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Recent advances in nanotechnology have produced the first sensor transducers capable of resolv-
ing the adsorption and desorption of single molecules. Examples include near infrared fluorescent
single-walled carbon nanotubes that report single-molecule binding via stochastic quenching. A cen-
tral question for the theory of such sensors is how to analyze stochastic adsorption events and extract
the local concentration or flux of the analyte near the sensor. In this work, we compare algorithms
of varying complexity for accomplishing this by first constructing a kinetic Monte Carlo model of
molecular binding and unbinding to the sensor substrate and simulating the dynamics over wide
ranges of forward and reverse rate constants. Methods involving single-site probability calculations,
first and second moment analysis, and birth-and-death population modeling are compared for their
accuracy in reconstructing model parameters in the presence and absence of noise over a large dy-
namic range. Overall, birth-and-death population modeling was the most robust in recovering the
forward rate constants, with the first and second order moment analysis very efficient when the
forward rate is large (>10−3 s−1). The precision decreases with increasing noise, which we show
masks the existence of underlying states. Precision is also diminished with very large forward rate
constants, since the sensor surface quickly and persistently saturates. © 2011 American Institute of
Physics. [doi:10.1063/1.3606496]

I. INTRODUCTION

Recent advances in the fluorescence detection of indi-
vidual molecules have motivated interest in single-molecule
dynamics and analytical methods for understanding their
networks of transitions.1–14 Traditionally, these measure-
ments have provided scientists with insight into previ-
ously intractable phenomena, ranging from enzyme and
protein2, 15–24 conformational dynamics to various inner cell
mechanisms.25–32 These measurements have elucidated the
mechanisms behind conformationally heterogeneous systems
that would otherwise remain ambiguous using conventional
bulk measurements susceptible to ensemble averaging. Cur-
rent advancements in the field have extended the applica-
tion of single-molecule measurements to the development of
nanotube-based sensors capable of resolving single-molecule
adsorption dynamics.33–37

In these particular systems, adsorption or binding of
a specific molecule onto a single-walled carbon nanotube
(SWCNT) results in the step-wise quenching of the nanotube

a)These authors contributed equally to this work.
b)Author to whom correspondence should be addressed. Electronic mail:

strano@mit.edu.

fluorescence (Figure 1(a)). Each single adsorption event of
a quenching molecule onto an unquenched segment of the
nanotube results in a discrete decrease in SWCNT fluores-
cence intensity. Although these quenching events are indica-
tive of the presence or absence of the molecule of interest,
a more quantitative analysis is required to determine proper-
ties such as analyte concentration or flux. Specifically, these
quenching events can be modeled as a series of reversible ad-
sorption reactions on the SWCNT with a forward rate con-
stant of kf and a reverse rate constant of kr (Figure 1(b)). As
we have shown previously,37 these reactions obey rate laws of
orders greater than 0, and an increase in analyte concentration
results in an increase in the forward rate. Recent studies have
focused on using a variety of techniques for extracting rate in-
formation from single-molecule fluorescence events, includ-
ing variations of hidden Markov modeling33, 37–45 and infor-
mation theory.46, 47

In this study, we exploit the parallelism of these differ-
ent methods for extracting rate information and compare their
accuracies under various kinetic conditions in the presence of
simulated noise. A summary of this comparative analysis is
shown in Figure 2. Simulated traces, much like the one shown
in Figure 1(a), are generated under various forward rate, re-
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FIG. 1. Single-molecule fluorescence quenching events. (a) Sample intensity trace of a SWCNT undergoing subsequent analyte adsorption and desorption
events demonstrates changes in intensity. Single-molecule adsorption events result in the stepwise decrease in fluorescence whereas desorption events result in
the stepwise increase in fluorescence. (b) Adsorption and desorption reactions can be modeled as a series of reversible adsorption reaction steps. The forward
rate constant, kf, and the reverse rate constant, kr, determine the rate of adsorption and desorption, respectively.

verse rate, and noise conditions. In the first step of the anal-
ysis, we determine the total number of states, or fluorescence
intensity levels, the sensor exhibits in each trace. In the sec-
ond step of the analysis, we use this information to fit the sim-
ulated trace to an idealized, de-noised trace, as would be done
to traces obtained experimentally. Using these fitted traces,
we calculate the extracted forward and reverse reaction rate
constants in the third step of the analysis and compare them

to the input values to compute an error. Each of these steps is
described in detail below.

