MIT
Libraries | D>pace@MIT

MIT Open Access Articles

The Gomory-Chvatal closure of a non-
rational polytope is a rational polytope

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dunkel, J., and A. S. Schulz. “The Gomory-Chvatal Closure of a Nonrational Polytope Is
a Rational Polytope.” Mathematics of Operations Research 38.1 (2012): 63-91. CrossRef. Web.

As Published: http://dx.doi.org/10.1287/moor.1120.0565
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
Persistent URL: http://hdl.handle.net/1721.1/77903

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’'s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

I I I .
I I Massachusetts Institute of Technology


https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/77903
http://creativecommons.org/licenses/by-nc-sa/3.0/

MATHEMATICS OF OPERATIONS RESEARCH IN FORMS
Vol. 00, No. 0, Xxxxx 0000, pp. 000-000

DOI 10.1287 /xxxx.0000.0000
1SSN 0364-765X | EISSN 1526-5471 |00 | 0000 | 0001

(© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

The Gomory-Chvatal Closure of a Non-Rational
Polytope is a Rational Polytope

Juliane Dunkel

Operations Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307,
juliane@mit.edu,

Andreas S. Schulz
Operations Research Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E62-569, Cambridge,
MA 02139-4307, schulz@mit.edu,

The question as to whether the Gomory-Chvéatal closure of a non-rational polytope is a polytope has been a
longstanding open problem in integer programming. In this paper, we answer this question in the affirmative,
by combining ideas from polyhedral theory and the geometry of numbers.
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1. Introduction Cutting-plane methods, when combined with branch and bound, are among
the most successful techniques for solving integer programming problems in practice; numerous
types of cutting planes have been studied in the literature and several of them are used in com-
mercial solvers (see, e.g., Cornuéjols [3] and the references therein). Cutting planes also give rise
to a rich theory (see again [3]). In general, a cutting plane for a polyhedron P is an inequality that
is satisfied by all integer points in P and, when added to the polyhedron P, it typically yields a
stronger relaxation of its integer hull. A Gomory-Chvéatal (GC) cutting plane (Gomory [8], Chvétal
[2]) is an inequality of the form cx < [J], where ¢ is an integral vector and cx < ¢ is valid for P.
The GC closure of P is the intersection of all half-spaces defined by such inequalities; it is usually
denoted by P’. Even though the GC closure is defined as the intersection of an infinite number
of half-spaces, the GC closure of a rational polyhedron is again a rational polyhedron. Namely,
Schrijver [11] showed that, for a rational polyhedron P, the GC cuts corresponding to a totally
dual integral system of linear inequalities describing P specify its closure P’ fully. For polyhedra
that cannot be described by rational data the situation is different. It is well-known that the integer
hull P; of an unbounded non-rational polyhedron P may not be a polyhedron (see, e.g., Halfin
[9]). In fact, it may not be a closed set, and the GC closure may not be a rational polyhedron.
On the other hand, in the case of a non-rational polytope, P is the convex hull of a finite set of
integer points and, therefore, a rational polytope. There is no notion of total dual integrality for
non-rational systems of linear inequalities, and Schrijver asked in [11] whether the GC closure of
an arbitrary polytope is a rational polytope. In this paper, we show that this is indeed the case:
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the GC closure of a non-rational polytope is a rational polytope, that is, it can be described by a
finite set of rational inequalities.

Even though GC cuts were originally introduced for polyhedra, they have lately been applied to
other convex sets as well. Of particular relevance is the work by Dey and Vielma [6], who showed
that the GC closure of a full-dimensional ellipsoid described by rational data is a polytope. Dadush
et al. [4] recently extended this result to strictly convex bodies and to the intersection of strictly
convex bodies with rational polyhedra. Since the original proof of Schrijver for rational polyhedra
relies strongly on polyhedral properties, the authors in [6] and [4] had to develop a new proof
technique, which can roughly be described as follows: One first shows that there exists a finite set
of GC cuts that separate every non-integral point on the boundary of the strictly convex body.
These cuts define a polytope that is contained in the convex body. Furthermore, the intersection
of this polytope with the boundary of the body is contained in the body’s closure. In a second
step, one proves that only a finite set of additional inequalities is needed to fully describe the GC
closure of the body.

Our general proof strategy for showing the polyhedrality of the GC closure of a non-rational
polytope is inspired by the work of Dadush et al. [4]. Yet, the key argument is very different, since
their proof relies on properties of strictly convex bodies that do not extend to polytopes. More
precisely, strictly convex bodies do not have any higher-dimensional flat faces, and therein lies the
main difficulty in establishing the polyhedrality of the elementary closure for non-rational poly-
topes. Our proof is geometrically motivated and uses ideas from convex analysis, polyhedral theory,
and the geometry of numbers. In particular, the underlying geometric idea relies on properties of
integer lattices and reduced lattice bases.

Simultaneously, and independently from this work, it was proven in [5] that the GC closure of
any compact convex set is a rational polytope.

This paper is organized as follows: After introducing our notation in Section 2, we provide a
sketch of our proof in Section 3. Section 4 covers some required background material, and Section 5
contains the main part of the proof.

2. Basics and Notations For a closed and convex set K CR" and a vector a € R"”, we
define ay :=max{ax |z € K}. The hyperplane {x € R" |ax = a¢} is denoted by (az = a¢) and, simi-
larly, (ax < ag) denotes the half-space {x € R" |ax < ag}. For a = (ay,...,a,) € Z", we write gcd(a)
to denote the greatest common divisor of the numbers a,, ..., a,. For any integer k, [k] :={1,...,k}.
For a subset U of R", aff(U) denotes the smallest affine subspace containing U and int(U) the inte-
rior of U. The relative boundary and relative interior of U (that is, the boundary and interior of U
considered as a subset of aff(U)) are denoted by rbd(U) and ri(U), respectively. Moreover, B(0,¢)
denotes the full-dimensional ball in R” around the origin with radius e.

For any set S CZ", we use
Cs(K):= ﬂ (az <lak]) ,

a€sS

to denote the intersection of all half-spaces corresponding to GC cuts for K with normal vector
in S. For S =7", one obtains the GC closure K’ of the set K.

3. General Proof Idea Our general strategy for proving that for any polytope a finite num-
ber of GC cuts is sufficient to describe the polytope’s closure is a modification of the two-step
technique of Dadush et al. [4] for a strictly convex body K: They first construct a finite set S C Z"
such that
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and then argue that S needs to be augmented by, at most, a finite set of vectors. In particular, they
demonstrate with property (K2) that every fractional point on the boundary of the strictly convex
body is separated by a GC cut. Obviously, the same cannot be true for polytopes, since this would
otherwise imply that the GC procedure separates fractional points in the relative interior of the
facets of an integral polytope. Furthermore, in the case of a general polytope P, we cannot assume
full-dimensionality. This is because a unimodular transformation that maps P to a full-dimensional
polytope in a lower-dimensional space may not exist if P is contained in some non-rational affine
subspace. In particular, this observation forces us to consider the relative boundary of the polytope
instead of its boundary. Hence, our general strategy for proving the polyhedrality of P’ is as follows:
First, we show that one can find a finite set S of integral vectors such that

Cs(P)C P, (P1)
Cs(P)Nrbd(P)C P’ . (P2)

We then argue that, given the polytope Cs(P), no more than a finite number of additional GC
cuts are necessary to describe the closure P’.

The main challenge of this proof strategy lies in showing the existence of a set S satisfying
property (P1). This is due to the presence of higher-dimensional faces with non-rational affine
hulls. These require the development of new arguments compared to the proof for strictly convex
bodies. The outlined general strategy is implemented in four main steps:

1. Show that there exists a finite set S C Z" such that Cs(P) C P.

2. Show that for any face F' of P, F' = P'N F. In particular, show that if = PN (ax =ap), then
for every GC cut for F' there exists a GC cut for P that has the same impact on the maximal
rational affine subspace of (ax =ap).

Show that if there exists a finite set S satisfying (P1) and (P2), then P’ is a rational polytope.
4. Prove that P’ is a rational polytope by induction on the dimension of P C R™.

&

In the remainder of this section, we describe the reasoning behind each step of the proof and
sketch some of the applied techniques.

Step 1: Constructing a subset of P from a finite number of GC cuts. Suppose that
we can find a finite set S C Z" with Cs(P) C P for some full-dimensional polytope P C R™ for which
a non-rational inequality ax < ap is facet-defining. As this inequality cannot be facet-defining for
the rational polytope Cs(P), there must exist a finite set of GC cuts that dominate ax < ap. More
formally, there must exist a subset S, C S such that Cs, (P) C (ax < ap). If Vi denotes the maximal
rational affine subspace of (ax = ap), that is, the affine hull of all rational points in (az = ap),
then the GC cuts associated with the vectors in S, have to separate every point in (ax =ap) \ Vg.
Indeed, we show that for each non-rational facet-defining inequality ax < ap such a finite set S,
exists and, also, how it can be constructed. For this, we first establish the existence of a sequence
of integral vectors satisfying a specific list of properties. These vectors give rise to GC cuts that
separate all points in the non-rational facet F'= PN (ax = ap) that are not contained in V.

The number of GC cuts needed in our construction for separating these points only depends on
the dimension of V. If dim(Vg) =n—2, that is, the hyperplane (axz = ap) has a single non-rational
direction, then only two cuts are necessary. One can visualize these cuts to form a kind of “tent”
in the half-space (ax < ap), with the ridge being Vi (see Figure 1 for an illustration). With each
decrease in the dimension of Vi by 1, the number of necessary cuts is doubled. Hence, at most 271
GC cuts suffice to separate the non-rational parts of a non-rational facet of the polytope.

The proof of Step 1 uses many classic results from convex and polyhedral theory, as well as from
number theory (e.g., Diophantine approximations, integral lattices, and reduced lattice bases).
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FIGURE 1. Construction of a finite set of GC cuts that dominate a non-rational facet-defining inequality ax < ap.
Here, the hyperplane (ax = ap) contains only one rational, in fact, one integral point xo and has, therefore, one
non-rational direction (Vg ={zo} and dim(Vr) =0). Two GC cuts separate every point in the hyperplane (az =ap)
that is not in Vg.

Step 2: A homogeneity property: F' = P'NF. As the second step of the proof, we show
a property of the GC closure that is well-known for rational polytopes (see, e.g., Schrijver [12]):
if one applies the closure operator to a face of a polytope, the result is the same as if one inter-
sects the closure of the polytope with the face. As it turns out, the same is true for non-rational
polytopes. The proof for the rational case is based on the observation that any GC cut for a
face F = PN (ax=ap) can be “rotated” so that it becomes a valid GC cut for P. In particular,
the rotated cut has the same impact on the hyperplane (az = ap) as the original cut for F'. While
the exact same property does not hold in the non-rational case, we show that there is a rotation of
any cut for F' that results in a GC cut for P, which has the same impact on the maximal rational
affine subspace Vi of (ax = ap). As Step 1 of our proof implies that the non-rational parts of a
face are separated in the first round of the GC procedure in any event, this property suffices to
show that F/ = P'NF.

The insights gained in this second step will be useful for Step 4 of the proof, where we show
the main result by induction on the dimension of the polytope. Knowing that the GC closure of
a lower-dimensional facet F' of P is a polytope, each of the finite number of cuts describing F’
can be rotated in order to become a GC cut for P. We thereby establish the existence of a finite
set Sp CZ" with the property that Cs,(P)NF = F'. Since the facets of P constitute the relative
boundary of the polytope, the union of all these sets will give rise to a set S C Z" that satisfies
property (P2).

