
MIT Open Access Articles

Multiship Crane Sequencing with Yard Congestion Constraints

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Choo, S., D. Klabjan, and D. Simchi-Levi. “Multiship Crane Sequencing with Yard
Congestion Constraints.” Transportation Science 44.1 (2009): 98–115.

As Published: http://dx.doi.org/10.1287/trsc.1090.0296

Publisher: Institute for Operations Research and the Management Sciences (INFORMS)

Persistent URL: http://hdl.handle.net/1721.1/77966

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/77966
http://creativecommons.org/licenses/by-nc-sa/3.0/

 1

Multi-ship Crane Sequencing with Yard
Congestion Constraints

Shawn Choo
PSA International Pte Ltd, PSA Singapore Terminals, Singapore

(shawnc@psa.com.sg)
Diego Klabjan

Department of Industrial and Management Sciences, Northwestern
University, Evanston, IL (d-klabjan@northwestern.edu)

David Simchi-Levi
Department of Civil and Environmental Engineering, Massachusetts

Institute of Technology, Cambridge, MA (dslevi@mit.edu)

Crane sequencing in container terminals determines the order of ship discharging and
loading jobs that quay cranes (QCs) perform so that the duration of vessels’ stay is mi-
nimized. The ship’s load profile, berthing time, number of available bays and QCs are
considered. More importantly, clearance and yard congestion constraints need to be in-
cluded, which respectively ensure that a minimum distance between adjacent QCs is
observed and yard storage blocks are not overly accessed at any point in time. In se-
quencing for a single ship, a mixed integer programming model is proposed and a heu-
ristic approach based on the model is developed that produces good solutions. The
model is then reformulated as a generalized set covering problem and solved exactly by
branch-and-price. For multi-ship sequencing, the yard congestion constraints are re-
laxed in the spirit of Lagrangian relaxation so that the problem decomposes by vessel
into smaller sub-problems solved by branch-and-price. An efficient primal heuristic is
also designed. Computational experiments reveal that large-scale problems can be
solved in a reasonable computational time.

1. Introduction
A container terminal serves as an interface between land and sea transportation. Its
main functions are to receive export containers from shippers for loading onto vessels
and to discharge import containers from vessels for picking up by consignees, Murthy et
al. (2005). Terminals also have storage yards for temporary storage of containers. Con-
tainer terminals are considered essential infrastructure because they are highly capital-
intensive, and specialized equipment is needed to handle and transport containers with-
in the port system, e.g., a quay crane (QC) can cost upwards of US$10 million.

In an increasingly competitive and global industry, ports have to ensure efficiency in
their management of yard resources. Efficient port management involves a variety of
interrelated operational decisions to achieve a range of goals, some of which include

mailto:shawnchoo@nus.edu.sg�
mailto:d-klabjan@northwestern.edu�
mailto:dslevi@mit.edu�

 2

the minimization of berthing time of vessels, resources needed for handling the work-
load, congestion on the roads, and efficient usage of limited yard storage space.

One of the main goals is to minimize the time duration the ship (which corresponds
to a customer in the traditional setting) is berthed in the port, or vessel makespan. An
industry estimate puts the cost of a ship being berthed at a port to US$1,000 an hour,
Peterkofsky and Daganzo (1990). An important quayside factor, which directly impacts
the vessel makespan is the way cranes are scheduled to load and discharge containers
from the vessels, which is a step in stowage planning.

The objective of stowage planning is to achieve an efficient and smooth discharge,
restowage, and loading of containers on vessels to obtain an expeditious on-time turna-
round of vessels. It is carried out hours or days before the vessel’s arrival and is a fun-
damental part of terminal management. The steps in stowage planning differ from port
to port, but for most of them it covers import and export planning, input of stowage in-
structions, crane sequencing, yard slotting, and vessel stability checks, Zhang (2002).

In this work we focus on the crane sequencing problem, which is to partition all the
loading and discharging jobs among the vessel’s allocated QCs, and decide the order at
which the jobs are to be executed. Before the berthing of the vessel, the shipping com-
pany usually provides a work instruction, called the load profile, which details the pre-
cise location on the ship and exact identity of the containers which are to be loaded or
discharged. Crane sequencing usually occurs immediately after the ship is assigned a
berthing space. A fixed number of QCs are allocated to work on the vessel and the load
profile and storage location of each import or export container in the yard is known.

While the single ship problem has already been studied, we address the multi-ship
problem where the ships are linked by means of yard congestion constraints. The dis-
charging operations of ships need to be appropriately synchronized so as not to create
congestions at the yard. We model the underlying problem as an integer program,
which is solved by a combination of Lagrangian relaxation and column generation. Not
surprisingly, it turns out that the makespan objective function poses a big challenge. A
primal heuristic is also proposed. This state-of-the-art solution methodology is ben-
chmarked against a commercial optimization solver. Much larger, realistic size problem
instances were solved by using the presented methodology.

The presented work has several important contributions. First, we present the under-
lying nontrivial model, where the modeling challenges arise from crane sequencing and
the makespan objective function. Second, we present a new column generation based
algorithm for the single ship problem where first the model is reformulated as a genera-
lized set covering type problem. The underlying model and algorithm are completely dif-
ferent from those presented by Daganzo (1989), where the single ship problem is
solved by branch-and-bound. We also point out that our single ship problem is more
complex since we capture several operational constraints not addressed so far. This is
critical for a practical application in an industrial setting. These additional constraints
capture operational practices of a mega-container terminal and they include QC clear-
ance (QCs cannot be too close to each other due to safety reasons). Our third important
contribution is in designing a solution methodology for solving the multi-ship problem.
We relax in the Lagrangian relaxation spirit the yard congestion constraints. The under-
lying restricted master problem corresponds to several single ship problems, which are
solved by branch-and-price.

 3

Figure 1: The two operational interfaces of a container terminal system (RMG stands for rail

mounted gantry)

In Section 2 we study the single ship problem. We propose the generalized set cov-
ering formulation and we outline the underlying branch-and-price algorithm. The exten-
sion to the multi-ship problem is presented in Section 3. The Lagrangian relaxation is
given in this section and the underlying solution methodology is presented in the same
section. Extensions considering some practical aspects to the basic model are dis-
cussed in Section 4. Section 5 reports a computational study. We conclude the introduc-
tion with a more detailed description of relevant port operations, basic principles in rele-
vant optimization methodologies, and a literature review.

1.1. Relevant Port Operations
Most container terminals have two main operational interfaces, quayside and landside.
Quayside activities deal with the loading and unloading operations of ships, while land-
side activities involve loading and unloading of containers on or off external trucks,
trains or yard storage locations. Some of the equipment and resources put to use in
both interfaces are shown in Figure 1. A typical QC has a width of 25.8 meters, and its
usual performance is in the range of 22-30 containers an hour. It is common practice to
allocate up to 5 QCs to large vessels, and up to 2,000 containers to be handled per
vessel in large ports. QCs run on tracks parallel to the berth line; this horizontal move-

ment is known as gantrying. The transportation of containers between the yard storage
locations and the quayside is carried out primarily by trucks or automated guided ve-
hicles.

A container terminal has also a storage yard which is usually divided into rectangular
regions, known as yard blocks. Each block has approximately 6 to 8 rows for storing
containers in stacks, with an additional lane for truck passing. A row may have up to 20
stacks placed end-to-end, each of which can be up to 8 levels high. These blocks are
served by yard cranes. Yard cranes remove and place containers from the stacks di-
rectly onto trucks, which park in the passing lane while the transfer occurs. Traffic con-
gestion caused by high rates of loading and unloading containers from a particular block
is a significant concern.

 4

Upon a vessel’s arrival at the terminal, it is assigned to a berth for loading and dis-
charging of containers by QCs. Discharged containers are placed onto trucks by QCs
for transportation to pre-determined storage locations in the yard, awaiting pickup from
a local consignee or restowage onto another vessel. Yard cranes lift containers from the
trucks onto their assigned stacks; the trucks are then recycled back into usage for other
jobs.

1.2. Branch-and-price and Lagrangian Relaxation
Large-scale linear programs are often solved by delayed column generation. In this al-
gorithm, at every iteration, only a subset of columns is considered. The problem with
only a subset of columns is called the restricted master problem (RMP). In every itera-
tion of the algorithm, first the RMP is solved. Let π be the optimal dual vector, which for
ease of discussion we assume it exists. Next the so-called subproblem or pricing prob-
lem is solved. In solving the subproblem we identify a set S of columns with the lowest
reduced cost with respect to π . If we cannot find a column with negative reduced cost,
then we stop because π is an optimal dual solution to the original problem and together
with the optimal primal solution to the RMP we have an optimal primal/dual pair. Other-
wise, we append columns in S to the RMP and the entire procedure is iterated. After
several iterations, when a large number of columns have been included in the RMP,
columns with large reduced costs are removed from the RMP.

 Branch-and-price is a solution methodology for solving large-scale linear mixed in-
teger models, Barnhart et al. (1998). It is essentially branch-and-bound where every LP
relaxation is solved by delayed column generation. Typically a specialized branching
heuristic is employed.

Lagrangian relaxation, see e.g., Fisher (1985), Geoffrion (1974), is a different widely
used technique for solving large-scale mixed integer programs. Suppose we can parti-
tion constraints into “easy” and “difficult”. The concept behind this classification is that if
the difficult constraints are removed, the resulting problem is easily solvable. In Lagran-
gian relaxation, difficult constraints get a linear penalty and are moved to the objective
function. The resulting problem is called the Lagrangian relaxation and its objective val-
ue is a function of the penalties. Let us assume that we deal with a maximization prob-
lem. For any given values of penalties, the Lagrangian relaxation is computationally
easy. Moreover, it always provides an upper bound on the optimal value. The goal now
is to find the best upper bound, i.e., to minimize the value of the Lagrangian relaxation
over all possible penalties. This is the Lagrangian dual problem, which is typically a non-
linear convex optimization problem. In practice it can be solved by a variant of a sub-
gradient algorithm. One drawback of this approach is that there is no guarantee to find
feasible solutions. They have to be constructed heuristically during the execution of the
subgradient algorithm. The algorithm is very appealing because it is easy to implement
and it can handle complex (difficult) side constraints.

