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1. Introduction Cutting-plane methods, when combined with branch and bound, are among
the most successful techniques for solving integer programming problems in practice; numerous
types of cutting planes have been studied in the literature and several of them are used in com-
mercial solvers (see, e.g., Cornuéjols [3] and the references therein). Cutting planes also give rise
to a rich theory (see again [3]). In general, a cutting plane for a polyhedron P is an inequality that
is satisfied by all integer points in P and, when added to the polyhedron P , it typically yields a
stronger relaxation of its integer hull. A Gomory-Chvátal (GC) cutting plane (Gomory [8], Chvátal
[2]) is an inequality of the form cx≤ ⌊δ⌋, where c is an integral vector and cx≤ δ is valid for P .
The GC closure of P is the intersection of all half-spaces defined by such inequalities; it is usually
denoted by P ′. Even though the GC closure is defined as the intersection of an infinite number
of half-spaces, the GC closure of a rational polyhedron is again a rational polyhedron. Namely,
Schrijver [11] showed that, for a rational polyhedron P , the GC cuts corresponding to a totally
dual integral system of linear inequalities describing P specify its closure P ′ fully. For polyhedra
that cannot be described by rational data the situation is different. It is well-known that the integer
hull PI of an unbounded non-rational polyhedron P may not be a polyhedron (see, e.g., Halfin
[9]). In fact, it may not be a closed set, and the GC closure may not be a rational polyhedron.
On the other hand, in the case of a non-rational polytope, PI is the convex hull of a finite set of
integer points and, therefore, a rational polytope. There is no notion of total dual integrality for
non-rational systems of linear inequalities, and Schrijver asked in [11] whether the GC closure of
an arbitrary polytope is a rational polytope. In this paper, we show that this is indeed the case:
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the GC closure of a non-rational polytope is a rational polytope, that is, it can be described by a
finite set of rational inequalities.
Even though GC cuts were originally introduced for polyhedra, they have lately been applied to

other convex sets as well. Of particular relevance is the work by Dey and Vielma [6], who showed
that the GC closure of a full-dimensional ellipsoid described by rational data is a polytope. Dadush
et al. [4] recently extended this result to strictly convex bodies and to the intersection of strictly
convex bodies with rational polyhedra. Since the original proof of Schrijver for rational polyhedra
relies strongly on polyhedral properties, the authors in [6] and [4] had to develop a new proof
technique, which can roughly be described as follows: One first shows that there exists a finite set
of GC cuts that separate every non-integral point on the boundary of the strictly convex body.
These cuts define a polytope that is contained in the convex body. Furthermore, the intersection
of this polytope with the boundary of the body is contained in the body’s closure. In a second
step, one proves that only a finite set of additional inequalities is needed to fully describe the GC
closure of the body.
Our general proof strategy for showing the polyhedrality of the GC closure of a non-rational

polytope is inspired by the work of Dadush et al. [4]. Yet, the key argument is very different, since
their proof relies on properties of strictly convex bodies that do not extend to polytopes. More
precisely, strictly convex bodies do not have any higher-dimensional flat faces, and therein lies the
main difficulty in establishing the polyhedrality of the elementary closure for non-rational poly-
topes. Our proof is geometrically motivated and uses ideas from convex analysis, polyhedral theory,
and the geometry of numbers. In particular, the underlying geometric idea relies on properties of
integer lattices and reduced lattice bases.

Simultaneously, and independently from this work, it was proven in [5] that the GC closure of
any compact convex set is a rational polytope.

This paper is organized as follows: After introducing our notation in Section 2, we provide a
sketch of our proof in Section 3. Section 4 covers some required background material, and Section 5
contains the main part of the proof.

2. Basics and Notations For a closed and convex set K ⊆Rn and a vector a ∈ Rn, we
define aK :=max{ax |x∈K}. The hyperplane {x∈Rn |ax= a0} is denoted by (ax= a0) and, simi-
larly, (ax≤ a0) denotes the half-space {x ∈Rn |ax≤ a0}. For a= (a1, . . . , an)∈ Zn, we write gcd(a)
to denote the greatest common divisor of the numbers a1, . . . , an. For any integer k, [k] := {1, . . . , k}.
For a subset U of Rn, aff(U) denotes the smallest affine subspace containing U and int(U) the inte-
rior of U . The relative boundary and relative interior of U (that is, the boundary and interior of U
considered as a subset of aff(U)) are denoted by rbd(U) and ri(U), respectively. Moreover, B(0, ε)
denotes the full-dimensional ball in Rn around the origin with radius ε.
For any set S ⊆ Zn, we use

CS(K) :=
⋂

a∈S

(

ax≤ ⌊aK⌋
)

,

to denote the intersection of all half-spaces corresponding to GC cuts for K with normal vector
in S. For S =Zn, one obtains the GC closure K ′ of the set K.

3. General Proof Idea Our general strategy for proving that for any polytope a finite num-
ber of GC cuts is sufficient to describe the polytope’s closure is a modification of the two-step
technique of Dadush et al. [4] for a strictly convex body K: They first construct a finite set S ⊆Zn

such that

CS(K)⊆K , (K1)
CS(K)∩ bd(K)⊆ Zn , (K2)
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and then argue that S needs to be augmented by, at most, a finite set of vectors. In particular, they
demonstrate with property (K2) that every fractional point on the boundary of the strictly convex
body is separated by a GC cut. Obviously, the same cannot be true for polytopes, since this would
otherwise imply that the GC procedure separates fractional points in the relative interior of the
facets of an integral polytope. Furthermore, in the case of a general polytope P , we cannot assume
full-dimensionality. This is because a unimodular transformation that maps P to a full-dimensional
polytope in a lower-dimensional space may not exist if P is contained in some non-rational affine
subspace. In particular, this observation forces us to consider the relative boundary of the polytope
instead of its boundary. Hence, our general strategy for proving the polyhedrality of P ′ is as follows:
First, we show that one can find a finite set S of integral vectors such that

CS(P )⊆ P , (P1)
CS(P )∩ rbd(P )⊆ P ′ . (P2)

We then argue that, given the polytope CS(P ), no more than a finite number of additional GC
cuts are necessary to describe the closure P ′.
The main challenge of this proof strategy lies in showing the existence of a set S satisfying

property (P1). This is due to the presence of higher-dimensional faces with non-rational affine
hulls. These require the development of new arguments compared to the proof for strictly convex
bodies. The outlined general strategy is implemented in four main steps:

1. Show that there exists a finite set S ⊆ Zn such that CS(P )⊆P .
2. Show that for any face F of P , F ′ =P ′∩F . In particular, show that if F =P ∩ (ax= aP ), then

for every GC cut for F there exists a GC cut for P that has the same impact on the maximal
rational affine subspace of (ax= aP ).

3. Show that if there exists a finite set S satisfying (P1) and (P2), then P ′ is a rational polytope.
4. Prove that P ′ is a rational polytope by induction on the dimension of P ⊆Rn.

In the remainder of this section, we describe the reasoning behind each step of the proof and
sketch some of the applied techniques.

Step 1: Constructing a subset of P from a finite number of GC cuts. Suppose that
we can find a finite set S ⊆ Zn with CS(P )⊆P for some full-dimensional polytope P ⊆Rn for which
a non-rational inequality ax≤ aP is facet-defining. As this inequality cannot be facet-defining for
the rational polytope CS(P ), there must exist a finite set of GC cuts that dominate ax≤ aP . More
formally, there must exist a subset Sa ⊆ S such that CSa(P )⊆ (ax≤ aP ). If VR denotes the maximal
rational affine subspace of (ax = aP ), that is, the affine hull of all rational points in (ax = aP ),
then the GC cuts associated with the vectors in Sa have to separate every point in (ax= aP ) \VR.
Indeed, we show that for each non-rational facet-defining inequality ax ≤ aP such a finite set Sa

exists and, also, how it can be constructed. For this, we first establish the existence of a sequence
of integral vectors satisfying a specific list of properties. These vectors give rise to GC cuts that
separate all points in the non-rational facet F =P ∩ (ax= aP ) that are not contained in VR.
The number of GC cuts needed in our construction for separating these points only depends on

the dimension of VR. If dim(VR) = n−2, that is, the hyperplane (ax= aP ) has a single non-rational
direction, then only two cuts are necessary. One can visualize these cuts to form a kind of “tent”
in the half-space (ax≤ aP ), with the ridge being VR (see Figure 1 for an illustration). With each
decrease in the dimension of VR by 1, the number of necessary cuts is doubled. Hence, at most 2n−1

GC cuts suffice to separate the non-rational parts of a non-rational facet of the polytope.
The proof of Step 1 uses many classic results from convex and polyhedral theory, as well as from

number theory (e.g., Diophantine approximations, integral lattices, and reduced lattice bases).
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(ax= aP )
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Figure 1. Construction of a finite set of GC cuts that dominate a non-rational facet-defining inequality ax≤ aP .
Here, the hyperplane (ax = aP ) contains only one rational, in fact, one integral point x0 and has, therefore, one
non-rational direction (VR = {x0} and dim(VR) = 0). Two GC cuts separate every point in the hyperplane (ax= aP )
that is not in VR.

Step 2: A homogeneity property: F ′ = P ′ ∩F . As the second step of the proof, we show
a property of the GC closure that is well-known for rational polytopes (see, e.g., Schrijver [12]):
if one applies the closure operator to a face of a polytope, the result is the same as if one inter-
sects the closure of the polytope with the face. As it turns out, the same is true for non-rational
polytopes. The proof for the rational case is based on the observation that any GC cut for a
face F = P ∩ (ax= aP ) can be “rotated” so that it becomes a valid GC cut for P . In particular,
the rotated cut has the same impact on the hyperplane (ax= aP ) as the original cut for F . While
the exact same property does not hold in the non-rational case, we show that there is a rotation of
any cut for F that results in a GC cut for P , which has the same impact on the maximal rational
affine subspace VR of (ax= aP ). As Step 1 of our proof implies that the non-rational parts of a
face are separated in the first round of the GC procedure in any event, this property suffices to
show that F ′ =P ′ ∩F .
The insights gained in this second step will be useful for Step 4 of the proof, where we show

the main result by induction on the dimension of the polytope. Knowing that the GC closure of
a lower-dimensional facet F of P is a polytope, each of the finite number of cuts describing F ′

can be rotated in order to become a GC cut for P . We thereby establish the existence of a finite
set SF ⊆ Zn with the property that CSF

(P )∩F = F ′. Since the facets of P constitute the relative
boundary of the polytope, the union of all these sets will give rise to a set S ⊆ Zn that satisfies
property (P2).

Step 3: Finite augmentation property. A statement similar to the one in Step 3 has been
established by Dadush et al. [4] for full-dimensional convex bodies. Since a non-rational polytope P
can be contained in some non-rational affine subspace and, thus, a unimodular transformation of P
to a full-dimensional polytope in a lower-dimensional space is not possible, we need the extension to
lower-dimensional polytopes (Lemma 5.5). However, the basic observation for proving this part is
the same as in [4]: Every additional undominated GC cut has to separate a point that is contained
in the relative interior of P . Even though in the non-full-dimensional case there are infinitely many
cuts with this property, we argue that only a finite number of them need to be considered.

Step 4: Proof of the main result. As the final step of the proof, we establish the main
result: the GC closure of any polytope can be described by a finite set of inequalities. The proof is
by induction on the dimension of the polytope and uses the observations made in the steps above.
Step 1 provides a finite set S ⊆ Zn satisfying CS(P )⊆ P . Applying the induction assumption to
the facets of P and using the homogeneity property of Step 2, we augment S for each facet F by a
finite set SF ⊆Zn such that the resulting set of integral vectors satisfies properties (P1) and (P2).
From that it follows with the finite augmentation property proven in Step 3 that P ′ is a polytope.
We will discuss each of the four steps in a separate subsection of Section 5.
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4. Preliminaries We now state various results from the literature and derive some basic
facts regarding Diophantine approximations and lattice bases that are utilized in the subsequent
sections. The first lemma links the absolute value of the determinant of an integral non-singular
square matrix to the number of integer points contained in the parallelepiped spanned by the
columns of the matrix (see, e.g., Barvinok [1]).

Lemma 4.1. Let v1, . . . , vn ∈ Zn be linearly independent vectors. Then the number of integer

points in the semi-open parallelepiped

Π(v1, . . . , vn) =

{

n
∑

i=1

λivi

∣

∣

∣

∣

0≤ λi < 1 for i∈ [n]

}

is equal to the absolute value of the determinant of the matrix with columns v1, . . . , vn.

For linearly independent vectors b1, . . . , bl in Rn, the lattice generated by the basis B = (b1, . . . , bl)
is the set

Λ(B) :=

{

x∈Rn

∣

∣

∣

∣

x=
l
∑

j=1

λjbj, λj ∈Z for j ∈ [l]

}

.

For any lattice Λ ⊂ Rn, the affine volume of the fundamental parallelepiped of a basis of the
lattice (the parallelepiped spanned by the basis vectors) does not depend on the basis itself. It is
denoted by det(Λ). If we define L0 := {0} and Lk := span(b1, . . . , bk) for k ∈ [l], and if b̃k denotes
the orthogonal projection of bk onto L⊥

k−1, then

det
(

Λ
)

=
l
∏

k=1

∥

∥

∥
b̃k

∥

∥

∥
.

A famous result due to Lenstra et al. [10] states that for every lattice in Rn, there exists a basis
whose vectors are almost orthogonal to each other. Such basis is referred to as a reduced basis and
its orthogonality defect can be bounded by a constant that only depends on the dimension n. One
can slightly modify the lattice basis reduction algorithm of Lenstra et al. to obtain the following
result (see Dunkel [7], p. 62, Thm 4.5).

Theorem 4.1. Let (ax = 0) be an integral hyperplane in Rn and let U ⊆ (ax= 0) be

a k-dimensional linear vector space. Assume that U is generated by integral vectors u1, . . . , uk ∈Zn

that define a basis of the lattice U ∩Zn. If k≥ 1, assume that for any v ∈
(

(ax= 0)∩Zn
)

\U ,

‖v‖2 ≥ 1

2

( k
∑

p=1

‖up‖
)2

.