II. GENERATING SIMULATED TRACES

In order to simulate experimental SWCNT fluorescence
traces in the presence of different concentrations of analyte, a
kinetic Monte Carlo (KMC) algorithm was implemented.48

FIG. 2. Outline of algorithms used for rate calculations. Different algorithms can be used for calculating and comparing the concentration-dependent rate
constants. Fluorescence traces are analyzed to determine rate constants using three steps. In the first step, the algorithm determines the number of states that
are expressed by the trace. The maximum number of states expressed by the trace is then used in the second step of the algorithm where the trace is fit to an
idealized trace specifying the number and location of the transitions. In the third step of the algorithm, the frequency of these transitions is used to calculate
corresponding forward and reverse rate constants.
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In a detailed study performed by Harrah and Swan,49 the
stochastic fluctuation of nanotube fluorescence was exam-
ined under exciton diffusion-limiting conditions. Introduc-
tion and removal of dynamic point defects were distributed
throughout the nanotube length to obtain time- and spa-
tially resolved quantum efficiencies of a fluorescing nanotube.
To simulate the diffraction-limited experimental conditions,
overall nanotube florescence emissions were determined from
concentration-based binding rates. For a specified pair of for-
ward and reverse rate constants, reaction probabilities for ad-
sorption and desorption during the next reaction event were
determined from the product of the forward rate and reverse
rate constants, respectively, with the maximum number of
sites per nanotube. The expressions below differ from stan-
dard chemical kinetics in two important ways: (1) the con-
centration of ligand is assumed to be constant and lumped into
the forward rate constant, and (2) since the calculation looks
at a single nanotube, the number of sites, and not a nanotube
concentration, is appropriate.

Based on these guidelines, reaction events are assumed
to occur with probabilities, Prxn, according to a Poisson
process,50, 51

P rxn = e−(kf Qempty+krQoccupied)t , (1)

where kf is the forward reaction rate constant, Qempty is the
number of empty sites on the nanotube, kr is the reverse rate
constant, Qoccupied is the number of occupied sites, and t is
the time. At each reaction event, either an adsorption or des-
orption instance takes. The probability of an adsorption event
occurring in the forward reaction becomes

Pf = kf Qempty

kf Qempty + krQoccupied
. (2)

Subsequently, the probability of the reverse reaction oc-
curring becomes

P r = 1 − Pf . (3)

For SWCNTs with an average length of ∼900 nm, a re-
cent experimental estimate of the exciton excursion distance37

resulted in ∼90 nm, so we expected no more than Qtotal = 10
states typically. We impose a site balance as

Qempty + Qoccupied = Qtotal . (4)

As discussed above, the forward reaction results in a step
decrease in fluorescence whereas the reverse reaction results
in a step increase. These reaction events were carried out
for a total reaction time of 3000 s to simulate observation
times used experimentally.35, 37 This simulation was repeated
to generate 100 SWCNT fluorescence traces at each specified
forward rate constant, reverse rate constant, and noise level.
Forward rate constants were varied over 7 orders of magni-
tude, ranging from 10−5–10 s−1, and reverse rate constants
were varied over 8 orders of magnitude, ranging from 10−10–
10−3 s−1.

FIG. 3. Effect of exposure on perceived adsorption and desorption events.
The number of adsorption events with varying forward rates and exposure
times were counted and averaged over 100 traces. At high adsorption rates,
the number of perceived binding instances increases with decreasing expo-
sure times.

A. Effect of observation or exposure time

To simulate data collected experimentally, reaction
events were binned in time assuming a finite observation time,
similar to an exposure or shutter time from a camera or light
collection device. This binning is required in practice and
does result in the loss of adsorption and desorption events.
The KMC was written to account for the net adsorption at
each exposure interval. We examined the effect of exposure
time on the accuracy of the analysis, specifically with respect
to varying rates (Figure 3). As shown in the figure, at rel-
atively high adsorption rates, the number of observed bind-
ing events increases with decreasing exposure times. With
decreasing exposure times, the number of observed transi-
tions approaches the number of actual transitions. Therefore,
smaller exposure times are expected to yield a more accurate
count of adsorption events. To simulate typical experimental
conditions, an exposure time of 1 s was used throughout the
course of this study.

