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ABSTRACT

Despite widespread concerns about the effects of anthropogenic noise on baleen
whales (suborder Mysticeti), we lack basic information about their auditory physiology
for comprehensive risk assessments. Hearing ranges and sensitivities could be measured
if customized equipment and methods were developed based on how baleen whales
receive sound. However, sound reception pathways in baleen whales are currently
unknown. This thesis presents an integrative approach to understanding hearing in
baleen whales through dissections, biomedical imaging, biochemical analyses, and
modeling sound propagation through a whale head using the Finite Element Method
(FEM). We focused on the minke whale (Balaenoptera acutorostrata) because it is one
of the smallest and most abundant mysticete species, reducing logistical difficulties for
dissections and experiments. We discovered a large, well-formed fat body extending
from the blubber region to the ears and contacting the ossicles. Although odontocetes, or
toothed whales, are thought to use specialized "acoustic fats" for sound reception, no
such tissues had been described for mysticetes to date. Our study indicates that the basic
morphology and biochemical composition of the minke whale "ear fats" are very
different from those of odontocete acoustic fats. However, the odontocete and mysticete
fatty tissues share some characteristics, such as being conserved even during starvation,
containing fewer dietary signals compared to blubber, and having well-defined
attachments to the tympano-periotic complex, which houses the middle and inner ears.
FE models of the whale head indicated that the ear fats caused a slight increase in the
total pressure magnitude by the ears, and this focusing effect could be attributed to the
low density and low sound speed of the ear fats in the models. Fatty tissues are known to
have lower densities and sound speeds than other types of soft tissues, which may explain
why they are an important component of the auditory system of odontocetes, and perhaps
mysticete cetaceans as well. In an aquatic habitat where the pinna and air-filled ear canal
are no longer effective at collecting and focusing so'und towards the ears, we propose that
both odontocete and mysticete cetaceans have incorporated fatty tissues into their
auditory systems for underwater sound reception.
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Title: Senior Scientist, Department of Biology, Woods Hole Oceanographic Institution
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Chapter 1: Introduction
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Humans are increasingly altering the world's oceans. Overfishing, pollution, and

ocean acidification are just a few of the anthropogenic threats that our oceans face today.

Over the past several years, however, another source of concern has been developing

among scientists, governments, and even the popular press: the effects of human-made

noise on marine animals. This issue has been highlighted for cetaceans in particular not

only because of their public appeal, but also because of their protected status and

importance of hearing for their survival. In the aquatic habitat where light attenuates

quickly, cetaceans evolved the ability to use sound for vital functions such as

communication, navigation, and feeding. Odontocetes, or toothed whales, have acquired

the ability to echolocate (McBride, 1947, in Scheville, 1956; Kellogg, 1958; Norris et al.,

1961). Such sophisticated, specialized biosonar systems have not been demonstrated in

mysticetes, or baleen whales, which is the other suborder of cetaceans. However,

mysticetes produce low frequency sounds, which can travel over hundreds of kilometers

in the ocean and perhaps farther in the Sound Fixing and Ranging channels ("deep sound

channels") of the ocean (Cummings and Thompson, 1971; Payne and Webb, 1971;

Tsuchiya et al., 2004).

There are many natural noise sources in the oceans, including crashing waves,

earthquakes, and biological sounds. However, anthropogenic noises are becoming more

ubiquitous. The most well-publicized of these noise sources is military sonar, which has

been linked to several mass-strandings of primarily beaked whales (Frantzis, 1998;

Balcomb and Claridge, 2001) and have evoked passionate responses from the public,

environmental groups, and scientists (e.g., Parsons et al., 2008). However, commercial

shipping is the dominant input of ambient noise in the oceans today, because of its

universal presence and emission of long ranging, low frequency noises (Figure 1.1;

Hildebrand, 2009). According to McDonald et al. (2006), there was a doubling of

commercial vessels in the world's oceans between 1965 and 2003, leading to a 2.5 to 3

dB increase per decade in low frequency noises below 50 Hz. Andrew et al. (2011)

showed data consistent with a 8-10 dB increase in traffic noise from the mid-1960's to

the present at multiple study sites, with a peak in the mid- 1990's.

10



Figure 1.1. Global shipping activity. (National Center for Ecological Analysis and
Synthesis, 2008. www.nceas.ucsb.edu/globalmarine/impacts)

The increased levels of low frequency anthropogenic noise are a particular

concern for baleen whales, which are thought to be sensitive to low-frequency sounds.

Many mysticete populations have already suffered drastic declines from human activities

such as whaling and could be further endangered if anthropogenic noise results in

behavioral disruption, hearing impairment, habitat abandonment, or reduced mating

opportunities. For example, anthropogenic noise may mask mysticete vocalizations and

reduce the range over which individuals can communicate with each other, compromising

the ability to find mates or initiate cooperative feeding behaviors (Payne and Webb,

1971; Clark et al., 2009). Recent studies have found that the critically endangered North

Atlantic right whales vocalize more loudly and at higher frequencies to compensate for

increased levels of low frequency ambient noise (Parks et al., 2007; Parks et al., 2011).

While the physiological costs of such efforts are unknown, there is also some evidence

that shipping noise is linked to elevated levels of stress hormones in right whales

(Rolland et al., 2012). Numerous studies have documented other responses of cetaceans

to anthropogenic noise (see Richardson et al., 1995; Nowacek et al., 2007).
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One major knowledge gap in the effort to assess and mitigate the effects of

human-made noise on baleen whales is the lack of knowledge about their auditory

systems, hearing ranges, and hearing sensitivities. No study has successfully measured

the auditory capacity of any mysticete species to date. This is in contrast to toothed

whales, including dolphins and porpoises, for which behavioral and electrophysiological

methods of testing hearing are well-established. In behavioral testing, a captive animal is

trained to produce a certain response if it detects a sound stimulus. This stimulus can be

altered in frequency or intensity to obtain a complete audiogram of the individual. This

method is commonly used for testing human hearing, although human subjects do not

require training and can verbally communicate the results. In electrophysiological testing,

electrodes are used to detect auditory evoked potentials (AEP) or changes in brain wave

patterns resulting from sound stimuli. As a sound stimulus of a particular frequency is

presented at lower and lower intensities, there is a point at which a differentiable AEP is

no longer detectable in the brain wave; this is the hearing threshold of the subject at the

frequency being tested (Campbell et al., 1977).

There are several reasons why these forms of hearing studies have not been

carried out on baleen whales. Baleen whales are rarely kept in captivity, have never been

trained, and thus are not good candidates for behavioral testing. Electrophysiological

testing is a potentially promising approach. The recent development of AEP techniques

for studying marine mammal hearing has significantly advanced our knowledge of what

many species hear. Two key advantages to using AEPs over conventional behavioral

hearing studies are that they do not require trained animals and they can be employed

outside of the laboratory. For example, AEPs have been used to successfully measure

odontocete hearing in capture-release scenarios and in stranded animals (e.g., Nachtigall

et al., 2005; Nachtigall et al., 2008; Finneran et al., 2009; Mann et al., 2010).

Although AEP testing is most likely the best method for obtaining accurate

hearing ranges and sensitivities of large whales, there are some hurdles that must be

overcome before it becomes a reality. Access to animals is a significant challenge; in

12



cases where stranded or entangled animals are used, these situations will be rare and

opportunistic. Even if there is a suitable opportunity, the Marine Mammal Protection Act

requires a permitting process that may be lengthy and result in a rejection. In addition to

these logistical challenges, another limitation for applying AEP techniques to baleen

whales is that we do not know how baleen whales receive sounds. Baleen whale heads

are very different from those of toothed whales, and there are large differences in both

their skull and soft tissue anatomies. Although we have a relatively good understanding

of the sound conduction pathways that channel sounds from the aquatic environment into

a toothed whale's inner ears, even basic principles, such as whether baleen whales use

soft tissue pathways or bone conduction to receive sounds, remain unclear. Such

background knowledge is essential for designing appropriate AEP equipment and

experimental setups for baleen whales.

This thesis aims to elucidate potential sound reception mechanisms in baleen

whales through an interdisciplinary study combining anatomical, biomedical,

biochemical, and engineering techniques. The minke whale (Balaenoptera

acutorostrata) is used as a model species because it is one of the smallest baleen whale

species, which reduces some of the logistical difficulties for dissections and experiments.

Minke whales are also closely related to the other whales in the Balaenoptera genus,

including endangered species such as the blue whale (Balaenoptera musculus), fin whale

(Balaenoptera physalus), and sei whale (Balaenoptera borealis). Therefore an in-depth

study of minke whales, which are relatively abundant and common in the world oceans,

will provide a foundation for future research on their less frequently encountered and less

tractable relatives. Results from this thesis will be an important first step towards

advancing our knowledge on mysticete auditory systems and developing an appropriate

knowledge base for effective conservation policies in the future.

13
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Chapter 2: The auditory anatomy of the minke whale

This chapter consists of the text and figures of a published article and is reprinted with
permission from The Anatomical Record: Yamato M, Ketten DR, Arruda J, Cramer S,
Moore K. 2012. The Auditory Anatomy of the Minke Whale (Balaenoptera
acutorostrata): A Potential Fatty Sound Reception Pathway in a Baleen Whale. The
Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, vol.
295: 991-998.
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Abstract

Cetaceans possess highly derived auditory systems adapted for underwater
hearing. Odontoceti (toothed whales) are thought to receive sound through specialized
fat bodies that contact the tympano-periotic complex, the bones housing the middle and
inner ears. However, sound reception pathways remain unknown in Mysticeti (baleen
whales), which have very different cranial anatomies compared to odontocetes. Here, we
report a potential fatty sound reception pathway in the minke whale (Balaenoptera
acutorostrata), a mysticete of the balaenopterid family. The cephalic anatomy of seven
minke whales was investigated using computerized tomography (CT) and magnetic
resonance imaging (MRI), verified through dissections. Findings include a large, well-
formed fat body lateral, dorsal, and posterior to the mandibular ramus and lateral to the
tympano-periotic complex. This fat body inserts into the tympano-periotic complex at
the lateral aperture between the tympanic and periotic bones and is in contact with the
ossicles. There is also a second, smaller body of fat found within the tympanic bone,
which contacts the ossicles as well. This is the first analysis of these fatty tissues'
association with the auditory structures in a mysticete, providing anatomical evidence
that fatty sound reception pathways may not be a unique feature of odontocete cetaceans.
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2.1. Introduction

The transition to aquatic life resulted in several modifications to the auditory

anatomy of cetaceans. Cetaceans lack external pinnae and the external auditory canal has

been reduced to a very narrow channel. The middle and inner ear migrated laterally out

from the skull, and are encased in the dense tympano-periotic complex (Hunter, 1787;

Eschricht and Reinhardt, 1866; Kernan, 1919). Other characteristics of the auditory

system are specific to each suborder. The gross auditory anatomy and hearing pathways

in Odontoceti (toothed whales) have been relatively well-described. In odontocetes, the

external auditory canal is considered vestigial (Reysenbach de Haan, 1957; Dudok Van

Heel, 1962; Norris, 1968; McCormick et al., 1970). Bone conduction is thought to play a

minor role because there is no osseous connection between the tympano-periotic complex

and the rest of the skull in most odontocete species (Claudius, 1858, in Yamada, 1953;

Ketten and Wartzok, 1990; Nummela et al., 2007). In addition, the air spaces around the

tympano-periotic complex are thought to provide acoustic insulation from the rest of the

skull, which may be important for directional hearing (Reysenbach de Haan, 1957).

A more likely mechanism for sound reception in odontocetes is via peri-

mandibular "acoustic" fat bodies that are in direct contact with the ears, including both

the tympanic and periotic bones (Norris, 1964; Ketten, 1994; Ketten, 1997; Ridgway,

1999; Cranford et al., 2010). While odontocetes receive sounds across various locations

on the head (Bullock et al., 1968; Brill, 1988; Mohl et al., 1999; Mooney et al., 2008;

Cranford et al., 2008a) these biochemically distinct fats are thought to act as a

preferential pathway of sound from the environment to the ears (Norris, 1964; Bullock et

al., 1968; Varanasi and Malins, 1971; Litchfield et al., 1975; Brill et al., 1988; Koopman

et al., 2006; Zahorodny et al., 2009).

These odontocete "acoustic fats" are composed of multiple lobes, including the

inner lobe filling the enlarged mandibular hiatus and the outer lobe covering the lateral

and ventral portions of the mandible (Norris, 1968; Ketten, 1994; Ketten, 1997; Ridgway,
1999). In addition to these two fat lobes, which are located anterior to the tympano-
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periotic complex, there is also increasing evidence for a third fat channel located lateral

to the tympano-periotic complex. In an electrophysiological study focused on striped

dolphins (Stenella coeruleoalba), Bullock et al. (1968) found that the lateral area near the

external auditory meatus opening was sensitive to low frequency sounds below 3 kHz.

Renaud and Popper (1975) also found that the region near the external auditory meatus

opening was more sensitive to lower frequency sounds (below 20 kHz) in a behavioral

study on bottlenose dolphins (Tursiops truncatus). Furthermore, Ketten (1994) provided

anatomical evidence for a distinct lateral fat channel by applying MRI techniques to

multiple odontocete species. Most recently, Popov et al. (2008) used auditory brainstem

response latencies to advance the hypothesis that there are two acoustic windows in the

bottlenose dolphin. The acoustic window was calculated to be near the external auditory

meatus opening at frequencies below 22 kHz, while sounds above 32 kHz were received

through the lower jaws.

The pathways of sound reception are unknown in Mysticeti (baleen whales) and

there have been no reports of sound-conducting fats similar to those of odontocetes. The

small opening to the external auditory meatus is visible on the surface, as in odontocetes.

However, researchers disagree on whether the auditory canal is continuous from the

opening of the external auditory meatus to the tympanic membrane and whether it is a

functional part of the auditory system (Carte and Macalister, 1868; Yamada, 1953). At

the end of the auditory canal is the "glove finger," an everted, extended, thickened

tympanic membrane, the function of which remains unclear (Lillie, 1910; Fraser and

Purves, 1960). This elongated glove finger is not found in odontocetes or any other

mammals. Another major difference between odontocete and mysticete ears is the

connection of the tympano-periotic complex with the skull. In mysticetes, the posterior

flange of the periotic bone is wedged against the squamosal and the exoccipital bones

(Yamada, 1948; Fig. 2.1). The anterior flange of the periotic is also firmly embedded in

the squamosal bone, reducing the acoustic isolation of the tympano-periotic complex.

Bone conduction has not been dismissed as a potential sound reception pathway in baleen

whales (Ketten, 1992; Ketten, 2000).
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Figure 2.1. Photograph of a
minke whale skull (B-acu2 1; not
part of our study). (a) Ventral
view of the skull, where the
mandibles have been removed.
The tympanic bone has been
removed on the right side of the
animal (left side of the
photograph) to expose the
periotic bone. (b) Enlarged view
of the right ear showing the
periotic bone, which is firmly
embedded in the skull.
Abbreviations: T, tympanic; P,
periotic; E, exoccipital; Sq,
squamosal; Pal, palatine; Max,
maxilla; PF, posterior flange of
the periotic.
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Advancing our understanding of sound reception mechanisms in mysticetes

requires a thorough exploration of both the bone and soft tissue anatomy surrounding the

ear. However, the study of soft tissues in mysticetes is particularly difficult due to the

rarity of adequate specimens and the logistics of dissecting large animals, often on

beaches. This study aimed to overcome these challenges in two ways. First, we focused

on the minke whale (Balaenoptera acutorostrata), one of the smallest and most abundant

mysticete species. Second, we used an integrative approach to studying the auditory

anatomy through a combination of dissection, computerized tomography (CT), and

magnetic resonance imaging (MRI). While distortion of tissues is inevitable during

dissection, biomedical imaging techniques such as CT and MRI provide visualizations of

internal structures in situ, preserving their geometries and relative positions. This is the

first application of these medical imaging techniques for the study of a mysticete head

and auditory system, providing an unprecedented view of the internal anatomy of these

animals.