Then one can extend u1, . . . , uk by vectors v1, . . . , vl ∈ Zn, l= n− k− 1, to a basis of (ax= 0)∩Zn

such that there exists a constant c that only depends on l such that for j ∈ [l],

‖ṽj‖ ≥ c‖vj‖ ,

where ṽj denotes the orthogonal projection of vj onto span(u1, . . . .uk, v1, . . . , vj−1)
⊥.

Next, we show that if a point can be written as linear combination of an orthogonal
basis w̃1, . . . , w̃l derived from vectors w1, . . . ,wl with small multipliers and if the orthogonal pro-
jections are not too short, the point can also be written as a linear combination of w1, . . . ,wl with
multipliers of bounded size.
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Lemma 4.2. Let R > 0 be a constant and let u1, . . . , uk,w1, . . . ,wl be linearly indepen-

dent vectors in Rn with ‖wj‖=R, for j ∈ [l]. Furthermore, define U0 := span(u1, . . . , uk)
and Uj := span(u1, . . . , uk,w1, . . . ,wj), and let w̃j denote the orthogonal projection of wj onto U⊥

j−1.

If there exists a constant c > 0 such that ‖w̃j‖ ≥ cR, then there exists a constant c1 only depending

on l and c such that

U0 +

{ l
∑

j=1

λ̃jw̃j

∣

∣

∣

∣

λ̃j ∈ [−1,1] for j ∈ [l]

}

⊆U0 +

{ l
∑

j=1

λjwj

∣

∣

∣

∣

λj ∈ [−c1, c1] for j ∈ [l]

}

.

Proof. The proof of the lemma is by induction on l. For j ∈ [l], the orthogonal projection w̃j

of wj onto U⊥
j−1 has a unique representation:

w̃j = wj −
k
∑

p=1

αjpup −
j−1
∑

t=1

αjtw̃t , (1)

where αjp ∈ R for p ∈ [k], and for t ∈ [j − 1], αjt =
wj w̃t

‖w̃t‖
2 . First, consider the case l = 1. Take an

arbitrary x= u+ λ̃1w̃1, where u∈U0 and λ̃1 ∈ [−1,1]. Then

x= u+ λ̃1w̃1 = u+ λ̃1

(

w1 −
k
∑

p=1

α1pup

)

=

(

u− λ̃1

k
∑

p=1

α1pup

)

+ λ̃1w1 ,

and c1 = 1 satisfies the conditions of the lemma. Therefore, assume that the statement of the lemma
is true for some l ≥ 1 with constant c1 = c1(l, c). Now take an x= u+

∑l+1

j=1 λ̃jw̃j , where u ∈ U0

and λ̃j ∈ [−1,1] for j ∈ [l+1]. Using the induction assumption and (1), we get

x= u+
l
∑

j=1

λ̃jw̃j + λ̃l+1w̃l+1 = u′ +
l
∑

j=1

λjwj + λ̃l+1

(

wl+1 −
k
∑

p=1

αl+1pup −
l
∑

t=1

wl+1w̃t

‖w̃t‖2
w̃t

)

= u′′ +
l
∑

j=1

λjwj + λ̃l+1

(

wl+1 −
l
∑

j=1

wl+1w̃j

‖w̃j‖2
w̃j

)

,

for some u′, u′′ ∈U0 and numbers λj satisfying |λj | ≤ c1(l, c) for j ∈ [l]. Let us define

y :=
l
∑

j=1

wl+1w̃j

‖w̃j‖2
w̃j =

l
∑

j=1

νjw̃j .

Then

|νj |=
|wl+1w̃j |
‖w̃j‖2

≤ ‖wl+1‖‖w̃j‖
‖w̃j‖2

=
‖wl+1‖
‖w̃j‖

≤ R

Rc
=

1

c
.

By applying the induction assumption a second time, we get

y ∈ U0 +

{ l
∑

j=1

νjw̃j

∣

∣

∣

∣

νj ∈ [−1/c,1/c] for j ∈ [l]

}

=U0 +
1

c

{ l
∑

j=1

νjw̃j

∣

∣

∣

∣

νj ∈ [−1,1] for j ∈ [l]

}

⊆ U0 +
1

c

{ l
∑

j=1

γjwj

∣

∣

∣

∣

γj ∈ [−c1, c1] for j ∈ [l]

}

=U0 +

{ l
∑

j=1

γjwj

∣

∣

∣

∣

γj ∈ [−c1/c, c1/c] for j ∈ [l]

}

.

In particular, there exists some u′′′ ∈U0 and numbers γj ∈ [−c1/c, c1/c] for j ∈ [l] such that

y= u′′′ +
l
∑

j=1

γjwj .
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Hence, we obtain

x= u′′ +
l
∑

j=1

λjwj + λ̃l+1

(

wl+1 −u′′′ −
l
∑

j=1

γjwj

)

= û+
l
∑

j=1

(λj − λ̃l+1γj)wj + λ̃l+1wl+1 ,

where û∈U0 and
∣

∣λj − λ̃l+1γj
∣

∣≤ |λj |+ |γj | ≤ c1(l, c)+
c1(l, c)

c
.

Thus, c1(l+1, c) := c1(l, c) (1+1/c) is the desired constant for l+1. �

Next, we state a famous result regarding simultaneous Diophantine approximations: a finite set
of real numbers can be approximated by rational numbers with one common low denominator
(see, e.g., Schrijver [12]).

Theorem 4.2 (Dirichlet). For any a ∈ Rn and ε ∈ (0,1), there exist integers p1, . . . , pn
and q > 0 such that for i ∈ [n],

∣

∣

∣

∣

ai −
pi
q

∣

∣

∣

∣

<
ε

q
.

We now extend the theorem to the case that there are rational linear dependencies between the
components of the non-rational vector that also should be satisfied by its approximation.

Lemma 4.3. Let a∈Rn and k≤ n− 1. Let u1, . . . , uk ∈ Zn be linearly independent vectors such

that auj =0 for j ∈ [k]. For any ε ∈ (0,1), there exists an integer vector p = (p1, . . . , pn) and an

integer q > 0 such that puj = 0 for j ∈ [k] and such that for i ∈ [n],
∣

∣

∣

∣

ai −
pi
q

∣

∣

∣

∣

<
ε

q
.

Proof. Let U denote the k× n matrix with rows u1, . . . , uk, that is, Ua= 0. Since rank(U) = k,
there exists (after possibly reordering the indices) a rational k× (n− k) matrix Ũ such that the
system of equalities Ua= 0 is equivalent to the system







an−k+1

...
an






= Ũ







a1

...
an−k






.

In particular, one can find a positive integer s and integers rit, for n−k+1≤ i≤ n and t∈ [n−k],
such that

ai =
1

s

n−k
∑

t=1

rit at .

Let us define the constants

K1 :=min

{

1

s
,

s

(n− k)maxi,t |rit|

}

and ε1 :=K1 ε. Let p̃1, . . . , p̃n−k and q̃ be integers according to Theorem 4.2 that satisfy
∣

∣

∣

∣

ai −
p̃i
q̃

∣

∣

∣

∣

<
ε1
q̃

for i= 1, . . . , n− k. We define

q := s q̃
pi := s p̃i for i= 1, . . . , n− k

pi :=
n−k
∑

t=1

rit p̃t for i= n− k+1, . . . , n .
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Note that 





pn−k+1

...
pn






= Ũ







p1
...

pn−k






,

implying pul = 0 for l ∈ [k]. Furthermore, for i= 1, . . . , n− k, we have
∣

∣

∣

∣

ai −
pi
q

∣

∣

∣

∣

=

∣

∣

∣

∣

ai −
p̃i
q̃

∣

∣

∣

∣

<
ε1
q/s

≤ ε

q
.

Then we obtain for i= n− k+1, . . . , n,

∣

∣

∣

∣

ai −
pi
q

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ai −
1

s

n−k
∑

t=1

rit
p̃t
q̃

∣

∣

∣

∣

∣

=
1

s

∣

∣

∣

∣

∣

n−k
∑

t=1

rit at −
n−k
∑

t=1

rit
p̃t
q̃

∣

∣

∣

∣

∣

≤ 1

s

n−k
∑

t=1

|rit|
∣

∣

∣

∣

at −
p̃t
q̃

∣

∣

∣

∣

≤ ε

q
,

and the lemma follows. �

From the last lemma, we obtain the following corollary.

Corollary 4.1. Let a∈Rn and k ≤ n− 1. Let u1, . . . , uk ∈ Zn be linearly independent vectors

satisfying auj = 0 for j ∈ [k]. Then there exists a sequence {ai}i∈N ⊆Zn such that ai ⊥ uj for j ∈ [k]
and such that

∥

∥ai
∥

∥

∥

∥āi − ā
∥

∥−→ 0 , (2)

where ā= a/‖a‖ and āi = ai/‖ai‖.

5. The Main Proof In this section, we prove the main result of the paper, following the
sequence of four steps outlined in Section 3.

5.1. Step 1 The first and most difficult step of our proof is to show that for any polytope P ,
there exists a finite set of GC cuts that defines a subset of P . In fact, we prove that for each
non-rational facet-defining inequality ax≤ aP for P one can construct a finite set Sa of integral
vectors that satisfies CSa(P )⊆ (ax≤ aP ). In particular, with VR denoting the maximal rational
affine subspace of (ax= aP ), we show that the set of points in P ∩ (ax= aP ) \VR can be partitioned
into a finite number of segments such that for each segment there exists a single GC cut that
separates all points in the segment. The number of segments will thereby depend only on the
dimension of VR.
Our proof technique has a clear geometric interpretation. It is motivated by an observation for

rational polytopes that can be illustrated as follows: Suppose that H = (ax= aP ) is an integral
hyperplane in Rn. We can assume w.l.o.g. that ap = 0 and that the hyperplane is defined by integral
vectors u1, . . . , un−2, and v, which span a parallelepiped that does not contain any interior integral
points. In other words, these vectors form a basis of the lattice defined by the integer points in H.
Let U := span(u1, . . . , un−2). Then U +λv⊆H, for any number λ. One can imagine that the set of
integer points in H can be partitioned into subsets (or layers) associated with the parallel affine
subspaces that are obtained by shifting U by some integral multiple of v (see Figure 2). Now consider
a rational polytope P with facet F =P ∩(ax= 0) such that F is a subset of U + {λv |λ< 1}. Then F
does not intersect the affine subspace spanned by the integer points in U + v, but lies completely
on one side of this subspace in H. Given this setting, there is some “gap” between F and U +v. It
therefore appears intuitive that a slight “rotation of the hyperplane H around U in direction of v”
should result in some hyperplane (hx= 0) that corresponds to a GC cut for P . Such a hyperplane
would separate every point in F ∩

(

U + {λv |λ> 0}
)

and imply that P ′ ∩F ⊆U + {λv |λ≤ 0}. In
other words, one iteration of the GC procedure would guarantee that P ′ does not contain any
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0 v

U U + v U +2v

F

H = (ax=0)

Figure 2. The lattice of integer points in H can be partitioned into layers that are parallel to U and obtained by
shifting U by integral multiples of v. The facet F = P ∩H does not intersect the affine space U + v. We can rotate
the hyperplane H around U to obtain a GC cut for P that separates every point in the grey area.

v

h
a

P

F

(vx= 1)

(hx= 1)

(hx= 0)

(ax= 0)

Figure 3. Geometry of GC cuts for rational polytopes for n = 2: The hyperplane (ax = 0) with a= (−2,5) is
spanned by v = (5,2). Here, U = {0}. The line segment [0, v] (that is, the parallelepiped spanned by v) does not
contain any interior integral points, that is, gcd(v) = 1. There exists an integral vector h0 = (−1,3) such that h0v= 1
and the same is true for any h = h0 + ka with k ∈ Z. Hence, by choosing k large enough, we can find an inte-
gral h with hv = 1 such that hx is maximized over P by a vertex in F . Since F ⊆ {λv |λ< 1}, we get that
max{hx |x∈ P}=max{hx |x∈ F}<hv= 1, implying that hx ≤ 0 is a GC cut for F that separates every point
in F ∩ (0, v).

points in H that lie strictly between the two affine subspaces U and U +v. Figure 3 illustrates the
described situation in dimension two.
As we formally prove in Lemma 5.1 and Corollary 5.1, this intuition is justified. Most impor-

tantly, it will assist in constructing GC cuts that separate the points in the non-rational parts of
facets with non-rational affine hulls. In the following, we illustrate the basic idea for the special
case of a non-rational facet-defining hyperplane (ax = aP ) for which the maximal rational affine
subspace VR is integral and has dimension n−2. (There is a natural generalization of this approach
for the case that VR is non-integral or of smaller dimension.) Let F = P ∩ (ax= aP ) be a facet
of a polytope P and let us assume w.l.o.g. that aP = 0. Furthermore, suppose that (ax = 0) is
spanned by integral vectors u1, . . . , un−2 and some non-rational vector v. Then we can approximate
the hyperplane (ax=0) by a sequence of integral hyperplanes (aix= 0) that are spanned by the
vectors u1, . . . , un−2 together with an approximation vi ∈ Zn of the non-rational direction v. That
is, the approximations also contain U := span(u1, . . . , un−2) = VR. It is intuitive that the norm of
the integral vector vi has to increase with the accuracy of the approximation, as the distance of vi
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to the non-rational hyperplane (ax= 0) must become smaller. Now consider the perturbation P i

of P that is obtained by replacing the non-rational facet-defining inequality ax≤ 0 by the approx-
imation aix ≤ 0. For large enough norm of the vector vi, the facet F i = P i ∩ (aix = 0) does not
intersect the integral affine subspace U + vi. Hence, with the earlier observation, there exists a
GC cut hix≤ 0 for P i that separates every point in U + {λvi |λ > 0}. Our general strategy is to
utilize this cut to derive a GC cut hx≤ 0 for P that removes every point in U + {λv |λ> 0}. Note
that such h would need to have a strictly positive scalar product with v; and the maximum of hx
over P would have to be attained at a vertex in F and be strictly smaller than 1. Ideally, we would
want the vector hi to satisfy these conditions. However, the modified Diophantine approximation

(aix=0)

(ax=0)

(hix=0)

vi

P

P i

F
v

hi

Figure 4. One of the difficulties in the construction of GC cuts separating non-rational parts of facets:
hix ≤ 0 is a GC cut for the approximation P i (drawn with a dashed line) that separates every point λvi

of F i =P i ∩ (aix= 0) with λ> 0. However, even if the cut hix≤ 0 is also a valid GC cut for P , it does not separate
any point λv with λ> 0, since hiv < 0.

that we use to generate the sequence of normal vectors ai, and thus vi, does not guarantee these
properties for every hi. One difficulty, for example, is the fact that hivi > 0 does not necessarily
imply hv > 0 (see also Figure 4). Hence, the construction of the vector h has to balance the goal
of making the scalar product hv strictly positive, but less than 1.
A rather complicated construction and analysis in Lemma 5.2 will show that an integral vector h

with the desired properties always exists. It gives rise to a GC cut that separates every point in the
set U + {λv |λ> 0}. Similarly, one can construct a cut for the non-rational part on the “other side”
of U , that is, for U −{λv |λ> 0}. Geometrically, the non-rational part of (ax= 0) is partitioned
into two sets associated with the directions±v. The two corresponding cutting planes form a “tent”
in the half-space (ax≤ 0) (see Figure 5). In the generalization to lower-dimensional subspaces U ,
the non-rational part of (ax = 0) spanned by non-rational vectors v1, . . . , vl, will be partitioned
into 2l disjoint sets that correspond to the vectors (±v1, . . . ,±vl).
The first lemma and corollary of this subsection formalize the observations for rational polytopes

described above, which can be regarded as the geometric foundation of the proof of Step 1.