Step 3: Finite augmentation property. A statement similar to the one in Step 3 has been
established by Dadush et al. [4] for full-dimensional convex bodies. Since a non-rational polytope P
can be contained in some non-rational affine subspace and, thus, a unimodular transformation of P
to a full-dimensional polytope in a lower-dimensional space is not possible, we need the extension to
lower-dimensional polytopes (Lemma 5.5). However, the basic observation for proving this part is
the same as in [4]: Every additional undominated GC cut has to separate a point that is contained
in the relative interior of P. Even though in the non-full-dimensional case there are infinitely many
cuts with this property, we argue that only a finite number of them need to be considered.

Step 4: Proof of the main result. As the final step of the proof, we establish the main
result: the GC closure of any polytope can be described by a finite set of inequalities. The proof is
by induction on the dimension of the polytope and uses the observations made in the steps above.
Step 1 provides a finite set S C Z™ satisfying Cs(P) C P. Applying the induction assumption to
the facets of P and using the homogeneity property of Step 2, we augment S for each facet F' by a
finite set Sp C Z™ such that the resulting set of integral vectors satisfies properties (P1) and (P2).
From that it follows with the finite augmentation property proven in Step 3 that P’ is a polytope.

We will discuss each of the four steps in a separate subsection of Section 5.
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4. Preliminaries We now state various results from the literature and derive some basic
facts regarding Diophantine approximations and lattice bases that are utilized in the subsequent
sections. The first lemma links the absolute value of the determinant of an integral non-singular
square matrix to the number of integer points contained in the parallelepiped spanned by the
columns of the matrix (see, e.g., Barvinok [1]).

LEMMA 4.1. Let vy,...,v, € Z"™ be linearly independent vectors. Then the number of integer
points in the semi-open parallelepiped

H(’Ul,...,’l)n) = {i)\ﬂ)i

i=1

0§Ai<1f0ri€[n]}

s equal to the absolute value of the determinant of the matrix with columns vy,...,v,.

For linearly independent vectors by, ..., b, in R™, the lattice generated by the basis B = (by,..., )
is the set

A(B) = {x cR"

1
2= Abj, \j€ZLfor j e m}
j=1
For any lattice A C R™, the affine volume of the fundamental parallelepiped of a basis of the
lattice (the parallelepiped spanned by the basis vectors) does not depend on the basis itself. It is
denoted by det(A). If we define Ly := {0} and Ly :=span(by,...,b;) for k € [I], and if b, denotes
the orthogonal projection of b, onto L;- ;, then

()= [o]

A famous result due to Lenstra et al. [10] states that for every lattice in R™, there exists a basis
whose vectors are almost orthogonal to each other. Such basis is referred to as a reduced basis and
its orthogonality defect can be bounded by a constant that only depends on the dimension n. One
can slightly modify the lattice basis reduction algorithm of Lenstra et al. to obtain the following
result (see Dunkel [7], p. 62, Thm 4.5).

THEOREM 4.1. Let (ax = 0) be an integral hyperplane in R™ and let U C (ax=0) be
a k-dimensional linear vector space. Assume that U is generated by integral vectors uy,...,u;, € Z"
that define a basis of the lattice UNZ". If k> 1, assume that for any v € ((am =0) OZ") \U,

1 k 2

2

o172 (bl )
p=1

Then one can extend uy,...,u, by vectors vy,...,v; €Z", l=n—k—1, to a basis of (ax =0)NZ"
such that there exists a constant ¢ that only depends on | such that for j €[],

1911 = e llosll-

where ¥; denotes the orthogonal projection of v; onto span(uy,....ug, Vi, ...,V 1)"

Next, we show that if a point can be written as linear combination of an orthogonal
basis wy,...,w; derived from vectors w;,...,w; with small multipliers and if the orthogonal pro-
jections are not too short, the point can also be written as a linear combination of wy,...,w; with
multipliers of bounded size.
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LEMMA 4.2. Let R > 0 be a constant and let uy,...,up,wy,...,w; be linearly indepen-
dent wvectors in R™ with ||w;|=R, for j € [l]. Furthermore, define U, := span(uy,...,ux)
and U; :=span(uy,. .., ug, wi,...,w;), and let w; denote the orthogonal projection of w; onto Ujl_l.

If there exists a constant ¢ >0 such that ||w;]| > cR, then there exists a constant ¢; only depending
on l and c such that

l

UO+{Z 11]f0r]€[l]}§Uo+{zl:>\jwj

- j=1

Aj € [—ci,¢] for j e [l]} .

Proof. The proof of the lemma is by induction on [. For j € [I], the orthogonal projection w,
of w; onto U jl_ , has a unique representation:

k j—1
= w; — § QjpUp — § QW (1)
p=1 t=1
U}

where «a;, € R for p € [k], and for t € [j — 1], a;j, = T ”2 First, consider the case [ =1. Take an
arbitrary & =u + \ @y, where u € Uy and \; € [—1,1]. Then

k
(E:U‘Fj\l’lfjl:U‘i‘S\l (wl—Zalpup>—<u )\12@11, >+)\1wl s

p=1

and c; = 1 satisfies the conditions of the lemma. Therefore, assume that the statement of the lemma
is true for some [ > 1 with constant ¢; = ¢;(l,c¢). Now take an x—u+zl+1 Ajw;, where u € Uy

and \; € [—1,1] for j € [l +1]. Using the induction assumption and (1), we get

! ! k 1 -
T~ X ~ X Wi Wy
!
r=u-+ E AjW; + N1 Wiy = u' + E Ajw; + Nigq <wZ+1 - E QriipUp — E I H2 Wy
wy

3=l j=1 p=1 t=1
: L wp
o Y +1W; -
=u + E )\jwj + )‘H—l Wiy — E 5 W; s
j=1 j=1 ij H

for some u',u” € Uy and numbers \; satisfying |\;| < ¢ (1, ¢) for j € [l]. Let us define

Y= Zlerle ~__ZVJ

=l

Then N -
wiawy| _ weal @yl ol R

|| = S < I SE sl
Tyl AR ;] = Re ¢

By applying the induction assumption a second time, we get

1
Yy € Uo—l—{Zl/jﬁ)j

j=1
10
- S
+ p { jz_;%wa i

In particular, there exists some u"” € Uy and numbers v; € [—c¢1/c,¢1/c] for j € [l] such that

l
y=u"+ v
j=1

vie[-1/e,1/c] forje[l]} Uy + = {Zyw
esver for el = Ui+ { S,

j=1

v €[—1,1] forje[l]}

v € [~ei/c e /c] for j € [l]} )
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Hence, we obtain

l

l l
z=u" + Z )\jwj + )‘H-l <w1+1 —u" - Z’Yjﬂ]j) Z )\H_l’}’] w; + )\l+1w[+1 s

j=1 j=1 j=1
where u € U, and
3 Cl(l7c)
1A= Avs| S 1+ Tl < ealle) + —
Thus, ¢;(I+1,¢):=ci(l,¢) (1+1/c¢) is the desired constant for [+1. O

Next, we state a famous result regarding simultaneous Diophantine approximations: a finite set
of real numbers can be approximated by rational numbers with one common low denominator
(see, e.g., Schrijver [12]).

THEOREM 4.2 (Dirichlet). For any a € R™ and € € (0,1), there exist integers pi,...,pn
and q >0 such that for i€ [n],

We now extend the theorem to the case that there are rational linear dependencies between the
components of the non-rational vector that also should be satisfied by its approximation.

LEMMA 4.3. LetaeR"™ and k<n—1. Let uy,...,u, € Z" be linearly independent vectors such
that au; =0 for j € [k]. For any € € (0,1), there exists an integer vector p = (p1,...,p,) and an
integer ¢ >0 such that pu; =0 for j € [k] and such that fori € [n],

Proof. Let U denote the k x n matrix with rows u,,...,uy, that is, Ua = 0. Since rank(U) = k,
there exists (after possibly reordering the indices) a rational k x (n — k) matrix U such that the
system of equalities Ua = 0 is equivalent to the system

Ap—k41 aq
=U
Qp Ap—k

In particular, one can find a positive integer s and integers r;;, forn—k+1<i<nand t € [n—k|,

such that
1 n—=k
a; = — Tt Qg
- ; Ly

Let us define the constants

1 s
K, :=min< —
! {s’ (n—k) maxi7t\rit]}
and €, := K, e. Let py,...,p,_; and ¢ be integers according to Theorem 4.2 that satisfy

5. e
ai—g <_,.1
q q
fori=1,...,n—k. We define
q:=sq
Di = SD; fori=1,...,n—k
n—k
pi ::Zritﬁt fori=n—k+1,....n
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Note that
Prn—k+1 2!
S =U ]
Pn Pn—k

implying pu; =0 for [ € [k]. Furthermore, for i =1,...,n — k, we have

€1 3
< —<-—.
q/s " q

B Di
=\|a; — —=
q

_b
q

Q;

Then we obtain for i=n—k+1,...,n,

n—k n—k ~
1 Pt
= ; Tit Ay — Tit =
t=1 t=1 q

3
§_7
q

1n—k
< ;;’th‘

Dt
ar — —
q

and the lemma follows. [
From the last lemma, we obtain the following corollary.

COROLLARY 4.1. Leta€R"™ and k<n—1. Let uy,...,u, € Z" be linearly independent vectors
satisfying au; =0 for j € [k]. Then there exists a sequence {a'}ieny CZ" such that a* L u; for j € [k]
and such that

i

a

a—al|—o0, (2)

where a=a/ ||a|| and a* =a’/||a’|.

5. The Main Proof In this section, we prove the main result of the paper, following the
sequence of four steps outlined in Section 3.

5.1. Step 1 The first and most difficult step of our proof is to show that for any polytope P,
there exists a finite set of GC cuts that defines a subset of P. In fact, we prove that for each
non-rational facet-defining inequality ax <ap for P one can construct a finite set .S, of integral
vectors that satisfies Cg, (P) C (ax <ap). In particular, with Vx denoting the maximal rational
affine subspace of (ax = ap), we show that the set of points in PN (ax =ap) \ Vi can be partitioned
into a finite number of segments such that for each segment there exists a single GC cut that
separates all points in the segment. The number of segments will thereby depend only on the
dimension of V.

