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the Requirements for the Degree of Doctor of Philosophy in Biological Engineering

ABSTRACT

Proteins and polysaccharides are of growing importance as a source for novel therapeutic

compounds and target a range of diseases, from cancer to infections from pathogens. However,

owing to their large and complex structures, they face a unique set of challenges, compared to small

molecules, in their discovery and development as safe, efficacious drugs. Towards addressing these

challenges, we describe in this thesis the implementation of structure-function relationship

approaches to characterize and engineer polysaccharides and antibodies to improve their

therapeutic profiles.

The plant polysaccharide pectin, when modified, has demonstrated significant anticancer

activity in animal models and small-scale clinical trials. Its development has been hampered,

however, due to its complex structure and lack of structure-activity correlates. Using an integrated

approach, we engineer a modified pectin that exhibits significant in vivo anticancer activity, which

we link to specific structural attributes and cellular functional mechanisms. These results improve

our structure-function understanding of anticancer modified pectin, an important step towards the

clinical use of this complex polysaccharide.

Applying what we learned from pectin, we develop an integrated framework to identify a

contaminant in batches of heparin, a polysaccharide anticoagulant drug, associated with an

outbreak of allergic-type reactions in 2007-2008. Employing orthogonal analytical approaches to

overcome challenges of characterizing structurally complex pharmaceutical heparin, we determine

that the structurally related glycan, oversulfated chondroitin sulfate, is the major contaminant. We

link its presence to activation of the contact pathway, thereby establishing a structure-function

understanding of contaminated heparin and improving the safety profile of this polysaccharide

drug.

Transitioning knowledge gained from the structure-function characterization of

polysaccharides, we engineer, by structure-based design, a broad spectrum neutralizing antibody to

dengue virus, which yearly infects more than 200 million people, causing approximately 21,000

deaths. We incorporate complementary approaches of energetics and empirical informatics
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methods to rationally redesign an existing antibody for greater breadth and potency, resulting in an
engineered antibody with binding to all four virus serotypes and good in vitro potency.

Overall, this thesis provides important insights into structure-function approaches through
the use of complementary methods to characterize and engineer therapeutic polysaccharides and
antibodies.

Thesis Supervisor: Ram Sasisekharan

Title: Alfred H. Caspary Professor of Biological Engineering
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1. Background

1.1. Motivation

Proteins and complex carbohydrates are of growing importance as a source for novel

therapeutic compounds for drug discovery and development, in part, due to their exquisite

biological specificity, range of functionalities, and accumulating evidence of their clinical efficacy

and safety [1]. Indeed, there are over 300 pharmaceutical recombinant proteins and antibodies

approved in the US and/or Europe, with a current market of approximately $100 billion and an

estimated 15-18% annual growth [2]. Examples of protein and carbohydrate drugs include

enzymes, antibodies, hormones, cytokines, growth factors, sulfated glycosaminoglycans, and

glycomimetics [1, 3-5]. Proteins and polysaccharides in their natural form may demonstrate

interesting "lead" activities by, for example, binding a therapeutic target. However, as natural

proteins and carbohydrates have not evolved for use as drugs, improvement in their properties,

such as activity, affinity, specificity, and stability, among others, may be necessary to convert them

to clinically viable compounds [6-11].

Development of structure-function relationships provides an effective and common strategy

to rationally modify small molecule natural compounds for improved activities and properties

towards their development as drugs [12-16]. However, proteins and polysaccharides, owing to

their large and complex structures, are faced with a unique set of challenges in applying a similar

approach to improve their properties for therapeutic development. Complete structural

characterization, including 3D conformation and microheterogeneities (e.g., variable glycan chain

structures), is frequently an arduous process, and sometimes not possible, for proteins and

polysaccharides [17]. Instead, structure-characterization techniques, such as NMR and mass

spectrometry (MS), are often most useful for providing information regarding structural attributes

or properties of proteins and polysaccharides rather than complete structural elucidation.

Furthermore, when it is possible to determine complete 3D structures, such as with proteins by X-

ray crystallography, substantial time and resources are required, which limits the ability to rapidly
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relate multiple different structures to their respective activities. In addition to structure-

determination challenges, direct structural modification techniques for proteins and

polysaccharides often lack the precision possible with small molecules. For example, adding specific

functional groups at particular sites on proteins or complex carbohydrates becomes exceedingly

challenging due to the variety and abundance of chemical groups already present in these natural

biopolymers. Collectively, significant challenges exist to developing robust structure-function

relationships for characterizing and rationally engineering proteins and complex carbohydrates for

their therapeutic development.

