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Abstract

The effects of bend-twist coupling on typical commercial airplane wings are evaluated.
An analytical formulation of the orthotropic box beam bending stiffness matrix is de-
rived by combining Euler-Bernoulli beam theory and classical laminated plate theory.
The out-of-plane displacement due to the twist of the cross section is modeled by a
bilinear warping function. The analytical model is evaluated and validated against
finite element analysis and experimental results. The model can accurately predict
the twist and deformation of orthotropic box beams within 15% of the benchmark-
ing data and provides best results for beams of higher aspect ratios and with layup
angles below 30 degrees. Airplane level aero-structural simulations are performed in
ASWING using models of Boeing’s 737 and 777. The composite wings are sized for
a static load increase and a set of gusts as prescribed by the FAA. Using unbalanced
laminates to generate the structural coupling leads to significant strength penalties
if the loading is not parallel to the laminate’s fiber directions. The optimal laminate
angle for which the weight saving benefits of bend-twist coupling are maximized cor-
responds to the wing’s principal stress direction. Beyond that angle, the wings will
exhibit more coupling but the laminate strength penalties are too large to be over-
comed by the benefits of bend-twist coupling. The addition of coupling to the wings
leads to reductions in peak spanwise bending moments in the order of 20% to 45%.
It is demonstrated that the mechanism behind this reduction involves increased wing
tip twist which alleviates part of the outboard wing load. This ultimately results in
weight savings in the order of 2% to 4%. The findings suggest that the benefits of
bend-twist coupling are more important on heavier airplanes such as the 777 due to
the effects of the cube-square law.
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3



4



Acknowledgments

First and foremost, I would like to thank my thesis advisor, Mark Drela, for accepting

to work with me and letting me pick his brain at times. It was an honor to interact

with such a great professor and he has been very understanding in answering my

(sometimes silly) questions. Thanks to him, I can say that I am now a better engineer,

researcher and scientist.

Second, I would like to thank my wonderful girlfriend, Maryse, who is always ready

to cheer me on in my life endeavors, be it academically or in my craziest athletic goals.

This adventure really started with her during a summer vacation in Boston 3 years

ago, when we were just tourists visiting the MIT campus and I decided to pick up

an application form. Ever since, she never stopped believing in me, even when I

was doubting about myself at times. She encouraged me to pursue my dreams even

though she knew I would be away for a while. Through the many ups and downs

of grad student life, she always had the right words to bring the best out of me and

therefore I am grateful for her unconditional support. I must also thank Aramis for

the cuteness and for taking care of Maryse while I was gone.

Next, I would like to thank my entire family back in Quebec, your love and support

was invaluable throughout my life and especially during the last few years. To my

parents Anne, Yvan and Danny, who I always considered as a my second dad, there

are no words to describe how thankful I am for everything you have done for me. If I

am where I am today, it is partly because of you. A special thank you goes to Alex,

Felix, Sylvain, Esther, Jay, Lili, Jo, Giny, Guy and Mado: your constant support was

always appreciated and so many times you brought smiles to my face! Merci!

Next, I want to thank the MIT cycling team for the amazing experience they

provided me during my stay in Boston. The countless road rides, the two training

camps and the race weekends will forever be some of my best memories from those

two years. This team is filled with so many extraordinary people, who are both

accomplished athletes and scientists. Thanks to you all, I am now an expert in bike

mechanics, aerodynamics and legs shaving. Thank you also for helping me redefine

5



the meanings of the words pain and suffering.

I would also like to thank everyone else I met in Cambridge: friends, class mates,

team mates, lab mates and all those other mates, thank you for contributing to

making my stay at MIT so enjoyable and special.

Finally, I would like to acknowledge Bombardier Aerospace for the financial sup-

port and for believing I was a worthwhile investment.

Life is like riding a bicycle. To keep your balance, you must keep

moving.

-Albert Einstein

6



Contents

1 Introduction 17

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Beam Governing Equations 25

2.1 Geometry and Coordinate System . . . . . . . . . . . . . . . . . . . . 25

2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Isotropic Beam Bending Equations . . . . . . . . . . . . . . . . . . . 28

2.4 Classical Laminated Plate Theory . . . . . . . . . . . . . . . . . . . . 30

2.5 Orthotropic Box Beam Bending Stiffnesses . . . . . . . . . . . . . . . 32

2.5.1 Reduction to Plane Stress State . . . . . . . . . . . . . . . . . 32

2.5.2 Warping Function . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3 Beam Strains Including Warping Effects . . . . . . . . . . . . 34

2.5.4 Stiffness Matrix Terms . . . . . . . . . . . . . . . . . . . . . . 35

2.6 Physical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Analytical Model Validation 39

3.1 Model Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 Layups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.3 Beam Geometries . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Analytical Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7



3.3 Finite Element Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Model Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 FEA and Analytical Model Results Comparison . . . . . . . . 42

3.4 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Aero-Structural Simulation Models 49

4.1 ASWING Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Boeing 737-800 . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Boeing 777-300ER . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Loading Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 Static Load Case . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Gust Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Wing Twist Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Composite Failure Criteria . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Iterative Wing Sizing Procedure Summary . . . . . . . . . . . . . . . 63

5 Bend-Twist Coupling Load Alleviation Results 67

5.1 Effects of Bend-Twist Coupling on Laminate Strength . . . . . . . . . 67

5.2 Critical Load Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Gust Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2 Static Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Effects of Bend-Twist Coupling on Wing Root Bending Moment . . . 74

5.3.1 Spanwise Bending Moment Ratio . . . . . . . . . . . . . . . . 74

5.3.2 Wing Tip Twist and Displacement . . . . . . . . . . . . . . . 76

5.4 Effects of Bend-Twist Coupling on Wing Weight . . . . . . . . . . . . 80

6 Conclusions 85

6.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 91

8



A Code Listings 93

A.1 Matlab Script to Evaluate the Bending Stiffness Matrix of Orthotropic

Box Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2 Fortran Wing Twist Adjusment Script Twist.f . . . . . . . . . . . . . 99

A.3 Laminate Failure Matlab Script . . . . . . . . . . . . . . . . . . . . . 104

A.4 Matlab Script to Generate Aswing Input . . . . . . . . . . . . . . . . 107

B Wing Critical Load Cases 117

B.1 737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.1.1 737 Critical Gust Cases for Various Layup Angles . . . . . . . 117

B.1.2 737 Static Versus Dynamic Critical Bending Moments for Var-

ious Layup Angles . . . . . . . . . . . . . . . . . . . . . . . . 123

B.2 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.2.1 777 Critical Gust Cases for Various Layup Angles . . . . . . . 126

B.2.2 777 Static Versus Dynamic Critical Bending Moments for Var-

ious Layup Angles . . . . . . . . . . . . . . . . . . . . . . . . 131

9



10



List of Figures

1-1 Composite material usage on 2 different generations of commercial air-

planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2-1 Beam coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . 26

2-2 Beam cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2-3 Beam coupling types . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3-1 Undeformed FEM isometric view . . . . . . . . . . . . . . . . . . . . 43

3-2 FEM Deformed view due to a unit bending load Mc = 1 . . . . . . . 43

3-3 EIcc validation against FEM for beams of aspect ratio 4 and 6 under

a unit bending moment Mc = 1. . . . . . . . . . . . . . . . . . . . . . 44

3-4 EIcs validation against FEM for beams of aspect ratio 4 and 6 under

unit moment Mc = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3-5 EIcs validation against FEM for beams of aspect ratio 4 and 6 under

a unit torque Ms = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3-6 GJ validation against FEM for beams of aspect ratio 4 and 6 under

unit torque Ms = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3-7 GJ validation against experimental data for beams of aspect ratio 1.8

under unit torque Ms = 1. . . . . . . . . . . . . . . . . . . . . . . . . 47

3-8 EIcs validation against experimental data for beams of aspect ratio 1.8

under unit torque Ms = 1. . . . . . . . . . . . . . . . . . . . . . . . . 48

4-1 ASWING model of the Boeing 737-800. . . . . . . . . . . . . . . . . . 51

4-2 ASWING model of the Boeing 777-300ER. . . . . . . . . . . . . . . . 52

11



4-3 Effect of initial twist on lift distribution over the 737 wing in cruise

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4-4 Normalized critical laminate axial load with 10% shear. . . . . . . . . 62

4-5 Normalized critical laminate axial load with 20% shear. . . . . . . . . 63

4-6 Bending and torsion rigidity scaling factors along the span of the 737

metallic wing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4-7 Wing sizing procedure diagram. . . . . . . . . . . . . . . . . . . . . . 66

5-1 Laminate strength as a function of coupling, Nxy = 0.1Nx (737) . . . 68

5-2 Laminate strength as a function of coupling, Nxy = 0.2Nx (777) . . . 69

5-3 737 Bending moment ratio for various gust lengths, θ = 5◦ (Without

coupling). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5-4 777 Bending moment ratio for various gust lengths, θ = 10◦ (Without

coupling). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5-5 737 Bending moment ratio for the critical gust and static load cases,

θ = 5◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5-6 777 Bending moment ratio for the critical gust and static load cases,

θ = 10◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5-7 737 Wing root spanwise critical bending moment ratio . . . . . . . . 75

5-8 777 Wing root spanwise critical bending moment ratio . . . . . . . . 76

5-9 737 Wing tip twist versus time in the critical gust case, θ = 5◦. . . . . 77

5-10 737 Wing tip displacement versus time in the critical gust case, θ = 5◦. 78

5-11 777 Wing tip twist versus time in a typical gust case, θ = 10◦. . . . . 79

5-12 777 Wing tip displacement versus time in a typical gust case, θ = 10◦. 79

5-13 737 composite wing weight with and without bend-twist coupling. . . 80

5-14 777 composite wing weight with and without bend-twist coupling. . . 81

5-15 737 and 777 wing weight ratio due to bend-twist coupling for each

layup angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B-1 737 Bending moment ratio for various gust lengths, θ = 0◦. . . . . . . 118

B-2 737 Bending moment ratio for various gust lengths, θ = 5◦. . . . . . . 119

12



B-3 737 Bending moment ratio for various gust lengths, θ = 10◦. . . . . . 120

B-4 737 Bending moment ratio for various gust lengths, θ = 15◦. . . . . . 121

B-5 737 Bending moment ratio for various gust lengths, θ = 20◦. . . . . . 122

B-6 737 Bending moment ratio for the critical gust and static load cases,

θ = 0◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B-7 737 Bending moment ratio for the critical gust and static load cases,

θ = 5◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B-8 737 Bending moment ratio for the critical gust and static load cases,

θ = 10◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B-9 737 Bending moment ratio for the critical gust and static load cases,

θ = 15◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B-10 737 Bending moment ratio for the critical gust and static load cases,

θ = 20◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B-11 777 Bending moment ratio for various gust lengths, θ = 0◦. . . . . . . 126

B-12 777 Bending moment ratio for various gust lengths, θ = 5◦. . . . . . . 127

B-13 777 Bending moment ratio for various gust lengths, θ = 10◦. . . . . . 128

B-14 777 Bending moment ratio for various gust lengths, θ = 15◦. . . . . . 129

B-15 777 Bending moment ratio for various gust lengths, θ = 20◦. . . . . . 130

B-16 777 Bending moment ratio for the critical gust and static load cases,

θ = 0◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

B-17 777 Bending moment ratio for the critical gust and static load cases,

θ = 5◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B-18 777 Bending moment ratio for the critical gust and static load cases,

θ = 10◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B-19 777 Bending moment ratio for the critical gust and static load cases,

θ = 15◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B-20 777 Bending moment ratio for the critical gust and static load cases,

θ = 20◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

13



14



List of Tables

3.1 Lamina elastic properties . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Analytical model benchmarking layups . . . . . . . . . . . . . . . . . 40

3.3 Beams geometries for the analytical model benchmarking . . . . . . . 41

4.1 Boeing 737-800 technical characteristics. . . . . . . . . . . . . . . . . 50

4.2 Boeing 777-300ER technical characteristics. . . . . . . . . . . . . . . 51

4.3 Limit gust velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Wing twist targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Lamina strength properties . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Aero-structural simulations layup families . . . . . . . . . . . . . . . 59

4.7 Layup critical axial strains . . . . . . . . . . . . . . . . . . . . . . . . 61

15



16



Chapter 1

Introduction

1.1 Motivation

In the early days of aviation, the design goals for commercial airplanes were mainly

focusing on maximizing range, a design requirement that was driven by the desire

to open up new transcontinental and transoceanic air routes. Nowadays, aircraft

manufacturers need to give much more importance to efficiency, as airline companies

are trying to keep their business sustainable with the constraint of rising jet fuel

cost. More stringent environmental regulations have also become unavoidable given

the ever-increasing volume of airline traffic across the world. With such a boost

in traffic volume over the last decades, extensive knowledge about flight safety was

acquired and safety regulations became more demanding and complex. Learning

from past design mistakes, new aircraft now have to comply with FAA certification

requirements such as multiple load paths, fail safe design and damage tolerance.

Those more demanding safety regulations and the improved training of the flight crews

both contributed, among other factors, to improve the safety records of commercial

aviation. For example, 2007 was the safest year in the history of aviation since

1963 [28]. However, these new design requirements were implemented at the cost of

increased structural weight and thus to the detriment of efficiency. To help meet the

conflicting objectives of increasing safety while improving efficiency, the last decades

have seen huge technical progress in aerodynamics, propulsion and structures.
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Until recently, the primary structural material used in commercial aviation was

Aluminum. For years, structural weight savings were achieved as a result of increased

knowledge of Aluminum properties and its failure modes as well as by improving

analysis techniques of isotropic materials. As a result, there now exists extensive

properties and analysis techniques databases such as the MMPDS (formerly known

as the Milittary Handbook 5) covering the most common types of isotropic alloys [12].

These databases are used as standard references in most modern aerospace companies

and are accepted by the certification agencies. The development of faster computers

and finite element analysis software were also instrumental in achieving more optimal

designs of new airplanes and in improving their structural efficiency. New techniques

such as multidisciplinary optimization were also instrumental in understanding the

multiple drivers and disciplines influencing the fuel efficiency of commercial airplanes

[11].

As substantial weight savings opportunities on Aluminum structures were getting

harder to find, aircraft manufacturers started to look into new generations of materials

such as composites for new ways to get lighter and more efficient airplanes. The

most common type of composite material used in the aeronautics industry today is

made of carbon fibers embedded in a thermosetting epoxy resin matrix. This type of

composite was initially attractive to aircraft manufacturers because of its very high

specific stiffness and strength to weight ratios, it also had an improved fatigue life,

better corrosion resistance and enabled part count reduction. All these characteristics

were very appealing to the manufacturers looking for new weight saving opportunities.

Because of those intrinsic properties, composite materials have first been considered in

the 1960s for military projects such as McDonnell-Douglas’s F-18. With its first flight

in 1978, the F-18 was one of the first airplanes to make extensive usage of composite

materials for primary structural elements such as the wing, the vertical fins and the

horizontal stabilizer [18]. On the commercial aviation side, it took another 20 years

for carbon fiber to make its way into this large market. The Boeing 777, whose first

flight was in 1994, only had about 12% of composite structural elements by mass

[7]. Initially, composite parts were mostly limited to secondary structural parts such

18



as aerodynamic fairings, engine cowlings and floor panels. After waiting another 15

years, the latest generation of commercial airplanes such as the Boeing 787 or the

Airbus A350 finally started to make extensive use of advanced materials with up to

50% of their structure by mass being made of carbon fiber reinforced plastics [8].

(a) Boeing 777 [18].

(b) Boeing 787 [21].

Figure 1-1: Composite material usage on 2 different generations of commercial air-
planes.

The long wait before composites started to appear in commercial applications can

be explained by several factors. First of all, due to their orthotropic nature, as op-

posed to Aluminum which is an isotropic material, carbon fiber plies have different

structural responses depending on their loading direction. This particular behavior

not only makes the analysis more complex but also makes it very difficult to develop

closed-form solutions to the state equations. Secondly, carbon laminates exhibit com-

plex failure modes such as interlaminar failures which do not exist in conventional
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materials. Because of these out-of-plane failure modes and their brittle behavior,

classic maximum distortion energy failure criteria such as the Von Mises theorem

could not be applied to composite structures. Carbon fiber also exhibit poor impact

resistance compared to Aluminum and therefore extensive damage resistance studies

need to be completed when working with them [3]. Finally, carbon parts are much

more sensitive to their environment than their metallic counterparts. The strength

and elastic properties of composite materials can be significantly degraded by high

temperatures and high humidity conditions. These effects are aggravated when the

temperature gets closer to the glass transition point of the epoxy resin. Therefore,

due to the lack of appropriate analysis methodologies and lack of extensive knowledge

of the technology, engineers had to use large safety factors in order to compensate

for these knowledge gaps. For these reasons, the full potential of composite parts has

never been achieved by the aerospace industry.

Because of the orthotropic nature of the lamina, different structural responses can

be obtained not only from changing the loading direction but also from ply orienta-

tions and from the stacking sequence of the laminate. For example, a laminate (a

stack of lamina) can be stiffer in one specific direction, a behavior which is impossible

to reproduce with isotropic materials such as Aluminum and Titanium. This feature

is very important as engineers can design the parts to be stiffer in the principal load-

ing directions, making for more efficient designs. Moreover, the stacking sequence and

the orientation of the different layers will determine if a laminate has any structural

coupling.

For sake of clarity, a few definitions will be given in the following lines. A sym-

metric laminate is defined as one for which the stacking sequence of plies above its

midplane is the mirror image of the plies below its midplane. A balanced laminate

is defined as a laminate in which all lamina at angles other than 0 or 90 degrees

occur in plus or minus pairs, that is for each +θ ply, there is an associated −θ ply.

The significance here is that an unbalanced laminate will exhibit shear deformation

when subjected to in-plane tension/compression loads, while an asymmetric lami-

nate will experience bending deformation when subject to those same in-plane loads.
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These types of plate couplings are known as extension-shear coupling and extension-

bending coupling respectively. They are characteristics of composite parts which are

impossible to reproduce with isotropic materials.

Today, the well accepted rule of thumb for the majority of aeronautics composite

parts design guidelines is to make the laminates as close as possible to being sym-

metric and balanced since it eliminates all forms of elastic couplings and it simplifies

the analysis. Although the different types of couplings are well predicted for com-

posite plates by the classical laminated plate theory (CLPT), this theory can’t be

directly applied to composite beams, especially if structural couplings are involved.

The issue is that composites materials are now widely used in applications which can

be associated to beam structures. An example of such applications is an airplane

wing which can be modeled as a cantilevered beam. The wing is a complex assembly

which can be represented as a hollow beam by smearing the internal structure such

as the stringers into the beam’s walls for quick design evaluation purposes. In order

to evaluate the potential of new wing designs, engineers had to build complex finite

element models, a task which was often very time consuming. Since the time re-

quired to build these models was seldom available in a very schedule driven industry,

many important structural tradeoff studies were left aside. For this reason, specific

composite beam theories have been developped.

1.2 Background

The development of anisotropic beam theories was triggered by needs in the field of

rotary-wing aeroelasticity to study and improve the aeroelastic stability of helicopters

[15]. To do so, models of the main rotor blades with accurate structural behavior were

required. More specifically, by looking into enabling structural couplings on the main

rotor blades, engineers sought to improve the flutter response of helicopters by us-

ing bend-twist coupling and also to improve the main rotor’s performance by using

extension-twist coupling [22]. Even though there has been a lot of research efforts

put into composite blades modeling up to recently [2], Friedmann notes that despite
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the work from the scientific community, the helicopter industry is still not taking

advantage of the potential of structural coupling. It seems that the increased fatigue

life of carbon compared to aluminum was the main motivation for the industry to

use carbon fiber blades [15]. Outside the rotorcraft industry, the idea to potentially

use structural couplings on airplane wings stemmed from the development of Grum-

man’s X-29, a forward swept wing airplane. Due to its particular configuration, this

experimental airplane had aeroelastic divergence problems. Librescu and others tried

to apply the recently developed anisotropic thin-walled beam theories from the heli-

copter industry in order to improve the aeroelastic properties of the X-29 by using

composite wings and structural coupling [20].