Our proof technique has a clear geometric interpretation. It is motivated by an observation for
rational polytopes that can be illustrated as follows: Suppose that H = (ax =ap) is an integral
hyperplane in R". We can assume w.l.o.g. that a, = 0 and that the hyperplane is defined by integral
vectors uq,...,u,_2, and v, which span a parallelepiped that does not contain any interior integral
points. In other words, these vectors form a basis of the lattice defined by the integer points in H.
Let U :=span(uy,...,u, ). Then U+ Av C H, for any number A. One can imagine that the set of
integer points in H can be partitioned into subsets (or layers) associated with the parallel affine
subspaces that are obtained by shifting U by some integral multiple of v (see Figure 2). Now consider
a rational polytope P with facet F'= PN (ax = 0) such that F'is a subset of U 4+ {\v|A < 1}. Then F
does not intersect the affine subspace spanned by the integer points in U 4 v, but lies completely
on one side of this subspace in H. Given this setting, there is some “gap” between F and U +wv. It
therefore appears intuitive that a slight “rotation of the hyperplane H around U in direction of v”
should result in some hyperplane (ha = 0) that corresponds to a GC cut for P. Such a hyperplane
would separate every point in F N (U + {\v|A>0}) and imply that P’NF CU +{\v|A<0}. In
other words, one iteration of the GC procedure would guarantee that P’ does not contain any
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[} [} 0 [} [}
v H = (ax=0)

U U+v U+2v

FIGURE 2. The lattice of integer points in H can be partitioned into layers that are parallel to U and obtained by
shifting U by integral multiples of v. The facet F'= P N H does not intersect the affine space U 4+ v. We can rotate
the hyperplane H around U to obtain a GC cut for P that separates every point in the grey area.

e e Ny
. . . . h . . . . . .
_ (hx=1)
.. N e . (ha = 0)
Lo S
- P
g (az =0)
(vz=1)

FIGURE 3. Geometry of GC cuts for rational polytopes for n = 2: The hyperplane (ax = 0) with a=(—2,5) is
spanned by v = (5,2). Here, U = {0}. The line segment [0,v] (that is, the parallelepiped spanned by v) does not
contain any interior integral points, that is, gcd(v) = 1. There exists an integral vector ho = (—1, 3) such that hov =1
and the same is true for any h = ho + ka with k € Z. Hence, by choosing k large enough, we can find an inte-
gral h with hv =1 such that hx is maximized over P by a vertex in F. Since F C{Av|A<1}, we get that
max{hz |z € P} =max{hz |z € F'} < hv=1, implying that hx <0 is a GC cut for F' that separates every point
in FF'N(0,v).

points in H that lie strictly between the two affine subspaces U and U + v. Figure 3 illustrates the
described situation in dimension two.

As we formally prove in Lemma 5.1 and Corollary 5.1, this intuition is justified. Most impor-
tantly, it will assist in constructing GC cuts that separate the points in the non-rational parts of
facets with non-rational affine hulls. In the following, we illustrate the basic idea for the special
case of a non-rational facet-defining hyperplane (ax = ap) for which the maximal rational affine
subspace Vp is integral and has dimension n — 2. (There is a natural generalization of this approach
for the case that Vx is non-integral or of smaller dimension.) Let F'= PN (ax =ap) be a facet
of a polytope P and let us assume w.l.o.g. that ap = 0. Furthermore, suppose that (ax =0) is
spanned by integral vectors uy,...,u,_s and some non-rational vector v. Then we can approximate
the hyperplane (az =0) by a sequence of integral hyperplanes (a’x = 0) that are spanned by the
vectors i, ..., U, o together with an approximation v* € Z" of the non-rational direction v. That
is, the approximations also contain U := span(uy,...,u, ) = Vg. It is intuitive that the norm of
the integral vector v® has to increase with the accuracy of the approximation, as the distance of v
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to the non-rational hyperplane (az = 0) must become smaller. Now consider the perturbation P*
of P that is obtained by replacing the non-rational facet-defining inequality ax <0 by the approx-
imation a’z < 0. For large enough norm of the vector v*, the facet F*= P'N (a'z =0) does not
intersect the integral affine subspace U + v'. Hence, with the earlier observation, there exists a
GC cut hiz <0 for P’ that separates every point in U + { v’ |\ > 0}. Our general strategy is to
utilize this cut to derive a GC cut hz <0 for P that removes every point in U + {Av| A > 0}. Note
that such h would need to have a strictly positive scalar product with v; and the maximum of hz
over P would have to be attained at a vertex in F' and be strictly smaller than 1. Ideally, we would
want the vector h’ to satisfy these conditions. However, the modified Diophantine approximation

h' i (dz=0)

FIGURE 4. One of the difficulties in the construction of GC cuts separating non-rational parts of facets:
h'z <0 is a GC cut for the approximation P’ (drawn with a dashed line) that separates every point Av'
of F'=P'N(a‘z =0) with A > 0. However, even if the cut h'z <0 is also a valid GC cut for P, it does not separate
any point Av with A > 0, since h'v < 0.

that we use to generate the sequence of normal vectors a’, and thus v*, does not guarantee these
properties for every h'. One difficulty, for example, is the fact that h‘v? > 0 does not necessarily
imply hv > 0 (see also Figure 4). Hence, the construction of the vector h has to balance the goal
of making the scalar product hv strictly positive, but less than 1.

A rather complicated construction and analysis in Lemma 5.2 will show that an integral vector h
with the desired properties always exists. It gives rise to a GC cut that separates every point in the
set U+ {Av | > 0}. Similarly, one can construct a cut for the non-rational part on the “other side”
of U, that is, for U — {\v |\ > 0}. Geometrically, the non-rational part of (ax =0) is partitioned
into two sets associated with the directions £v. The two corresponding cutting planes form a “tent”
in the half-space (az <0) (see Figure 5). In the generalization to lower-dimensional subspaces U,
the non-rational part of (az = 0) spanned by non-rational vectors vy,...,v;, will be partitioned
into 2! disjoint sets that correspond to the vectors (£vy,...,dv;).

The first lemma and corollary of this subsection formalize the observations for rational polytopes
described above, which can be regarded as the geometric foundation of the proof of Step 1.

LEMMA 5.1. Let uy,...,un_o and v be linearly independent vectors in Z™ such that
n—2
{Z%uiJrAv %-GRforz'e[n—Q],0<)\<1}HZ":(Z) . (3)
1=1

Then there exists a vector y € Z™ such that u;y =0 for i € [n — 2] and such that vy = 1.
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FIGURE 5. Separation of non-rational parts of facets for n = 3: Here, H = (ax = 0) is a non-rational hyperplane
with maximal rational affine subspace U of dimension n — 2. The non-rational direction is given by the non-rational
vector v. There exist two GC cuts that separate all points in F'\ U, their hyperplanes form a “tent” below H with
ridge U.

Proof. First, let us assume that the semi-open parallelepiped spanned by the vectors uy,...,u,_o
does not contain any integral points apart from 0, that is,

n—2
E Vil
=1

Together with (3), we have

0<vy;<lforie[n—2],NZ"={0} . (4)

n—2

Z%ui + v

i=1

0<y;<lforie[n—2], 0<A<1,nZ"={0} ,

that is, also the semi-open parallelepiped spanned by all n — 1 vectors does not contain any integral
points apart from 0. Now consider the system

(5% 0
U2 0
V= y=|:| =0
Up—2 0
v 1

Note that V has full row rank and column rank n — 1. There exists a unimodular matrix U € Z"*",
that is, |[det(U)| =1, such that

Uy Uy
U9 ?12
VU=| : |U=| : |=[V]0],
Up—2 ﬂn—2
L ,L) - L ,Z’) -

where each u4; = u;U and © = vU has its n-th component zero and where Vis a nonsingular
integral (n — 1) x (n — 1) matrix. The semi-open parallelepiped spanned by the vectors iy, ..., U, o,
and 0 in (z, =0) does not contain any integral points apart from 0. Indeed, suppose there was an
integral point z =%y + ... + Yp_2U,_o + A0 with 0 <~; <1, for i € [n — 2], and 0 < A < 1, such
that not all of these coefficients are zero. Then

ZU71 = 'YlﬂlUil +... +")/n_2’l~ﬁn_2U71 + )\@U71 =YUL+ oo+ Y—2Up—o + AU
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is an integral point different from 0 in the semi-open parallelepiped spanned by uy, ..., u, 2, and v,
which is a contradiction. Now observe that Lemma 4.1 implies |det(V')| = 1. Therefore, the system

Vy=>b

has an integral solution g € Z"~*. The vector § = [ 0]” satisfies VU7 = b and, consequently, y = Uy
is an integral solution to Vy =0b.

If assumption (4) is not satisfied, then we can find a set of n — 2 integral vectors u,...,u},_,
spanning the same linear vector space as uy, ..., u,_» such that (4) holds. Consequently, there is a
vector y € Z" such that ujy =0 for i € [n — 2] and vy = 1. Since every u; can be written as a linear
combination of the u}, we have u;y =0 as well. [

In the following corollary, we apply the above lemma and characterize how rational faces that sat-
isfy a certain property behave under the GC procedure. More precisely, suppose that H = (ax = ap)
is an integral supporting hyperplane for a rational polytope P. Furthermore, assume that the
face = PN H does not share any points with an (n — 2)-dimensional affine subspace U spanned
by some set of n — 1 integral points in H. Then all points of F' that lie strictly between U and the
parallel affine subspace U’ that is obtained by shifting U in H towards F until the next layer of
integer points is touched, will be separated by a single GC cut (see Figure 6 for an illustration).
Note that the normal vector h of such a cut has to be perpendicular to every vector in U. Put
differently, the hyperplane (hz = |hp]) has to be parallel to U.

FIGURE 6. Illustration of Corollary 5.1 for n =3: H = (ax = ap) is an integral hyperplane and F = PN H is a face of
the rational polytope P. Note that the integer points in H are drawn as filled black points. Since F'N (U + zo + v) =0,
there is a GC cut that separates all points in the shaded area between (U + x¢) and (U 4+ zo +v) in H.

COROLLARY 5.1. Let P be a polytope in R" and let H = (ax = a,) be a supporting hyperplane
such that P C (ax < ap). Assume that we can write H = xy+ span(uy, ..., u,_2,v) for integral vec-
tors To, Uy, ..., Uy 2,v. Let U=span(u,...,u, o) and F=PN(ax=ap). If

(i) {ut+ |uel, 0<A<1}NZ"=0 and
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(i) FC{ao+u+tv|uel, A<1},
thenP’ﬂFg{xo—i—u—i—)\v‘ueU, )\SO}.

Proof. We can assume w.l.o.g. that o = 0. Because of assumption (ii), there exists an € € [0,1)
such that
FC{u+M|uelU, x<e} . (5)

With assumption (i), Lemma 5.1 implies the existence of a vector y € Z" such that w;y =0
for i € [n — 2] and vy =1, and the same is true for any integral vector y + ka, where k € N. Now
let rq,...,7,, denote the set of edge directions emanating from the vertices of F' to vertices of P
that are not in F'. Then r,a <0 for s € [m]. We can choose k large enough, so that the maximum
of (y+ ka) over P is attained at a point in F. Then with (5) and w;(y+ ka) =0 for i € [n — 2], we
get for arbitrary u € U,

max {(y+ ka)z|z € P} =max {(y+ka)z|z € F} < (y+ka) (u+ecv)=¢ .