2.2. Materials and Methods

2.2.1. Specimens

Six complete minke whale heads and one partial minke whale head were obtained

from strandings in the Northeast region of the United States. The life history class /

category, length, sex, carcass condition, and stranding location of each individual are

given in Table 2.1. All complete heads were either examined fresh or frozen and kept in

a -20*C freezer with no automatic thaw cycles to prevent freeze-thaw artifacts. Frozen

heads were thawed prior to dissection. The partial head, B-acul7, was fixed in formalin.
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Table 2.1. Minke whales used in this study

Specimen ID L ato Length Sex Cadsn* Stranding locationcategory Cniin

B-acu13 Sub-adult 389 cm M 3 Wellfleet, MA

B-acu15 Sub-adult 426 cm M 2 Sandwich, MA

B-acu17 Sub-adult 417 cm F 2 Brooklyn, NY

B-acu18 Sub-adult 430 cm F 3 Truro, MA

B-acu19 Sub-adult 465 cm F 3 Orleans, MA

B-acu22 Sub-adult 530 cm M 3 Vineyard Sound, MA

B-acu23 Sub-adult 523 cm M 3 Wellfleet, MA

* 2: Fresh dead; 3: moderate decomposition.

2.2.2. CT and MRI

Heads were CT scanned at 3 mm slice thickness for the whole head and re-

scanned at 0.1 mm slice thickness through the ear region with a Siemens Volume Zoom

scanner at the Woods Hole Oceanographic Institution's Computerized Scanning and

Imaging lab. In two cases where the whole head did not fit into the CT gantry (B-acul 8

and B-acul9), the mandible was removed from one side of the head. Two specimens (B-

acu22 and B-acu23) were too large to scan even without the mandibles. Since a

reduction in tissue bulk leads to improved image quality, one of the heads (B-acul9) was

trimmed to the left ear region and re-scanned. The block of tissue included the left

tympano-periotic complex and surrounding bones of the skull in addition to soft tissues

extending laterally to the blubber and ventrally almost to the attachment of the mandibles.
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Tympano-periotic complexes were subsequently extracted from the heads by

detaching the posterior flange of the periotic bone and then cutting through the squamosal

bone to free the tympano-periotic complex. These isolated tympano-periotic complexes

were scanned by CT at 0.5 mm slice thickness. In addition, the left tympano-periotic

complex of B-acu 17 was re-scanned at the MRI unit at the Massachusetts Eye and Ear

Infirmary in Boston, MA. While CT uses X-ray attenuation and is superior for

distinguishing between air, soft tissue, and bone, MRI uses proton density and relaxation

phenomena, making it well-suited for differentiating among soft, hydrated tissues

(Bushberg et al., 2002).

2.2.3. Three-dimensional Reconstructions

The internal structures of the whole minke whale head and extracted ears were

reconstructed using three-dimensional visualization software AMIRA@ v.5.2.2.

Individual tissues were segmented using both manual selection and automated

segmentation tools within AMIRA, which is more reliable than using just automated

thresholding techniques (Cranford et al., 2008b). The CT scans from B-acul3 were used

as the primary dataset since it was the smallest specimen, resulting in the best image

quality. Data from CT scanning and dissections of all specimens were used to verify the

tissue boundaries in B-acul3. A separate reconstruction was also done for the smaller

section around the left ear of B-acul9.

2.2.4. Dissection

Photo-documented dissections took place at the Woods Hole Oceanographic

Institution's marine mammal necropsy facility and were used to verify the tissue

boundaries of the three-dimensional reconstructions. The auditory region was

approached from the ventral side in all specimens except for B-acul 5, which was
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dissected from the posterior of the head, and B-acu 17, which had already been dissected

to expose the ear region when it was received.

From the ventral side, the mandibles were removed by cutting as close to the bone

as possible. Investigation of the soft-tissue anatomy was followed by extraction of the

tympano-periotic complex, which is a technically challenging procedure in mysticetes

because the fragile connections between the periotic and tympanic bones are easily

broken during attempts to dislodge the tympano-periotic complex from the skull. Once

all soft tissues were removed from the area, the posterior flange was detached using an

oscillating autopsy saw. The anterior flange of the periotic was freed using bone shears

by incrementally chipping the thin sheet of squamosal bone lateral to the tympanic bone.

Severing the soft tissue connections from inside the braincase helped to loosen the

tympano-periotic complex as well.

2.3. Results

In all minke whales examined, there was a distinct, de-pigmented (white) line on

the epidermis projecting posteriorly from the aperture of the external auditory meatus.

This marker is rarely, if ever, mentioned in the literature but would be helpful in locating

the minuscule external auditory meatus. The auditory canal appeared to be continuous

from its external opening to the glove finger, though winding and narrow.

The CT images showed a large, well-formed fat body lateral, dorsal, and posterior

to the mandibular ramus, ventral to the squamosal bone, and lateral to the tympano-

periotic complex. This fat body will be referred to as "ear fat" (Fig. 2.2). Preliminary

results from lipid extractions on ear fat tissues suggest that some regions are made up of

> 80 % lipid by wet weight (Yamato et al., 2011). The CT images and dissections

indicated that the ear fat bundle became more fibrous ventrally and is integrated with the

fibrous joint with the mandible. The posterior portion of the ear fat is also more fibrous,
affording an attachment to the posterior margin of the squamosal bone.
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Fig. 2.2. Three-dimensional reconstructions
showing the contact between the ear fats and
the tympano-periotic complex (ears) in the
minke whale. The mandibles are still
attached. (a) Ventral view. (b) Posterior view.
Yellow, ear fats; purple, tympanoperiotic
complex; white, other bones.

From the ventral perspective, the ear fat has a somewhat triangular shape with the

three prominences contacting the blubber region (lateral), tympano-periotic complex

(medial), and the mandible (anterior; Fig. 2.2). Thus, a portion of the ear fat extends

from the blubber region to the tympano-periotic complex (Fig. 2.3). The anterior portion

of the ear fat is well removed from the blubber layer and is adjacent to muscle. The ear

fat attaches to the tympano-periotic complex at the lateral aperture between the tympanic

and periotic bones, inserting into the space that Mead and Fordyce (2009) term the

"triangular opening" (Figs. 2.2 - 2.5). Although direct contact with the glove finger

could not be determined, the ear fat is pressed against an area of the tympano-periotic

complex including the ventral portion of the glove finger. At the entry to the middle ear,

the ear fat contacts the malleus (Fig. 2.4).
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Figure 2.3. Posterior view of the partially dissected left ear region of Bacul9. (a) Axial
CT image showing the ear fat extending from the blubber region to the tympanoperiotic
complex (ears). Most of the blubber has been trimmed, but the remaining parts can be
seen on the far left side of the image. The collagenous padding is covering the ventral
portion of the tympanic bone. (b) Three-dimensional reconstruction. Yellow, ear fats;
blue, periotic; red, tympanic. Abbreviations: T, tympanic; P, periotic; Sq, squamosal.

Figure 2.4. Images of the left tympano-periotic complex of B-acul7 showing the ear fat
inserting into the ears at the lateral aperture between the tympanic and periotic bones (left
side of the images) and then attaching to the malleus. The smaller fat body within the
tympanic bone is also shown. (a) CT and (b) MRI. Abbreviations: T, tympanic; P,
periotic; M, malleus; C, cochlea.
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Figure 2.5. Medial view of the left tympanoperiotic complex. (a) Photograph from B-
acu22. The posterior flange of the periotic has been removed to facilitate extraction. (b)
Three-dimensional reconstruction for B-acul 7 in approximately the same orientation as
(a). The ear fat inserts into the triangular opening, which is indicated by an asterisk. (c)
Same reconstruction as (b) with the tympanic and periotic bones made transparent. Blue,
periotic; red, tympanic; green, malleus; yellow, incus; purple, stapes; gray, cochlea.

Within the middle ear space, the malleus also contacts a smaller fat pad attached

to the inner wall of the tympanic bone, adjacent to the base of the glove finger (Fig. 2.4).

The CT and MRI of the tympano-periotic complex show these structures clearly and they

are readily visible on careful dissection. The malleus was attached to the inside of the

glove finger by a strong ligamentous connection, consistent with previous reports (Lillie,

1910). While the smaller fat pad attaches to the base of the glove finger inside the

tympano-periotic complex, neither of the fat bodies extend into the distal regions of the

internal surface of the glove finger.

The tympanic bone was covered in a thick, dense, white padding composed of

collagenous tissues on all sides except for the dorsal aspect (where the periotic is) and the

lateral aspect, at the insertion of the ear fat into the tympano-periotic complex (Fig. 2.3).

The innermost layer of the padding was somewhat fatty, loosely adhering to the ventral

surface of the tympanic bone. The outer portion of the padding contained irregularly

dispersed cavities. The thickest portion of the padding was approximately 5 cm deep.
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2.4. Discussion

Sound reception in terrestrial mammals involves an air-filled outer ear. In

odontocetes, which receive sound under water, the air-filled ear canal has been replaced

by multiple lobes of fatty tissues leading to the tympano-periotic complex (Norris, 1968).

Two of the fat lobes are oriented anteriorly from the ears, including the inner fats filling

the enlarged mandibular hiatus and the outer fats covering the lateral and ventral portions

of the mandible (Ketten, 1994). These two anterior lobes are separated by the mandible,

which has a thinned region termed the "pan bone" (Norris, 1968). While Norris (1968)

states that this "thin bone is transparent to the sounds used by porpoises," the precise role

of the pan bone in odontocete sound reception is still unclear (Ketten, 2000; Cranford et

al., 2008a). In addition to the inner fat body and the outer fat body, a third fat lobe is

located lateral to the tympano-periotic complex and is thought to be a better sound

reception pathway for lower frequency sounds (Bullock et al., 1968; Renaud and Popper,

1975; Popov et al., 1990; Ketten, 1994; Ketten, 1997; Popov et al., 2008). All fatty lobes

have well-defined connections with the tympano-periotic complex.

The mechanism for sound reception in mysticetes is currently unknown and no

"acoustic fats" have been reported in mysticetes to date. However, our anatomical

observations indicate that mysticetes also possess fat bodies associated with their ears.

The contact point between the minke whale ear fat and the tympano-periotic complex is

similar to the area of contact between odontocete acoustic fats and their tympano-periotic

complex. While the odontocete acoustic fats contact a larger surface area of the

tympano-periotic complex, the minke whale ear fats taper to insert into the "triangular

opening" (Mead and Fordyce, 2009) of the tympano-periotic complex. Inside the

tympano-periotic complex, the ear fats contact the ossicles. Laterally, the ear fat extends

from the ossicles to the blubber region. Thus, the ear fats may provide a direct pathway

for sound to reach the ossicles and the inner ear.

While odontocete acoustic fats are composed of both anteriorly-oriented and

laterally-oriented fat lobes, an exclusively lateral sound reception pathway in baleen
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whales is appealing. Baleen whales do not have an enlarged mandibular hiatus to house

fats with any acoustic function, or a thin "pan bone" region in the mandible.

Balaenopterid whales like the minke whale also lunge-feed, dropping their mandibles by

almost 90 degrees. While the ear fats would certainly be distorted during feeding, an

anteriorly oriented sound reception pathway along the mandibles would be even more

displaced.

The location of the ear fats somewhat overlaps with the area of the temporo-

mandibular joint, which is currently being addressed in a separate study. Analogous to

the multi-purpose odontocete mandible, which is involved in both feeding and sound

reception, it is possible that the mysticete ear fat is involved in other functions besides

sound reception. In fact, the existence of some fatty tissue in this area of the head had

been reported previously in the context of the temporo-mandibular joint (Hunter, 1787;

Beauregard, 1882; Lambertsen et al., 1995). However, the relationship between this fatty

tissue and the ears has never been explored. Interestingly, Yamada (1953) briefly noted

that "similar tissue structures [as odontocetes] are seen in the impression in front of the

sigmoid process" (which is between the triangular opening and the glove finger on the

tympanic bone) in his study of blue (Balaenoptera musculus), sei (Balaenoptera borealis),

and fin (Balaenoptera physalus) whales. However, he did not give a description of the

tissue and it is not clear whether he is referring to the ear fat reported here. Furthermore,

Yamada did not agree with a soft-tissue sound reception pathway in cetaceans and his

work pre-dated Norris's theory on odontocete sound reception. Thus, ours is the first

study to describe the fat bodies located lateral to the tympano-periotic complex as a

potential sound reception pathway in mysticetes.

Similar to odontocetes, the minke whale ear canal is narrow, winding, and most

likely a vestigial part of the auditory system. Although we propose the ear fats to be a

primary sound reception pathway in the minke whale, it is also possible that additional

mechanisms of sound reception may exist in baleen whales. For example, vibrations of

the whole skull could cause differential motion between the periotic bone, which is firmly

30



attached to the skull, and the ossicles. However, this bone conduction mechanism is less

suited to produce sound localization cues compared to the proposed soft-tissue sound

reception pathway. It is noteworthy that in some beaked whale species (Ziphiidae) and

the sperm whale (Physeteridae), the tympano-periotic complex also maintains a firm,

osseous connection with the skull (Yamada, 1953). Yet, the primary sound reception

pathways are considered to be through soft tissues for these species (Ketten and Wartzok,

1990; Ketten, 2000). Interestingly, in a preliminary study, the area of ear fat attachment

in the minke whale tympanic bone (thin portion near the triangular opening) was

stimulated at 40 nm amplitude with frequencies of 20 Hz - 50 kHz using a piezoelectric

stack to simulate incoming sound. This resulted in a movement of the stapes at the oval

window, the input to the cochlea (Tubelli et al., 2012; A. Zosuls, personal

communication).

An additional finding is that the majority of the tympanic bone is surrounded by a

thick, collagenous padding except laterally, at the point of insertion of the ear fat, and

dorsally, where the periotic bone is found. Odontocete tympanic bones are also partially

covered by a fibrous padding, although it is much less developed than the padding in the

minke whale. The same padding was described in a humpback whale (Megaptera

novaeangliae) by Lillie (1915) as having an inner layer comprised of fatty tissue and

yellow elastic tissue, and an outer layer comprised of spongy tissue with air cavities.

Such coloration and distinct boundaries between tissue layers could not be seen in the

minke whale specimen, but some cavities could be seen on the outer portion of the

padding. It was unclear whether these cavities were filled with air. Yamada's (1948)

description of the padding in the fin whale and the blue whale more closely match our

observations. He describes the padding as a "white, thick, and hard layer of connective

tissue" which is fibrous but is loosely joined to the surface of the tympanic bone because

of a fatty inner layer. While this collagenous padding may be protecting the tympanic

bone from external stresses, it may also impair sound transmission of signals from

locations other than the ear fat especially if the small cavities are air-filled in vivo, as
described by Lillie (1915).
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Preliminary investigations of the fin whale and the humpback whale indicate that

they have similar ear fat anatomies as the minke whale. Therefore, we hypothesize that

the ear fats act as an important sound reception pathway in at least the balaenopterid

family. It would be interesting to examine the soft-tissue anatomy surrounding the ears

of balaenid whales, such as the North Atlantic right whale (Eubalaena glacialis) and the

bowhead whale (Balaena mysticetus), which are skim feeders and have very different

temporo-mandibular anatomies compared to the lunge-feeding balaenopterids (Eschricht

and Reinhardt, 1866; Lambertsen et al., 2005).

Although there are many unanswered questions regarding mysticete hearing, our

study suggests that fatty sound reception pathways may also exist in mysticete cetaceans.