Since then, a number of different anisotropic beam theories emerged. One of

the key conclusions most of those theories agree upon is that out-of-plane torsional

warping of the cross section influences significantly the coupling behavior of the beam

[26, 30]. Without a proper warping representation, the calculated coupling coefficients

quickly diverge from the benchmarking data. The importance of wall thickness and

transverse shear was also studied [19]. Jung demonstrated that the wall thickness does

not have a significant effect until the thickness to depth ratio of the beam reaches

20%. Because of the low transverse shear stiffness of composite plates, the transverse

shear deformation also plays an important role in the mechanics of composite beams.

However, this effect is inversely proportional to the beam’s slenderness. The influence

of transverse shear deformation also depends on the layup angle used in the beam.

As noted by Volovoi in his review paper [33], there is no lack of composite beam

theories but there is clearly a lack of experimental data to benchmark and evaluate

the different theories. Whenever a comparison with experimental data is made, it

always comes back to the same benchmark problem: a beam with a cross section of

aspect ratio equal to 1.8 tested by Chandra [5]. The main issue with relying on a

single test case is that the statistical properties of the results (i.e.: error, standard

deviation) are unknown. Moreover, the beam aspect ratio tested by Chandra is too

small to be representative of typical airplane wings. Although the different theories

seem to perform equally for this problem, it does not mean that they would perform
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equally well for beams of higher aspect ratio when warping becomes even more crit-

ical. As a consequence, new model evaluations have no choice but to rely on finite

element analysis, but once again, the finite element models must be validated against

something.

A good review of the state of the art theories of anisotropic beam modeling is

presented in [15]. The author classifies the different theories into 3 distinct groups.

The first category groups the theories based on variational asymptotic methods such

as those described in [4, 25]. The second group combines one dimensional beam

theory with 2D finite element analysis of the beam’s cross section to evaluate the

warping effects [17, 31]. Although they have been shown to perform relatively well,

these types of models are not convenient to use in an analytical context as they

require a different finite element model for each beam geometry. Finally the third

category includes the theories using thin-walled assumptions and appropriate warping

functions [5, 6, 27, 30]. This type of analysis is the most convenient one for use in

an analytical context as the bending stiffness matrix terms can be evaluated simply

based on the geometry of the beam and on the material properties. However, care

should be taken when selecting the modeling assumptions. For example, Rehfield [27]

presented an overly simplistic analytical model which relied on only one parameter

to characterize coupling and did not consider warping, thus it poorly matched the

experimental data. Furthermore, some additional work has also been performed in

order to develop new types of one dimensional anisotropic beam elements to be used

in finite element analysis [23, 29]. Just like the second group of models, this is not

very practical to rapidly evaluate the bending stiffness of multiple beam geometries

without having to rely on a finite element analysis package.

To build on these existing theories, the intent of this thesis is to identify the

gust alleviating potential of bend-twist coupling on typical airplane wings. The first

step involves the evaluation of the effects of elastic coupling on laminate strength.

Then, knowing the strength of the laminates with and without coupling, the wings

would be dimensioned against standard loading scenarios. The static load alleviation

potential of coupled composite wings evaluated by a full aero-structural airplane
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model is a research area which has not been explored extensively yet, at least in the

open literature.

1.3 Outline

This thesis is organized as follows. First, the governing equations of orthotropic

box beams bending are derived in chapter 2. A series of structural and geometric

assumptions are taken in order to formulate an analytical solution to the orthotropic

beam bending equations. The bend-twist coupling term of the stiffness matrix is

computed by taking into account the out of plane warping function of the cross section.

In chapter 3, the quality of the analytical equations is evaluated by benchmarking the

model against finite element analysis and experimental data. The validation set covers

beams of various aspect ratios and laminate angles. Next, chapter 4 presents the

aero-structural sizing methodology which is used to evaluate the effect of bend-twist

coupling on the wings. The models, the loading conditions, the composite material

properties and the chosen composite failure criteria are introduced. The iterative

sizing process and the wing twist evaluation are also assessed. The numerical results

are presented in chapter 5, where the effects of bend-twist coupling on the airplane’s

root bending moment and wing weight are evaluated. Finally, chapter 6 provides a

summary of the findings along with suggestions for future work in this field.

For reference, appendix A provides the listings of the Fortran and Matlab codes

which have been developed for this thesis. Appendix B presents additional results

charts which have not been used in the main text.
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Chapter 2

Beam Governing Equations

This chapter presents the derivation of the governing equations required to determine

the full bending stiffness matrix of a composite box beam. These equations will be a

function of the dimensions of the beam, the ply properties and the layup of the walls.

The ultimate goal of this chapter is to relate the bending moments to the beam

curvatures through the bending stiffness matrix. The first step of this process is to

present the simplifying assumptions, the beam geometry and the coordinate systems.

Then, the isotropic beam bending equations will be reviewed. Next, the equations of

classical laminated plate theory (CLPT) required for this problem will be presented.

Finally, the theory will be extended to orthotropic box beams and the equations for

bending stiffness, torsion rigidity and for the bend-twist coupling coefficient will be

derived.

2.1 Geometry and Coordinate System

Modern aircraft wings are extremely complex engineering products, consisting of

thousands of parts mechanically fastened together. The main load-carrying struc-

ture of a wing, the wingbox, is usually composed of four major members: the top

skin, the bottom skin, the forward spar and the rear spar. In addition, typical wings

also include internal structural elements such as stringers and ribs which provide the

additional torsional rigidity and stability without which the wing would not be able
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to carry the flight loads. Consequently, creating high fidelity structural models of a

complete wingbox to predict its internal stresses and its deformation is a tedious and

time consuming task. In order to save time, engineers often try to develop and use

simple analytical models which are able to predict the wing deformations accurately

in a computationally efficient way. To be structurally correct, the simplified wing

beam model has to possess the same equivalent axial and bending stiffness as the

original wingbox in order to properly predict wing deflections and stresses. Ideally,

the wing tip deflection of the simplified model should match the deflection of the real

wing, for any given applied load.

Figure 2-1: Beam inertial coordinate system c,s,n and associated positive moments.

In this study, the wing will be represented by a simple cantilevered hollow rect-

angular beam (box beam) clamped at the center of the aircraft. The wing’s bending

moments, deflections and strains are defined in a local coordinate system c, s, n at-

tached to the beam, shown in figure 2-1. The c axis is the chord direction of the

wing, the s axis corresponds to the span direction while n corresponds to the normal

direction. The wing’s aerodynamic and inertial loads will be distributed in the span

direction along the beam.

A cross-section of a typical box beam is illustrated in figure 2-2 along with the

geometric variables required to describe the beam dimensions. Those variables are
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the width (W ), the height (H) and the wall thickness tw.

Figure 2-2: Beam cross section showing the geometric variables and coordinate system
location.

2.2 Assumptions

As part of the simplification process, some engineering assumptions must be made to

reduce the complexity of the problem. Those assumptions are listed below.

• The beam’s cross section is symmetric about the c and s axis so that the shear

center and tension axis coincide with the beam’s axis of symmetry.

• The coordinate system origin coincides with the beam’s centroid.

• The beam has a uniform wall thickness tw around the cross section.

• All beam walls are made of symmetric laminates to avoid bending-extension

coupling ([B] = 0).

• The vertical walls are made of balanced laminates.

• Thin wall assumption : tw � W

• The beam’s slenderness should be larger than 20, otherwise warping effects

become much more important. Slenderness = L
W
≥ 20

• The cross section aspect ratio should be larger than 1.8: AR = W
H
≥ 1.8

• The beam bending loads are carried only by top and bottom plates.
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2.3 Isotropic Beam Bending Equations

This section presents the governing equations of isotropic beam bending based on

the standard Euler-Bernoulli beam theory [32]. The full beam stiffness matrix [C] is

generally composed of 21 independent elements and is symmetric.

[C] =



C11 C12 C13 C14 C15 C16

− C22 C23 C24 C25 C26

− − C33 C34 C35 C36

− − − C44 C45 C46

− − − − C55 C56

− − − − − C66


(2.1)

The complete matrix won’t be required for this particular problem since typically

airplane wings are sized by bending loads. Although there is always some amount

of in-plane loading, it is not significant compared to the bending moments, therefore

only the bending stiffness coefficients will be considered in the equation derivations.

The bending terms correspond to the lower right quadrant of the full stiffness matrix

and the beam bending stiffness matrix will be referred to as [C̄].

[C̄] =


C44 C45 C46

− C55 C56

− − C66

 =


EIcc EIcs EIcn

− GJ EIsn

− − EInn

 (2.2)

The bending stiffness matrix relates the bending moments in the beam’s c, s, n

coordinate system to the beam curvatures κ. The moment about the s axis is in fact

the torsion moment of the beam (or torque), therefore instead of the curvature κ, it

is related to the twist angle derivative φ′.
Mc

Ms

Mn

 =


EIcc EIcs EIcn

− GJ EIsn

− − EInn



κc

φ′

κn

 (2.3)
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Here, EIcc is the spanwise bending stiffness, GJ is the torsional rigidity and EInn is

the chordwise bending stiffness of the beam. The off-diagonal terms are the coupling

coefficients. The main focus of this chapter is to develop analytical equations to

evaluate EIcs,the bend-twist coupling coefficient of the beam. The other off-diagonal

terms can be set to zero based on the assumptions that the c,n axes are aligned with

the principal bending axes due to section symmetry and that the beam’s vertical walls

are symmetric and balanced. The resulting bending stiffness matrix is then:

[Ē] =


EIcc EIcs 0

− GJ 0

− − EInn

 (2.4)

By definition, the second moment of inertia of an area is given by:

Icc =

∫
A

n2dA (2.5)

Inn =

∫
A

c2dA (2.6)

The usual bending stiffness equations are then obtained by combining the inertia

and stiffness terms:

EIcc =

∫
A

En2dA (2.7)

EInn =

∫
A

Ec2dA (2.8)

For isotropic materials, all off-diagonal terms of the [C̄] matrix will be zero, and

therefore structural couplings can’t be achieved for those types of beams. Taking E

out of the integrals and using the box beam’s coordinate system, the final isotropic

bending stiffness equations are obtained:

EIcc = E

∫∫
n2dcdn (2.9)
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EInn = E

∫∫
c2dcdn (2.10)

For beams made of orthotropic materials, the stiffness is not constant through

the thickness of the beam and therefore E can’t be taken out of the integral like in

equations 2.9 and 2.10, which makes the problem more complex. In order to solve the

orthotropic beam bending equations, knowledge of the basic principles of the classical

laminated plate theory is required.

2.4 Classical Laminated Plate Theory

Since CLPT is able to accurately predict the stress-strain relationship for composite

plates [18], the first step of this analysis is to consider each walls of the beam as

individual plates carrying only in-plane loads. As the box beam is subject to a

bending moment, the top and bottom plates of the beam will experience in-plane

tension and compression forces. It will be assumed that shear loads due to torque

are distributed on all four walls of the beam while the bending loads are carried only

by the top and bottom plates. The following constitutive relation links the strains

to the stress of a particular ply in the material coordinate system (Axis 1 is the fiber

direction while axis 2 is the transverse direction). It should be noted that in the

material axis, there is no coupling other than the one due to Poisson’s effects.
σ1

σ2

τ12

 =


Q11 Q12 0

Q12 Q22 0

0 0 Q66



ε1

ε2

γ12

 (2.11)

The stress and strains in the material coordinate system can be very useful to

predict failure of the material, however, at this stage of the process, they need to

be expressed in the beam’s own coordinate system c, s, n. This is achieved by

performing a set of transformations using the standard rotation matrix [T ]. An

additional step is required to switch between engineering and tensor strains which
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is performed by using Reuter’s matrix [R]. The resulting stiffness matrix will be

referred to as the transformed ply stiffness matrix [Q̄(k)] where k is the kth ply of the

laminate. Each ply within one of the beam’s walls can be described by this matrix.

Just like the conventional 6x6 stiffness matrix [C], the ply stiffness matrix [Q(k)] and

the transformed ply stiffness matrix [Q̄(k)] are symmetric.


σ
(k)
s

σ
(k)
c

τ
(k)
sc

 = [T ]−1[Q(k)][R][T ][R]−1


εc

εs

γsc

 (2.12)

The stress-strain relation in the beam coordinate system for ply k can then be

expressed as: 
σ
(k)
s

σ
(k)
c

τ
(k)
sc

 =


Q̄

(k)
11 Q̄

(k)
12 Q̄

(k)
16

− Q̄
(k)
22 Q̄

(k)
26

− − Q̄
(k)
66



εc

εs

γsc

 (2.13)

It should be noted that [Q̄(k)] is a function of the ply elastic moduli and ply angle

θ. If θ = 0 or 90, then there is no extension-shear coupling within that ply and Q̄16

= Q̄26 =0. Also, if the wall thickness tw is small enough relative to the beam’s height

H, the strains will be uniform through the laminate following the strain compatibility

principle. This explains why the strains are not a function of k in equation 2.13.

The total load per unit width applied on a laminate can be obtained by integrating

the stresses over the thickness of the plate. For example, the running load in the s

axis would be given by:

Ns =

∫ tw/2

−tw/2

σs dn (2.14)

Although the strain is constant through the thickness, the stress σs is different

for each ply orientation since it depends on the ply’s stiffness in the loading axis.

To evaluate integral 2.14 for Ns, the stresses can therefore be integrated over the

thickness of one ply, and then summed over all the plies of the laminate:

Ns =
N∑
k=1

∫ t
(k)
ply

0

σ(k)
s dn (2.15)
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Finally, equation 2.13 can be converted to a constitutive relation between load

and strain by multiplying both sides of the equation by the thickness of each ply and

then summing over all the plies of the laminates. The resulting extensional stiffness

matrix is known as the laminate [A] matrix and relates the running load (load per

unit width) of the laminate to the laminate extensional strains.


Ns

Nc

Nsc

 =


A11 A12 A16

− A22 A26

− − A66



εc

εs

γsc

 (2.16)

The matrix coefficients are defined as:

Aij =
N∑
k=1

Q̄
(k)
ij t

(k)
ply (2.17)

Now that the main orthotropic plates equations have been introduced, the or-

thotropic beam bending stiffnesses can be derived.

2.5 Orthotropic Box Beam Bending Stiffnesses

The following derivation is mainly inspired by the work of [5] and [30]. Both pa-

pers proposed similar approaches to analytically evaluate the bend-twist coupling

coefficient of composite box beams by using a bilinear warping function. The former

focused on the bending stiffness matrix while the latter derived the full beam stiffness

matrix and also included the effects of transverse shear.

2.5.1 Reduction to Plane Stress State

For beam structures loaded mainly in one dimensional bending like wings, the trans-

verse (chordwise) in-plane load resultant Nc can be assumed to be zero since it is

much smaller than the spanwise load. Following this assumption, equation 2.16 can

be simplified further. The new reduced stiffness matrix of ply k will be identified as
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Q̄′(k).

Q̄
′(k)
11 = Q̄

(k)
11 −

Q̄
(k)2

12

Q̄
(k)
22

(2.18)

Q̄
′(k)
16 = Q̄

(k)
16 −

Q̄
(k)
12 Q̄

(k)
26

Q̄
(k)
22

(2.19)

Q̄
′(k)
66 = Q̄

(k)
66 −

Q̄2
26

Q̄
(k)
22

(2.20)

Q̄′(k) =

Q̄′(k)11 Q̄
′(k)
16

Q̄
′(k)
16 Q̄

′(k)
66

 (2.21)

Then, the reduced constitutive relation is obtained, with σ
(k)
c = 0:

σ(k)
s

τ
(k)
sc

 = [Q̄′(k)]

 εc
γsc

 (2.22)

In a similar fashion, the [A] matrix in equation 2.16 can be reduced to a 2x2

symmetric matrix by setting Nc = 0.

A′ =

A′11 A′16

A′16 A′66

 (2.23)

Ns

Nsc

 = [A′]

 εc
γsc

 (2.24)

Finally, an equivalent plate shear stiffness can be calculated by assuming a zero

net in-plane load for the vertical and horizontal walls.

Gv =
1

tv

(
A′66v −

(A′16v)2

A′11v

)
(2.25)

Gh =
1

th

(
A′66h −

(A′16h)2

A′11h

)
(2.26)
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2.5.2 Warping Function

A two dimensional warping function will be used, where λ is the out-of-plane displace-

ment of the section due to cross section warping. The next steps are inspired mainly

by the work of Smith and Chopra [30]. The following bilinear warping function is

chosen:

λ(c, n) = βcn (2.27)

with β and α defined by:

β = −1− α
1 + α

(2.28)

α =

(
W

H

)(
tv
th

)(
Gv

Gh

)
(2.29)

The wall thickness ratio in Equation 2.29 is always equal to one because of the initial

assumption on uniform wall thickness around the beam. Therefore, this equation

simplifies to:

α =

(
W

H

)(
Gv

Gh

)
(2.30)

The out-of-plane displacement of the section in the s direction due to cross-section

warping is proportional to the twist rate and can then be expressed as:

Uwarping = −λφ′(x) (2.31)

2.5.3 Beam Strains Including Warping Effects

Cross section warping will obviously have an influence on the beam’s strains. In fact,

due to the nature of the warping function chosen, its influence on the strain is linearly

proportional to the distance from the center of the beam. It can either increase or

reduce the totals strain depending on which corner of the section is investigated. The

total axial strain in the beam walls is given by:

εss = u′ − cκc − nκn − λφ′′ (2.32)
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The first term of equation 2.32 is the strain due to axial loading, the next two terms

are the bending strains while the last one is the warping strain. As far as the shear

strains are concerned, the classical strain and twist rate relationship must also be

modified to account for the effect of warping. The following variable substitution will

be used:

ĉ = c− ∂λ

∂n
= c(1− β) = c

2

1 + α
(2.33)

n̂ = n+
∂λ

∂c
= n(1 + β) = n

2α

1 + α
(2.34)

By using these new variables, the shear strain in the vertical beam walls is then

defined as:

εsn = ĉφ′ (2.35)

and in the horizontal walls:

εsc = n̂φ′ (2.36)

2.5.4 Stiffness Matrix Terms

The derivation of the bending stiffness terms is relatively straightforward since no

warping is involved in those loading modes. Surface integrals are performed over

both the horizontal walls (h) and the vertical walls (v) of the beam since both of

them contribute to the total stiffness.

EIcc =
N∑
k=1

∫
A:h

Q̄
′(k)
11 n

2dA+
N∑
k=1

∫
A:v

Q̄
′(k)
11 n

2dA (2.37)

The reduced stiffness Q̄
′(k)
11 is constant through a ply and it can be taken out of the

integral, which results in the final orthotropic beam bending stiffness equation:

EIcc =
N∑
k=1

Q̄
′(k)
11

∫∫
h

n2dcdn+
N∑
k=1

Q̄
′(k)
11

∫∫
v

n2dcdn (2.38)
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The same process can be applied for the chordwise bending stiffness EInn except this

time the inertia is computed about the n axis.

EInn =
N∑
k=1

Q̄
′(k)
11

∫∫
h

c2dcdn+
N∑
k=1

Q̄
′(k)
11

∫∫
v

c2dcdn (2.39)

For the torsion rigidity, the transformed section variables must be used in order

to account for the effect of warping on the total section stiffness.