Motivated by these challenges, this thesis work is aimed to further develop and

implement structure-function relationship approaches to characterize and engineer

polysaccharides and antibodies with therapeutic activity. Three different molecules are explored

in this thesis. First, a modified plant polysaccharide, pectin, which exhibits anticancer activity, is

characterized using an integrative approach to develop a structure-function relationship towards

its development as a clinically relevant therapeutic. Second, an existing polysaccharide drug,

heparin, is characterized by structure-function approaches to identify a contaminant associated

with an outbreak of adverse clinical events. And third, structure-function approaches are utilized to

rationally engineer a broad spectrum neutralizing antibody to dengue virus. Development and

application of structure-function approaches to characterize and engineer therapeutic proteins and

polysaccharides would aid not only our understanding of these complex biopolymers but also

directly support the development of new protein and carbohydrate therapeutics. The remainder of

"Chapter 1: Background" provides an introduction to the three biopolymers - pectin, heparin, and

dengue antibodies - investigated in this thesis.

1.2. Anticancer Modified Pectin

1.2.1. Pectin structure

Pectins are a family of large, complex polysaccharides found in the cell walls of terrestrial

plants where they participate in diverse functions such as plant growth, mechanical support,
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development, and plant defense [18]. Pectins are structurally defined as a group of polysaccharides

rich in covalently linked galacturonic acid (GalA), though they exhibit substantial diversity in fine

structural features [19-21]. Due to their gelling and stabilizing properties, pectins are extensively

used in the food industry, such as in the production of jams and jellies. Gelling properties and the

high safety profile of pectins have encouraged their use in other areas, such as biomedical matrices

for wound bandaging [22] and drug delivery applications [23]. Dietary pectin has also been linked

to positive health effects such as decreasing cholesterol levels [24-26], heavy metal detoxification

[27-29], and immune system stimulation [30, 31].

Broadly, pectin is composed of "smooth" and "hairy" regions (Figure 1.1) [18, 21]. Smooth

regions, termed homogalacturonan (HG), are composed of a linear polymer of poly-1-4 linked a-D-

GalA moieties with varying degrees of methyl-esters and O-acetyl-esters. HG comprises

approximately 65% of pectin, although this varies by pectin source [19]. The GalA backbone can be

found modified by different chemical groups: partial methylesterification at the C-6 carboxyl and 0-

acetylation at 0-2 and 0-3 positions. The hairy regions, which show greater structural diversity

than HG, are divided into two distinct domains termed rhamnogalacturonan I (RGI) and

rhamnogalacturonan II (RGII). RGI, which represents about 25% of pectin, contains a backbone of [-

a-D-GalA-1,2-a-L-Rha-1-4-]n. Each rhamnose (Rha) residue serves as a potential branch point for

additional glycan chains, leading to a high degree of structural variability. RGI branched chains are

largely composed of homo- and heteropolymers of galactose and arabinose. RGII is the most

complex domain of pectin, possessing multiple branch points with at least 13 different types of

sugars, and over 20 types of different linkages. RGII makes up about 10% of pectin and, in contrast

to RGI, its structure is largely conserved across plant species. The fine structural features of pectin

vary substantially and are influenced by plant tissue source, development state, and modification

during storage of plants (e.g., fruit ripening), among other conditions [32]. Collectively, pectins

represent a group of large polysaccharides with highly heterogeneous structural features, including

diversity of monosaccharides, chain length, amount of and location of branching, glycosidic

linkages, and chemical modifications.
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. . . . . Fucose (Fuc)

e Acenc acd (AceA)

Homogalactrnan * Galactose (Ga)
0 Arab.nose (Ara)

Rhamnogalacturonan I o xyose (Xy)
Rhamnogalacturonan o Glucuronic acd (GICA)

* Ketodeoxymmno-
octulopyranosylonwc acd (KDO)

Figure 1.1 Schematic representation of the basic structure of pectin. The major domains of pectin include

homogalacturonan, rhamnogalacturonana I, and rhamnogalacturonan II. Pectin structure exhibits a high level of

heterogeneity in terms of size, composition, linkages, and chemical modifications. Adapted from [20].