The lateral orientation of the ear fats, combined with vocalization and anatomical data

indicating that mysticetes are likely to hear at low frequencies (Ketten, 2000), suggest

that the mysticete ear fats could be analogous to the lateral low-frequency sound

reception pathway found in some odontocete species (Fig. 2.6). It is hypothesized that

the mysticete ear fats and odontocete acoustic fats share a common evolutionary origin

and developed into a more sophisticated, multi-lobed structure specialized for high-

frequency hearing and echolocation in odontocetes. Although physiological validation

studies are not yet feasible for most mysticete species, future work stemming from our

anatomical study could potentially lead to a unified theory of underwater sound reception

in all cetaceans.
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Fig. 2.6. (a) Lateral view of the minke
whale ear fat (yellow). (b) Lateral
view of the bottlenose dolphin acoustic
fats, from Ketten et al. (1999). The
fatty lobe closest to the ears represents
the lateral fat channel, which is more
sensitive to lower frequency sounds.
Orange, acoustic fats; red, tympano-
periotic complex.
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Abstract

Cetaceans possess highly derived auditory systems adapted for underwater
hearing. Odontocetes, or toothed whales, are thought to receive sound through
specialized fat bodies associated with their lower jaws (Norris, 1964; Bullock et al., 1968;
Norris and Harvey, 1974; Brill et al., 1988). These "acoustic fats" have very unusual
chemical compositions, comprised of endogenously synthesized short, branched chain
fatty acids and fatty alcohols within triacylglycerols and wax esters (Varanasi and Malins,
1970a). These acoustic fats and hearing mechanisms in odontocetes are relatively well
studied. In contrast, virtually nothing is known about hearing in mysticetes, or baleen
whales. Yamato et al. (2012) reported the discovery of a large, well-formed fat body
which extends from the blubber region to the ears of the minke whale (Balaenoptera
acutorostrata). These "ear fats" attach to the tympano-periotic complex and contact the
ossicles. Preliminary investigations of the fin whale (Balaenopteraphysalus) also
revealed the presence of ear fats (Yamato et al., 2012). This study compares the
morphology and biochemical composition of these newly described fat bodies in minke
and fin whales with the acoustic fats of several odontocete species, including the
bottlenosed dolphin (Tursiops truncatus), harbor porpoise (Phocoena phocoena), beluga
whale (Delphinapterus leucas), and pygmy sperm whale (Kogia breviceps). The
differences between the odontocete acoustic fats and mysticete ear fats were immediately
apparent: ear fats do not have a multi-lobed structure, do not fill the mandibular canals,
and are made up of typical mammalian lipids. However, acoustic fats and ear fats shared
several potentially important characteristics, such as retaining their lipids even during
starvation, containing fewer dietary signals, and being composed of fats, which have
reduced sound speeds compared to surrounding non-fatty tissues (Duck, 1990).
Furthermore, the acoustic fats of odontocetes are incredibly diverse in both morphology
and lipid composition. Thus, fatty tissues may not be restricted to a certain type of lipid
composition or morphological form to have an acoustic function. It is hypothesized that
both odontocete and mysticete cetaceans evolved to use fatty tissues for underwater
sound reception, with the ear fats representing a less biochemically sophisticated form of
"acoustic" fat.
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3.1. Introduction

Cetacean ears are very different from terrestrial mammalian ears in several ways.

Cetaceans have lost the external pinna and the ear canal has been reduced to a narrow,

sometimes plugged channel. The bones containing the middle and inner ear structures

form the tympano-periotic complex and are external to the skull (Hunter, 1787; Eschricht

and Reinhardt, 1866; Kernan, 1919). The increased separation between the skull and ears

may reduce bone conduction, helping with directional hearing under water (Claudius,

1858, in Yamada, 1953).

The mechanism of sound reception in cetaceans has been debated for centuries,

and continues to be debated today. However, Norris (1964) made a major contribution

by proposing the "jaw hearing" hypothesis for odontocetes. Odontocetes possess unusual

lower jaw bones, which have an enlarged mandibular hiatus filled with fats. These fats

also cover the outer portions of the mandible and contact the ears. Norris hypothesized

that these derived mandibles and fat bodies may be involved in sound reception. It had

been noted earlier that physical properties of sound in water are similar to those in body

tissues (Reysenbach de Haan, 1957), so that the ear canal is not well-suited for

underwater sound reception. However, Norris suggested that the fat bodies associated

with the mandibles act as a preferential pathway for sound to get from the aquatic

environment to the ears (Norris, 1964; Norris, 1968). While the detailed mechanisms are

still unclear, Norris's theory has been subsequently validated by behavioral, physiological,
and acoustical studies (e.g., Bullock et al., 1968; Brill et al., 1988; Norris and Harvey,

1974). In addition to the anteriorly oriented fat lobes described by Norris (1964), there is
also anatomical and physiological evidence for another fat lobe located lateral to the ears

in some odontocete species, which may be a better sound reception pathway for lower

frequency sounds (Bullock et al., 1968; Renaud and Popper, 1975; Popov and Supin,
1990; Ketten, 2000; Popov et al., 2008).

These "acoustic fats" involved with odontocete sound reception are an example of
a structural fatty tissue, as opposed to a storage tissue. Whereas the volume and lipid
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composition of storage fat, like human abdominal fat marine mammal blubber, generally

changes with body condition and diet, structural fats, such as those found in the feet,

joints, and eye sockets, are metabolically inert and do not expand during obesity or shrink

during fasting (Pond, 1998). These structural fats also contain fewer dietary signals than

storage tissues. The fatty melon, which is part of the sound emission pathway, is another

structural "acoustic fat" in odontocetes. Cranford et al. (1996) noted that even starving

dolphins retain a completely robust melon, and Koopman et al. (2003) has shown that the

lipid content and fatty acid composition of the melon is stable across body conditions,

while the blubber lipids show significant differences between robust and emaciated

individuals.

Odontocete acoustic fats are particularly unique in that they are comprised of

endogenously synthesized lipids that are not typically found in mammalian adipose

tissues. Although typical mammalian fat is primarily composed of triacylglycerols, with

individual fatty acids having chain lengths of 14 - 22 carbon atoms (Pond, 1998),

odontocete acoustic fats also contain wax esters and high levels of short, branched chain

fatty acids and fatty alcohols with 5-16 carbons (Varanasi and Malins, 1970a; Varanasi

and Malins, 1970b; Varanasi and Malins, 1971; Morris, 1986; Litchfield and Greenberg,

1974; Litchfield et al., 1975). These lipids are arranged in a specific pattern, in which the

wax esters and shorter, branched fatty acids are found in the highest quantities in the

inner core (Litchfield et al., 1973; Wedmid et al., 1973; Morris, 1975; Varanasi et al.,

1975; Blomberg and Lindholm, 1976; Koopman et al., 2006). Because sound travels

more slowly through wax esters and shorter, branched fatty acids (Guow and Vlugter,

1976; Hustad et al., 1971), it has been hypothesized that the topographical arrangement of

these lipids serves to focus sound as it bends towards regions of minimum sound speed in

the outgoing echolocation beam for the melon and the incoming pathway through the

perimandibular fats to the ears. Measurements of sound speed through different regions

of the melon have supported this notion that the acoustic fats function as a "waveguide"

or "sound channel" (Norris and Harvey, 1974; Blomberg and Lindholm, 1976; Goold and
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Clarke, 2000), although recent studies indicate that there may be subtle variations in these

patterns (Goold and Clarke, 2000; Zahorodny et al., 2009).

It is important to note that many odontocete species also deposit short, branched

fatty acids and wax esters in the blubber in varying quantities (Varanasi and Malins,

1971; Litchfield et al., 1975; Litchfield et al., 1976; Koopman et al., 2003; Koopman,

2007). For example, sperm whale and beaked whale (kogiids, physterids, and ziphiids)

blubber is made up of primarily wax esters, whereas the melon and jaw fats contain high

levels (>50%) of triacylglycerols (Litchfield et al., 1975; Litchfield et al., 1976;

Koopman et al., 2006; Koopman, 2007). Studies comparing the lipids of blubber and

acoustic fats of odontocetes have shown that the fatty acids found in the acoustic fats

contain higher levels of endogenous lipids and consistently have lower average chain

lengths than those found in the blubber (Ackman et al., 1971; Varanasi and Malins, 1971;

Litchfield et al., 1975; Litchfield et al., 1976; Koopman et al., 2003).

Although it is widely accepted that specialized fat bodies are involved in

odontocete sound reception, sound reception pathways in mysticete cetaceans (baleen

whales) remain unknown. Mysticetes possess very different cranial morphologies

compared to odontocetes and the types of sounds used by mysticetes and odontocetes

differ greatly. However, recent investigations found well-formed fat bodies associated

with the tympano-periotic complex of the minke whale (Balaenoptera acutorostrata;

Yamato et al., 2012). These fat bodies were referred to as "ear fats" rather than "acoustic

fats", because their function has not yet been demonstrated.

The purpose of this study is to compare the morphology and lipid composition of

these newly described ear fats in minke and fin whales with the acoustic fats of

odontocetes. Previous studies have indicated that there are major interspecific structural

differences in cetacean ears (Ketten, 1994; Ketten, 1997). Therefore, we examined the

morphology of mysticete ear fats and odontocete perimandibular acoustic fats using CT

data. (CT has been used to examine the morphological diversity of the odontocete melon

acoustic fats by Cranford et al. (1996) and McKenna et al. (2011)). Lipid composition
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data for odontocetes was obtained from published values (Koopman et al., 2006;

Zahorodny et al., 2009). The odontocete species included in the analysis were the

bottlenosed dolphin (Tursiops truncatus; family Delphinidae), harbor porpoise

(Phocoenaphocoena; family Phocoenidae), beluga whale (Delphinapterus leucas; family

Monodontidae - morphology only), and pygmy sperm whale (Kogia breviceps; family

Kogiidae). These four species are found in four different families of odontocetes and

were employed to place the mysticete ear fats in a broader comparative context.

3.2. Materials and Methods

3.2.1. Morphology

The morphological data for mysticete ear fats was obtained from Yamato et al.

(2012), which combined CT, MRI, and dissections of minke whales to create three-

dimensional reconstructions of the ear fats. Although the fin whale heads and ear fats

were too large to fit within the available scanner, dissections showed that fin whales also

have an ear fat morphology similar to minke whales (Yamato et al., 2012).

To investigate the morphology of the odontocete acoustic fats, CT data was

obtained from the Woods Hole Oceanographic Institution's Computerized Scanning and

Imaging database. The length, sex, body condition, carcass condition, and stranding

locations of these specimens are summarized in Table 3.1. Three-dimensional

reconstructions were created using the software program AMIRA@ v.5.2.2 (Yamato et al.,

2009). Individual tissues were segmented using both manual selection and automated

segmentation tools within AMIRA, which is more reliable than using only automated

thresholding techniques (Cranford et al., 2008).
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Specimens used in this study

Specimen Body Carcass Stranding
ID Length Sex condition Condition* location

Beluga 26 cm M 2 South
D-leu08 Portland, ME

Pygmy Oregon Inlet
sperm whale 235 cm F Thin 2 Channel, NCK-bre09

Harbor
Porpoise - F - 2
P-pho94

Bottlenose 191 cm F - 2 BahamasT-tru59

Bacul 8 430 cm F Emaciated 3 Truro, MA

Bacul 9 465 cm F Robust 3 Orleans, MA

Minke 50c Rout 3Vineyard
B-acu22 530 cm M Robust 3 Sound, MA

Fin 1221 M Thin 3 Wellfleet, MAB-phyll cm

*2: Fresh dead; 3: moderate decomposition.

3.2.2. Lipid biochemistry

The ear fats of three minke whales and one fin whale were sampled in this study.

All specimens were obtained from strandings in Cape Cod, Massachusetts. The length,

sex, body condition, carcass condition, and stranding locations of the specimens are

summarized in Table 3.1. All individuals were sub-adults and exhibited signs of

moderate, but not advanced, decomposition. Body condition was categorized as

"emaciated", "thin", or "robust" by experienced stranding network personnel based on

standard external observations, such as concavities in the area of the epaxial muscle and
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prominent indentations at the nape, consistent with emaciation. Ear fats were extracted

from the right side of each animal. In B-acul8 and B-acu22, fat bodies were also

extracted on the left side. The extracted fat bodies were sectioned transversely and then

subsampled in a grid to provide representation of all regions (Figures 3.1 and 3.2).

Subsamples were approximately 2 cm x 2 cm x 2 cm. There were a total of 119

subsamples of ear fat.

Figure 3.1. Sampling scheme of B-acul9R Figure 3.2. Slice 3 from Figure 3.1
(minke whale). A = anterior, P = posterior, (anterior view) labeled with sample
L = left, R = right. locations. V = ventral, M = middle,

D = dorsal.

In addition to the ear fat samples, blubber was sampled from the region of the

pectoral fin for each animal. For B-acu22, blubber was taken from multiple locations

(lateral, ventral, dorsal, and at the external auditory meatus) to assess the effect of sample

location on lipid content and identity. Because lipid content and composition of blubber

has been shown to vary with depth from the epidermis (Ackman et al., 1965; Lockyer et

al., 1984; Olsen and Nielsen, 2003; Ruchonnet et al., 2006, Koopman, 2007), each piece

of blubber was subsequently subsampled from the surface, the middle, and the deepest

layer except for B-acul9, in which the blubber sample was too small and did not span

from the epidermis to the underlying musculature.
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Lipids were extracted from each sample following a modified Folch procedure

(Folch et al., 1957; Koopman et al., 1996; Koopman et al., 2003; Koopman et al., 2006;

Koopman et al., 2007). Approximately 0.5g of each sample was weighed and extracted

with a 2:1 chloroform : methanol solution with 0.01% BHT to obtain lipid content. For

lipid class analysis, samples were resuspended in hexane, spotted onto silica rods, and

developed in 94/6/1 hexane/ethyl acetate/formic acid. Each lipid class was quantified

and analyzed separately via Thin Layer Chromatography with Flame Ionization Detection

(TLC/FID) using an latroscan Mark VI. For fatty acid analysis, total lipids were

converted to FA butyl esters using BF 3 in butanol (10% Supelco), and analyzed on a

Varian 3800 GC fitted with a Zebron ZB-FFAP nitroterephthalic acid modified

polyethylene glycol 30 m x 0.25 mm column (Phenomenex Torrance, CA) equipped with

a flame ionization detector. Butyl esters were used instead of the more commonly used

methyl esters because short chain fatty acids incorporated into methyl esters are lighter

and more volatile (Shantha and Napolitano, 1992; Koopman et al., 1996; Budge et al.,

2006). Further details of the methods are described in Koopman et al. (2006) and

Koopman (2007).

Fatty acid profiles for all samples were examined using the program Primer 6

(Plymouth Routines In Multivariate Ecological Research, Primer-E, Ltd., Ivybridge, UK).

While many statistical analyses require random, independent samples and parametric data,

Primer requires fewer assumptions. Furthermore, the number of variables entered into

the Primer models is not restricted by the number of samples in the dataset (Lane, 2009).

This makes it ideal for use with fatty acid data, which are inherently non-independent. In

Primer, resemblance matrices were created using the Bray-Curtis Method (Clarke and

Gorley, 2006). This was followed by a non-metric, multidimensional scaling analysis

(MDS), which represents each sample on a two-dimensional map according to the

similarity matrix. Samples that are more similar to each other are placed closer together

on the map than samples that are dissimilar from each other. The algorithm is an iterative

process and the confidence level of the output is represented by the "stress value". A low

stress value indicates that the output is reliable, while a high stress value indicates that the
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relationships between the samples may not be represented faithfully (Clarke and Gorley,

2006). Clarke and Warwick (2001) defines a "high" stress value as greater than 0.2, with

values of over 0.3 approaching a two-dimensional map with arbitrarily placed points.

Outputs with stress values of less than 0.1 are defined as "good ordination with no real

prospect of a misleading interpretation" (Clarke and Warwick, 2001).

Individual fatty acids found in quantities averaging > 5% for any individual /

tissue type were categorized as "endogenous" or "dietary" lipids following the

classification of Iverson et al. (2004). "Endogenous" lipids can only originate from

biosynthesis, such as fatty acids with chain lengths of less than 14 carbons, which are

oxidized immediately following ingestion. "Dietary" lipids originate either entirely or

primarily from direct dietary intake, and include lipids such as 20:1n-9 and 22:1n-1 1,

which have a specific source in calanoid copepods and organisms feeding on calanoid

copepods (Falk-Petersen et al., 2000). Fatty acids that may originate from the diet but

also have a large contribution from biosynthesis were not included in either category. An

example of the latter case is 16:0, the primary product of de novo synthesis in marine

predators according to Budge et al. (2006).

The lipid composition for odontocete species was taken from published values

given in Koopman et al. (2006) and Zahorodny et al. (2009). In cases where the lipid

quantities were given for both inner and outer fat bodies, the two values were averaged to

generate one representative quantity value. When there were data for an ontogenetic

series (the bottlenose dolphin), data for the mature individuals were used for consistency

with other odontocete species.
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3.3. Results

3.3.1. Morphology of the ear fats vs. odontocete acoustic fats

The minke whale ear fats did not extend as far anteriorly along the mandible

compared to the acoustic fats of the bottlenose dolphin (Figures 3.3 and 3.4). The

acoustic fats of the bottlenose dolphin had well-developed anterior lobes, including the

"mandibular" lobe inside of the mandibular hiatus and "ventro-lateral" lobe on the

exterior surface of the mandible (Ketten, 2000). However, the minke whale ear fat was

primarily lateral to the tympano-periotic complex. Mysticetes like the minke whale also

do not have an enlarged mandibular hiatus, and the ear fats did not extend into the

mandibular canal (Figure 3.3, red arrows). The lateral view indicates that the ear fats are

in a similar location of the head as the lateral fat lobe of the acoustic fat in the bottlenose

dolphin (Figure 3.4, red circle).