GJ =
N∑
k=1

Q̄
′(k)
66

∫
A:h

n̂2dA+
N∑
k=1

Q̄
′(k)
66

∫
A:v

ĉ2dA (2.40)

which results in the following equation when the variables are transformed back into

their original form by applying relation 2.33 and 2.34:

GJ = (1 + β)2
N∑
k=1

Q̄
′(k)
66

∫∫
h

n2dcdn+ (1− β)2
N∑
k=1

Q̄
′(k)
66

∫∫
v

c2dcdn (2.41)

The bend-twist coupling coefficient is integrated on the horizontal walls of the

beam only since the initial assumption is that the vertical walls are balanced laminates

and therefore exhibit no extension-shear coupling (i.e.
N∑
k=1

Q̄
′(k)
16v = 0)

EIcs =
N∑
k=1

Q̄
′(k)
16

∫
A:h

n̂ndA (2.42)

After the variable substitution, the final equation for the bend-twist coupling term is

obtained:

EIcs = (1 + β)
N∑
k=1

Q̄
′(k)
16

∫∫
h

n2dcdn (2.43)

Appendix A.1 presents the code listing of the Matlab script created to calculate

the bending stiffness matrix of composite box beams based on the equations presented

in this chapter.
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2.6 Physical Interpretation

Based on equation 2.43, it is obvious that bend-twist coupling of the beam depends on

the Q̄′16 element of the reduced stiffness matrix. Physically, to obtain a non-zero Q̄′16

coefficient, the laminate must be unbalanced. The greater the unbalance, the greater

this coefficient will be. Within a single laminate, the unbalance results in extension-

shear coupling, however it can translate either into bend-twist coupling or extension-

twist coupling at the beam level. To result in bend-twist coupling, the unbalanced

laminates which make the top and bottom plates of the beam must be configured in

a symmetric arrangement. If they were arranged in an anti-symmetric configuration,

the Q̄′16 terms of the top and bottom plates would cancel each other out as they

would be of opposite signs. This type of configuration would result in extension-twist

coupling, but this is out of the scope of this thesis as it does not provide any benefit

for airplane wings. Figure 2-3 illustrates the possible layup configurations and the

resulting coupling effects on the beam.

Figure 2-3: Different composite layups on box beams and the resulting coupling [30].
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Chapter 3

Analytical Model Validation

This chapter focuses on validating the orthotropic beam bending equations developed

in chapter 2 by comparing different scenarios against finite element analysis (FEA)

and some experimental data. The impact of the layup angle on the beam’s bending

stiffness and coupling term is also evaluated.

3.1 Model Descriptions

This first section describes the different beams that will be simulated by the analytical

model and the FEA for benchmarking purposes. The material properties, the different

layups used as well as information about the various beam geometries are provided.

3.1.1 Material Properties

Table 3.1 presents the material properties that have been used in the simulations

and the analytical model. Only the elastic properties are required since no failure

analysis are performed at this point. All properties are in the material coordinate

system (Axis 1 is the fiber direction and axis 2 is the matrix direction).
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Property Value

E11 20.59× 106 psi
E22 1.42× 106 psi
G12 0.89× 106 psi
ν12 0.42
tply 0.005”

Table 3.1: Lamina elastic properties for AS4/3501-6 [5].

3.1.2 Layups

Since the model response and quality might depend on the layup angles, the box

beams were simulated at four different angles: θ = 0, 15, 30 and 45 degrees. It is not

necessary to simulate anything between 45 and 90 degrees since the peak coupling

occurs under θ = 45 degrees and the laminate elastic properties should be symmetric

about the 45 degree layup angle. The walls of the beams are made of 6 unidirectional

plies, resulting in a total wall thickness tw = 0.03”. Table 3.2 has detailed information

about the four different layups simulated.

Layup Horizontal Walls Verticall Walls

1 [0]6 [0]6
2 [15]6 [±15]3
3 [30]6 [±30]3
4 [40]6 [±45]3

Table 3.2: The various layups used for the analytical model validation.

3.1.3 Beam Geometries

Finally, table 3.3 provides detailed information about the beam geometries that have

been simulated. It should be noted that configuration 1 is based on the work of

Chandra [5] and was used as a baseline in order to be able to compare with their ex-

perimental work. The other two configurations with larger aspect ratios are simulated

since they are more representative of an actual wing geometry. The beam length is

increased in order to keep the slenderness ( L
W

) of the beam constant even if the width

was modified. Warping of the cross section is more important in less slender beams,
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so keeping the slenderness constant ensures the relative warping effects are the same

for all beams.

Beam 1 2 3

W 0.953 2.12 3.18
H 0.53 0.53 0.53
L 29 64 96
AR 1.8 4 6
L
W

30 30 30

Table 3.3: The various beams geometries used for the analytical model validation.

3.2 Analytical Calculations

Based on the equations derived previously, the applied moments can be estimated

from the stiffness matrix and the curvature matrix of the beam, the constitutive

relation is restated in 3.1 for convenience.


Mc

Ms

Mn

 =


EIcc EIcs 0

EIcs GJ 0

0 0 EInn



κc

φ′

κn

 (3.1)

In the benchmarking scenarios, a unit moment is applied and the beam curvatures

are the unknowns. Consequently, the bending stiffness matrix [Ē] must be inverted,

resulting in equation 3.2. The calculated curvatures and twist slopes can then be

compared to the ones obtained from the FEM or experimental data to evaluate the

accuracy of the model.

 E−1



Mc

Ms

Mn

 =


κc

φ′

κn

 (3.2)
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3.3 Finite Element Analysis

This section presents the box beam’s finite element model as well as the analysis

results that were obtained from it. The main goal behind these analyses was to ensure

that the analytical equations that have been developed in chapter 2 are actually valid.

3.3.1 Model Details

The finite element model was created using Abaqus 6.10, a commercial analysis soft-

ware widely used in the aerospace industry and published by Dassault Systemes [9].

In Abaqus, the beam’s walls are modeled as 2D shells using the S4R element, a 4-

nodes quadrilateral reduced integration linear element. The structure is clamped at

one end while at the other end a unit load is applied. The applied load is either a

spanwise bending moment Mc = 1 or a torque Ms = 1. Several cases are tested for a

variety of aspect ratios and layup angles as described in section 3.1. In order to find

the optimal element size for the problem, a mesh convergence study was performed

using the beam’s tip displacement as the convergence criteria. The study showed that

elements with a width of 12% the beam’s total width were the largest that could be

used without loss in solution quality. Using smaller elements would only increase the

analysis time without improving the results.

Figure 3-1 and 3-2 illustrate an example of the finite element model for the beam

of aspect ratio W
H

= 4 and θ = 45◦ layup. The first figure shows the undeformed

geometry while the second one illustrates the deformed shape under a unit bending

load. The torsion of the cross section due to bend-twist coupling can clearly be seen.

3.3.2 FEA and Analytical Model Results Comparison

The predictions from the analytical model and the finite element analysis results are

plotted on the next 4 figures. Figure 3-3 illustrates the validation of the spanwise

bending stiffness EIcc. The spanwise curvature κc due to a unit bending moment

Mc at the tip of the sample beam is plotted for different layup angles. As expected,
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Printed using Abaqus/CAE on: Fri Jun 08 09:21:32 Est (heure d’été) 2012

Figure 3-1: Undeformed isometric view of the beam of aspect ratio 4 in the Abaqus
FEM illustrating the mesh.

Printed using Abaqus/CAE on: Fri Jun 08 09:08:06 Est (heure d’été) 2012

Figure 3-2: Deformed view of the beam of aspect ratio 4 due to a unit bending load
Mc = 1 in the Abaqus FEM. The torsion of the section due to bend-twist coupling is
easily noted.

the general trend for both models is that the bending stiffness decreases as the layup

angle is increased. The correlation is excellent for the whole range of layup angles but

seems to be slightly better at lower angles and for lower aspect ratios. The analytical
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model underestimates the curvature when compared to the FEM for the whole range

of layup angles, which implies that the equations slightly overestimate the beam’s

bending stiffness. It should be noted that at θ = 0, there is no bend-twist coupling

and in this case the analytical model matches exactly the FEM data.
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Figure 3-3: EIcc validation against FEM for beams of aspect ratio 4 and 6 under a
unit bending moment Mc = 1.

The next figure illustrates the twist slope φ′ due to a unit bending moment Mc.

This is effectively a measure of the quality of the bend-twist coupling coefficient EIcs

calculated by the analytical equations. At layup angles θ = 0 there is obviously no

coupling, which is why there is no twist. As the layup angle increases, larger coupling

effects are observed, with a maximum coupling somewhere between 30 and 45 degrees

layup angle. As for the bending stiffness, the analytical model always underestimates

the twist slope compared to the FEM, specially at higher layup angles. At 15 and 30

degrees, the model predicts very nicely the coupling behavior of the beam. However,

at 45 degrees it seems that the model diverges from the equations, particularly for

beams of higher aspect ratios. This could be due to a nonlinear warping field for

beams with high aspect ratios and high layup angles which is not captured by the

linear warping field assumed by the present analytical model.
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Figure 3-5 illustrates the curvature κc at the tip of the beam when subject to a

unit torque Ms = 1. The figure is identical to figure 3-4 which is not surprising given

the symmetric nature of the stiffness matrix and that a unit moment was applied

in both cases. The analytical model can therefore predict coupling from torque or

bending moments with the same solution quality.
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Figure 3-4: EIcs validation against FEM for beams of aspect ratio 4 and 6 under unit
moment Mc = 1.

Finally, figure 3-6 illustrates the twist slope φ′ under a unit torque load Ms = 1

for the 4 layup angles. This is basically a measure of the torsion rigidity GJ as a

function of the layup angle θ. From the plot, the torsion rigidity is maximum at

a layup angle of 45 degrees which makes sense because the carbon fibers are then

oriented in the direction of principal stress, which for a pure torque case is always

at 45 degrees. Again the correlation between the analytical model and the FEM is

excellent, specially at layup angles lower than 30 degrees. At 45 degrees, there is a

larger difference between the two models particularly for the beams with an aspect

ratio of 4. This is probably due again to nonlinear section warping effects at higher

layup angles.
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Figure 3-5: EIcs validation against FEM for beams of aspect ratio 4 and 6 under a
unit torque Ms = 1.

0,0E+00 

5,0E-06 

1,0E-05 

1,5E-05 

2,0E-05 

2,5E-05 

3,0E-05 

3,5E-05 

4,0E-05 

4,5E-05 

5,0E-05 

0 15 30 45 

ϕ' 

Layup: [θ]6 

Orthotropic Box Beams of Aspect Ratio 4 and 6 
GJ Validation 

T=1 M=0 

4 (FEM) 

4 

6 (FEM) 

6 

Figure 3-6: GJ validation against FEM for beams of aspect ratio 4 and 6 under unit
torque Ms = 1.

3.4 Experimental Data

The data from the only paper which has published experimental results about bend-

twist coupling of thin-walled orthotropic box beams will be used as a validation tool

here [5]. In Chandra’s paper, the twist and bending slopes of several beams of aspect
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ratio 1.8 were measured under unit bending moments and torques. The beams had

symmetric and balanced vertical walls and unbalanced horizontal walls to create the

coupling. Even though most aircraft wings have a cross section aspect ratio above

3, it is still useful to compare the analytical model and the FEM results against this

experimental data. The next two figures illustrate those results.

On figure 3-7, the twist angle φ at the tip of the beam, in radians, is plotted

for different layup configurations. The difference between the analytical model and

the finite element model results is greater than what was noted for beams of aspect

ratios 4 and 6, as can be seen by comparing with figure 3-6. The trend is once

again that the equations predict the stiffnesses more accurately for larger aspect

ratio beams. Again, the difference between the two models is larger at higher layup

angles. The experimental data matches closely the analytical equations at a layup

angle of 15 degree but as the angle increases, the experimental data matches more

closely the finite element model than the equations. It would have been interesting

to see experimental data for beams with aspect ratios of 4 and 6 as it seems that

the analytical model performs better in those cases. It would also have been more

representative of a typical airplane wing geometry.
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Figure 3-7: GJ validation against experimental data for beams of aspect ratio 1.8
under unit torque Ms = 1.
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Finally, figure 3-8 displays the beam’s bending slope at the tip for angles from 0

to 45 degrees. This is effectively a measure of the coupling coefficient EIcs. In this

case, the experimental data seems to match closely the analytical model for layup

angles of 15 and 30 degrees but diverges at a layup angle of 45 degrees. It should be

noted however that the experimental data has very large error bars. The fact that at

45 degrees the models and the experimental data do not match is not surprising as

this trend was also observed previously for beams of higher aspect ratios.
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Figure 3-8: EIcs validation against experimental data for beams of aspect ratio 1.8
under unit torque Ms = 1.

Based on the previous plots and comparisons, the analytical model developed

in chapter 2 can accurately predict the bending stiffness matrix of an orthotropic

box beam at different layup angles, within the limit of the assumptions presented in

section 2.2. It performs best if the beam has an aspect ratio around 4 and if the layup

angle is below 30 degrees.
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Chapter 4

Aero-Structural Simulation Models

The intent of this chapter is to provide details about the aero-structural simulations

which have been used to evaluate the performance of flexible wings with and without

bend-twist coupling. First, some information about the simulation code and the

different airplane models is provided. Then, the static and dynamic load cases are

presented. Next, some explanations about the importance of the wing’s initial twist

angle distribution are given. The composite material properties used and the selected

failure criteria are then described. Finally, the iterative sizing procedure of the wing

is addressed.

4.1 ASWING Models

To evaluate the performance of the bend-twist coupled wings, the steady formulation

of ASWING, a computer code developed by Mark Drela at MIT, is used. ASWING

combines a nonlinear Euler-Bernoulli beam representation with an enhanced lifting-

line model of the aerodynamic surfaces in order to predict the static loads and defor-

mations of flexible aircraft [10].

In order to investigate the effects of aircraft scale on the coupling benefits, the

ASWING simulations are performed on two aircraft models of different sizes. The

first one is a Boeing 737-800 which is a short to medium range twin engine airliner.

It is the best selling jet airliner in the history of commercial aviation, with over 7000
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aircraft delivered so far. The second model is the Boeing 777-300ER, a long range

wide body twin engine aircraft. It is one of the best selling long range passenger

jet airplane in the world. Therefore, when combining the market segments of these

two airplanes, most of the commercial air travel market is covered. A more detailed

description of each airplane model is given in the next section.

4.1.1 Boeing 737-800

Table 4.1 provides some technical information about the Boeing 737-800. The max-

imum takeoff weight (MTOW), maximum zero fuel weight (MZFW) and maximum

landing weight (MLW) will be required to evaluate the gust loads velocities on the

wings in the next section.

Characteristic Data

MTOW 174 200 lbs
MZFW 138 300 lbs
MLW 146 300 lbs

Passengers 108 - 177
Range 3050 - 5510 nmi
Mach 0.78

Wing Span 112.6 ft
Sweep Angle 25◦

Table 4.1: Boeing 737-800 technical characteristics.

An isometric view of the 737 ASWING model is presented in figure 4-1.

4.1.2 Boeing 777-300ER

The same technical information is presented for the 777 in table 4.2. There are a

few significant differences between it and the 737. In terms of mass properties, the

takeoff weight of the 777 is more than 4 times larger than the 737’s. Its wing is also

much larger considering its wingspan is 100 feet longer than the 737’s. Not only is

this aircraft much bigger than the 737 but it also flies about 8% faster (Mach 0.84

vs 0.78). As a consequence, its wings have a higher sweep angle (32◦ vs 25◦) in order
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Figure 4-1: ASWING model of the Boeing 737-800.

to prevent the airflow on the top of the wings from reaching Mach, 1 which would

otherwise lead to high sonic drag penalties.

Characteristic Data

MTOW 775 000 lbs
MZFW 524 000 lbs
MLW 554 000 lbs

Passengers 365 - 550
Range 7930 nmi
Mach 0.84

Wing Span 212.6 ft
Sweep Angle 32◦

Table 4.2: Boeing 777-300ER technical characteristics.

An isometric view of the ASWING model of the 777 is presented in figure 4-2.
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Figure 4-2: ASWING model of the Boeing 777-300ER.

4.2 Loading Scenarios

From the hundreds of different loading conditions a commercial airplane will expe-

rience during its lifespan, only the most extreme scenarios will actually be critical

for the airplane’s structure. Usually these critical load cases size particular areas of

the aircraft. For example, the fuselage is dimensioned by, among other scenarios,

ground cases such as hard landings and towing maneuvers. The wings, on the other

hand, are typically sized by maneuvering loads and gust encounters. Since this thesis

focuses on wing design, only the latter two loading scenarios will be considered for

the aero-structural simulations.

More specifically, when a certificate of airworthiness is delivered to a new airplane

type, the manufacturer must have thoroughly demonstrated that its design complies

with the Federal Aviation Administration (FAA) rules. Both the 737 and the 777 are
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certified under part 25 of the FAA regulations which covers transport category jet en-

gine airplanes equipped with 10 or more seats. Consequently, the static maneuvering

load factor and the gust velocities will be generated following the FAR 25 regulations

[13].

4.2.1 Static Load Case

In chapter FAR 25.337, the static limit maneuvering load factor is defined as:

n = 2.1 +
24000

MTOW + 10000
(4.1)

The FAA also specifies that the static load factor n may not be less than 2.5 and

need not be greater than 3.8. Based on the maximum takeoff weight (MTOW) of

the 737 and 777 and on equation 4.1, the calculated n for both airplanes is smaller

than 2.5. Therefore, n = 2.5 will be used since it is the smallest value allowed by the

FAA for this aircraft category. The ultimate static maneuvering load factor is then

obtained by multiplying the limit load factor by 1.5 and is defined as nult = 3.8 for

both airplanes.

4.2.2 Gust Cases

Sometimes, the static cases may not be critical for certain wing geometries, thus it

is important to also look at dynamic cases. Gust encounters are highly stochastic

events and it may not be obvious what is the critical gust for a given airplane [14].

The design case recommended by the FAA is an upgust where the air velocity profile

inside the gust follows a [1 − cos] shape, as prescribed by FAR 25.341 regulations.

The velocity U in feet per second at a distance s inside the gust is given by equation

4.2.

U =
Uds

2

(
1− cos

πs

H

)
(4.2)

with 0 ≤ s ≤ 2H

53



It is important to note that the loads generated by this gust profile are limit loads

and a factor of 1.5 must be applied on these in order to get the ultimate design load.

Equation 4.2 depends on a few parameters which are defined in the FAA chapter

25.341 but their definition is reprinted here for convenience.

Uds is the peak gust velocity and is defined by equation 4.3. H is the gust length,

varying from 30 to 350 feet. This is a very important parameter since the critical gust

length H may change depending on the geometry and stiffness of the wing. Uref is

the reference gust velocity and it is set to the maximum possible value allowed by the

FAA in order to be conservative (56 ft/s). Zmo is the maximum operating altitude

of the airplane, in feet. The other parameters are defined in the following equations

and depend mainly on different weight ratios of the airplane.

Uds = UrefFg

(
H

350

)1.6

(4.3)

Where:

Fg = 0.5(Fgs + Fgm) (4.4)

Fgs = 1− Zmo

250000
(4.5)

Fgm =

√
R2 tan

(
πR1

4

)
(4.6)

R1 =
MLW

MTOW
(4.7)

R2 =
MZFW

MTOW
(4.8)

The gust velocities evaluated with equation 4.3 are presented in table 4.3. Gust

lengths of 30, 100, 200, 300 and 350 feet have been chosen to cover the full span of

gust lengths prescribed by the FAA. They will be used to evaluate the response of
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the different 737 and 777 composite wings to the gust scenario.

