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Abstract—Most current Model Reference Adaptive Control
(MRAC) methods rely on parametric adaptive elements, in
which the number of parameters of the adaptive element are
fixed a priori, often through expert judgment. An example of
such an adaptive element are Radial Basis Function Networks
(RBFNs), with RBF centers pre-allocated based on the expected
operating domain. If the system operates outside of the ex-
pected operating domain, this adaptive element can become
non-effective in capturing and canceling the uncertainty, thus
rendering the adaptive controller only semi-global in nature.
This paper investigates a Gaussian Process (GP) based Bayesian
MRAC architecture (GP-MRAC), which leverages the power and
flexibility of GP Bayesian nonparametric models of uncertainty.
GP-MRAC does not require the centers to be preallocated, can
inherently handle measurement noise, and enables MRAC to
handle a broader set of uncertainties, including those that are
defined as distributions over functions. We use stochastic stability
arguments to show that GP-MRAC guarantees good closed loop
performance with no prior domain knowledge of the uncertainty.
Online implementable GP inference methods are compared in
numerical simulations against RBFN-MRAC with preallocated
centers and are shown to provide better tracking and improved
long-term learning.

Index Terms—Kernel, Adaptive control, Gaussian Processes,
Nonlinear control systems

I. INTRODUCTION
For many physical applications, obtaining an exact model of

the system dynamics is prohibitive. Control synthesis using an
an approximate model can lead to poor or undesirable control
response due to the modeling error. Adaptive control theory
seeks strategies to mitigate performance loss and to ensure
stable, closed-loop performance in the face of uncertainty. One
direct adaptive control methodology with good performance
guarantees in the presence of significant modeling uncertainty
is Model Reference Adaptive Control (MRAC) [3], [19], [43],
[57], [60]. Within the class of MRAC algorithms, Radial Basis
Function Neural Networks (RBFNs) have emerged as a widely
used universal-approximator adaptive model [52], especially
when little is known about the uncertainty [26], [41], [59].
One reason for the popularity of RBFNs is that they are linear-
in-the-parameters, as opposed to multi-layer perceptron Neural
Networks [26], [33]. The accuracy of an RBFN representation,
however, greatly depends on the choice of RBF centers [45].
Typically, authors have assumed that the operating domain of
the system is known, and pre-allocated a fixed quantity of
Gaussian RBF centers over the presumed domain [12], [26],
[41], [46], [61].

Since the output of a Gaussian RBF decays exponentially
when evaluated away from its center, the system states must
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remain close to the location of some RBF centers for the
RBFN to effectively capture the uncertainty. Therefore, an
implicit assumption in RBFN-MRAC is that the domain over
which the uncertainty is defined is compact, so that it can
be well approximated by a finite set of RBFs. Consequently,
RBFN stability results cannot be extended globally for if the
system states were to evolve outside of the assumed compact
domain of operation, the RBFN is effectively unable to learn
and approximate the uncertainty. One way to overcome the
limitation of fixed centers is to move and add/remove RBF
centers to better capture the modeling uncertainty. Conforming
to the traditional approach in MRAC, authors in [40], [55],
[58] have proposed RBF center tuning rules that attempt to
minimize the instantaneous tracking error. However, while
reducing the modeling error guarantees that the tracking error
is reduced [6], [12], the opposite need not always be true.
Therefore, techniques such as those in [40], [55], [58] do not
guarantee that the center updates reduce the modeling error.
Another limitation of traditional RBFN based MRAC methods
is that they model the uncertainty as smooth deterministic
function. However, in real-world situations uncertainties may
have several stochastic effects, such as noise, servo chattering,
turbulence etc. Authors have relied on σ-modification [19] like
damping terms in parameter update equations for guaranteeing
the boundedness of parameters of deterministic models of
uncertainty in presence of noise [10], [31]. This approach
can guarantee overall boundedness of the closed-loop system,
but the added damping limits learning of the uncertainty.
Therefore there is a need for better models of stochastic
uncertainties using probabilistic modeling notions such as
mean and variance.

This paper employs Gaussian Processes (GP) as Bayesian
nonparametric adaptive elements in MRAC to address the
aforementioned limitations of RBFN-MRAC with preallocated
centers. As an alternative to methods with fixed parametric
structure, nonparametric models are designed to overcome
the local approximation properties of universal approxima-
tors. The number of parameters and their properties are not
fixed, rather, they grow and adjust with the data. Within the
class of nonparametric modeling methods, Bayesian modeling
approaches lead to data-driven, generative models, where
the model is optimized to fit the data assuming uncertain
measurements. GP based models are an example of a Bayesian
nonparametric regression model [50]. GPs are known to have
a deep connection with kernel filtering methods through a
reproducing kernel Hilbert space interpretation of GP regres-
sion [2]. The benefits of using GP Bayesian nonparametric
adaptive elements include: no prior knowledge of the operating
domain of the uncertainty is required, measurement noise is
inherently handled, and the centers need not be pre-allocated.
GP uncertainties are defined via distributions over functions,



which differs from the traditional deterministic weight-space
based approaches [26], [27], [41], [61]. Furthermore, Bayesian
inference overcomes the shortcomings of the standard gradient
based MRAC parameter update laws, such as the lack of con-
vergence guarantees and the possibility of bursting (parameters
growing unboundedly) in presence of noise [3], [6], [42].

When used in an online setting such as for adaptive control,
the number of parameters in GP adaptive elements grows lin-
early with the measurements [50]. Furthermore, most sparsifi-
cation techniques used to limit the size of the GP model require
access to the entire set of training data [34], [50], [54], which
cannot be provided in real-time control settings. Therefore, in
order to ensure real-time feasibility, we enforce an additional
restriction that the number of maximum allowable parameters
at any instant of time be limited (this number is referred to
as the “budget”). Once the budget is reached, any new centers
are added by removing older (possibly irrelevant) centers. Each
time a new center is added, the structure of the GP changes
discontinuously. Thus, the stability properties of the presented
GP-MRAC controllers must be established through switched
stochastic stability theory. Our GP-MRAC approach removes
long-standing assumptions on bounded domain of operation,
a priori known number and location of RBF centers, and
deterministic input-output models of the uncertainty, while
being on-line implementable.