The variance in the KMC model due to stochastic effects
can be solved exactly.52 For fixed forward and backward rate
constants kf and kr, the stochastic relative standard deviation
will scale with 1/

√
Qtotal. Thus, as the number of sites be-

comes large, the KMC model will converge to the continuum
solution. This is intuitive, as the nanotube sites are considered
to be independent in the KMC code. Observing increasing
numbers of independent stochastic elements should decrease
the observed stochastic variance with independent variations
averaging out.

As shown in Figure 4, these ranges in rate constants have
captured the wide variety of traces possible under experi-
mental conditions. Reactions where kr � kf result in traces
with very few quenching steps, which are almost immedi-
ately recovered due to the relatively high reverse rate. Reac-
tions where kf � kr, on the other hand, result in the immedi-
ate, complete quenching of the nanotube florescence. In cases
where both kf and kr are large, we observe multiple instances
of quenching and dequenching steps, whereas in cases where
both constants are low, we observe almost no quenching/de-
quenching events. Traces with intermediate values, with kf
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FIG. 4. Variety of traces generated from the KMC simulation. Various values of kf and kr were used to generate traces, with sample traces shown. Intensity traces
were generated for randomized KMC quenching and unquenching events, where the probability of adsorption and desorption are governed by the magnitude of
the forward and reverse rate constants, respectively. Forward rate constants were varied over 7 orders of magnitude whereas reverse rate constants were varied
over 8 orders. Traces with large equilibrium constants (kf � kr) exhibit complete quenching within the first few frames, and traces with small equilibrium
constants (kf � kr) exhibit immediate instances of desorption. Representative traces from previous studies35, 37 are centered within the range of forward and
reverse rate constants tested, with kf ∼10−3 s−1, kr ∼10−7 s−1.

∼10−3 and kr ∼10−7, shown at the center of the figure, are
representative of typical traces observed under most common
experimental conditions.35, 37

Traces were also generated under 5 different noise levels
for each combination of kf and kr. At each timestep, a random
value between −0.5 and 0.5 is added to the fluorescence in-
tensity. To simulate different noise levels, this random number
is multiplied by a noise scaling factor. In this study, we exam-
ined scaling factors with values of 0 (no noise), 0.05, 0.10,
0.20, and 0.40 with corresponding root mean squares (rms) of
0, 0.22, 0.32, 0.45, and 0.63, in units of normalized intensity
(I/Io).

III. STEP 1: DETERMINING THE NUMBER OF STATES

Once the simulated traces were generated, the first step
of the analysis is determining the number of states, or fluo-
rescence levels, demonstrated by each trace. To do this, we
implemented an error-minimizing stepping algorithm.53 In
this algorithm, we initially fit the simulated trace to a flat
trace with a value equal to the mean value of the simulated
trace, or

Ifit (t) =
∑n= tfinal

�t

n=0 Iexp(t = n�t)
tfinal

�t
+ 1

, (5)

where Ifit is the best-fit intensity value as a function of time, t,
Iexp is the experimental intensity value at time t, �t is the ex-
posure time, tfinal is the final time of the trace (which is a mul-
tiple of the exposure time), and n is an integer ranging from 0
to tfinal/�t. We then assume the existence of a step and itera-

tively specify the location of this step at each time value in the
trace. At each iteration, the error between the fitted trace and
the simulated trace is calculated and compared to the initial
error between the simulated trace and the flat trace that con-
tains no quenching steps. If the addition of a step results in a
better fit than the initial flat trace, then that trace is selected
as the best fit. Thus, best fits are achieved by minimizing the
mean-square error, ε,

ε =
n= tfinal

�t∑
n=0

|Ifit (t = n�t) − Iexp(t = n�t)|. (6)

The location of the step is determined by the trace that
exhibits the least amount of error. Once the error-minimized
location of the first step is determined, we assume the exis-
tence of an additional step on either side of the first step and
once more evaluate the existence and location of steps. The
process is repeated until it is determined that no more steps
appear in the trace. In summary, this technique performs an
iterative, error-minimization fitting analogous to that of lin-
ear regression (Figure 5). Once the traces have been fit using
this error-minimized, step-fitting algorithm, the total number
of states is determined by counting the number of different
florescence levels each best-fit trace exhibits.