Lemma 5.1. Let u1, . . . , un−2 and v be linearly independent vectors in Zn such that

{

n−2
∑

i=1

γiui +λv

∣

∣

∣

∣

γi ∈R for i∈ [n− 2], 0<λ< 1

}

∩Zn = ∅ . (3)

Then there exists a vector y ∈ Zn such that uiy= 0 for i∈ [n− 2] and such that vy =1.
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H = (ax=0)v
U

F

0

Figure 5. Separation of non-rational parts of facets for n = 3: Here, H = (ax = 0) is a non-rational hyperplane
with maximal rational affine subspace U of dimension n− 2. The non-rational direction is given by the non-rational
vector v. There exist two GC cuts that separate all points in F \U , their hyperplanes form a “tent” below H with
ridge U .

Proof. First, let us assume that the semi-open parallelepiped spanned by the vectors u1, . . . , un−2

does not contain any integral points apart from 0, that is,
{

n−2
∑

i=1

γiui

∣

∣

∣

∣

0≤ γi < 1 for i∈ [n− 2]

}

∩Zn = {0} . (4)

Together with (3), we have
{

n−2
∑

i=1

γiui +λv

∣

∣

∣

∣

0≤ γi < 1 for i∈ [n− 2], 0≤ λ< 1

}

∩Zn = {0} ,

that is, also the semi-open parallelepiped spanned by all n−1 vectors does not contain any integral
points apart from 0. Now consider the system

V y :=















u1

u2

...
un−2

v















y=















0
0
...
0
1















=: b .

Note that V has full row rank and column rank n−1. There exists a unimodular matrix U ∈ Zn×n,
that is, |det(U)|= 1, such that

V U =















u1

u2

...
un−2

v















U =















ũ1

ũ2

...
ũn−2

ṽ















=:
[

Ṽ
∣

∣0
]

,

where each ũi = uiU and ṽ = vU has its n-th component zero and where Ṽ is a nonsingular
integral (n− 1)× (n− 1) matrix. The semi-open parallelepiped spanned by the vectors ũ1, . . . , ũn−2,
and ṽ in (xn = 0) does not contain any integral points apart from 0. Indeed, suppose there was an
integral point z = γ1ũ1 + . . .+ γn−2ũn−2 + λṽ with 0 ≤ γi < 1, for i ∈ [n− 2], and 0 ≤ λ < 1, such
that not all of these coefficients are zero. Then

zU−1 = γ1ũ1U
−1 + . . .+ γn−2ũn−2U

−1 +λṽU−1 = γ1u1 + . . .+ γn−2un−2 +λv
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is an integral point different from 0 in the semi-open parallelepiped spanned by u1, . . . , un−2, and v,
which is a contradiction. Now observe that Lemma 4.1 implies |det(Ṽ )|= 1. Therefore, the system

Ṽ ỹ= b

has an integral solution ỹ ∈Zn−1. The vector ȳ= [ỹT 0]T satisfies V Uȳ= b and, consequently, y=Uȳ
is an integral solution to V y= b.
If assumption (4) is not satisfied, then we can find a set of n− 2 integral vectors u′

1, . . . , u
′
n−2

spanning the same linear vector space as u1, . . . , un−2 such that (4) holds. Consequently, there is a
vector y ∈ Zn such that u′

iy= 0 for i∈ [n− 2] and vy= 1. Since every ui can be written as a linear
combination of the u′

i, we have ui y= 0 as well. �

In the following corollary, we apply the above lemma and characterize how rational faces that sat-
isfy a certain property behave under the GC procedure. More precisely, suppose thatH = (ax= aP )
is an integral supporting hyperplane for a rational polytope P . Furthermore, assume that the
face F = P ∩H does not share any points with an (n− 2)-dimensional affine subspace Ū spanned
by some set of n− 1 integral points in H. Then all points of F that lie strictly between Ū and the
parallel affine subspace Ū ′ that is obtained by shifting Ū in H towards F until the next layer of
integer points is touched, will be separated by a single GC cut (see Figure 6 for an illustration).
Note that the normal vector h of such a cut has to be perpendicular to every vector in Ū . Put
differently, the hyperplane (hx= ⌊hP ⌋) has to be parallel to Ū .

Ū = (U +x0 + v)Ū ′ = (U +x0)

P

F

H = (ax= aP )

(hx= ⌊hP ⌋)

x0 v

Figure 6. Illustration of Corollary 5.1 for n=3: H = (ax= aP ) is an integral hyperplane and F =P ∩H is a face of
the rational polytope P . Note that the integer points in H are drawn as filled black points. Since F ∩ (U +x0 + v) = ∅,
there is a GC cut that separates all points in the shaded area between (U + x0) and (U +x0 + v) in H .

Corollary 5.1. Let P be a polytope in Rn and let H = (ax= ap) be a supporting hyperplane

such that P ⊆ (ax≤ aP ). Assume that we can write H = x0 +span(u1, . . . , un−2, v) for integral vec-

tors x0, u1, . . . , un−2, v. Let U = span(u1, . . . , un−2) and F =P ∩ (ax= aP ). If

(i)
{

u+λv
∣

∣u∈U, 0<λ< 1
}

∩Zn = ∅ and
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(ii) F ⊆
{

x0 +u+λv
∣

∣u∈U, λ< 1
}

,

then P ′ ∩F ⊆
{

x0 +u+λv
∣

∣u∈U, λ≤ 0
}

.

Proof. We can assume w.l.o.g. that x0 = 0. Because of assumption (ii), there exists an ε ∈ [0,1)
such that

F ⊆
{

u+λv
∣

∣u∈U, λ≤ ε
}

. (5)

With assumption (i), Lemma 5.1 implies the existence of a vector y ∈ Zn such that uiy = 0
for i ∈ [n− 2] and vy = 1, and the same is true for any integral vector y+ ka, where k ∈ N. Now
let r1, . . . , rm denote the set of edge directions emanating from the vertices of F to vertices of P
that are not in F . Then rsa< 0 for s ∈ [m]. We can choose k large enough, so that the maximum
of (y+ ka) over P is attained at a point in F . Then with (5) and ui(y+ ka) = 0 for i∈ [n− 2], we
get for arbitrary u∈U ,

max
{

(y+ ka)x |x∈P
}

=max
{

(y+ ka)x |x∈F
}

≤ (y+ ka) (u+ εv) = ε .

Hence, (y + ka)x ≤ 0 is a GC cut for P . Now consider any point x= u+λv ∈F such
that u ∈ U and λ > 0. Then (y+ ka)x= λ(y+ ka)v= λ> 0. Hence, the point x violates the GC
cut (y+ ka)x≤ 0 and, therefore, x /∈ P ′. �

While the above lemma and corollary concern integral hyperplanes, in the remainder of this sub-
section we will focus on affine spaces that cannot be described by rational data. Lemma 5.2 below
can be seen as the core of the proof of Step 1. Therein, we establish for every non-rational hyper-
plane V = (ax= 0) the existence of sequences of vectors and numbers, which satisfy a distinct list
of properties. The sequences are associated with integral approximations of the hyperplane V . The
starting point in the construction of these sequences is the special Diophantine approximation {ai}
of the non-rational normal vector a from Corollary 4.1. If u1, . . . , uk denote a maximal set of integral
and linearly independent vectors in V , then the normal vectors ai ∈ Zn are perpendicular to each
of the vectors u1, . . . , uk. As a result, the approximations (aix= 0) of the hyperplane V contain
the maximal rational subspace VR = span(u1, . . . , uk) of V . In particular, (ax=0)∩ (aix=0)= VR.
Each integral hyperplane (aix= 0) is spanned by the vectors u1, . . . , uk together with l= n− 1− k
additional integral vectors, denoted by vi1, . . . , v

i
l , which can be regarded as approximations of the

non-rational directions of V . These vectors will be chosen very carefully among the infinite number
of possible sets of vectors spanning (aix= 0), as not all choices will guarantee the properties that
we require for the other sequences and numbers derived from them. Most importantly, they will
be almost orthogonal to one another. The vectors vij give rise to non-rational vectors wi

j that span
the non-rational part of (ax=0). More precisely, each wi

j is obtained as projection of the vector vij
onto (ax= 0), scaled by a factor, so that all wi

j have a same given length. We refer to Figure 7 for
an illustration. As the quality of the approximations of V increases with the index i, the wi

j ’s will,
at some point, also be almost orthogonal to one another. This property of the wi

j’s turns out to
be material in the subsequent proof of Step 1. Apart from the mentioned sequences ai, vij, and wi

j ,
which have very natural geometric interpretations, we also establish a sequence of integral vec-
tors hi(δ), for each δ ∈ {−1,1}l, whose construction is more involved. They arise as integral linear
combinations of the integral vectors found in Lemma 5.1, which were the basis for GC cuts separat-
ing points in rational facets between affine layers of integral points (see Figure 6 and Corollary 5.1).
Some of the properties that these vectors satisfy are as follows: Each hi(δ) is perpendicular to the
vectors u1, . . . , uk and, therefore, the hyperplane (hix= 0) is parallel to VR. Moreover, the scalar
product of hi(δ) with each non-rational vector δjw

i
j is strictly positive, but very small.

To understand the motivation behind these properties, let us consider the non-rational paral-
lelepiped Q(δ) that is spanned by u1, . . . , uk and the non-rational vectors δ1w

i
1, . . . , δlw

i
l . When

maximizing hi(δ) over Q(δ), the maximum is attained at w̄(δ) = δ1w
i
1+ . . .+δlw

i
l , or any other point
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(ax= 0)

0

(aix= 0)

wi
1

wi
2

vi1

vi2

R

Q(1,1)

Q(−1,1)

Q(−1,−1)

Q(1,−1)

w̄(1,1)

w̄(−1,1)

w̄(−1,−1)

w̄(1,−1)

Figure 7. Illustration of Lemma 5.2 for n= 3 and dim(VR) = 0: The non-rational hyperplane (ax= 0) is approxi-
mated by integral hyperplanes (aix= 0). The integral vectors vi1 and vi2 span (aix= 0) and are almost orthogonal
to each other. Their directions give rise to non-rational vectors wi

1 and wi
2 of a given length R in (ax= 0). For each

parallelepiped Q(δ) spanned by vectors δ1w
i
1 and δ2w

i
2, with δ ∈ {−1,1}2, there exists a GC cut that separates every

point in Q(δ) \VR.

in Q(δ) that can be written as w̄(δ)+u for some u∈ VR. Moreover, the properties of hi(δ) guarantee
that 0<hi(δ)w̄(δ)< 1. As a consequence, hi(δ)x≤ 0 is a GC cut for Q(δ) that separates every point
of Q(δ) \ VR. Thus, for the special case that the non-rational polytope is the (n− 1)-dimensional
parallelepiped Q(δ) or contained in it, the single integral vector hi(δ) implies a finite set S with
the properties that we are looking for in Step 1 of the proof.
For a general polytope P with facet F = P ∩ (ax = 0), the goal is to cover F with the 2l

parallelepipeds associated with (±wi
1, . . . ,±wi

l). Then every vector hi(δ) will give rise to a GC cut
that separates all the points in corresponding parallelepiped that do not belong to VR. Note that
for this, we also need the property that, when hi(δ) is maximized over P , the maximum is attained
at a vertex in F . In other words, every vector hi(δ) must have a non-positive scalar product with
the directions of edges connecting a vertex in F and a vertex outside of F . Indeed, we construct
the hi(δ) in Lemma 5.2 with the requirement that for an arbitrary given set of vectors r1, . . . , rm,
their scalar product with these vectors is nonpositive. The proof of Lemma 5.2 strongly relies on
properties of reduced bases of integral lattices.

Lemma 5.2. Let R> 0 be a constant and let V = (ax= 0)⊆Rn be a non-rational hyperplane

through the origin, that is, a ∈Rn \Qn. Let U be the maximal rational subspace of V and assume

that U is spanned by vectors u1, . . . , uk ∈ Zn, that is, dim(U) = k, 0 ≤ k ≤ n − 2. Furthermore,

let r1, . . . , rm ∈Rn such that for s ∈ [m],

rs a< 0 . (6)
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Then there exists a constant c > 0 only depending on l := n− k− 1 and a constant C > 0 such that

there exist sequences

{ai} ⊆ Zn, {vi1}, . . . ,{vil} ⊆ Zn, {qi1}, . . . ,{qil} ⊆R, {wi
1}, . . . ,{wi

l} ⊆Rn

that satisfy the following properties:

[i] gcd(ai) = 1.