A. Related Work

Nonparametric models in adaptive control have been pre-
viously considered. Cannon and Slotine presented a heuristic
algorithm to add and remove nodes of a nonparametric wavelet
network over a bounded domain for adaptive control [9].
Bernard and Slotine established stable adaptive controllers
using finite approximations of infinite series of wavelet func-
tion regressors [4]. In contrast to the nonparameteric mod-
els in those aforementioned works, our approach leverages
information theoretic concepts such as Bayesian inference
and Kullback-Leibler divergence for updating the weights and
selecting the regressors [17]. Furthermore, our approach does
not assume a predefined bounded domain of operation. Alpcan
investigated active optimal control with Gaussian processes
in the context of dual control [1]. Murray-Smith et al have
explored Gaussian processes in the context of dual adaptive
control [38], [39]. Nguyen-Tuong and Peters combined a
physics based model with a Gaussian Process model for learn-
ing inverse dynamics of stable systems such as robotic arms
[44]. Ko and Fox explored GP based dynamic observation
and measurement models in Kalman filter frameworks [28].
Diesenroth, Ko, Rasmussen, and others have used GPs for
solving control problems using model based reinforcement
learning [15], [29], [49]. The above approaches require access
to off-line training data for generating control models. The
key difference between these methods and our approach is
that GPs are used here in the MRAC framework, which is a
direct adaptive control framework (output of the online trained
GP is directly used for control). Similar to traditional MRAC,
the focus of our architecture is to guarantee stability and good
tracking of fast, unstable dynamical systems online the first-
time-around, without using any previously recorded data. This

objective is achieved by leveraging recent advances in sparse
online GP learning [14] and providing stability guarantees
using a new analysis approach that utilizes stochastic control
theory for switched uncertain systems.

In [27] we took the first steps to unite recent advances in
both kernel methods and adaptive control. The adaptive control
system used non-Bayesian nonparametric kernel models with
gradient based update laws. This paper incorporates Bayesian
nonparametric regression techniques in adaptive control. Pre-
liminary ideas regarding the work presented here first appeared
in the conference paper [11]. The main contributions of the
current work are improved techniques for online sparsification
and inference, detailed stability analysis, and more complete
analysis of numerical simulations.

B. Notation

Let E denote the expectation operator, Ex the expectation
operator conditioned on the measurement x, and V(x) the
variance of x. The trace operator is denoted by tr. The class
of nth continuously differentiable functions is denoted by Cn.
The operators λmin(.) and λmax(.) return the minimum and
the maximum eigenvalue of a matrix. For a matrix Z, |Z|
denotes the number of columns. Lastly, t ≥ 0 denotes time,
where the argument t is sometimes dropped from an equation
for ease of exposition.

II. APPROXIMATE MODEL INVERSION BASED MODEL
REFERENCE ADAPTIVE CONTROL (AMI-MRAC)

AMI-MRAC is an approximate feedback-linearization based
MRAC method that allows the design of adaptive controllers
for a general class of nonlinear plants (see e.g. [7], [20]). The
GP-MRAC approach is introduced in the framework of AMI-
MRAC, although it should be noted that it is applicable to
other MRAC architectures (see e.g. [3], [19], [43], [60]). Let
x(t) = [xT1 (t), xT2 (t)]T ∈ Dx ⊂ Rn, such that x1(t) ∈ Rns ,
x2(t) ∈ Rns , and n = 2ns. Let δ ∈ Dδ ⊂ Rl, and consider the
following multiple-input controllable control-affine nonlinear
uncertain dynamical system

ẋ1(t) = x2(t),

ẋ2(t) = f(x(t)) + b(x(t))δ(t).
(1)

The functions f(0), f(0) = 0 and b are partially unknown
functions assumed to be Lipschitz over a domain D and
the control input δ is assumed to be bounded and piecewise
continuous, so as to ensure the existence and uniqueness of
the solution to (1) over D. Also assume that l ≤ ns (while
restrictive for overactuated systems, this assumption can be
relaxed through the design of appropriate control assignment
[16]). Further note that while the development here is restricted
to control-affine systems, sufficient conditions exist to convert
a class of non-affine in control nonlinear systems to the
control-affine form in (1) (see Chapter 13 in [22]), and the
AMI-MRAC framework can also be extended to a class of
non-affine in control systems [21], [25].

The AMI-MRAC approach used here feedback linearizes
the system by finding a pseudo-control input ν(t) ∈ Rns
that achieves a desired acceleration. If the exact plant model
in (1) is known and invertible, the required control input to



achieve the desired acceleration is computable by inverting the
plant dynamics. However, since this usually is not the case, an
approximate inversion model f̂(x)+ b̂(x)δ, where b̂ chosen to
be nonsingular for all x(t) ∈ Dx, is employed.

Given a desired pseudo-control input ν ∈ Rns a control
command δ can be found by approximate dynamic inversion:

δ = b̂−1(x)(ν − f̂(x)). (2)

Let z = (xT , δT )T ∈ Rn+l for brevity. The use of an
approximate model leads to modeling error ∆ for the system,

ẋ2 = ν(z) + ∆(z), (3)

with
∆(z) = f(x)− f̂(x) + (b(x)− b̂(x))δ. (4)

Were b known and invertible with respect to δ, then an
inversion model exists such that the modeling error is not
dependent on the control input δ. A designer chosen reference
model is used to characterize the desired response of the
system

ẋ1rm = x2rm , (5)
ẋ2rm = frm(xrm, r),

where frm(xrm, r) denotes the reference model dynamics,
assumed to be continuously differentiable in xrm for all xrm ∈
Dx ⊂ Rn. The command r(t) is assumed to be bounded and
piecewise continuous. Furthermore, frm is assumed to be such
that xrm is bounded for a bounded command.

Define the tracking error to be e(t) = xrm(t) − x(t), and
the pseudo-control input ν to be

ν = νrm + νpd − νad, (6)

consisting of a linear feedforward term νrm = ẋ2rm , a linear
feedback term νpd = [K1,K2]e with K1 ∈ Rns×ns and K2 ∈
Rns×ns , and an adaptive term νad(z). For νad to be able to
cancel ∆, the following assumption needs to be satisfied:

Assumption 1 There exists a unique fixed-point solution to
νad = ∆(x, νad), ∀x ∈ Dx.

Assumption 1 implicitly requires the sign of control effective-
ness to be known [25]. Sufficient conditions for satisfying this
assumption are available in [25], [63].

Using (3) the tracking error dynamics can be written as

ė = ẋrm −
[

x2
ν + ∆

]
. (7)

Let A =

[
0 I
−K1 −K2

]
, B =

[
0
I

]
, where 0 ∈ Rns×ns and

I ∈ Rns×ns are the zero and identity matrices, respectively.
From (6), the tracking error dynamics are then,

ė = Ae+B[νad(z)−∆(z)]. (8)

The baseline full state feedback controller νpd is chosen to
make A Hurwitz. Hence, for any positive definite matrix Q ∈
Rn×n, a positive definite solution P ∈ Rn×n exists for the
Lyapunov equation

0 = ATP + PA+Q. (9)

When Gaussian RBFN are used as adaptive elements, the
adaptive part of the control law (6) is represented by a linear
combination of Gaussian RBFs νad(z) = WTΦ(z) where
W ∈ Rn2×q and Φ(z) = [1, φ2(z), φ3(z), ....., φq(z)]

T is a q
dimensional vector of radial basis functions. For i = 2, 3..., q
let ci denote the RBF centroid and µi denote the RBF widths,
then the Gaussian RBFs are given as φi(x) = exp(−‖x−ci‖

2

2µ2
i

).
Gaussian RBFs are universal approximators; they can model
a continuous function over a compact domain to arbitrary
accuracy given q sufficiently large [45].