Hence, (y + ka)r < 0 is a GC cut for P. Now consider any point x=wu+ Av € F such
that w € U and A > 0. Then (y+ ka)z = A(y + ka)v =X > 0. Hence, the point = violates the GC
cut (y+ ka)z <0 and, therefore, x ¢ P'. O

While the above lemma and corollary concern integral hyperplanes, in the remainder of this sub-
section we will focus on affine spaces that cannot be described by rational data. Lemma 5.2 below
can be seen as the core of the proof of Step 1. Therein, we establish for every non-rational hyper-
plane V = (az = 0) the existence of sequences of vectors and numbers, which satisfy a distinct list
of properties. The sequences are associated with integral approximations of the hyperplane V. The
starting point in the construction of these sequences is the special Diophantine approximation {a’}
of the non-rational normal vector a from Corollary 4.1. If u,, ..., u; denote a maximal set of integral
and linearly independent vectors in V/, then the normal vectors a' € Z" are perpendicular to each
of the vectors uy,...,u,. As a result, the approximations (a’z =0) of the hyperplane V' contain
the maximal rational subspace Vi = span(uy, ..., u;) of V. In particular, (ax =0) N (a’x =0) = V.
Each integral hyperplane (a‘x =0) is spanned by the vectors ui,...,u, together with l=n—1—k
additional integral vectors, denoted by vi,..., vj, which can be regarded as approximations of the
non-rational directions of V. These vectors will be chosen very carefully among the infinite number
of possible sets of vectors spanning (a’z = 0), as not all choices will guarantee the properties that
we require for the other sequences and numbers derived from them. Most importantly, they will
be almost orthogonal to one another. The vectors v§ give rise to non-rational vectors w; that span
the non-rational part of (ax =0). More precisely, each wj- is obtained as projection of the vector U;—
onto (ax =0), scaled by a factor, so that all w;- have a same given length. We refer to Figure 7 for
an illustration. As the quality of the approximations of V' increases with the index 7, the wj’s will,
at some point, also be almost orthogonal to one another. This property of the w}’s turns out to
be material in the subsequent proof of Step 1. Apart from the mentioned sequences a’,vj, and wy,
which have very natural geometric interpretations, we also establish a sequence of integral vec-
tors h'(d), for each 6 € {—1,1}!, whose construction is more involved. They arise as integral linear
combinations of the integral vectors found in Lemma 5.1, which were the basis for GC cuts separat-
ing points in rational facets between affine layers of integral points (see Figure 6 and Corollary 5.1).
Some of the properties that these vectors satisfy are as follows: Each h'(§) is perpendicular to the
vectors uy,...,u, and, therefore, the hyperplane (hiz = 0) is parallel to Vz. Moreover, the scalar
product of h*(§) with each non-rational vector Jjw§ is strictly positive, but very small.

To understand the motivation behind these properties, let us consider the non-rational paral-
lelepiped Q(d) that is spanned by wuy,...,u; and the non-rational vectors d;w?, ..., dwi. When
maximizing h'(d) over Q(d), the maximum is attained at w(§) = d,w’ +. ..+ dw;, or any other point
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w(f{,q)

F1GURE 7. Ilustration of Lemma 5.2 for n =3 and dim(Vg) = 0: The non-rational hyperplane (axz = 0) is approxi-
mated by integral hyperplanes (a‘z = 0). The integral vectors v} ‘and v3 span (a'z = 0) and are almost orthogonal
to each other. Their directions give rise to non-rational vectors wj and wj of a given length R in (axz =0). For each
parallelepiped Q(8) spanned by vectors 61w} and dow}, with § € {—1,1}?, there exists a GC cut that separates every
point in Q(9) \ V.

in Q(9) that can be written as w(d) +u for some u € Vi. Moreover, the properties of h'(§) guarantee
that 0 < h'(6)w(d) < 1. As a consequence, h'(§)z < 0 is a GC cut for Q(J) that separates every point
of Q(0) \ Vg. Thus, for the special case that the non-rational polytope is the (n — 1)-dimensional
parallelepiped Q(d) or contained in it, the single integral vector h‘(d) implies a finite set S with
the properties that we are looking for in Step 1 of the proof.

For a general polytope P with facet F' = P N (axz = 0), the goal is to cover F with the 2'
parallelepipeds associated with (fw?,..., £w}). Then every vector h'(§) will give rise to a GC cut
that separates all the points in corresponding parallelepiped that do not belong to V. Note that
for this, we also need the property that, when h’(d) is maximized over P, the maximum is attained
at a vertex in F. In other words, every vector h'(§) must have a non-positive scalar product with
the directions of edges connecting a vertex in £’ and a vertex outside of F'. Indeed, we construct
the h'(d) in Lemma 5.2 with the requirement that for an arbitrary given set of vectors ry,...,7,,,
their scalar product with these vectors is nonpositive. The proof of Lemma 5.2 strongly relies on
properties of reduced bases of integral lattices.

LEMMA 5.2. Let R>0 be a constant and let V = (ax =0) CR"™ be a non-rational hyperplane
through the origin, that is, a € R™\ Q". Let U be the mazximal rational subspace of V and assume
that U is spanned by vectors uy,...,u, € Z", that is, dim(U) =k, 0 < k <n — 2. Furthermore,
let ry,...,r, €R™ such that for s € [m],

rea<0 . (6)
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Then there exists a constant ¢ >0 only depending on l:=n—k—1 and a constant C >0 such that
there exist sequences

{al}an’ {’Ui},...’{v;}gzn’ {qzil}""’{qli}gR? {wi}?“"{w;}an
that satisfy the following properties:
[i] ged(a’)=1.
rea' <0 for s € [m].

lla’|| ||a* — a@|| — 0, where @' =a'/||a’|| and a=a/ ||al|.

]
]
[iv] (a'z=0)=span(u,...,u,vi,...,v}).
V] ||vi|| — oo for j €]
vi] ||vt/q: — wi|| — 0 for j €[l].
vii] ||wt||=R for j€l].
[viii] V =span(u,...,up,w}, ... w}).
ix] ||@i|| = ¢R for j € [l], where 1w is the orthogonal projection of wj

;O\
onto span(uy, ..., Ug, Wi, ..., ws ;)"

(x| For every € >0, there is an index io(¢) such that for all i > ig(e) and and for all o € R,
with ||ale <1, there exist vectors {hl,(8)} CZ" for all § € {—1,1} such that
hi(0) L u, for p € [K]
hi (8) (6w?) —oy| < e for j €[l
he(8) (6;05) = [ o5 for j € [l]
hi(6)r, <0 for s € [m]

i, (8) '] < Cla’l|”

Proof. Let us assume w.l.o.g. that the vectors wuy,...,u, form a basis of the lattice U N Z".
If this is not the case, we can replace the original vectors by another set of vectors in U that
has this property. Let V;r denote the set of points in V' that are not contained in the maximal
rational subspace of V, that is, V;p:=V \ U. Let {a'} CZ" be a sequence of vectors according to
Corollary 4.1 such that for p € [k], ' L u, and

la”]] |

We can assume w.l.o.g. that ged(a’) =1, since the same properties hold if we divide a’ by some
positive integer. Thus, the sequence {a'} satisfies properties [i] and [iii]. Furthermore,(7) implies
for s € [m],

i

a

a'—al|—0 . (7)

—0 .

rsa' —1rsQ

As r,a < 0 by assumption (6), there exists some constant 3 > 0 such that r.a’ < —f for large
enough . Hence, noting that ||a’|| — co because of a € R™\ Q", it also holds that for s € [m] and
large enough 1,

ra' <—=f . (8)

In particular, property [ii] is guaranteed for large enough i.

Let A" = (a’xz = 0) N Z" denote the lattice defined by the integer points in the integral hyper-
plane (a‘x =0). In the following claim, we show that norm of the shortest vector in A"\ U grows
with <.
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CLAIM 5.1.  Let 2* denote a shortest vector in A"\ U. Then ||z*|| — oc.

Proof of Claim 5.1. Suppose that there exists some positive constant K such that for all 4,
one can find a point z' € A"\ U with ||z?]] < K. Let proj(z’) denote the projection of z' onto
the hyperplane (az = 0), that is, proj(z’) + Aa = 2%, where A = (az’)/||a||’. As 2 ¢ (az =0), we
have ||z*—proj(z*)|| > 0. Furthermore, since the number of integer points in B(0, K) is finite,
there must exist some positive number D such that ||z* —proj(z*)|| > D for every i. However,
using a‘z* =0 and (7), we get

I

which is a contradiction. [
Claim 5.1 implies that, for sufficiently large i, we can assume for every v € A\ U,

1 k 2

2

o125 (3 ol
p=1

Since (a'z =0) is an integral hyperplane and U C (a‘x =0), we can find integral vectors vi,..., v}
according to Theorem 4.1. That is,

laz"| _

A
= Al llall = Tal

|CLZ

(a'z =0) =span(uy,...,up,vi,...,v)) ,
and wy,...,ug, v, ..., 0f form a basis of the lattice A*. Let vl be the orthogonal projection of vl
onto U+ and let v denote the orthogonal projection of v} onto span(us,...,us,v],. ..,v] Ot

for j=2,...,1L Then it also holds by Theorem 4.1 that for j E 1],
| (9)

where ¢, is a constant that only depends on [. With this, property [iv] of the lemma follows.
Furthermore, observe that v} € A*\ U for j € [I]. Hence, Claim 5.1 implies property [v].
Since uy,...,u,vi, ..., vf form a basis of A’ we have for every s € [[],

k !
{ vaup + Z )\jv;-

p=1 Jj=1

v, €R for p e [k], \; €R for j e l], 0</\S<1}mZ":(Z) . (10)

Indeed, if this was not the case and there was a point z € Z" such that z = Zﬁ:l Vplp + Zé-:l AU
and such that 0 < A\; <1, then

=3 (- L)) Wz A= D))o € (20 NI

p=1

That is, 2z’ is an integral point in the semi-open parallelepiped spanned by the basis vectors. Because
of 0 < A\, <1, it holds that 2z’ # 0, and this cannot be true. Now, let us define for every j € [I],

o 1 .
(w},q;) == argmin{“;v{?—w“ ‘werR, |lw| = R, q€R+} . (11)

Intu1t1vely, w is the closest point in the intersection of V;z with the ball B(0, R) to the line spanned
by v;. The deﬁnltlon of w} immediately implies property [vii] of the lemma. In the following claim,
we show property [vi].
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—0.

CLAIM 5.2.  For j €[], we have ¢' — oo and ||v}/q} — w!

Proof of Claim 5.2. We first show the second part. Let w denote the projection of the
point (R©}) onto the non-rational hyperplane (ax = 0), where o} = v}/ Hvﬂ . We have w = Rt} — \a,
where A= (aR@j-)/HaH? Furthermore, let ¢ = ||vt|| /R > 0. Note that for w=w/|lw|, it holds
that Rw € V;g and ||Rw|| = R. Therefore, (Rw,q) is a feasible pair in the minimization (11) that
defines (w?, ¢}). Consequently,

L .
|vi|l /R

J
We get, using a'v; =0 and (7), that

i

2w
¢ 7
J

s‘—'
q

= || RV, — R + (w — w)|| < || RV, — w|| + [w — Rw|| .

el

|Rv: —wl|| = || ||a]| = |Rav}| = R |av; —a'v}| < R||a—a —0 .

This also implies that ||w|| — R and, therefore, the second part of the claim holds. The first

=R|ja—a'

—1
Uj

part, ¢ — oo, follows from ! vl|| — o0, ||w}|| =R, and ! vl /g, —wi|| —0. O
Next, we prove property [ix]. By (9), we have for j € [I],
1 , 1 -
Ll = e g (12)
q; q; ’
Let @’ denote the orthogonal projection of w! onto span(uy,...,ugwi,...,wi_;)*, for j € [I].

Because of Claim 5.2, there is for every 7 >0 a number N(7), such that for all i > N(7),

vl . vl

gy L
and ‘ ‘ ‘ }

i e

qg —TgHwé- < qg +7 .

Now let v be some small constant such that ¢; >~ > 0. By (12),

|7 | |
q;‘_ (Cl 'Y) q;_

i
Yj

4q;

%

v

<.