[ii] rs a
i ≤ 0 for s ∈ [m].

[iii] ‖ai‖ ‖āi − ā‖ −→ 0, where āi = ai/‖ai‖ and ā= a/‖a‖.
[iv] (aix= 0)= span(u1, . . . , uk, v

i
1, . . . , v

i
l).

[v]
∥

∥vij
∥

∥−→∞ for j ∈ [l].

[vi]
∥

∥vij/q
i
j −wi

j

∥

∥−→ 0 for j ∈ [l].

[vii]
∥

∥wi
j

∥

∥=R for j ∈ [l].

[viii] V = span(u1, . . . , uk,w
i
1, . . . ,w

i
l).

[ix]
∥

∥w̃i
j

∥

∥ ≥ cR for j ∈ [l], where w̃i
j is the orthogonal projection of wi

j

onto span(u1, ..., uk,w
i
1, ...,w

i
j−1)

⊥.

[x] For every ε > 0, there is an index i0(ε) such that for all i ≥ i0(ε) and and for all α ∈ Rl
+

with ‖α‖∞ ≤ 1, there exist vectors {hi
α(δ)}⊆ Zn for all δ ∈ {−1,1}l such that

hi
α(δ) ⊥ up for p∈ [k]

∣

∣hi
α(δ) (δjw

i
j)−αj

∣

∣ ≤ ε for j ∈ [l]

hi
α(δ) (δjv

i
j) =

⌊

αjq
i
j

⌋

for j ∈ [l]

hi
α(δ) rs ≤ 0 for s∈ [m]

|hi
α(δ)a

i| ≤ C ‖ai‖2 .

Proof. Let us assume w.l.o.g. that the vectors u1, . . . , uk form a basis of the lattice U ∩ Zn.
If this is not the case, we can replace the original vectors by another set of vectors in U that
has this property. Let VIR denote the set of points in V that are not contained in the maximal
rational subspace of V , that is, VIR := V \U . Let {ai} ⊆ Zn be a sequence of vectors according to
Corollary 4.1 such that for p∈ [k], ai ⊥ up and

∥

∥ai
∥

∥

∥

∥āi − ā
∥

∥−→ 0 . (7)

We can assume w.l.o.g. that gcd(ai) = 1, since the same properties hold if we divide ai by some
positive integer. Thus, the sequence {ai} satisfies properties [i] and [iii]. Furthermore,(7) implies
for s∈ [m],

∣

∣rsā
i − rsā

∣

∣−→ 0 .

As rsā < 0 by assumption (6), there exists some constant β > 0 such that rsā
i ≤ −β for large

enough i. Hence, noting that ‖ai‖ −→∞ because of a∈Rn \Qn, it also holds that for s ∈ [m] and
large enough i,

rsa
i ≤−β . (8)

In particular, property [ii] is guaranteed for large enough i.
Let Λi = (aix = 0) ∩ Zn denote the lattice defined by the integer points in the integral hyper-

plane (aix= 0). In the following claim, we show that norm of the shortest vector in Λi \U grows
with i.
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Claim 5.1. Let zi denote a shortest vector in Λi \U . Then ‖zi‖ −→∞.

Proof of Claim 5.1. Suppose that there exists some positive constant K such that for all i,
one can find a point zi ∈ Λi \ U with ‖zi‖ ≤ K. Let proj(zi) denote the projection of zi onto
the hyperplane (ax = 0), that is, proj(zi) + λa = zi, where λ = (azi)/‖a‖2. As zi /∈ (ax=0), we
have ‖zi − proj(zi)‖ > 0. Furthermore, since the number of integer points in B(0,K) is finite,
there must exist some positive number D such that ‖zi − proj(zi)‖ ≥ D for every i. However,
using āizi =0 and (7), we get

∥

∥zi − proj(zi)
∥

∥= |λ| ‖a‖= |azi|
‖a‖ =

∣

∣āzi
∣

∣=
∣

∣āzi − āizi
∣

∣≤
∥

∥ā− āi
∥

∥ K −→ 0 ,

which is a contradiction. �

Claim 5.1 implies that, for sufficiently large i, we can assume for every v ∈Λi \U ,

‖v‖2 ≥ 1

2

( k
∑

p=1

‖up‖
)2

.

Since (aix= 0) is an integral hyperplane and U ⊆ (aix= 0), we can find integral vectors vi1, . . . , v
i
l

according to Theorem 4.1. That is,

(aix= 0)= span(u1, . . . , uk, v
i
1, . . . , v

i
l) ,

and u1, . . . , uk, v
i
1, . . . , v

i
l form a basis of the lattice Λi. Let ṽi1 be the orthogonal projection of vi1

onto U⊥ and let ṽij denote the orthogonal projection of vij onto span(u1, . . . , uk, v
i
1, . . . , v

i
j−1)

⊥,
for j = 2, . . . , l. Then it also holds by Theorem 4.1 that for j ∈ [l],

∥

∥ṽij
∥

∥≥ c1
∥

∥vij
∥

∥ , (9)

where c1 is a constant that only depends on l. With this, property [iv] of the lemma follows.
Furthermore, observe that vij ∈Λi \U for j ∈ [l]. Hence, Claim 5.1 implies property [v].
Since u1, . . . , uk, v

i
1, . . . , v

i
l form a basis of Λi, we have for every s∈ [l],

{

k
∑

p=1

γpup +
l
∑

j=1

λjv
i
j

∣

∣

∣

∣

γp ∈R for p∈ [k], λj ∈R for j ∈ [l], 0<λs < 1

}

∩Zn = ∅ . (10)

Indeed, if this was not the case and there was a point z ∈Zn such that z =
∑k

p=1 γpup +
∑l

j=1 λjv
i
j

and such that 0<λs < 1, then

z′ =
k
∑

p=1

(

γp −⌊γp⌋
)

up +
l
∑

j=1

(

λj −⌊λj⌋
)

vij ∈
(

Zn ∩Π(u1, . . . , uk, v
i
1, . . . , v

i
l)
)

.

That is, z′ is an integral point in the semi-open parallelepiped spanned by the basis vectors. Because
of 0<λs < 1, it holds that z′ 6= 0, and this cannot be true. Now, let us define for every j ∈ [l],

(wi
j, q

i
j) := argmin

{
∥

∥

∥

∥

1

q
vij −w

∥

∥

∥

∥

∣

∣

∣

∣

w ∈ VIR, ‖w‖=R, q ∈R+

}

. (11)

Intuitively, wi
j is the closest point in the intersection of VIR with the ball B(0,R) to the line spanned

by vij. The definition of wi
j immediately implies property [vii] of the lemma. In the following claim,

we show property [vi].
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Claim 5.2. For j ∈ [l], we have qij −→∞ and
∥

∥vij/q
i
j −wi

j

∥

∥−→ 0.

Proof of Claim 5.2. We first show the second part. Let w denote the projection of the
point (Rv̄ij) onto the non-rational hyperplane (ax= 0), where v̄ij = vij/

∥

∥vij
∥

∥. We have w=Rv̄ij −λa,

where λ= (aRv̄ij)/‖a‖2. Furthermore, let q =
∥

∥vij
∥

∥/R > 0. Note that for w̄=w/‖w‖, it holds
that Rw̄ ∈ VIR and ‖Rw̄‖=R. Therefore, (Rw̄, q) is a feasible pair in the minimization (11) that
defines (wi

j, q
i
j). Consequently,

∥

∥

∥

∥

vij
qij

−wi
j

∥

∥

∥

∥

≤
∥

∥

∥

∥

vij
q
−Rw̄

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

vij
∥

∥vij
∥

∥/R
−Rw̄

∥

∥

∥

∥

∥

=
∥

∥Rv̄ij −Rw̄+(w−w)
∥

∥≤
∥

∥Rv̄ij −w
∥

∥+ ‖w−Rw̄‖ .

We get, using āiv̄ij =0 and (7), that

∥

∥Rv̄ij −w
∥

∥= |λ| ‖a‖=
∣

∣Rāv̄ij
∣

∣=R
∣

∣āv̄ij − āiv̄ij
∣

∣≤R
∥

∥ā− āi
∥

∥

∥

∥v̄ij
∥

∥=R
∥

∥ā− āi
∥

∥−→ 0 .

This also implies that ‖w‖ −→ R and, therefore, the second part of the claim holds. The first
part, qij −→∞, follows from

∥

∥vij
∥

∥−→∞,
∥

∥wi
j

∥

∥=R, and
∥

∥vij/q
i
j −wi

j

∥

∥−→ 0. �

Next, we prove property [ix]. By (9), we have for j ∈ [l],

1

qij

∥

∥ṽij
∥

∥≥ 1

qij
c1
∥

∥vij
∥

∥ . (12)

Let w̃i
j denote the orthogonal projection of wi

j onto span(u1, . . . , uk,w
i
1, . . . ,w

i
j−1)

⊥, for j ∈ [l].
Because of Claim 5.2, there is for every τ > 0 a number N(τ), such that for all i≥N(τ),

∥

∥vij
∥

∥

qij
− τ ≤

∥

∥wi
j

∥

∥≤
∥

∥vij
∥

∥

qij
+ τ

and
∥

∥ṽij
∥

∥

qij
− τ ≤

∥

∥w̃i
j

∥

∥≤
∥

∥ṽij
∥

∥

qij
+ τ .

Now let γ be some small constant such that c1 > γ > 0. By (12),

∥

∥ṽij
∥

∥

qij
− (c1− γ)

∥

∥vij
∥

∥

qij
≥ γ

∥

∥vij
∥

∥

qij
.

Using this observation and R=
∥

∥wi
j

∥

∥, we obtain

∥

∥w̃i
j

∥

∥− (c1− γ)R ≥
∥

∥ṽij
∥

∥

qij
− τ − (c1− γ)

(

∥

∥vij
∥

∥

qij
+ τ

)

≥ γ

∥

∥vij
∥

∥

qij
− τ − (c1− γ)τ

≥ γ(R− τ)− τ − (c1− γ)τ .

Note that we can choose τ small enough such that the last expression is nonnegative.
Hence, c= (c1− δ)> 0 is the desired constant for property [ix]. Since c1 only depends on l, the
same is true for c.
Now observe that property [ix] implies that the vectors u1, . . . , uk,w

i
1, . . . ,w

i
l are linearly inde-

pendent. This is because
∥

∥w̃i
j

∥

∥> 0 for j ∈ [l] and

span(u1, . . . , uk,w
i
1, . . . ,w

i
l) = span(ũ1, . . . , ũk, w̃

i
1, . . . , w̃

i
l) ,



Dunkel and Schulz: The GC Closure of a Non-Rational Polytope is a Rational Polytope

18 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

where ũ1 = u1, and where for p = 2, . . . , k, the vector ũp denotes the orthogonal projection of up

onto span(u1, . . . , up−1)
⊥. Consequently, property [viii] is satisfied.

In the remainder of the proof, we show property [x]. Because of (10) and Lemma 5.1, there exists
for each s ∈ [l] a vector yi

s ∈Zn such that

yi
s ∈ (u1x= 0)∩ . . .∩ (ukx= 0)∩

⋂

j 6=s

(vijx=0)∩ (visx= 1)=:Li
s . (13)

Since Li
s is the intersection of n − 1 linearly independent hyperplanes in Rn, it is a line.

Because ai ⊥ uj and ai ⊥ vij , the direction of the line is ai. Let us assume w.l.o.g. that a1 6= 0, and
therefore ai

1 6= 0 for large enough i. Let ȳi
s denote the intersection of Li

s with the hyperplane (x1 =0).
Note that ȳi

s 6=±∞ because of the assumption ai
1 6= 0. That is, ȳi

s is the unique solution to the
system









































e1
u1

...
uk

vi1
...

vis−1

vis
vis+1
...
vil















































x1

...
xn






=









































0
0
...
0
0
...
0
1
0
...
0









































.

For convenience, we introduce some additional notation: Let U denote the matrix with
rows up, p∈ [k], and let V i

−s denote the matrix with rows vij for all j ∈ [l] such that j 6= s. Similarly,
let W i

−s denote the matrix with rows wi
j for all j ∈ [l] with j 6= s. Finally, let V i and W i denote the

matrices with rows vij and wi
j, for j ∈ [l], respectively. Then the above system becomes









e1
U
V i
−s

vis















x1

...
xn






=









0
0
0
1









.

Claim 5.3. For every s ∈ [l], ȳi
sq

i
s −→ x̄i

s, where x̄i
s denotes the unique solution to the linear

system of equations








e1
U

W i
−s

wi
s















x1

...

xn






=









0
0
0
1









.

Proof of Claim 5.3. Let vij/q
i
j denote the vector obtained by dividing every component of vij with

the scalar qij. Furthermore, let V i
−s/q

i
−s be the matrix with rows vij/q

i
j for all j 6= s. Then









e1
U
V i
−s

vis









ȳi
s =









0
0
0
1









⇒









e1
U
V i
−s

vis/q
i
s









ȳi
sq

i
s =









0
0
0
1









⇒









e1
U

V i
−s/q

i
−s

vis/q
i
s









ȳi
sq

i
s =









0
0
0
1









,
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where Claim 5.2 implies








e1
U

V i
−s/q

i
−s

vis/q
i
s









−→









e1
U

W i
−s

wi
s









.

�

Now we will show that the entries of x̄i
s cannot become arbitrarily large.

Claim 5.4. There exists a constant K1 > 0 such that for sufficiently large i, ‖x̄i
s‖∞ ≤K1.

Proof of Claim 5.4. By definition,

x̄i
s =









e1
U

W i
−s

wi
s









−1







0
0
0
1









.

Therefore, it suffices to show that the entries of the inverse matrix in the above equation cannot
be arbitrarily large. We have

(

Ai
)−1

:=





e1
U
W i





−1

=
1

det(Ai)
adj(Ai) ,

where adj(Ai) denotes the adjugate matrix of Ai. Since all entries of Ai are bounded (note
that

∥

∥wi
j

∥

∥=R), every entry of adj(Ai) is bounded as well. Hence, it is sufficient to show
that |det(Ai)| can be bounded from below for large enough i. The absolute value of the
determinant of Ai corresponds to the volume of the parallelepiped spanned by the vec-
tors u1, . . . , uk,w

i
1, . . . ,w

i
l , e1. Therefore, it holds that
∣

∣det(Ai)
∣

∣= ‖ũ1‖ . . .‖ũk‖
∥

∥w̃i
1

∥

∥ . . .
∥

∥w̃i
l

∥

∥‖ẽ1‖ .