Figure 3.3. Ventral views of
the bottlenose dolphin
acoustic fats compared to
the minke whale ear fats.
Yellow, fat; purple, ears;
gray, other bones; blue, ear
canal. The red arrows
indicate the mandibular
canal of the minke whale,
which is not filled by fat.
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Figure 3.4. Lateral views of
the bottlenose dolphin
acoustic fat and minke whale
ear fat. The red circle
indicates the lateral fat lobe
which has been proposed as
an additional acoustic window
for lower frequencies
(Bullock et al., 1968; Renaud
and Popper, 1975; Popov and
Supin, 1990; Ketten, 1994,
1997; Popov et al., 2008) in
the bottlenose dolphin.

The odontocete reconstructions were based on one individual from each species

and the exact shapes of the acoustic fats need to be confirmed through additional

investigations, including dissections and evaluations of tissue quality, which is not

always consistent with the initial assessments of carcass condition. However, the

preliminary three-dimensional reconstructions of the harbor porpoise, beluga whale, and

the pygmy sperm whale showed that there are substantial differences in acoustic fat

morphology among odontocete species (Figures 3.5 and 3.6). The harbor porpoise

acoustic fats appeared to cover a greater proportion of the mandibles than in the

bottlenose dolphin. In the beluga whale, the posterior, lateral fat lobe was not as evident

as in the other odontocete species. The pygmy sperm whale acoustic fats appeared very

different from the other three odontocete species, with large balls of fat located halfway

between the ears and the anterior end of the mandible (Figures 3.5 and 3.6).
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Figure 3.5. Ventral views of odontocete acoustic fats. The color scheme is the same as in
Figure 3.3.

Figure 3.6. Lateral views of the odontocete acoustic fats. The color scheme is the same
as in Figure 3.3.
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3.3.2. Lipid composition of ear fats

3.3.2.1. Lipid content

There was a large spatial variability in the lipid content of ear fats, ranging from
less than 10% lipid by wet weight to greater than 90% lipid. The mean lipid content
value for all samples was 61wt % (SD 24). All samples with lipid content values of less
than 10% were from ventral locations. The CT images show that the ventral and
posterior areas of the ear fat may be more fibrous, consistent with a transition of the
tissue to the fibrous joint with the mandible (Figure 3.7). However, consistent patterns in
lipid content heterogeneity could not be confirmed.

Figure 3.7. Sagittal CT section through the minke whale (B-acul9) left ear fat, lateral to
the tympano-periotic complex. D = dorsal, V= ventral, P = posterior, A = anterior, Sq=
squamosal bone. Regions of the ear fat which appear to have higher lipid content
(anterior and more dorsal sections) and lower lipid content (posterior and ventral
sections) are labeled.
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The lipid content of blubber was strongly influenced by stratification and body

condition (Table 3.2). In all individuals, lipid content increased from the inner layer of

blubber to the outer layer of blubber (closest to skin), which was consistent with previous

studies (Ackman et al., 1965; Lockyer et al., 1984). Blubber from animals described as

"robust" had the highest lipid content values, while thin or emaciated animals had

blubber with low lipid content. Although the lipid content was strongly influenced by

stratification, the location on the body from which the blubber was sampled had little

influence on lipid content (Figures 3.8 and 3.9).

As noted above, there was high variability in the lipid content values of both ear

fats and blubber. However, the lipid content values of ear fats were much more

consistent across individuals compared to blubber (Figure 3.10). The blubber of the

emaciated individual (B-acul 8) was depleted in lipid, but the lipid content of its ear fat

was comparable to that of robust individuals.

Table 3.2: Stratification of lipid content in mysticete blubber

Individual Body Condition Blubber sample location % Lipid

Inner 8.9
B-acu18 emaciated Middle 11.2

Outer 27.6

B-acu19 robust Unknown 73.6

Inner 55.5
B-acu22 robust Middle 77.3

Outer 86.4

Inner 24.3
B-phyl1 thin Middle 40.2

Outer 46.2
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Figure 3.10. Lipid content in ear fat samples compared with lipid content in blubber
samples for four individuals. Error bars indicate the standard error of the mean.
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3.3.2.2. Lipid classes

The majority of lipids in both ear fats and blubber consisted of triacylglycerols

(TAG), which is typical for mammalian adipose tissues. For all ear fat samples combined,

the average TAG content was 95.4 wt% (SD 8.7). For all blubber samples combined, the

average TAG content was 99.1 wt% (SD 0.75).

Ear fat samples contained 0 - 30% non-TAG lipids, with one sample containing

56.2% non-TAG lipids. In contrast, blubber lipids were almost exclusively made up of

TAG, with up to 2.5% non-TAG lipids in a limited number of samples. Lipid class

composition was tissue- and specimen-dependent. On average, the fin whale ear fat

samples were comprised of> 99% TAG with approximately 1% or less of phospholipid

and cholesterol for two samples. The blubber was also > 99% TAG with less than 1%

phospholipid for one sample. For the minke whales, B-acul9 contained almost

exclusively TAG in both ear fat and blubber samples. The ear fat samples of B-acul8

were made up of approximately 98% TAG, and 2% of cholesterol, free fatty acid,

phospholipid, and what appears to be sterol ester. There was < 1% cholesterol and

phospholipid in the blubber of B-acul8, and no sterol esters or free fatty acids.

The ear fat samples of B-acu22 contained the highest amount of non-TAG lipids.

On average, B-acu22 ear fat samples contained approximately 84% TAG, 1% sterol ester,

6% free fatty acid, 2% cholesterol, and 6% phospholipid. In contrast, none of the twelve

blubber samples for B-acu22 contained non-TAG lipids except for the innermost blubber

sample from the area of the external auditory meatus, adjacent to the ear fat. This sample

contained approximately 1% free fatty acid and 1% phospholipid.

3.3.2.3. Fatty acid composition

Both ear fats and blubber of minke and fin whales were primarily composed of
medium to long chain fatty acids ranging from 14 - 22 carbons in length. A commonly
used notation for identifying fatty acids is A:Bn-X, where A indicates the number of
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carbon atoms in the chain, B is the number of double bonds, and X is the position of the

first double bond relative to the terminal methyl (CH3) group. An italicized i before the

A:Bn-X notation indicates a branched fatty acid with a methyl branch at the second

carbon (see Budge et al., 2006).

Branched chain fatty acids such as i-14:0 and i-15:0, and medium length fatty

acids such as 12:0, 13:0, and 15:0 were detectable in the mysticete tissues, but at

quantities of less than 1%. 5:0 and 10:0 were found at quantities of less than 0.05%.
There were noticeable differences between the fatty acid signatures of the three minke

whales compared to the fin whale. The most obvious difference was that the tissues of

minke whales contained considerable amounts of 20:1n-9 and 22:1n-1 1 that were not

abundant in the fin whale (see Table 3.3).

The MDS analysis in Primer clearly separated the fin whale samples from the

three minke whales samples (Figure 3.11). The low stress value of 0.09 indicates that

this two-dimensional representation of similarity is reliable (Clarke and Warwick, 2001).

Figure 3.11 also shows some separation between the ear fat and blubber samples for both

species. Furthermore, ear fat samples from all three minke whales seem to be more

similar to each other compared to the blubber, which exhibits variability among samples

and individuals. This is consistent with the finding that blubber samples contained higher

levels of dietary fatty acids compared to ear fat samples in all individuals, showing that

the blubber fatty acid signature may be more affected by differences in diet (Table 3.3

and Figure 3.12). The only strictly "endogenous" fatty acid in our samples was 18:ln-11,

which was found in low and variable quantities.
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Fig. 3.11. MDS plot of all fatty acid data based on a Bray-Curtis resemblance matrix.
Samples that are more similar to each other are placed closer together on the map. The
confidence level of the output is represented by the stress value. Stress values of less
than 0.1 are defined as "good ordination with no real prospect of a misleading
interpretation" according to Clark and Warwick (2001).

Table 3.3. The major fatty acids present in the minke and fin whale fats

B-acui8 B-acu19 B-acu22 B-phyl 1
Fatty
Acid Ear fat Blubber Ear fat Blubber Ear fat Blubber Ear fat Blubber

14:0 4.7 3.9 4.9 4.7 5.6 5.5 5.0 4.9
16:0 11.6 6.7 12.1 9.5 13.0 10.1 18.0 16.0
16:1n-7 9.6 5.1 13.7 13.3 12.0 8.0 8.6 7.5
181n-11 4.7 5.5 4.0 4.1 4.0 3.0 1.4 1.4
18:1n-9 20.2 18.9 17.7 16.2 19.1 14.6 26.8 24.7
18:1n-7 4.6 3.7 5.0 4.5 4.1 3.2 6.3 5.6
20:1n-11 4.5 7.4 3.6 3.7 3.8 3.9 1.4 1.7
20:1n-9 12.4 16.8 11.2 12.0 10.1 12.3 3.9 4.5
22:ln-11 8.5 10.2 7.1 7.7 7.4 9.9 2.0 2.2
22:6n-3 1.6 1.8 1.9 3.5 2.7 6.3 3.4 6.8

Numbers indicate quantities in wt%, averaged from all samples of the tissue. 18:ln-11
was classified as an "endogenous" fatty acid and fatty acids indicated in blue italics were
classified as "dietary" lipids, following Iverson et al. (2004). All other fatty acids have
large contributions from both biosynthesis and diet.

57



40 -

m Ear fat
e 30- m Blubber

201

10

00-

B-acu18 B-acu19 B-acu22 B-phyll

Individual

Figure 3.12. Total dietary fatty acids, as defined in Table 3.3., as a percent total of all
fatty acids.

The fatty acid signature of blubber from minke whale B-acu22 exhibited a

stronger dependence on stratification than body location, which was contrary to

Ruchonnet et al. (2006)'s findings from the blubber of one fin whale. There were no

discernible differences in fatty acid signatures between the four different body sites,

including blubber adjacent to the external auditory meatus (Figure 3.13).
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3.3.3. Comparison of ear fat lipid composition with odontocete acoustic fats

The lipid content of the minke and fin whale ear fats was slightly lower than the

published values for the bottlenose dolphin, harbor porpoise, and the pygmy sperm whale

(Table 3.4). However, the ear fats of mysticetes still contained greater than 50% lipid.

No appreciable amounts of wax ester or short, branched fatty acids were found in the
mysticete ear fats. Yet, the biochemical composition of odontocetes was also diverse.

For example, harbor porpoise acoustic fats contain very little wax esters, while the
acoustic fats of the pygmy sperm whale is composed of 40% wax ester. On the other
hand, the pygmy sperm whale acoustic fats do not contain significant amounts of
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isovaleric acid (one of the short, branched fatty acids), whereas the bottlenose dolphin

acoustic fats are made of more than 50% isovaleric acid. Regardless of the identities of

the fatty acids, there are elevated levels of endogenously synthesized lipids in all

odontocete acoustic fats examined to date (Koopman et al., 2006).

Table 3.4. Mysticete ear fats vs. odontocete acoustic fats

Minke Fin whale Bottlenose Harbor Pygmy sperm
porpoise whale

% Lipid 59 65 71 77 83

SWax <1 <1 20 4 40Ester

1-5:0 <1 <1 54 28 <1

Selected data from the minke and fin whale ear fats (this study) compared with published
values for several odontocete species (Koopman et al., 2006; Zahorodny et al., 2009).
Numbers indicate quantities in wt%, averaged from all samples of the tissue.

3.4. Discussion

3.4.1. Morphology of the ear fats vs. odontocete acoustic fats

Both the ear fats and the odontocete acoustic fats had well-defined connections to

the tympano-periotic complex and extend from the blubber region to the ears (Figures 3.3

and 3.5). There were several consistent differences between the morphology of the

minke whale ear fats and the acoustic fats of the four different odontocete species

examined here. First, the minke whale ear fats did not extend as far anteriorly along the

mandibles compared to any of the odontocete acoustic fats, and were primarily located

lateral to the ears. Furthermore, the minke whale ear fats did not fill the mandibular

foramen, whereas all odontocetes have fat-filled, enlarged mandibular hiatuses. However,
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there was also a substantial diversity in acoustic fat morphology among different

odontocete species. Although the odontocete reconstructions in this study were based on

one individual each and need to be confirmed through additional investigations, it clearly

illustrated this morphological diversity.

The functional implications of such variations are an emerging area of research.

For example, Mooney et al. (2008) found that the beluga whale is more sensitive to sound

inputs at the tip of the mandibles compared to the bottlenose dolphin (Mohl et al., 1999).

This difference could be caused by the beluga whale's acoustic fats extending much

farther anteriorly towards the tip of the mandible compared to the bottlenose dolphin

(Figure 3.5). Similarly, the primarily lateral orientation of the minke whale ear fats may

result in enhanced sensitivity of each ear to sounds originating from the side of the

animal, or decreased sensitivity to sounds from directly in front of the animal. The

bottlenose dolphin is known to have a forward-directed receiving beam for high

frequencies, attributed to the perimandibular acoustic fats (Au and Moore, 1984; Aroyan,

2001).

3.4.2. Lipid composition of ear fats

3.4.2.1. Lipid content

Although the lipid content of blubber fluctuated with body condition, the overall

lipid content of ear fats remained consistent. Even in the emaciated individual (B-acul8),
whose blubber lipids were greatly depleted compared to robust individuals, the ear fats

contained greater than 50% lipid (Figure 3.10). While the conservation of lipid in the

tissue does not necessarily point to an acoustic function, it is consistent with the ear fat

being more than just an additional site for lipid storage. Cranford et al. (1996) stated that

starving animals maintain melons with a robust appearance, and Koopman et al. (2003)
showed that the lipid content and composition of the fatty melon (another acoustically
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important tissue in odontocetes) does not change during starvation. The authors argued

that these findings support the hypothesis that the melon lipids are conserved for a

specific function, which was proposed to be acoustic in this case.

The mean value of 61 wt% lipid for the ear fats is within the normal range for

adipose tissues of wild animals (Pond, 1998). An interesting feature of adipose tissues is

that sound speeds through fats are slower than through other types of soft tissues at body

temperatures in mammals, excluding the lungs (Duck, 1990). At 370C, sound speeds

through typical mammalian fats are in the range of 1412 m/s - 1471 m/s. In contrast,

sound speeds through muscles at 37*C are between 1567 m/s - 1631 m/s and calculated

sound speed through collagen (a major component of fibrous tissues) is 1570 m/s. Sound

speeds through most bones are greater than 2000 m/s (Duck, 1990). Thus, the ear fats,

which are composed of typically mammalian lipids, are likely to have lower sound speeds

than the surrounding tissues.

Gradients in sound speeds and their functional implications have been explored

for odontocete acoustic tissues, including the melon and the peri-mandibular fats

(Litchfield et al., 1973; Blomberg and Lindholm, 1976; Wedmid et al., 1973, Varanasi et

al., 1975; Scano et al., 2005; Koopman et al., 2006; Zahorodny et al., 2009). For

example, Koopman et al. (2006) found that the distribution of lipids within peri-

mandibular fats of odontocetes show consistent patterns, where the shortest and branched

chain compounds were concentrated in the middle of the inner fat body and around the

tympano-periotic complex. The highest relative wax ester concentrations also occurred

in the regions closest to the tympano-periotic complex. It has been shown that sound

velocity in lipids is a function of their carbon chain length and that sound travels faster

through triacylglycerols than through wax esters (Guow and Vlugter, 1967; Hustad et al.,

1971; Flewellen and Morris, 1978). Therefore, Koopman et al. (2006) hypothesized that

the topographical arrangement of lipids within peri-mandibular fat bodies of odontocetes

are arranged so that sound is directed to the ears as it bends towards the inner low

velocity center of the mandibular fat body, which has a higher concentration of wax
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esters and short, branched chain lipids. The minke and fin whale ear fats may similarly

act as a waveguide towards the ears on a grosser scale, by having a lower sound speed

than the surrounding, non-fatty tissue.

The waveguide properties of the ear fats may be enhanced if the regions closest to

the ears have elevated lipid content values and therefore even lower sound speeds (Duck,

1990). The CT images (Figure 3.7), visual inspection (Figure 3.2), and some of the lipid

content data suggested that the dorsal, middle, and anterior regions of the ear fat, closest

to the ears, had higher fat content. However, the data were inconclusive perhaps because

of limitations in the sampling scheme.