IV. STEP 2: DETERMINING THE NUMBER AND
LOCATION OF TRANSITIONS

The number of states determined for each trace is next
used to fit the simulated traces to idealized, de-noised traces

Downloaded 13 Jan 2013 to 18.7.29.240. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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FIG. 5. Error-minimizing algorithm for fitting traces. Experimental traces were fit using a sequential, error-minimizing stepping algorithm. (a) Initially, the
best-fit trace is obtained assuming a uniform value equal to the mean value of the trace. (b) Steps are sequentially assumed at each time frame, where the intensity
value before the step is the mean intensity value before the transition, and the intensity value after the step is the mean intensity value after the transition. Sample
traces are shown in blue, red, purple, and green. These fits are compared to the initial fit obtained in (a), and the traces demonstrating the least error (red) is
selected as the best-fit trace. (c) After the location and size of the first step is obtained, the process is repeated for the portion of the trace prior to the transition.
Sample traces are shown in blue, red, and purple. As before, these traces are compared to the fit obtained in (b), and the trace demonstrating the least error (red)
is selected. (d) The process is also repeated for the portion of the trace after the transition, where steps are sequentially assumed to occur at each time frame.
Sample traces are shown in blue, red, and purple, and the best-fit trace (red) is selected. For each of the new steps described in (c) and (d), the algorithm is
repeated for the portions before and after each step until a globally minimized best-fit is obtained.

using three fitting algorithms: error-minimized step fitting,
hidden Markov modeling, and first and second moment
analysis. When determining the number of states using the
error-minimized, step-fitting algorithm described above, the
simulated trace is essentially already fit to an idealized trace
contained quenching and de-quenching steps. Hence, this
algorithm can be used to directly fit the simulated traces to
idealized, best-fit traces.

The second method for fitting the simulated traces is hid-
den Markov modeling.54 As described in earlier work,33, 37–45

steps are fit to the simulated traces in a manner that maxi-
mizes probability of the stochastic quenching and dequench-
ing events.

The third method used to fit simulated traces is a moment
analysis. A system of first order reactions can be shown to
have a first moment (mean) that is equivalent to the continuum
solution, even when populations are discrete and the system
behaves stochastically (jumping between states).55 The con-
tinuous model for this reaction is

A0 + θ0

kf

�
kr

Aθ,

where A0 is the free analyte molecule, θ0 is a free binding site
on the SWCNT, and Aθ is the molecule bound to the SWCNT
site with a binding rate constant of kf and a reverse rate con-
stant kr. Assuming mass action kinetics, the rate of change
for the concentration of the bound sites [Aθ ] is related to the
concentrations of the free analyte [A0] and free sites [θ0] ac-

cording to the relation

d[Aθ ]

dt
= kf [A0][θ0] − kr [Aθ ]. (7)

Furthermore, the three species will be related through a
site balance

[θ0] + [Aθ ] = [θT ], (8)

where [θT] is the overall site concentration. Assuming the
fluorescence intensity is related linearly to the concentration
of empty sites and normalized by the intensity at t = 0,
the mean intensity (the first moment) for an initially empty
surface ([Aθ ] = 0, [θ0] = [θT]) will be

〈I 〉(t) = kr + kf e−(kf +kr )(t−t0)

kf + kr

. (9)

The mean normalized intensity 〈I 〉(t) will be unity at t
= 0 and tend to the equilibrium value kr/(kf + kr ) at long
times.

Two primary effects will cause the observed intensity sig-
nal to deviate from this first moment: fluctuations from the
stochastic nature of the process and measurement noise in
the fluorescence signal. Modeling the time-dependent
stochastic variance in the signal requires a discrete model,
such as the birth-and-death model presented later. The
stochastic variance will scale with 1/

√
θT as discussed above.