NESH

>

, we obtain

Using this observation and R = ||w!

|

i vt
_T_(Cl—’Y)<|q—Z+T> E’Y‘q—z—T_(Cl—’Y)T

J J

~1
Yy

7
4;

> y(R=1) =7 (1 =77 .

5] = (cr =R >

Note that we can choose 7 small enough such that the last expression is nonnegative.
Hence, ¢=(c; — ) >0 is the desired constant for property [ix]. Since ¢; only depends on [, the
same is true for c.

Now observe that property [ix] implies that the vectors uy,...,u,w!i, ..., w; are linearly inde-
pendent. This is because ||@¢|| >0 for j € [I] and

7 A ~ ~ ~1 ~1
span(uy, ..., U, W, ..., w;) =span(dy, ..., Uy, W,...,0;) ,
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where %, = u,, and where for p=2,...,k, the vector @, denotes the orthogonal projection of w,
onto span(ui,...,u, ). Consequently, property [viii] is satisfied.

In the remainder of the proof, we show property [x]. Because of (10) and Lemma 5.1, there exists
for each s € [I] a vector y’ € Z™ such that

Y€ (wz=0)N...N (upz=0)N ﬂ(v;-x:O)ﬂ(vix: 1)=:L" . (13)
J#s

Since LY is the intersection of n — 1 linearly independent hyperplanes in R", it is a line.
Because a’ L u; and a’ L v}, the direction of the line is a’. Let us assume w.l.o.g. that a; # 0, and
therefore a! # 0 for large enough i. Let §° denote the intersection of L’ with the hyperplane (z; =0).
Note that 7’ # +oo because of the assumption a} # 0. That is, ¢’ is the unique solution to the
system

F ey 07
(25} 0
Up 0
v} T4 0
ve | |2 0
v 1
7
vs-l—l 0

L v 0]

For convenience, we introduce some additional notation: Let U denote the matrix with
rows u,, p € [k], and let V*_ denote the matrix with rows v} for all j € [I] such that j # s. Similarly,
let W', denote the matrix with rows w} for all j € [I] with j # s. Finally, let V* and W* denote the
matrices with rows v; and w;l, for j € [l], respectively. Then the above system becomes

€1 o) 0
U o
Vi |0
’Ui Ty 1

S

CramM 5.3.  For every s € [l], §'q. — &', where T’ denotes the unique solution to the linear
system of equations

€1 ) 0
ol o
wi |15 = o
wi Tn 1

S

Proof of Claim 5.3. Let U;— / qj- denote the vector obtained by dividing every component of vj- with
the scalar ¢}. Furthermore, let V', /¢’ , be the matrix with rows v! /¢’ for all j # s. Then

€1 0 €1 0 €1 0
vi BT ol T fve | BT o] T vy | B T o]
vl 1 vl/q. 1 vl/q! 1
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where Claim 5.2 implies

€q €1

U U
Vil |,

v,/ 4, w,

O
Now we will show that the entries of Z cannot become arbitrarily large.

CrLAIM 5.4.  There exists a constant K; >0 such that for sufficiently large i, ||Z% ]| < K.
Proof of Claim 5.4. By definition,

—1

€1 0

T = u 0
s Wt 0
w? 1

S

Therefore, it suffices to show that the entries of the inverse matrix in the above equation cannot
be arbitrarily large. We have

—1
€1

o 1 o
(Az) 1;: U :WadJ(A) s
W’L

where adj(A’) denotes the adjugate matrix of A’. Since all entries of A’ are bounded (note
that ||w!||=R), every entry of adj(A’) is bounded as well. Hence, it is sufficient to show
that |det(A")] can be bounded from below for large enough i. The absolute value of the
determinant of A° corresponds to the volume of the parallelepiped spanned by the vec-

tors uy, ..., up,wt, ..., wi, e;. Therefore, it holds that
|det(AY)| = [l | |[@F |- - ||| 1] -
Here, €, denotes the orthogonal projection of e; onto span(u,...,ug, w!,...,w})*. Hence, by prop-

erty [viii], the vector €, is the orthogonal projection of e, onto V+. Because of the assumption a; # 0,
it follows that ||é;|| > 0. With property [ix], we obtain for sufficiently large 7,

|det(A")

> (cR)" |-l el -

The expression on the right is a strictly positive constant, and the claim follows. [
Now let us define for any vector M= (M{,..., M}) € N'| the set

L'(M") = (ux=0)N...N(upz=0)N (viz=M])N...N (vjx = M]) .
Note that L*(M?") is a line with direction a’ and by virtue of (13),
(Miyi+...+ M/y}) e L'(M")NZ" ,
that is, L'(M*) NZ" # (). Furthermore, L'(M") intersects (z; =0) in §*(M*) := M{yi +...+ Mg} .
We can write o o .
Li(M) = {a? ER" |2 =g (M) + pa’, ER} .

Observe that every line segment of length |a’| of L‘(M*) must contain an integral point. In
the remainder of the proof we show that there exists a constant C' such that for every o € R,
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with |||/, <1, there is a vector M* = M(«) € N' and a number pj = pj(a) € R such that for
each p € [p, ph + 1] and each 6 € {—1, 1} the sequence of vectors

RY(SM', p) := g (SM") + pa' = 5 M it + ...+ 6, M} i} + pa’ (14)
satisfies
R (M ) L o, for p € [K] (15)
hH(OM?, ) (6,w) — a for j €[l (16)
R(OM', ) (6;0%) = |a,q)] for j €[] (17)
R{(OMYp)ry < 0 for s € [m] (18)
KM, ) a’| < C| '’ (19)
Here, the notation §M* means (6; M7, ..., 6, M}). Since every line segment of length ||a’|| contains an

integral point, there must exists some p* € [,uo, po + 1] such that h*(6M*, u*) is an integral vector.
Consequently, this would imply property [x] of the lemma.

First, observe that condition (15) always holds, since any h of the form (14) is a linear combina-
tion of vectors that are perpendicular to the vectors u,, p € [k]. Using definition (14) of h*(6M*, u),
condition (18) becomes

SMir g+ .. 4o Mir g+ pura <0 .

Now let 3> 0 be the constant from (8), that is, r,a’ < —p, for s € [m]. Then (18) becomes

51M royi 4 ...+ Mir, g
—r.at

I

and for

. {51Mfrsgi+...+5lMlirsgf}
B Y
this condition is satisfied for all u > uf. Let 7" € {ry,...,r,,} such that

i OMir g+ My
Ho = ,8 :

Then by (14),
[ 7 ] 7 —1 1 11 0 7 1 11 1
R'(6M*, ) = 61 M, < —G—BT Jya >—|—...—|—51Ml < —G—BT U, a > ,

and (16) becomes for p = pj and j=s,

<26M1 <w 7, Brija>>—>ozs . (20)

Now let us define M! := |a;q¢}|. Note that M’ € N'. In the following, we will show that this
choice for M’ satisfies (20). For this, we consider the terms in (20) separately. We start with the
terms 8,0, M w. y;. If j = s, then we get with Claims 5.2 (¢, — 00) and 5.3 (w.z} = 1),

=10

qs_as

+ |wl 7

) _ i i =
swsys_as - |La5qu wsys_as
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[

1 =1
AW Yy — AW T

[T

i =t i =1
Wy Y4 _wsxs_{_ws'xs

1
- +—
q

S

i (i i Loy i i Ly i
S wS (ySqS - xs) —"_ E wS (ySqS - xS) —"_ E wS xS
1 , . , 1 1 . , 1
§<1+—.>|w; T +—.:R<1+—.> g -7 +=-—0.
qs qs qs qs
Hence, S
d 0 MW g, — g . (21)
For j # s, it similarly follows by Claims 5.2 (¢} — o0) and 5.3 (w!z’ =0) that
0:0;Mjw ;| = ||oya; ] wigj| < |ojwl g5 — oyl | + |w( g
i (=i i Lo i 1 i i i
< |w, (yjqj'_%) + = |w, (yjqj_ajj) <SR{1+— 94, —Z;|| —0,
q; 4q;
that is, S
056, Miwiy; —0 . (22)

Now consider the terms d,6;M; 5 ' g w}a’. With Claim 5.3, we obtain

d Lo 1 P\ (A (i i 1 i AN (0 i Lo iiy i
0,0; M} ' g wia'| = EHO@%J(T ¥;) (wga’) Sg!%(r ¥;4;) (wia') +B\(T y;) (wia’)
11‘—1‘1‘1‘1‘ 11‘—1‘1‘1‘ 1 1 =i il i
Sgryjqj w;a —i—Bryj w;a :B 1+E Ty | |wga
J
1 1 B I Rt S Juvl B IR
:E 1+¥ ryjqj—rxj%—rxj w, a
J
1 1 7 —1 1 —1 =1 T 1
gE 1+¥ r ( Y;q; — T || + || T, )wsa
J
We can bound ) )
5<1+?> rt ( yiq; —zt|| + ||z} )
J

from above by Claims 5.2, 5.3, and 5.4 for sufficiently large i. Furthermore, using (7) and aw’ =0,
we get for each s € [I],

il |5%,,0 =0

wid'| = ||o’|| |a'wl| = ||o’|| |a'w! — awl| < ||a’|| [|@" - al| ||wi]| = R ||| ||@* — @] —0 . (23)
It follows that 1
6.0, M} —r'yiwia' —0 . (24)

Observations (21),(22), and (24) imply (20), that is,
RY(SMY pl) (Ssw) — oy .
With (23), we obtain for all u € [u), i + 1],
h'(SM*, ) (6swh) — ay .

Note that this convergence is essentially independent of «, that is, for every € > 0, there is some N (¢)
such that for all ¢ > N and for all a € [0,1], |h*(6 M, 1) (6,w) — ] < e. In particular, there must
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exist sequences of integral h! (4) with this property. This proves condition (16). For condition (17),
observe that hv! = M for every h € L'(M") and every j € [I]. We thus get

R(OM, ) (6,v5) = 63 M; = | ;|

Finally, consider condition (19). For every u € [uf), ,uf) + 1], we have

. ) ’ 1 AP %
R (OM*, p)a'| < la;q! | ( ﬂ(rzyj)a)a

W (§M', 1) a’

: 7 1 T =1 1 1 1 T =1 1 1
§Z a;q; yJa +BT y;a a +yja +Br y;aa
i=1
Jl 1 2
< l—i——.) _?q? <a at )
2< 4 !

J

Since ||75q; © — 0o by Claim 5.2, and since [|r’||
is bounded as well, there exists some constant C' > 0 such that condition (19) is satisfied for
sufficiently large 7. Note that this constant does not depend on «. [

In the proof above, we chose the vectors vi, ..., v}, which span together with the vectors u,, ..., uy
the integral approximation (a‘z =0) of (ax =0), in a specific way. The vectors uy, ..., ug,vi,..., v}
form a basis of the lattice of integer points in (a'z = 0) and they satisfy properties that are
characteristic for reduced bases. In other words, the vectors vi,...,v; are almost perpendicu-
lar to each other. We already leveraged this special property when we showed property [ix] of
Lemma 5.2 and also in the proof of Claim 5.4, which was required for the final analysis in the
lemma. However, there is a second reason why an arbitrary choice of these vectors would not
allow us to prove the main result of this section. Recall that our goal is to show that for each
non-rational facet-defining inequality ax < ap of a polytope P, there exists a finite set S, C Z"
such that Cs, (P) C (ax < ap). To illustrate why reduced bases are crucial, consider the special case
that ap =0 and (az =0)NQ" = {0}. The basic geometric motivation behind the construction in
Lemma 5.2 arose from the objective to cover F'= PN (ax =0) with at most 2"~! parallelepipeds,
spanned by the vectors d;wi, ..., 8, jw! |, where § € {—1,1}""!. Indeed, if these parallelepipeds
covered F, then the vectors A’ (d) from Lemma 5.2 gave rise to GC cuts that separate every point
in F' apart from 0: This is because we can choose the vectors r, for Lemma 5.2 such that hiz is
maximized over P by a point in F. Then, for an appropriate choice of the parameters o and ¢
in [x], we can achieve for h' =h’ ,

max{hl 3:|:E€P} max{hZ $|$€F}<hl (5lwi+...+5n,1w;,1)<1

and, consequently, h'(§)z <0 is a GC cut for P. As this is true for every § € {—1,1}""!, these 2"~!
GC cuts imply P'NF ={0}.