A. Limitations of fixed-parameter RBFN-MRAC

Typical implementations of adaptive controllers using
RBFN in the literature rely on estimating the operating domain
D of the system and pre-allocating the centers of a predeter-
mined number of RBFs over that domain. In this case, it can
be shown that the following weight update law,

Ẇ = Proj
(
−ΓW e

TPBΦ(z)
)
, (10)

with the projection operator used to bound the weights [47],
guarantees uniform ultimate boundedness1 of the tracking
error and adaptive parameters if the system operates within
the domain over which the centers are distributed [52], [60],
Here, ΓW denotes a positive definite learning rate matrix.
This adaptive law does not in general guarantee that the
ideal parameter vector W ∗ is attractive unless a condition on
Persistency of Excitation (PE) of the system states is satisfied
[6], [26], [60]. Kingravi et al. showed that location of centers
also affects the amount of excitation that is “visible” to the
adaptive law (10) [27]. Even if x(t) is exciting, when the
system evolves away from where the centers are distributed,
persistent excitation for the adaptive system may fail to hold.
In summary, two major limitations of RBFN with preallocated
centers are:

1 The RBFN approximation holds within the estimated
operating domain D over which the centers have been
preallocated; RBFN-MRAC is only locally effective.

2 It is difficult to guarantee the convergence of the param-
eters to their ideal values when adaptive laws such as
(10) are used, indicating that the optimal approximation
guarantee by the universal approximation theorem may
not be achieved when using RBFN-MRAC.The problem
is further exacerbated by the fact that the amount of ex-
citation “visible” to the adaptive element may diminish
if the system evolves outside of the estimated operating
domain, over which the centers have been preallocated.

III. ADAPTIVE CONTROL USING GAUSSIAN
PROCESS REGRESSION

Traditionally MRAC assumes that the uncertainty, ∆(z) in
(4), is a (smooth) deterministic function for which an input-
output map in the form of an NN or RBFN is learned. This
paper offers an alternate view by assuming that the uncertainty
is described by a time varying (prior) mean and covariance

1When RBFN, or other approximation based adaptive elements are used,
one cannot guarantee asymptotic convergence of the tracking error to zero if
there is a nonzero approximation error, even when the states are PE.



function, and using Gaussian Processes (GP) to learn the
continuous function of time and state [48]. As the system
evolves and measurements are taken, Bayesian posterior up-
dates build a generative model of the uncertainty. Learning
via probabilistic generative models offers a promising new
approach. In contrast to learning a NN input-output repre-
sentation [37], [48], the approach does not easily succumb
to overlearning and also handles noise. Furthermore, it allows
incorporation of stochastic effects such as servo chattering,
external disturbances, and other non-deterministic effects.

A GP is defined as a collection of random variables such
that every finite subset is jointly Gaussian. The joint Gaussian
condition means that GPs are completely characterized by
their second order statistics [50]. A GP is a distribution over
functions, that is, a draw from a GP is a function. For the
sake of clarity of exposition, we will assume that ∆(z) ∈ R;
the extension to the multidimensional case is straightforward.
When ∆ follows a Gaussian process model, then

∆(·) ∼ GP(m(·), k(·, ·)), (11)

where m(·) is the mean function, and k(·, ·) is a real-valued,
positive definite covariance kernel function. Under GP regres-
sion, the mean is assumed to lie in the class of functions

G =

{
g(·) ∈ RX

∣∣∣ g(·) =

∞∑
i=1

αik(zi, ·)

}
, (12)

where X = Rn, αi ∈ R, zi ∈ X . The space G is a
subspace of H, a reproducing kernel Hilbert space (RKHS),
and ‖g‖H <∞ where ‖g(·)‖2H =

∑∞
i=1

∑∞
j=1 αiαjk(zi, zj).

This assumption imposes a smoothness prior on the mean and
renders the problem more amenable to analysis though the
representer theorem [53]. Figure 1 demonstrates the ability
of GP regression to mitigate noise in the data. An accurate
model of the underlying function is learned although the data
is corrupted by Gaussian white noise of variance ω2.

A. GP Regression and Reproducing Kernel Hilbert Spaces

Let Zτ = {z1, . . . , zτ} be a set of state measurements,
discretely sampled where {1 . . . τ} are indices for the discrete
sample times {t1, . . . , tτ}. The set defines a covariance matrix
Kij := k(zi, zj). Given indexed sets A and B, K(A,B)
denotes the kernel matrix generated by the evaluations Kij =
k(ai, bj) between the two sets, where ai ∈ A, bj ∈ B. For
each measurement zi, there is an observed output y(zi) =
m(zi) + εi, where εi ∼ N (0, ω2). The stacked outputs give
y = [y1, . . . , yt]

T . The most common choice of covariance
kernel, and the one used here, is the Gaussian RBF kernel:

k(z, z′) = exp

(
−‖z − z

′‖2

2µ2

)
, (13)

The positive definite function k generates a mapping ψ to a
RKHSH such that k(zi, zj) = 〈ψ(zi), ψ(zj)〉H. A finite set of
points Z generates a finite-dimensional, linearly parameterized
vector space of functions FZ via an associated set of basis
functions [5]. Figure 2 shows an example of the mapping ψ
and the linear sub-space generated via data points.
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Fig. 1. An example of GP inference for a set of 2, 000 measurements
drawn from ∆(z) ∼ GP(m(·), k(·, ·)), corrupted by i.i.d observation noise
drawn from N (0, ω2). m(·) is the estimated mean, and Σ(·) is the estimated
posterior variance.

GP regression fuses RKHS theory with Bayesian linear
regression by utilizing a regression model of the form

m(z) = βTΨ(z) =
∑
i∈I

βi〈ψ(zi), ψ(z)〉H, (14)

where β ∈ FZ is a coordinate vector (of weights), ψ(zi) ∈ H
are basis vectors, and I is the index set. Since GP adaptive
elements admit infinite basis functions and associated param-
eters, they are referred to as nonparametric [50].