1.3. Literature Review
The crane scheduling problem was first highlighted by Daganzo (1989), who proposed
an exact linear integer programming formulation for loading ships. Available QCs are
assigned to ship bays at discretized time periods. The problem with the objective of mi-

 5

nimizing makespan is solved using enumerative techniques for up to 3 ships. Both the
static case, where no other ships arrive in the planning horizon, and the dynamic case
are considered. There are several important differences between this work and the pre-
sented work. First, we capture several requirements such as the clearance constraints
and the yard congestion constraints, which are not captured by Daganzo. Second, our
generalized set covering formulations are entirely new and this is the main reason why
we are able to solve large-scale instances. Peterkofsky and Daganzo (1990) discuss a
branch-and-bound algorithm based on the same formulation to give exact solutions in
reduced time.

Kim and Park (2004) similarly discuss the crane scheduling problem, but they as-
sume that there may be multiple tasks or container clusters within a single bay, as op-
posed to where a bay is considered the smallest positional unit. They study only the
single ship problem without clearance constraints. They schedule tasks to QCs based
on task precedence constraints. Branch-and-bound and heuristic search algorithms are
proposed to obtain solutions to the problem.

Bish (2003) develops a heuristic algorithm based on formulating the problem as a
three-fold transshipment problem – determining a storage location for each unloaded
container, dispatching vehicles to containers and scheduling the loading and unloading
operations of cranes. Since many operational constraints are not considered (e.g.,
clearance and yard congestion), the resulting model can be solved as an LP. Several
very quick heuristics are proposed.

Crane scheduling at the yard is addressed in Cheung et al. (2002). The authors do
not consider the ship side of operations but they provide a microeconomics modeling of
yard operations, in particular crane movements. A Lagrangian relaxation and piecewise
linear approximations are used as solution methodologies. While this work provides
more details on the yard side than we do, it does not consider ship bays and the corres-
ponding QCs. A similar problem is addressed in Zhang et al. (2002). Another work deal-
ing with a microscopic view of crane movements is Kim and Kim (1999). They model the
number of containers a transfer crane picks and the corresponding bay sequence as-
signment. Like in Cheung et al. (2002), the QC aspect of the problem is neglected.

An excellent survey on port operations and previous related work can be found in
Steenken et al. (2004).

2. The Single Ship Problem
In this section we study the single ship problem. We first provide a compact formulation
and then a formulation with an exponential number of columns. The latter is used in our
multi-ship algorithm.

2.1. The Compact Formulation
For the single ship problem, we assume that no other vessels berth during the planning
horizon, which is the maximum time in which all crane operations have to be completed.
The entire planning horizon is discretized. The length of each interval is the amount of
time needed for a QC to handle a standard 20-foot container, i.e., time needed to per-
form the smallest unit of work. QCs can only move and be assigned to a bay at discrete

 6

intervals. The input data to the problem are: (1) the number of QCs allocated to work on
the vessel, (2) the number of bays in the vessel, and (3) the vessel load profile. (A ves-
sel is divided along its length into segments known as bays, which can be several rows
of containers across and several tiers deep). The sequencing constraints for the single
ship model are as follows.

• A QC can only be positioned and work at a single bay at any time.
• A QC must be positioned at least r bays away from any adjacent QCs on the left

and right (for safety reasons). These are the clearance constraints.
• QCs cannot cross each other’s path and therefore must be ordered by position at

all times.
The following assumptions are made.

• QC gantrying time is small compared to the time it takes to handle a container
and can therefore be ignored in the calculation of vessel’s makespan.

• The number of allocated QCs is fixed for the entire duration of vessel’s opera-
tions.

• All QCs are identical and have similar work rates.
• There is no delay in trucks delivering containers to the QCs.

We show in Section 4 how to modify the models and algorithms to relax some of these
assumptions. For ease of exposition, we assume only ship discharging operations are
handled. However, the same models apply to loading operations and any combination
of the two. Since all QCs work rates are identical, we can assume that in each time pe-
riod a single container is handled. In other words, after discharging a single container
from a bay, QCs can be repositioned. The following notation is used throughout the pa-
per.

Indices:
j Bay number, in increasing order of their location on the vessel, i.e., left to

right;
k QC number, in increasing order of their relative position, i.e., left to right;
t Time period index, denoting the interval of time from t-1 to t;
Parameters:
C Number of allocated QCs;
H Number of bays in the vessel;
fj Number of containers to be discharged in bay j;
T Total number of time periods in the planning horizon, which can be set to

1

H

j
j

f
=
∑ ;

 r QC clearance value, in terms of the number of bays;
The problem is to sequence QCs in such a way that the makespan of all operations

is minimized. We have to obey all QC related constraints. In addition, all of the contain-
ers must be discharged.

The model employs the following decision variables (see Figure 2).

()jkx t 1 if QC k is positioned at bay j at time period t, and 0 otherwise;

 7

()jk tδ 1 if QC k is handling a container at bay j at time period t, and 0 otherwise;
()tγ work completion flag: 0 if all container jobs have not yet been completed

at time period t and 1 otherwise;

We need both x and δ variables to model the fact that a QC can be positioned at a
bay but its status is idle.

The mathematical formulation for the single ship model is as follow.

1
Maximize ()

T

t
tγ

=
∑ (1)

Subject to

1
() 1 1,..., ; 1,...,

H

jk
j

x t k C t T
=

= = =∑ (2)

1
() 1 1,..., ; 1,...,

C

jk
k

x t j H t T
=

≤ = =∑ (3)

1

max{1, }
1 () () 2,..., ; 1,..., ; 1,..., ; 1,...,

j

jk lm
l j r

x t x t j H k C m C t T
−

= −

− ≥ = = = =∑ (4)

min{ , }

1
1 () () 1,..., 1; 1,..., ; 1,..., ; 1,...,

j r H

jk lm
l j

x t x t j H k C m C t T
+

= +

− ≥ = − = = =∑ (5)

, 1
1

() () 1,..., 1; 1,..., 1; 1,...,
H

jk l k
l j

x t x t j H k C t T+
= +

≤ = − = − =∑ (6)

1

, 1
1

() () 2,..., ; 2,..., ; 1,...,
j

jk l k
l

x t x t j H k C t T
−

−
=

≤ = = =∑ (7)

1 1
() 1,...,

C T

jk j
k t

t f j Hδ
= =

= =∑∑ (8)

() () 1,..., ; 1,..., ; 1,...,jk jkt x t j H k C t Tδ ≤ = = = (9)
C

1 1

()
() 1,...., ; 1,...,

t

jk
k l

j

l
t j H t T

f

δ
γ = =≤ = =

∑∑
 (10)

, , binaryx δ γ (11)

…

B
ay

 1

B
ay

 2

B
ay

 3

B
ay

 4

B
ay

 6

B
ay

 5

B
ay

 7

B
ay

 8

B
ay

 9

B
ay

 1
0

B
ay

 1
1

B
ay

 1
2

B
ay

 1
3

B
ay

 1
4

B
ay

 1
5

B
ay

 1
6

B
ay

 1
7

B
ay

 1
8

B
ay

 1
9

B
ay

 H
-2

B
ay

 H
-1

B
ay

 Hvessel

Q
C

 1

Q
C

 2

Q
C

 4

Q
C

 3 …

Q
C

 CQCs

2,1() 1tδ = 7,2 () 1tδ = 16,4 () 1tδ = 1, () 1H C tδ − =

2,1() 1x t = 7,2 () 1x t = 11,3 () 1x t = 16,4 () 1x t = 1, () 1H Cx t− =

…

B
ay

 1

B
ay

 2

B
ay

 3

B
ay

 4

B
ay

 6

B
ay

 5

B
ay

 7

B
ay

 8

B
ay

 9

B
ay

 1
0

B
ay

 1
1

B
ay

 1
2

B
ay

 1
3

B
ay

 1
4

B
ay

 1
5

B
ay

 1
6

B
ay

 1
7

B
ay

 1
8

B
ay

 1
9

B
ay

 H
-2

B
ay

 H
-1

B
ay

 Hvessel

Q
C

 1

Q
C

 2

Q
C

 4

Q
C

 3 …

Q
C

 CQCs

2,1() 1tδ = 7,2 () 1tδ = 16,4 () 1tδ = 1, () 1H C tδ − =

2,1() 1x t = 7,2 () 1x t = 11,3 () 1x t = 16,4 () 1x t = 1, () 1H Cx t− =

Figure 2: Interpretation of variables

 8

Constraints (2) and (3) respectively ensure that all QCs cannot gantry away from the
vessel at any time and that only one QC can be positioned at a bay at any time. Con-
straints (4) an (5) enforce the QC clearance condition, stating that if any QC is posi-
tioned at a particular bay, all other QCs are restricted from being positioned r bays to
the left and right respectively. Constraints (6) and (7) describe the QC ‘ordering’ condi-
tions, where a ‘higher-numbered’ or ‘lower-numbered’ QCs must be respectively posi-
tioned to the right and left of any QC. Constraint (8) states that all required container
jobs must be completed within the planning horizon. Constraint (9) ensures that a QC
must be positioned at a bay if it is working there. Constraint (10) defines the work com-
pletion flag for bay j. Objective function (1) ensures that when the value of the right-
hand-side of (10) sums to 1 for all H bays at time period t, ()tγ will be 1. If this is not the
case, then the right-hand side will be strictly less than 1 and thus () 0tγ = . Therefore the
objective function evaluates the value of the vessel makespan. Clearly all variables are
binary as stated in (11).

Constraints (4) and (5) can also be modeled in their segregated form
1 () (),jk lmx t x t− ≥ however this leads to many constraints (but a tighter LP relaxation).
The presented aggregated constraints turned out to be more efficient within a commer-
cial solver.

2.2. Branch-and-price
In this section, the compact single ship model, described in Section 2.1, is reformulated
as a generalized set covering problem with an exponential number of variables. It is
shown in Section 5.1 by means of computational experiments that this compact formula-
tion is more efficient for large-scale problems.