1.2.2. Anticancer modified pectin

There is growing evidence that pectins, when structurally modified, can exhibit significant

anticancer activity, with therapeutic benefit being demonstrated in multiple animal models [33-37]

as well as in small-scale clinical trials [38-42]. Indeed, one such modified pectin product, GCS-100,

is reported to have been evaluated in nine phase I and II clinical trials involving more than 140

human subjects in which results demonstrated initial signals of anti-tumor activity and good

tolerability [43]. Despite the evidence of anticancer efficacy and safety of modified pectins

accumulated during the past -20 years, clinical realization of a viable pectin therapeutic product

has been met with significant challenge, stemming much from the structural complexity of pectins

and associated lack of structure-function understanding of therapeutic pectin products. A

fundamental understanding of the structural motifs of modified pectin responsible for anticancer

activity as well as their mechanism of action is central to the development of clinically relevant

efficacious anticancer pectin.

The generation of anticancer pectin typically involves modification of citrus pectins by

various combinations of heat, pH, and enzyme treatments. Starting material often reported in the

literature is a commercial-grade pectin (e.g., from Sigma pectin) [35-37, 44], however such material

is prone to considerable structural variability depending on the plant source(s) and method of

20



pectin extraction [32]. Pectin modification schemes described in the literature and patents vary

considerably but typically involve heat and/or pH treatment with rare incorporation of digestion by

pectin-degrading enzymes. Combinations of heat and pH treatments of pectin have been shown to

modify pectin structure in characteristic ways [45-47]. High temperature treatment of pectin under

acidic conditions favors hydrolysis of glycosidic linkages [45]. Neutral glycan chains, however, are

more susceptible to acid-catalyzed hydrolysis, and therefore preferential degradation of pectin

hairy regions will occur while leaving smooth regions more intact under high temperature acidic

conditions. In contrast, alkaline conditions favor the chemical processes of de-esterification and

depolymerization of the HG backbone [46]. The reaction can be biased towards increased de-

esterification or depolymerization by temperature control: low temperature alkaline conditions

favor de-esterification while high temperature with base favors depolymerization of HG [47]. The

first pectins with reported anti-tumor activity were generated from various commercial citrus

pectin powders extensively fragmented through a combination of heat, alkaline, and acid [35-37],

though additional approaches have been reported [34, 48]. The high variability in both starting

material and modification procedures reported for the generation of anticancer modified pectin

further complicates a consensus understanding of the structural motifs responsible for mediating

pectin activity.

Previous studies have demonstrated pectin to modulate molecular and cellular activities

involving galectin-3 and have thus implicated a galectin-3-mediated mechanism of modified pectin

anticancer activity [44, 49-52]. Galectins are a family of lectins characterized by their ability to

recognize p -galactose-containing glycan structures by a conserved carbohydrate recognition

domain (CRD). The family of galectins consists of 15 members, with multiple galectins implicated in

tumorigenic processes, including apoptosis, tumor cell transformation, and cell-cycle regulation

[53]. The implication of galectin-3 in tumorigenic processes coupled with evidence of pectin

binding to galectin-3 makes a galectin-3-mediated therapeutic mechanism appealing, however

evidence directly connecting pectin-galectin-3 interaction with anticancer activity is lacking.
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Moreover, mechanistic details beyond direct binding to galectin-3, such as downstream signaling of

galectin-3 and possible of involvement of other galectins, remain largely unknown.

Structural studies of modified pectin, while providing new insights, have not elucidated a

definitive link between the presence of specific structural motifs and functional anticancer activity.

One study has demonstrated through multiple binding assays that pectin, and specifically galactans,

are able to directly bind galectin-3 [49], however further functional studies were lacking to connect

binding with anticancer activity. The direct role of galactans in binding galectin-3 was also

demonstrated by Gao and coworkers, however they determined that the GalA-containing fraction of

modified pectin was also able to bind galactin-3 [51]. In a separate study, Sathisha and coworkers

tested various pectic polysaccharides for effects on breast cancer cell apoptosis and invasion, and

found a general correlation between the presence of arabinose and galactose with activity [50],

though no specific bioactive structural motifs were identified. While these studies implicate the

hairy region structures in mediating activity, another study by Jackson and coworkers identified

non-methylester, base-sensitive glycan structures as correlating with apoptosis activity, and that

bioactive motifs could be generated or enriched for by acid treatment of citrus pectin [48]. Since

neutral branched chains of pectin (i.e., galactan and arabinan) are not highly sensitive to base and

their structures would be depolymerized by acidic conditions, the results from Jackson et al.

suggest other structures than galactans and arabinans as likely responsible for activity. Collectively,

previous studies have not connected specific structural motifs with anticancer activity, and

inconsistency exists among implicated bioactive structures.

To address the challenges inherent to establishing a structure-function relationship of

modified pectin with anticancer activity, an integrated approach combining complementary

analytical techniques with molecular, cellular, and animal model functional studies is undertaken.