GP regression assumes that the uncertainty in the data and
the model follow Gaussian distributions, while modeling the
function estimate using a mean function m̂ and a covariance
function Σ̂. Since the observations are Gaussian, the likelihood
function p(yτ |Zτ , β) is Gaussian. The initial prior is set to
p(β) ∼ N (0,Σw), and Bayes’ rule is used to infer the
posterior distribution p(β|Zτ , yτ ) with each new observation.
Since the posterior is Gaussian, the update generates a revised
mean m̂τ and covariance Σ̂τ . If |Zτ | is finite, the solution
for the posterior mean and covariance is also finite [53]. In
particular, given a new input zτ+1, the joint distribution of the
data available up to τ and zτ under the prior distribution is[

yτ
yτ+1

]
∼ N

(
0,

[
K(Zτ , Zτ ) + ω2I kzτ+1

kTzτ+1
k∗τ+1

])
, (15)

where kzτ+1 = K(zτ+1, Zτ ) and k∗τ+1 = k(zτ+1, zτ+1).
The posterior (sometimes called the predictive) distribution,
obtained by conditioning the joint Gaussian prior distribution
over the observation zt+1, is computed by

p(yτ+1|Zτ , yτ , zτ+1) ∼ N (m̂τ+1, Σ̂τ+1), (16)
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Fig. 2. An example Hilbert space mapping. If z1 and z2 are two points in
Rn, they generate the linear subspace FZ ⊂ H, which is a family of linearly
parameterized functions, via the mappings ψ(z1) and ψ(z2).

where

m̂τ+1 = βTτ+1kzτ+1
(17)

Σ̂τ+1 = k∗τ+1 − kTzτ+1
Cτkzτ+1

(18)

are the updated mean and covariance estimates, respectively,
and where Cτ := (K(Zτ , Zτ ) + ω2I)−1 and βτ+1 := Cτyτ .
Due to the Representer Theorem, the values in (17) are the
best possible that could be obtained given the available data
[50], [53].

Since both Zτ and yτ grow with data, computing the
inverse becomes computationally intractable over time. This
is less of a problem for traditional GP regression applications,
which often involve finite learning samples and offline learn-
ing. However, in an online setting, the linear growth in the
sample set cardinality degrades computational performance.
Therefore, the extension of GP regression to MRAC, requires
an online method to restrict the number of data points stored
for inference. In the following section we outline two simple
schemes for this purpose and incorporate them with MRAC
to form GP-MRAC.

B. GP Bayesian nonparametric model based MRAC

We model the uncertainty using a Gaussian process based
adaptive element νad

νad(z) ∼ GP(m̂(z), k(z, z′)), (19)

where m̂(z) is the estimate of the mean of (11) updated using
(17) with the coordinate vector denoted by α instead of β.
The adaptive signal νad is set to the estimate of the mean
m̂(z). Since GPs are completely characterized by their first
two moments, ‖m̂(z)−m(z)‖ < ε1 implies ‖νad −∆‖ < ε2
with high probability, for some ε1, ε2 > 0. While the posterior
calculated in Equation (16) converges to the true posterior [50],
it becomes untenable in an online setting due to the growth
of |Z|. There needs to be a limit on the number of datapoints
stored for posterior inference.

Many schemes exist for the approximation of a GP with a
smaller set of bases, but these typically assume all the data is
available. The schemes, not designed for an online setting, can
be computationally costly [8], [18]. Since the set Z generates
a family of functions FZ ⊂ H whose richness characterizes
the quality of the posterior inference, a natural and simple way
to determine whether to add a new point to the subspace is to
check how well it is approximated by the elements in Z. This

H

ψ(z1)

ψ(zτ+1)

γτ+1

ψ̂(zτ+1)

ψ(zτ ) FZτ

Fig. 3. An example of the projection of ψ(zτ+1) onto the subspace
FZτ spanned by {ψ(z1), . . . , ψ(zτ )}. The scalar γτ+1 is the length of
the residual, and is a measure of the independence of ψ(zτ+1) w.r.t. FZτ .

Algorithm 1 The Generic Gaussian Process - Model Refer-
ence Adaptive Control (GP-MRAC) algorithm

1: while new measurements are available do
2: Given zτ+1, compute γτ+1 using (21)
3: Compute yτ+1 = ˙̂x2τ+1 − ντ+1

4: if γτ+1 > εtol then
5: if |BV(σ)| > pmax then
6: Delete element in BV(σ) based on methods in

Section III-B
7: end if
8: Increase the switching index σ.
9: end if

10: Calculate m̂τ+1 and Σ̂τ+1.
11: Set νad = m̂τ+1.
12: Calculate pseudo control ν using (6).
13: Calculate control input using (2).
14: end while

is known as the kernel linear independence test [14], and is
computed by

γτ+1 =

∥∥∥∥∥
τ∑
i=1

αiψ(zi)− ψ(zτ+1)

∥∥∥∥∥
2

H

. (20)

The scalar γτ+1 is the length of the residual of ψ(zτ+1)
projected onto the subspace FZτ , as illustrated in Figure 3.
When γτ+1 is larger than a specified threshold, then a new data
point should be added to the data set. The coefficient vector
α minimizing (20) is given by ατ = K−1Zτ kzτ+1 , meaning that

γτ+1 = k∗τ+1 − kTzτ+1
ατ . (21)

This restricted set of selected elements, called the basis
vector set, is denoted by BV . When incorporating a new data
point into the GP model, the inverse kernel matrix can be
recomputed with a rank-1 update.

When the budget is exceeded, a basis vector element must
be removed prior to adding another element [8]. Here we
examine two such schemes. The first, denoted OP, simply
deletes the oldest vector: this scheme prioritizes temporal
locality of the data for the approximation. The second, denoted
KL, employs the sparse online Gaussian process algorithm
[14]. The latter algorithm efficiently approximates the KL
divergence between the current GP and the (t+ 1) alternative



GPs missing one data point each, then deletes removes the
data point with the largest KL divergence. The equations for
implementing the sparse online GP algorithm are detailed in
the appendix as Algorithm 2.

IV. ANALYSIS OF STABILITY

A. Stochastic Stability Theory for Switched Systems

We begin by introducing the necessary tools in stochastic
stability analysis. Consider switched stochastic differential
equations of the Itô type whose solutions are a class of
continuous time Markov processes [24], [32]. The system
equations are

dx(t) = F (t, x(t))dt+Gσ(t, x(t))dξ(t), x(0) = x0, (22)

where x ∈ Rns , ξ(t) ∈ Rn2 is a Wiener process, σ(t) ∈ N
is the switching index which switches finitely many times in
any finite time interval, F (t, x) is an ns-vector function, and
Gσ(t, x) is an ns × n2 matrix. Assume that F (t, 0) = 0 and
Gσ(t, 0) = 0. The functions F (t, x(t)) and Gσ(t, x(t)) are
assumed to satisfy the Lipschitz condition for each switching
index σ

‖F (t, x)− F (t, y)‖+ ‖Gσ(t, x)−Gσ(t, y)‖ ≤ B‖x− y‖

for all x over a compact domain D. Under these conditions the
solution of (22) is a continuous Markov process. Note that the
assumption on Lipschitz continuity of Gσ is reasonable for the
GP formulation considered here because components of Gσ
turn out to be continuously differentiable kernel functions.

The following definitions concerning the (exponential) ulti-
mate boundedness of the solution of (22) are introduced.