Another unique feature of fatty tissues is that unlike other soft tissues, sound

speed through fat decreases with increasing temperature (Bamber and Hill, 1979; Duck,

1990; Figure 3.14). This temperature - sound speed relationship is well-documented in

lipids, including those extracted from odontocete melons (Hustad et al., 1971; Blomberg

and Jensen, 1976; Flewellen and Morris, 1977; Bamber and Hill, 1979; Litchfield et al.,

1979; Duck, 1990; Goold and Clarke, 2000). Thus, thermoregulation of acoustic fats

would be another way to create sound speed gradients through these tissues without

relying on fine-scale topographical arrangements of unique lipids (Blomberg and Jensen,

1976; Flewellen and Morris, 1977; Goold and Clarke, 2000). In fact, functional imaging

studies on captive bottlenose dolphins suggest that odontocetes may be able to

thermoregulate their acoustic fats through increased blood flow to both the melon and

peri-mandibular fats (Houser et al., 2004). Cetaceans inhabiting colder waters may

naturally have a sound speed gradient through their acoustic fats, with warmer, slower

sound speed fats at the core, near the ears, and cooler, faster sound speed fats at the

interface with the environment.
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Figure 3.14. Sound speed through
various materials as a function of
temperature, from Duck (1990).
Non-fatty soft tissues, including
muscle (not illustrated in figure),

1.4 have positive temperature
coefficients of acoustic velocity,
while fatty tissues have a negative
temperature coefficient (Bamber

0* V ONO" W 40e eSO and Hill, 1979; Duck, 1990).
1*POragt, s C

3.4.2.2. Lipid classes

Mammalian adipose tissues are primarily composed of triacylglycerols (TAG),

but the acoustic fats of some odontocete species are rich in wax esters (Varanasi and

Malins, 1970a; Varanasi and Malins, 1970b; Varanasi and Malins, 1971; Litchfield et al.,

1975; Morris, 1986; Litchfield and Greenberg, 1974; Litchfield et al., 1975). We did not

see any wax esters in the ear fats of minke and fin whales. We did see some non-TAG

lipids in some of the ear fat samples, which were not present in our blubber samples.

These non-TAG lipids included sterol esters, free fatty acids, cholesterol, and

phospholipids. However, Lockyer et al. (1984) reported the presence of these non-TAG

lipids in fin whale blubber. Furthermore, she noted that the quantity of free fatty acids

(up to 34 wt/o in her samples) may have been elevated because of autolysis from the

relatively long post-mortem time. Therefore, the elevated levels of non-TAG lipids in ear

fat may be because of more advanced autolysis in these tissues compared to blubber.

This is plausible in some cases, because the internal tissues of whales, such as the ear fat,

maintain body temperature for a much longer time postmortem than the external tissues
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like blubber from the insulating effect of the outer tissues. Thus, there is no conclusive

evidence that there are different lipid classes in ear fat compared to blubber at this time.

3.4.2.3. Fatty acid composition

The acoustic fats of odontocetes are characterized by endogenously synthesized,

short, branched fatty acids found within wax esters and TAG (Varanasi and Malins,

1970a; Varanasi and Malins, 1970b; Varanasi and Malins, 1971; Litchfield et al., 1975;

Morris, 1986; Litchfield and Greenberg, 1974; Litchfield et al., 1975). Although we did

not detect these unique fatty acids at appreciable quantities, the minke and fin whale ear

fats did have lower levels of dietary fatty acids compared to the blubber (Figure 3.12).

This was a consistent pattern across all four individuals. Interestingly, the MDS analysis

showed that all ear fat samples from the three minke whales were more similar to each

other compared to the blubber (Figure 3.11). Thus, the fatty acid composition of blubber

is more variable across individuals and is more influenced by the diet, while the fatty acid

composition of ear fat appears to be conserved for a given species.

The major dietary lipids in Table 3.3 have longer carbon chain lengths than the

fatty acids that can have a large endogenous contribution. Therefore, there are higher

levels of long chain fatty acids in blubber compared to the ear fat. Odontocete acoustic

fats, including the melon and peri-mandibular fats, are known to contain fatty acids and

alcohols with a lower average chain length than in the blubber of the same animal

(Ackman et al., 1971; Varanasi and Malins, 1971; Litchfield et al., 1975; Litchfield et al.,

1976). This contributes to the reduced sound speeds found in acoustic fats because sound

speeds through shorter fatty acids are slower than through longer fatty acids (Guow and

Vlugter, 1967; Hustad et al., 1971). The elevated levels of relatively shorter (14-18

carbons) fatty acids in the minke and fin whale ear fats may further decrease the sound

speeds through these tissues, enhancing the waveguide effect that was discussed above.

Future studies should aim to determine the degree of conservation in ear fat fatty

acid signatures relative to dietary shifts by increasing sample sizes across several species.
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In our study, both the ear fat and blubber of the minke whales contained higher levels of

20:1n-9 and 22:1n-1 1 compared to the fin whales. Falk-Petersen et al. (2000) reports that

the higher molecular weight monounsaturates 20:1n-9 and 22:1n-1 1 have a specific

source in calanoid copepods. Therefore, minke whales in this study may have had diets

richer in copepods or in fishes that feed on copepods (such as herring) compared to the

fin whale. According to Lockyer et al. (1984), North Atlantic fin whales feed

predominantly on euphausiids which in turn feed on phytoplankton, meaning calanoid

copepods would be excluded from their diets. Yet, there are reports of fin whales caught

off of Nova Scotia, Spain, and Gulf of St. Lawrence in the summer months with high

levels of 20:1n-9 and 22:ln- I1 in their blubber (Ackman et al., 1965; Lockyer et al.,

1984). The fatty acid signatures of ear fat for such individuals are unknown.

3.4.3. Comparison with odontocete acoustic fats

The composition of odontocete acoustic fats is highly variable across species,

illustrated in Table 3.4. Therefore, it is not the case that there is one definitive "acoustic

lipid" or a set mixture of lipids which give fats an acoustic function (Litchfield et al.,

1975). Yet, there are some unifying features that can be found in odontocete acoustic fats,

based on the above discussions: (1) they are composed of lipids not typically found in

mammalian tissues; (2) the spatial heterogeneity of lipids likely enhances the waveguide

effect; (3) their lipid content and fatty acid signatures are stable across body conditions;

(4) they contain fewer dietary signals, and the fatty acids and alcohols are composed of

shorter-chained lipids than in blubber; (5) sound speeds are lower compared to normal

fats and surrounding tissues.

In the case of mysticete ear fats, (1) does not seem to apply; to our knowledge,

odontocete cetaceans are the only mammals which have acquired the ability to synthesize

and store short, branched-chain fatty acids and wax esters in appreciable quantities. The

results also do not support (2), at least in terms of the arrangement of fatty acids within
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the ear fats. However, the ear fats do maintain their lipids even during starvation, and

their fatty acid signatures seems to be conserved for individuals of the same species,

consistent with (3). This suggests that the ear fats, like the odontocete acoustic fats, are a

structural fat body, conserved for a particular function rather than just providing an

additional site for lipid storage.

The ear fats also contain fewer dietary signals compared to blubber, although the

differences are not as large as the differences between the acoustic fats and blubber of

odontocetes. Since the strictly dietary fatty acids also have longer chain lengths than

other fatty acids, the ear fats also have slightly higher levels of shorter fatty acids than

blubber (4). Finally, both the acoustic fats and the ear fats are low sound speed, fatty

tissues leading from the environment directly to the tympano-periotic complex. Thus,

minke and fin whale ear fats share several characteristics with odontocete acoustic fats

and could potentially represent a less biochemically sophisticated form of fatty tissue

involved in the sound reception pathway.

3.5. Conclusions

For the past several decades, fatty sound reception in cetaceans was thought to be

a phenomenon unique to odontocetes. However, a recent study by Yamato et al. (2012)

found large, well-formed fat bodies intimately associated with the ears in the minke

whale, contributing anatomical evidence that fatty sound reception pathways may be a

possibility for some mysticete species as well. This study compared the morphology and

the biochemical composition of these newly described "ear fats" to the acoustic fats of

various odontocete species.

Unlike odontocetes, minke and fin whales do not have conspicuously large

mandibular canals and these canals are not filled with fat. The mysticetes also do not

have peri-mandibular fat bodies. Instead of having a multi-lobed structure, the ear fats
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are single-lobed and are located primarily lateral to the tympano-periotic complex. Both

the acoustic fats and the ear fats extend from the blubber region to the ears, having well-

defined attachments to the tympano-periotic complex.

The ear fats do not contain the conspicuous, unique lipids found in odontocete

acoustic fats. However, it has been recognized that there is a large variability in the

biochemical composition of odontocete acoustic fats, and that no single type of lipid turns

a fat body into "acoustic" fat (Litchfield et al., 1975). Mysticetes may have developed a

fatty sound reception pathway using typically mammalian lipids, lacking the ability to

synthesize wax esters and short, branched chain fatty acids. In this study, we have shown

that like acoustic fats, the mysticete ear fats maintain their lipids even during starvation,

when the blubber lipids are greatly depleted. The fatty acid signatures of ear fats also

seem to be conserved for individuals of the same species, whereas the blubber fatty acid

composition was more influenced by diet. Thus, the ear fats seem to be more than an

additional site for lipid storage.

Although the precise reason for having wax esters and short, branched fatty acids

in odontocete acoustic fats is unknown, they all reduce sound speeds through the acoustic

fat compared to normal fats and surrounding tissues of the head (Guow and Vlugter,

1967; Hustad et al., 1971; Bamber and Hill, 1979; Duck, 1990). Because sound bends

towards regions of minimum sound speed, incorporating a particularly low sound speed

tissue in their sound reception pathway may help to focus sound towards the ears of

odontocetes, which depend on hearing their returning echolocation clicks for foraging

and survival. The mysticete ear fats, having a lower sound speed than the surrounding,

non-fatty tissues (Bamber and Hill, 1979; Duck, 1990), may also help to channel sound

towards the ears.

Odontocetes and mysticetes both face the challenge of listening entirely under

water, where external pinnae and ear canals are ineffective for collecting and amplifying

sound. It is proposed that both sub-orders of cetaceans have incorporated fatty tissues

into their auditory systems for aquatic sound reception. The different lineages of
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odontocetes may have subsequently acquired the ability to synthesize and deposit even

more effective lipids in their acoustic tissues. While these unexpected types of lipids and

conspicuous mandibular and acoustic fat morphologies have led us to believe that fatty

sound reception pathways are a uniquely odontocete phenomenon, results from this study

suggest that the mysticete ear fats share some potentially important characteristics with

odontocete acoustic fats and may be a functionally important component of the auditory

system.
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Chapter 4: Modeling sound propagation through the minke whale head using the

Finite Element Method (FEM)
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Abstract

Although little is known about hearing mechanisms in mysticetes (baleen whales),
experimental studies of sound reception pathways have not been accomplished because
of major logistical challenges. An alternative method for exploring the behavior of sound
through the various structures of a whale head is the Finite Element Method (FEM). In
this study, a model of a minke whale head was created based on CT data presented in
Chapter 2, combined with material property values from measurements and published
data. By isolating various components of the minke whale head while altering sound
source frequencies and locations, we investigated the role of the skull, air spaces,
tympano-periotic complex, and ear fats in shaping the sound pressure field within the
head. We found that the major patterns in the resulting pressure fields were driven by the
air spaces at lower frequencies and by bony structures at higher frequencies. The ear fats,
which have similar material properties as sea water compared to bone and air, contributed
more subtle effects to the total pressure field. The presence of the ear fats slightly
increased the total pressure magnitude near the ears. When the density and sound speed
of the ear fats were decreased, sound pressures adjacent to the ears were increased.
Conversely, when the density and sound speed of the ear fats were increased to match the
properties of muscle, sound pressures adjacent to the ears were decreased. Thus, the
presence of a low density, low sound speed tissue adjacent to the ears seems to be
beneficial in focusing sound towards the ears. Fatty tissues are known to have lower
densities and sound speeds than other types of soft tissue (Duck, 1990), which may
explain why they are an important component of the auditory system in odontocetes, and
perhaps in mysticete cetaceans as well.
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4.1. Introduction

Despite widespread interest in the effects of anthropogenic noise on mysticetes, or

baleen whales, their hearing mechanisms and sound reception pathways are not well

understood. Chapter 2 of this thesis was an anatomical investigation of the minke whale

(Balaenoptera acutorostrata) auditory system, which described a large, well-formed

body of fat extending from the blubber region to the ears and contacting the ossicles

(Yamato et al., 2012). Interestingly, fatty tissues are known to play an important role in

the sound reception system of odontocetes, or toothed whales (Norris, 1964; Bullock et

al., 1968; Brill et al., 1988; Mohl et al., 1999). Although the minke whale "ear fats" lack

the highly unusual lipids present in odontocete acoustic fats, the results from Chapter 3

indicated that the ear fats, like odontocete acoustic fats, seem to be a structural tissue that

is conserved for a particular function rather than just providing an additional site for lipid

storage. Based on these two chapters, it was hypothesized that the ear fat could be an

important part of the sound reception pathway in some baleen whales. However, it is

unlikely that the ear fats act in isolation because the whale head also contains bone and

air, features which have dramatically different acoustic properties compared to sea water.

The goal of this chapter was to understand the ear fats in the context of the head by

modeling sound propagation using a numerical technique called the Finite Element

Method (FEM).

In FEM, a model is constructed by defining a set of mathematical equations in a

continuous domain. For example, to model sound propagation in tissue, the

mathematical model is the wave equation together with a set of boundary conditions.

The domain, which in this case corresponds to the space occupied by the tissue, is

discretized into small connected "elements" creating what is called the finite element

mesh. In three dimensional problems, the elements are usually tetrahedra or hexahedra.

Automated techniques are used to create this mesh, which may contain millions of

elements. The elements define the basic interpolation properties of the mathematical

fields associated with the equations that are being solved, such as pressure and particle
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displacement. More detailed descriptions of the method and examples of its

implementation can be found in numerous works, including Dietzen (2008) and Krysl et

al. (2008).

The mathematical groundwork for the finite element method was realized in the

1970s (Strang and Fix, 1973; Babuska and Azis, 1973) and recent advances in computing

power have allowed the method to be applied to diverse problems, including

understanding hearing mechanisms in mammals. Many of these studies have focused on

the mechanical motion of the human middle ear with reference to clinical applications

(examples include Eiber, 1999; Koike et al., 2002; Lee et al., 2006). However, FEM can

also be used to simulate how sound propagates in any medium, including animal tissues

such as bone, muscle and fats. Thus, it is a useful tool for approximating the behavior of

sound through a whale head, which is difficult to study experimentally.

The concept of using numerical techniques for simulating sound propagation

through odontocete tissues was explored earlier by Aroyan et al. (1992). This study used

a slightly different technique called the Finite Difference Method to model acoustic beam

formation in a two-dimensional model of a common dolphin (Delphinus delphis) created

from a parasagittal CT image traced onto a digitizing tablet. The model included the

skull, fatty melon, and air sacs immersed in sea water, which were all modeled as

inhomogeneous fluids with a sound source placed in the area of the monkey lip / dorsal

bursae compex (Cranford et al., 1996). Despite its simplicity, the model simulations

resulted in a forward-focused beam pattern consistent with experimentally measured

beam angles.

Several years later, Aroyan (2001) created a three-dimensional version of his

model to study sound reception in a common dolphin. By comparing outputs from

models with and without soft tissues included, the study showed that the soft tissues

(including the peri-mandibular acoustic fats) play an important role in focusing sound

towards the ears. Furthermore, the study showed that higher frequencies generated more
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forward-oriented receiving beams, supporting the notion that the anterior fat channels

may be specialized for ultrasonic sonar signal conduction (Aroyan, 2001).

Cranford et al. (2008) used FEM to study sound emission and reception in a

Cuvier's beaked whale (Ziphius cavirostris). This model was more sophisticated than

Aroyan's, incorporating elastic structures in addition to fluid structures. While fluid

structures, such as water, only support longitudinal waves, elastic structures, such as bone,

can support shear waves as well. (Longitudinal waves cause compressions in the

direction of the wave motion, whereas shear waves result in deformations perpendicular

to the direction of the wave motion.) One consequence of incorporating bone as an

elastic structure was the finding of a "flexural wave" in the thinned, pan bone region of

the mandible. The authors suggested that the incoming sound induces small-amplitude

waves that flex the pan bone, which may explain how sound crosses from the outer fat

bodies to the inner fat bodies. Another finding was that sound arrived at the ears

primarily through an unconventional "gular pathway" in the simulated head, entering the

head ventrally, traveling in between the mandibles, and through the inner acoustic fat

bodies. While the authors acknowledge that these results must be considered with some

skepticism, the study provided novel hypotheses to test if opportunities for experimental

studies arise in the future.