Reformulation
The key principle of the reformulation is to encode an entire QC schedule in a give time
step as a decision variable. Consider a feasible assignment of QC positions to bays (a
QC position-to-bay assignment). Such an assignment must obey the clearance re-
quirements and the ordering of QCs. We can encode a QC position-to-bay assignment
as a C-tuple ()1 2 3, , ,..., Cj j j j , which represents that QC 1 is positioned at bay 1j , QC 2
at bay 2j , etc. Let P be the set of all such feasible assignments. Feasibility is equivalent
to requiring 1i ij r j ++ ≤ for 1,2,..., 1i C= − .

We introduce a variable pz for p P∈ , which is the number of times the QC position-
to-bay assignment p is selected. The formulation reads

 Minimize p
p P

z
∈
∑ (12)

 Subject to

:
 1,...,p j

p P j p
z f j H

∈ ∈

≥ =∑ (13)

 nonnegative integer.z (14)

 9

The expression j p∈ represents the fact that bay j is assigned to a QC in assignment p.
Formally, there exists q such that qj j= if ()1 2 3, , ,..., Cp j j j j= .

Objective function (12) minimizes the total number of QC positions-to-bay assign-
ments needed to handle all the jobs in the load profile. Constraints (13) impose the un-
loading requirements. They impose that for every bay j we must select at least jf as-
signments.

From the formulation, given a feasible solution z, it is clear how to obtain the corres-
ponding x values of the compact formulation. The corresponding δ ’s in the compact
formulation can be obtained by starting with x’s, and then arbitrarily setting them to zero
in order to satisfy constraints (8) at equality. This procedure also yields the following
statement.

Proposition: The LP relaxation of (12)-(14) is at least as strong as the LP relaxation
of (1)-(11).

Proof. Given a feasible solution z to the LP relaxation of (12)-(14), for each p P∈ we
first construct pz⎢ ⎥⎣ ⎦ time periods with the corresponding binary x’s and δ ’s as described

above. The possible fractional value p pz z⎢ ⎥− ⎣ ⎦ is then again assigned to x’s and δ ’s in a
similar fashion except that this time their values might be fractional. This shows how to
obtain a corresponding feasible solution to the LP relaxation of (1)-(11) with no worse
cost. □

The Branch-and-price Algorithm
In this section we discuss the most important components of the branch-and-price algo-
rithm for our generalized set covering formulation. As discussed in Section 1.2, branch-
and-price algorithms are branch-and-bound algorithms where LP relaxations are solved
by delayed column generation.

In our branch-and-price, depth-first search is adopted so that integer solutions are
found rapidly. Since the column costs are integral, we can prune nodes whose value of
the LP relaxation is greater than an integer away from the best integer solution. This
significantly speeds up the branch-and-price algorithm.

We next provide more details on obtaining an initial solution, pricing, and branching.

A Heuristic
A quick heuristic is developed for two purposes: as a basis for comparison against the
results from a commercial solver and as a primal heuristic within the branch-and-price
algorithm. It is a greedy heuristic based on selecting good QC position-to-bay assign-
ments one period at a time.

Let ()jl t be the remaining workload at bay j and time t onwards, i.e., it is jf minus
everything that has already been unloaded from bay j before time t. Then a lower bound
for the remaining makespan RM(t) at time period t is

1

max () , max{ () | 1,..., } ().
H

j j
j

l t C l t j H RM t
=

⎧ ⎫⎡ ⎤⎪ ⎪= ≤⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎩ ⎭
∑ (15)

 10

It is clear that in instances where clearance constraints are not heavily restrictive,
i.e., when QCs are not tightly ‘packed’ or when work load is well distributed, the mini-
mum possible vessel makespan is going to be the first term in (15). However, since only
one QC can work on a bay at any time, a possible value for RM(t) could be the second
term, or the bay with the heaviest remaining work load.

In the heuristic, in each time period, we make assignment decisions so that the low-
er bound on RM(t+1) is as low as possible. We thus observe two sequencing principles
which guide the heuristic towards a good solution: (1) the bay with the maximal remain-
ing workflow ()jl t is handled, and (2) remaining QCs should not be idle; they are as-
signed to work on other bays with heavy work loads. This yields a strategy where QCs
are selected based on the nonincreasing order of ()jl t . Clearly we must satisfy all of the
feasibility constraints.

The following describes the overall heuristic procedure.
Step 1: Let lj(1) = fj for all j=1,…,H and set t=1.
Step 2: Rank all bays in terms of the remaining work load ()jl t for the current

time period t.
Step 3: Assign QCs to bays for the current time period t based on the just com-

puted order. Skip all bays that violate the clearance requirement.
Step 4: Compute lj(t+1) by subtracting from lj(t) the work performed in each bay

at time period t.
Step 5: If (1) 0j

j
l t + =∑ , there is no remaining work and the algorithm terminates

with t as the makespan. Otherwise, increment t by 1 and go to Step 2.
Within branch-and-price it is easy to adjust the heuristic by appropriately setting ini-

tial jl values to reflect the current branching decisions.

Pricing
The pricing problem provides a column that prices out favorably or proves that none ex-
ists. The dual variables π associated with constraint (13) from the RMP are used to
solve the pricing problem:

1

1-Maximize
H

j j
j

xπ
=
∑ (16)

Subject to

1

H

j
j

x C
=

=∑ (17)

()
min{ , }

1
1 1,..., 1

j r H

j l
l j

C x x j H
+

= +

− ≥ = −∑ (18)

()
1

max{1, }
1 2,...,

j

j l
l j r

C x x j H
−

= −

− ≥ =∑ (19)

binary.x (20)

 11

The decision variable xj is 1 if a QC is positioned at bay j and 0 otherwise. Con-
straints (18) and (19) impose clearance, while (17) ensures that all QCs are assigned.
Objective function (16) arises from the calculation of the reduced cost.

Next we show how to reformulate the pricing problem as a shortest path problem.
The nodes of the network correspond to bay/QC pairs, i.e., there is a node for each
(,), 1,..., , 1,...,j k j H k C= = , which represents that QC k is assigned to bay j. There is an
arc between (,)j k and (, 1), 1,..., 1q k k C+ = − only if the clearance constraints are satis-
fied, i.e., q j r≥ + . We also add a source s connected to all nodes (,1)j and a sink t
connected from all nodes (,)j C . Each arc from (,)j k to (, 1)q k + has cost jπ− , outgoing
arcs from s get a zero cost, and the arc connecting (,)j C and t bears a cost of jπ− . It is
easy to see that the pricing problem is equivalent to finding a shortest s-t path. Note that
this network is acyclic and therefore a shortest path can be found by a single forward
scan of all arcs. The complexity of the algorithm is 2()O H C⋅ , which is pseudo poly-
nomial in the input size (recall that polynomial in our case means polynomial in H and
log()C). In practice these two values are low and therefore the shortest path algorithm
is very efficient.

Branching
A valid branching scheme partitions the solution space in such a way that the current
fractional optimal solution of a node is excluded, integer solutions remain intact, and fi-
niteness of the algorithm is ensured, see e.g., Lubbecke and Descrosiers (2005).
Branch-and-price algorithms typically require customized branching in order to fulfill
these conditions.

Computational experiments have shown that for this application standard branching
on variables works efficiently. It is applied on the least fractional column. Note that such
branching also stresses feasibility. The problem with variable branching is that during
pricing a column that is already in the restricted master problem can be regenerated.
This would yield a possible infinite branch-and-price algorithm. In our problem we ob-
served that columns are very seldom regenerated. The main reason for such a favora-
ble behavior lies in the fact that our variables are nonnegative integers (and not binary).

Nevertheless, columns can be regenerated and we cope with this in the following
way. Consider the shortest path formulation of our pricing problem. Every integer solu-
tion to our problem implies a set of path in the network with nonnegative integer flow on
each arc. Thus the total flow on each arc is a nonnegative integer. Using this observa-
tion we can branch as follows.

Consider a possible fractional solution *z to the restricted master problem. Based on
this solution we compute the flow on each arc in our shortest path network. If there is an
arc e from (,)j k to (, 1)q k + whose total flow is fractional, we create two branches. Let

* *()eu z be the value of the flow on this arc. On one branch we add the constraint
 * *

:
()p e

p P e p
z u z

∈ ∈

⎢ ⎥≤ ⎣ ⎦∑

while on the other branch we add

 12

 * *

:
()p e

p P e p
z u z

∈ ∈

⎡ ⎤≥ ⎢ ⎥∑ .

Such branching clearly cuts off the current fractional solution and it does not exclude
any feasible solution.

It remains to argue that given a fractional solution to the restricted master problem,
we can always find such an arc e. As stated, this is not true, however we can address
this by the following proposition.

Proposition: Let *z be a solution to the restricted master problem whose flow arc val-
ues are all integral. Then there exists a feasible integral solution z with the same ob-
jective value.

Proof. Let us regard each column in *z as an s-t path. We consider the maximum s-t
flow problem with capacity on arc e equal to * *()eu z . Then *z defines a flow in the net-
work whose value equals to the corresponding value of the restricted master problem
and all of the capacities are saturated.

From the maximum flow theory it is known that there exists a flow that can be de-
composed into paths with integer flow on each one of them. This holds because all ca-
pacities are integers by definition and assumption. We denote by z this underlying set
of paths and corresponding values. It is also clear that all arcs are saturated with re-
spect to z and as a result the flow going through each node based on z is equal to the
flow going through each node based on *z . This implies that z is a feasible solution to
our problem since constraints (13) require that the flow going through all nodes {(,)}kj k
must be equal to or greater than jf . It is also clear that the objective value of z equals
to the objective value of *z . □

This shows that the proposed branching rule is a valid branching rule. It is also easy
to adjust the pricing problem to capture these branching decisions. By adding branching
constraints we obtain new dual values corresponding to arcs in the pricing network. It is
easy to adjust the shortest path pricing by adding these dual values as arc costs.

In our algorithm we branch on variables until we encounter a column that was rege-
nerated. At this point we switch to the aforementioned branching. Even though branch-
ing on variables creates extremely unbalanced trees, it outperforms arc based branch-
ing.