Definition 1 The process x(t) is said to be mean square
ultimately bounded uniformly in σ if there exists a positive
constant K such that for all t, x0 ∈ Rns , and σ,

lim
t→∞

Ex0‖x(t)‖2 ≤ K. (23)

Definition 2 The process x(t) is said to be exponentially
mean square ultimately bounded uniformly in σ if there exist
positive constants K, c, and α such that for all t, x0 ∈ Rns ,
and for all σ

Ex0‖x(t)‖2 ≤ K + c‖x0‖2e−α(t). (24)

The Itô differential generator L for the smooth function
V (t, x) is given by

LV (t, x) =
∂V (t, x)

∂t
+
∑
j

Fj(t, x)
∂V (t, x)

∂xj

+
1

2

∑
i,j

[
GσG

T
σ

]
ij

(t, x)
∂2V (t, x)

∂xjxi
, (25)

where
[
GσG

T
σ

]
ij

is the ith row and jth column element in
the ns × ns matrix GσGTσ . The following lemma is a special
case of that proved by Miyahara [35].

Lemma 1 Let x(t) be the process defined by the solution
to (22). Let V (t, x) be of class C2 with respect to x, of class
C1 with respect to t, and bounded from below. If for some

nonzero constants k1, k2, LV (t, x) ≤ k1 − k2V (t, x) then
Ex0

V (t, x(t)) ≤ V (0, x0)e−k2t+ |k1|k2 (1−e−k2t) for all t ≥ 0.

The following theorem extends the ultimate boundedness
results of Miyahara to switched Itô differential equation (22).

Theorem 1 Let x(t) be the process defined by the solution
to (22), and let V (t, x) be a function of class C2 with respect
to x, and class C1 with respect to t. If,

1) −α1 + c1‖x‖2 ≤ V (t, x) for real α and c1 > 0; and
2) LV (t, x) ≤ βσ − c2V (t, x) where L is the differential

generator of the Itô process as defined in (25), for real
βσ and c2 > 0, and all switch states σ;

then the process x(t) is mean square ultimately bounded
uniformly in σ. Suppose in addition V (t, x) ≤ c3‖x‖2 + α2,
then the process x(t) is exponentially mean square ultimately
bounded uniformly in σ.

Proof: From Lemma 1,

Ex0
V (t, x(t)) ≤ V (0, x0)e−c2t +

|βσ|
c2

(1− e−c2t). (26)

Therefore, limt→∞(Ex0
V (t, x(t))) → |βσ|

c2
. Since −α1 +

c1‖x‖2 ≤ V (t, x), we have ‖x‖2 ≤ V (t,x)
c1

+ α1

c1
. Therefore it

follows that

Ex0
‖x(t)‖2 ≤ 1

c1
Ex0

V (t, x(t)) +
α1

c1
→ |βσ|

c1c2
+
α1

c1
(27)

as t→∞. From which it follows that limt→∞ Ex0
‖x(t)‖2 ≤

K with K = maxσ( |βσ|c1c2
+ α1

c1
). Therefore the process x(t)

is mean square ultimately bounded uniformly in σ. If in
addition V (0, x0) ≤ c3‖x0‖2 + α2, then from (26) and
(27), Ex0‖x(t)‖2 ≤ c3

c1
‖x0‖2e−c2t + α2

c1
+ K. Hence, the

process x(t) is exponentially mean square ultimately bounded
uniformly in σ.

B. Analysis of Stability

This section establishes the stability of Gaussian process
based MRAC using Algorithm 1. Let σ(t) ∈ N denote a
switching index that increments every time the set BV is
modified. When the σth system is active, the mean function
estimate evaluated using the current set BV(σ), is denoted
m̂σ . The results presented assume that the uncertainty can be
expressed as

∆(z) ∼ m(z(t)) +Gσ(t, z(t))dξ(t), (28)

where ξ(t) is a (zero-mean) Wiener process, and Gσ is a
linear operator associated to the covariance kernel k(z, z′) (see
Appendix 2 of [50]). Then, for a given σ, the tracking error
dynamics of (8) are

de = Aedt+B (εσm(z) dt−Gσ(t, z(t)) dξ) , (29)

where νad(z) ∼ GP(m̂σ(z), k(z, z′)), and εσm(z) = m̂σ(z)−
m(z). For the sake of brevity, we drop the time and state
dependency of Gσ(t, z(t)) in the remaining section.

To prove stability, we need to bound ‖∆(z)−m̂σ(z)‖. Con-
sider the zero-mean Gaussian process {Gσ dξ(t)}t∈T , and de-
fine a pseudometric dG(t, s) =

√
E[|Gσ dξ(t)−Gσ dξ(s)|]2



on T . Let N(T, d, υ) be the υ-covering number of the space;
then the υ-entropy of the space (T, d) is given by H(T, d, υ) =
logN(T, d, υ). Let D(T ) be the diameter of the space T with
respect to the metric dG. Then the following bound holds:

E sup
t∈T

Gσ dξ(t) ≤ C
∫ D(T )

0

H1/2(T, d, υ)dυ. (30)

The RHS is the Dudley entropy integral; if it is finite, then
the process Gσ dξ(t) is bounded a.s [30]. In the case that the
covariance kernel is Gaussian, and the evolution of the system
is over a compact domain, the integral can be shown to be
finite, and therefore ‖Gσ dξ(t)‖ ≤ c3 a.s., for some c3 ∈ R+.

Lemma 2 Let ∆(z) be represented by a Gaussian process
as in (11), m̂σ(z) be defined as in (19), and let ‖z(t)‖ be
bounded for all time. Then ‖∆(z)− m̂σ(z)‖ is almost surely
(a.s.) bounded for each σ.

Proof: Let BV represent the set of basis vectors selected
by either the OP or the KL variants of Algorithm 1 for the
switch state σ. Dropping the σ dependence for brevity and
using (14) and (28), we have

‖∆(z)− m̂σ(z)‖

=

∥∥∥∥∥∥
∑
i∈I

βik(zi, z)−
∑
j∈BV

α̂jk(zj , z) +Gdξ(z)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
j∈BV

(βi − α̂i)k(zi, z) +
∑

i∈I\BV

βik(zi, z) +Gdξ(z)

∥∥∥∥∥∥
where I = {1, . . . , τ}. Convert the norm of the three terms
into the sum of three norms using the triangle inequality. Since
supx |k(x, xi)| = 1, and because α̂ is a coordinate vector
minimizing ‖∆(z̄i)−α̂k(z̄i, z̄)‖H via the Representer theorem
[53], the first term is bounded by c1 := |BV(σ)|maxj ‖βj −
α̂j‖. Due to the exponential decay properties of the Gaussian
covariance kernel and the class of functions the mean arises
from (12), the second term c2 :=

∥∥∥∑i∈I\BV βik(zi, z)
∥∥∥ is

bounded. Since ‖Gdξ‖ is a.s. bounded above by a constant c3
due to (30), the lemma follows.

The next Lemma shows that because Algorithm 1 adds or
removes kernels from the basis vector set to keep a metric of
the representation error bounded, εσm(z) is bounded.

