	  at	  18	  dBm	   1.65	   1.88	   4.70	  

64	  QAM	  5/6	  at	  20	  dBm	   1.87	   2.17	   1.83	  

Max	   1.9	   2.8	   5.5	  
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6.00	  

Figure 8-27: File Transfer Delay Ratio. Shows the delay ratios of Baseline/NC-Best,
HARQ/NC-Best and HARQ-ARQ/NC-Best for all 4 Modulation and Coding Schemes
(MCSs) and power levels.

as the code rate increases, in Baseline, the delay tends to increase. In HARQ and HARQ-

ARQ, the delay tends to decrease. In NC-Best, the delay remains close to 70 s. Figure 8-27

compares the delay of NC-Best to that of Baseline, the HARQ and the HARQ-ARQ. NC-

Best can reduce the delay up to 1.9 times that of Baseline, 2.8 times that of the HARQ and

5.5 times that of the HARQ-ARQ.

8.4 Discussion

The trend across different MCSs and power levels seems consistent: NC configurations use

the extra bandwidth to compensate for the lost bandwidth, increase the throughput and

reduce the loss percentage significantly while HARQ and HARQ-ARQ greatly reduce the

throughput and increase the lost bandwidth. The loss percentage graphs show that NC

works well as a packet erasure code since the loss percentage of most NC configurations

is less than that of Baseline and most NC configurations have a higher throughput than

that of Baseline. How much loss percentage each NC configuration can reduce or how much
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throughput it can gain depend on the number of redundancy packets per round (m). In

most cases, we only need to configure m such that the resulting Code Rate (CR) is about

the same as the throughput percentage of Baseline. Indeed, Figure 8-28 shows that the

throughput percentage of Baseline closely matches the CR of the NC configuration with the

highest throughput.
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64	  QAM	  1/2	  at	  13	  dBm	   64	  QAM	  2/3	  at	  17	  dBm	   64	  QAM	  3/4	  at	  18	  dBm	   64	  QAM	  5/6	  at	  20	  dBm	  

Baseline	  (Throughput	  %)	   NC	  Highest	  Throughput	  (Code	  Rate)	  

Figure 8-28: The throughput percentage of Baseline compared to the CR of the NC config-
uration with the highest throughput.

Now, a higher m may not be necessary but a lesser m may not be sufficient. When

m is too low, most coded blocks cannot be recovered, thus incurring additional loss per-

centage, reducing the throughput and increasing file transfer delay. When m is too high,

there are more redundant packets and more overhead, which may lead to buffer overflow.

The delay tends to increase as the loss percentage of Baseline increases, except for the NC

configurations. Thus, the higher the loss, the greater the benefit of NC.

At 6 Mbps of offered load, HARQ and ARQ do not perform well. Compared to Baseline,

HARQ and HARQ-ARQ incur additional loss percentage, reduce throughput and increase file
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transfer delay. The performance of HARQ and ARQ increases as the code rate of the MCS

increases. Nevertheless, the performance of HARQ and HARQ-ARQ does not match that of

the NC configurations. The low performance of HARQ and ARQ may be due to the following

reasons. First, HARQ and ARQ may be poorly implemented. Second, the parameters of

HARQ and ARQ, such as delay timeouts and the maximum number of retransmissions, used

in the experiments may not be optimal and may need tuning. Third, HARQ and ARQ may

just be inefficient as illustrated by the delay issue mentioned in Section 3.2.2, for instance.

These conclusions, however, require further verification.

The results suggest that NC has a potential to replace HARQ and ARQ in future wireless

network design. We infer that there are three main reasons why NC outperforms HARQ

and ARQ. First, our NC protocol does not necessarily rely on an ACK or NACK packet,

unlike HARQ and ARQ. In HARQ and ARQ, since the transmitter has to wait for an ACK

or NACK packet in each transmission, the performance of HARQ and ARQ depends on the

Round Trip Time (RTT). The longer the RTT, the lower the expected overall performance.

In other words, the RTT limits the throughput of HARQ and ARQ. On the contrary, in NC,

additional degrees of freedom (coded packets) can be sent ahead of time and lost packets can

be recovered from the additionally received coded packets. Hence, the RTT does not limit

the overall performance.

Second, the low throughput of HARQ and HARQ-ARQ suggests that HARQ and ARQ

generate a large amount of redundancy. In our experiments, the redundancy for NC reaches

100% (n = 120) whereas for HARQ, each packet may be retransmitted up to 4 times

(HARQ MAX RETRANSMISSION), thus incurring a potential redundancy of 400%. Such

high levels of redundancy incur load increases that may reach or exceed the supported PHY-

layer data rate. The excess load may cause buffer overflows at the MAC layer, resulting in

a drop in throughput. In contrast, NC generates a reasonable amount of redundancy and

thus offers higher throughput than HARQ and HARQ-ARQ.