H
Uds

737 777

30 30.1 27.7
100 36.8 33.8
200 41.3 38.0
300 44.2 40.6
350 45.4 41.7

Table 4.3: Limit gust velocities in feet per second for gust lengths between 30 and
350 feet, following FAR 25.341 rules.

4.3 Wing Twist Distribution

One of the inputs required by ASWING is the initial spanwise wing twist distribution

(refered to as Twist or Tw0). There usually exists an optimal zero load twist angle

distribution which will result in a minimum drag coefficient CD in 1g flight condi-

tions. Usually this in-flight twist target is known based on aerodynamic analysis while

the optimal zero load twist, required to obtain the proper deformed wing shape, is

unknown.

This initial twist angle distribution depends mainly on the wing’s stiffness. More

compliant wings will require a greater initial twist than stiffer wings in order to

compensate for the additional in-flight twist deformation. If a given wing is modified

such that it becomes more compliant without changing its geometry, its loading will

naturally shift towards the inboard portion of the wing unless its initial twist is

modified accordingly. This load shift would ultimately lead to a reduction of the

wing’s root spanwise bending moment Mc0, which from a structural point of view

would be beneficial. However, from an aerodynamic point of view, this is not really

desired since an increase in induced drag is observed as a consequence of the non-

optimal twist distribution. Generally this drag penalty is greater than the benefits of

the weight savings from the reduced moment and thus leads to increased fuel burn.

Therefore, to make a fair comparison between the different designs, all the wings
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should have the same deformed shape and root bending moment Mc0 when flying in

steady and level flight. This is obtained by adjusting the wing’s initial twist.

Figure 4-3 compares the section lift coefficients distribution along the span of a 737

wing for two different initial twist scenarios. The first curve shows the wing loading

when the optimal twist distribution is applied, while the second curve illustrates a non

optimal configuration. Even though both wings generate the same amount of total

lift, the second scenario clearly generates more lift inboard of the wing compared to

the optimal case. This has the obvious consequence of reducing the wing’s spanwise

root bending moment. Moreover, the wing’s total drag coefficient has been shown to

be 30% lower when the twist angle was optimized, a consequence of the lower wing

induced drag coefficient CDi.
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Figure 4-3: Effect of initial twist on lift distribution over the 737 wing in cruise
conditions.

Because of the importance of this parameter, a Fortran computer code (Twist.f)

was developed in order to automatically find the optimal wing zero load twist distri-

bution. Through an iterative process, the code modifies the wing’s Twist parameter

until the in-flight twist matches a specific optimal target deformation. The targets
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are based on the baseline aluminum wings of the 737 and 777 and are shown in table

4.4. Having the composite wings match the in-flight twist of the aluminum wings

ensures that the wings share the same drag coefficients and the same root bending

moments, which makes their comparison easier and more relevant. Appendix A.2

presents the ”Twist.f” code listing developed for this purpose.

(a) 737

x (m) Tw (◦)

0. 1.22
1.80 1.22
2.80 1.09
3.80 0.95
4.80 0.78
7.80 0.34
10.81 -0.11
13.82 -0.45
16.83 -0.64

(b) 777

x (m) Tw (◦)

0. 1.31
3.05 1.31
5.31 1.07
7.58 0.81
9.84 0.52
15.07 -0.10
20.30 -0.91
25.53 -1.71
30.76 -2.53

Table 4.4: Wing twist targets for the 737 and the 777 based on aluminum wing in 1g
cruise flight.

4.4 Material Properties

Another important feature of any simulation model is obviously the choice of the

material properties. The lamina elastic properties used for the aero-structural simu-

lations are the same ones used for the validation of the bend-twist coupling equations.

They were for the AS4/3501 unidirectional tape and were presented in table 3.1. Since

the strength properties of this particular material were not available, numbers from

a different carbon fiber material had to be used. The unidirectional tape T700/2510

was chosen since it is similar to the AS4/3501. Just like the AS4/3501, it is a uni-

directional tape and has similar ply thickness and elastic properties. Also, the ply

properties of the T700/2510 are publicly available through the Advanced General

Aviation Transport Experiments (AGATE) initiative [1]. This is a publicly funded

project started by the FAA and NASA which was aiming at making composite ma-
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terials more accessible to smaller airplane manufacturers. It is doing so by providing

a standardized database of material properties which have been tested and approved

following the FAA’s standards. This had the impact of significantly reducing the

cost and time required for general aviation manufacturers who wanted to use those

materials as they did not have to go through the complex FAA material qualification

process.

To be conservative, the 3 in-plane strength properties have been measured at

elevated temperatures (180◦ F) and under wet conditions (85% relative humidity).

The statistical variability of the material properties is also taken into account through

a B-Basis statistical knockdown factor. Typically, composite material strengths will

be slightly different between compression and tension. To simplify the analysis and to

be conservative the lowest number between tension or compression values was chosen

for all the properties. The resulting strength allowables are therefore representative

of the worst case scenario for this material and are very conservative. Table 4.5 shows

the final strength values in the material coordinate system.

Property Value

F u
1 155 ksi
F u
2 3.3 ksi

F u
12 12.9 ksi

Table 4.5: Lamina strength properties accounting for B-Basis and elevated tempera-
ture wet conditions.

As can be noted from the strength numbers, the material is much weaker in the

transverse direction (Axis 2) than in the fiber direction. This is typical of unidirec-

tional tapes since this axis is not reinforced by fibers and therefore only reflects the

tensile strength of the resin. This is why unless a part is always loaded in the same

direction, most composite laminates will be made of plies of different angles in order

to have a more uniform resistance.
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4.5 Composite Failure Criteria

To evaluate the failure of a composite laminate, there exists a wide choice of failure

criteria to choose from. Unfortunately, none of them can accurately predict all the

failure modes of a laminate [16]. For the purpose of this study, a combination between

the maximum strain and the maximum stress failure criteria was chosen due to their

simplicity and their wide usage in the aeronautics industry. For the type of structure

and loading this thesis is concerned about, only the in-plane failure modes are relevant.

These failure modes are fiber failure, matrix failure and shear failure.

To evaluate if a laminate fails in any of these modes using the maximum stress

criteria, the laminate stresses have to be rotated into the ply’s coordinate system.

Then, the ply stresses are compared to the material’s design allowables to evaluate if

they exceed or not their limit. Once one of the plies reaches its maximum stress, the

ply stresses can be rotated back into the laminate coordinate system to generate an

equivalent laminate axial failure stress. This axial failure stress can then be converted

into an equivalent laminate axial strain which then becomes the laminate failure strain

εcr. This is a convenient metric since ASWING already calculates the wing strains

along the span of the wing. Given that the axial strain is typically highest at the

wing root, the maximum strain criteria only needs to be verified at that location. A

detailed Matlab script has been written in order to perform the task of finding the

laminate’s critical axial strain εcr and the code listing is provided in appendix A.3.

The laminate failure strains and loads were evaluated for a family of laminates

with layup angles ranging from 0 to 45 degrees. Both balanced and unbalanced

configurations were evaluated in order to find the influence of coupling on laminate

strength. The layup families studied are presented in table 4.6.

Unbalanced Balanced
(Coupling) (No coupling)

- [ 0 ]n
[ θ ]n [±θ ]n/2

Table 4.6: The different layup types evaluated, where n is the total number of plies
in the laminate and θ ranges from 5 to 45 degrees with 5 degree intervals.
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Because the laminate failure strain does not depend on the laminate thickness, it

can be calculated beforehand and used as a target for the ASWING models. This

requires knowing the repartition between the axial, transverse and shear loads on

wings. From the initial problem statement, the transverse load has been set to zero,

therefore the only remaining unknown is the distribution between shear and axial

loads.

The typical loading of the 737 and 777 wings was examined in order to find the

importance of the shear load versus the axial load in the wing. ASWING simulations

under typical 1g flight conditions were performed and the loads at the root of the wings

were extracted. On the 737, the shear load was about 10% of the total spanwise axial

load while on the 777 this number was more around 20%. The increased proportion

of shear on the 777 wing can be partly explained by the increased wing sweep (from

25◦ to 32◦) which has the consequence of increasing significantly the moment arm of

the lift about the s axis, especially at the wing tip. Ultimately this creates higher

torques on the wing for the same applied load at the tip.

Knowing the typical load distribution on each wings, the critical strains of the

various laminates can now be evaluated using the ”Laminate Failure” Matlab script

listed in appendix A.3. Table 4.7 shows the resulting critical strain values. These

critical strains will ultimately be used as targets for the wing’s root axial strains in

ASWING in order to size the wing structure.

Theoretically, the optimal angle at which the fibers should be oriented in order to

benefit from the maximum strength of the material should be close the principal stress

direction. From Mohr circle theory under plane stress conditions [32], the principal

stress angle θp can be evaluated as:

tan(2θp) =
2τxy

σx − σy
(4.9)

Based on the initial problem assumptions, the transverse stress is zero and the

shear stress is a percentage of the axial load as specified in the previous paragraphs.

More specifically σy = 0, τxy = 0.1σx for the 737 and τxy = 0.2σx for the 777. Finally,
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(a) 737 (10% shear)

θ Coupling No Coupling

0 0.00625 0.00625
5 0.00724 0.00653
10 0.00946 0.00646
15 0.00708 0.00715
20 0.00684 0.00789
25 0.00588 0.00728
30 0.00484 0.00702
35 0.00425 0.00715
40 0.00384 0.00761
45 0.00353 0.0084

(b) 777 (20% shear)

θ Coupling No Coupling

0 0.00318 0.00318
5 0.00462 0.0035
10 0.00678 0.0047
15 0.00996 0.0059
20 0.00784 0.0065
25 0.00759 0.0066
30 0.00797 0.0067
35 0.00622 0.007
40 0.00502 0.0076
45 0.00435 0.0084

Table 4.7: Layup critical axial strains εcr.

the principal stress angles can be evaluated for the 737 and 777 wings.

θp 737 = tan−1(0.1) ≈ 6◦ (4.10)

θp 777 = tan−1(0.2) ≈ 11◦ (4.11)

A similar process to the one used to evaluate the critical strains can be employed

to find the critical failure loads of the laminates. Unlike the strains, the failure loads

are a function of the laminate thickness. Even though the absolute strength number

will vary with thickness, some useful information can be pulled out by normalizing

the critical loads of the laminates against the critical load for θ = 0◦ laminates.

In fact, no matter what the thickness is, the normalized strength curve will always

be the same as long as the thickness is increased by repeating the same stacking

sequence multiple times. For example, if a laminate of the type [15/-15]n is studied,

the normalized failure load compared to the [0]n will be the same for all the values of

n.

Figures 4-4 and 4-5 illustrate the variation of the normalized laminate strength

as a function of the laminate angle θ. The first figure covers the 737 wing’s loading

conditions, it shows the strengths of laminates with a proportion of 10% shear with
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respect to the applied axial load. The second one reproduces the loading of the 777

as the shear proportion is 20% of the axial load. Both graphs also show the impact

of bend-twist coupling on strength by plotting curves for balanced (no coupling) and

unbalanced (coupling) laminates.

Some useful information can be extracted from those two charts. First, the peak

strengths in both figures are relatively close to the principal stress angles which have

been evaluated previously. Secondly, the optimal layup angle is the same whether or

not the laminates are balanced or unbalanced. The balanced laminates seem to be less

sensitive to angle variations about that optimal angle. In both cases, the unbalanced

laminates are stronger at small layup angles, basically because the fibers are oriented

in a direction closer to the principal stress direction. Beyond the laminate’s principal

stress angle, there is a transition point where the strength of the coupled laminates

quickly falls below the strength of the uncoupled laminates. For most of the layup

angles, the laminates without coupling are stronger than the ones with coupling. The

benefits of balanced laminate is that their strength stays relatively high for a wider

range of layup angles since there are fibers in two directions which can compensate

for the weakness of the resin in the transverse direction.
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Figure 4-4: Normalized critical laminate axial load with 10% shear.
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Figure 4-5: Normalized critical laminate axial load with 20% shear.

4.6 Iterative Wing Sizing Procedure Summary

In the previous sections, the different tools and technical details required to perform

an evaluation of the effect of bend-twist coupling on commercial airplane wings have

been presented. This section presents a step by step summary of the overall wing

sizing process.

The first step of the process is to define the aircraft that will be analyzed. Several

technical characteristics are needed to build the ASWING models. Airplane dimen-

sions, performance data, aerodynamics properties, structural properties and weights

are all required. More information on this is provided in the ASWING user manual.

Once all the necessary airplane data has been gathered, the laminate failure strains of

different layup configurations are evaluated following the process presented in section

4.5.

The next step is to choose a reasonable initial laminate thickness (based on the

bending moments of the metallic wing) and then calculate the wing’s initial bending

stiffness matrix [Ē]. The bending stiffnesses are evaluated only at the root section

of the wing. The root stiffness is then scaled along the span of the wing following

the scaling curves of the baseline metallic wing as shown in figure 4-6. Because the
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wing’s geometric shape is not modified, the thickness reduction along the span will

follow the same trend as the metallic wing, therefore the various EI and GJ terms

should follow the metallic wing’s scaling. Since the metallic wing does not exhibit any

coupling effects, the coupling term is scaled based on the spanwise bending stiffness

curve. Previous structural simulations have shown that for various beam dimensions,

the coupling term EIcs usually scales with the spanwise bending stiffness term EIcc.
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Figure 4-6: Bending and torsion rigidity scaling factors along the span of the 737
metallic wing.

The next step is to export the data into the ASWING model input file. Then, the

”Twist.f” Fortran code is used to adjust the wing’s initial twist in order to minimize

the wing’s drag coefficient in cruise conditions. Once this is done, the ASWING

simulations of the static or dynamic cases can be performed. After the simulation are

completed, the spanwise bending moment Mc0 and the axial strain εs are extracted

from the ASWING output files. The wing root’s strain is compared against the

critical laminate strain εcr. Finally, the laminate thickness is modified if needed

and the process is started over until convergence is reached. The laminate thickness

must be modified by multiples of 2 plies so that the laminate remains symmetric
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and respects the initial assumptions of the bend-twist coupling equations derived in

chapter 2.

For better clarity, figure 4-7 illustrates the complete sizing process diagram, start-

ing from the initial wing geometry and ending with the final layup details and wing

weight.
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Figure 4-7: Wing sizing procedure diagram.
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Chapter 5

Bend-Twist Coupling Load

Alleviation Results

This chapter presents the results of the ASWING simulations performed on the 737

and 777 airplane models created following the details provided in chapter 4. The

critical load cases for each configurations are highlighted and the final wing sizings are

described. The effects of bend-twist coupling on the wing’s weight and root bending

moments is estimated by comparing those metrics against results for uncoupled wings.

But first, the effects of bend-twist coupling on individual laminates strength are

presented in the next section.

5.1 Effects of Bend-Twist Coupling on Laminate

Strength

In this first section, an analysis of the relationship between the beam’s bend-twist

coupling and the critical laminate load is presented. Figure 5-1 and 5-2 show the

laminate strength as a function of the amount of bend-twist coupling. The first

figure presents data for typical 737 wings while the second one covers the 777. The

laminate’s failure load has been normalized by the critical load of 0 degree laminates.

Instead of presenting the coupling in terms of an absolute EIcs value, the ratio between

67



the bend-twist coupling coefficient and the spanwise bending coefficient EIcc is used.

As it has been seen in the equation validations in chapter 3, the bend-twist coupling

effect is maximum around 30 degrees. However, this behavior is not observed for

the absolute EIcs parameter. In fact, the ratio between EIcs and EIcc is much more

representative of the amount of coupling present in a beam. As the layup angle is

increased, the bending stiffness of the laminates gets smaller, therefore the relative

importance of the coupling coefficient gets larger even though in absolute numbers it

is not increasing.
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Figure 5-1: Laminate strength as a function of coupling, Nxy = 0.1Nx (737)

Each data point on the strength-coupling curves measures the efficiency of a dif-

ferent layup angle. The angles start at 0 degree, on the extreme left of the curves,

and go all the way to 45 degrees for the last point on the curves. An increment of 5

degrees was used between each data point. Around θ = 30◦, all configurations reach a

maximum amount of bend-twist coupling. Beyond this point, the bend-twist coupling

effects get lower. This explains the strange looking end of the curves.

Furthermore, in order to understand the impact of reducing the unbalanced pro-

portion in the layup, four levels of unbalance are plotted for each airplane. For a given

layup angle, reducing the unbalance amount has the effect of reducing the coupling of

the beam without improving its strength. Indeed, for any amount of bend-twist cou-
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Figure 5-2: Laminate strength as a function of coupling, Nxy = 0.2Nx (777)

pling, the 100% unbalanced layups are always stronger than the other configurations.

Since the ultimate goal is to maximize both the coupling and the strength, there is

then no benefit in reducing the amount of unbalance in the laminates and the fully

unbalanced configuration will be the one evaluated in the ASWING simulations.

Interesting information is found when comparing the plots for both airplanes. The

main difference between the 737 and 777 curves is that their peak strength is reached

at different layup angles. The peak is between 10 and 15 degrees for the 777 while

it is between 5 and 10 degrees on the 737 wings. This is due to the principal stress

orientation being different as explained in chapter 4. A common feature found on both

graphs is that layups at angles over 30 degrees have reduced bend-twist coupling and

significantly lower strength compared to layups of lower angles (80% reduction in

strength). For those reasons, they will not be considered for the next steps of the

study as they are obviously suboptimal configurations.

Since the layups with the greatest bend-twist coupling effects are not optimal in

terms of strength, it is not clear which configuration will be the best for the airplane.

The question is whether or not the benefits of bend-twist coupling at the aircraft level

will be large enough to compensate for the reduced strength at the laminate level.

This is what the next sections will seek to answer.
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5.2 Critical Load Cases

This section compares the resulting loads on the wings from the static and dynamic

cases. The goal is to find which cases are actually critical for each airplane and wing

type. Based on this information, the wings will then be sized using those critical

loading conditions.

5.2.1 Gust Loads

As explained in chapter 4, the wings are analyzed for various gusts lengths ranging

from 30 to 350 feet. In order to cover the full length of the dynamic event, a time

step of 0.1 second with 70 integration points was used. Those settings lead to a 7

seconds time domain which was long enough to cover the dynamic effects of all the

gust lengths and configurations studied. A convergence study was performed to make

sure that the 0.1 second time step was small enough to provide valid physical results.

The main goal for all these simulations was to identify the critical gust for each layup

and airplane type. In order to find that critical gust length, the spanwise bending

moment at the wing root was extracted from the ASWING output file for each time

step. The ratio between the actual moment M and the 1g moment M1g was then

plotted as a function of time and is shown in the next two figures. This ratio provides

a good non dimensional measure of the bending moment increase in the wing. The

lower the moment ratio is, the less sensitive the aircraft is to that particular gust.

Figure 5-3 illustrates those metrics for the 737 wing while figure 5-4 shows the

results for the 777. For the 737, the critical gust length is 200 feet although most

of the time the 300 feet gust yielded similar bending moments. The critical gust

length of the 737 was not sensitive to the presence or not of bend-twist coupling. On

the 777, the critical gust length shifts towards the higher gust lengths (300-350 ft)

for the uncoupled wings. However, the 777 wings with coupling have a critical gust

length of 200 feet, just like the 737. The bending moment ratios are higher on the 777

than on the 737 and the wings seem to return to their 1g state a little bit faster on

the larger airplane. Layup configurations of θ = 5◦ and θ = 10◦ without bend-twist
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coupling were chosen as examples for these two plots but graphs were generated for all

layup angles between 0 and 30 degrees with and without bend-twist coupling. Those

additional figures can be seen in appendix B.1.1 for the 737 and in appendix B.2.1

for the 777.
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Figure 5-3: 737 Bending moment ratio for various gust lengths, θ = 5◦ (Without
coupling).