3. The Multi-ship Problem
In this section we model several ships berthing at specific, preplanned times throughout
the entire planning horizon. The objective remains to minimize the weighted cumulative
makespan of all vessels, while ensuring that a new set of yard congestion constraints
are adhered to. The modeling assumptions and sequencing constraints used in the sin-
gle ship model are also applied here subject to each individual ship.

 13

3.1. The Formulation
.In the multi-ship model, QC sequencing of a vessel would be independent of other ves-
sels if not for the imposed additional yard congestion constraints. These constraints
prevent the number of QCs handling containers that are slated for a particular yard sto-
rage location from exceeding a given quantity, known as the yard activity threshold. The
aim is to limit the level of yard crane and truck activities in the yard blocks and hence
prevent congestion and other operational inefficiencies. Thus, if the yard activity thre-
sholds had been breached, QC jobs in various vessels would have had to be rese-
quenced. New input parameters for the multi-ship model are:

• total number of ships berthing,
• for each vessel, the cost per time unit,
• vessel berthing time, or the time at which QC operations for the vessel may

commence,
• yard block number for storing each handled container, and
• yard activity threshold for each yard block.
The complete multi-ship formulation is provided in Appendix A (see Figure 3 for vari-

able definition). This formulation is a compact one, i.e., it has polynomially many va-
riables. It is very hard to derive a formulation similar to the set covering formulation (12)-
(14). An important observation about this problem and model is that the yard congestion
constraints are the only constraints that link the ships together.

 Figure 3: Interpretation of variables in the multi-ship case Figure 3: Interpretation of variables in the multi-ship case

…

B
ay

 1

B
ay

 2

B
ay

 3

B
ay

 4

B
ay

 6

B
ay

 5

B
ay

 7

B
ay

 8

B
ay

 9

B
ay

 1
0

B
ay

 1
1

B
ay

 1
2

B
ay

 1
3

B
ay

 1
4

B
ay

 1
5

B
ay

 1
6

B
ay

 1
7

B
ay

 1
8

B
ay

 1
9

B
ay

 H
i-2

B
ay

 H
i-1

B
ay

 H
i

vessel i

Q
C

 1

Q
C

 2

Q
C

 4

Q
C

 3 …

Q
C

 CQCs

,2,1,1() 1i tδ = ,7,2,1() 1i tδ = ,16,4,3 () 1i tδ = , 1, ,4 () 1
i ii H C tδ − =

,2,1() 1ix t = ,7,2 () 1ix t = ,11,3 () 1ix t = ,16,4 () 1ix t = , 1, () 1
i ii H Cx t− =

vessel q

Q
C

 1

Q
C

 2

Q
C

 4

Q
C

 3

QCs

,3,1,3() 1q tδ = ,11,2,1() 1q tδ = ,16,4,3 () 1q tδ =

,3,1() 1qx t = ,6,2 () 1qx t = ,11,3() 1qx t = ,16,4 () 1qx t =

…

B
ay

 1

B
ay

 2

B
ay

 3

B
ay

 4

B
ay

 6

B
ay

 5

B
ay

 7

B
ay

 8

B
ay

 9

B
ay

 1
0

B
ay

 1
1

B
ay

 1
2

B
ay

 1
3

B
ay

 1
4

B
ay

 1
5

B
ay

 1
6

B
ay

 1
7

B
ay

 1
8

B
ay

 1
9

B
ay

 H
q-

2

B
ay

 H
q-

1

B
ay

 H
q

yard

,2,1,1() 1i tδ = ,7,2,1() 1i tδ = ,16,4,3 () 1i tδ = , 1, ,4 () 1
i ii H C tδ − =

,3,1,3 () 1q tδ =,11,2,1() 1q tδ = ,16,4,3 () 1q tδ =

1w≤ 2w≤ 3w≤ 4w≤

, , , ()ship bay QC yard tδ

…

B
ay

 1

B
ay

 2

B
ay

 3

B
ay

 4

B
ay

 6

B
ay

 5

B
ay

 7

B
ay

 8

B
ay

 9

B
ay

 1
0

B
ay

 1
1

B
ay

 1
2

B
ay

 1
3

B
ay

 1
4

B
ay

 1
5

B
ay

 1
6

B
ay

 1
7

B
ay

 1
8

B
ay

 1
9

B
ay

 H
i-2

B
ay

 H
i-1

B
ay

 H
i

vessel i

Q
C

 1

Q
C

 2

Q
C

 4

Q
C

 3 …

Q
C

 CQCs

,2,1,1() 1i tδ = ,7,2,1() 1i tδ = ,16,4,3 () 1i tδ = , 1, ,4 () 1
i ii H C tδ − =

,2,1() 1ix t = ,7,2 () 1ix t = ,11,3 () 1ix t = ,16,4 () 1ix t = , 1, () 1
i ii H Cx t− =

vessel q

Q
C

 1

Q
C

 2

Q
C

 4

Q
C

 3

QCs

,3,1,3() 1q tδ = ,11,2,1() 1q tδ = ,16,4,3 () 1q tδ =

,3,1() 1qx t = ,6,2 () 1qx t = ,11,3() 1qx t = ,16,4 () 1qx t =

…

B
ay

 1

B
ay

 2

B
ay

 3

B
ay

 4

B
ay

 6

B
ay

 5

B
ay

 7

B
ay

 8

B
ay

 9

B
ay

 1
0

B
ay

 1
1

B
ay

 1
2

B
ay

 1
3

B
ay

 1
4

B
ay

 1
5

B
ay

 1
6

B
ay

 1
7

B
ay

 1
8

B
ay

 1
9

B
ay

 H
q-

2

B
ay

 H
q-

1

B
ay

 H
q…

B
ay

 1

B
ay

 2

B
ay

 3

B
ay

 4

B
ay

 6

B
ay

 5

B
ay

 7

B
ay

 8

B
ay

 9

B
ay

 1
0

B
ay

 1
1

B
ay

 1
2

B
ay

 1
3

B
ay

 1
4

B
ay

 1
5

B
ay

 1
6

B
ay

 1
7

B
ay

 1
8

B
ay

 1
9

B
ay

 H
q-

2

B
ay

 H
q-

1

B
ay

 H
q

yard

,2,1,1() 1i tδ = ,7,2,1() 1i tδ = ,16,4,3 () 1i tδ = , 1, ,4 () 1
i ii H C tδ − =

,3,1,3 () 1q tδ =,11,2,1() 1q tδ = ,16,4,3 () 1q tδ =

1w≤ 2w≤ 3w≤ 4w≤

, , , ()ship bay QC yard tδ

 14

We assume that the time spent in moving containers from vessels at the quayside to
all yard blocks is the same. In practice, this time depends on the distance between the
vessel and yard blocks, and on the congestion in the port road network, however, these
dependencies are often insignificant in practice.

3.2. Solution Methodology
Based on the observation that yard congestion constraints are the only constraints link-
ing ships together the model is amended to Lagrangian relaxation.

The yard congestion constraints, which link the decision variables associated with
different vessels together, are relaxed and the resulting problem decomposes by ship.
For given Lagrangian multipliers ,()zt z tλ λ= (z indexes yard locations) we define the cor-
responding Lagrangian relaxation as

max1

, ,
1 1 1 1 1

() Minimize () () ,
i i i i

i t

d T T H CS L

x i i zt ijkz z
i t d z t i Q j k

L c t t wδ γ γ λ δ
+ −

= = = = ∈ = =

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑∑ ∑∑∑λ (21)

where the minimum is subject to constraints (45)-(56) and (58)-(59). Here ()i tγ models
the makespan of ship i and ic is the per time unit cost of ship i. To tackle (21) note that it
decomposes by ship and therefore the subproblems are reformulated into a set cover-
ing form and solved by branch-and-price. Due to the additional penalty term in the ob-
jective function the transformation is not straightforward.

The goal is to solve the Lagrangian dual problem
*

0Maximize ()L L≥= λ λ (22)
The subgradient method, first proposed by Held and Karp (1970), is applied to solve
(22).

Solutions to (21), produced repeatedly (by branch-and-price) during the subgradient
procedure, are rarely primal feasible to the original problem. They are used as good
starting points for a heuristic approach to find a primal feasible solution.

Decomposition by Vessel into Subproblems
When the coupling yard congestion constraints are relaxed, the objective function and
all of the nonrelaxed constraints are separated into S (the number of ships) independent
minimization subproblems, each with objective function ()iL λ defined in (23) below. Ex-
pression (21) can be rewritten as

max 1

, ,
1 1 1 1 1 1

()

() Minimize () () .
i i i i

i

i

T d T H CL S L

x zt z zt ijkz i i
z t i t d j k z

L

L w t c tδ γ λ λ δ γ
+ −

= = = = = = =

⎧ ⎫⎛ ⎞⎪ ⎪= − + −⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∑∑ ∑ ∑ ∑∑∑
λ

λ
144444424444443

 (23)

The constraints of the subproblems are similar to the single ship model, except that
the variables δ ’s and the input vessel load profile f ’s are additionally indexed by z for
the yard block number. The full formulation of the subproblem for ship i is given in
Appendix B. Term ()iL λ in (23) is inflated from the single ship model objective (1) by the
penalty term

 15

1

1 1 1
().

i i i i

i

d T H C L

zt ijkz
t d j k z

tλ δ
+ −

= = = =
∑ ∑∑∑ (24)

Although the subproblems are easier to solve compared to the original problem, they
are still very difficult for large-scale problems. However, due to the relative similarity be-
tween these subproblems and the single ship model, we are able to take advantage of
the efficient branch-and-price solution methodology developed for the single-ship mod-
el. The branch-and-price model needs to be adjusted to take into account the penalty
term (24) in ()iL λ . The presence of a time-indexed cost coefficient ztλ means that the
cost of each column differs by time period and a different pricing problem and model
have to be solved. The expected increase in the problem size of the pricing problem
suggests that certain problem specific measures, not used for the single ship problem,
have to be developed to reduce the computational complexity of the resulting branch-
and-price algorithm.