Here, ẽ1 denotes the orthogonal projection of e1 onto span(u1, . . . , uk,w
i
1, . . . ,w

i
l)

⊥. Hence, by prop-
erty [viii], the vector ẽ1 is the orthogonal projection of e1 onto V

⊥. Because of the assumption a1 6= 0,
it follows that ‖ẽ1‖> 0. With property [ix], we obtain for sufficiently large i,

∣

∣det(Ai)
∣

∣≥ (cR)l ‖ũ1‖ . . .‖ũk‖‖ẽ1‖ .

The expression on the right is a strictly positive constant, and the claim follows. �

Now let us define for any vector M i = (M i
1, . . . ,M

i
l )∈Nl, the set

Li(M i) := (u1x= 0)∩ . . .∩ (ukx= 0)∩ (vi1x=M i
1)∩ . . .∩ (vilx=M i

l ) .

Note that Li(M i) is a line with direction ai and by virtue of (13),

(

M i
1y

i
1 + . . .+M i

l y
i
l

)

∈Li(M i)∩Zn ,

that is, Li(M i)∩Zn 6= ∅. Furthermore, Li(M i) intersects (x1 = 0) in ȳi(M i) :=M i
1 ȳ

i
1 + . . .+M i

l ȳ
i
l .

We can write
Li(M i) =

{

x∈Rn
∣

∣x= ȳi(M i)+µai, µ∈R

}

.

Observe that every line segment of length ‖ai‖ of Li(M i) must contain an integral point. In
the remainder of the proof we show that there exists a constant C such that for every α ∈ Rl

+
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with ‖α‖∞ ≤ 1, there is a vector M i = M i(α) ∈ Nl and a number µi
0 = µi

0(α) ∈ R such that for
each µ∈ [µi

0, µ
i
0 +1] and each δ ∈ {−1,1}l the sequence of vectors

hi(δM i, µ) := ȳi(δM i)+µai = δ1M
i
1 ȳ

i
1 + . . .+ δlM

i
l ȳ

i
l +µai (14)

satisfies

hi(δM i, µ) ⊥ up for p∈ [k] (15)

hi(δM i, µ) (δjw
i
j) −→ αj for j ∈ [l] (16)

hi(δM i, µ) (δjv
i
j) =

⌊

αjq
i
j

⌋

for j ∈ [l] (17)

hi(δM i, µ) rs ≤ 0 for s ∈ [m] (18)
∣

∣hi(δM i, µ)ai
∣

∣ ≤ C
∥

∥ai
∥

∥

2
. (19)

Here, the notation δM i means (δ1M
i
1, . . . , δlM

i
l ). Since every line segment of length ‖ai‖ contains an

integral point, there must exists some µ∗ ∈ [µi
0, µ

i
0 +1] such that hi(δM i, µ∗) is an integral vector.

Consequently, this would imply property [x] of the lemma.
First, observe that condition (15) always holds, since any h of the form (14) is a linear combina-

tion of vectors that are perpendicular to the vectors up, p∈ [k]. Using definition (14) of hi(δM i, µ),
condition (18) becomes

δ1M
i
1 rs ȳ

i
1 + . . .+ δlM

i
l rs ȳ

i
l +µrsa

i ≤ 0 .

Now let β > 0 be the constant from (8), that is, rs a
i ≤−β, for s ∈ [m]. Then (18) becomes

µ≥ δ1M
i
1 rs ȳ

i
1 + . . .+ δlM

i
l rs ȳ

i
l

−rsai
,

and for

µi
0 := max

s=1,...,m

{

δ1M
i
1 rs ȳ

i
1 + . . .+ δlM

i
l rs ȳ

i
l

β

}

,

this condition is satisfied for all µ≥ µi
0. Let r

i ∈ {r1, . . . , rm} such that

µi
0 =

δ1M
i
1 r

i ȳi
1 + . . .+ δlM

i
l r

i ȳi
l

β
.

Then by (14),

hi(δM i, µi
0) = δ1M

i
1

(

ȳi
1 +

1

β
ri ȳi

1 a
i

)

+ . . .+ δlM
i
l

(

ȳi
l +

1

β
ri ȳi

l a
i

)

,

and (16) becomes for µ= µi
0 and j = s,

δs

(

l
∑

j=1

δjM
i
j

(

wi
s ȳ

i
j +

1

β
ri ȳi

j w
i
s a

i

)

)

−→ αs . (20)

Now let us define M i
j :=

⌊

αjq
i
j

⌋

. Note that M i ∈ Nl. In the following, we will show that this
choice for M i satisfies (20). For this, we consider the terms in (20) separately. We start with the
terms δsδjM

i
j w

i
s ȳ

i
j. If j = s, then we get with Claims 5.2 (qis →∞) and 5.3 (wi

sx̄
i
s = 1),

∣

∣δsδsM
i
sw

i
s ȳ

i
s −αs

∣

∣ =
∣

∣

⌊

αsq
i
s

⌋

wi
s ȳ

i
s −αs

∣

∣≤
∣

∣αsw
i
s ȳ

i
sq

i
s −αs

∣

∣+
∣

∣wi
s ȳ

i
s

∣

∣
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=
∣

∣αsw
i
s ȳ

i
sq

i
s −αsw

i
sx̄

i
s

∣

∣+
1

qis

∣

∣wi
s ȳ

i
sq

i
s −wi

s x̄
i
s +wi

s x̄
i
s

∣

∣

≤
∣

∣wi
s (ȳ

i
sq

i
s − x̄i

s)
∣

∣+
1

qis

∣

∣wi
s (ȳ

i
sq

i
s − x̄i

s)
∣

∣+
1

qis

∣

∣wi
s x̄

i
s

∣

∣

≤
(

1+
1

qis

)

∥

∥wi
s

∥

∥

∥

∥ȳi
sq

i
s − x̄i

s

∥

∥+
1

qis
=R

(

1+
1

qis

)

∥

∥ȳi
sq

i
s − x̄i

s

∥

∥+
1

qis
−→ 0 .

Hence,
δsδsM

i
sw

i
s ȳ

i
s −→ αs . (21)

For j 6= s, it similarly follows by Claims 5.2 (qij →∞) and 5.3 (wi
sx̄

i
j =0) that

∣

∣δsδjM
i
j w

i
s ȳ

i
j

∣

∣ =
∣

∣

⌊

αjq
i
j

⌋

wi
s ȳ

i
j

∣

∣≤
∣

∣αjw
i
s ȳ

i
jq

i
j −αjw

i
sx̄

i
j

∣

∣+
∣

∣wi
s ȳ

i
j

∣

∣

≤
∣

∣

∣
wi

s

(

ȳi
jq

i
j − x̄i

j

)
∣

∣

∣
+

1

qij

∣

∣wi
s (ȳ

i
jq

i
j − x̄i

j)
∣

∣≤R

(

1+
1

qij

)

∥

∥ȳi
jq

i
j − x̄i

j

∥

∥−→ 0 ,

that is,
δsδjM

i
j w

i
s ȳ

i
j −→ 0 . (22)

Now consider the terms δsδjM
i
j

1
β
ri ȳi

j w
i
s a

i. With Claim 5.3, we obtain

∣

∣

∣

∣

δsδjM
i
j

1

β
ri ȳi

j w
i
s a

i

∣

∣

∣

∣

=
1

β

∣

∣

⌊

αjq
i
j

⌋

( ri ȳi
j) (w

i
s a

i)
∣

∣≤ 1

β

∣

∣αj (r
i ȳi

j q
i
j) (w

i
s a

i)
∣

∣+
1

β

∣

∣(ri ȳi
j) (w

i
s a

i)
∣

∣

≤ 1

β

∣

∣ri ȳi
j q

i
j

∣

∣

∣

∣wi
s a

i
∣

∣+
1

β

∣

∣ri ȳi
j

∣

∣

∣

∣wi
s a

i
∣

∣=
1

β

(

1+
1

qij

)

∣

∣ri ȳi
j q

i
j

∣

∣

∣

∣wi
s a

i
∣

∣

=
1

β

(

1+
1

qij

)

∣

∣ri ȳi
j q

i
j − rix̄i

j + rix̄i
j

∣

∣

∣

∣wi
s a

i
∣

∣

≤ 1

β

(

1+
1

qij

)

∥

∥ri
∥

∥

(

∥

∥ȳi
jq

i
j − x̄i

j

∥

∥+
∥

∥x̄i
j

∥

∥

)

∣

∣wi
s a

i
∣

∣ .

We can bound
1

β

(

1+
1

qij

)

∥

∥ri
∥

∥

(

∥

∥ȳi
jq

i
j − x̄i

j

∥

∥+
∥

∥x̄i
j

∥

∥

)

from above by Claims 5.2, 5.3, and 5.4 for sufficiently large i. Furthermore, using (7) and āwi
s = 0,

we get for each s∈ [l],
∣

∣wi
sa

i
∣

∣=
∥

∥ai
∥

∥

∣

∣āiwi
s

∣

∣=
∥

∥ai
∥

∥

∣

∣āiwi
s − āwi

s

∣

∣≤
∥

∥ai
∥

∥

∥

∥āi − ā
∥

∥

∥

∥wi
s

∥

∥=R
∥

∥ai
∥

∥

∥

∥āi − ā
∥

∥−→ 0 . (23)

It follows that

δsδjM
i
j

1

β
ri ȳi

j w
i
s a

i −→ 0 . (24)

Observations (21),(22), and (24) imply (20), that is,

hi(δM i, µi
0) (δsw

i
s)−→ αs .

With (23), we obtain for all µ∈ [µi
0, µ

i
0 +1],

hi(δM i, µ) (δsw
i
s)−→ αs .

Note that this convergence is essentially independent of α, that is, for every ε > 0, there is someN(ε)
such that for all i≥N and for all α ∈ [0,1]l, |hi(δM i, µ) (δsw

i
s)−αs| ≤ ε. In particular, there must
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exist sequences of integral hi
α(δ) with this property. This proves condition (16). For condition (17),

observe that hvij =M i
j for every h ∈Li(M i) and every j ∈ [l]. We thus get

hi(δM i, µ) (δjv
i
j) = δ2jM

i
j =
⌊

αjq
i
j

⌋

.

Finally, consider condition (19). For every µ∈ [µi
0, µ

i
0 +1], we have

∣

∣hi(δM i, µ)ai
∣

∣ ≤
∣

∣hi(δM i, µi
0)a

i
∣

∣+
∣

∣aiai
∣

∣=

∣

∣

∣

∣

∣

l
∑

j=1

δj
⌊

ajq
i
j

⌋

(

ȳi
j +

1

β
(riȳi

j)a
i
)

ai

∣

∣

∣

∣

∣

+
∥

∥ai
∥

∥

2

≤
l
∑

j=1

(

∣

∣

∣

∣

αjq
i
j

(

ȳi
j a

i +
1

β
ri ȳi

j a
i ai

)
∣

∣

∣

∣

+

∣

∣

∣

∣

ȳi
j a

i +
1

β
ri ȳi

j a
i ai

∣

∣

∣

∣

)

+
∥

∥ai
∥

∥

2

≤
l
∑

j=1

(

1+
1

qij

)

∥

∥ȳi
jq

i
j

∥

∥

(

∥

∥ai
∥

∥+
1

β

∥

∥ri
∥

∥

∥

∥ai
∥

∥

2
)

+
∥

∥ai
∥

∥

2
.

Since
∥

∥ȳi
jq

i
j

∥

∥ is bounded because of Claims 5.3 and 5.4, since qij →∞ by Claim 5.2, and since ‖ri‖
is bounded as well, there exists some constant C > 0 such that condition (19) is satisfied for
sufficiently large i. Note that this constant does not depend on α. �

In the proof above, we chose the vectors vi1, . . . , v
i
l , which span together with the vectors u1, . . . , uk

the integral approximation (aix=0) of (ax= 0), in a specific way. The vectors u1, . . . , uk, v
i
1, . . . , v

i
l

form a basis of the lattice of integer points in (aix = 0) and they satisfy properties that are
characteristic for reduced bases. In other words, the vectors vi1, . . . , v

i
l are almost perpendicu-

lar to each other. We already leveraged this special property when we showed property [ix] of
Lemma 5.2 and also in the proof of Claim 5.4, which was required for the final analysis in the
lemma. However, there is a second reason why an arbitrary choice of these vectors would not
allow us to prove the main result of this section. Recall that our goal is to show that for each
non-rational facet-defining inequality ax ≤ aP of a polytope P , there exists a finite set Sa ⊆ Zn

such that CSa(P )⊆ (ax≤ aP ). To illustrate why reduced bases are crucial, consider the special case
that aP = 0 and (ax=0)∩Qn = {0}. The basic geometric motivation behind the construction in
Lemma 5.2 arose from the objective to cover F = P ∩ (ax= 0) with at most 2n−1 parallelepipeds,
spanned by the vectors δ1w

i
1, . . . , δn−1w

i
n−1, where δ ∈ {−1,1}n−1. Indeed, if these parallelepipeds

covered F , then the vectors hi
α(δ) from Lemma 5.2 gave rise to GC cuts that separate every point

in F apart from 0: This is because we can choose the vectors rs for Lemma 5.2 such that hix is
maximized over P by a point in F . Then, for an appropriate choice of the parameters α and ε
in [x], we can achieve for hi = hi

α,

max
{

hi(δ)x |x∈P
}

=max
{

hi(δ)x |x∈F
}

≤ hi(δ)
(

δ1w
i
1 + . . .+ δn−1w

i
n−1

)

< 1

and, consequently, hi(δ)x≤ 0 is a GC cut for P . As this is true for every δ ∈ {−1,1}n−1, these 2n−1

GC cuts imply P ′∩F = {0}.
Since P is bounded, F is contained in some ball of radius R around the origin. Clearly, if

the wi
1, . . . ,w

i
n−1 are orthogonal to each other and of length R, then the parallelepipeds cover

this ball and therefore F (see Figure 8). However, the smaller the angles between the vec-
tors wi

1, . . . ,w
i
n−1, the longer the wi

j ’s have to be to guarantee that F is completely covered (see
Figure 9). The analysis in Lemma 5.2 required that the wi

j’s have a fixed length, which is chosen
at the beginning of the construction. As the lattices of integer points in span(vi1, . . . , v

i
n−1) change

with every index i, arbitrary bases of the lattices would result in arbitrary angles between the wi
j’s.