Since P is bounded, F' is contained in some ball of radius R around the origin. Clearly, if
the wi,...,w!’_, are orthogonal to each other and of length R, then the parallelepipeds cover
this ball and therefore F' (see Figure 8). However, the smaller the angles between the vec-
tors wi,...,w! _,, the longer the w§’s have to be to guarantee that F' is completely covered (see
Figure 9). The analysis in Lemma 5.2 required that the w;-’s have a fixed length, which is chosen
at the beginning of the construction. As the lattices of integer points in span(vi,..., v’ ;) change
with every index ¢, arbitrary bases of the lattices would result in arbitrary angles between the wj-’s.
Therefore, it is not certain that any fixed length R would guarantee the covering property that

is needed. By choosing reduced bases, we make sure that the vé’s and, hence, the w;l’s are almost
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(Cé)

FIGURE 8. Illustration of why reduced bases play a FIGURE 9. Illustration of why reduced bases play a
crucial role: The facet F'=PN(azx=0) is contained  crucial role: The facet F'=PN(ax=0) is contained
in B(0,R). If w} and wi are orthogonal to each other  in B(0, R). If w} and w} are of length R, but the angle
and of length R, the four parallelepipeds spanned by the between them is very small, the four parallelepipeds
vectors £w] and w5 cover F. spanned by the vectors +wj] and +w35 do not cover F'.

orthogonal to each other. Moreover, their orthogonality defect only depends on the dimension. As
a consequence, we can choose a certain fixed length R for the vectors wj- that only depends on the
radius of the ball that fits /' and the dimension n.

In the next lemma, we utilize the sequences from Lemma 5.2 to prove that for every non-rational
facet-defining inequality ax < ap of a polytope P, there exists a finite set S, of integral vectors such
that Cs, (P) C (ax <ap). This property immediately implies the existence of a finite set S C Z"
with Cs(P) C P.

LEMMA 5.3.  Let P be a polytope in R™ and let (ax = a,) be a non-rational supporting hyperplane
with P C (ax <ap). Then there exists a finite set S CZ™ such that Cs(P) C (ax <ap).

Proof. There are three possible types of a non-rational inequality az < ap:

(a) a€Q"and ap e R\ Q.
(b) a€eR"\Q" and (ax=ap)NQ" #0.
(¢) aeR"\Q" and (ax =ap)NQ"=0.

Case (a): If a € Q", then we can assume w.l.o.g. that a € Z™ by scaling (a,ap) by some rational
number, if necessary. Consequently, ax < |ap| is a GC cut for P and (az < |ap]) C (ax < ap).
Then S = {a} has the desired property and we are done.

In the following, let us assume that a € R"\ Q™ and that the same is true for every Aa with A € R.
Let F=PnN(ax=ap) and let ry,...,r,, € R" denote the set of edge directions emanating from the
vertices of F' to vertices of P that are not in F. Note that r,a <0, for s € [m].

Case (b): Let Vi denote the maximal rational affine subspace contained in (ax = ap) and
let uy,...,u € Z" and xy € (ax = ap) NQ" such that Vi = z¢ + span(uy,...,u;). Definel :=n—k—1
and U :=span(uy,...,u;). Note that U = {0} is possible. Since P is bounded, there exists an R; >0
such that for every = € F' there is an u € U with

$€$Q+U+B(O,R1) . (25)

Let pg € Z™ and let ¢y > 1 be an integer such that zg = py/qo. Furthermore, let ¢ be the constant from
property [ix] in Lemma 5.2 and let ¢; be the constant from Lemma 4.2. Let us fix a constant R such
that R > Ryci/c and consider the sequences that exist according to Lemma 5.2 for V = (azx =0)
and R.
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First, observe that we can choose i large enough such that a’z < |a’zg| is a GC cut for P:
property [ii] in Lemma 5.2 implies

max {a'z |z € P} =max{a'z|z € F} =a'zy + max {a'(z —zo) |z € F} |
and by property [iii] and boundedness of P, we have for all z € F,

i

a

@' (@ —ao)|| = ||| [|(@' — @) (@ — @o)|| < |]o’]| [|a" — @] lle = o]l —0 .

la'(z = o) = |

Hence, we can choose 7 large enough such that
_ . 1
maX{aZx|xGP} <a'rg+— ,
2qo

which implies that a’z < |a‘z,| is a GC cut for P.

Now let a = ﬁ(l .,1). Also by Lemma 5.2, there exists an index 4 such that the vec-
tors v; := v} and w; :=w}, for j € [I], and the integral vectors h(d) := hi, (), 6 € {—1,1}, satisfy

h(6) L u, for p € [K] (26)

0 < d;w; h(8) < (go(l+1))" for j €[l (27)

dih(d)v; > 1 for j €[l (28)

0> rsh(0) for s e [m] . (29)

Moreover, it holds that HZTJJH > cR for every j € [l], where w; denotes the orthogonal projec-
tion of w; onto span(ul, s Ug, Wy, .. w;—q) . Using (25), every point x € F' can be written
as v =ux0+u —i—Z LA, Where w € U and |\;| < R/(cR), for j € [I]. Then it follows by
Lemma 4.2 that every x € F can be expressed as

l
$:$0+U+Z>\jwj‘ s (30)

Jj=1

where u € U and |\j| <R, /(cR) <1, j€][l]. For any § € {—1,1}!, we get with (26)-(29) and (30),
max {h(d)z|x € P} = max{h(d) x|z e F} <h(J) :E0+Z maX {)\ h(6) w;}
a:o—l—Zéh w; < h(8) zo+1go(l4+1)) "1 < [h(8) zo) +1 .

Hence, h(d)z < [h(d)zo) is a GC cut for P for every 6 € {—1,1}". Now consider an arbi-
trary x € (ax =ap) \ Vi. By (30), there exists an u €U and A\; € R, and §; € {—1,1} for j €[]
such that x =xy+u+ Z 1 Aj0;w;. Note that Z 1A >0, as ¢ Vp. Consequently,

h(6)z=h(8)zo+ Y N;0;h(6)w; > h(S) o > [h(8)xo) |

that is, = violates the GC cut h(d) z < |h(d)zo]. Now let H denote the polyhedron defined by the
intersection of the 2! half-spaces associated with the GC cuts h(d) z < [h(d) 2], with § € {—1,1}".
Then by the last observation,

((ax:ap)ﬂH) - ((a:v:ap)ﬂ N ()< Lh(é)xoj)> Vi . (31)

se{-1,1}!
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Similarly, let us consider the integral hyperplane (a‘z = a'xg). Any z € (a'x = a'zy) \ Vg can be

written as
l

.Z':fl?o‘i‘U‘i‘Z)\JéJ’U; s
j=1

for some u € U, and \; € R, and §; € {—1,1}, j € [[]; and in this representation it must also hold

that 3 A; > 0. Then with (28)

h(S)x=h(5)zo+ > X;6;h(8)v; > h(8) o > [h(6) xo)

This implies that also every point in (a‘x = a’z) \ Vi is separated by some GC cut h(8§) x < | h(d) o]
and, thus,
((aia: =a'ze) N H) CVg . (32)

As every hyperplane (h(8)z = [h(8)zo)) is parallel to Vg, either every point in Vp satisfies the
corresponding inequality or every point in Vy violates it. Therefore,

((ax:ap)ﬂH) = ((aix:aixo) ﬁH) e{0,Vz} .

Observe furthermore that every minimal face of ((ai:ﬂgaixo)ﬂH ) is also a minimal face
of ((az <ap)NH) and vice versa. Consequently,

((aixg Laixoj ) ﬂH) C ((aiajgaixo) ﬁH) = ((axgap)ﬂH) C(ax<ap) .

It follows that a’ and the vectors h(d), for 6 € {—1,1}!, form the desired set S of the lemma.

Case (¢): In the remainder of the proof, we consider the case (ax=ap)NQ"=40.
Let uq,...,u; € Z™ be a maximal set of linearly independent integral vectors such that au; =0
for i € [k]. Let U :=span(uy,...,u;) and note that U = {0} is possible. Furthermore, take an arbi-
trary point zy € F. Since P is bounded, there exists a constant R; > 0 such that for every x € F
there is an u € U such that

$E$Q+U+B(O,R1) . (33)

Let us fix an R > Rjc;/c, where ¢ and ¢; are the constants from property [ix] in Lemma 5.2
and Lemma 4.2, respectively. Now consider the sequences that exist according to Lemma 5.2
for V= (ax =0) and R . property [ii] from Lemma 5.2 implies that if there exists an index 7 and
an integer aj such that

ap+1>max{a'z|z € P} =max{a'z|z € F} >min{a'z|z € F} >a ,

then a'z < aj is a GC cut for P with the property that every point in F violates the
cut and such that (a'z < af) N F = (0. In particular, one can then find an ¢, > 0 such
that (PN (a’z <a})) C (ax < ap —&;). This implies that there exists a rational polyhedron @ 2 P
such that (a’z < af) is also a GC cut for @ and such that @ N (a'z < af) C (ax < ap). The facet
normals of ) together with a' imply the desired set S of the lemma.

Let us assume in the remainder of the proof of part (c) that for every i, there exists an integer a;
such that

Fn(az=a})#0 .
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Let y" € F'N (a'z = af). Since ged(a') =1 according to property [i] of Lemma 5.2, there exists
an z{ € (a'x = al) NZ". We have

(a'w = a}) =z, +span(uy, ..., ug, v}, ..., 01) .
Let & denote the projection of zy onto the hyperplane (a’z = af), that is,

al —a'wg
Do 270
[la’]l

Th=mx0+ a . (34)

Note that because of property [iii] in Lemma 5.2 and boundedness of P,

.(35)

(azo —ay')| < ||a

ay — azx0| =

We can assume w.l.o.g. that the point 2} € (a'z = af) NZ" is chosen such that there exist num-
bers vi,...,vi, ut, ..., u €10,1] such that

Th =2 Fyiu 4. v+ pivl o) (36)

Figure 10 illustrates the described situation. Next, we show that #, and therefore also x, is far

28+ vl .
T we=a))
X /
—e— = (ax=ap)
T

2 e

FIGURE 10. Situation in part (c) of the proof of Lemma 5.3 in the special case that for every i there exists an
integer aj such that FN(a'z=ap) # 0.

away from any integer point in the hyperplane (aix = aé).

CLAIM 5.5. Any wvertexr f' of the parallelepiped zi + T(uy,...,up,vt,...,0)) satis-
fies ||z — f7|| — o0.