The Set Covering Formulation of the Lagrangian Subproblems
As in the single ship problem, the Lagrangian subproblem is formulated as a set cover-
ing problem. Let us focus on ship i. Here, because the cost of the QC activity in each
period is affected by δ ’s, each variable represents the QC position-to-(bay,yard posi-
tion) assignment for a particular period. Each column can be encoded as a C-tuple,
where each coordinate represent a (bay,yard position) pair. For example,
()1 1 2 2(,), (,),..., (,)C Cj z j z j z encodes that the first QC is positioned at bay 1j and it is un-
loading a container heading for yard position 1z (equivalently,

1 11 () 1ij z tδ =). Because the
work completion constraints have to be satisfied, the set partitioning structure has the
right-hand side vector f, which is the vessel’s load profile for each (j,z) pair. Identical
columns may differ in cost if designated to different periods due to the ztλ cost coeffi-
cient.

Let R be the set of all feasible QC work-assignments. For r R∈ we introduce binary
variables yr,t, which is 1 if QC assignment r is selected in time period t, and 0 otherwise.
The set partitioning formulation reads

1

,
1

Minimize
i i

i

d T L

i zt r t
t d r R z

c yλ
+ −

= ∈ =

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑ ∑ ∑ (25)

Subject to

()

1

,
: ,

 1,..., ; 1,...,
i i

i

d T

r t ijz i
t d r R j z r

y f j H z L
+ −

= ∈ ∈

= = =∑ ∑ (26)

, 1 ,..., 1r t i i i
r R

y t d d T
∈

≤ = + −∑ (27)

, 1 , 0 ,..., 2r t r t i i i
r R r R

y y t d d T+
∈ ∈

− ≤ = + −∑ ∑ (28)

 binary.y
Notation (,)y z r∈ denotes the fact that if ()1 1 2 2(,), (,),..., (,)C Cr j z j z j z= , then there exists
q such that ,q qj j z z= = .

 16

Objective function (25) captures 2 parts, contribution to the makespan (1 for all col-
umns) and a penalty term associated with the QC activity in the designated period.
Constraint (26) captures the work completion requirement and (27) guarantees that in
each time period we select a single QC work-assignment. Constraint (28) imposes that
columns designated to earlier periods can be selected only if later periods are, ensuring
the vessel makespan is evaluated correctly. They impose that there exists a period t

such that a QC work assignment is selected for periods ,...,it d t= and , 0r t
r R

y
∈

=∑ for

1,..., 2i it t d T= + + − .
Typically set covering formulations are preferred over set partitioning formulations

because their LP relaxations are numerically more stable (less degenerate) and thus
easier to solve. In the multi-ship formulation given in Appendix A, suppose we allow
work completion constraints to be exceeded; in other words, allow more work to be
done than necessary. Assuming that K more jobs are performed than necessary, we
can arbitrarily reset K values of δ ’s that are 1 to 0. QC position constraints are not vi-
olated by this operation because x’s are independent of δ ’s. Neither are the QC work
constraints and yard congestion constraints violated since the reduced workload makes
them less tight. We conclude that since either cost or feasibility are not affected by the
aforementioned operation, the set covering form of the original multi-ship model is
equivalent to the set partitioning form, and thus the sign in (26) can be changed to equal
to or greater than. From now on we assume that this is the case.

In the set covering problem (25)-(28), we observed by computational experiments
that constraints (28) cause a high degree of fractionality in the LP relaxations. Streng-
thening them through segregation is not practical due to the difficulties in handling dual
variables in the pricing problem and the large number of rows. To circumvent this we fix
makespan and try all possible makespan values.

If makespan is fixed to TMS, then (28) can be removed. The resulting problem reads
1

,
1

Minimize
i MS

i

d T L

zt r t
t d r R z

yλ
+ −

= ∈ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ (29)

Subject to

()

1

,
: ,

 1,..., , 1,...,
i MS

i

d T

r t ijz i
t d r R j z r

y f j H z L
+ −

= ∈ ∈

≥ = =∑ ∑ (30)

 , 1 ,..., 1r t i i MS
r R

y t d d T
∈

= = + −∑ (31)

 binary.y

Objective function (29) now includes only the penalty term costs since makespan is
fixed, while (31) must be satisfied at equality to guarantee the makespan of MST . We
next provide relevant details in solving (29)-(31).

Pricing and Branching
We first observe that for each time period t we have a separate pricing problem. Let
now t be fixed. Let π and p be the dual values corresponding to (30) and (31), respec-
tively. Then the pricing problem reads

 17

1 1

+Minimize ()
iH L

t zt jz jz
j z

p λ π δ
= =

−∑∑ (32)

Subject to constraints (17)-(19), and
 1,..., ; 1,...,jz j ix j H z Lδ ≤ = = (33)

1 1,...,jz i
z

j Hδ ≤ =∑ (34)

, binary.x δ (35)
Objective function (32) captures the reduced cost of a column. As before, (17)-(19) en-
force QC position constraints, while constraints (33) and (34) dictate where the QCs are
actually working.

This pricing problem can be reformulated as a shortest path problem in the same
spirit as in the single ship pricing problem. For every bay index 1,..., ij H= we define

()*

1,...,
() arg max jz zt

z L
z j π λ

+

=
= − − . Observe that if * *,x δ is an optimal solution to (32)-(35), then

we can assume that *
*
, ()

1
j z j

δ = and * 0jzδ = for all *, ()z z z j≠ if * 1jx = , and * 0jzδ = for all

1,..., ij H= if * 0jx = . As a result the cost of the arc from (,)j k to (, 1)q k + is

1,...,
max ()jz ztz L

π λ +

=
− − . Branching can also be defined as before based on the flow on arcs.

The pricing problem is solved repetitively for each time period t in the range
1i i MSd t d T≤ ≤ + − .

The Overall Branch-and-Price Algorithm
The overall algorithm for solving (25)-(28) is to solve (29)-(31) for every MST by branch-
and-price. As we have already mentioned, it turns out that this is more efficient than
solving (25)-(28) directly.

Before starting the entire procedure we first establish a lower bound on makespan

by ignoring the penalty term
1

L

zt
z
λ

=
∑ and simply minimizing the makespan, while adhering

to clearance, work completion and other constraints. This clearly gives us a lower bound
on MST . We also precompute an upper bound on the overall value by adding the penal-

ty cost component
1

L

zt
z
λ

=
∑ to each column in the computed minimum makespan solution.

This clearly gives us a feasible solution with an appropriate cost. This upper bound is
used in branch-and-price algorithms.

A Heuristic for Generation of Feasible Solutions
The heuristic described here attempts to correct yard congestion constraint violations
within the Lagrangian framework while keeping the objective function deterioration
small, i.e., to avoid excessively increasing vessel makespans. It provides an upper
bound to the optimal cost of the multi-ship problem. This bound is also used as a termi-
nation criterion and in calculating the step sizes of the subgradient procedure described
later. We assume we have a feasible solution to (21).

 18

The heuristic first detects a yard location z and a time period t where infeasibility oc-
curs. It then attempts to swap QC work with any other QCs working on the same bay in
different time periods, if this is possible. If it is possible, the swap is performed and
clearly the makespan is not increased. If this is not possible (due to the clearance re-
quirements), the QC work is postponed to the end and the makespan is increased by
one. These steps are repeated until all of the infeasibilities are removed. The heuristic is
randomized at various points. For example, at each iteration within the heuristic, a dif-
ferent search for infeasible z and t is conducted, and QCs may choose a different QC to
swap work with. For each subgradient iteration, the heuristic is run several times and
the best upper bound ZUB is stored.

Updating Lagrangian Multipliers
The subgradient algorithm searches for optimal Lagrangian multipliers *

ztλ that maxim-
ize ()L λ . It is well known that ()L λ is a concave function. An initial Lagrangian multiplier

0λ is selected and a sequence of λ ’s is determined by updating at each iteration the
current value of λ with a step in the direction of the subgradient at the current iterate. If
necessary, the resulting subgradient vector is projected back into the non-negative or-
thant. In our case the updates are as follows, if nλ is the current multiplier at the n-th ite-
ration:

1 1
() ()

i iH C
n

zt ijkz z
i j k

G t wδ
= =

= −∑∑∑λ (36)

{ }1 max 0, ()n n n n
zt zt ztt Gλ λ λ+ = + . (37)

Expression (36) defines the gradient, where δ is an optimal solution to the Lagrangian
relaxation (21). The following step-size rule is used:

()
2

, 1 1

()
.

()
i i

n n
UBn

H C

ijkz z
z t i j k

Z L
t

t w

ζ

δ
= =

−
=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑ ∑∑∑

λ
 (38)

Justification for (38) is given in Wolfe and Crowder (1974). In each iteration ()nL λ pro-
vides a lower bound on the optimal value of the multi-ship problem. The best lower
bound encountered during the execution of the algorithm is denoted by ZLB.

In our experiments, the sequence nζ is determined by starting with 0 1ζ = and re-
ducing nζ by half whenever ()nL λ has failed to increase for 5 consecutive iterations.
The following rules are used as termination criteria: (1) we reach 100 iterations, (2) the
step-size parameter satisfies 0.005kζ ≤ , (3) no improvement in ()nL λ for 10 iterations,

and (4) the optimality gap satisfies 0.05UB LB

UB

Z Z
Z
−

< .

 19

4. Extensions
In this section we present several enhancement and extensions to the presented mod-
els and algorithms. Since the main focus is on the multi-ship problem, we address them
only in this context.

Initial Quay Crane Configuration
At the beginning of the time horizon, QCs are already located at certain bays (from the
previous operations). In addition, for the same reason a QC might become available on-
ly at a certain time. Modeling such requirements requires only slight changes to the set
covering formulation (29)-(31). From starting availabilities of QCs, it is easy to determine
the number of available QCs in each time period t. We would then modify the definition
of R to tR , where in tR we would no longer consider C-tuples, but the number of coor-
dinates would equal to the number of available QCs in time period t. If the initial position
of a QC needs to be imposed, we would further constrain tR by fixing the bay of the
newly added QC.