5.2.2 Static Load

The next step is to find out whether the static lift increase condition(n = 3.8) is

more severe than the critical gusts identified in the previous section. The baseline

ASWING simulations for 1g flight have been performed with a cruise speed of 150

m/s for the 737 and 200 m/s for the 777. These speeds resulted in cruising angles of

attack between 2 and 2.5 degrees, which are reasonable for those types of airplanes.

The static load increase load case is simulated in ASWING by increasing the 1g

lift by a factor of 3.8. In order to generate that extra lift, the airplane’s angle of

attack had to be increased significantly, leading to aerodynamic stalls if the reference

velocity was kept constant. To avoid the wing stalls, all the static load increase

simulations other than the 1g case required an increased airplane velocity. On the
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Figure 5-4: 777 Bending moment ratio for various gust lengths, θ = 10◦ (Without
coupling).

737, it was increased up to 225 m/s while on the 777 it had to be increased up to 250

m/s. The next two plots illustrate the critical gust bending moment increase as well

as the static load increase under limit load conditions for both airplanes. Again, the

plots for θ = 5◦ and θ = 10◦ are illustrated as an example. For further references,

the figures for the other layup angles are provided in appendix B.1.2 for the 737 and

appendix B.2.2 for the 777.

In those figures, the dashed horizontal lines show the limit bending moment in-

crease resulting from the static load case while the continuous curves represent the

evolution in time of the bending moment for the critical gust case. The results are

plotted for both the coupled and uncoupled cases.

There are a couple of interesting features in those charts. First, it is clear that

the bending moment increase is much smaller when the wing exhibits some bend-

twist coupling (about 60% less for the plotted cases). Second, if the dashed line is

lower than the continuous line’s peak, like in figure 5-5, it means that the static load

increase is less critical than the gust case for that configuration. This is a pattern

that has been observed only on the 737’s wings with layup angles of 5 and 10 degrees.
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Figure 5-5: 737 Bending moment ratio for the critical gust and static load cases,
θ = 5◦.
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Figure 5-6: 777 Bending moment ratio for the critical gust and static load cases,
θ = 10◦.

The other 737 wings were actually sized by the static cases. This was also the case for

all the 777 wings as the gust cases were never critical for that aircraft. For example,

figure 5-6 clearly indicates that this wing is sized by the static case since the bending
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moment increase is much larger for that load case.

Another interesting feature of those graphs is noticed when looking at the config-

urations sized by the static loads. The wings without bend-twist coupling seem to

have a higher margin of safety when it comes to dynamic gusts. In other words, the

wings with coupling have almost the same bending moment peak for the static case

or the dynamic gust case. This means the uncoupled wing could theoretically be able

to handle stronger gusts than the ones with bend-twist coupling without breaking.

However, since both wings have to be sized using FAA’s rules, this would only be a

benefit in the eventuality that the airplane flies into a gust much stronger than what

the FAA prescribes. Another way to see this would be to claim that the wings with

bend-twist coupling are more optimized since their margin of safety is close to zero

for both load cases.

5.3 Effects of Bend-Twist Coupling on Wing Root

Bending Moment

This section presents the effects of bend-twist coupling on the spanwise bending

moment at the root of the wing. It will also try to explain the mechanisms behind

these effects by looking at the wing tip’s twist and displacement as the airplane flies

into the gust.

5.3.1 Spanwise Bending Moment Ratio

As part of the preparation of the models, the wings had their initial twist distribu-

tion adjusted so that they all shared the same initial root bending moment M1g as

explained in chapter 4. For this reason, the bending moment ratio, defined as the

ratio between the critical bending moment at a specific layup angle and the moment

in 1g conditions, can be used as an indicator of the impact of bend-twist coupling on

the wing’s structural response. This ratio is plotted for each layup angle between 0

and 30 degrees.
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As can be noted on the 737 and 777 plots in figures 5-7 and 5-8, the wings with

coupling actually experience a much smaller increase in bending moment than the

ones without coupling for the same layup angle. On both airplanes, when θ = 0◦ the

wing has no coupling effect and this is why the bending moment is the same for both

curves.

1,0 

1,5 

2,0 

2,5 

3,0 

3,5 

4,0 

0 5 10 15 20 25 30 

Mmax / M1g 

θ: Layup Angle (˚) 

737 Root Bending Moment Ratio : Mc n=3.8/ Mc n=1 

Wings with Coupling 

Wings without Coupling 

Figure 5-7: 737 Wing root spanwise critical bending moment ratio. This represents
the largest ratio due to either the static case or the gust case for each layup angle.

For the 737 wing, the largest difference between the two curves occurs between

5 and 10 degrees, which coincides with the wing’s principal stress direction. For

example, at θ = 5◦, the moment ratio goes from 2.5 for uncoupled wings to around

1.5 for coupled wings. This is a 40% reduction in the peak bending moment for

exactly the same gust case. As the layup angle increases, the difference between the

two curves gets smaller. In fact, beyond 20 degrees, the bending moment ratio is

rather constant for the coupled wings while this ratio gets larger for the uncoupled

wings.

On the 777, the difference between the coupled and uncoupled wings is the greatest

for layups between 10 and 15 degrees, as seen on figure 5-8. Those angles also coincide

with the principal stress and maximum strength orientation of the laminates. At 10
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Figure 5-8: 777 Wing root spanwise critical bending moment ratio. This represents
the largest ratio due to either the static case or the gust case for each layup angle.

degrees, for example, the bending moment increases by more than 4.5 times the 1g

moment for the uncoupled wing while this number is only around 2.5 when there is

bend twist coupling. This represents a 45% reduction in the peak bending moment

experienced by the wing, which is about 5% more than what was noted on the 737.

The uncoupled wing’s bending moment ratio decreases almost linearly with layup

angle. For coupled wings, this ratio seems to stabilize itself at 10 degrees. Just like

on the 737, as the layup angle is increased, the difference in bending moment gets

smaller. The large reductions in peak bending moments observed on both the 737

and 777 should have a positive impact on the wing’s weight.

5.3.2 Wing Tip Twist and Displacement

In order to understand where the bending moment reduction comes from, the wing

tip’s twist and vertical displacements have been extracted as a function of time from

the ASWING output files. The wing tip’s movements can be compared against the

uncoupled wing for a given layup angle.

Figure 5-9 and 5-10 illustrates the 737’s wing tip movements when flying into the
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critical gust for the θ = 5◦ configuration. When looking at the wing tip twist plot,

there are two important features that come out of this graph. First, the magnitude

and sign of the maximum twist angle are very different between the coupled wings

and the uncoupled ones. Even though the wings initially start twisting in the same

direction, the coupled wing’s tip quickly twists nose-down and reaches maximum twist

values almost 3 times larger than the uncoupled one. The nose-down twist reduces

the wing tip’s local angle of attack, and thus reduces the increase in bending moment.

The other interesting feature on this chart is that the twisting motion of the wings

with bend-twist coupling is clearly less damped than for the wings without coupling.

In other words, the wing tip oscillates around its original twist angle for a longer time

until it stabilizes.
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Figure 5-9: 737 Wing tip twist versus time in the critical gust case, θ = 5◦.

Figure 5-10 shows the 737’s wing tip displacements magnitude. As opposed to

the wing twist behavior, the displacements are smaller on the wing with bend-twist

coupling and the difference in magnitude is not nearly as large as what was noticed

for the twist. The damping of the displacement motion does not seem to be affected

by bend-twist coupling. This can be interpreted as a different mechanism in the way

the gust energy is absorbed by the wings with coupling. In fact, most of the gust
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energy seems to be absorbed by twisting motion rather than vertical displacement of

the wing. The increased nose-down twist of the wing tip reduces the effective angle of

attack of the wing tips which in the end generates less loading outboard of the wing.

This smaller outboard load consequently reduces the tip’s vertical displacement and

the spanwise bending moment of the wing.
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Figure 5-10: 737 Wing tip displacement versus time in the critical gust case, θ = 5◦.

The next two charts, figure 5-11 and 5-12, plot the same wing tip parameters for

the larger 777 airplane.

The behavior of the 777 wing tip in the gust is similar to what was observed

for the 737 wing, the only difference being the relative importance of the twist and

displacement motions. The 777 wing’s twist at the tip is about 8 times greater when

there is bend-twist coupling than when there is not. This is a much larger difference

than what was noted on the 737. The reduction in vertical displacement is less

significant than on the 737, but it is compensated by the additional twisting of the

wing. Because of the larger wing span and sweep angle, the reduction of the wing’s

outboard loading ultimately has a larger impact on the wing’s root bending moment

than on the 737. The damping of the twisting motion, although still smaller than

the uncoupled wing, seems to be better than the one on the 737, probably due to the
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Figure 5-11: 777 Wing tip twist versus time in a typical gust case, θ = 10◦.
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Figure 5-12: 777 Wing tip displacement versus time in a typical gust case, θ = 10◦.

larger bending inertia of the heavier wing. The damping of the tip’s displacement is

relatively unchanged just like on the 737.
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5.4 Effects of Bend-Twist Coupling on Wing Weight

Finally, this section presents the effects of bend-twist coupling on the weight of the

wings. For each particular layup angle between 0 and 30 degrees, the wings have

been dimensioned using their respective critical load cases. To compute the effects

of bend-twist coupling, this process has been performed for unbalanced and balanced

layups. For each case the total wing weight was extracted from ASWING and plotted

as a function of the layup angle θ. The results for the 737 and 777 are presented in

figures 5-13 and 5-14.
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Figure 5-13: 737 composite wing weight with and without bend-twist coupling.

As stated in previous sections, it is impossible to obtain bend-twist coupling with

a 0 degree layup which is why there is no weight difference for this particular laminate.

A common feature of both charts is that the minimum weight wing is found at the

layup angle for which the fibers are aligned with the load case’s principal stress

direction, whether or not there is bend-twist coupling. The minimum weight point

for the 737 is between 5 and 10 degrees while it is around 15 degrees for the 777.

Another interesting feature of the weight charts is that there exists a transition

point where the coupled wings actually become heavier than the uncoupled ones.
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Figure 5-14: 777 composite wing weight with and without bend-twist coupling.

This transition occurs at layup angles a few degrees higher than the optimal weight

configuration. Because the strength of unbalanced laminates is significantly reduced

when the layup angle is greater than the principal stress direction, it implies that the

wings will need a larger amount of plies to sustain the design loads. As shown in

section 5.1, the larger the difference between the fiber angle and the principal stress

direction is, the bigger the penalty on laminate strength will be. This effect is even

worse for the highly unbalanced laminates required to create bend-twist coupling of

the beam. Such layups can really only be efficient if the fibers are oriented in a

direction close to the principal stress direction, which is not the case beyond the

transition point. Moreover, as the layup angle is increased, the difference in bending

moment between the coupled and uncoupled wings gets smaller, as seen in section

5.3. The two factors of the reduced strength of the laminates and the less significant

bending moment reduction provide a rational explanation for the increased weight of

the coupled wings after the transition point.

Finally, figure 5-15 shows the weight saving potential of each particular layup

angle on both aircraft. Each point on this chart represents the efficiency of using
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Figure 5-15: 737 and 777 wing weight ratio due to bend-twist coupling for each layup
angle.

bend-twist coupling on different wing designs (737 or 777). At each layup angle, the

ratio between the weight of the coupled wing Wc and the weight of the uncoupled

wing Wnc is plotted. On this plot, if the ratio is above 1 it means there is a weight

penalty associated to using bend-twist coupling at that specific layup angle.

The maximum weight reduction for the 777 wing is 4% as for the 737 it is about

2%. In both cases, the maximum weight savings coincide with the principal stress

angle of the wing. Furthermore, since the 777 curve is always below the one from the

737, it indicates that bend-twist coupling has a greater impact on the heavier 777

wing for the whole range of layup angles. This can be explained by the influence of

the classical geometric cube-square law. Therefore, one of the important conclusions

drawn from this chart is that using bend-twist coupling on larger airplanes seems

to provide more weight savings opportunities than on lighter airplanes with smaller

wings.

Even though those preliminary weight reduction numbers may seem small in terms

of percentage, within the context of rising fuel prices, any weight saving opportunities

are welcomed. Each pound saved on an airplane means fuel and money savings on
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every flights for the airliners. Also, the manufacturers are often struggling to meet

the performance targets of their new airplanes driven by very aggressive modern

marketing requirements. Every bit of technology or innovation that can lead to a few

pounds of weight savings is then worth considering.
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Chapter 6

Conclusions

6.1 Summary of Findings

A methodology to compute the effects of bend-twist coupling on commercial airplanes

wings was presented. The coupling is hypothesized to provide potential weight sav-

ings for the wings by working as a passive load alleviation mechanism. To verify

this, an analytical beam model was developed to evaluate the deflection and twist of

orthotropic box beams. The orthotropic beam bending equations were derived based

on the standard isotropic beam bending equations combined with the classical lami-

nated plate theory. The transverse load in the beam walls was assumed to be zero. It

was demonstrated previously in the literature that warping plays an important role in

the generation of bend-twist coupling at the beam level, therefore a bilinear warping

function was used.

The analytical model was then validated against finite element analysis and ex-

perimental data from the literature. Beams of various aspect ratios (1.8, 4 and 6)

and layup angles (0◦ to 45◦) were evaluated in order to understand the effect of those

parameters on the solution quality. A simple cantilevered beam model with a unit

torque or bending moment was used. In each case, the deflection and twist of the

beam due to the unit load was calculated using both the analytical model and the

finite element model. The analytical model predicted the deflection and twist of all

the test cases within 15% of the finite element analysis results with a tendency to
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slightly overestimate the beam’s stiffnesses. The best results were observed for beams

of higher aspect ratios and with layup angles under 30 degrees. The finite element

analysis showed that beams with high layup angles had stronger warping effects which

the bilinear warping function was not able to capture properly.

A fully non-linear set of aero-structural simulations were performed using the

ASWING simulation code to evaluate the impact of bend-twist coupling at the air-

plane level. The simulations models represented a 737 and a 777, two Boeing airplanes

of very different sizes which together cover most of the market segments of modern

commercial aviation. To size the composite wings, two different loading scenarios

were defined. A static load increase and a set of different gust lengths were used as

prescribed by the rules of FAA’s FAR 25. The initial twist of each wing was adjusted

in order to standardize the 1g bending moment at the root of the wing. Finally, a

combination between the maximum stress and maximum strain failure criteria was

used to evaluate the strength of the laminates. A target margin of safety of 0 was

used to size the wings at ultimate load.

Following the aero-structural simulations, a number of interesting conclusions were

found. First, the critical load case for most wings was the static load increase. The

dynamic gusts scenario was critical only on the 737 wings with layup angles of 5 and

10 degrees. Therefore, most of the wings have been sized using the bending moment

due to the static load increase.

Second, a strong reduction in the wing’s root spanwise bending moment was ob-

served for all wings with bend-twist coupling. This reduction was in the order of

20% to 45% depending on the layup angle and wing model. The reduction in peak

bending moment was most significant at the principal stress angle of the wing and on

the 777. The mechanism behind this reduction in bending moment was associated to

a reduced vertical displacement of the wing tip and an increased wing tip twist in the

critical load case. The increased wing tip twists reduces the outboard wing loading

due to the lower angle of attack of the tip which ultimately leads to a smaller root

bending moment.

Third, the damping of the twisting motion of the wings seems to be reduced

86



significantly by the presence of bend-twist coupling while the damping of the tip

displacement is unaffected.

Last, the maximum weight saving benefits of bend-twist coupling are evaluated to

be around 2% of the wing’s weight on the 737 and 4% on the 777. The optimal layup

angle for maximum weight saving coincides with the wing’s principal stress angle.

Even if at higher layup angles the wings exhibit more bend-twist coupling, the load

alleviation properties of the coupling terms are not large enough to compensate for

the large reductions in strength due to the unbalanced laminates.

In summary, the findings of this thesis suggest that there may be some benefits

of using bend-twist coupling on airplane wings as it reduces the wing’s peak root

bending moment and weight, specially on larger and heavier airplanes. However,

these are still preliminary findings and, in order to fully evaluate the true potential of

structural coupling, some more detailed topics would need to be investigated in the

future. Some of those points are discussed in the next section.

6.2 Future Work

Most importantly, there is a need to generate more experimental data on composite

box beams as only a few set of experiments were available in the public literature

at the moment this thesis was written. To be more representative of typical wing

geometries, experimental data for beams of aspect ratios between 3 and 6 are needed.

The analytical model developed in this thesis could then be validated against those

more representative results.

Another research direction would be to evaluate the impact of bend-twist coupling

on the flutter response of the wings. As mentioned in chapter 5, the wing’s twist

motion damping is affected by bend-twist coupling and it could potentially have

adverse effects on the flutter response of the airplane.

In terms of the aero-structural ASWING simulations, the study could be broaden

to include more aircraft types. Since the benefits of coupled wings seem to be larger

when heavier airplanes are considered, the study should be repeated with models of
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the Boeing 747 or the new Airbus A380 for example. Following the cube-square law,

the weight savings on those heavy airplanes is expected to be larger than the 4%

found on the 777.

In terms of material sciences, the usage of very unbalanced laminates is something

that aerospace design guidelines usually do not recommend. For this reason, there is

not a great deal of experimental data on these types of laminates. Recently, Pawar has

demonstrated numerically that microcracking on composite helicopter blades could

significantly affect the elastic stiffness properties of the blades [24]. On unbalanced

laminates such as those studied in this thesis, it is very likely that micrcocracking

will occur due to the lack of laminate transverse stiffening. What would then be the

impacts on the wing’s strength and elastic properties? Some other material sciences

related topics to explore could be, for example, unbalanced laminates resistance to

fatigue and environmental cycling or even damage resistance studies. All those top-

ics should be investigated before such laminates are going to be used on primary

structures of future airplanes.

Finally, this study is based on wings sizings performed in isolation of the rest of

the airplane but, a lighter wing could probably change the overall aircraft configura-

tion. Therefore, the whole airplane should be adapted in order to accommodate this

lighter wing. Since the weight savings claimed in this thesis did not include potential

contributions from other major components of the airplane, ultimately the weight

reduction potentials could be larger than expected initially.
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Appendix A

Code Listings

A.1 Matlab Script to Evaluate the Bending Stiff-

ness Matrix of Orthotropic Box Beams

1 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 %

3 % Orthotrop ic Box Beam Bending S t i f f n e s s Matrix

4 % Sebas t i en Gauthier Perron

5 % Fa l l 2011

6 %

7 %

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 % Given mate r i a l p r op e r t i e s and beam geometry as an input , t h i s

func t i on

9 % w i l l r e turn the equ iva l en t EI , GJ and Coupling f a c t o r s f o r the beam .