Therefore, it is not certain that any fixed length R would guarantee the covering property that
is needed. By choosing reduced bases, we make sure that the vij’s and, hence, the wi

j’s are almost
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IV

III

II

I

w1
w2

0F

R

Figure 8. Illustration of why reduced bases play a
crucial role: The facet F =P ∩ (ax=0) is contained
in B(0,R). If wi

1 and wi
2 are orthogonal to each other

and of length R, the four parallelepipeds spanned by the
vectors ±wi

1 and ±wi
2 cover F .

w1

w2

0F

R

Figure 9. Illustration of why reduced bases play a
crucial role: The facet F = P ∩ (ax= 0) is contained
in B(0,R). If wi

1 and wi
2 are of length R, but the angle

between them is very small, the four parallelepipeds
spanned by the vectors ±wi

1 and ±wi
2 do not cover F .

orthogonal to each other. Moreover, their orthogonality defect only depends on the dimension. As
a consequence, we can choose a certain fixed length R for the vectors wi

j that only depends on the
radius of the ball that fits F and the dimension n.
In the next lemma, we utilize the sequences from Lemma 5.2 to prove that for every non-rational

facet-defining inequality ax≤ aP of a polytope P , there exists a finite set Sa of integral vectors such
that CSa(P )⊆ (ax≤ aP ). This property immediately implies the existence of a finite set S ⊂ Zn

with CS(P )⊆ P .

Lemma 5.3. Let P be a polytope in Rn and let (ax= ap) be a non-rational supporting hyperplane

with P ⊆ (ax≤ aP ). Then there exists a finite set S ⊆Zn such that CS(P )⊆ (ax≤ aP ).

Proof. There are three possible types of a non-rational inequality ax≤ aP :

(a) a∈Qn and aP ∈R \Q.

(b) a∈Rn \Qn and (ax= aP )∩Qn 6= ∅.
(c) a∈Rn \Qn and (ax= aP )∩Qn = ∅.
Case (a): If a∈Qn, then we can assume w.l.o.g. that a∈ Zn by scaling (a,aP ) by some rational

number, if necessary. Consequently, ax≤ ⌊aP ⌋ is a GC cut for P and (ax ≤ ⌊aP ⌋) ⊆ (ax ≤ aP ).
Then S = {a} has the desired property and we are done.
In the following, let us assume that a∈Rn \Qn and that the same is true for every λa with λ∈R.

Let F = P ∩ (ax= aP ) and let r1, . . . , rm ∈Rn denote the set of edge directions emanating from the
vertices of F to vertices of P that are not in F . Note that rs a< 0, for s∈ [m].

Case (b): Let VR denote the maximal rational affine subspace contained in (ax = aP ) and
let u1, . . . , uk ∈Zn and x0 ∈ (ax= aP )∩Qn such that VR = x0 +span(u1, . . . , uk). Define l := n−k−1
and U := span(u1, . . . , uk). Note that U = {0} is possible. Since P is bounded, there exists an R1 > 0
such that for every x∈F there is an u∈U with

x∈ x0 +u+B(0,R1) . (25)

Let p0 ∈ Zn and let q0 ≥ 1 be an integer such that x0 = p0/q0. Furthermore, let c be the constant from
property [ix] in Lemma 5.2 and let c1 be the constant from Lemma 4.2. Let us fix a constant R such
that R ≥R1c1/c and consider the sequences that exist according to Lemma 5.2 for V = (ax= 0)
and R.
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First, observe that we can choose i large enough such that aix ≤ ⌊aix0⌋ is a GC cut for P :
property [ii] in Lemma 5.2 implies

max
{

aix |x∈P
}

=max
{

aix |x∈F
}

= aix0 +max
{

ai(x−x0) |x∈F
}

,

and by property [iii] and boundedness of P , we have for all x∈F ,
∥

∥ai(x−x0)
∥

∥=
∥

∥ai
∥

∥

∥

∥āi(x−x0)
∥

∥=
∥

∥ai
∥

∥

∥

∥(āi− ā)(x−x0)
∥

∥≤
∥

∥ai
∥

∥

∥

∥āi − ā
∥

∥‖x−x0‖ −→ 0 .

Hence, we can choose i large enough such that

max
{

aix |x∈P
}

≤ aix0 +
1

2q0
,

which implies that aix≤ ⌊aix0⌋ is a GC cut for P .
Now let α = 1

2q0(l+1)
(1, . . . ,1). Also by Lemma 5.2, there exists an index i such that the vec-

tors vj := vij and wj :=wi
j, for j ∈ [l], and the integral vectors h(δ) := hi

α(δ), δ ∈ {−1,1}l, satisfy

h(δ)⊥ up for p∈ [k] (26)
0< δjwj h(δ)≤ (q0(l+1))−1 for j ∈ [l] (27)

δjh(δ) vj ≥ 1 for j ∈ [l] (28)
0≥ rs h(δ) for s∈ [m] . (29)

Moreover, it holds that ‖w̃j‖ ≥ cR for every j ∈ [l], where w̃j denotes the orthogonal projec-
tion of wj onto span(u1, . . . , uk,w1, . . . ,wj−1)

⊥. Using (25), every point x ∈ F can be written
as x= x0 +u′ +

∑l

j=1 λ̃jw̃j, where u′ ∈ U and |λ̃j | ≤ R1/(cR), for j ∈ [l]. Then it follows by
Lemma 4.2 that every x∈F can be expressed as

x= x0 +u+

l
∑

j=1

λjwj , (30)

where u∈U and |λj | ≤ c1R1/(cR)≤ 1, j ∈ [l]. For any δ ∈ {−1,1}l, we get with (26)-(29) and (30),

max{h(δ)x |x∈ P} = max{h(δ)x |x∈F} ≤ h(δ)x0+
l
∑

j=1

max
λj∈[−1,1]

{λjh(δ)wj}

= h(δ)x0+
l
∑

j=1

δjh(δ)wj ≤ h(δ)x0+ l(q0(l+1))−1 < ⌊h(δ)x0⌋+1 .

Hence, h(δ)x ≤ ⌊h(δ)x0⌋ is a GC cut for P for every δ ∈ {−1,1}l. Now consider an arbi-
trary x∈ (ax= aP ) \VR. By (30), there exists an u ∈ U and λj ∈ R+ and δj ∈ {−1,1} for j ∈ [l]
such that x= x0 +u+

∑l

j=1 λjδjwj. Note that
∑l

j=1 λj > 0, as x /∈ VR. Consequently,

h(δ)x= h(δ)x0+
l
∑

j=1

λjδjh(δ)wj >h(δ)x0 ≥ ⌊h(δ)x0⌋ ,

that is, x violates the GC cut h(δ)x≤ ⌊h(δ)x0⌋. Now let H denote the polyhedron defined by the
intersection of the 2l half-spaces associated with the GC cuts h(δ)x≤ ⌊h(δ)x0⌋, with δ ∈ {−1,1}l.
Then by the last observation,

(

(ax= aP )∩H
)

=

(

(ax= aP )∩
⋂

δ∈{−1,1}l

(

h(δ)x≤ ⌊h(δ)x0⌋
)

)

⊆ VR . (31)
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Similarly, let us consider the integral hyperplane (aix = aix0). Any x∈ (aix= aix0) \VR can be
written as

x= x0 +u+
l
∑

j=1

λjδjv
i
j ,

for some u ∈U , and λj ∈R+ and δj ∈ {−1,1}, j ∈ [l]; and in this representation it must also hold
that

∑l

j=1 λj > 0. Then with (28)

h(δ)x= h(δ)x0+
l
∑

j=1

λjδjh(δ) vj >h(δ)x0 ≥ ⌊h(δ)x0⌋ .

This implies that also every point in (aix= aix0)\VR is separated by some GC cut h(δ)x≤ ⌊h(δ)x0⌋
and, thus,

(

(aix= aix0)∩H
)

⊆ VR . (32)

As every hyperplane
(

h(δ)x= ⌊h(δ)x0⌋
)

is parallel to VR, either every point in VR satisfies the
corresponding inequality or every point in VR violates it. Therefore,

(

(ax= aP )∩H
)

=
(

(aix= aix0)∩H
)

∈ {∅, VR} .

Observe furthermore that every minimal face of
(

(aix≤ aix0)∩H
)

is also a minimal face
of
(

(ax≤ aP )∩H
)

and vice versa. Consequently,

(

(

aix≤
⌊

aix0

⌋ )

∩H
)

⊆
(

(

aix≤ aix0

)

∩H
)

=
(

(ax≤ aP )∩H
)

⊆ (ax≤ aP ) .

It follows that ai and the vectors h(δ), for δ ∈ {−1,1}l, form the desired set S of the lemma.

Case (c): In the remainder of the proof, we consider the case (ax= aP )∩Qn = ∅.
Let u1, . . . , uk ∈Zn be a maximal set of linearly independent integral vectors such that aui =0
for i∈ [k]. Let U := span(u1, . . . , uk) and note that U = {0} is possible. Furthermore, take an arbi-
trary point x0 ∈F . Since P is bounded, there exists a constant R1 > 0 such that for every x ∈ F
there is an u∈U such that

x∈ x0 +u+B(0,R1) . (33)

Let us fix an R ≥ R1c1/c, where c and c1 are the constants from property [ix] in Lemma 5.2
and Lemma 4.2, respectively. Now consider the sequences that exist according to Lemma 5.2
for V = (ax=0) and R . property [ii] from Lemma 5.2 implies that if there exists an index i and
an integer ai

0 such that

ai
0 +1>max

{

aix |x∈P
}

=max
{

aix |x∈F
}

≥min
{

aix |x∈ F
}

> ai
0 ,

then aix ≤ ai
0 is a GC cut for P with the property that every point in F violates the

cut and such that (aix ≤ ai
0) ∩ F = ∅. In particular, one can then find an ε1 > 0 such

that
(

P ∩ (aix≤ ai
0)
)

⊆ (ax≤ aP − ε1). This implies that there exists a rational polyhedron Q⊇ P
such that (aix≤ ai

0) is also a GC cut for Q and such that Q ∩ (aix≤ ai
0)⊆ (ax≤ aP ). The facet

normals of Q together with ai imply the desired set S of the lemma.
Let us assume in the remainder of the proof of part (c) that for every i, there exists an integer ai

0

such that

F ∩ (aix= ai
0) 6= ∅ .
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Let yi ∈ F ∩ (aix = ai
0). Since gcd(ai) = 1 according to property [i] of Lemma 5.2, there exists

an zi0 ∈ (aix= ai
0)∩Zn. We have

(aix= ai
0) = zi0 +span(u1, . . . , uk, v

i
1, . . . , v

i
l) .

Let x̃i
0 denote the projection of x0 onto the hyperplane (aix= ai

0), that is,

x̃i
0 = x0 +

ai
0 − aix0

‖ai‖2
ai . (34)

Note that because of property [iii] in Lemma 5.2 and boundedness of P ,
∣

∣ai
0 − aix0

∣

∣=
∣

∣aiyi − aix0

∣

∣=
∥

∥ai
∥

∥

∣

∣āiyi − āix0 +(āx0 − āyi)
∣

∣≤
∥

∥ai
∥

∥

∥

∥āi − ā
∥

∥

∥

∥x0 − yi
∥

∥−→ 0 .(35)

We can assume w.l.o.g. that the point zi0 ∈ (aix = ai
0) ∩ Zn is chosen such that there exist num-

bers γi
1, . . . , γ

i
k, µ

i
1, . . . , µ

i
l ∈ [0,1] such that

x̃i
0 = zi0 + γi

1u1 + . . .+ γi
kuk +µi

1v
i
1 + . . .+µi

lv
i
l . (36)

Figure 10 illustrates the described situation. Next, we show that x̃i
0, and therefore also x0, is far

(aix= ai
0)

(ax= aP )

zi0 ∈Zn

x̃i
0

x0

yi

zi0 + vi1

F

Figure 10. Situation in part (c) of the proof of Lemma 5.3 in the special case that for every i there exists an
integer ai

0 such that F ∩ (aix= ai
0) 6= ∅.

away from any integer point in the hyperplane
(

aix= ai
0

)

.

Claim 5.5. Any vertex f i of the parallelepiped zi0 + Π̄(u1, . . . , uk, v
i
1, . . . , v

i
l) satis-

fies ‖x0 − f i‖ −→∞.

Proof of Claim 5.5. As F is bounded and as x0 and yi are points in F , there exists a constantK1

such that for all i, ‖x0 − yi‖ ≤K1. Then
∥

∥f i− yi
∥

∥=
∥

∥f i−x0 +x0 − yi
∥

∥≤
∥

∥f i −x0

∥

∥+
∥

∥x0 − yi
∥

∥≤
∥

∥f i −x0

∥

∥+K1

implies ‖f i−x0‖ ≥ ‖f i − yi‖ − K1. Hence, in order to show the claim it suffices to
prove ‖f i− yi‖ −→∞. Suppose that there exists some positive constant K2 > 0 such that for all i
we have ‖f i− yi‖ ≤K2. Note that then f i ∈B(x0,K1 +K2)∩Zn. Let f̃ i denote the projection of f i

onto the hyperplane (ax= aP ), that is, f̃
i+λa= f i, where λ= (af i− aP )/‖a‖2 = (af i − ayi)/‖a‖2.