Results demonstrate structural attributes of modified citrus pectin that distinguish it from native

citrus pectin, and that these attributes correspond to in vivo anticancer activity as well as specific

modulation of intracellular signaling cascades linked to galectin binding. Improved understanding
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of the structural motifs mediating activity and the associated mechanism of action will allow the

generation and development of more effective and consistent anticancer pectin agents.

1.3. Anticoagulant Heparin

1.3.1. Heparin

Heparin is a potent anticoagulant agent widely used in a variety of clinical settings,

including acute coronary syndrome, venous thromboembolism, pulmonary embolism, and

hemodialysis [54-56]. Pharmaceutical heparin, also termed unfractionated heparin (UFH) to

distinguish it from low molecular weight heparins (LMWHs), is composed of a heterogeneous

mixture of highly sulfated linear polysaccharides isolated from biological sources, typically porcine

intestine currently. UFH exerts its major anticoagulant activity by inactivating thrombin and factor

Xa through an antithrombin III (AT)-dependent mechanism [57]. Heparin, via a specific

pentasaccharide sequence, binds AT, which induces a conformational change in AT leading to its

activation [58]. Activated AT subsequently inhibits thrombin (factor Ila) and factor Xa, among other

coagulation factors. Inhibition of factor Xa requires only activated AT, however inhibition of

thrombin requires the formation of the ternary complex composed of heparin and AT with

thrombin to inactivate thrombin.

Heparin is a complex linear polysaccharide belonging to the glycosaminoglycan (GAG)

family. Broadly, it is composed of repeating disaccharide units consisting of a glucosamine and

uronic acid which have variable sulfation. Produced biosynthetically, heparin is found exclusively as

chains attached to the proteoglycan serglycin in connective-tissue-type mast cells where it

participates in the storage of mass cell granular components such as histamine, proteases and

inflammatory mediators [59]. The biosynthesis of heparin occurs by extension of copolymers of D-

N-acetylglucosamine (GlcNAc) linked to D-glucuronic acid (GlcA) as GlcNAca1-4GlcAs1-4. During

the biosynthetic process, extensive modification of the base chain occurs by the coordination of a

variety of enzymes, including multiple sulfotransferases, an epimerase, and a deacetylase [60, 61].

Arising from this biosynthetic process, heparin exhibits substantial structural heterogeneity,
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including chain length, degree and location of sulfates, and epimer differences [62]. The most

abundant disaccharide unit of heparin is 2-0-sulfonated iduronic acid (IdoA) 1 -*4 linked to a 6-0,

N-sulfonated glucosamine (GlcNS) (Figure 1.2). Overall, heparin demonstrates the greatest

negative charge density of any known biological macromolecule and exhibits substantial

heterogeneity.

Starting material for pharmaceutical heparin is first isolated from the biological source of

pig intestine, usually from China. A series of steps are applied to isolate crude heparin from tissue:

(6-0-Sulfate) physical separation of mucosa from

CH20S03 the intestine, solubilization by addition

C of proteases, and multiple

OH O Xprecipitation/solubilization steps [63].

Crude heparin material then

O-ulfate) (N-Sulate) undergoes cGMP purification steps

Figure 1.2 Main disaccharide unit of heparin. involving selective precipitations, ion

exchange, chemical treatments, and

filtrations [63]. The final pharmaceutical heparin product demonstrates significant polydispersity

and complexity, having a MW range of 5,000 - 40,000 Da (average -15,000 Da), variable chain

length, significant sequence heterogeneity (the major trisufalted disaccharide constitutes -75% of

the composition), and substantial sulfation variability (average -2.6 sulfates/disaccharide). In

addition, pharmaceutical heparin is known to frequently contain impurities, most notably dermatan

sulfate, also a GAG, in amounts up to 7%, which is considered tolerable as it does not affect heparin

anticoagulant activity [64].

The structural complexity of heparin coupled with its high heterogeneity challenges

elucidation of its structure. The complexity precludes any single current analytical technique from

complete characterization, and thus integration of results from a set of orthogonal techniques

which provide complementary information provides an effective approach to thorough

characterization - a subject described in depth in our recent review article [17]. In this regard,
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analytical techniques including capillary electrophoresis (CE), HPLC, mass spectrometry (MS),

NMR, and enzymatic digestion have been effectively adapted for a variety of glycan analyses,

including heparin [17, 65, 66]. The direct combination of these methods in the form of a separation

technique coupled with a detection method (so-called "hyphenated techniques"), such as LC-MS,

CE-MS, CE-NMR, LC-NMR, provide further advantages of improved resolution and sensitivity [67].