10 % These are wr i t t en in t yp i c a l s t i f f n e s s matrix format :

11 %

12 % EIcc Kcs 0

13 % E = Kcs GJ 0

14 % 0 0 EInn

15 %

16 % Assumes there i s no coup l ing between l a t e r a l bending and tw i s t (

Balanced

17 % beam webs ) , t h e r e f o r e : Ksn = 0 and a l s o assumed c , n axes are a l i gned

with

18 % p r i n c i p a l bending ax i s o f the beam : EIcn = 0 .
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19 % Assumes Uniform Thickness around the c r o s s s e c t i o n

20 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21 % Inputs :

22 % − W, H : Beam geometr ic dimensions (Width and Height )

23 % − E1 , E2 , G12 , v12 , v21 : Ply e l a s t i c p r op e r t i e s

24 % − tp ly : Ply th i ckne s s

25 % − Layup : The s tack ing sequence and ply o r i e n t a t i o n s o f the beam ’ s

layup

26

27 func t i on [E EA A Skins Q]=Beam St i f fne s s (W,H,E1 , E2 , G12 , v12 , v21 , tply ,

Layup ) ;

28

29 Lam Repeat = Layup (1 , 1 ) ;

30 nbply base = s i z e (Layup , 1 ) −1;
31 nbply = nbply base ∗Lam Repeat ;

32 t = tp ly ∗nbply ;

33

34 % Ca l cu la t i on o f ply reduced s t i f f n e s s matrix Q, in mate r i a l coo rd inate

35 % system under plane s t r e s s c ond i t i on s

36 % 1 = Long i tud ina l

37 % 2 = Transverse

38 % 6 = Shear

39 Q11 = E1/(1−v12∗v21 ) ;
40 Q22 = E2/(1−v12∗v21 ) ;
41 Q12 = v12∗E2/(1−v12∗v21 ) ;
42 Q66 = G12 ;

43 Q=[Q11 Q12 0 ; Q12 Q22 0 ; 0 0 Q66 ] ;

44

45 % Ca l cu la t i on o f Rotated Reduced S t i f f n e s s (Qbar (k ) ) f o r kth ply in the

46 % layup o f the beam

47 % Qbar11 (1 , 4 ) = Qbar11 o f 4 th ply o f Top or Bottom Layup

48 % Qbar12 (2 , 3 ) = Qbar12 o f 3 rd ply o f web layup

49

50 f o r i =[2 ,3 ]

51 % i=2 : Skins

52 % i=3 : Webs

53 Theta Index=0;

54 f o r j = 1 : nbply

55 % Ply Coordinates Ca l cu l a t i on

56 % Returns laminate (Top Skin , Rear Spar ) d i s t anc e from

coord inate o r i g i n
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57 %Skins

58 i f i==2

59 ply mid (1 , j )= H/2 − tp ly ∗( j −0.5) ;
60 ply bottom (1 , j )= ply mid (1 , j ) − tp ly /2 ;

61 p ly top (1 , j )= ply mid (1 , j ) + tp ly /2 ;

62 e l s e

63 %Webs

64 ply mid (2 , j )= W/2 − tp ly ∗( j −0.5) ;
65 ply bottom (2 , j )= ply mid (2 , j ) − tp ly /2 ;

66 p ly top (2 , j )= ply mid (2 , j ) + tp ly /2 ;

67 end

68

69 i f Theta Index == nbply base

70 Theta Index=1;

71 e l s e

72 Theta Index=Theta Index+1;

73 end

74

75 Theta = Layup ( Theta Index+1, i ) ∗3 .14159/180 ;
76 Qbar11 ( i −1, j )= Q11∗ cos ( Theta ) ˆ4 + 2∗(Q12 + 2∗Q66) ∗( s i n ( Theta ) ˆ2)

∗( cos ( Theta ) ˆ2) + Q22∗ s i n (Theta ) ˆ4 ;

77 Qbar12 ( i −1, j ) = (Q11+Q22−4∗Q66) ∗( s i n ( Theta ) ˆ2) ∗( cos ( Theta ) ˆ2) +

Q12∗ ( ( s i n (Theta ) ˆ4) + cos (Theta ) ˆ4) ;

78 Qbar22 ( i −1, j ) = Q11∗( s i n ( Theta ) ˆ4) + 2∗(Q12 + 2∗Q66) ∗( s i n (Theta )

ˆ2) ∗( cos ( Theta ) ˆ2) + Q22∗ cos ( Theta ) ˆ4 ;

79 Qbar16 ( i −1, j ) = (Q11 − Q12 − 2∗Q66) ∗ s i n (Theta ) ∗ cos ( Theta ) ˆ3 + (

Q12 − Q22 + 2∗Q66) ∗( s i n ( Theta ) ˆ3) ∗ cos ( Theta ) ;

80 Qbar26 ( i −1, j ) = (Q11 − Q12 − 2∗Q66) ∗( s i n ( Theta ) ˆ3) ∗ cos ( Theta ) +

(Q12 − Q22 + 2∗Q66) ∗ s i n (Theta ) ∗ cos ( Theta ) ˆ3 ;

81 Qbar66 ( i −1, j ) = (Q11 + Q22 −2∗Q12 −2∗Q66) ∗( s i n (Theta ) ˆ2) ∗( cos (
Theta ) ˆ2) + Q66∗( s i n ( Theta ) ˆ4 + cos (Theta ) ˆ4) ;

82

83 A11( i −1, j ) = Qbar11 ( i −1, j ) ∗ tp ly ;

84 A12( i −1, j ) = Qbar12 ( i −1, j ) ∗ tp ly ;

85 A22( i −1, j ) = Qbar22 ( i −1, j ) ∗ tp ly ;

86 A16( i −1, j ) = Qbar16 ( i −1, j ) ∗ tp ly ;

87 A26( i −1, j ) = Qbar26 ( i −1, j ) ∗ tp ly ;

88 A66( i −1, j ) = Qbar66 ( i −1, j ) ∗ tp ly ;

89

90 % Ca l cu la t i on o f t o t a l Laminate Extens iona l S t i f f n e s s (A Matrix )

91 A11lam( i −1)=A11lam( i −1)+A11( i −1, j ) ;
92 A12lam( i −1)=A12lam( i −1)+A12( i −1, j ) ;
93 A22lam( i −1)=A22lam( i −1)+A22( i −1, j ) ;
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94 A16lam( i −1)=A16lam( i −1)+A16( i −1, j ) ;
95 A26lam( i −1)=A26lam( i −1)+A26( i −1, j ) ;
96 A66lam( i −1)=A66lam( i −1)+A66( i −1, j ) ;
97

98 % Calcu la te Cbar f o r kth ply . Cbar i s the reduced Qbar matrix

99 % assuming Ny = 0 , t h e r e f o r e reduc ing the p l a t e equat ions to a

100 % un i ax i a l + shear l oad ing cond i t i on .

101 Cbar11 ( i −1, j ) = Qbar11 ( i −1, j ) − ( ( Qbar12 ( i −1, j ) ˆ2) /Qbar22 ( i −1, j )
) ;

102 Cbar16 ( i −1, j ) = Qbar16 ( i −1, j ) − (Qbar12 ( i −1, j ) ∗Qbar26 ( i −1, j ) /
Qbar22 ( i −1, j ) ) ;

103 Cbar66 ( i −1, j ) = Qbar66 ( i −1, j ) − ( ( Qbar26 ( i −1, j ) ˆ2) /Qbar22 ( i −1, j )
) ;

104 end

105 end

106

107 % In t e g r a l Var iab l e s De f i n i t i o n :

108 % Example : Qbar26n2 (1 , i )

109 % In t e g r a l over i t h ply ( j=1 : Skin ) o f Qbar26∗nˆ2
110 f o r i =1: nbply

111

112 %Top and Bottom Laminates

113 Qbar26n2 (1 , i )= Qbar26 (1 , i ) ∗W∗( p ly top (1 , i )ˆ3− ply bottom (1 , i ) ˆ3) /3 ;

114 Qbar22n2 (1 , i )= Qbar22 (1 , i ) ∗W∗( p ly top (1 , i )ˆ3− ply bottom (1 , i ) ˆ3) /3 ;

115 Qbar12n2 (1 , i )= Qbar12 (1 , i ) ∗W∗( p ly top (1 , i )ˆ3− ply bottom (1 , i ) ˆ3) /3 ;

116 Qbar16n2 (1 , i )= Qbar16 (1 , i ) ∗W∗( p ly top (1 , i )ˆ3− ply bottom (1 , i ) ˆ3) /3 ;

117 Qbar66n2 (1 , i )= Qbar66 (1 , i ) ∗W∗( p ly top (1 , i )ˆ3− ply bottom (1 , i ) ˆ3) /3 ;

118 Qbar22dA (1 , i )= Qbar22 (1 , i ) ∗W∗( tp ly ) ;

119 Cbar11n2 (1 , i )= Cbar11 (1 , i ) ∗W∗( p ly top (1 , i )ˆ3− ply bottom (1 , i ) ˆ3) /3 ;

120 Cbar11c2 (1 , i )= Cbar11 (1 , i ) ∗(Wˆ3) ∗( tp ly ) /12 ;

121 Cbar11dA (1 , i )= Cbar11 (1 , i ) ∗W∗( tp ly ) ;

122 Qbar26n2 Sum (1)= Qbar26n2 Sum (1)+ Qbar26n2 (1 , i ) ;

123 Qbar22n2 Sum (1)= Qbar22n2 Sum (1)+ Qbar22n2 (1 , i ) ;

124 Qbar12n2 Sum (1)= Qbar12n2 Sum (1)+ Qbar12n2 (1 , i ) ;

125 Qbar16n2 Sum (1)= Qbar16n2 Sum (1)+ Qbar16n2 (1 , i ) ;

126 Qbar66n2 Sum (1)= Qbar66n2 Sum (1)+ Qbar66n2 (1 , i ) ;

127 Qbar22dA Sum(1)= Qbar22dA Sum(1)+ Qbar22dA (1 , i ) ;

128 Cbar11n2 Sum (1) = Cbar11n2 (1 , i ) + Cbar11n2 Sum (1) ;

129 Cbar11c2 Sum (1) = Cbar11c2 (1 , i ) + Cbar11c2 Sum (1) ;

130 Cbar11dA Sum(1) = Cbar11dA (1 , i ) + Cbar11dA Sum(1) ;

131

132 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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133 % Side Laminates (Webs)

134 Qbar22n2 (2 , i )= Qbar22 (2 , i ) ∗(Hˆ3) ∗( tp ly ) /12 ;

135 Qbar12n2 (2 , i )= Qbar12 (2 , i ) ∗(Hˆ3) ∗( tp ly ) /12 ;

136 Qbar16n2 (2 , i )= Qbar16 (2 , i ) ∗(Hˆ3) ∗( tp ly ) /12 ;

137 Qbar66c2 (2 , i )= Qbar66 (2 , i ) ∗H∗( p ly top (2 , i )ˆ3− ply bottom (2 , i ) ˆ3) /3 ;

138 Qbar22dA (2 , i )= Qbar22 (2 , i ) ∗H∗( tp ly ) ;

139 Cbar11n2 (2 , i )= Cbar11 (2 , i ) ∗(Hˆ3) ∗( tp ly ) /12 ;

140 Cbar11c2 (2 , i )= Cbar11 (2 , i ) ∗H∗( p ly top (2 , i )ˆ3− ply bottom (2 , i ) ˆ3) /3 ;

141 Cbar11dA (2 , i )= Cbar11 (2 , i ) ∗H∗( tp ly ) ;

142 Qbar22n2 Sum (2)= Qbar22n2 Sum (2)+ Qbar22n2 (2 , i ) ;

143 Qbar12n2 Sum (2)= Qbar12n2 Sum (2)+ Qbar12n2 (2 , i ) ;

144 Qbar16n2 Sum (2)= Qbar16n2 Sum (2)+ Qbar16n2 (2 , i ) ;

145 Qbar66c2 Sum (2)= Qbar66c2 Sum (2)+ Qbar66c2 (2 , i ) ;

146 Qbar22dA Sum(2)= Qbar22dA Sum(2)+ Qbar22dA (2 , i ) ;

147 Cbar11n2 Sum (2) = Cbar11n2 (2 , i ) + Cbar11n2 Sum (2) ;

148 Cbar11c2 Sum (2) = Cbar11c2 (2 , i ) + Cbar11c2 Sum (2) ;

149 Cbar11dA Sum(2) = Cbar11dA (2 , i ) + Cbar11dA Sum(2) ;

150 end

151

152 % Skin Laminate A Matrix De f i n i t i o n

153 A Skins=[A11lam (1) A12lam (1) A16lam (1) ; A12lam (1) A22lam (1) A26lam (1) ;

A16lam (1) A26lam (1) A66lam (1) ] ;

154

155 % Uniax ia l & Shear A Matrix (Assume Ny = 0)

156 f o r i =1:2

157 Aprime11 ( i )= A11lam( i )−(A12lam( i ) ˆ2) /A22lam( i ) ;

158 Aprime16 ( i )= A16lam( i )−(A12lam( i ) ∗A26lam( i ) /A22lam( i ) ) ;

159 Aprime66 ( i )= A66lam( i )−(A26lam( i ) ˆ2) /A22lam( i ) ;

160 end

161

162 % Laminate Equiva lent Shear Modulus :

163 G(1) = (Aprime66 (1 )−(Aprime16 (1 ) ˆ2/Aprime11 (1 ) ) ) / t ;

164 G(2) = (Aprime66 (2 )−(Aprime16 (2 ) ˆ2/Aprime11 (2 ) ) ) / t ;

165 Alpha = (W/H) ∗( t / t ) ∗(G(2) /G(1) ) ;

166

167 % Warping Co e f f i c i e n t

168 Beta = −(1−Alpha ) /(1+Alpha ) ;

169

170 d2=(1+Beta ) ∗(2∗Qbar26n2 Sum (1) ) /(2∗ (Qbar22n2 Sum (1)+Qbar22n2 Sum (2) ) ) ;

171

172

173
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174 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
175 % S t i f f n e s s Matrix Ca l cu l a t i on s

176

177 % Bending S t i f f n e s s around C ax i s

178 EIcc = 2∗(Cbar11n2 Sum (1) + Cbar11n2 Sum (2) ) ;

179

180 % Bending S t i f f n e s s around N ax i s

181 EInn = 2∗(Cbar11c2 Sum (1) + Cbar11c2 Sum (2) ) ;

182

183 % Bend−Twist Coupling

184 EIcs = (1+Beta ) ∗2∗(Qbar16n2 Sum (1)+Qbar16n2 Sum (2) ) − d2 ∗2∗(Qbar12n2 Sum

(1)+Qbar12n2 Sum (2) ) ;

185

186 % Tors ionna l S t i f f n e s s

187 GJ = ((1+Beta ) ˆ2) ∗2∗(Qbar66n2 Sum (1) ) + ((1−Beta ) ˆ2) ∗2∗Qbar66c2 Sum (2) −
d2∗(1+Beta ) ∗2∗Qbar26n2 Sum (1) ;

188

189 % Axial S t i f f n e s s

190 EA = 2∗(Cbar11dA Sum(1) + Cbar11dA Sum(2) ) ;

191

192 % Bending S t i f f n e s s Matrix De f i n i t i o n

193 E = [ EIcc EIcs 0 ; EIcs GJ 0 ; 0 0 EInn ] ;

194

195 % Reduced A matrix

196 Aprime Skins = [ Aprime11 (1 ) Aprime16 (1 ) ; Aprime16 (1 ) Aprime66 (1 ) ] ;

197

198 end
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A.2 Fortran Wing Twist Adjusment Script Twist.f

1 c

2 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 c

4 c Wing Twist Ca l cu la to r

5 c Sebas t i en Gauthier Perron

6 c January 2012

7 c

8 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 c Desc r ip t i on :

10 c This program w i l l perform i t e r a t i o n s with Aswing on a given

11 c model in order to f i nd the i n i t i a l wing tw i s t r equ i r ed to match

12 c a c e r t a i n wing deformation in 1g f l i g h t . Typ i ca l l y the 1g

13 c deformed shape should r e s u l t in a minimum wing drag cond i t i on .

14 c

15 c De t a i l s :

16 c − ∗ . asw input f i l e and Aswing launching s c r i p t should be in same

17 c d i r e c t o r y as t h i s s c r i p t .

18 c − Modify launching s c r i p t ( Aswing Scr ipt . sh ) to match Aswing

19 c executable ’ s l o c a t i o n on your computer .

20 c − In the Aswing input f i l e , the tw i s t should not be on the same

21 c l i n e as other parameters .

22 c

23 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 PROGRAM Twist

25 IMPLICIT NONE

26 CHARACTER∗125 f i l e name , bu f f e r , a sw f i l e (500)

27 CHARACTER∗8 t emp f i l e

28 INTEGER stat , max iter , co l , i , j , n l ine wing , n l ine , Tw loc (2 )

29 INTEGER n i t e r

30 REAL Delta Tw (11) , Tw0(11) , Tw Target (11) , Tw(11) , Tw0 mod(11)

31 REAL wing data (60 ,9 ) , Delta , t (11) , conv

32

33 t emp f i l e = ’ temp . asw ’

34 n i t e r = 0

35

36 c Convergence C r i t e r i a :

37 conv = 0 .1

38

39 c−−−− Target Twist based on Aluminum 737 in 1g F l i gh t

40 Tw Target (1 ) = 1.21982

41 Tw Target (2 ) = 1.21982
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42 Tw Target (3 ) = 1.21982

43 Tw Target (4 ) = 1.08665

44 Tw Target (5 ) = 0.95348

45 Tw Target (6 ) = 0.78031

46 Tw Target (7 ) = 0.78031

47 Tw Target (8 ) = 0.34028

48 Tw Target (9 ) = −0.10974
49 Tw Target (10) = −0.44976
50 Tw Target (11) = −0.63978
51 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
52 c−−−− Target Twist based on Aluminum 777 in 1g F l i gh t

53 c Tw Target (1 ) = 1.30648

54 c Tw Target (2 ) = 1.30648

55 c Tw Target (3 ) = 1.30648

56 c Tw Target (4 ) = 1.07019

57 c Tw Target (5 ) = 0.8139

58 c Tw Target (6 ) = 0.51761

59 c Tw Target (7 ) = 0.51761

60 c Tw Target (8 ) = −0.09736
61 c Tw Target (9 ) = −0.90732
62 c Tw Target (10) = −1.70728
63 c Tw Target (11) = −2.53224
64 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65

66 WRITE (∗ ,∗ ) ’ Enter Aswing ( . asw ) f i l e name : ’

67 READ (∗ ,∗ ) f i l e name

68 WRITE (∗ ,∗ ) ’ Enter Maximum Number o f I t e r a t i o n s : ’

69 READ (∗ ,∗ ) max i ter

70

71 c Add ” . asw” extens i on to f i l e name

72 DO i =1 ,125

73 IF ( f i l e name ( i : i ) == ’ ’ ) THEN

74 GOTO 500

75 END IF

76 END DO

77 500 f i l e name = f i l e name ( 1 : i −1)// ’ . asw ’

78 CALL system ( ’ cp ’ // f i l e name // ’ ’ // f i l e name ( 1 : i −1)// ’ . bak ’ )

79 CALL system ( ’ cp ’ // f i l e name // ’ ’ // t emp f i l e )

80 CALL system ( ’rm ’ // f i l e name )

81

82 DO 5000 WHILE ( n i t e r <= max iter )

83 i = 1

84 n i t e r = n i t e r+1
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85 c Star t Aswing Ana lys i s

86 CALL system ( ’ . / Aswing Scr ipt . sh temp ’ )

87

88 OPEN( uni t = 1 , f i l e = ’ Twis t Resu l t s ’ , STATUS=’OLD’ )

89 DO

90 READ (1 , ’ (A) ’ , IOSTAT=s ta t ) bu f f e r

91 IF ( stat <0) THEN

92 c Stat<0 => End o f F i l e

93 GOTO 1000

94 ELSE

95 IF ( bu f f e r ( 2 2 : 2 6 )==’Wing ’ ) THEN

96 c−−−− Read Heading Lines

97 READ (1 , ’ (A) ’ , IOSTAT=s ta t ) bu f f e r

98 READ (1 , ’ (A) ’ , IOSTAT=s ta t ) bu f f e r

99 READ (1 , ’ (A) ’ , IOSTAT=s ta t ) bu f f e r

100 DO

101 c−−−− Store a l l wing parameters in array wing data

102 READ (1 , ’ (A) ’ , IOSTAT=s ta t ) bu f f e r

103 IF ( bu f f e r ( 2 : 6 )==’ . . . . . ’ ) THEN

104 GOTO 1000

105 END IF

106 READ ( bu f f e r , ∗ ) ( wing data ( i , c o l ) , c o l =1 ,9)

107 i=i+1

108 END DO

109 END IF

110 END IF

111 END DO

112 1000 CLOSE (1)