Lemma 3 Let ∆(z) be representable by a GP as in (11),
m̂σ(z) be an online learned GP representation of the uncer-
tainty as in (19) learned based on a sparse subset BV of the
data selected by either the OP or the KL variants of Algorithm
1 for the switch state σ, and m(z) be the mean of the GP with
the full dataset. Then εσm(z) = m̂σ(z)−m(z) is bounded.

Proof: From Equation (22) in [14] and from the nonpara-
metric Representer theorem (see Theorem 4 of [53])

‖εσm(z)‖ =
‖∆(z)− m̂σ(z)‖

ω2
‖k∗τ+1 − kTzτ+1

K−1σ kzτ+1
‖,
(31)

where Kσ := K(BV(σ),BV(σ)). The term ‖k∗τ+1 −
kTzτ+1

K−1τ kzτ+1
‖ is bounded above by εtol due to Algorithm

1 (see [14]). Using Lemma 2 it follows that

‖εσm(z)‖ ≤ c̄

ω2
εtol, (32)

where c̄ := c1 + c2 + c3, and c1, c2, c3 are defined in the proof
of Lemma 2.
The boundedness of the tracking error can now be proven.

Theorem 2 Consider the system in (1), the control law of
(2) and (6), and assume that the uncertainty ∆(z) follows a
Gaussian process (11). Let Bα be the largest compact ball in
the domain D over which solutions to (1), and let β > 0.
If there exists a set Θβ = {e|V (e) ≤ β} a.s., a constant

δ =
(

2β
λmin(P )

) 1
2

, and if r(t) is such that the state xrm of the
bounded input bounded output reference model in (5) remains
bounded in the compact ball Bm = {xrm : ‖xrm‖ ≤ mrm}
such that mrm ≤ α − δ holds for all t ≥ 0, then Algorithm
1 and the adaptive signal νad(z) = m̂σ(z) guarantee that
the system is mean square uniformly ultimately bounded in
probability a.s.

Proof: Let V (e(t)) = 1
2e
T (t)Pe(t) be the stochastic

Lyapunov candidate, where P > 0 satisfies the Lyapunov
equation (9). Note that the Lyapunov candidate is bounded
above and below by a quadratic term since 1

2λmin(P )‖e‖2 ≤
V (e) ≤ 1

2λmax(P )‖e‖2. The Itô differential of the Lyapunov
candidate along the solution of (29) for the σth system is

LV (e) =
∑
i

∂V (e)

∂ei
Aei +

1

2

∑
i,j

[
BGσ(BGσ)T

]
ij

∂2V (e)

∂ej∂ei

= −1

2
eTQe+ eTPBεσm(z) +

1

2
tr
(
BGσ(BGσ)TP

)
.

Let c1 := 1
2‖P‖‖BGσ‖

2 and c2 := ‖PB‖, then

LV (e) ≤ −1

2
λmin(Q)‖e‖2 + c2‖e‖‖εσm(z)‖+ c1. (33)

From Lemma 3 ‖εσm(z)‖ ≤ ‖∆(z) − m̂σ(z)‖εtol, and from
Lemma 2 ‖εσm(z)‖ ≤ c3εtol a.s. Therefore outside of the set

Θγ = {‖e‖ ≥ c2c3εtol+
√
c22c

2
3ε

2
tol+2λmin(Q)c1

λmin(Q) }, LV (e) ≤ 0 a.s.
Let β = maxe∈θγ V (e) and define the compact set Θβ =
{e : LV (e) ≤ β}, Note that Θγ ⊆ Θβ with LV (e) < 0 a.s.
outside of Θβ . Furthermore, note that 1

2λmin(P )‖e‖2 ≤ V (e)

and define δ =
(

2β
λmin(P )

) 1
2

. Then, with r(t) such that xrm
remains bounded within Bm, x(t) ∈ D a.s. and the solution to
(1) holds. Since this is true for all σ, and because Algorithm 2
guarantees that σ does not switch arbitrarily fast, by Theorem
1, (29) is mean square uniformly ultimately bounded inside of
this set a.s. [24].

Remark 1 In contrast to traditional parametric adaptive
control, the Lyapunov candidate does not need to be an explicit
function of the adaptive element’s parameters. This is because
the parameters of the budgeted nonparametric mean function
are discretely updated and guaranteed to be bounded over
every switching interval because they either stay constant or
are “renormalized” by Algorithm 2. Furthermore, note that the
size of the set within which e is bounded can be reduced by
reducing the representation error εσm(z) by choosing smaller
values of εtol, or increasing λmin(Q) by appropriately select-
ing K1,K2 in (6). Finally, in [27], it was shown that the linear
independence of BV ensures that persistency of excitation (PE)
in the state space is visible in H. Since the KL variant of



the algorithm aims to enforce this independence subject to
the tolerance εtol, PE is never lost (ensuring K(Zτ , Zτ ) is
invertible).

Remark 2 The assertions in Theorem 2 are stronger than
those typically proven for fixed-center RBFN-MRAC [26],
[52] because a domain over which the centers have been
allocated is not required to be assumed, rather the operating
domain D over which conditions to guarantee a continuous
time Markov process solution to (22) are satisfied is simply
required to exist, and could be as large as Rn. Furthermore,
mean square boundedness is shown in a stochastic setting
[24], which is stronger than uniform ultimate boundedness in
a deterministic setting traditionally shown for RBFN-MRAC.

The following corollary extends the above result to the case
when an exact representation of the mean function is available
(i.e. εm(z) = 0), such as might be possible in cases where
the uncertainty can be represented accurately using a tabular
representation, and is equivalent to assuming that the allowable
function class in (12) contains a finite number of kernels. This
corollary is also applicable to robust control of linear systems
where the uncertainty is characterized by a GP whose mean
has been identified using recorded data.

Corollary 3 Consider the system in (1), the reference
model in (5), and the control law of (2) and (6). Let the
uncertainty ∆(z) follows a Gaussian process as in (11) with
a fixed number of kernels, then Algorithm 1 and the adaptive
signal νad(z) = m(z) guarantees that e(t) is exponentially
mean squared ultimately bounded.

Proof: With εm(z) = 0, (33) reduces to

LV (e) ≤ − λmin(Q)

2λmax(P )
V (e) + c4. (34)

The result follows from Theorem 1 with constant σ (no
switching).
The following corollary shows that if εσm(z) = m̂σ(z)−m(z)
tends to zero as t → ∞, then the closed loop system is
uniformly exponentially ultimately bounded a.s. This result
is useful in the case where the mean m(z) is exactly a finite
linear combination of l kernels and an online GP learning
algorithm (such as Algorithm 2 with pmax ≥ l) eventually
learns an exact representation of the mean function given
sufficient samples.

Corollary 4 Consider the system in (1), the reference
model in (5), the control law of (2) and (6). Let the un-
certainty ∆(z) follow a Gaussian process as in (11). Then
Algorithm 1 and the adaptive signal νad(z) = m̂σ(z) with
limt→∞ m̂σ(z) = m(z) guarantees that e(t) is mean squared
ultimately bounded.