Since f i ∈ Zn and f i /∈ (ax = aP ) (remember that (ax= aP )∩Qn = ∅) and since the num-
ber of integer points in B(x0,K1 + K2) is finite, there must exist some positive number D

such that
∥

∥

∥
f i − f̃ i

∥

∥

∥
≥D, for every i. However, with property [iii] from Lemma 5.2 and

using āi(f i− yi) = 0, we get

∥

∥

∥
f i− f̃ i

∥

∥

∥
= ‖λa‖= |af i − ayi|

‖a‖ =
∣

∣ā(f i− yi)− āi(f i− yi)
∣

∣≤
∥

∥ā− āi
∥

∥

∥

∥f i − yi
∥

∥≤K2

∥

∥ā− āi
∥

∥−→ 0 ,

which is a contradiction. �



Dunkel and Schulz: The GC Closure of a Non-Rational Polytope is a Rational Polytope

Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 27

As the above claim implies that x̃i
0 is far away from any integer point in the hyperplane

(

aix= ai
0

)

,
it is intuitive that not all the coefficients µi

j in the representation (36) can be close to 0 or 1. We
formally prove this observation in the next claim.

Claim 5.6. Let K > 1 be a constant. There exists an integer N1 = N1(K) such that for

every i≥N1, there exists an index j ∈ [l] such that the coefficient µi
j in (36) satisfies

K

qij
≤ µi

j ≤ 1− K

qij
.

Proof of Claim 5.6. By Claim 5.5, any vertex f i of the parallelepiped zi0 +Π̄(u1, . . . , uk, v
i
1, . . . , v

i
l)

satisfies ‖x0 − f i‖ −→∞. Therefore,

∥

∥x0 − f i
∥

∥≤
∥

∥x0 − x̃i
0

∥

∥+
∥

∥x̃i
0 − f i

∥

∥−→∞ .

Because (35) implies ‖x0 − x̃i
0‖ −→ 0, we must have ‖x̃i

0 − f i‖ −→∞. In particular, there exists a
number N1 such that for all i≥N1,

∥

∥x̃i
0 − f i

∥

∥>

k
∑

p=1

‖up‖+2KRl .

Now let i ≥ N1 and assume that there are index sets J i
1 and J i

2 such that J i
1 ∪ J i

2 = {1, . . . , l}
and such that for every index j ∈ J i

1, we have 0≤ µi
j <K/qij, and for every index j ∈ J i

2, it holds
that 0≤ 1−µi

j <K/qij. For the vertex

f i = zi0 +
∑

j∈Ji
2

vij ,

of the parallelepiped it follows with property [vi] from Lemma 5.2 that

∥

∥x̃i
0 − f i

∥

∥ =

∥

∥

∥

∥

∥

∥

k
∑

p=1

γi
pup +µi

1δ
i
1v

i
1 + . . .+µi

lδ
i
lv

i
l −
∑

j∈Ji
2

δijv
i
j

∥

∥

∥

∥

∥

∥

≤
k
∑

p=1

‖up‖+

∥

∥

∥

∥

∥

∥

∑

j∈Ji
1

µi
jδ

i
jv

i
j −
∑

j∈Ji
2

(1−µi
j)δ

i
jv

i
j

∥

∥

∥

∥

∥

∥

≤
k
∑

p=1

‖up‖+
∑

j∈Ji
1

µi
j

∥

∥vij
∥

∥+
∑

j∈Ji
2

(1−µi
j)
∥

∥vij
∥

∥≤
k
∑

p=1

‖up‖+K
l
∑

j=1

∥

∥vij
∥

∥

qij
−→

k
∑

p=1

‖up‖+KRl ,

which is a contradiction. �

The next technical claim is needed to choose a proper parameter α for the vectors hi
α(δ) in

Lemma 5.2 that give rise to appropriate GC cuts.

Claim 5.7. Let K > 1, µ ∈ [0,1], and q ∈ R such that q ≥ 2K and K/q ≤ µ≤ 1−K/q. Then
there exist integers p1 and p2 such that 1≤ p1 ≤ q/(2K) and

p2 +1/4≤ µp1 ≤ (p2 +1)− 1/4 .

Proof of Claim 5.7. We consider three cases. If 1/4 ≤ µ ≤ 1 − 1/4, then p1 = 1 and p2 =0
satisfy the conditions of the claim. If µ < 1/4, there must exist an integer p such
that 1/4≤ µp≤ 1/2≤ 1− 1/4. Then

1≤ 1

4µ
≤ p≤ 1

2µ
≤ q

2K
,
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and we can set p1 = p and p2 = 0. Finally, if µ> 1− 1/4, then 1−µ< 1/4 and there must exist an
integer p such that 1/4≤ (1−µ)p≤ 1/2. Then

1≤ 1

4(1−µ)
≤ p≤ 1

2(1−µ)
≤ q

2K
.

For p1 = p and p2 = p− 1, we get

p2 +1/4< p− 1/2≤ µp≤ p− 1/4= (p2 +1)− 1/4 . �

For the remainder, let us fix a constantK such thatK > 8(2+ l). For large enough i, the assump-
tions of Claim 5.7 are satisfied, that is, qij ≥ 2K for every j ∈ [l]. Then Claims 5.6 and 5.7 imply that
there exists an integer N(K) such that for every i≥N(K), there exists an index s∈ [l] and integer

numbers pi1 and pi2 such that 1≤ pi1 ≤ qis
2K

and pi2 +
1
4
≤ µi

sp
i
1 ≤ (pi2 +1)− 1

4
. Note that we can write

the positive integer pi1 as ⌊ᾱi
sq

i
s⌋ for some scalar ᾱi

s. That is, there exist a number 0< ᾱi
s < 1/K

and an integer pi such that

pi +1/4≤ µi
s

⌊

ᾱi
sq

i
s

⌋

≤ (pi +1)− 1/4 . (37)

Define αi ∈Rl
+ by

αi
j =

{

ᾱi
s, if j = s

0, otherwise .

Note that ‖αi‖∞ ≤ 1. Now let δ̄ = (1, . . . ,1) and take hi := hi
αi(δ̄) according to Lemma 5.2 from

property [x]. For some sufficiently large number N2, we can assume that for every i≥N2,

hi ⊥up for p∈ [k] (38)
αi
j − 1/K ≤ wi

j h
i ≤ αi

j +1/K for j ∈ [l] (39)
hi vij =

⌊

αi
jq

i
j

⌋

for j ∈ [l] (40)
0≥ rs h

i for s ∈ [m] (41)
∣

∣hi ai
∣

∣≤ C
∥

∥ai
∥

∥

2
, (42)

where C > 0 is a constant. By (33) and arguing as in part (b), R has been chosen large enough so
that every point x∈ F can be written as

x= x0 +u+
l
∑

j=1

λjδjw
i
j ,

for some u∈U and λj ∈ [0,1] and δj ∈ {−1,1} for j ∈ [l]. With (34), (36), (38) and (40), we get for
every x∈F ,

hix = hix0 +hiu+
l
∑

j=1

λjh
iδjw

i
j = hix0 +

l
∑

j=1

λjh
iδjw

i
j

= hizi0 +µi
1 h

i vi1 + . . .+µi
l h

i vil −
ai
0 − aix0

‖ai‖2
hiai +

l
∑

j=1

λjh
iδjw

i
j

= hizi0 +µi
s

⌊

ᾱi
sq

i
s

⌋

− ai
0 − aix0

‖ai‖2
hiai +

l
∑

j=1

λjh
iδjw

i
j .
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For large enough i we get with (35) and (42),

∣

∣

∣

∣

ai
0 − aix0

‖ai‖2
hiai

∣

∣

∣

∣

≤ 1/K .

Consequently, with (39) and 0≤ ᾱi
s < 1/K, we obtain

∣

∣

∣

∣

∣

−ai
0 − aix0

‖ai‖2
hiai +

l
∑

j=1

λjh
iδjwj

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

ai
0 − aix0

‖ai‖2
hiai

∣

∣

∣

∣

+
l
∑

j=1

∣

∣hiwj

∣

∣≤ 1

K
+ ᾱi

s +
l

K
≤ 2+ l

K
<

1

8
.

This implies that for every x∈ F ,

hizi0 +µi
s

⌊

ᾱi
sq

i
s

⌋

− 1

8
≤ hix≤ hizi0 +µi

s

⌊

ᾱi
sq

i
s

⌋

+
1

8
,

and with (37), it follows that for every x∈F ,

(hizi0 + pi)+ 1/8≤ hix≤ (hizi0 + pi +1)− 1/8 . (43)

Now observe that (41) implies that hix is maximized over P by a point in F . Therefore, using (43)
and the fact that zi0 ∈ Zn, we have that hix≤ hizi0 + pi is a GC cut for P . Moreover, (43) implies
that this cut is violated by every point in F , that is,

(

hix≤ hizi0 + pi
)

∩F = ∅ .

Arguing as at the beginning of part (c), we can find a rational polyhedron Q ⊇ P such that
(hix≤ hizi0 + pi) is also a GC cut for Q and such that

Q∩
(

hix≤ hizi0 + pi
)

⊆ (ax≤ aP ) .

The facet normals of Q together with hi imply the desired set S of the lemma. �

As the proof of the above lemma shows, for every non-rational face-defining inequal-
ity ax≤ aP of P , the GC procedure will separate every point in P ∩ (ax= aP ) that is not contained
in the maximal rational affine subspace of (ax= aP ).

Corollary 5.2. Let P be a polytope and let F = P ∩ (ax= aP ) be a face of P . If VR denotes

the maximal rational affine subspace of (ax= aP ), then P ′∩F ⊆ VR.

Lemma 5.3 gives us the tools to complete the first step of the main proof.

Corollary 5.3. Let P be a polytope in Rn. Then there exists a finite set S ⊆ Zn such

that CS(P )⊆P .

Proof. Let P = {x∈Rn |Ax≤ b} for some matrix A and some vector b. Let A1 denote the set of
vectors corresponding to rows of A that define rational facet-defining inequalities of P and let A2

denote the set of vectors associated with the non-rational facet-defining inequalities of P . By means
of Lemma 5.3, for every non-rational facet-defining inequality ax≤ aP of P , there exists a finite
set Sa ⊆ Zn such that CSa(P )⊆ (ax≤ aP ). Therefore, the finite set

S :=

(

⋃

a∈A2

Sa

)

∪A1

satisfies CS(P )⊆P . �
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5.2. Step 2 In this section, we show a property of the GC closure that is sometimes referred
to as homogeneity : the GC closure of a face of a polytope is equal to the intersection of the GC
closure of the polytope with the face. This property is well-known for rational polytopes (see,
e.g., Schrijver [12]), but to our knowledge, has not yet been shown for non-rational polytopes. We
first prove a kind of rotation lemma.

Lemma 5.4. Let P be a polytope and let F = P ∩ (ax= aP ) be a face of P . Let VR denote the

maximal rational affine subspace of (ax= aP ) and assume that VR 6= ∅. If cx≤ ⌊cF ⌋ is a GC cut

for F and facet-defining for F ′, then there exists a GC cut c̄x≤ ⌊c̄P ⌋ for P such that

(ax= aP )∩VR ∩ (c̄x≤ ⌊c̄P ⌋) = (ax= aP )∩VR ∩ (cx≤ ⌊cF ⌋) .

Proof. Let VR = x0 +span(u1, . . . , uk), where x0 ∈ (ax= aP )∩Qn and u1, . . . , uk ∈ Zn, k ≤ n− 1.
Note that VR = {x0} is possible. Furthermore, assume that P ⊆ (ax ≤ aP ). Now consider a GC
cut cx≤ ⌊cF ⌋ for F that is facet-defining for F ′. Moreover, assume that x̂ is a vertex of F that
maximizes c over F . Let r1, . . . , rm denote all edge directions of P that emanate from vertices in F
to vertices of P that are not in F . Note that for s∈ [m],

rs a< 0 . (44)

According to Corollary 4.1, there exists a sequence {ai} ⊆ Zn such that ai ⊥ uj for j ∈ [k] and such
that

∥

∥ai
∥

∥

∥

∥āi − ā
∥

∥ −→ 0 , (45)

where āi = ai/‖ai‖ and ā = a/‖a‖. As rsā < 0 by (44), it follows with (45) that there exists
a constant β > 0 such that rsā

i ≤ −β for large enough i. Hence, noting that ‖ai‖ −→ ∞
because of a∈Rn \Qn, there exists a constant β > 0 and an N1 ∈ N such that rsa

i ≤−β for
all s ∈ [m] and i≥N1. Let M := maxs∈[m]{c rs}. If M ≤ 0, then x̂ also maximizes c over P and,
hence, cx≤ ⌊cF⌋ is a GC cut for P . Therefore, assume that M > 0. Let p∈Zn and q ∈N with q ≥ 1
such that x0 = p/q. We define the constant K := q⌈ 1

β
M⌉ and vectors c̄i := c+K ai for every i≥N1.

Note that K ∈ Z and therefore c̄i ∈Zn. We have for s∈ [m],

rsc̄
i = rs(c+Kai)≤ rsc−Kβ ≤ 0 ,

which implies that for i ≥ N1, the vector c̄i is maximized over P by a point in F . Now
let x̂i ∈ argmax{aix |x∈ F}. We obtain for every i≥N1,

max
{

c̄ix |x∈P
}

= max
{

c̄ix |x∈ F
}

≤max{cx |x∈ F}+Kmax
{

aix |x∈F
}

= cx̂+Kaix̂i = cF +Kaix0 +Kai(x̂i−x0) .

With (45), the boundedness of F , and ax̂i = ax0 = aP , we get
∣

∣ai(x̂i −x0)
∣

∣=
∥

∥ai
∥

∥

∣

∣(āi− ā)(x̂i−x0)
∣

∣≤
∥

∥ai
∥

∥

∥

∥āi − ā
∥

∥

∥

∥x̂i −x0

∥

∥−→ 0 .

Therefore, for any ε > 0, there exists an Nε ∈ N such that |Kai(x̂i−x0)| ≤ ε for all i ≥ Nε. In
particular, we can choose i large enough so that

c̄iP =max
{

c̄ix |x∈P
}

< ⌊cF ⌋+Kaix0 +1 .