Multiple Operations
So far we assumed that discharging is the only operation. We next show how to incor-
porate loading. For simplicity, let us assume that each bay requires first discharging,
which is then followed by loading. To this end, let ,D LL L be the set of discharging, load-
ing storage locations, respectively. We clearly have { }1, 2,..., ,D L D LL L L L L= =∅U I . We
need to impose that the discharging locations must be handled before the loading loca-
tions.

In the compact formulation of the multi-ship problem presented in Appendix A, a
new set of constraints

() () 1 1,..., ; 1,..., ; 1,..., ; 1,..., ;

 ; ; ,..., 1;
ijkz i i iijkz

L D
i i i

t t i S j H k C k C

z L z L t d d T t t

δ δ+ ≤ = = = =

∈ ∈ = + − ≥

is required to ensure that discharging is performed before loading. It states that if QC k
is loading at time t, then at any later point in time t any other QC k cannot be discharg-
ing. The underlying Lagrangian relaxation from Appendix B requires the addition of the
same constraint except that the ship index i is dropped.

The changes with respect to the set covering reformulation are more interesting.
The model (25)-(28) needs to be augmented by the constraints

, ,

(,) (,)

0 ,..., 2; 1,..., 1; 1,..., .

L D

r t r t i i i i i i
r R r R

j z r j z r
z L z L

y y t d d T t t d T j H
∈ ∈

∈ ∈
∈ ∈

− ≤ = + − = + + − =∑ ∑ (39)

If ,jtt t tα > are the dual values for (39), then it can be seen that the objective value (32)
changes to

1 1

+Minimize () ,
iH L

t zt jz jzt jz
j z

p λ π β δ
= =

− +∑∑

where

 20

 :

:

 .

L
jtt

t t t
jzt D

jtt
t t t

z L

z L

α
β

α
>

<

⎧ ∈
⎪= ⎨

∈⎪
⎩

∑

∑

It is convenient that the pricing problem is of the same complexity as the original pricing
problem (32)-(35). Thus we firmly believe that this extension is computationally tracta-
ble.

We can similarly handle more than two operations. The concept of different opera-
tions allows also to model shifting. In shifting, a set of containers is temporarily un-
loaded from a bay, and then later loaded into a different bay of the same ship. The load-
ing and unloading tasks of shifting can be modeled as two separate operations and then
incorporated as described above.

Quay Crane Time
In many situations, QCs movement times are negligible with respect to the time to per-
form the underlying operation. Next we show how to handle substantial gantry time if
need be.

Let us assume that configurations r and r are selected in two consecutive time pe-
riods. A QC requires a certain amount of time to move from one bay to another bay.
Since r and r encode the actual positions of the QCs, it is easy to assign the required
time (,)d r r for the QCs to move from one configuration to the next one (it is the maxi-
mum time over all QCs). The new objective is now to minimize the cumulative sum over
all selected configuration pairs of all (,)d r r over all time periods.

To achieve this, we need to augment the decision variables in the set covering for-
mulation (29)-(31). We define , ,r r ty to be one if in time period t configuration r is se-
lected and configuration r is selected in time period t+1. The new set covering model
(including Lagrangian multipliers) now becomes

2

, ,
, 1

Minimize (,)
i MS

i

d T L

zt r r t
t d r R r R z

d r r yλ
+ −

= ∈ ∈ =

⎛ ⎞+⎜ ⎟
⎝ ⎠

∑ ∑ ∑ (40)

Subject to

() ()

2

, , , , 1
: , : ,

 1,..., , 1,...,
i MS

i MS

i

d T

r r t r r d T ijz i
t d r R j z r r R j z r

r R r R

y y f j H z L
+ −

+ −
= ∈ ∈ ∈ ∈

∈ ∈

+ ≥ = =∑ ∑ ∑ (41)

 , ,
,

1 ,..., 2r r t i i MS
r R r R

y t d d T
∈ ∈

= = + −∑ (42)

, , , , 1
, ,

(,) (,)

 1,..., 2;

 1,..., ; 1,..

r r t r r t i i MS
r R r R r R r R

j z r j z r

y y t d d T

j H z

−
∈ ∈ ∈ ∈

∈ ∈

≤ = + + −

= =

∑ ∑

., L

(43)

 binary.y

In objective function (40) we now capture the time between two consecutive confi-
gurations and the corresponding contribution from Lagrangian multipliers. Constraints

 21

(41) impose the usual requirement to perform all necessary operations. Note that the
last time period needs to be handled separately. Based on (42) a single configuration
must be selected in each time period. Finally, (43) impose basic compatibility among the
assignment variables in two consecutive time periods. They state that if a QC is per-
forming a certain (j,z) assignment in time period t, then the same (j,z) assignment must
be present in the second configuration in time period t-1.

The pricing problem (32)-(35) needs to be appropriately modified to capture the new
setting. Unfortunately, it becomes more complicated since it would include twice as
many variables due to the fact that two consecutive time periods must be considered.
We omit these details.

Dynamic Quay Crane Assignment to Ships
So far we assumed that QCs are assigned to ships a priori. Ideally, such decision mak-
ing should be allowed and, furthermore, dynamically reconfigured in each time period.
The proposed framework can be extended also to such situations.

Let
1

S

i
i

C C
=

= ∑ be the total number of available QCs. The main idea here is to let the

QCs freely float among the ships. We define new assignment variables iktx , which are 1
if QC k is assigned to ship i in time period t. The following constraints are then added to
the multi-ship model presented in Appendix A:

1

() 1 1,..., ; 1,..., (44)
S

ik
i

x t k C t T
=

= = =∑

1

() () 1,..., ; 1,..., ; 1,..., .
iH

ik ijk
j

x t x t k C t T i S
=

≤ = = =∑

We also redefine the basic assignment variables used in the multi-ship model in
Appendix A as ()ijkx t is 1 if in time period t QC k is assigned to ship i and bay j on this
ship. The remaining constraints remain virtually unchanged except that they apply over
all QCs.

In addition to (51), now (44) also provide a linkage among the ships. Thus they have
to be relaxed in the Lagrangian spirit. Our solution methodology is still applicable with
only minor changes. Each configuration r now involves a varying number of QCs and
the underlying Lagrangian multipliers of (44) are reflected in the cost.

5. Computational Study
We designed several computational experiments to test our proposed algorithms. The
experiments were conducted on a Pentium IV 1.6GHz personal computer with 512MB
of RAM and Linux as the operating system. The single and multi-ship models were im-
plemented in OPL Studio 3.7 (www.ilog.com), which utilizes CPLEX 9.1 as the underly-
ing LP and IP solver. The heuristic approach, the branch-and-price algorithm, and the
subgradient procedure were implemented by using OPLScript.

In our exact IP model, all the constraints and the objective function are linear, there-
fore standard IP solvers, such as CPLEX, can be used. We primarily use them to
benchmark the quality of solutions generated with the heuristic and the branch-and-

http://www.ilog.com/�

 22

price framework. However, the number of constraints is very large even for problem in-
stances of moderate size and therefore off-the-shelf solvers have severe limitations for
our problems.

5.1. The Single Ship Problem
We first investigate the single ship problem. Two data sets were created: the first one
with 12 small problem instances, and the second with 3 problem instances of realistic
sizes. The problem instances are arranged in the order of increasing H, each with vary-
ing T, C, and r input parameters. For each problem instance, the workload is randomly
distributed among the vessel bays. Table 1 provides the parameters of each problem
instance in the two data sets where instances starting with SSP denote the realistic
sets. The last two columns show the number of rows and variables of the compact for-
mulation (1)-(11).

Table 1: Description of the single ship test problems
Instance code H C R T No. of constraints No. of variables

SS1-1 10 2 1 61 8,184 2,501
SS1-2 10 3 1 61 15,687 3,721
SS1-3 10 4 1 61 25,508 4,941
SS1-4 10 5 1 61 37,647 6,161
SS1-5 10 2 3 61 8,184 2,501
SS2-1 20 3 3 106 55,882 12,826
SS2-2 20 4 4 106 90,968 17,066
SS2-3 20 3 5 106 55,882 12,826
SS3-1 30 3 8 143 114,001 25,883
SS4-1 40 2 8 198 109,732 31,878
SS4-2 40 3 8 198 211,306 47,718
SS5-1 50 3 8 249 ◊ ◊
SSP-1 25 2 8 519 178,561 52,419
SSP-2 30 3 8 839 ◊ ◊
SSP-3 40 4 8 1,385 ◊ ◊

 ◊ Unknown – insufficient memory to load the problem into CPLEX

For each problem instance, 3 different experiments were carried out: the compact
formulation solved by CPLEX, the heuristic presented in Section 2.2, and branch-and-
price (B&P). Computational results of all these tests are shown in Table 2.

CPLEX obtained the optimal vessel makespan values for 11 out of the 12 small
problem instances, with the last one failing due to insufficient memory. The branch-and-
price algorithm was always able to find an optimal solution. The heuristic, on the other
hand, generates optimal solutions for 9 of the 12 small test cases, with the rest having
an optimality gap of at most 6.1%. For the realistic problem set, CPLEX fails to execute
for the last two instances while branch-and-price finds an optimal solution. The heuristic
was actually able to generate optimal solutions for all 3 realistic test cases. The overall
quality of the heuristic solutions is high.

In terms of the computational time, the heuristic is the fastest one, as expected.
Branch-and-price is also extremely fast with SS5-1 the only instance requiring more
than a minute. In problem instances SS1-4, SS2-2, and SS3-1 integer solutions were
obtained at the root node and no branching was necessary, thus computation time is
almost negligible in these cases. As for the heuristic, the computational time never ex-

 23

ceed 20 seconds even for the largest test case, SSP3. It is clear that branch-and-price
significantly outperforms CPLEX. This is particularly pronounced in instances SS4-2
and SSP1. Note also the low running time of branch-and-price for all three realistic in-
stances.