Proof: Since εm(z) → 0 as t → ∞ we have that (33)
approaches (34). The result now follows from Theorem 1.

V. TRAJECTORY TRACKING IN PRESENCE OF WING ROCK
DYNAMICS IN AN UNKNOWN OPERATING DOMAIN

Modern highly swept-back or delta wing fighter aircraft are
susceptible to lightly damped oscillations in roll known as

“wing rock”. Wing rock often occurs at conditions encoun-
tered during landing [51]. Wing rock is a highly nonlinear
phenomena, and when it is present, a baseline linear con-
troller designed assuming known linear dynamics may not be
able to guarantee acceptable trajectory tracking performance.
Therefore, an adaptive controller capable of mitigating effects
of wing rock is critical for safe landing. In this section the
GP-MRAC approach is compared with fixed-center RBFN-
MRAC in numerical simulations. Note that the goal is not
to present a highly tuned adaptive controller for wing rock,
several other authors have already done that assuming known
operating domain or known bases of ∆(x) [13], [23], [36],
[56], [62]. Rather, the goal is to test the performance when
the assumption of known operating domain (needed by fixed-
center RBFN-MRAC to pre-allocate centers) or known bases
of uncertainty are violated, forcing the controller to adapt to
unknown operating conditions. In that sense, one would be
tempted to compare the results to [27]. However, the results
here are not directly comparable to any of the aforementioned
papers because those papers did not consider stochasticity in
the dynamics and measurement noise, as is done here.

Let θ denote the roll attitude of an aircraft, p denote the roll
rate and δa denote the aileron control input. Then a model for
wing rock dynamics is [36]

θ̇ = p

ṗ = Lδaδa + ∆(x),
(35)

where Lδa = 3 and ∆(x) is a model of the wing rock
dynamics and is assumed to be unknown to the controller.
Unlike [51] and [36] who assume a deterministic model with
a known basis for ∆(x) , we assume that the uncertainty arises
from a distribution over functions approximated by a GP with
variance ω2

n and mean

∆̄(x) = W ∗0 +W ∗1 θ +W ∗2 p+W ∗3 |θ|p+W ∗4 |p|p+W ∗5 θ
3.

(36)

The parameters for the mean function are motivated from
[36] W ∗1 = 0.2314,W ∗2 = 0.6918,W ∗3 = −0.6245,W ∗4 =
0.0095,W ∗5 = 0.0214. In addition, a trim error is introduced
by setting W ∗0 = 0.8. The mean function is unknown to
the controller, and the chosen inversion model has the form
ν = 1

Lδa
δa. This choice results in the mean of the modeling

uncertainty of (4) being given by ∆(x). Stochasticity is intro-
duced by adding Gaussian white noise of variance ωn = 0.01
to the states. The adaptive controller uses the control law of
(6). The gain for the linear part of control law (νpd) was set to
relatively low values [1.2, 1.2] to better characterize the effect
of adaptation/learning. A second order reference model with
a natural frequency of 1 rad/sec and damping ratio of 0.5 is
used [27]. The simulation uses a time-step of 0.05 sec. The
maximum number of points to be stored (pmax) was arbitrarily
set to 100, and points were selected for storage based on both
the oldest point (OP) and KL divergence (KL) (see Section
III-B). The projection operator places an upper bound of 10
on individual RBF weights when using RBFN-MRAC with
fixed centers, see (10). Both the case when the chosen RBFN
centers cover the expected domain of operation and the case
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Fig. 4. Comparison of system states and reference model when using
GP regression based MRAC and RBFN-MRAC with the projection operator
and uniformly distributed centers over their respective domains. The state
measurements are corrupted with Gaussian white noise.

when the system is driven outside of the a priori expected
domain of operation are examined.

A. System Within Domain of Operation

In the first case, a set of reference commands lead the
system, after a short transient, to a relatively compact set in
the state space, which allows for good online approximation
of the uncertainty with 100 centers. The goal of this scenario
is to compare GP-MRAC with fixed-center RBFN-MRAC
when the domain of operation is known. Figure 4(a) compares
the system states and the reference model when using GP-
MRAC versus RBFN-MRAC with the projection operator and
uniformly distributed centers over [−2, 2]×[−2, 2]. While GP-
MRAC performs significantly better in the transient, especially
when tracking the command in θ̇, the long term behavior of all
the controllers is similar. This is to be expected as the reference
model drives the system to operate over the known domain of
operation, hence RBFN-MRAC can be tuned to yield very
good tracking [23], [62]. However, the poorer performance
of RBFN-MRAC in the initial transient stresses the fact that
transient performance guarantees of RBFN-MRAC can be lost
if the system states leave the expected domain of operation,
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Fig. 5. Comparison of tracking error when using GP regression based MRAC
and RBFN-MRAC with the projection operator and uniformly distributed
centers over their respective domains. Compared to Fig. 4(a), RBFN-MRAC
with uniformly distributed centers has higher transient tracking error than GP-
MRAC because the commands drive the system out of the range over which
the centers were distributed.

this is not the case for the nonparametric GP-MRAC approach
as it selects centers online. Figure 5(a) compares the tracking
error for both the controllers. The GP-MRAC system has less
oscillations. Figure 6(a) compares the learned models of GP-
MRAC and RBFN-MRAC. While the GP adaptive element
output is almost indistinguishable from the uncertainty in
presence of measurement noise, the RBFN does not accurately
learn the uncertainty. The poor learning performance of RBFN
with the learning law of 10 is to be expected [6], [26], [60], and
Figure 6(a) clearly shows that GP-MRAC yields much better
learning. 7(a) plots the energy of the spectrum of the signal
νad −∆ for all the controllers considered. It can be seen that
for the RBFN-MRAC controller the spectra for this signal has
more energy at nonzero frequencies. This indicates that there
are greater number of oscillations in RBFN-MRAC. Figure
8(a) shows online uncertainty tracking for the KL divergence
method by plotting the posterior mean and variance at each
timestep, showing good approximation error, and confidence
in the estimates. Figure 9(a) shows the trajectory of the system
controlled by the KL divergence method in state space.
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Fig. 6. Error between the adaptive element output and the actual uncertainty
(the signal νad −∆). RBF MRAC approximation with uniformly distributed
centers is significantly worse than the GP approximations.