Proof of Claim 5.5. As F is bounded and as zy and y* are points in F', there exists a constant K
such that for all 4, ||xg — 3’| < K;. Then

| f =y

implies ||f'— a0l > ||f*—%'|| — K;. Hence, in order to show the claim it suffices to
prove || f* —y'|| — oo. Suppose that there exists some positive constant K, > 0 such that for all i
we have || f* — y'|| < K,. Note that then f € B(xq, K| + K,) NZ". Let f? denote the projection of fi
onto the hyperplane (az = ap), that is, f' + Aa = f?, where A = (af’ —ap)/ ||a||* = (af — ay?)/ ||a|*.
Since f* € Z" and f' ¢ (ax = ap) (remember that (ax=ap)NQ*=() and since the num-
ber of integer points in B(zg, K; + K,) is finite, there must exist some positive number D

C—zo+ T — Y fi—JUOH-i-HJUO—yZ fi—JUoH-i-Kl

such that ‘f f H > D, for every i. However, with property [iii] from Lemma 5.2 and
using a'(f* —y') =0, we get

|

which is a contradiction. O

~ ) = 2L |

lall

(ff=y")—a'(f' -

|la—a’|| —o0,

Ql

fi_fi
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As the above claim implies that & is far away from any integer point in the hyperplane (aix = aé),
it is intuitive that not all the coefficients ) in the representation (36) can be close to 0 or 1. We
formally prove this observation in the next claim.

CrLAamM 5.6. Let K > 1 be a constant. There exists an integer Ny = N,(K) such that for
every i > Ny, there exists an index j € [I] such that the coefficient i in (36) satisfies

K
qj q
Proof of Claim 5.6. By Claim 5.5, any vertex f° of the parallelepiped z + II(uy, . .., uz, vi, ..., v})
satisfies ||zg — f*|| — oo. Therefore,

(E0

Because (35) implies ||zq — Zj|| — 0, we must have [|Z{ — f’|| — oco. In particular, there exists a
number N; such that for all i > Ny,

|

T~ f

k
> luy|| +2KRI .
p=1

Now let 4 > N, and assume that there are index sets J! and J& such that J{ U Ji={1,...,1}
and such that for every index j € J{, we have 0 <y < K/q}, and for every index j € Jj, it holds
that 0 <1—p! < K/q. For the vertex

fi = Z(i) + Z U;— 5
jegd
of the parallelepiped it follows with property [vi] from Lemma 5.2 that

k
Zygup +pt 8L+ Sy — Z St < Z [yl + Z pidtus — Z(l — i) 850

p=1 jegd JEJi geJi

<Z\|UPII+ZM7 ZH%\HKZ‘

jeJi jeJd J

I

0

—%EjW@W#KM

which is a contradiction. [
The next technical claim is needed to choose a proper parameter « for the vectors h’ (d) in
Lemma 5.2 that give rise to appropriate GC cuts.

Cramm 5.7. Let K >1, pel0,1], and g € R such that ¢ > 2K and K/q<pu<1-—K/q. Then
there exist integers p1 and ps such that 1 <p; <q/(2K) and

po+1/4<pup <(po+1)—1/4 .

Proof of Claim 5.7. We consider three cases. If 1/4 < <1 —1/4, then p;, =1 and p; =0
satisfy the conditions of the claim. If p < 1/4, there must exist an integer p such
that 1/4<up<1/2<1-1/4. Then

1 1 q

1I<—<p< — < —
=4, =P=9,= 9K
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and we can set p; =p and p, =0. Finally, if 4 >1—1/4, then 1 — 1 < 1/4 and there must exist an
integer p such that 1/4 < (1 —u)p <1/2. Then

1 1

1§4(1—u) T )

For p; =p and p, =p— 1, we get

<L
=K

pe+1/A<p—1/2<pp<p-1/4=(p+1)—1/4 . O

For the remainder, let us fix a constant K such that K > 8(2+1). For large enough ¢, the assump-
tions of Claim 5.7 are satisfied, that is, ¢ > 2K for every j € [I]. Then Claims 5.6 and 5.7 imply that
there exists an integer N (K) such that for every i > N(K), there exists an index s € [I] and integer
numbers pi and p}, such that 1 <pi < % and pi + 1 < pipi < (ph+1) — 1. Note that we can write
the positive integer p as |a’q'] for some scalar @’. That is, there exist a number 0 <@’ <1/K
and an integer p’ such that

P+ 1/A< Al < '+ 1)~ 1/4 (37)

Define o € R!, by
i {0_427 ifj=s
o, =

/ 0, otherwise .

Note that [|o/|| < 1. Now let §=(1,...,1) and take h':=h' () according to Lemma 5.2 from
property [x]. For some sufficiently large number N,, we can assume that for every i > Ny,

h' Lu, for p € [k] (38)

a; —1/K < wih' <aj+1/K for j € [I] (39)
o) = ol for j € [] (40)
0>rsh' for s € [m] (41)
ha'|<C|a’ ° (42)

where C'> 0 is a constant. By (33) and arguing as in part (b), R has been chosen large enough so
that every point = € F' can be written as

l
IB:IB0+U+Z>\J(SJ’(U; s

Jj=1

for some uw € U and \; € [0,1] and 0; € {—1,1} for j € [I]. With (34), (36), (38) and (40), we get for
every x € F,

l l
hiw = hizg+hiu+ Y Nhidw,=hizg+ Y  N\h'o;uw]
j=1 j=1

. . 1
o S S at —a'x o ) )
= hizi+pih v+l il — Whlaz%—z&hl@w}

a’ -
Jj=1

, , l
ay —a'ry . X X
0720 hzal + Z )\th(Sjw;- .

= hiz)+pl |algl] — il
j=1
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For large enough i we get with (35) and (42),

al —a‘xzy .
Whlaz <1/K .

Consequently, with (39) and 0 <&’ <1/K, we obtain

l

ab —a'zy ab —a'zy » 1 [ 241 1
O hiat £y N\ RiGw,| < [ hiat| + Wwj| < —+al+—-<— <= .
fal Z ST M Ml S g e £ T <

This implies that for every x € F,
h ZO_{_MS LQSQSJ _g Shféh ZO_{_MS LQSQSJ +§ )
and with (37), it follows that for every z € F,
(B2 +p)+1/8<hz<(hzi+p' +1)—1/8 . (43)

Now observe that (41) implies that h'z is maximized over P by a point in F. Therefore, using (43)
and the fact that 2 € Z", we have that hiz < h'z} 4+ p' is a GC cut for P. Moreover, (43) implies
that this cut is violated by every point in F, that is,

(hixghizé%—pi)ﬁF:(Z) .

Arguing as at the beginning of part (c), we can find a rational polyhedron @ O P such that
(hiz <h'z{+p") is also a GC cut for @ and such that

QN (Wz <h'zi+p') C(ax<ap) .

The facet normals of @Q together with A’ imply the desired set S of the lemma. [

As the proof of the above lemma shows, for every non-rational face-defining inequal-
ity az < ap of P, the GC procedure will separate every point in PN (az = ap) that is not contained
in the maximal rational affine subspace of (az =ap).

COROLLARY 5.2. Let P be a polytope and let F = PN (ax =ap) be a face of P. If Vi denotes
the mazximal rational affine subspace of (ax =ap), then P'NF C Vg.

Lemma 5.3 gives us the tools to complete the first step of the main proof.

COROLLARY 5.3. Let P be a polytope in R™. Then there exists a finite set S C 7Z" such

Proof. Let P={x € R"| Az <b} for some matrix A and some vector b. Let A' denote the set of
vectors corresponding to rows of A that define rational facet-defining inequalities of P and let A2
denote the set of vectors associated with the non-rational facet-defining inequalities of P. By means
of Lemma 5.3, for every non-rational facet-defining inequality axz < ap of P, there exists a finite
set S, C Z" such that Cs, (P) C (ax < ap). Therefore, the finite set

:< U Sa>UA1

ac€ A2

satisfies Cs(P)C P. [
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5.2. Step 2 In this section, we show a property of the GC closure that is sometimes referred
to as homogeneity: the GC closure of a face of a polytope is equal to the intersection of the GC
closure of the polytope with the face. This property is well-known for rational polytopes (see,
e.g., Schrijver [12]), but to our knowledge, has not yet been shown for non-rational polytopes. We
first prove a kind of rotation lemma.

LEMMA 5.4. Let P be a polytope and let F = PN (ax =ap) be a face of P. Let Vi denote the
maximal rational affine subspace of (ax =ap) and assume that Vx #0. If cx < |cp| is a GC cut
for F' and facet-defining for F’, then there exists a GC cut cx < |cp| for P such that

(ax=ap)NVrN(cx < |cp|)=(axz=ap)NVrN(cx < |cr]) .

Proof. Let Vg =x¢+span(uy,...,u;), where x4 € (ax =ap) NQ™ and uy,...,u, € 2", k<n—1.
Note that Vi = {x¢} is possible. Furthermore, assume that P C (az < ap). Now consider a GC
cut cx < |cp| for F that is facet-defining for F’. Moreover, assume that Z is a vertex of F' that
maximizes c over F. Let r,...,r,, denote all edge directions of P that emanate from vertices in F’
to vertices of P that are not in F'. Note that for s € [m],

rea<0 . (44)

According to Corollary 4.1, there exists a sequence {a’} C Z" such that a’ L u; for j € [k] and such
that

7

a

where a' = a'/||a’|| and @ = a/||a|. As rya <0 by (44), it follows with (45) that there exists
a constant 8 > 0 such that r,a’ < —f8 for large enough i. Hence, noting that ||| — oo
because of a € R™\ Q", there exists a constant 8 > 0 and an N; € N such that r,a’ <—p3 for
all s€[m] and i > N;. Let M := max e {crs}. If M <0, then & also maximizes ¢ over P and,
hence, cx < |cr] is a GC cut for P. Therefore, assume that M > 0. Let p € Z™ and ¢ € N with ¢ > 1
such that xy =p/q. We define the constant K := q[%M} and vectors ¢ :=c+ K a' for every i > Nj.
Note that K € Z and therefore ¢’ € Z". We have for s € [m],

a'—all — 0, (45)

roé =ryct+Ka')<roe—KB<0 ,

which implies that for ¢ > N;, the vector ¢ is maximized over P by a point in F. Now
let &' € argmax {a’z |z € F'}. We obtain for every i > Ny,

max {c'z|z € P} = max {¢'z|z € F} <max{cz|z € F} + Kmax{a'z|z € F}
=ci+ Ka'it'=cp+ Ka'zg+ Ka' (2" —x0) .
With (45), the boundedness of F, and ai’ = axy = ap, we get

|

Therefore, for any ¢ > 0, there exists an N, € N such that |Ka'(2' — ()| < ¢ for all + > N.. In
particular, we can choose ¢ large enough so that

a' di—dH‘:ﬁi—xOH—>0 .