For large numbers of sites, the larger effect will be mea-
surement error in the fluorescence signal. Including an er-
ror model can improve the fitting procedure. The error was
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FIG. 6. Comparison of fitting algorithms. Simulated traces were fitted using (a) hidden Markov modeling, (b) error-minimized fitting, and (c) moment analysis,
including the first moment (c) and the second moment (c, inset). Fitting simulated traces to idealized, step-like traces using hidden Markov modeling and
error-minimized fitting resulted in nearly identical fits. Fits obtained using the moment analysis, on the other hand, resulted in exponential decays characteristic
of ensemble measurements in bulk solution.

modeled as a normal distribution with probability density
function

f (I (t) − 〈I 〉(t)) = 1√
2πσ 2

e
−(I (t)−〈I 〉(t))2

2σ2 (10)

and a standard deviation, σ . Both the first moment 〈I 〉 and
second central moment (σ 2) are fit to the simulated data via
weighted error minimization.

Typical fits obtained using the three fitting algorithms,
the error-minimized step fitting, hidden Markov modeling,
and moment analysis, are shown in Figure 6. Although the
error-minimization algorithm and hidden Markov model rely
on two fundamentally different approaches for fitting traces
to the simulated data, they both result in nearly identical fits.
Because the hidden Markov model is significantly more com-
putationally time intensive than the error-minimization fits,
herein the error-minimization fit will be used in lieu of the fits
obtained with the Markov model.

V. STEP 3: CALCULATING FORWARD AND REVERSE
RATE CONSTANTS

Forward and reverse rate constants are calculated from
the fits once the simulated data are fit to idealized traces.
Four methods were used to calculate rate constants: mo-
ment analysis, site probability calculations assuming site
independence,33, 37 site probability calculations assuming site
dependence, and birth-and-death population modeling.56

A. Moment analysis

The moment analysis can only calculate rate constants
for traces fit using the first and second moments. The rate
constants are directly determined from the best-fit first and
second moments according to the deterministic relations dis-
cussed above.

B. Single-site probability calculations
(site independence)

The remaining three methods for calculating rate con-
stants were applied to traces fit using the step-fitting error
minimization (see discussion above on comparison of fits to

Markov modeling). For the site probability calculations, we
assume a Poisson rate process convolution model described in
previous studies.37, 57, 58 We consider the probability of a site
going from an unquenched to a quenched state as P1 and the
probability of a site going from a quenched to an unquenched
state as P2. Therefore, the probability of an unquenched
site remaining unquenched is 1−P1, and the probability of
a quenched site remaining quenched is 1−P2. If we con-
sider a nanotube with only 2 indistinguishable binding sites,
3 florescence states are possible: two quenched sites (min-
imum florescence, state1), two unquenched sites (maximum
florescence, state3), and one quenched and one unquenched
site (intermediate florescence state, state2). The probability of
the nanotube florescence exhibiting a step decrease in
florescence from a completely unquenched state for the next
timestep is proportional to the product of the probability of
one site remaining unquenched, 1−P1, and the other site
quenching, P1. These probability expressions can be set equal
to the experimental probabilities, which are determined as the
number of times the best-fit trace shows a step decrease (or
step increase) in florescence divided by the number of 1-s flu-
orescence measurements, and solved for P1 and P2. For the
case of a two-site model, the governing equations are

P1(1 − P1) = Ntransitions (state3 → state2)

τdwell (state3)
, (11)

(1 − P1)2 = Ntransitions (state3 → state3)

τdwell (state3)
, (12)

P 2
1 = Ntransitions (state3 → state1)

τdwell (state3)
, (13)

P2(1 − P2) = Ntransitions (state1 → state2)

τdwell (state1)
, (14)

(1 − P2)2 = Ntransitions (state1 → state1)

τdwell (state1)
, (15)

P 2
2 = Ntransitions (state1 → state3)

τdwell (state1)
, (16)

P1(1 − P2) = Ntransitions (state2 → state1)

τdwell (state2)
, (17)

Downloaded 13 Jan 2013 to 18.7.29.240. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



084124-7 Chemical dynamics of single-molecule sensors J. Chem. Phys. 135, 084124 (2011)

P2(1 − P1) = Ntransitions (state2 → state3)

τdwell (state2)
, (18)

(1 − P1)(1 − P2) = Ntransitions (state2 → state2)

τdwell (state2)
,

(19)
where Ntransitions(stateX→stateY) designates the total number
of transitions from stateX to stateY, and τ dwell(stateX) is the
total amount of time frames occupied in the initial state stateX.
In this model, we assume that the probability of a particular
site quenching or de-quenching is the same regardless of the
state; the site probabilities are treated independently of each
other.