Combined, the above studies established the utility of numerical techniques in

studying sound emission and reception in odontocetes. Here, we build on these previous

works by applying the FEM technique to study sound reception in a mysticete, the minke

whale. By isolating various components of the minke whale head while altering sound

source frequencies and locations, we investigated the role of the skull, air spaces,
tympano-periotic complex, and ear fats in shaping the sound pressure field within the
head.
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4.2. Methods

4.2.1. Model development

Three-dimensional FEM simulations of wave propagation involving complex

shapes require: 1) proper representation of the geometry; 2) accurate material property

inputs; 3) appropriate FEM program. The geometry of the minke whale head was

obtained from CT data from a small, juvenile minke whale head, whose tissue boundaries

were confirmed through dissections and scans of additional individuals (Yamato et al.,
2012). Because of the complex geometry of the minke whale head and auditory

structures, several simplifications were necessary to create a computationally manageable

model. First, the three-dimensional reconstructions were smoothed to facilitate mesh

generation. This was accomplished in AMIRA@ v.5.2.2 using several automated

segmentation tools combined with manual editing. The very fine structural details that

may be lost from smoothing are insignificant in the whole-head FEM of the minke whale

particularly for the low frequency sounds relevant to sound reception in baleen whales.

In a first approximation structural details of fluid-like tissues (fats, muscle, etc) less than

/1 0 have a negligible effect in sound propagation models, so the level of detail that

matters for sounds of 1000 Hz and 15 kHz in water-like media are about 15 cm and 1 cm,

respectively.

Structures that were included in the model were the tympano-periotic complex

(ears), the rest of the skull, air within the middle ear cavity, ear fats, and the surrounding

sea water. Since normal soft tissues, such as muscle, have relatively similar material

properties as water (Duck, 1990; Pickard and Emery, 1990; Table 4.1), the rest of the soft

tissues were lumped with the surrounding sea water to facilitate mesh generation and

computation. Additional simulations were run to address potential effects of this

simplification (see below).
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All structures are modeled as acoustic fluids. This is a reasonable approximation

for soft tissues, which have small shear moduli and high shear wave absorption

coefficients (Frizzell et al., 1976; Aroyan et al., 1992; Aroyan, 2001). However, bone

would be better modeled as an elastic structure (Ashman et al., 1987; Duck, 1990) and

the effect of incorporating elasticity should be addressed in future studies.

4.2.2. Material properties

The material property inputs required for modeling sound propagation in fluid-

like structures (water, air, fats, and other soft tissues) are density and either bulk modulus

or longitudinal wave speed. These parameters are for structures assumed to be isotropic;

computational challenges limit the incorporation of anisotropy in large, sophisticated

FEM models. Density of the ear fats were measured from minke and fin whale

specimens used in Chapter 3. Samples were weighed using a Mettler Toledo balance and

volumes were obtained from the displacement method in addition to CT scanning the

samples. These densities were compared to the values from typical mammalian fats, the

densities of acoustic fats of odontocetes, and CT number expressed in Hounsfield Units.

Solid density standards used for quantitative computerized tomography (Campbell-

Malone, 2007) were also weighed and scanned in the same way as the ear fat samples in

order to determine the relationship between density and CT number. These relationships

were compared with previous studies that have described specific linear relationships

between CT number and tissue densities for marine mammals (Aroyan, 2001; Soldevilla

et al., 2005). Such correlations have been used to derive material property values from

CT data in previous studies that modeled sound propagation through odontocete heads

(Aroyan, 2001; Krysl et al., 2006).

Other material properties of tissues change dramatically post-mortem, although

there are some conflicting reports (Fitzgerald et al., 1957; McKenna et al., 2007).

Therefore, realistic values were obtained from the literature (Table 4.1), under the

assumption that properly measured material property values from relevant tissues of other
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mammals are better than values forcibly obtained from measurements on non-fresh tissue.

The robustness of the model outputs were also assessed through sensitivity analyses

varying material property inputs by up to 40%.

Table 4.1. Material property values used in the basic, unaltered model.

Mass density Sound speedTissue type /M3) c (m/s)
Bone 1610a 3060"
T-P complex 2510c 5060"
Soft tissue 1040* 16 0 0 9
Ear fats 9701 1430
Air 0.91h 355'
Sea water 1030' 1500

Values were taken from:

a - Duck (1990), value for a human cranium
b - Within the range of human skull, Duck (1990)
c - Lees et al. (1996), average of values given for the tympanic and periotic bones.
d - Within the range of human, bovine, and canine teeth, which are the densest of

bones listed in Duck (1990). Lees et al. (1996) lists the fin whale tympanic and
periotic bones as having sound speeds of 4540 m/s and 4550 m/s, respectively;
4550 m/s was also used in additional simulations.

e - Duck (1990), value for human skeletal muscle.
f - The average density of the ear fat samples was 966 kg/m3 (this study).
g - Duck (1990) gives the values for the in-vivo sound speed in pig muscle and fat as

1579 m/s and 1426 m/s, respectively.
h - Calculated using the ideal gas law, assuming an ambient pressure of 1 OOkPa, a

50% air / 50% water vapor mixture, and 370C for temperature.
i - Hewitt (1998): "The speed of sound in dry air at 0*C is about 330 meters per

second... Water vapor in the air increases this speed slightly... For each degree rise
in temperature above 0*C, the speed of sound in air increases by 0.6 meters per
second." Assuming air temperature of 37"C, 330 + (37 x 0.6) = 352.2 m/s is the
sound speed for dry, warm air. For warm, moist air, this value should be slightly
higher.

j - Pickard and Emery (1990) lists the approximate mean density for the world ocean
as 1027 kg/m 3.
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4.2.3. FEM program

The programming system that was used for this analysis was written by Dr.

Gonzalo Feijoo. This state-of-the-art system has several advantages over other FEM

software, including commercially available ones. First, it contains a module to construct

three-dimensional unstructured meshes directly from segmentated images (Figure 4.1).

These unstructured meshes can conform to interfaces, improving the accuracy of the

simulations. In contrast, programs that use Cartesian meshes, where the three-

dimensional space is divided into predetermined cubes or hexahedra, are limited in that

interfaces are poorly discretized; this results in larger relative errors in the field variables.

Another module, the Solver (the main calculation engine), operates with these

unstructured meshes. Our final unstructured mesh of the minke whale head contained

15,148,782 elements with edge lengths of approximately 3-5 mm.

Figure 4.1. a) FEM mesh of minke whale head showing only the skull (grey), ears
(green), and ear fat (yellow) for visualization (ventral view). b) Enlarged section of left
ear region, showing details and the quality of the tetrahedral mesh.

Another capability of the Solver is the ability to properly deal with the

propagation condition at the limits of the computational domain using a technique called

the Perfectly Matching Layer (PML), which minimizes reflection artifacts from the outer
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boundary of the model. The program has been benchmarked against analytical solutions

and laboratory experiments, showing excellent agreement with these results (Figure 4.2).

I 1 -

0 5 10 1a 2 4 I

(a) (b) (c)

Figure 4.2. Benchmarking the finite element code against analytical solutions and
laboratory measurements. (a) Back-scattering from a sphere with 0.8 contrast in sound
speed relative to the medium. (b) Scattering from a solid elastic sphere. (c) Comparison
between measurements (black line) and finite element computations (colored lines) of
backscattering at 70 kHz from an 8cm diameter, 0.19cm thick aluminum disk.

4.2.4. Simulations

The model was ensonified with a plane wave sound source ranging from 300 Hz -

10 kHz (Figure 4.3). The location of the sound source was altered for each simulation

and was either placed in front of the head, on one side of the head, from the ventral side,

or the dorsal side. In addition to the complete, unaltered model, several variations of the

model were run to isolate the effect of individual structures and their material properties

on the resulting pressure fields. These variations included: a) removal of air spaces

(replacing the material property values with those of the surrounding water); b) removal

of bony structures, including the skull and the tympano-periotic complex; c) alteration of

the material properties of the tympano-periotic complex; d) removal of the ear fat; e)

alteration of the material properties of ear fat; f) immersion of the structures in soft tissue

rather than water. Simulation outputs were visualized as the magnitude of the total
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pressure field (sum of the incident field and scattered pressure field) in a customized

workspace in ParaView, an open source, multi-platform data analysis and visualization

application.

Figure 4.3. A simulation with a 5 kHz plane wave sound source from the front of the
animal (right side of page) using the basic, unaltered model. The right lateral view of the
whale head's surface, as well as a sagittal slice through the entire domain and PML, is
visualized. Red indicates high total pressure magnitude and blue indicates low total
pressure magnitude.

4.3. Results

4.3.1. Density of ear fat samples

The volume measurements from displacement and CT were consistent with each

other. However, the CT measurements were much more precise. The density of ear fat

samples ranged from 781 kg/m3 to 1062 kg/M3 for all samples and from 928 kg/m3 to

1020 kg/m3 in the subset of samples for which volume was determined by CT. The mean

density value for all samples, including the fibrous regions, was 966 kg/M3 (SD = 44).
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There was a correlation between calculated density values and the lipid content

(% lipid of total wet weight), which was measured in Chapter 3; the higher the lipid

content, the lower the density (Figures 4.4 and 4.5). This relationship was particularly

clear when looking at only the samples that were CT scanned (Figure 4.5). As expected,

there was also a correlation between calculated density values and the average CT

number through each sample's volume; the higher the density, the higher the CT number

(Figure 4.6). There was also a linear relationship between the CT number of the solid

standards and their densities (Figure 4.7).

Ear fat samples 1100

* a
* *

,
S *. *

0** *

I
I

Y. 1379%ii# 1049's
R2 f m03191

0 20 40 00 0 100

% LUPd

Figure 4.4. Plot of lipid content vs.
density for ear fat samples.
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Figure 4.5. Plot of lipid content vs. density
for ear fat samples, where volumes for
density calculations were obtained from CT
data.
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Figure 4.6. Plot of CT number vs. density Figure 4.7. Plot of CT number vs. density
for CT scanned ear fat samples. for solid CT standards.

4.3.2. The basic model and effect of sound source location

Figures 4.8 - 4.10 show results of simulations using the basic model, which had

material property inputs listed in Table 4.1. In the first set of simulations (Figures 4.8-

4.9), the sound source was placed in front of the head, which is the top of the page in this

case. The magnitude of the total pressure field for sound source frequencies of 300 Hz, 1

kHz, 2 kHz, 5 kHz, and 10 kHz is shown in Figures 4.8 and 4.9. Figure 4.8 is a

visualization of the surface of the whale head seen from the ventral aspect. The

surrounding sea water was included in the simulations but is not pictured. Blue indicates

a low magnitude of pressure and red indicates a high magnitude of pressure. All figures

are on the same standardized color scale.

To provide a better visualization of the total pressure field by the ears, a coronal

slice was taken through the whole volume including the sea water (Figure 4.9). These

results indicated that there was an area of very low pressure magnitude at the ears, likely
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caused by the small air space within the middle ear. This effect dominated the pressure

field at the lower frequencies of 300 Hz -2 kHz. At higher frequencies, a region of very

high pressure magnitude developed adjacent to the low pressure area by the ears.

Structures in the ear could harness such difference in pressures to drive pressure-induced

motions in the cochlea.

300 Hz 1 kHz 2 kHz S kHz 10 kHz

Figure 4.8. Ventral surface views of the total pressure magnitude for the basic, unaltered
model ensonified with a plane wave sound source in front of the animal (top of the page).
Sea water was present in the model, but not included in the visualization. Red indicates
high total pressure magnitude and blue indicates low total pressure magnitude.
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Figure 4.9. Ventral views of the total pressure magnitude for the basic, unaltered model
ensonified with a plane wave sound source in front of the animal (top of the page). The
leftmost panel shows the surface of the whale head with a coronal slice through the
tympano-periotic complex and ear fats. In the subsequent panels, the surface view has
been removed to show the total pressure field for the domain in the equivalent position.

Next, the basic model described above was used for simulations in which the

sound source was moved to the right of the head (left side of the page), to the dorsal side,

and to the ventral side of the head. The results (Figure 4.10) indicated that the sound

source location did not greatly affect the resulting pressure fields at frequencies below 2

kHz. However, the sound source location had a large effect at higher frequencies. For

example, the simulation with the 5 and 10 kHz sound source from the right showed that

the right ear (left side of the page) would experience much greater pressure fluctuations

than the left ear. Sound sources placed ventral to the head resulted in much higher

magnitudes of pressure compared to sound sources placed dorsally. The slightly

asymmetric patterns seen in the dorsal and ventral models were likely because of the head

being placed somewhat off-center within the volume. Overall, sound sources placed in

front of the head and on the ventral side of the head were most effective at creating areas

of high pressure magnitude at both ears.
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Figure 4.10. Coronal slices through the domain at equivalent positions as Figure 4.9
(ventral view). The sound source locations and frequencies were altered in each
simulation. Red indicates high total pressure magnitude and blue indicates low total
pressure magnitude.
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4.3.3. The effect of air spaces

Figure 4.11 shows simulations from models that did not include air in the middle

ear space. As expected, there was a major difference in the resulting pressure field for

lower frequencies compared to the unaltered models. Without air, the low-pressure

region near the ears was greatly reduced. However, there was still a region of slightly

lower pressure magnitude at the ears. At higher frequencies, there were only minor

differences between the two models.

Figure 4.11. Comparisons between the basic, unaltered models and models in which air
spaces were removed. Red indicates high total pressure magnitude and blue indicates
low total pressure magnitude.
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4.3.4. The effect of bony structures

Figure 4.12 compares the unaltered models with the models in which all bony

structures, including the skull and tympano-periotic complex, were removed, as well as

models that included just bone. The simulations run with lower frequencies (below 2

kHz) were not strongly affected by the lack of bone, except that the region of low

pressure magnitude extended over a larger area around the air space when bone was

removed. In contrast, the simulations with higher frequencies produced dramatically

different results when bones were removed. There were generally higher total pressures

in the area that would be occupied by bone and the overall pressure field was less

complex.

To further illustrate the effect of bone on the total pressure field, simulations were

run for models in which only bony structures were present (Figure 4.12, third and sixth

columns). In these "just bone" models, the material properties of the tympano-periotic

complex were changed to those of normal bone, matching the rest of the skull. The

results show that the "just bone" models have similar simulation outputs as the models

without air, shown above. At the higher frequencies, the unaltered models and the

models with just bone gave very similar results.

Although the original simulations with the sound source on the dorsal side

produced dramatically different results compared to those with the sound source on the

ventral side (Figure 4.10), most of these differences disappeared when bone was removed

(Figure 4.13).
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Figure 4.12. Comparisons between the basic, unaltered models and models in which
bones and tympano-periotic complexes were removed, as well as models consisting of
only bony structures. Red indicates high total pressure magnitude and blue indicates low
total pressure magnitude.

Figure 4.13. Simulation
outputs for models in which
bony structures, including the
tympano-periotic complex,
were removed. A 10 kHz
sound source was placed on
the dorsal or ventral side of
the head. Red indicates high
total pressure magnitude and
blue indicates low total
pressure magnitude.
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The effect of having a dense tympano-periotic complex with fast sound speeds

was explored by changing its material property inputs (Figure 4.14). The unaltered

model used density and sound speed values of 2510 kg/M3 and 5060 m/s, as indicated in

Table 4.1. The altered models had densities ranging from 1610 kg/M3 (normal bone) to

3510 kg/m3 and sound speeds of 3060 m/s (normal bone) to 6060 m/s. The results

showed that the models with high density, high sound speed tympano-periotic complexes

had more focused regions of low pressure magnitude at the ears at the lowest frequencies.

The greatest differences between the models were seen at 300 Hz. The simulations at

higher frequencies showed no obvious differences in the resulting pressure field.

Figure 4.14. Simulations in which the density (p) and sound speed (c) were altered for
the tympano-periotic complex. The sound source was placed in front of the head.
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4.3.5. The role of ear fat

In the unaltered simulations, the ear fat had a density of 970 kg/m 3, which was the

average measured density of our ear fat samples (including the more fibrous regions), and

a sound speed of 1430 m/s, which is the published in-vivo value for pig fat (Duck, 1990).