113 n l in e w ing = i − 1

114

115 Delta Tw (1) = wing data (25 ,4 )

116 Delta Tw (2) = wing data (27 ,4 )

117 Delta Tw (3) = wing data (28 ,4 )

118 Delta Tw (4) = wing data (30 ,4 )

119 Delta Tw (5) = wing data (32 ,4 )

120 Delta Tw (6) = wing data (33 ,4 )

121 Delta Tw (7) = wing data (34 ,4 )

122 Delta Tw (8) = wing data (37 ,4 )

123 Delta Tw (9) = wing data (40 ,4 )

124 Delta Tw (10) = wing data (43 ,4 )

125 Delta Tw (11) = wing data (50 ,4 )

126

127 c Get I n i t i a l Twist (Tw0) from . asw f i l e
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128 i = 1

129 n l i n e = 0

130 OPEN( un i t = 2 , f i l e = temp f i l e , STATUS=’OLD’ )

131 DO

132 READ (2 , ’ (A) ’ , IOSTAT=s ta t ) bu f f e r

133 IF ( stat <0) THEN

134 c Stat<0 => End o f F i l e

135 GOTO 2000

136 ELSE

137 n l i n e = n l i n e+1

138 a sw f i l e ( n l i n e ) = bu f f e r

139 IF ( bu f f e r ( 1 : 4 ) == ’Wing ’ ) THEN

140 DO

141 n l i n e = n l i n e+1

142 READ (2 , ’ (A) ’ , IOSTAT=s ta t ) bu f f e r

143 a sw f i l e ( n l i n e ) = bu f f e r

144

145 IF (INDEX( bu f f e r , ’ tw i s t ’ ) .NE. 0) THEN

146 c−−−− Read Heading Lines

147 Tw loc (1 ) = n l i n e + 2

148 n l i n e = n l i n e+1

149 READ (2 , ’ (A) ’ , IOSTAT=s ta t ) bu f f e r

150 a sw f i l e ( n l i n e ) = bu f f e r

151

152 DO

153 n l i n e = n l i n e+1

154 READ (2 , ’ (A) ’ , IOSTAT=s ta t ) bu f f e r

155 a sw f i l e ( n l i n e ) = bu f f e r

156 IF (INDEX( bu f f e r , ’−−−−− ’ ) .NE. 0) THEN

157 Tw loc (2 ) = nl ine−1
158 GOTO 1500

159 END IF

160 READ ( bu f f e r , ∗ ) ( wing data ( i , c o l ) ,

161 & co l =1 ,2)

162 t ( i ) = wing data ( i , 1 )

163 Tw0( i ) = wing data ( i , 2 )

164 i=i+1

165 END DO

166 END IF

167 END DO

168 END IF

169 END IF

170 1500 END DO

102



171 2000 CLOSE (2)

172

173 Delta Tw (1) = 0

174 Delta Tw (2) = 0

175 Delta Tw (3) = 0

176 Tw = Delta Tw + Tw0

177 Tw0 mod = Tw Target − Tw + Tw0

178 c Wing Tip Convergence Check

179 Delta = ABS(Tw0 mod(11) − Tw0(11) )

180

181 c Write Tw0 mod to temp . asw f i l e

182 j = 1

183 OPEN (UNIT=3, FILE = temp f i l e , ACTION=”wr i t e ” , STATUS=” r ep l a c e ” )

184 DO i =1, n l i n e

185 IF ( i >= Tw loc (1 ) .AND. i <= Tw loc (2 ) ) THEN

186 WRITE(3 ,20 ) t ( j ) , Tw0 mod( j )

187 20 FORMAT (4X, F8 . 5 , 7X, F8 . 5 )

188 j = j+1

189 ELSE

190 WRITE(3 , ’ (A) ’ ) a sw f i l e ( i )

191 END IF

192 END DO

193 CLOSE (3)

194 c I t e r a t e un t i l convergence or max i t e r

195 IF ( Delta < conv ) THEN

196 GOTO 6000

197 END IF

198

199 5000 CONTINUE

200

201 6000 CALL system ( ’ cp ’ // t emp f i l e // ’ ’ // f i l e name )

202 CALL system ( ’rm ’ // t emp f i l e )

203 CALL system ( ’rm Twis t Resu l t s ’ )

204 WRITE(∗ ,∗ ) ’ Process stopped a f t e r ’ , n i t e r , ’ i t e r a t i o n s ’

205 WRITE(∗ ,∗ ) ’ Tip tw i s t change a f t e r l a s t i t e r a t i o n : ’ , Delta

206 STOP

207 END
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A.3 Laminate Failure Matlab Script

1

2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 %

4 % Laminate Fa i l u r e

5 % Sebas t i en Gauthier Perron

6 % January 2012

7 %

8 % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 % Desc r ip t i on :

10 % This s c r i p t i s used to f i nd the c r i t i c a l load (Nx) and

11 % c r i t i c a l s t r a i n ( Epsxx Cr ) o f a g iven laminate . I t w i l l a l s o

12 % return the c r i t i c a l ply ( Cr i t P ly ) and the f a i l u r e mode

13 % ( Fail Mode ) a s s o c i a t ed to i t .

14 %

15 % I t r e qu i r e s the in−plane s t r e s s a l l owab l e s and

16 % in format ion about the geometry and layup as input

17 % parameters .

18 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19

20 func t i on [ FI Max Mc Nx Cr i t P ly Cr i t Angle Fail Mode Epsxx Cr ]=

Lam Max Load(FTU1, FTU2, FSU12 , A Skins , Layup , M, W, H, Q)

21

22 FI Target = 1 . ;

23 Res idua l = 100 ;

24

25 nbply=s i z e (Layup )−1;
26 FI=ze ro s ( nbply ) ;

27

28 whi l e abs ( Res idual )>0.01

29

30 Nx=(M(1) /H) /W;

31 Ny=0;

32 Nxy=(M(3) /H) /W;

33 N=[Nx ;Ny ;Nxy ] ;

34 S t r a i n Sk in s = A Skins\N;

35 FI Max=0;

36

37 %Evaluate f a i l u r e index f o r each ply in the laminate

38 f o r i = 1 : nbply

39 Theta = Layup ( i +1 ,2) ∗3 .14159/180 ;
40 Qbar11 = Q(1 ,1 ) ∗ cos ( Theta ) ˆ4 + 2∗(Q(1 , 2 ) + 2∗Q(3 ,3 ) ) ∗( s i n (Theta )
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ˆ2) ∗( cos ( Theta ) ˆ2) + Q(2 , 2 ) ∗ s i n (Theta ) ˆ4 ;

41 Qbar12 = (Q(1 , 1 )+Q(2 , 2 )−4∗Q(3 ,3 ) ) ∗( s i n ( Theta ) ˆ2) ∗( cos ( Theta ) ˆ2)

+ Q(1 , 2 ) ∗ ( ( s i n (Theta ) ˆ4) + cos (Theta ) ˆ4) ;

42 Qbar22 = Q(1 ,1 ) ∗( s i n ( Theta ) ˆ4) + 2∗(Q(1 , 2 ) + 2∗Q(3 ,3 ) ) ∗( s i n (

Theta ) ˆ2) ∗( cos ( Theta ) ˆ2) + Q(2 , 2 ) ∗ cos ( Theta ) ˆ4 ;

43 Qbar16 = (Q(1 , 1 ) − Q(1 ,2 ) − 2∗Q(3 ,3 ) ) ∗ s i n (Theta ) ∗ cos ( Theta ) ˆ3 +

(Q(1 , 2 ) − Q(2 ,2 ) + 2∗Q(3 ,3 ) ) ∗( s i n ( Theta ) ˆ3) ∗ cos ( Theta ) ;

44 Qbar26 = (Q(1 , 1 ) − Q(1 ,2 ) − 2∗Q(3 ,3 ) ) ∗( s i n ( Theta ) ˆ3) ∗ cos ( Theta )

+ (Q(1 , 2 ) − Q(2 ,2 ) + 2∗Q(3 ,3 ) ) ∗ s i n (Theta ) ∗ cos ( Theta ) ˆ3 ;

45 Qbar66 = (Q(1 , 1 ) + Q(2 , 2 ) −2∗Q(1 ,2 ) −2∗Q(3 ,3 ) ) ∗( s i n ( Theta ) ˆ2) ∗(
cos ( Theta ) ˆ2) + Q(3 , 3 ) ∗( s i n (Theta ) ˆ4 + cos (Theta ) ˆ4) ;

46

47 % Compute S t r e s s e s in laminate and ply ax i s

48 Sigmaxx = Qbar11∗ S t r a i n Sk in s (1 ) + Qbar12∗ S t r a i n Sk in s (2 ) +

Qbar16∗ S t r a i n Sk in s (3 ) ;

49 Sigmayy = Qbar12∗ S t r a i n Sk in s (1 ) + Qbar22∗ S t r a i n Sk in s (2 ) +

Qbar26∗ S t r a i n Sk in s (3 ) ;

50 Sigmaxy = Qbar16∗ S t r a i n Sk in s (1 ) + Qbar26∗ S t r a i n Sk in s (2 ) +

Qbar66∗ S t r a i n Sk in s (3 ) ;

51 Sigma11 = ( cos (Theta ) ˆ2) ∗Sigmaxx + ( s i n (Theta ) ˆ2) ∗Sigmayy + 2∗
s i n (Theta ) ∗ cos ( Theta ) ∗Sigmaxy ;

52 Sigma22 = ( s i n (Theta ) ˆ2) ∗Sigmaxx + ( cos ( Theta ) ˆ2) ∗Sigmayy − 2∗
s i n (Theta ) ∗ cos ( Theta ) ∗Sigmaxy ;

53 Sigma12 = −s i n (Theta ) ∗ cos ( Theta ) ∗Sigmaxx + s in (Theta ) ∗ cos ( Theta )

∗Sigmayy + ( ( cos ( Theta ) ˆ2)−( s i n (Theta ) ˆ2) ) ∗Sigmaxy ;

54

55 % Compute f a i l u r e index based on Max S t r e s s C r i t e r i a

56 Max Stress (1 ) = abs ( Sigma11 ) /FTU1;

57 i f Sigma22 >=0

58 Max Stress (2 ) = Sigma22/FTU2;

59 e l s e

60 Max Stress (2 ) = abs ( Sigma22 ) /(FTU2) ;

61 end

62 Max Stress (3 ) = abs ( Sigma12 ) /FSU12 ;

63 FI ( i )=max(Max Stress ) ;

64

65 i f FI ( i )>FI Max

66 FI Max = FI ( i ) ;

67 Cr i t P ly = i ;

68 Cr i t Angle = Theta ∗180/3 .14159 ;
69 Epsxx Cr = St r a i n Sk in s (1 ) ;

70

71 %Fa i l u r e s Modes
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72 % 1 : Fiber Tension

73 % 2 : Matrix Cracking

74 % 3 : Shear

75

76 i f max( Max Stress )==Max Stress (1 )

77 Fail Mode=1;

78 e l s e i f max( Max Stress )==Max Stress (2 )

79 Fail Mode=2;

80 e l s e i f max( Max Stress )==Max Stress (3 )

81 Fail Mode=3;

82 end

83 end

84 end

85

86 % Compute r e s i d u a l and ad jus t bending moment i f needed

87 Res idua l = (FI Max−FI Target ) /FI Target ;

88 i f Res idual < −0.01
89 M(1)=M(1) ∗1 . 0 1 ;
90 e l s e i f Res idual >0.01

91 M(1)=M(1) ∗0 . 9 9 ;
92 end

93

94 % Compute Shear load as % of a x i a l load

95 %737

96 M(3) =0.1∗M(1) ;

97

98 %777

99 %M(3) =0.2∗M(1) ;

100 end

101 Mc=M(1) ;

102 end
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A.4 Matlab Script to Generate Aswing Input

1

2 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 %

4 % Aswing Beam St ruc tu ra l P rope r t i e s Input

5 % Sebas t i en Gauthier Perron

6 % January 2012

7 %

8 % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 % Desc r ip t i on :

10 % This s c r i p t ouputs the wing ’ s s t r u c t u r a l p r op e r t i e s in the format

r equ i r ed by Aswing .

11 % I t a l s o eva lua t e s the p r op e r t i e s a long the span o f the wing based on

the supp l i ed p r op e r t i e s at the root o f the wing .

12 % In order to do so , the meta l i c 737 and 777 s c a l i n g f a c t o r s are

provided

13 %

14 % INPUTS:

15 % − Beam’ s Bending S t i f f n e s s Matrix c a l c u l a t ed at the wing ’ s root

16 % − Wing he ight (H) and width (W) at the root

17 % − Wing layup at the root (Layup )

18 % − Ply th i c kne s s ( tp ly ) and mate r i a l dens i ty (Rho)

19 %

20 % OUTPUT: Aswing input text f i l e with the f o l l ow i ng beam p rop e r t i e s

a long the wing span :

21 % − t

22 % − mg, mgnn

23 % − Cshel l , Nshel l , A t she l l

24 % − EIcc , EInn , GJ, EA

25 % − EIcs

26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27

28 func t i on Write ASWING Input ( EIcc , EInn , EIcs , GJ, EA, Layup , W, H, tply ,

Rho)

29 k=0.001;

30 kEIcc=0;

31 kEInn=0;

32 kEIcs=0;

33 kGJ=0;

34 kEA=0;

35 kmg=0;

36 kmgnn=0;
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37 kCshe l l =0;

38 kNshe l l =0;

39 kAtshe l l =0;

40 %

41 nbply =s i z e (Layup ) − 1 ;

42 nbply = nbply (1 ) ;

43 t=tp ly ∗nbply ;

44 A= t ∗(2∗W + 2∗(H−2∗t ) ) ;
45 % mg Sca l i ng ( 1 . 6 6 ) to account f o r l e ad ing / t r a i l i n g edge , f l ap s ,

46 % actuato r s . . .

47 % mgnn Sca l i ng ( 2 . 5 )

48 mg root = A∗Rho∗9 . 8 1∗1 . 6 6 ;
49 Inn roo t = (H∗Wˆ3) /12 − (H−2∗t ) ∗ ( (W−2∗t ) ˆ3) /12 ;
50 mgnn root = Inn root ∗Rho ∗ 9 . 8 1 ∗ 2 . 5 ;
51 C sh e l l r o o t=W/2 ;

52 Nshe l l r o o t=H/2 ;

53 A t s h e l l r o o t = W∗H∗ t ;
54 whi l e kEIcc==0 | | kEInn==0 | | kEIcs==0 | | kGJ==0 | | kEA==0 | | kmg==0 | |

kmgnn==0

55 i f EIcc /k <10 && kEIcc==0

56 kEIcc=k ;

57 end

58 i f EInn/k <10 && kEInn==0

59 kEInn=k ;

60 end

61 i f EIcs /k <10 && kEIcs==0

62 kEIcs=k ;

63 end

64 i f GJ/k <10 && kGJ==0

65 kGJ=k ;

66 end

67 i f EA/k <10 && kEA==0

68 kEA=k ;

69 end

70 i f mg root/k<10 && kmg==0

71 kmg=k ;

72 end

73 i f mgnn root/k <10 && kmgnn==0

74 kmgnn=k ;

75 end

76 i f C sh e l l r o o t /k <10 && kCshe l l==0

77 kCshe l l=k ;

78 end
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79 i f N sh e l l r o o t /k <10 && kNshe l l==0

80 kNshe l l=k ;

81 end

82 i f A t s h e l l r o o t /k <10 && kAtshe l l==0

83 kAtshe l l=k ;

84 end

85 k=k ∗10 ;
86 end

87 EIcc=EIcc /kEIcc ;

88 EInn=EInn/kEInn ;

89 EIcs=EIcs /kEIcs ;

90 GJ=GJ/kGJ ;

91 EA=EA/kEA;

92 mg root=mg root/kmg ;

93 mgnn root=mgnn root/kmgnn ;

94 Csh e l l r o o t = Csh e l l r o o t / kCshe l l ;

95 Nsh e l l r o o t = Nshe l l r o o t / kNshe l l ;

96 A t s h e l l r o o t = At sh e l l r o o t / kAtshe l l ;

97 % 777−300ER S t i f f n e s s Sca l i ng Factor along wing span ( based on Meta l l i c

98 % ve r s i on )

99 % Assumes S t i f f n e s s p r op e r t i e s were eva luated at root o f wing .

100 % Could be imported from 2nd text f i l e ?