Observe that Kaix0 ∈Z. Consequently,

c̄i x≤
⌊

c̄iP
⌋

≤ ⌊cF ⌋+Kaix0 (46)
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is a GC cut for P . Furthermore, it has to hold that ⌊c̄iP⌋= ⌊cF⌋+Kaix0: First, observe that
Corollary 5.3 implies that F ′ ⊆ F and, therefore, F ′ ⊆P ′ ∩F . As cx≤ ⌊cF ⌋ is by assumption facet-
defining for F ′, there must exist a point x̃∈F ′ such that cx̃= ⌊cF ⌋. Note that F ′ ⊆ VR, according to
Corollary 5.2, implies that x̃∈ VR and, thus, aix̃= aix0. Furthermore, we have x̃∈P ′ ∩F because
of F ′ ⊆ P ′ ∩F . In particular, x̃ satisfies the GC cut c̄ix≤ ⌊c̄iP ⌋. Consequently,

c̄ix̃= cx̃+Kaix̃= ⌊cF⌋+Kaix0 ≤
⌊

c̄iP
⌋

.

Together with (46), we obtain ⌊c̄iP ⌋= ⌊cF⌋+Kaix0. It follows that

(

c̄i x≤
⌊

c̄iP
⌋ )

∩
(

aix= aix0

)

=
(

cx+Kaix≤ ⌊cF⌋+Kaix0

)

∩
(

aix= aix0

)

=
(

cx≤ ⌊cF ⌋
)

∩
(

aix= aix0

)

.

As VR ⊆ (aix= aix0), this implies for c̄ := c̄i for some large enough i,

(

c̄ x≤ ⌊c̄P ⌋
)

∩VR =
(

cx≤ ⌊cF ⌋
)

∩VR .

The lemma follows. �

With this observation, we can prove the homogeneity property for arbitrary polytopes.

Corollary 5.4. Let P be a polytope and let F be a face of P . Then F ′ =P ′ ∩F .

Proof. For the first direction F ′ ⊆ P ′ ∩ F , observe that F ⊆ P implies F ′ ⊆ P ′. Further-
more, F ′ ⊆ F because of Corollary 5.3. Hence, F ′ ⊆P ′ ∩F .
For the second direction, let F = P ∩ (ax= aP ) be a face of P and let cx≤ ⌊cF ⌋ be a GC cut for F

that is facet-defining for F ′. If (ax= aP )∩Qn = ∅, Corollary 5.2 implies P ′ ∩F = ∅ ⊆ F ′. Therefore,
assume that (ax= aP )∩Qn 6= ∅, that is, the maximal rational affine subspace VR of (ax= aP ) is
non-empty. By Lemma 5.4, there exists a GC cut for P that satisfies

(ax= aP )∩VR ∩
(

c̄x≤ ⌊c̄P⌋
)

= (ax= aP )∩VR ∩
(

cx≤ ⌊cF ⌋
)

.

Together with Corollary 5.2, that is, P ′ ∩F ⊆ VR, we obtain P ′ ∩F ⊆
(

cx≤ ⌊cF ⌋
)

. �

5.3. Step 3 In this subsection, we show that if for some finite set S ⊆ Zn of vectors CS(P )⊆ P
and CS(P )∩ rbd(P )⊆P ′, no more than a finite number of GC cuts have to be added to CS(P ) to
obtain the closure P ′. In fact, we prove that this is true for arbitrary bounded convex sets.
Dadush et al. [4] proved this property for full-dimensional convex sets K. The key observation in

this case was that one can find an ε-ball around every interior point of K such that the ball is fully
contained in K. Since any additional undominated cut for K ′ must separate a vertex of CS(K)
in the strict interior of K, it must be derived from an inequality for which the boundary of the
associated half-space is shifted by at least ε. However, for valid inequalities ax≤ aP with ‖a‖> 1/ε
this is not possible. As a consequence, only cuts that are associated with normal vectors of a certain
bounded norm need to be considered and their number is finite.
For a lower-dimensional convex set K the situation is a somewhat different. Any additional

undominated cut would have to separate a point v in the relative interior of K and no ε-ball
around v is fully contained in K. All we can guarantee is that there exists an ε-ball whose inter-
section with the affine hull of K and, hence, also with the affine hull of CS(K), is contained
in K. Therefore, any cut that separates v has to correspond to a half-space (cx≤ cK) for which
the intersection of its boundary (cx= cK) with the affine hull aff(CS(K)) is shifted by at least ε
within aff(CS(K)). This intersection of (cx= cK) with aff(CS(K)) is a lower-dimensional ratio-
nal affine subspace, say H∗. Similar to the full-dimensional case, there is only a finite number of
these affine subspaces H∗, which are shifted within aff(CS(K)) by at least a distance of ε by the
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rounding operation in the GC procedure. However, an infinite number of hyperplanes in Rn has
the same intersection H∗ with aff(CS(K)). Consequently, there is an infinite number of GC cuts
that could separate a point in the relative interior of CS(K). Yet, we show that among all rational
valid inequalities cx≤ cK with the same intersection (cx= cK)∩ aff(CS(K)), there will be one that
corresponds to a GC cut that dominates every other GC cut associated with a valid inequality in
this equivalence class. For this reason, no more than one GC cut for each of the finitely many H∗’s
has to be added to the description of CS(K).
In the following lemma, we formalize this observation and prove the finite augmentation property

for arbitrary bounded convex sets.

Lemma 5.5. Let K be a convex and compact set in Rn. If there exists a finite set S ⊆Zn such

that

(i) CS(K)⊆K and

(ii) CS(K)∩ rbd(K)⊆K ′ ,

then K ′ is a rational polytope.

Proof. As CS(K) is a rational polytope, we can assume that aff(CS(K))=w0+W , wherew0 ∈Qn

and where W is a rational linear vector space. Let V denote the finite set of vertices of CS(K).
Assumption (i) implies V ⊆ K. Because of assumption (ii), any GC cut for K that separates a
point in CS(K) \K ′ must also separate a vertex in V \ rbd(K)⊆ ri(K). We will show that for each
of the finitely many vertices of CS(K) in the relative interior of K one only has to consider a finite
set of GC cuts.
First, observe that because of V \ rbd(K)⊆ ri(K) and since the number of vertices of CS(K) is

finite, there exists an ε > 0 such that for every v ∈ V \ rbd(K),
(

v+B(0, ε)
)

∩ aff(K)⊆K . (47)

Consequently,
(

v+B(0, ε)
)

∩ aff
(

CS(K)
)

⊆K . (48)

Now let us fix a vertex v of CS(K) in the relative interior of K, that is, v ∈ V \ rbd(K). Further-
more, let c ∈ Zn. We will consider two cases, depending on whether K is full-dimensional or not.
If dim(K)= n, then aff(K) =Rn and with (47),

(

v+B(0, ε)
)

⊆K. We get

⌊cK⌋ = ⌊max{cx |x∈K}⌋ ≥ c v+max
{

cx |x∈B(0, ε)
}

− 1= c v+ c

(

ε
c

‖c‖

)

− 1= c v+ ε‖c‖− 1 .

If ‖c‖ ≥ 1/ε, then the GC cut associated with the normal vector c does not separate the vertex v.
Hence, we only need to consider GC cuts with normal vectors c satisfying ‖c‖ < 1/ε, and their
number is finite.
In the remainder of the proof, let us assume that dim(K) < n and, there-

fore, dim(aff(CS(K)) =: k <n. Since dim(W ) = k, we can rename the indices such that there exist
integers pij and qij ≥ 1, for i= 1, . . . , n− k and j = 1, . . . , k, such that for every w ∈W ,

wk+i =
k
∑

j=1

pij
qij

wj .

In words, any point in W is uniquely determined by its first k components. Moreover, we can
find an upper bound for the norm of each point w ∈ W that is a function of the norm of the
vector (w1, . . . ,wk), that is, the restriction of w to its first k components: Since

‖w‖2 =w2
1 + . . .+w2

k +

(

k
∑

j=1

p1j
q1j

wj

)2

+ . . .+

(

k
∑

j=1

pn−k,j

qn−k,j

wj

)2

,
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there exist rational constants αi > 0, for i∈ [k], and αij , for 1≤ i < j ≤ k, such that

‖w‖2 = α1w
2
1 + . . .+αkw

2
k +

∑

1≤i<j≤k

αijwiwj .

Using αij wiwj ≤ 1
2
|αij |w2

i +
1
2
|αij |w2

j and defining αji := αij for every 1≤ i < j ≤ k, we obtain

‖w‖2 ≤
(

α1 +
1

2

k
∑

j=2

|α1j |
)

w2
1 + . . .+

(

αk +
1

2

k−1
∑

j=1

|αkj |
)

w2
k .

Let us define α := maxi∈[k]

{

αi +
1
2

∑k

j=1,j 6=i
|αij |

}

and observe that α is a positive constant that
only depends on W . For any w ∈W , we have

‖w‖ ≤√
α ‖(w1, . . . ,wk)‖ . (49)

Moreover,

cw = c1w1 + . . .+ ckwk +
n−k
∑

i=1

ck+i

(

k
∑

j=1

pij
qij

wj

)

=
k
∑

j=1

(

cj +
n−k
∑

i=1

pij
qij

ck+i

)

wj .

Let L :Rn →Rk denote the affine map that is defined for j ∈ [k] by

Lj(x) := xj +
n−k
∑

i=1

pij
qij

xk+i . (50)

Then for every w ∈W ,

cw=
k
∑

j=1

Lj(c)wj =L(c) (w1, . . . ,wk) . (51)

Let wc = (wc
1, . . . ,w

c
n)∈W such that (wc

1, . . . ,w
c
k) =L(c). Then (49) implies ‖wc‖ ≤√

α‖L(c)‖ and,
therefore,

1√
α‖L(c)‖ w

c ∈B(0,1)∩W .

Using aff(CS(K))= v+W , we get

v+
ε√

α‖L(c)‖w
c ∈
(

(v+B(0, ε)
)

∩ aff
(

CS(K)
)

)

,

and by (48),

v+
ε√

α ‖L(c)‖w
c ∈K .

Therefore, (51) implies

⌊cK⌋ ≥max{cx |x∈K}− 1≥ c v+
ε√

α‖L(c)‖ cw
c − 1 = c v+

ε√
α
‖L(c)‖− 1 .

Note that for ‖L(c)‖≥√
α/ε, the GC cut associated with c does not separate v. Because of (50),

there exists for each j ∈ [k] an integer qj ≥ 1 such that Lj(c) is an integral multiple of 1/qj.
Therefore, the number of vectors L(c) ∈ Rk with ‖L(c)‖<√

α/ε is finite. However, there is an
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infinite number of integral vectors c in Rn that are mapped to the same rational vector L(c) in Rk.
Let A denote the set of rational vectors a∈Rk such that for each j ∈ [k], aj is an integral multiple
of 1/qj and such that ‖a‖<√

α/ε. For every a∈A, we define N(a) := {c∈Zn |L(c) = a}. Let

ca ∈ arg min
c∈N(a)

{

⌊cK⌋− cv
}

.

Observe, that ca is well-defined: Since v ∈K, we have for any c∈N(a),

⌊cK⌋− cv≥max{cx |x∈K}− 1− cv≥−1 .

Furthermore, as v is a vertex of the rational polytope CS(K), it holds that v ∈ Qn. Hence,
there exist an integer vector v̄ ∈ Zn and an integer qv ≥ 1 such that v = v̄/qv. Consequently, the
set
{

⌊cK⌋− cv | c∈N(a)
}

contains only multiples of 1/qv and is bounded from below.
Finally, observe that the GC cut ca x ≤ ⌊caK⌋ dominates every other GC cut associated with

a vector in N(a) in aff(CS(K)): For this, consider an arbitrary point x ∈ aff(CS(K)) that satis-
fies ca x≤ ⌊caK⌋. We can write x= v+w, for some w= (w1, . . . ,wn) ∈W . Using (51), we get

cax= cav+ caw= cav+L(ca)(w1, . . . ,wk) = cav+ a(w1, . . . ,wk)≤ ⌊caK⌋ ,

that is,

a(w1, . . . ,wk)≤ ⌊caK⌋− cav .

By the definition of ca it follows that for every c∈N(a),

cx= cv+ cw= cv+ a(w1, . . . ,wk)≤ cv+ ⌊cK⌋− cv= ⌊cK⌋ .

That is, if x satisfies the GC cut ca x≤ ⌊caK⌋, it also satisfies every other GC cut cx≤ ⌊cK⌋ such
that c∈N(a). Consequently, for each vector a ∈ A, we only need to consider a single GC cut.
Since |A| is finite, this completes the proof. �

5.4. Step 4 We are finally prepared to prove the main result of this paper. By drawing from
the insights of the previous three subsections and using an inductive argument, we prove that the
GC closure of any polytope is a rational polytope.

Theorem 5.1. The GC closure P ′ of a non-rational polytope P is a rational polytope.

Proof. The proof is by induction on the dimension d≤ n of P ⊆Rn. Let n≥ 1 be arbitrary. The
base case, d = 0, is trivially true. Therefore, assume that d ≥ 1. By Corollary 5.3, we know that
there exists a finite set S1 ⊆Zn such that

CS1
(P )⊆P .

Let {Fi}i∈I denote the set of facets of P and assume that F i = P ∩ (aix= ai
P ). By the induction

assumption for d− 1, we know that F ′
i is a rational polytope for every i ∈ I. That is, there exists

a finite set Si ⊆ Zn such that CSi
(Fi) = F ′

i . According to Lemma 5.4, we can find for every GC
cut for Fi that is facet-defining for F ′

i a GC cut for P that has the same impact on the maximal
rational affine subspace of (aix= ai

P ). Furthermore, by Corollary 5.2, F ′
i is contained in this rational

affine subspace. Hence, for every i∈ I, there exists a finite set S̄i ⊆ Zn such that CS̄i
(P )∩Fi= F ′

i .
Because rbd(P ) =∪i∈IFi, the set S = S1∪

(

∪i∈I S̄i

)

satisfies CS(P )⊆P and CS(P )∩ rbd(P )⊆P ′.
By Lemma 5.5, P ′ is a rational polytope. �
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Mathematics of Operations Research 36(2) 227–239.

[5] Dadush, D., S. S. Dey, J. P. Vielma. 2011. On the Chvátal-Gomory closure of a compact convex
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