To understand the potential role of the ear fat, these material properties were changed to

match those of muscle (1040 kg/m 3 and 1600 m/s), water (1030 kg/m3 and 1500 m/s),

and fats with lower densities and sound speeds (900 kg/m 3 and 1300 m/s). Although the

latter values may be unlikely for the mysticete ear fat, they have been found in other fatty

tissues including the odontocete acoustic fats. Duck (1990) states that the density of

adipose tissue is 916 kg/m3 and Soldevilla et al. (2005) reported that the density of a

neonate beaked whale perimandibular fats is 890 kg/m 3. Although the range of sound

speeds for typical mammalian fats at physiological temperatures is 1412 - 1471 m/s,

there are published values of 975 - 1225 m/s for subcutaneous canine fat (Duck, 1990).

Solevilla et al. (2005) reported that the perimandibular fats of the neonate beaked whale

had a sound speed of 1350 m/s at 370C, and sound speeds as low as 1273 m/s has been

reported through lipids from the central core of the odontocete fatty melon (Norris and

Harvey, 1974).

The results indicated that there was a slight increase in total pressure magnitude at

the ear fats when the sound speed and density of the ear fats were progressively reduced

from values matching muscle to odontocete-like fats. These effects were visible for the

simulations above 2 kHz. This trend was minor for the simulations in which the sound

source was placed in front of the head (Figure 4.15), but was very clear for simulations in

which the sound source was placed to the right (Figure 4.16) or on the ventral side of the

head (Figure 4.17). One exception was the 10 kHz simulation from the ventral side,
where there was a slightly larger area of high total pressure magnitude by the ears when

the ear fat material properties were matched with muscle (Figure 4.17).

For the 5 kHz ventral simulations, the presence of ear fat as originally modeled

resulted in a 7% increase in total pressure magnitude at the ear fat compared to

97



simulations in which the ear fats were removed. The difference in total pressure

magnitude between models with ear fat composed of muscle vs. the unaltered model was

13%. When the ear fat was changed from muscle to odontocete-like fats, there was a

31% increase in total pressure magnitude.

Figure 4.15. Simulations in which the density (p) and sound speed (c) were altered for the
ear fat. The sound source was placed in front of the head. Red indicates high total
pressure magnitude and blue indicates low total pressure magnitude.
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Figure 4.16. Simulations in which the density (p) and sound speed (c) were altered for
the ear fat. The sound source was placed to the right of the head (left side of the page).
Red indicates high total pressure magnitude and blue indicates low total pressure
magnitude.
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Figure 4.17. Simulations in which the density (p) and sound speed (c) were altered for
the ear fat. The sound source was placed on the ventral side of the head. Red indicates
high total pressure magnitude and blue indicates low total pressure magnitude.
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The unaltered simulations indicated that regions of high total pressure magnitude

did not develop at the ear fats when the sound source was placed on the dorsal side of the

head (Figure 4.10). However, at 5 kHz, it appeared that the ear fats experienced a

slightly higher total pressure magnitude when their sound speed and density were reduced

(Figure 4.18). Such differences were not noticeable for 10 kHz simulations.

Figure 4.18. Simulations in which the density (p) and sound speed (c) were altered for
the ear fat. The sound source was placed on the dorsal side of the head. Red indicates
high total pressure magnitude and blue indicates low total pressure magnitude.
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4.3.6. Immersing the head in soft tissues

In the above models, the bones, ears, air spaces, and ear fats were immersed in sea

water and the rest of the soft tissues were lumped with the surrounding sea water. We

also modeled the other extreme of replacing this surrounding water with muscle, which

may be a closer approximation of how sound would behave once it was inside the head

(Figure 4.19). There was little difference in the overall patterns of the resulting pressure

fields between the structures immersed in water vs. muscle. However, there was a

slightly higher total pressure magnitude at the ear fats when the water was replaced with

muscle (Figures 4.19 and 4.20). It should be noted that the differences in density and

sound speed of water vs. muscle are minor: 1030 kg/m3 and 1500 m/s for sea water, and

1040 kg/m3 and 1600 m/s for muscle. Models in which water was replaced with muscle

and the density and sound speed of ear fats were reduced simultaneously resulted in a

noticeably higher total pressure magnitude at the ear fats (Figure 4.20).
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Figure 4.19. Comparisons between the basic, unaltered models and models in which the
surrounding water was replaced with muscle. Red indicates high total pressure
magnitude and blue indicates low total pressure magnitude.
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Figure 4.20. Simulations showing the combined effects of replacing the surrounding
water with muscle and reducing the density (p) and sound speed (c) of the ear fat. The
simulations were run with a 5 kHz sound source from the front of the head. Red indicates
high total pressure magnitude and blue indicates low total pressure magnitude.

4.4. Discussion

4.4.1. Density of ear fat samples

The average density of the ear fat samples, 967 kg/m 3, is slightly higher than the

reported density for animal fat, 916 kg/m3 to 950 kg/m3 (Duck, 1990; Mast, 2000), and

previously reported values for acoustic fats. Soldevilla et al. (2005) found a very low

average density of 890 kg/m3 for the perimandibular fat bodies and 937 kg/m 3 for the

melon tissue in a neonate beaked whale. Varanasi et al. (1975) reported that the density

of extracted melon lipids was between 900 - 930 kg/m3 in the spotted dolphin (Stenella

attenuata). It should be noted that the density of the whole tissue are likely higher than
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the extracted lipids because the tissue includes structural components, which are denser

than the pure lipid. Accordingly, the higher average density value for the ear fats may be

because of the inclusion of fibrous regions representing the transition to the fibrous

attachment to the squamosal bone, as well as the mandible. In fact, the regions of the ear

fat with higher lipid contents had lower densities (Figures 4.4 and 4.5).

There was a linear relationship between CT number and density of the tissues,

which is consistent with assumptions and measurements from previous works (Aroyan,

2001; Soldevilla et al., 2005). However, each study arrived at a different best fit equation

for describing this linear relationship (Table 4.2). Our finding that the linear slope of the

solid samples is smaller than the slope for the ear fat is consistent with Henson et al.'s

(1987) finding that two separate regressions are necessary for describing the CT number

vs. density relationship of soft tissue and bone, and that the slope of the line for soft

tissues is steeper.

In some previous studies, these best fit equations have been used to derive

densities of tissues based on CT number (e.g., Krysl et al., 2006) or to indirectly derive

sound speeds based on Hounsfield Units (e.g., Aroyan, 2001). Therefore, each equation

was used to derive the density for theoretical samples with various CT numbers (Table

4.2). Based on the resulting values, it appears that soft tissues with low CT numbers will

result in relatively similar densities. However, bony structures with higher CT numbers

will have more varied results. For example, tissues with a CT number of 1500 HU will

have an estimated density of 1804 kg/m3 according to our equation from the solid

standards, whereas the same sample will have an estimated density of 2527 kg/m 3 if the

equation from Soldevilla et al. (2005) is used. These differences may be caused by the

calibration and settings used on the CT device as well as the tissue type. Because

samples with similar densities can have very different CT numbers, conversions from CT
number to estimates of density should be conducted with caution. While large

differences in material property values have little effect in some simulations, they can

result in noticeably different results under some circumstances (discussed below).
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Table 4.2. CT number to density conversions based on data from different studies.

Study Best fit equation Density if Density if Density if
(for density in kg/m) HU = -100 HU = 1000 HU = 1500

Our study: Density = 0.518 HU + 1027 975.2 kg/m3  1545 kg/m3 1804 kg/m3

solids _ _ _ _ _ _ _ _ _ _ _ _ _ ______

Our study: Density = 0.684 HU + 1007 938.6 kg/m3 1691 kg/m3 2033 kg/m3
ear fat Dniy064H 07 986k/n 61k/n 03k/n
Aroyan Density = 0.835 HU + 1000 916.5 kg/m 3  1835 kg/m 3 2253 kg/m 3

(2001) __ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _ _ _ _

et l(205) Density = 1.000 HU + 1027 926.5 kg/m 3 2027 kg/m 3 2527 kg/m 3

*Best fit equation estimated from given data.

4.4.2. Simulations

Our simulations showed that the finite element method is a promising approach

for understanding hearing mechanisms in the minke whale. Our relatively simple model

is a first step towards understanding both the composite and isolated effects of the various

structures found within the head. The model also allowed us to perform "virtual

experiments" (Cranford et al., 2008) by altering sound source frequencies and locations

while introducing structural and material differences.

In each simulation except when the sound source was placed dorsally, total

pressure magnitudes at the ear fats were much higher than pressure levels inside of the

tympano-periotic complex. Structures in the ear could potentially harness such

differences in pressure to induce pressure-driven motions in the cochlea. For a given

sound source condition (source frequency and location), higher total pressure levels

adjacent to the ears could lead to more favorable conditions for hearing. However,

Figure 4.9 should not be interpreted to mean that the minke whale hears better at 10 kHz

than at 300 Hz because the model did not include middle and inner ear structures, which

are critical for determining frequency sensitivity.
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The patterns in total pressure magnitude for lower frequencies were primarily

driven by the small amount of air within the middle ear. The air produced a region of

very low pressure magnitude, perhaps from the pressure-release effect of the air space

(Aroyan, 200 1). While water is not very compressible, air is highly compressible and

may act to relieve pressures in the air space. However, the effects of bony structures

were greater than the effects of air spaces for higher frequency simulations (Figures 4.11-

4.12).

The bony structures were important for creating a sound shadow effect at the

higher frequencies. Figure 4.10 shows that the location of the sound source had a strong

effect on the resulting pressure fields for frequencies above 5 kHz. In contrast, the results

from simulations with sound sources from the dorsal side and the ventral side were much

more similar when the bones were removed (Figure 4.13).

The differences in pressure (and intensity) caused by variations in sound source

location may provide localization cues for vocalizations of conspecifics or predators;

minke whale vocalizations span from 50 Hz - 9.4 kHz (Edds, 1997; Mellinger et al.,

2000; Gedamke et al., 2001) and killer whale vocalizations range from approximately

100 Hz - 60 kHz (Wartzok and Ketten, 1999; Au et al., 2004). The mechanism for

localizing lower frequency sounds below 5 kHz is unclear from our modeling results, but

may involve binaural time or phase differences. According to Heffner and Heffner

(1992), binaural phase differences are physiologically useful when the frequency is below

1 / [ 6(a/C) sinG ] where a = radius of the head, C = speed of sound, and 0 = angle of the

sound source from the animal's midline. If a = 25 cm for a small minke whale head such

as ours, C = 1500 m/s, and 0 = 30 degrees, this frequency cutoff would be at 2 kHz.

The tympano-periotic complexes of cetaceans are composed of particularly dense

bones with higher sound speeds than other types of bone, excluding some tooth material

(Lees et al., 1983; Lees et al., 1996). Lees et al. (1996) speculated that the high density,

high sound speed, and consequently high specific acoustic impedance of the tympano-

periotic complex helps to isolate the cochlea from "body noise" by increasing the
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acoustical contrast with soft tissues and the rest of the skull. We investigated the effects

of altering the density and sound speed of the tympano-periotic complex in our models

(Figure 4.14). Our results indicate that a higher density, higher sound speed tympano-

periotic complex could potentially help to isolate the ears at lower frequencies, focusing

the effect of the air space to a smaller region just at the ears. However, these effects were

minor and not discernible at the higher frequencies. A more refined model incorporating

elastic properties of the bone may help resolve this issue in future studies.

Compared to the dramatic effects of removing the air spaces or bony structures

from the model, removal of the ear fats did not greatly affect the overall patterns in total

pressure fields (Figures 4.15-4.18). This was to be expected, given that the material

properties of ear fat are much closer to the surrounding sea water compared to air or bone

(Table 4.1). Removal of the ear fats resulted in a minor decrease in total pressure

magnitude by the ears (7% for 5 kHz ventral simulations; Figures 4.15-4.18), suggesting

that the ear fats, as modeled, could be somewhat helpful in increasing sound pressures at

the ears. The focusing effect of the ear fats increased when the density and sound speed

of the ear fats were decreased, indicating that placing a low density, low sound speed

tissue by the ears may be helpful for sound reception. Conversely, increasing the density

and sound speed of ear fat to match those of muscle resulted in decreased total pressure

magnitudes at the ears (13% for 5 kHz ventral simulations; Figures 4.15-4.18). The

differences in total pressures were very noticeable when comparing the models at each

extreme. For the ventral simulations at 5 kHz, the lowest density, lowest sound speed ear

fat models resulted in 31% higher total pressures at the ear fats compared to the high

density, high sound speed ear fat models.

Of typical mammalian soft tissues, fat has the lowest density and sound speed,

especially at physiological temperatures (Bamber and Hill, 1979; Duck, 1990). It may

not be a coincidence that odontocetes acoustic fats are composed of unique lipids with

even lower sound speeds and densities compared to typical mammalian fats (Varanasi

and Malins, 1970; Hustad et al., 1971; Varanasi and Malins, 1971; Litchfield et al., 1975;
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Varanasi and Malins, 1975; Guow and Vlugter, 1976). The focusing effect of the ear fats

was stronger when the head was immersed in muscle instead of water (Figure 4.20). This

is likely because of the greater difference in sound speeds between muscle and fat

compared to water and fat.

The effects of altering the ear fat's material properties were most evident above 2

kHz. Simulations involving frequencies below 2 kHz were not strongly affected by the

ear fat with or without altered material properties. This may be because the wavelengths

of the sound are much larger than the ear fat itself at these lower frequencies. The

wavelengths of a 300 Hz, 1 kHz, 2 kHz, 5 kHz, and 10 kHz sound traveling through

water are 5 m, 1.5 m, 0.75 m, 0.3 m, and 0.15 m. The minke whale head used in this

simulation was from a juvenile and was approximately 1 m long, with ear fats dimensions

of approximately 0.15 m (left-right) x 0.15 m (anterior-posterior) x .12 m (dorsal-ventral).

According to Neuweiler (2000), a pinna functions as a directional antenna when

ka > 1.25, where k = 2a / X and a = radius of the pinna opening. If the ear fat were acting

as an internal pinna for our model minke whale, ka would be greater than 1.25 for

wavelengths of less than 0.3 m, or for frequencies greater than about 5 kHz. The relevant

frequencies would be lower for models of larger species, such as the fin whale or blue

whale. However, the land-based pinnae referenced by Neuweiler are composed of soft

tissues (including cartilage), whose material properties are more different from the

surrounding air than the ear fats are from the surrounding water, limiting the ability to

make such comparisons. It is possible that the large squamosal shield surrounding the

dorsal aspect of the ear fats and constraining some of its dimensions may be a more

effective pinna-like component for the mysticetes. The bowl-like shape of the squamosal

shield is somewhat reminiscent of the "scoop-shaped" (Fleischer, 1976) bony complex

including the nasal bones, maxilla, and premaxilla of some odontocetes. These bones are

located on the ventral and posterior side of the melon, and have been suggested to

function as an "acoustic mirror" helping to focus outgoing echolocation beams (Evans et

al., 1964; Fleischer, 1976; Aroyan et al., 1992).
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Thus, the emerging hypothesis for mysticete sound reception is that sound arrives

at the tympano-periotic complex through the ear fats, which directly leads from the

blubber region to the ossicles, but is guided by multiple components of the head,

including air and bone. This may be analogous to the situation in land mammals, in

which the head and torso play a large role in hearing and sound localization by causing

sounds to diffract in ways that are frequency-dependent (Heffner and Heffner, 1992). In

land mammals, the soft tissues also play a large role in shaping the sound pressure fields

around the head because they have very different material properties compared to air.

We propose that in mysticetes, the ear fats have replaced the ear canal in

providing a pathway for sound to get from the environment to the middle ear. The low

density and sound speed of the ear fats seem to help focus sound towards the ears, as the

sound refracts towards regions of minimum sound speed. The focusing effect was most

pronounced for frequencies above 2 kHz in our model of a small, juvenile minke whale.

However, it is important to keep in mind that sound reception is a complex process in

reality, which cannot be fully described by a simple model such as ours. For instance, we

know that the human auditory system is capable of detecting sounds with wavelengths up

to 17 m, which is much larger than any component of the human ear or body itself

(Rosowski, 1996). The question of if and how the ear fats may be useful for lower

frequency reception should be addressed in future studies.

This study represents the first application of FEM techniques to explore sound

reception in a baleen whale. While we were able to obtain potentially informative results,

we suggest several improvements for future studies. As noted above, our model did not

include any elastic structures, and the mesh sizes limited our ability to run simulations at

higher frequencies. Furthermore, we only modeled a subset of the structures present in

the minke whale head. Lumping most of the soft tissues, such as muscle, with the

surrounding water seemed to be an acceptable simplification, since the material

properties of sea water and muscle are close. Figure 4.19 shows that immersing the

whole head in muscle instead of sea water did not affect the overall patterns in total
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pressure magnitude. However, there are other soft tissues besides muscle that were not

modeled, such as the cartilaginous padding described in Yamato et al. (2012). This thick,

hard, mutli-layerd padding encompasses the entire tympanic bone except at its dorsal side,

where the periotic bone is, and its lateral side, at the insertion of the ear fat into the

tympano-periotic complex. Such structures may particularly affect the simulations with

ventral sound sources, and should be included in more refined models of the ear region.