Indeed, the application of an integrated approach using complementary, high-resolution analytical

techniques was critical to the successful identification and characterization of a contaminant in

batches of heparin associated with adverse events, as described below.

1.3.2. Outbreak of allergic-type reactions in people undergoing dialysis

Beginning in late 2007, a series of acute, allergic-type reactions in patients undergoing

heparin therapy during kidney dialysis was reported. The sharp increase in allergic-like responses

was reported to the CDC, which notified the FDA on Jan 4, 2008. Initial investigations focused on the

clinical settings as the possible cause of the reactions, however no link to adverse reactions was

identified. Instead, a connection was made to certain lots of heparin manufactured by Baxter

Healthcare, and subsequently suspect lots and eventually all of Baxter's heparin products were

recalled by February 28, 2012. As a result, the number of adverse reactions to heparin therapy

returned to basal levels by April 2008 [68].

The adverse responses were anaphylactoid in nature, with signs and symptoms including

hypotension, facial flushing, breathing difficulty, tachycardia, nausea, and fainting. In some cases,

the severity of the reaction resulted in severe hypotension and, altogether, over 200 deaths

worldwide were eventually linked to the outbreak [69]. The immediacy and severity of adverse

reactions to heparin therapy coupled with heparin's widespread and essential use in a variety of

clinical settings necessitated an understanding of the cause(s) of the adverse events to prevent

future occurrences. Initial investigations by the FDA of heparin batches associated with adverse

events using enzymes, CE, and 1H-NMR revealed "heparin-like" molecule(s) [68]. As described

above, the high structural complexity and substantial heterogeneity complicates complete

characterization of all structural components in heparin. Moreover, molecules having similar
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physicochemical properties as heparin (e.g., "heparin-like" contaminant molecules), when mixed

with heparin, become exceedingly difficult to structurally elucidate due to the presence of

overlapping signals and properties, which challenges resolving foreign structures from the natural

heterogeneity of heparin product.

Further complicating the circumstances around the heparin mystery was an outbreak in

2006-2007 of a highly virulent form of porcine reproductive and respiratory syndrome virus

(PRSSV) in Chinese pigs, the principal source material for crude heparin [70, 71]. A key feature of

infection with PRSSV is the activation of macrophages [72], and activated monoctyes and

macrophages are known to produce highly sulfated chondroitin sulfate (type E) on the serglycin

proteoglycan [59, 73]. Concern thus arose that PRSSV infections in pigs may be leading to the

production of impurities (e.g., highly sulfated chondroitin sulfate) that could be copurified with

heparin during the process of generating pharmaceutical heparin product.

In order to address these issues, help identify the contaminant(s), and correlate presence of

the contaminant(s) to the observed anaphylactoid responses, a team of scientists from academic

labs and the pharmaceutical industry was enlisted to work with the FDA. I was fortunate to

participate in the ensuing investigations and to be a part of such an intelligent and motivated team

consisting of scientific, medical, and regulatory experts all working in concert to rapidly resolve the

heparin crisis.

1.4. Dengue

1.4.1. Dengue disease

Dengue is the most common vector-borne viral disease in humans, with an estimated 3.6

billion people at risk for infection. Globally, more than 200 million dengue infections occur each

year, resulting in approximately 21,000 deaths [74]. The high morbidity associated with dengue

leads to significant public health, social, and economic impact on populations and countries where

dengue is endemic [75]. The disease, transmitted to humans by mosquitos, is endemic to much of

the tropical and subtropical regions of the world. Dengue has been described as an emerging
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disease, with an increasing number of cases, their severity, and the geographical spread of dengue

[76]. The World Health Organization (WHO) has reported a 30-fold increase in dengue incidence in

the past 50 years concomitant with a geographical increase from a few to now over 100 countries

with endemic dengue [77]. Central to the emergence of dengue is the increased human population

growth and urbanization, expanded travel, globalized economy, and lack of effective mosquito

control [78]. Currently, no approved vaccine or specific therapy exists for dengue.