Table 2: Comparison of the three algorithms for the single ship instances

Instance
code

Optimal
makespan

Heuristic
gap

above
optimal

CPLEX
runtime
(secs)

Heuristic
runtime
(secs)

B&P
runtime
(secs)

B&P no.
of nodes

SS1-1 31 0 0.87 0.09 0.15 13
SS1-2 21 0 0.98 0.08 0.19 9
SS1-3 16 0 1.10 0.08 0.14 7
SS1-4 14 0 1.02 0.09 0.10 1
SS1-5 31 0 1.13 0.01 0.02 3
SS2-1 36 0 0.84 0.31 1.09 15
SS2-2 38 5.26 11.58 0.50 0.51 1
SS2-3 36 0 9.67 0.36 0.64 4
SS3-1 56 0 6.54 1.04 1.05 1
SS4-1 99 0 25.89 1.83 4.53 9
SS4-2 66 6.06 368.70 1.82 20.66 43
SS5-1 83 3.61 ◊ 2.99 105.29 99
SSP1 260 0 808.09 2.87 3.83 20
SSP2 317 0 ◊ 6.99 8.02 12
SSP3 412 0 ◊ 18.42 24.11 6

 ◊ Unknown – insufficient memory to load the problem into CPLEX
Next we demonstrate how changes in the number of bays, QCs, and time periods ef-

fect the running times. By default we set T=125, C=2, H=20, r=2, and next we vary them
one by one. Both exact algorithms (CPLEX and branch-and-price) were always able to
find an optimal solution. In the left figure in Figure 4 we range the number of bays H
from 10 to 40 and we record the running times of the three algorithms. It is clear that
this has a significant impact on CPLEX, but, on the other hand, negligible effect on the
remaining two algorithms. The running time of branch-and-price barely increases with
the increased number of bays.

In the right chart in Figure 4 we change the number of time periods. Due to large
running times of CPLEX in comparison with branch-and-price, we report the running
times on the logarithmic scale. The trend is very similar to the previous case. As the
number of time periods increases, the running times of branch-and-price and the heuris-
tic barely increase, while the increases in CPLEX are significant. For T=200, branch-
and-price requires less than a second and CPLEX 167 seconds.

The impact of the number of QCs is depicted in Figure 5. The running times are
shown on the logarithmic scale. To the contrary with the previous two cases, the run-
ning time of branch-and-price now increases with the increased number of QCs. CPLEX
exhibits similar behavior. Nevertheless, the difference in the running time between these
two algorithms is enormous for five QCs: CPLEX requires 447 seconds and branch-
and-price a mere 45 seconds. The running time of the heuristic does not increase signif-
icantly.

 24

Figure 4: Sensitivity of H and T with respect to the running time

We can clearly conclude that increasing any of the three parameters increases sig-
nificantly the running time of CPLEX. On the other hand, branch-and-price is robust with
respect to the number of bays and time periods. Its running time increase is noticeable
only with the increased number of QCs. As expected, the running of the heuristic is not
significantly influenced by neither parameter.

Figure 5: Sensitivity of C with respect to the running time

While Table 2 and the corresponding figures provide a thorough treatment of the
computational results, they are unable to demonstrate how QC spatial constraints are
met. An interface is written in Matlab to display a graphical and intuitive form of the solu-
tion. A graph of the vessel is plotted in Figure 6 with the bay location on the x-axis and
time period on the y-axis.

0

5

10

15

20

25

30

35

10 15 20 25 30 35 40

Number of bays H

Ti
m

e
(s

ec
s)

CPLEX Heuristic B&P

0.1

1

10

100

1000

40 80 120 160 200

Number of time periods T

Ti
m

e
(s

ec
s)

CPLEX Heuristic B&P

0.1

1

10

100

1000

1 2 3 4 5

Ti
m

e
(s

ec
s)

Number of QCs C

CPLEX Heuristic B&P

 25

Figure 6: Branch-and-price solution of SSP3, with all QC spatial constraints being met

5.2. The Multi-ship Problem
It remains to discuss the multi-ship problem. A set of 7 different problem instances was
created, arranged in the order of the increasing number of ships S, which varies from 2
to 8. They are described in Table 3 for 8 yard locations. The ships are weighted equally
with respect to their importance towards makespan. Again, the container workload is
randomly distributed among the vessel bays. In these problem instances we have an
overlap in the berthing periods of the vessels (i.e., [],i id T intervals defined in Appendix
A overlap), so that the yard congestion constraints are binding.

Three further instances were created on each problem instance, labeled as ‘easy’,
‘moderate’ and ‘hard’. The level of difficulty is determined by the value of wz. In ‘easy’
cases the largest value of wz is 8, for moderate cases the largest value is 2, and in hard
cases it is always 1. For easy problems the yard congestion constraints barely restrict
the feasible region. Often the primal heuristic performs no work at all as no infeasibilities
are detected from the Lagrangian solutions. In contrast, for ‘moderate’ and ‘hard’ cases,
much lower values of wz are used. In Table 4 we compare CPLEX vs. our Lagrangian
approach. Recall that L is the number of yard locations.

The column ‘CPLEX makespan’ shows the deviation of the CPLEX solution with re-
spect to the best solution obtained by our Lagrangian approach, which is shown in the
column ‘Lag. makespan’. The column ‘Optimality gap’ gives the optimality gap of the
Lagrangian approach. For the ‘easy’ cases, a single Lagrangian iteration is needed
since most of the yard congestion constraints are non binding. For all 7 problem in-
stances, the subgradient algorithm runs faster than CPLEX. Both algorithms solve all of
instances except the last one by CPLEX to provable optimality. We can clearly see that
the Lagrangian approach outperforms CPLEX in all cases with respect to the running
time, and clearly there is a big advantage of using Lagrangian for the last instance
MSD8.

 26

Table 3: Description of the multi-ship test problems
Instance

code S Hi Ci r di Ti
No. of con-

straints
No. of

variables
MSD2 2 10,10 2,2 2 1,4 32,44 18,423 9,196
MSD3 3 10,10,15 2,2,3 3 1,5,10 32,44,73 76,161 43,394

MSD4 4 10,10,15,
15 2,2,3,3 3 1,1,8,14 32,44,73,

50 110,715 63,694

MSD5 5 10,10,15,
15,20

2,2,3,3,
4 3 1,8,20,

40,65
32,44,73,

50,79 204,757 120,653

MSD6 6 10,10,15,
15,20,25

1,1,2,2,
2,3 5 1,8,20,

40,65,65
32,44,73,
50,79,89 231,990 128,932

MSD7 7
10,10,15,
15,20,25,

25

1,1,2,2,
2,3,3 6

1,8,20,
40,65,65,

41

32,44,73,
50,79,89,

111
359,729 203,968

MSD8 8
10,10,15,
15,20,25,

25,25

1,1,2,2,
2,3,3,3 6

1,8,20,
40,65,

65,41,10

32,44,73,
50,79,89,

111,80
451,849 258,048

For the ‘moderate’ cases, the Lagrangian approach solves 4 out of the 7 instances
to optimality. A maximum of 4 subgradient iterations are required to reduce the duality
gap below 1%. In these cases moderate infeasibilities in the Lagrangian solutions are
easily corrected by the primal heuristic to produce high quality upper bound values. In-
stance MSD4 is the only instance where CPLEX outperforms our Lagrangian approach.
Note that for this instance the running time of CPLEX is lower, and, even though the
computed makespan is the same for both algorithms, CPLEX has no optimality gap at
the end. The last two instances are particularly interesting since CPLEX runs out of
memory while the Lagrangian approach finds solutions within 1% in less than 5 minutes.

For the ‘hard’ cases, CPLEX outperforms the Lagrangian approach only for the first
instance. Both algorithms find the same solution, however Lagrangian requires much
more time and it does not establish provable optimality. In the remaining 7 instances
Lagrangian clearly dominates CPLEX. A maximum duality gap of 16.07% (in instance
MSD4) is found among all instances. The running times are much longer than in the
‘easy’ and ‘medium’ cases mostly due to a larger number of subgradient iterations. In
MSD3 and MSD4 CPLEX finds inferior makespan within a time limit of one hour, which
is particularly pronounced in the MSD4 instance.

It is clear that the Lagrangian approach substantially outperforms CPLEX. Out of 24
instances only in two instances CPLEX fared better.

Figure 7 shows the gap between the lower and the upper bound with the subgra-
dient algorithm as the iterations progress. The standard tailing effect is observed, in par-
ticular with respect to the Lagrangian dual lower bound.

 27

Figure 7: Lower and upper bounds of subgradient optimization for MSD4 (hard case)

Table 4: Comparison of CPLEX vs. our Lagrangian approach for multi-ship instances

Level of
difficulty

Instance
code L CPLEX

makespan

Lag. ma-
kespan

Optimality
gap

CPLEX
runtime
(secs)

Lag.
runtime
(secs)

No. of
Lag. itera-

tions

‘Easy’

MSD2 5 0 40 0 3 2 1
MSD3 8 0 74 0 15 11 1
MSD4 8 0 106 0 25 17 1
MSD5 8 0 162 0 60 39 1
MSD6 8 0 146 0 171 121 1
MSD7 8 0 210 0 473 242 1
MSD8 8 ⌂ 262 0 ⌂ 295 1

‘Moderate’

MSD2 5 0 40 0 8 4 2
MSD3 8 0 74 0 17 24 2
MSD4 8 0 106 0.97% 53 71 4
MSD5 8 0 162 0 71 39 2
MSD6 8 0 146 0 242 121 2
MSD7 8 ⌂ 210 0.96% ⌂ 240 1
MSD8 8 ⌂ 260 0.77% ⌂ 294 1

‘Hard’

MSD2 5 0 39 2.68% 13 2,743 85
MSD3 8 +2◊ 71 5.42% 3,600◊ 3,003 100
MSD4 8 +14◊ 91 16.07% 3,600◊ 3,543 100
MSD5 8 ⌂ 158 2.02% ⌂ 3,295 69
MSD6 8 ⌂ 141 3.86% ⌂ 5,976 97
MSD7 8 ⌂ 192 12.26% ⌂ 3,342 20∆

MSD8 8 ⌂ 246 15.41% ⌂ 4,332 20∆

◊ CPLEX time limit of 1 hour exceeded
⌂ insufficient memory to run the problem with CPLEX
∆ subgradient terminated prematurely due to high running time per iteration

 28

6. Conclusions
In this work we have articulated formal models and algorithms for the single and multi-
ship models with the latter taking into account the possibility of congestion forming in
the yard from high loading and discharging activities. We have also incorporated the
important QC clearance requirements into our models. For the single-ship model a nov-
el branch-and-price approach is developed, which solves the single ship model to opti-
mality. This is used in lieu of the direct approach by solving the problem using a com-
mercial solver. Branch-and-price saves a tremendous amount of computational effort.
For the multi-ship model we proposed a method based on a combination of Lagrangian
relaxation, the subgradient algorithm, and a primal heuristic. We noted that relaxing the
yard congestion constraints allows the separation of the original problem into indepen-
dent subproblems having a similar structure as the single ship model. This created the
opportunity to develop a modified branch-and-price method, originally proposed for the
single ship model, to solve the Lagrangian relaxation in each iteration of the subgradient
algorithm. Good primal solutions were achieved by effectively utilizing information gen-
erated by Lagrangian relaxation. Computational results varied considerably depending
on the value of the yard activity threshold. When this value was high, no duality gap was
observed. However, for lower threshold values we have to tolerate manageable levels
of suboptimality. Nevertheless, in all cases our proposed Lagrangian relaxation tech-
nique is the recommended approach in terms of computational efficiency and solution
quality for solving multi-ship problems.