A major question relevant to models of sound reception in baleen whales or any

diving mammal is the extent of air present in the head at depth. Our model included the

minimum amount of air that is presumed to exist in the peribullar sinus while the animal

is diving (Fraser and Purves, 1960). The simulation results show that these air spaces

play a major role in shaping the pressure field in the head at lower frequencies. Since the

actual amount of air retained at depth is uncertain, the outputs of our models should be

compared with additional models incorporating varied amounts of air in the peribullar

sinuses, pterygoid sinuses, and the nares.

Validation experiments are necessary for any attempt at modeling complex

phenomena. Previous studies have attempted validation in several ways. Aroyan et al.

(1992) and Aroyan (2001) compared modeling results with data available for the

bottlenose dolphin, and Cranford et al. (2008) incorporated simulations of outgoing

echolocation sounds from the phonic lips, which converged into beam patterns matching

experimental results. However, minke whales are not thought to produce vocalizations

from the nasal region, the laryngeal area was not included in our models, and there are

limited experimental data with which to compare simulation results. One possibility is to

implant small hydrophones into several different locations within a fresh dead head and

measure received levels while ensonifying it, similar to the work done by Norris and

Harvey (1974) on a bottlenose dolphin.
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4.5. Conclusions

In this chapter, we modeled sound propagation through the various components of

a minke whale head using the Finite Element Method. Based on the simulation results,

we hypothesize that air plays an important role in the interaction of sound waves with the

head at lower frequencies. However, the effects of bony structures seem to be dominant

at higher frequencies and contribute greatly to the sound shadow effect of the head.

In contrast to bone and air, which are dramatically different from the surrounding

aquatic medium, the ear fats have relatively similar material properties as sea water.

Consequently, their effect on the total pressure field through the whale head is not as

extreme as the effect of bone and air. However, the ear fats did slightly increase the total

pressure magnitude by the ears. The significance of placing a fat body adjacent to the

ears was investigated by altering the material properties of the ear fat. Fat has lower

sound speeds and densities compared to other types of soft tissues (Duck, 1990), and

decreasing these parameters in our model led to slightly greater total pressure magnitudes

at the ears. In contrast, increasing the density and sound speed of the ear fat to match

those of muscle led to a decreased total pressure magnitude at the ears. Thus, the

incorporation of fat bodies into the sound reception system seems to help focus sounds

towards the ears in the minke whale.
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Chapter 5: Conclusions
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Although hearing in odontocetes is well-studied, very little is known about

mysticete hearing. This thesis explored sound reception in the minke whale

(Balaenoptera acutorostrata), one of the smallest and most abundant baleen whale

species, using an interdisciplinary approach combining anatomical, biochemical, and

modeling techniques.

Dissections and biomedical imaging of minke whale heads in Chapter 2 revealed

that there is a large, well-formed fat body extending from the blubber region to the

tympano-periotic complex, or the ears. This "ear fat" inserts into the tympano-periotic

complex and attaches to the ossicles, which leads to the fluid-filled cochlea. Odontocetes

are thought to use specialized "acoustic fats" for underwater sound reception (Norris,

1964; Bullock et al., 1968; Brill et al., 1988; Mohl et al., 1999). These acoustic fats are

associated with their derived mandibles and also attach to the tympano-periotic complex.

Based on the anatomical observations from the minke whale, it was hypothesized that

fatty sound reception pathways may not be an exclusively odontocete phenomenon

amongst marine mammals, as previously believed.

The morphology and lipid composition of the ear fats were compared to the

acoustic fats of odontocetes in Chapter 3. Odontocete acoustic fats are comprised of

endogenously synthesized short, branched chain fatty acids and fatty alcohols within

triacylglycerols and wax esters (Varanasi and Malins, 1970), whereas typical mammalian

fats contain fatty acids with longer chain lengths of 14 - 22 carbons found within

triacylglycerols (Pond, 1998). We found that the ear fats are made up of these typical

mammalian lipids and also do not have a multi-lobed structure or fill the mandibular

canals like odontocete acoustic fats. However, acoustic fats and ear fats shared several

potentially important characteristics, such as retaining their lipids even during starvation,

containing fewer dietary signals compared to blubber, and having reduced sound speeds

compared to surrounding non-fatty tissues. Furthermore, the acoustic fats of odontocetes

are incredibly diverse in both morphology and lipid composition. Thus, fatty tissues may
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not be restricted to a certain type of lipid composition or morphological form to have an

acoustic function.

The functional significance of placing fatty tissues adjacent to the ears was

examined using the Finite Element Method (FEM) in Chapter 4. A model of the minke

whale head was created based on CT data from Chapter 2, combined with material

property values from measurements and published data, and ensonified by a plane wave

sound source between 300 Hz and 10 kHz. We found that the resulting patterns in total

pressure magnitude were shaped by multiple components of the head, including air

spaces and bony structures. For simulations above 2 kHz, the presence of the ear fats

slightly increased the total pressure magnitude by the ears compared to a model without

ear fats. When the density and sound speed of the ear fats were decreased, the sound was

more focused towards the ears. Conversely, when the density and sound speed of the ear

fats were increased to match the properties of muscle, sound was less focused at the ears.

For the simulations using a 5 kHz source from the ventral source, the addition of the ear

fat resulted in a 7% increase in total pressure magnitude adjacent to the ears. The

addition of the ear fat, compared to a scenario where the ear fat was composed of muscle,

increased pressures by 13%. When the ear fat was changed from muscle to odontocete-

like fats, there was a 31% increase in total pressure magnitude. Thus, the presence of

fatty tissues with low densities and low sound speeds seems to be beneficial in guiding

sound towards the ears.

In odontocete acoustic fats, the topographical arrangement of specific lipids is
thought to help channel sound towards the ears (Koopman et al., 2006). This is because
the lipids with lowest sound speeds are found at the central core of the fat body and at the
regions closest to the ears, allowing incoming sound to bend towards these regions of
minimum sound speed (Guow and Vlugter, 1967; Hustad et al., 1971; Flewellen and
Morris, 1978; Koopman et al., 2006). Although we did not see spatial variability in the
identity of lipids within the mysticete ear fats, we propose that the ear fats represent
spatial variability in sound speeds on a grosser scale, consistent with the longer
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wavelength sounds presumably used by these animals. By having a lower sound speed

than the surrounding, non-fatty tissue, the ear fats may be helping to focus sound towards

the ears in baleen whales. Fatty tissues are known to have lower densities and sound

speeds than other types of soft tissue (Duck, 1990), which may explain why they are an

important component of the auditory system in odontocetes, and perhaps in mysticete

cetaceans as well.

In summary, we described a novel potential fatty sound reception pathway in a
mysticete cetacean. The morphology and biochemical composition of this "ear fat" was
compared with the acoustic fats of odontocete cetaceans. As expected, we identified

major differences between the mysticete ear fats and odontocete acoustic fats. However,

the ear fats and acoustic fats share several potentially important features. Furthermore, a

FE model of the minke whale head showed that the presence of ear fats slightly increases

sound pressure magnitudes at the ears. In contrast, increasing the density and sound

speed of ear fat to match those of muscle resulted in lower sound pressure magnitudes at

the ears. In an aquatic habitat where the pinna and air-filled ear canal is no longer

effective at collecting and focusing sound towards the ears, we propose that both

odontocete and mysticete cetaceans have evolved to incorporate fatty tissues into their

auditory systems for aquatic sound reception.
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Appendix: CT scanning and three-dimensional visualization of the minke whale

head: non-auditory structures
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The primary goal of CT scanning and dissecting the minke whale heads was to

examine the auditory anatomy. However, it also provided a unique opportunity to

examine additional anatomical features of the minke whale head. This appendix provides

a brief description of five different structures that could be seen clearly on the CT images
and dissection: rostral fat, ventral fibrocartilage, baleen, pharyngo-tympanic (Eustachian)

tube, and olfactory structures. CT datasets of whole baleen whale heads are incredibly

rare and would be beneficial for future studies of mysticete cephalic anatomy.

A.1. Rostral fat ("Melon")

In the CT scans of the minke whale, there was a structure anterior to the

blowholes that had Hounsfield units (HU) of -30 ~ -100, which is within the range of ear

fat HU (Figure A. 1). Interestingly, the rostral fat is in a similar location of the head as

the odontocete melon, connecting with the nares and blowhole region posteriorly.

Dissections revealed that the structure is made of fatty tissues as well (Figure A.2).

This structure has been referred to as the mysticete "melon" in Heyning and Mead

(1990). According to them, the mysticete melon is "rather small compared to that of

odontocetes, but is of the same consistency of adipose tissue and located in exactly the

same position as the melon of toothed whales". However, they acknowledge that

mysticete melons are not likely to be involved in sound production as in odontocetes.

Instead, they speculate that the fatty tissue plays a role during respiration, assisting in

movements of the nasal plugs as the nasal plug muscles contract and relax. Harper et al.

(2010) came to similar conclusions while investigating the collagen fiber architecture of

the rostral material in a right whale.

The three-dimensional reconstructions show that the rostral fat consists of two

separate fatty cores originating at blowhole, which join together anteriorly. This fatty

structure sits in the mesorostral groove and extends almost to the anterior edge of the
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premaxilla. The minke whale rostral fat does not show any obvious morphological

asymmetry, unlike the melon of some odonotocetes. For example, the bottlenose dolphin

melon extends much farther posteriorly on the right side compared to the left side (Figure

A.3).

Figure A.1. CT image of the rostral Figure A.2. Rostral material of B-acu22.
material in B-acul3, indicated Photo courtesy of Cally Harper.
by yellow arrow.
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Figure A.3. The rostral material of the minke whale (a, c) compared to the melon of a
bottlenose dolphin (b, d). (a, b), Dorsal view; (c, d), lateral view.
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A.2. Ventral fibrocartilage

Rorqual whales possess a unique feeding mechanism, lowering their jaws by

almost 90 degrees and engulf'mg prey-laden seawater into their massive elastic throat

pouch. Brodie (1993) has claimed that this represents the "greatest biomechanical action

in the animal kingdom". The unique Y-shaped fibrocartilage structure located ventral to

the mandibles most likely provides additional support for the elastic throat pouch during

feeding (Pivorunas, 1977). Pivorunas (1977) provides a more in-depth description of this

structure, noting that it connects to the mandibular symphyseal fibrocartilage mass at the

anterior end.

Figure A.4.. Ventral fibrocartilage of the minke whale, shown in green. White, bone;
purple, tympano-periotic complex; dark blue, external auditory canal; yellow, ear fats. a)
Ventral view, b) lateral view.
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A.3. Baleen

The baleen of Mysticetes is made of keratin, which is an epidermal tissue also

found in the hair, nails, hoofs, and horns of mammals (Pautard, 1963). The length, shape,
and number of baleen plates vary considerably across families and species. For example,
the bowhead whale (Balaena mysticetes) can have baleen that is up to 4.5m long, while

rorqual whales such as the minke whale have much shorter baleen (Tinker, 1988; Figure

A.5). According to Werth (2001), Balaena baleen is so long that they must fold

posteriorly for the mouth to close properly. The three-dimensional reconstructions of

minke whale baleen indicate that the baleen is able to fit in to the mouth without major

deformations (Figure A.6). The question of how Mysticetes remove prey trapped in

baleen has not yet been resolved (Werth, 2001).

lateral view of B-acul 5, showing baleen plates.
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Figure A.6. Baleen of B-acul3. a) Axial CT image.
b) Three-dimensional reconstruction, ventral view.
Baleen, black; skull, white; soft tissues, transparent.
c) Lateral view with transparent skull. d) Anterior
view with transparent skull. e) Lateral view of
baleen. f) Anterior view of baleen.
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A.4. Pharyngo-tympanic (Eustachian) tube

Lillie (1910) states that the Eustachian tube extends from the nares to the floor of

the pterygoid sinus in the larger mysticete species. B-acul8 was dissected with Dr. Joy

Reidenberg of the Mt. Sinai School of Medicine, an expert on cetacean air spaces. We

were able to locate the opening of the pharyngo-tympanic tube from the ventral aspect,

where we found a darkened dimple in the lateral wall of the nasal cavity on both the right

and left side (Figure A.7). This hole connected to the medial wall of the pterygoid sac.

We inserted a hollow plastic tube through the pharyngo-tympanic tube and filled it with a

high-density contrast media, sealing both ends with silicone rubber cement and surgical

tape (Figure A.8). We then CT the head to visualize this pathway (Figure A.9). Because

the right ear had been removed previously, we could not determine whether the

pharyngo-tympanic tube ended at the pterygoid sac or the peribullar sac.

Figure A.7. Darkened dimple on lateral wall of nasal cavity.
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Figure A.8. Plastic tube filled with high-density contrast media and inserted through
pharyngo-tympanic tube.

Fig. A.9. CT scan images at 10 mm intervals (rostral to caudal) showing the plastic tube
with high-density contrast media going through the right pharyngo-tympanic tube
(circled). The images have been rotated 180 degrees for visualization. D, dorsal; V,
ventral; R, right; L, left; BC, brain case.
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A.5. Olfactory structures

Historically, it has been widely thought that cetaceans do not have a good sense of

smell. This is based on both anatomical and genetic evidence: the olfactory bulbs of

cetaceans are reduced or absent (Breathnach, 1960), and the olfactory receptor genes

contain significantly higher numbers of non-functional pseudogenes compared to their

terrestrial relatives (Kishida et al., 2007). However, while it may be true that odontocetes

do not use olfaction, there is increasing evidence that mysticetes may have a functional

olfactory system. The proportion of olfactory receptor pseudogenes is much lower in

mysticetes compared to odontocetes; 58% and 49% in the minke whale and bowhead

whale, respectively, compared to 77% and 78% in the dwarf sperm whale and Dall's

porpoise (Kishida et al., 2007; Theiwissen et al., 2011). Theiwissen et al. (2011) also

found well-developed olfactory bulbs in the bowhead whale (Balaena mysticetus) and

speculated that Bowhead whales may use olfaction to locate aggregations of krill.

We opportunistically examined the olfactory region while dissecting two of the

specimens, B-acul 8 and B-acu23. After extracting the brain, the dura was removed and

the tissue lining was scraped off on the left side to expose the cribriform plate (Figures

A.10 and A. 11). Carte and Macalister (1868) noted that the cribriform plate of minke

whales "presented a median plate (crista-galli), on each side of which existed three or

four deep depressions perforated by foramina for the exit of the olfactory nerves." The

olfactory bulbs were not present in either of our specimen, most likely because of post-

mortem decomposition.

The space where the olfactory bulbs are presumably located is clearly visible on

the CT images of the minke whale, while it was not obvious in the bottlenose dolphin

(Figure A. 13, a-c). Another structure that may be relevant to the olfactory system is the

inter-turbinate air spaces within the ethmoid bones. These irregularly shaped air spaces

are located just anterior to the olfactory bulbs and lead to the nasal passage (Figure A. 12).

We could not assess whether these spaces were lined with olfactory epithelium, but these

inter-turbinate air spaces are not present in the bottlenose dolphin (Figure A. 13).
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Figure A.10. Inside the braincase of B-acu23. The location of the olfactory bulbs is
indicated by the white box.

Figure A.11. Inside the braincase of B-acul8. The dura has been removed to expose the
cribriform plate. The area indicated by white box is enlarged to the right.
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Figure A.12. Dried bone of B-acuil showing inter-turbinate spaces within the ethmoid
bones, which connect to the nasal passage.

Figure A.13. (Next 5 pages). CT images of the inter-turbinate air spaces within the
ethmoid bones in the minke whale in the left column and the bottlenose dolphin in the
right column. The series progresses from posterior to anterior at 3 mm intervals. In (a-c),
the braincase is visible dorsal to the empty space where the olfactory bulbs are
presumably located in the minke whale. No such space is evident in the bottlenose
dolphin. This empty space leads to the complex inter-turbinate spaces in the minke
whale, while these inter-turbinate spaces are also not found in the bottlenose dolphin. In
(1-n), the inter-turbinate spaces are shown connecting to the nasal passage in the minke
whale. The nasal passage leads to the blowhole further anteriorly.
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