Dengue illness is caused by infection with one of the four dengue virus serotypes (DV1-4),

which are antigenically and genetically related. The disease is endemic to many tropical and

subtropical regions, including Southeast Asia, the Pacific, and the Americas, with human

transmission caused by the transfer of virus from an infected Aedes mosquito, principally the

urban-adapted Aedes aegypti species, which also has a preference for biting humans. Infection with

dengue virus causes a spectrum of clinical signs and symptoms, ranging from subclinical infection,

to mild febrile symptoms, to severe life-threatening hemorrhagic disease. Classical form of the

disease, termed dengue fever (DF), presents as acute febrile illness lasting 3-7 days and is

accompanied by symptoms that can include fever, headache, muscle and joint pain, nausea, rash,

and vomiting. While most DF cases are acute and self-limiting, in about 1% of cases, the disease

progresses to more severe forms, a progression which cannot be reliably predicted. More severe

disease forms, termed dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), occur

during defervescence and are characterized by plasma leakage; multifactorial hemostatic

abnormalities, including marked thrombocytopenia; and hemorrhagic symptoms [77]. Severe

plasma leakage can lead to hypotension and circulatory collapse, causing potential organ failure

and death. Despite the name, many DHF patients experience only minor bleeding symptoms,

although in some cases severe hemorrhagic manifestations do occur. Clinical management of

DHF/DSS is limited to supportive care, which focuses on appropriate and careful fluid replacement

to prevent shock and organ failure [77].
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The most significant single risk factor for development of severe disease is previous

infection by a heterologous serotype. The leading theory to explain this and related observations is

termed antibody-dependent enhancement (ADE), in which non-neutralizing and cross-neutralizing

antibodies promote virus infection and replication in cells bearing antibody receptors on their

surface (Figure 1.3). Uptake of virus-antibody complexes occurs more efficiently than free virus

DENV-
WEV - #Heterotypic antibody binds

Heterotypic antibody virus but does not neutralize
from previous infection I

Antibody-antigen complex
binds to FcyR

FcyR -

Monocyte ---

Increased access to
FcyR-bearing cells
leads to increased

Note: DENV replicates poorly in FcyR-bearing cells in virus load and diseaseabsence of heterotypic antibody

Figure 1.3 Model of antibody-dependent enhancement (ADE) of DV infection. Non-neutralizing or cross-

neutralizing (heterotypic) antibodies at subneutralizing concentrations can bind dengue virions and enable increased

infection of Fcy receptor-bearing cells such as monoctyes. Increased infection leads to augmented viral replication and

exacerbated disease presentation (adapted from [95]).

causing increased replication of virus. The higher occurrence of DHF during primary DV infection in

the first year of life in children born to DV-immune mothers, and who therefore acquire antibody

against DV transplacentally, further supports the implication of antibodies in causing increased

disease severity [79]. Importantly, these observations in young infants shows that at ages less than

6 months, the infants are protected from disease, but as antibody titers wane, there is increased

risk for disease [80]. Based on these observations as well as in vitro experiments of ADE,
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neutralizing antibodies at subneutralizing concentrations, in addition to non-neutralizing

antibodies, appear to be able to mediate ADE. Additional support for the ADE hypothesis stems

from direct experimental studies in which antibodies can confer increased virus levels both in vitro

as well as in vivo in mouse and non-human primate models [81]. Antibody-mediated increased

replication of DV is believed to be able to cause increased disease burden based on the observed

positive correlation between peak viremia titer and disease severity in humans [82-84]. However,

cases of DHF/DSS in non-infant individuals who experience primary DV infections indicates that

additional factors beyond ADE can lead to severe disease. In addition to previous heterotypic

infection, other risk factors for severe disease include the strain and serotype of the infecting virus,

age, genetic background of the individual, and degree of viremia [84, 85].

The pathogenesis underlying severe dengue disease is not well understood, though

immunopathological mechanisms rather than direct tissue damage by virus are believed to be

largely involved [86]. The immunopathological response is characterized as excessive immune

activation leading to heightened levels of pro-inflammatory cytokines and T-cell activation,

however the exact mediators and their mechanisms remain largely undefined [87, 88]. Such

immunopathological mechanisms are thought to cause increased capillary permeability and/or

coagulation dysfunction, thereby leading to observed clinical signs of plasma leakage and increased

hemorrhaging.

An effective vaccine for dengue remains elusive despite more than 50 years of development

efforts. Increased understanding of the disease, immunity, and the virus has shown that a unique

set of challenges are faced for the development of a safe and efficacious dengue vaccine based on

the existence of four serotypes combined with increased risk of disease severity in secondary

infections [89, 90]. An effective vaccine must provide robust, long-term protective immunity

against all four serotypes simultaneously while not causing severe disease, and the leading strategy

to accomplish these goals is the use of attenuated live viruses of each of the four serotypes [91, 92].