C. Single-site probability calculations
(site dependence)

An alternative approach to these calculations is to
assume that the probability of a particular site quenching
or de-quenching is dependent on the state of the sensor,
such as the florescence intensity of nanotube sensor. For
example, in our two-site nanotube model, the probability of
both sites quenching would be half the probability of one site
quenching. This approach will change the probability expres-
sions written for each nanotube state, although the resulting
probabilities are calculated in an analogous manner (i.e., set
expressions equal to the experimental value, solve for the
probabilities). Once single-site quenching and de-quenching
probabilities have been determined, the corresponding rate
constants are calculated using the probability-rate constant
expression derived from Gillespie,51

kf =
2 ln

(
1

1−P1

)

�t
, (20)

kr =
2 ln

(
1

1−P2

)

�t
. (21)

D. Birth-and-death population modeling

An alternative to extracting rate constants from idealized,
best-fit traces is using the birth-and-death population mod-
eling approach.35, 59 To summarize, in this model, a quench-
ing event is treated as a “death” with rate of kf, and a de-
quenching event is treated as a “birth” with rate of kr. Based
on these analogies, the florescence value of a nanotube at any
given time point is equivalent to the total population at that
time. So, assuming a nanotube is at a florescence state i at
a given time t0, the probability it will be at state j at time
t + �t is dependent on whether the final state j is a de-
quenched state ( j = i + 1), a quenched state ( j = i − 1),
or an unchanged state ( j = i),

P (It0+�t = j |It0 = i)

=

⎧⎪⎨
⎪⎩

(Imax − i)kr�t if j = i + 1

1 − (Imax − i)kr�t − ikf �t if j = i

ikf �t if j = i − 1

, (22)

where Imax is the maximum intensity state. Mathematically,
Eq. (22) represents a Markov jump process, allowing the
likelihood, L, of the observed process to be expressed as35, 56

L =
n(t)∏
i=1

P (It0+�t = j |It0 = i)e− ∫ t

0 T (Xu)du, (23)

where n(t) is the number of jumps at time t and T(Xu) is de-
fined as

T (Xu) = (Imax − Iu)kr + Iukf . (24)

Now we define g, the probabilities of transitioning to
state j from state i for the next transition, and St, the total time
lived by a population during the trace time interval [0, t],

g(It0+�t = j |It0 = i) =
⎧⎨
⎩

Nquenchedkr if j = i + 1
ikf if j = i − 1
0 otherwise

,

(25)

St =
∫ t

0
Iudu. (26)

This gives

L =
n(t)∏
i=1

g(It0+�t = j |It0 = i)e(Imaxkr t+(kf −kr )St ). (27)

The maximum likelihood estimators of kf and kr are
found by maximizing the above probability expression. To
convert the product to a summation, it is most convenient to
take the derivatives of the natural log of Eq. (27), which leads
to the following estimators:35

kf = Nquenched

St

, (28)

kr = Nde-quenched

Imax t − St

. (29)

where Nquenched is the number of instances the trace undergoes
a quenching step, Nde-quenched is the number of instances the
trace undergoes a de-quenching step, and t is the total time of
the trace.

VI. COMPARING RELATIVE ERROR AMONG THE
DIFFERENT ALGORITHMS

The forward and reverse rate constants calculated using
each of the algorithms described above were compared to the
actual rate constants that were initially used to generate the
KMC traces. The relative error, εrel, was calculated between
the actual (kinput) and calculated (kcalculated) forward rate con-
stants and normalized with respect to the actual value, or

εrel = |kinput − kcalculated |
kinput

. (30)