Third, in HARQ and ARQ, each additional redundant packet can only compensate for a

particular lost packet while in NC, each additional coded packet can potentially compensate
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for any lost packet. In HARQ and ARQ, a particular packet is deemed lost if it is not

successfully received after a fixed number of retransmissions. In NC, however, any lost

packet can be replaced by the next coded packet. Therefore, NC is more robust to lost

packets and also less sensitive to lost ACK packets than HARQ and ARQ, since it requires

only one ACK packet per block.

As a conclusion, in this chapter, we presented and discussed the results of the network

coding experiments. The experiments show that NC can outperform HARQ and ARQ,

offering up to 5.9 times gain in throughput and 5.5 times reduction in file transfer delay.

Thus, NC should be considered as a valid replacement for MAC layer HARQ and ARQ in

order to maximize performance in 4G networks.
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Chapter 9

Conclusion

In this chapter, we summarize the contributions of this thesis and list a number of important

future work topics.

9.1 Contributions

This thesis addressed the design and implementation of a network-coding-enhanced network

architecture for next generation wireless networks. In this design, network coding is used

as a packet erasure code to provide resilience for remaining errors at the MAC layer. Using

WiMAX as a case study, a number of experiments were conducted to validate the design

decision. The results of the new design and of its implementation were compared to those

of the HARQ and ARQ mechanisms in terms of packet loss percentage, throughput and file

transfer delay. We demonstrated that network coding works very well as a packet erasure

code. Compared to HARQ and ARQ mechanisms, network coding can offer up to 5.9 times

gain in the throughput and 5.5 times reduction in the file transfer delay. We believe that the

presented architecture, design and implementation will be instrumental in providing faster

and more efficient next generation wireless network services at low cost.
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9.2 Future Work

With the newly accessible GENI platforms, experimental studies have become easier and

more accessible. Owing to the limited knowledge about the GENI WiMAX BS behavior,

one direction of future work would be to experimentally evaluate and characterize the per-

formance of the GENI WiMAX BSs, specifically the performance of the HARQ and ARQ

mechanisms in different conditions.

Another direction is to experimentally study the sensitivity of the performance of the

proposed design to different offered loads. The experimentation could also be extended to

investigate various parameters of the proposed design. In our experiments, we only consid-

ered a single round of redundancy transmission (k equal to 1). For further study, we can try

experimenting with multiple rounds. The number of concurrent encoder-decoder thread pairs

(p) is another interesting parameter to vary in order to study its effect in more detail. We

also recommend extending the design with an adaptive scheme to dynamically adjust various

design parameters as briefly mentioned in Section 5.5. After tackling static Subscriber Sta-

tions (SSs), single-hop topologies and single-interface settings, the study may be broadened

to mobile Subscriber Stations (SSs), multiple-hop topologies and multiple-interface settings.

The optimization of the decoding time is also an interesting direction to pursue further.

Different decoding algorithms such as the Jacobi iterative method for finite field matrix

inversion as suggested in Chapter 6 may be considered. Streaming SIMD Extensions (SSE)

instruction set and Graphics Processing Unit (GPU) acceleration may also be considered.

The proposed design may be modified to work with Relay Stations (RSs) and in multiple

unicast, multicast and broadcast scenarios. A handover scenario may also be interesting

to investigate as it would provide a validation of the approach in a mobile environment.

Furthermore, other network coding schemes such as N-in-1 NC [40] could be considered and

provide performance comparisons.

It is clear that the design can be applied at different layers of the OSI model; direct

implementation in industrial-grade WiMAX/LTE systems is a natural next step. Last but

not least, the validation of our results through simulation and theoretical analysis is also an
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important direction to explore.
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Appendix A

Finite Field

In this section, we introduce finite field and its arithmetic. For more information, please

refer to textbooks that treat finite fields [41].

Finite field or Galois field contains a finite number of elements. In this thesis, we use

GF(pn) to represent Galois field containing pn number of elements, where p is a prime

number, and n is a positive integer. Arithmetic operations in a finite field are different from

standard integer arithmetic operations. All arithmetic operations performed in the finite

field result in an element within that field.

Elements of GF(pn) can be represented as polynomials of degree strictly less than n

over GF(p). Arithmetic operations are performed modulo R, where R is an irreducible

polynomial of degree n over GF(p), using polynomial long division. For example, when p is

2 and n is greater than 6, 89 can be represented as x6 + x4 + x3 + 1.

In computer science applications, the operations are simplified when p is 2, making

GF(2n) popular choices for practical applications. In fact, we will be using GF(28) or

Rijndael’s finite field. Site [64] contains detailed description of Rijndael’s finite field. Practi-

cal implementations such as the use of log table to speed up the calculation are also discussed

there.
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