Vaccines which cause a weak antibody response to one or multiple serotypes could, due to ADE,

increase vaccinee risk for development of severe disease above the risk associated with no vaccine.
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Additionally, there is a lack of animal models that faithfully capture the human disease as well as a

lack of validated immunological correlates of immunity, thus significantly challenging efforts to

assess the safety and efficacy of vaccine candidates in preclinical settings. The challenges associated

with development of a dengue vaccine further motivate the need for other disease intervention

methods, including antiviral therapies and passive immunization strrategies.

1.4.2. Dengue virus

Dengue virus is a member of the Flaviviridae family and contains a single-stranded RNA

genome of positive polarity. 'Dengue virus' does not refer to a single virus but rather a group of four

antigenically and genetically related viruses which share disease phenotypes in human infection.

The four viruses, termed serotypes (DV 1-4), although related, share about 65% of their genomes,

which is a similar degree of relatedness of other flaviviruses to each other, such as West Nile Virus

(WNV) to Japanese Encephalitis Virus (JEV). The RNA genome encodes a single open reading frame

that is translated as a single polyprotein and is cleaved by viral and host proteases to produce ten

viral proteins, which includes three structural proteins (core [C], premembrane/membrane

[prM]/[M], and envelope [E]) and seven nonstructural (NS) proteins. The dengue virion particle is

approximately 50 nm in diameter with an icosahedral symmetry, and is composed of the RNA

genome; C, prM/M, and E proteins; and a host cell-derived lipid bilayer.

Dengue virus enters host cells by binding to yet unidentified host cell receptors followed by

receptor-mediated endocytosis. Though no consensus exists regarding the identity of the

receptor(s) used by DV, a variety of putative receptors have been described, with heparan sulfate

(HS) identified across a multitude of studies (reviewed in [93]). In a body of work separate from

this thesis, I am participating in studies to further characterize the role of HS as a DV receptor using

recombinant subviral particles of clinical isolate strains. Upon the acidification of the endosome, the

E protein rearranges from dimeric to a trimeric conformation, resulting in fusion of the host cell

and viral membranes. Nucleocapsid is subsequently released into the cytoplasm, and after

dissociation of C protein and the RNA genome, RNA replication and protein translation begin.

Particle assembly occurs in the lumen of the endoplasmic reticulum (ER). Particles are first
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assembled as fully immature virions presenting intact prM, which prevents fusion of new particles

with ER and Golgi membranes during the egress process. Cleavage of prM in the trans-Golgi

network along with increased lumen pH induces the rearrangement of E protein into dimeric form

and the conversion of a particle from

immature to an infectious, mature virion. DV

particles are subsequently released into the

extracellular environment. Importantly, the

cleavage of prM is not an efficient process,

which leads to the generation of immature,

partially mature, and fully mature populations

of particles.

The major DV surface protein is the E

protein, which is arranged as 90 dimers on the

virus surface positioned horizontally to the

lipid bilayer thus creating a smooth, spike-less

Figure 1.4 Structure of DV and E protein. DV surface particle (Figure 1.4). The E protein is
structure is composed of 90 dimers of E protein arranged composed of three domains (EDI-III) (Figure

with icosahedral symmetry. The E protein is composed of

three domains: EDI (red), EDII (yellow), and EDIII (blue). 1.4). EDI comprises the central region nested

Cross-reactive neutralizing epitopes are marked: EDII between EDII and EDIII. EDII, the dimerization

fusion loop (green) and EDIII A-strand (magenta). Adapted domain, makes contacts with EDII of its

from [76]. dimeric E protein partner. At its distal end,

EDII harbors the fusion loop, a conserved sequence of hydrophobic residues responsible for

insertion into host cell endosomal membrane to mediate fusion. EDIII has an immunoglobulin-like

fold and is likely involved in host cell attachment by recognition of yet unidentified receptors [94].

Conservation of the E protein amino acid sequence is high within serotypes, with identities

between 90-96%. However, between serotypes, E protein sequences typically only share

approximately 60-70% identity, reflecting the sequence and evolutionary divergence between the
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four serotypes. Being the major virus surface protein, the E protein is the primary target of the

humoral response to DV infection.