This error was averaged over the 100 traces simulated
at a particular forward rate, reverse rate, and noise level. A
summary of this mean error for different rate and noise con-
ditions is shown in Figure 7. Overall, the single-site probabil-
ity approaches to calculating rate constants demonstrated the
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FIG. 7. Comparison of relative error for various kf and kr values. Relative error between calculated and actual forward rate constants were calculated when
varying actual forward and reverse rate constants. Error plots were generated using 4 different algorithms (single-site probability calculations assuming de-
pendent quenching rate constants, single-site probability calculations assuming independent quenching rate constants, first and second moment analysis, and
birth-and-death modeling) at 5 different noise levels. Overall, relative error increases with increasing noise levels, with some algorithms, such as the moment
analysis, less affected by the noise level. For rate constants on the order of those demonstrated in literature (kf ∼10−3 s−1, kr ∼10−7 s−1), the birth-and-death
population modeling exhibits the least relative error.

largest amount of error; the moment analysis and birth-and-
death population modeling resulted in the least amount of er-
ror. Under typical experimental conditions, with kf ∼10−3 s−1

and kr ∼10−7 s−1, the birth-and-death model provides the
least amount of error. For each plot, the largest amount of
error tends to occur at the highest and lowest values of kf.

For all the algorithms, overall error increases with in-
creasing noise levels. However, these algorithms exhibited
varying sensitivities to noise. The first and second moment
analysis demonstrates the least sensitivity toward noise level.
This is due to the deterministic nature of this approach.

Specifically, this algorithm fits the traces to the determinis-
tic equation for ensemble measurement, which for first order
adsorption is an exponential decay with time. Although in-
creased noise levels may mask the existence of a step in a
trace, the moment analysis does not rely on the existence of
step-like changes in florescence over time; instead it relies on
the overall decaying trend of the trace, which remains largely
unaffected by noise.

On the other hand, the error calculated from algorithms
that rely on step-like changes in intensity over time was
significantly affected by noise. As shown in Figure 8, as

FIG. 8. Effect of noise on fitting traces. Error-minimized fits were obtained for traces with noise levels of (a) 0, (b) 0.05, (c) 0.10, (d) 0.20, and (e) 0.40, with
sample traces and fits as shown. Increased noise levels results in both the erroneous fitting of nonexistent transitions and the omission of existent transitions.
These discrepancies result in the increased error in the calculated rate constants.
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FIG. 9. Comparison of actual and calculated rate constants. Actual and calculated rate constants were compared for (a) single-site probability calculations
assuming dependent quenching rate constants, (b) single-site probability calculations assuming independent quenching rate constants, (c) first and second
moment analysis, and (d) birth-and-death modeling. For comparison, a trendline with a slope of 1 was included to demonstrate ideal behavior of an algorithm
where calculated rate constant is precisely equal to the actual rate constant.

noise level increases, the error-minimization fitting algo-
rithm largely neglects to fit steps that are masked by the
decreased signal-to-noise ratio while occasionally introduc-
ing fictitious states demonstrated by the noise. Hence, the
increase in error at high noise levels is due to the failure
of the step-fitting algorithms used in the second step of this
analysis.

In addition to examining relative error, we also directly
compared the calculated rate constant with the actual con-
stant at different reverse rates (Figure 9). All algorithms tested
were able to calculate an increased rate constant for traces
simulated at higher rates. When compared to the idealized
trendline where calculated rate is precisely equal to the actual
rate (slope = 1), the algorithms demonstrate varying degrees
of conformity, with the birth-and-death modeling algorithm
demonstrating the highest degree of conformity. At large val-
ues of kf, the algorithm begins to underestimate rate constants.
At these values, the traces exhibit complete quenching within
the first few seconds of the simulation, where it becomes
more difficult to distinguish very high rates from even higher
rates.

VII. CONCLUSION

A comparison of the various algorithms used to calcu-
late rate constants from single-molecule intensity traces re-
veals that precision is dependent not only on the algorithm
used, but also the noise level of the data and the magni-
tude of the forward and reverse rates. Greatest error was ob-
served at extreme values of kf (very large and very small
forward rate constants) and at small signal-to-noise ratios.

The algorithms exhibited varying degrees of sensitivity to
noise, with the first and second moment analysis being the
least sensitive. Overall, forward rate constants were recovered
most accurately using the birth-and-death population model,
mostly in the regimes most relevant to the experimental
conditions.
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