B. System Driven Outside Domain of Operation

The above scenario demonstrated that the baseline trajectory
tracking performance of GP-MRAC is somewhat comparable
to RBFN-MRAC with update law of 10 when the system
stays within operating domain. However, GP-MRAC’s true
usefulness becomes apparent when its nonparametric form
is more fully exploited. Therefore, in this second case, the
system is given reference commands that drive it outside of
the expected domain of operation, i.e. where RBF centers are
not allocated, and RBFN-MRAC has not been tuned to yield
good performance. Significant performance differences occur
between the two methods. Figures 4(b) and 5(b) show that
the tracking performance of GP-MRAC is superior to RBFN-
MRAC, especially when tracking the θ̇ commands. Figure 6(b)
shows that RBFN-MRAC does an even poorer job of learning
the uncertainty than before, while GP-MRAC learning perfor-
mance is excellent. In Figure 7(b), the harmonics associated to
the oscillations become much more apparent. It can be clearly
seen that there is a significant peak at nonzero frequencies for
RBFN-MRAC that is not present in GP-MRAC. This indicates
that the GP-MRAC controller is better able to mitigate the
oscillations associated with wing rock dynamics. Figure 9(b)
shows the distribution of centers chosen by the controllers.
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Fig. 7. Energy of the spectra of the error between the adaptive element
output and the actual uncertainty. This figure quantifies the greater number of
oscillations while tracking in RBF MRAC.

Although the KL divergence method more widely distributes
the centers over the trajectory of the system in comparison
to the OP method, there is little difference in the online
performance between the OP and KL divergence GP-MRAC
controllers. The negligible difference indicates that the most
important factor to performance is the existence of centers
near the current state. However, their performance differs
significantly in terms of long-term learning.

C. Illustration of Long-Term Learning Effect

One of the most important contributions of GP-MRAC,
particularly when using the KL divergence scheme, is the the
introduction of long-term learning in the adaptive controller.
Long-term learning here is characterized by better approxi-
mation of the uncertainty over the entire domain, a quality
that is missing from RBFN-MRAC with the update law of
10. In order to illustrate this, the learned parameters of the
adaptive elements of the systems are recorded at the final
time T of the simulation. The systems are then reinitialized
with these parameters, which are frozen, and the simulations
are run again. Figures 10(a) and 10(b) show the uncertainty
tracking results for the two scenarios mentioned above. As can
be seen, the locality that drives the RBFN-MRAC updates
results in a controller that doesn’t capture the uncertainty
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Fig. 8. Online uncertainty tracking for the KL method.

globally. While GP-MRAC with the OP scheme does a better
job in this regard, its choice of center placement means that
approximation accuracy is local also. Since the KL divergence
scheme chooses points to keep based on the distance between
the GP models, it is able to retain global information about
the uncertainty and thus achieve the best performance.

Overall, these results show that the GP-MRAC as described
by Algorithm 1 is successful in capturing the uncertainty
without the need for prior domain domain knowledge.

VI. CONCLUSION

This paper modeled the uncertainty in Model Reference
Adaptive Control (MRAC) as a distribution over functions
rather than via a deterministic function. This approach to
uncertainty modeling is relevant to many real-world scenarios
involving the presence of noise, servo chattering, or other
non-smooth effects. To accurately learn the uncertain function,
we used Gaussian Process adaptive elements, which leverage
a powerful and robust nonparametric framework to perform
inference directly in the space of functions. We extended a
GP inference method to work within a preset budget, allowing
its use in an online setting. These two modifications define
the GP-MRAC algorithm, which was proven to be stable
through the use of stochastic stability theory for switched
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Fig. 9. Trajectories in the state space for both command sets.

systems. Simulations employing GP-MRAC for the control of
wing rock dynamics demonstrate the efficacy of GP-MRAC
as a budgeted, nonparametric adaptive control method which
requires no domain knowledge of the uncertainty.
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VIII. APPENDIX
This section outlines the implementation details of the

sparse online Gaussian process algorithm [14]. At time τ + 1,
given a new datapoint zτ+1, the algorithm minimizes the KL
divergence between the model with the datapoint included, and
the τ + 1 models with one datapoint deleted. To compute the
updates in an online fashion, define the scalar quantities

q(τ+1) =
y − αTτ kxτ

ω2
n + kTxτCτkxτ + k∗τ

, (37)

r(τ+1) = − 1

ω2
n + kTxτCτkxτ + k∗t

, (38)

where ατ , kxτ , and Cτ are defined in (17) and (18). Let eτ+1

be the (τ + 1) coordinate vector, and let Tτ+1(·) and Uτ+1(·)
denote operators that extend a τ -dimensional vector and matrix
to a (τ + 1) vector and (τ + 1)× (τ + 1) matrix by appending
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Fig. 10. Comparison of uncertainty tracking after the models are learned
and the weights are frozen. As can be seen, the locality of the proj operator
and OP controllers precludes true learning upon the domain.

zeros to them. The GP parameters can be solved for recursively
using the equations

ατ+1 = Tτ+1(ατ ) + q(τ+1)sτ+1,

Cτ+1 = Uτ+1(Cτ ) + r(τ+1)sτ+1s
T
τ+1,

sτ+1 = Tτ+1(Cτkxτ+1
) + eτ+1.

(39)

The inverse of the Gram matrix, dentoed by Q, needed to solve
for γτ+1 is updated online through the equation

Qτ+1 = Uτ+1(Qτ )

+ γ−1τ+1 (Tτ+1(êτ+1)− eτ+1) (Tτ+1(êτ+1)− eτ+1)
T
,

(40)
where êτ+1 := Qτkzτ+1

. Finally, in order to delete an element,
one computes the model parameters with the (τ + 1)-th point,
and chooses the basis vector with the smallest score measure,
given by

εi =
|ατ+1(i)|
Qτ+1(i, i)

. (41)

Algorithm 2 The budgeted sparse Gaussian process algorithm

while new measurements (zτ+1, yτ+1) are available do
Compute q(τ+1), r(τ+1), k∗τ+1, kzτ+1

, êτ+1 and γτ+1.
if γτ+1 < εtol then

Perform a reduced update, using êτ+1 in (39) without
extending the length of the parameters α and C.

else
Perform the update in (39) using eτ+1. Add the current
input to the BV set, and compute the Gram matrix
inverse using (40).
if |BV| > pmax then

Compute scores for the candidate BV’s using (41),
find the vector corresponding to the lowest score,
and delete it using (42).

end if
end if

end while

Let ι be the basis vector chosen to be discarded by the score
(41). Then the deletion equations are given by

α̂ = α̂¬ι − α∗Q
∗

q∗
,

Ĉ = C¬ι + c∗
Q∗Q∗T

q∗2
− 1

q∗
[
Q∗C∗T + C∗Q∗T

]
,

Q̂ = Q¬ι − Q∗Q∗T

q∗
,

(42)

where α∗ is the ιth component in the vector ατ+1, and
α¬ι represents the remaining vector. Similarly, C¬ι (Q¬ι)
represents the τ × τ submatrix in the (τ + 1)× (τ + 1) matrix
Cτ+1 (Qτ+1) associated to the basis vectors being kept, c∗

(q∗) represents the (ι, ι) index into the matrix chosen by the
score measure, and C∗ (Q∗) is the remaining τ -dimensional
column vector. Using the above equations, the budgeted sparse
GP algorithm is summarized by Algorithm 2.
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