101 % 777−300ER Spanwise Coordinate d e f i n i t i o n ( t )

102 % tAswing (1 ) =0;

103 % tAswing (2 ) =3.048;

104 % tAswing (3 ) =3.048;

105 % tAswing (4 ) =5.31259;

106 % tAswing (5 ) =7.57718;

107 % tAswing (6 ) =9.84177;

108 % tAswing (7 ) =9.84177;

109 % tAswing (8 ) =15.0702;

110 % tAswing (9 ) =20.2986;

111 % tAswing (10) =25.5271;

112 % tAswing (11) =30.7555;

113 % % EIcc , EInn , EIcs Spanwise Sca l i ng Factors

114 % EI Ratio (1 ) =1.00;

115 % EI Ratio (2 ) =1.00;

116 % EI Ratio (3 ) =1.00;

117 % EI Ratio (4 ) =8.19E−01;
118 % EI Ratio (5 ) =6.38E−01;
119 % EI Ratio (6 ) =4.58E−01;
120 % EI Ratio (7 ) =4.58E−01;
121 % EI Ratio (8 ) =1.93E−01;
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122 % EI Ratio (9 ) =6.43E−02;
123 % EI Ratio (10) =1.4E−02;
124 % EI Ratio (11) =1.160E−03;
125 % % GJ Spanwise Sca l i ng Factors

126 % GJ Ratio (1 ) =1.00;

127 % GJ Ratio (2 ) =1.00;

128 % GJ Ratio (3 ) =1.00;

129 % GJ Ratio (4 ) =7.61E−01;
130 % GJ Ratio (5 ) =5.03E−01;
131 % GJ Ratio (6 ) =2.54E−01;
132 % GJ Ratio (7 ) =2.54E−01;
133 % GJ Ratio (8 ) =1.07E−01;
134 % GJ Ratio (9 ) =3.57E−02;
135 % GJ Ratio (10) =7.79E−03;
136 % GJ Ratio (11) =6.48E−04;
137 % % EA Spanwise Sca l i ng Factors

138 % EA Ratio (1 ) =1.00;

139 % EA Ratio (2 ) =1.00;

140 % EA Ratio (3 ) =1.00;

141 % EA Ratio (4 ) =9.27E−01;
142 % EA Ratio (5 ) =8.54E−01;
143 % EA Ratio (6 ) =7.81E−01;
144 % EA Ratio (7 ) =7.81E−01;
145 % EA Ratio (8 ) =5.08E−01;
146 % EA Ratio (9 ) =2.93E−01;
147 % EA Ratio (10) =1.37E−01;
148 % EA Ratio (11) =3.93E−02;
149 % % mg Spanwise Sca l i ng Factors

150 % mg Ratio (1 ) =1.00E+00;

151 % mg Ratio (2 ) =1.00E+00;

152 % mg Ratio (3 ) =1.00E+00;

153 % mg Ratio (4 ) =9.27E−01;
154 % mg Ratio (5 ) =8.54E−01;
155 % mg Ratio (6 ) =7.81E−01;
156 % mg Ratio (7 ) =7.81E−01;
157 % mg Ratio (8 ) =5.08E−01;
158 % mg Ratio (9 ) =2.93E−01;
159 % mg Ratio (10) =1.37E−01;
160 % mg Ratio (11) =3.93E−02;
161 % % Cshe l l & Nshe l l Spanwise Sca l i ng Factor

162 % Cshe l l Ra t i o (1 ) =1.00;

163 % Cshe l l Ra t i o (2 ) =1.00;

164 % Cshe l l Ra t i o (3 ) =1.00;
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165 % Cshe l l Ra t i o (4 ) =0.93;

166 % Cshe l l Ra t i o (5 ) =0.85;

167 % Cshe l l Ra t i o (6 ) =0.78;

168 % Cshe l l Ra t i o (7 ) =0.78;

169 % Cshe l l Ra t i o (8 ) =0.63;

170 % Cshe l l Ra t i o (9 ) =0.48;

171 % Cshe l l Ra t i o (10) =0.33;

172 % Cshe l l Ra t i o (11) =0.17;

173 % % Atshe l l S ca l i ng Factor

174 % Atshe l l Ra t i o (1 ) =1.00;

175 % Atshe l l Ra t i o (2 ) =1.00;

176 % Atshe l l Ra t i o (3 ) =1.00;

177 % Atshe l l Ra t i o (4 ) =0.88;

178 % Atshe l l Ra t i o (5 ) =0.73;

179 % Atshe l l Ra t i o (6 ) =0.55;

180 % Atshe l l Ra t i o (7 ) =0.55;

181 % Atshe l l Ra t i o (8 ) =0.29;

182 % Atshe l l Ra t i o (9 ) =0.13;

183 % Atshe l l Ra t i o (10) =0.04;

184 % Atshe l l Ra t i o (11) =0.01;

185 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
186 % 737−800 S t i f f n e s s Sca l i ng Factor along wing span ( based on Meta l l i c

187 % ve r s i on )

188 % % 737−800 Spanwise Coordinate d e f i n i t i o n ( t )

189 tAswing (1 ) =0;

190 tAswing (2 ) =1.8034;

191 tAswing (3 ) =1.8034;

192 tAswing (4 ) =2.801;

193 tAswing (5 ) =3.79859;

194 tAswing (6 ) =4.79619;

195 tAswing (7 ) =4.79619;

196 tAswing (8 ) =7.80432;

197 tAswing (9 ) =10.8125;

198 tAswing (10) =13.8206;

199 tAswing (11) =16.8287;

200 % EIcc , EInn , EIcs Spanwise Sca l i ng Factors

201 EI Ratio (1 ) =1.00;

202 EI Ratio (2 ) =1.00;

203 EI Ratio (3 ) =1.00;

204 EI Ratio (4 ) =8.12E−01;
205 EI Ratio (5 ) =6.24E−01;
206 EI Ratio (6 ) =4.37E−01;
207 EI Ratio (7 ) =4.37E−01;
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208 EI Ratio (8 ) =2.17E−01;
209 EI Ratio (9 ) =9.26E−02;
210 EI Ratio (10) =3.14E−02;
211 EI Ratio (11) =7.10E−03;
212 % GJ Spanwise Sca l i ng Factors

213 GJ Ratio (1 ) =1.00;

214 GJ Ratio (2 ) =1.00;

215 GJ Ratio (3 ) =1.00;

216 GJ Ratio (4 ) =7.62E−01;
217 GJ Ratio (5 ) =5.24E−01;
218 GJ Ratio (6 ) =2.87E−01;
219 GJ Ratio (7 ) =2.87E−01;
220 GJ Ratio (8 ) =1.42E−01;
221 GJ Ratio (9 ) =6.08E−02;
222 GJ Ratio (10) =2.06E−02;
223 GJ Ratio (11) =4.67E−03;
224 % EA Spanwise Sca l i ng Factors

225 EA Ratio (1 ) =1.00;

226 EA Ratio (2 ) =1.00;

227 EA Ratio (3 ) =1.00;

228 EA Ratio (4 ) =9.83E−01;
229 EA Ratio (5 ) =9.66E−01;
230 EA Ratio (6 ) =9.49E−01;
231 EA Ratio (7 ) =9.49E−01;
232 EA Ratio (8 ) =6.68E−01;
233 EA Ratio (9 ) =4.37E−01;
234 EA Ratio (10) =2.54E−01;
235 EA Ratio (11) =1.21E−01;
236 % mg Spanwise Sca l i ng Factors

237 mg Ratio (1 ) =1.00E+00;

238 mg Ratio (2 ) =1.00E+00;

239 mg Ratio (3 ) =1.00E+00;

240 mg Ratio (4 ) =9.83E−01;
241 mg Ratio (5 ) =9.66E−01;
242 mg Ratio (6 ) =9.49E−01;
243 mg Ratio (7 ) =9.49E−01;
244 mg Ratio (8 ) =6.68E−01;
245 mg Ratio (9 ) =4.37E−01;
246 mg Ratio (10) =2.54E−01;
247 mg Ratio (11) =1.21E−01;
248 % Cshe l l & Nshe l l Spanwise Sca l i ng Factor

249 Cshe l l Ra t i o (1 ) =1.00;

250 Cshe l l Ra t i o (2 ) =1.00;
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251 Cshe l l Ra t i o (3 ) =1.00;

252 Cshe l l Ra t i o (4 ) =0.90;

253 Cshe l l Ra t i o (5 ) =0.80;

254 Cshe l l Ra t i o (6 ) =0.70;

255 Cshe l l Ra t i o (7 ) =0.70;

256 Cshe l l Ra t i o (8 ) =0.59;

257 Cshe l l Ra t i o (9 ) =0.48;

258 Cshe l l Ra t i o (10) =0.36;

259 Cshe l l Ra t i o (11) =0.25;

260 % Atshe l l S ca l i ng Factor

261 At she l l Ra t i o (1 ) =1.00;

262 At she l l Ra t i o (2 ) =1.00;

263 At she l l Ra t i o (3 ) =1.00;

264 At she l l Ra t i o (4 ) =0.91;

265 At she l l Ra t i o (5 ) =0.80;

266 At she l l Ra t i o (6 ) =0.65;

267 At she l l Ra t i o (7 ) =0.65;

268 At she l l Ra t i o (8 ) =0.38;

269 At she l l Ra t i o (9 ) =0.20;

270 At she l l Ra t i o (10) =0.09;

271 At she l l Ra t i o (11) =0.03;

272 %

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

273 %Write Output to EIGJ . txt in ASWING format

274 s tack top=’ ’ ;

275 stack webs=’ ’ ;

276 nbply base=2;

277 Lam Repeat=nbply/ nbply base ;

278 f o r j =2:3

279 f o r i =2: nbply base+1

280 i f j==2

281 i f i==nbply base+1

282 p l y ang l e=s p r i n t f ( ’%2.0 f ’ , Layup ( i , j ) ) ;

283 e l s e

284 p l y ang l e=s p r i n t f ( ’%2.0 f / ’ , Layup ( i , j ) ) ;

285 end

286 s tack top= s t r c a t ( s tack top , p l y ang l e ) ;

287 e l s e

288 i f i==nbply base+1

289 p l y ang l e=s p r i n t f ( ’%2.0 f ’ , Layup ( i , j ) ) ;

290 e l s e

291 p l y ang l e=s p r i n t f ( ’%2.0 f / ’ , Layup ( i , j ) ) ;
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292 end

293 stack webs= s t r c a t ( stack webs , p l y ang l e ) ;

294 end

295 end

296 end

297 % use s p r i n t f to convert the numeric data to text , us ing %E

298 k s t r = s p r i n t f ( ’ ∗ %2.1E %2.1E %2.1E %2.1E %2.1E\ r \n ’

, 1 . 0 , kEIcc , kEInn , kGJ , kEA) ;

299 k str mg = s p r i n t f ( ’ ∗ %2.1E %2.1E %2.1E\ r \n ’ , 1 . 0 , kmg , kmgnn

) ;

300 k s t r C s h e l l = s p r i n t f ( ’ ∗ %2.1E %2.1E %2.1E %2.1E\ r \n ’

, 1 . 0 , kCshel l , kNshel l , kAtshe l l ) ;

301 % use s t r r e p to r ep l a c e Windows exponent p r e f i x with Unix 2 d i g i t s

Vers ion

302 k s t r = s t r r e p ( k s t r , ’E+0 ’ , ’E+’ ) ;

303 k s t r = s t r r e p ( k s t r , ’E−0 ’ , ’E− ’ ) ;

304 k str mg=s t r r e p ( k str mg , ’E+0 ’ , ’E+’ ) ;

305 k str mg=s t r r e p ( k str mg , ’E−0 ’ , ’E− ’ ) ;

306 k s t r C s h e l l=s t r r e p ( k s t r C sh e l l , ’E+0 ’ , ’E+’ ) ;

307 k s t r C s h e l l=s t r r e p ( k s t r C sh e l l , ’E−0 ’ , ’E− ’ ) ;

308 % Open and Write to t ext F i l e

309 Filename = s t r c a t ( ’ EIGJ ’ , num2str (Layup (2 , 2 ) ) , ’ ’ , num2str ( nbply ) , ’ . txt

’ ) ;

310 f i d = fopen ( Filename , ’w ’ ) ;

311 % Header / Desc r ip t i on o f Beam Dimensions

312 f p r i n t f ( f i d , ’# Beam Sect i on Prope r t i e s ( at Wing Root ) \ r \n ’ ) ;

313 f p r i n t f ( f i d , ’# Width : %3.2 f \ r \n ’ ,W) ;

314 f p r i n t f ( f i d , ’# Height : %3.2 f \ r \n ’ ,H) ;

315 f p r i n t f ( f i d , ’# Number o f p l i e s : %2.0 f \ r \n ’ , nbply ) ;

316 f p r i n t f ( f i d , ’# Wall Thickness : %2.1E\ r \n ’ , t ) ;

317 f p r i n t f ( f i d , ’# Stack ing Sequence (Top) : [%s ]%2.0 f \ r \n ’ , s tack top ,

Lam Repeat ) ;

318 f p r i n t f ( f i d , ’# Stack ing Sequence ( S ide s ) : [%s ]%2.0 f \ r \n ’ , stack webs ,

Lam Repeat ) ;

319 f p r i n t f ( f i d , ’#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\r \n ’ ) ;

320 f p r i n t f ( f i d , ’ t mg mgnn\ r \n ’ ) ;

321 f p r i n t f ( f i d , ’%s ’ , k str mg ) ;

322 f o r i =1:11

323 i f tAswing ( i )<10

324 f p r i n t f ( f i d , ’ % 7 .5 f %7.5 f %7.5 f \ r \n ’ , tAswing ( i ) ,

mg root∗mg Ratio ( i ) , mgnn root∗EI Ratio ( i ) ) ;

325 e l s e

326 f p r i n t f ( f i d , ’ %8.5 f %7.5 f %7.5 f \ r \n ’ , tAswing ( i ) ,

114



mg root∗mg Ratio ( i ) , mgnn root∗EI Ratio ( i ) ) ;

327 end

328 end

329 f p r i n t f ( f i d , ’#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\r \n ’ ) ;

330 f p r i n t f ( f i d , ’ t Cshe l l Nshe l l At she l l \ r \n ’ ) ;

331 f p r i n t f ( f i d , ’%s ’ , k s t r C s h e l l ) ;

332 f o r i =1:11

333 i f tAswing ( i )<10

334 f p r i n t f ( f i d , ’ % 7 .5 f %7.5 f %7.5 f %7.5 f \ r \n ’ ,

tAswing ( i ) , C sh e l l r o o t ∗Cshe l l Ra t i o ( i ) , N sh e l l r o o t ∗
Cshe l l Ra t i o ( i ) , A t s h e l l r o o t ∗Atshe l l Ra t i o ( i ) ) ;

335 e l s e

336 f p r i n t f ( f i d , ’ %8.5 f %7.5 f %7.5 f %7.5 f \ r \n ’ ,

tAswing ( i ) , C sh e l l r o o t ∗Cshe l l Ra t i o ( i ) , N sh e l l r o o t ∗
Cshe l l Ra t i o ( i ) , A t s h e l l r o o t ∗Atshe l l Ra t i o ( i ) ) ;

337 end

338 end

339 f p r i n t f ( f i d , ’#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\r \n ’ ) ;

340 f p r i n t f ( f i d , ’ t EIcc EInn GJ EA\ r
\n ’ ) ;

341 f p r i n t f ( f i d , ’%s ’ , k s t r ) ;

342 f o r i =1:11

343 i f tAswing ( i )<10

344 f p r i n t f ( f i d , ’ % 7 .5 f %7.5 f %7.5 f %7.5 f %7.5 f \
r \n ’ , tAswing ( i ) , EIcc∗EI Ratio ( i ) , EInn∗EI Ratio ( i ) , GJ∗
GJ Ratio ( i ) , EA∗EA Ratio ( i ) ) ;

345 e l s e

346 f p r i n t f ( f i d , ’ %8.5 f %7.5 f %7.5 f %7.5 f %7.5 f \ r
\n ’ , tAswing ( i ) , EIcc∗EI Ratio ( i ) , EInn∗EI Ratio ( i ) , GJ∗
GJ Ratio ( i ) , EA∗EA Ratio ( i ) ) ;

347 end

348 end

349 f p r i n t f ( f i d , ’#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\r \n ’ ) ;

350 f p r i n t f ( f i d , ’ t EIcs \ r \n ’ ) ;

351 k s t r = s p r i n t f ( ’ ∗ %2.1E %2.1E\ r \n ’ , 1 . 0 , kEIcs ) ;

352 k s t r = s t r r e p ( k s t r , ’E+0 ’ , ’E+’ ) ;

353 k s t r = s t r r e p ( k s t r , ’E−0 ’ , ’E− ’ ) ;

354 f p r i n t f ( f i d , ’%s ’ , k s t r ) ;

355 f o r i =1:10

356 i f tAswing(12− i )<10

357 f p r i n t f ( f i d , ’ %7.5 f %7.5 f \ r \n ’ , −tAswing(12− i ) ,−EIcs ∗
EI Ratio (12− i ) ) ;

358 e l s e
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359 f p r i n t f ( f i d , ’ %8.5 f %7.5 f \ r \n ’ , −tAswing(12− i ) ,−EIcs ∗
EI Ratio (12− i ) ) ;

360 end

361 end

362 f o r i =1:11

363 i f tAswing ( i )<10

364 f p r i n t f ( f i d , ’ %7.5 f %7.5 f \ r \n ’ , tAswing ( i ) , EIcs ∗
EI Ratio ( i ) ) ;

365 e l s e

366 f p r i n t f ( f i d , ’ %8.5 f %7.5 f \ r \n ’ , tAswing ( i ) , EIcs ∗
EI Ratio ( i ) ) ;

367 end

368 end

369 f c l o s e ( f i d ) ;

370 end
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Appendix B

Wing Critical Load Cases

This appendix presents the various plots which were used to identify the critical

load cases of the wings. The time-dependent data is plotted for every layup angles

simulated as well as every gust length. Those dynamic loads are also compared

against the static load cases in order to identify which one is more critical for each

wing design.

B.1 737

The following plots were generated from the 737 ASWING model.

B.1.1 737 Critical Gust Cases for Various Layup Angles

This section presents the dynamic gust response of the 737 wings by plotting the root

spanwise bending moment as a function of time for various gust lengths. For each

specific layup angle tested, a comparison between the coupled and uncoupled wing

responses is presented. The critical gust length can be identified for each wing design

by finding the peak bending moment on their respective charts. As seen on charts

B-1 to B-5, the critical gust length and peak bending moment change slightly due

to the variation of layup angles and the presence or not of coupling which affect the

wing’s overall stiffness.
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Figure B-1: 737 Bending moment ratio for various gust lengths, θ = 0◦.
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Figure B-2: 737 Bending moment ratio for various gust lengths, θ = 5◦.
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Figure B-3: 737 Bending moment ratio for various gust lengths, θ = 10◦.
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Figure B-4: 737 Bending moment ratio for various gust lengths, θ = 15◦.
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Figure B-5: 737 Bending moment ratio for various gust lengths, θ = 20◦.
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B.1.2 737 Static Versus Dynamic Critical Bending Moments

for Various Layup Angles

Figures B-6 to B-10 compare the limit static load increase to the critical gust case

for each 737 wing layup angle. On every graph, curves are plotted both for the

coupled and uncoupled wings, except for the θ = 0◦ wing since it is impossible to

generate coupling with that layup. Therefore, for each layup angle the critical load

case between the static or dynamic case can be identified. Whichever case generates

the highest bending moment is defined as the critical case for that particular wing

layup angle. This critical case can then be used to properly size the wing.
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Figure B-6: 737 Bending moment ratio for the critical gust and static load cases,
θ = 0◦.
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Figure B-7: 737 Bending moment ratio for the critical gust and static load cases,
θ = 5◦.
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Figure B-8: 737 Bending moment ratio for the critical gust and static load cases,
θ = 10◦.
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Figure B-9: 737 Bending moment ratio for the critical gust and static load cases,
θ = 15◦.
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Figure B-10: 737 Bending moment ratio for the critical gust and static load cases,
θ = 20◦.
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B.2 777

The following plots were generated from the 777 ASWING model.

B.2.1 777 Critical Gust Cases for Various Layup Angles

Just like the 737, the 777’s wing dynamic gust response also depends on the wing’s

overall stiffness. This effect can be seen on figures B-11 to B-15 by looking at the peak

bending moment and its associated gust length as the wing’s layup angle is changed.
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Figure B-11: 777 Bending moment ratio for various gust lengths, θ = 0◦.
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Figure B-12: 777 Bending moment ratio for various gust lengths, θ = 5◦.
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Figure B-13: 777 Bending moment ratio for various gust lengths, θ = 10◦.
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Figure B-14: 777 Bending moment ratio for various gust lengths, θ = 15◦.
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Figure B-15: 777 Bending moment ratio for various gust lengths, θ = 20◦.
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B.2.2 777 Static Versus Dynamic Critical Bending Moments

for Various Layup Angles

Similarly to the 737, figures B-16 to B-20 provide a comparison between the static

and dynamic bending moment of the 777 for each layup angle simulated. The impact

of structural coupling is also provided by plotting curves with and without coupling.

Ultimately, the critical load case can then be identified for every layup angle simulated

by finding the peak bending moment on each chart. This critical case can then be

used to properly size the wing.
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Figure B-16: 777 Bending moment ratio for the critical gust and static load cases,
θ = 0◦.
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Figure B-17: 777 Bending moment ratio for the critical gust and static load cases,
θ = 5◦.
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Figure B-18: 777 Bending moment ratio for the critical gust and static load cases,
θ = 10◦.

132



0,0 

0,5 

1,0 

1,5 

2,0 

2,5 

3,0 

0 1 2 3 4 5 6 7 

M /M1g 

Time (s) 

777 Wing Response to critical gust θ = 15 

H=200 (Coupling) 

H=300 (No Coupling) 

Limit Static Load (Coupling) 

Limit Static Load (No Coupling) 

Figure B-19: 777 Bending moment ratio for the critical gust and static load cases,
θ = 15◦.
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Figure B-20: 777 Bending moment ratio for the critical gust and static load cases,
θ = 20◦.
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