(@ —a) (&' —xo)| < |

ai

@ (@ )| = |

Cp=max{cz|z€ P} <|cp|+Ka'zg+1 .
Observe that Ka'x, € Z. Consequently,

da<|cp| < |er)+Ka'zg (46)
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is a GC cut for P. Furthermore, it has to hold that |¢%|=|cr|+ Ka'xy: First, observe that
Corollary 5.3 implies that F" C F' and, therefore, F” C P'NF. As cx < |cr] is by assumption facet-
defining for F”, there must exist a point Z € F” such that ¢z = |¢x|. Note that F’ C Vg, according to
Corollary 5.2, implies that Z € Vi and, thus, a'Z = a’xy. Furthermore, we have 7 € P’ N F because
of F" C P'NF. In particular,  satisfies the GC cut ¢'z < | |. Consequently,

dt=ci+Ka'i=|cp|+Ka'zo<|Cp]
Together with (46), we obtain |¢h| = |cr| + Ka'z. It follows that

(cz<|ep])n(a'z=0a'zy) = (cx+ Ka'z < ler] + Kaia:o) N(a'z =a')
= (cx < |ep) ) N (a'z =a'x)

As Vi C (a'z = a'xy), this implies for ¢:= ¢ for some large enough 1,
(E.Z'S I_EPJ ) ﬂVR: (CIES LCFJ)QVR .

The lemma follows. [
With this observation, we can prove the homogeneity property for arbitrary polytopes.
COROLLARY 5.4. Let P be a polytope and let F' be a face of P. Then F' =P NF.

Proof. For the first direction F' C P’ N F, observe that F C P implies F’ C P’. Further-
more, F’ C F because of Corollary 5.3. Hence, F C PN F.

For the second direction, let F'= PN (ax = ap) be a face of P and let cx < |cg| be a GC cut for F
that is facet-defining for F”. If (ax = ap) NQ" = (), Corollary 5.2 implies P’ N F = () C F’. Therefore,
assume that (ax =ap) NQ" # (), that is, the maximal rational affine subspace Vi of (ax =ap) is
non-empty. By Lemma 5.4, there exists a GC cut for P that satisfies

(ax=ap)NVrN(cz < |cp))=(az=ap)NVrN(cx<|cr]) .
Together with Corollary 5.2, that is, P’ N F C Vg, we obtain P'NF C (cx <lcr| ) O

5.3. Step 3 In this subsection, we show that if for some finite set S C Z" of vectors Cs(P) C P
and Cs(P)Nrbd(P) C P’, no more than a finite number of GC cuts have to be added to Cs(P) to
obtain the closure P’. In fact, we prove that this is true for arbitrary bounded convex sets.

Dadush et al. [4] proved this property for full-dimensional convex sets K. The key observation in
this case was that one can find an e-ball around every interior point of K such that the ball is fully
contained in K. Since any additional undominated cut for K’ must separate a vertex of Cs(K)
in the strict interior of K, it must be derived from an inequality for which the boundary of the
associated half-space is shifted by at least . However, for valid inequalities az <ap with |la|| >1/e
this is not possible. As a consequence, only cuts that are associated with normal vectors of a certain
bounded norm need to be considered and their number is finite.

For a lower-dimensional convex set K the situation is a somewhat different. Any additional
undominated cut would have to separate a point v in the relative interior of K and no e-ball
around v is fully contained in K. All we can guarantee is that there exists an e-ball whose inter-
section with the affine hull of K and, hence, also with the affine hull of Cs(K), is contained
in K. Therefore, any cut that separates v has to correspond to a half-space (cx < ck) for which
the intersection of its boundary (cx = cg) with the affine hull aff (Cs(K)) is shifted by at least €
within aff(Cs(K)). This intersection of (cx =cg) with aff(Cs(K)) is a lower-dimensional ratio-
nal affine subspace, say H*. Similar to the full-dimensional case, there is only a finite number of
these affine subspaces H*, which are shifted within aff(Cs(K)) by at least a distance of ¢ by the
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rounding operation in the GC procedure. However, an infinite number of hyperplanes in R™ has
the same intersection H* with aff(Cs(K)). Consequently, there is an infinite number of GC cuts
that could separate a point in the relative interior of Cs(K). Yet, we show that among all rational
valid inequalities cx < ¢x with the same intersection (cx = cx) Naff(Cs(K)), there will be one that
corresponds to a GC cut that dominates every other GC cut associated with a valid inequality in
this equivalence class. For this reason, no more than one GC cut for each of the finitely many H*’s
has to be added to the description of Cs(K).

In the following lemma, we formalize this observation and prove the finite augmentation property
for arbitrary bounded convex sets.

LEMMA 5.5. Let K be a convex and compact set in R". If there exists a finite set S CZ" such
that

(i) Cs(K)CK and
(i) Cs(K)Nrbd(K)C K’
then K' is a rational polytope.

Proof. As Cs(K)is arational polytope, we can assume that aff (Cs(K)) = wo+ W, where wy € Q"
and where W is a rational linear vector space. Let V denote the finite set of vertices of Cg(K).
Assumption (i) implies V C K. Because of assumption (ii), any GC cut for K that separates a
point in Cg(K)\ K’ must also separate a vertex in V\rbd(K) C ri(K). We will show that for each
of the finitely many vertices of Cs(K) in the relative interior of K one only has to consider a finite
set of GC cuts.

First, observe that because of V\ rbd(K) Cri(K) and since the number of vertices of Cs(K) is
finite, there exists an € > 0 such that for every v € V\ rbd(K),

(v+B(0,¢)) Naff(K)C K . (47)

Consequently,
(v+ B(0,¢)) Naff(Cs(K)) C K . (48)

Now let us fix a vertex v of Cs(K) in the relative interior of K, that is, v € V' \ rbd(K). Further-
more, let ¢ € Z". We will consider two cases, depending on whether K is full-dimensional or not.
If dim(K) =n, then aff(K) =R" and with (47), (v+B(0,¢)) C K. We get

lcx | = [max{cx |z € K}| ch+max{cx|:£€B(O,6)}—1:cv+c<6 )—1:C’U+€HCH—1 .

c
el
If ||c|| > 1/e, then the GC cut associated with the normal vector ¢ does not separate the vertex v.
Hence, we only need to consider GC cuts with normal vectors ¢ satisfying ||c|| < 1/e, and their
number is finite.

In the remainder of the proof, let us assume that dim(K) < n and, there-
fore, dim(aff(Cs(K)) =: k <n. Since dim(W) = k, we can rename the indices such that there exist
integers p;; and ¢;; > 1, fori=1,...,n—k and j=1,...,k, such that for every we W,
j=1 qu
In words, any point in W is uniquely determined by its first £ components. Moreover, we can
find an upper bound for the norm of each point w € W that is a function of the norm of the
vector (wy,...,wy), that is, the restriction of w to its first k& components: Since

k 2 k 2
Hw|]2—w§+...+w§+< &w,) +...+( MwJ),

o 1 =1 k.
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there exist rational constants c; >0, for i € [k], and «y;, for 1 <i < j <k, such that

1<i<j<k

Using a;; w; w; < & o] wi + 3 |ovij|w? and defining a; := a;; for every 1<i < j <k, we obtain
k-1
lw]” < <a1+ Z\au\) wi (cw ZI%\)
Jj=2 j=1

Let us define o := max;epy {ozl- + %ijl,j i || } and observe that « is a positive constant that
only depends on W. For any w € W, we have

Jwl| < Ve [[(wi, ..., wi)]l (49)
Moreover,
n—Fk k n—=k 3
cw = cqw, + . —i—ckwk—i-chﬂ (Zp” ) :Z (cj—i-z %ckﬂ-) w
i=1 j=1 i=1 1t
Let L:R™ — R* denote the affine map that is defined for j € [k] by
n—Fk B
(I?) = + Z & Lhti - (50)
im1 dii
Then for every w € W,
cw = ZL ¢)w; = L(c) (wy,. .., wg) . (51)

Let w® = (w§,...,wS) € W such that (wS,...,w{) = L(c). Then (49) implies ||w°|| <+\/a||L(c)|| and,
therefore,

meGB(o,lmw.

Using aff (Cs(K))=v+ W, we get

+mw S ((U+B(0,E)) maﬁ(CS(K))> ’
and by (48),

5
V+ ———w e K .
Val| L]

Therefore, (51) implies

LCKJZmax{ca}MGK}_lECU‘FmCW‘:_l:CU‘F%”L(C)”_l :

Note that for ||L(c)|| > /a/e, the GC cut associated with ¢ does not separate v. Because of (50),
there exists for each j € [k] an integer ¢; > 1 such that L;(c) is an integral multiple of 1/g;.
Therefore, the number of vectors L(c) € R* with ||L(c)|| < \/a/e is finite. However, there is an
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infinite number of integral vectors ¢ in R” that are mapped to the same rational vector L(c) in R*.
Let A denote the set of rational vectors a € R* such that for each j € [k], a; is an integral multiple
of 1/g; and such that ||a|| < \/a/e. For every a € A, we define N(a):={ce€Z"|L(c)=a}. Let

e argcén]}g){ lex ] —cv} .

Observe, that ¢* is well-defined: Since v € K, we have for any ¢ € N(a),
ek | —cv>max{cz|ze K} —1—cv>—1 .

Furthermore, as v is a vertex of the rational polytope Cg(K), it holds that v € Q™. Hence,
there exist an integer vector v € Z" and an integer ¢, > 1 such that v =v/q,. Consequently, the
set { |cx] —cv|c€ N(a)} contains only multiples of 1/g, and is bounded from below.

Finally, observe that the GC cut ¢*z < |c}%] dominates every other GC cut associated with
a vector in N(a) in aff(Cgs(K)): For this, consider an arbitrary point z € aff(Cs(K)) that satis-

fies ¢z < |c%|. We can write = v + w, for some w = (wy,...,w,) € W. Using (51), we get
'z =cv+cw=c"v+ L(c")(wy,...,wy) =cv+alw,...,w) <[] ,
that is,
a(wy,...,wy) <|ck | —cv .

By the definition of ¢ it follows that for every ¢ € N(a),
cr=cv+cw=cv+a(wy,...,wy) <cv+ |ex| —cv=|ck]

That is, if x satisfies the GC cut ¢*z < [c% |, it also satisfies every other GC cut cz < |ck | such
that ¢ € N(a). Consequently, for each vector a € A, we only need to consider a single GC cut.
Since |A| is finite, this completes the proof. [

5.4. Step 4 We are finally prepared to prove the main result of this paper. By drawing from
the insights of the previous three subsections and using an inductive argument, we prove that the
GC closure of any polytope is a rational polytope.

THEOREM 5.1. The GC closure P’ of a non-rational polytope P is a rational polytope.

Proof. The proof is by induction on the dimension d < n of P CR". Let n > 1 be arbitrary. The
base case, d =0, is trivially true. Therefore, assume that d > 1. By Corollary 5.3, we know that
there exists a finite set S; C Z™ such that

Cs,(P)CP .

Let {F;};c; denote the set of facets of P and assume that F* = PN (a'x = a%). By the induction
assumption for d — 1, we know that F; is a rational polytope for every i € I. That is, there exists
a finite set S; C Z" such that Cs, (F;) = F/. According to Lemma 5.4, we can find for every GC
cut for F; that is facet-defining for F} a GC cut for P that has the same impact on the maximal
rational affine subspace of (a’z = a’% ). Furthermore, by Corollary 5.2, F! is contained in this rational
affine subspace. Hence, for every i € I, there exists a finite set S; C Z" such that Cs,(P)NF,=F).
Because rbd(P) = U/ F;, the set S =5, U (Uiel S'i) satisfies Cs(P) C P and Cs(P)Nrbd(P)C P'.
By Lemma 5.5, P’ is a rational polytope. [
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