Appendix A: The Multi-ship Formulation
The following notation is used in the multi-ship formulation.

Indices:
i Ship number, in no particular berthing order;
j Bay number, in increasing order of their relative location on the vessel

(i.e., left to right);
k QC number, in increasing order of their relative position (i.e., left to right);
z Yard storage location number;
t Time period index, denoting the interval of time from t-1 to t;
Parameters:
S Number of ships berthing during the master planning horizon;
Qt The set of ships berthed at time t;

 Ci Number of QCs allocated to ship i;
 Hi Number of bays in ship i;
 L Number of container storage locations in the yard;
 fijz Number of containers to be discharged from bay j of ship i headed for sto-

rage location z;
 di Berth time of ship i; vessel i cannot be handled before this time;
 ci The per time unit cost of ship i during discharging;

 29

 Ti Number of time periods in the individual planning horizon of ship i; (it can

be set to
1 1

H L

ijz
j z

f
= =
∑∑);

 Tmax Total number of time periods in the master planning horizon, i.e.,
max { 1}i i id T+ − ;

 r QC clearance value for all vessels, in terms of the number of bays;
 wz Yard activity threshold; it is the maximum number of QCs allowed to work

on containers headed for storage location z at any time;
 Decision variables:
 ()ijkx t 1 if QC k is positioned at bay j of ship i at time period t and 0 otherwise;
 ()ijkz tδ 1 if QC k is discharging a container headed for storage location z at bay j

of ship i at time period t and 0 otherwise;
 ()i tγ work completion flag: 0 if all container jobs in ship i have not yet been

completed at time period t and 1 otherwise;
The formulation is as follows.

1

1

Minimize ()
i i

i

d TS

i i
i t d

c tγ
+ −

= =

−∑ ∑ (45)

Subject to

1

() 1 1,..., ; 1,..., ; ,..., 1
iH

ijk i i i i
j

x t i S k C t d d T
=

= = = = + −∑ (46)

1
() 1 1,..., ; 1,..., ; ,..., 1

iC

ijk i i i i
k

x t i S j H t d d T
=

≤ = = = + −∑ (47)

()
1

max{1, } 1

1 () ()
iCj

i ijk ilm
l j r m

C x t x t
−

= − =

− ≥ ∑ ∑ 1,..., ; 2,..., ; 1,..., ; ,..., 1i i i i ii S j H k C t d d T= = = = + − (48)

()
min{ , }

1 1

1 () ()
i ij r H C

i ijk ilm
l j m

C x t x t
+

= + =

− ≥ ∑ ∑ 1,..., ; 1,..., 1; 1,..., ; ,..., 1i i i i ii S j H k C t d d T= = − = = + − (49)

, 1
1

() ()
H

ijk il k
l j

x t x t+
= +

≤ ∑ 1,..., ; 1,..., 1; 1,..., 1; ,..., 1i i i i ii S j H k C t d d T= = − = − = + − (50)

1

, 1
1

() ()
j

ijk il k
l

x t x t
−

−
=

≤ ∑ 1,..., ; 2,..., ; 2,..., ; ... 1i i i i ii S j H k C t d d T= = = = + − (51)

() 0ijkx t = 1,..., ; 2,..., ; 1,..., 1; ,..., 1i i i ii S k C j k t d d T= = = − = + − (52)
() 0ijkx t = 1,..., ; 1,...., 1; () 1,..., ; ,..., 1i i i i i i ii S k C j H C k H t d d T= = − = − − + = + − (53)

1

1

() 1,..., ; 1,..., ; 1,...,
i i i

i

C d T

ijkz ijz i
k t d

t f i S j H z Lδ
+ −

= =

= = = =∑ ∑ (54)

() () 1,..., ; 1,..., ; 1,..., ; 1,..., ; ,..., 1ijkz ijk i i i i it x t i S j H k C z L t d d Tδ ≤ = = = = = + − (55)

1

() 1 1,..., ; 1,..., ; 1,..., ; ,..., 1
L

ijkz i i i i i
z

t i S j H k C t d d Tδ
=

≤ = = = = + −∑ (56)

 30

max
1 1

() 1,..., ; 1,...,
i i

t

H C

ijkz z
i Q j k

t w z L t Tδ
∈ = =

≤ = =∑∑∑ (57)

1
()

() 1,..., ; 1,..., ; 1,..., ; ,..., 1

i

i

C t

ijkz
k l d

i i i i i
ijz

l
t i S j H z L t d d T

f

δ
γ = =≤ = = = = + −

∑∑
 (58)

, , binaryx δ γ (59)
The individual planning horizon of vessel i ranges from di to di + Ti - 1, and for each

vessel the QC positions and work constraints are applied in every time period within this
range. All of the QC position constraints (46)-(53) are similar to the single-ship model
position constraints described in Section 2.1, and they are applied to each vessel, in-
dexed by i. QC work constraints (54)-(56) are also similar except for the additional index
for storage location. The added work constraint (56) ensures that a QC cannot dis-
charge more than one container from a bay at any time.

Constraint (57) sums up the total amount of QC work performed on containers
headed for a particular storage location z over all active vessels at a particular time pe-
riod t. It ensures that it does not exceed the yard activity threshold wz. The value wz may
be dissimilar among the different storage locations due to different types of yard cranes
and the size of the traffic lanes. Each of the yard congestion constraints depends on lo-
cation z and time t. For ease of referencing them they are denoted by (z,t).

Constraint (58) captures the work completion flag; containers in all storage locations
in each bay of vessel i must be entirely handled before ()i tγ can be set to 1. The objec-
tive function evaluates the sum of the weighted makespan of each vessel. The makes-

pan of vessel i in an optimal solution is
1

() 1
i i

i

d T

i i
t d

T tγ
+ +

=

− +∑ .

Appendix B: The Lagrangian Subproblem Formulation
The Lagrangian subproblem reads

Minimize ()iL λ
 Subject to constraints (2)-(7) and

1

() 1,..., ; 1,...,
i i

i

d T

jz ijz i
t d

t f j H z Lδ
+ −

=

= = =∑

() () 1,..., ; 1,..., ; 1,..., ; ,..., 1jkz jk i i i i it x t j H k C z L t d d Tδ ≤ = = = = + −

1

() 1 1,..., ; 1,..., ; ,..., 1
L

jkz i i i i i
z

t j H k C t d d Tδ
=

≤ = = = + −∑

1
()

() 1,..., ; 1,..., ; ,..., 1

C t

jkz
k l d

i i i i
jz

l
t j H z L t d d T

f

δ
γ = =≤ = = = + −

∑∑

, , binary.x δ γ

 31

References
Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P. (1998).

Branch-and-Price: Column generation for solving huge integer programs. Operations
Research, 46, 316-329.

Bish, E. (2003). A multiple crane constrained scheduling problem in a container termin-
al. European Journal of Operational Research, 144, 83-107.

Cheung, R., Li, C.-L., and Lin, W. (2002). Interblock crane deployment in container ter-
minals. Transportation Science, 36, 79-93.

Daganzo, C. (1989). The crane scheduling problem. Transportation Research: Part B,
23, 159-175.

Fisher, M. (1985). An applications oriented guide to Lagrangian relaxation. Interfaces,
15, 10-21.

Geoffrion, A. (1974). Lagrangean relaxation for integer programming. Mathematical
Study, 2, 82-114.

Held, M., and Karp, R. (1970). The travelling salesman problem and minimum spanning
trees. Operations Research, 18, 1138-1162.

Kim, K.H., and Kim, K.Y. (1999). An optimal routing algorithm for a transfer crane in port
container terminals. Transportation Science, 33, 17-33.

Kim K., and Park, Y. (2004). A crane scheduling method for port container terminals.
European Journal of Operational Research, 156, 752-768.

Lubbecke, M., and Descrosiers, J. (2005). Selected topics in column generation. Opera-
tions Research, 53, 1007-1023.

Murty K., Liu, J., Wan, Y., and Linn, R. (2005). A decision support system for operations
in a container terminal. Decision Support Systems, 39, 309-332.

Peterkofsky, R., and Daganzo, C. (1990), A branch-and-bound solution method for the
crane scheduling problem. Transportation Research: Part B, 24,159-172.

Steenken, D., Voß, S., and Stahlbock, R. (2004). Container terminal operation and op-
erations research – a classification and literature overview. OR Spectrum, 26, 3-49.

Wolfe, P., and Crowder, H. (1974), Validation of subgradient optimization. Mathematical
Programming, 6, 62-88.

Zhang, C. (2002). A heuristic for real-time container load sequencing. Master’s Thesis,
HPCES, Singapore-MIT Alliance.

Zhang, C., Wan, Y.-W., Liu, J., and Linn, R.J. (2002). Dynamic crane deployment in
container storage yards. Transportation Research: Part B, 36, 537–555.