1.4.3. The humoral response to dengue infection

The adaptive immune response to dengue infection participates in both protective and

pathologic aspects of disease. Infection with one serotype leads to long-term protective immunity

to that serotype as well as transient protection to heterologous serotypes. However, cross-

protection wanes rapidly (-3-6 months), after which individuals are at risk for increased disease

severity upon infection by heterotypic DV. The leading hypothesis to explain this observation is

increased viral replication by ADE, as described above, thus directly implicating the humoral

response in pathologic progression of disease. Concomitantly, however, neutralizing antibodies

against E protein are primary mediators of protection against DV infection [95]. A robust antibody

response against an infecting serotype provides long-term protection against reinfection of the

same serotype [96]. The role of the humoral response in conferring protection is also supported by

experimental studies in which passive transfer of antibodies against E protein confer protection in

mice challenged with DV infection [97-99] as well as in non-human primate models of DV infection

[100]. Additionally, maternally transferred antibodies provide protection to infants less than six

months old [101].

The antibody response to dengue infection is primarily directed towards E, prM, and non-

structural protein 1 (NS1), with the principal neutralizing response being against E protein.

Antibodies recognizing prM tend to have high cross-reactivity and cause enhanced infectivity in

vitro, with little neutralizing activity [102]. The antibody response directed against E protein

targets all three domains. EDI-specific antibodies tend to have low or no neutralizing activity, and

antibodies against EDII tend to be weakly neutralizing but highly cross-reactive. Such antibodies

typically recognize the highly conserved fusion loop and neutralize DV by inhibition of fusion with

host cell endosomal membrane. However, the fusion loop is largely inaccessible in the intact virion

structure which limits neutralizing activity of antibodies which target this epitope [103]. Antibodies

directed to EDIII tend to have high neutralizing activity but are generally serotype-specific [94, 104-
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107]. Studies have identified cross-reactive EDIII antibodies which have moderate to high

neutralizing activity, however these antibodies tend to neutralize only 2-3 serotypes [108-113].

Studies of the humoral response to DV infection in mice indicated that EDIII-specific antibodies play

a major role in neutralizing activity against DV from serum [99, 104, 105, 111]. However, recent

studies of the humoral response in humans indicates that EDIII-specific antibodies bear little of the

serum DV neutralizing activity [114], and instead antibodies which bind complex, quaternary

epitopes on the surface of DV appear to be largely responsible for DV neutralizing activity in human

infection [115, 116].

Studies characterizing mechanisms influencing neutralization potency of E protein-specific

antibodies towards flaviviruses have demonstrated that neutralization is a 'multi-hit' phenomenon

in which multiple antibodies must bind a single virion particle to render it non-infectious (reviewed

in [117]). Factors governing potency include the accessibility of the neutralizing epitope, the level

of antibody occupancy of its epitopes, and affinity of the antibody for the epitope [118]. Serotype-

specific antibodies directed against EDIII tend to have greater neutralizing activity than cross-

reactive antibodies against EDIII. Biochemical investigations of this observation have indicated that

while these two classes of antibodies have similar affinities for their epitopes, cross-reactive

antibodies require a higher level of occupancy to neutralize virion particles [118, 119], which may

be explained by the differing accessibility of their epitopes in an intact virion.

1.4.4. Passive antibody therapy as an antiviral treatment modality

No specific therapy exists for dengue, however efforts to develop antivirals, particularly in

the form of small molecules, is of interest as a means to combat the disease. A growing therapeutic

modality for antivirals is the use of neutralizing monoclonal antibodies (mAbs) [120-125]. MAbs

offer several advantages as a source for the development of novel antivirals. First, they have high

biochemical specificity for their targets, thus decreasing or limiting off-target effects. Second, the

clinical use of therapeutic mAbs for other indications, such as oncology, has helped define their

pharmacokinetic (PK) profiles, information which can be used to more reliably predict PK

parameters for mAb products in development. In addition, mAbs can elicit both direct and indirect
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activities against viral infections: direct activity via binding and neutralizing virus particles, and

indirect activity by recruiting and activating additional immune response via effector functions

mediated by mAb Fc binding to cognate receptors on immune cells and activation of complement

molecules.

The serum half-life of antibodies is high (-21 days for IgG 1, 2, and 4) compared to many

other molecule classes, particularly small molecules. This long half-life translates into a longer

window of therapeutic activity from a single drug administration. Importantly, mAb long half-life

enables prophylactic, in addition to therapeutic, applications. Indeed, the only currently approved

antiviral mAb, palivizumab (Synagis), is for prophylactic treatment of respiratory syncytial virus.

Many viral diseases show epidemic cycles characterized by rapid increases in the number and

geographical spread of disease. Antiviral prophylactics, including mAbs, would provide significant

public health benefit in potential curbing outbreaks as well as protecting individuals in high risk

areas, such as residents who are unable to vacate and medical personnel.

While mAbs offer much promise as an emerging modality for therapeutic and prophylactic

intervention of viral diseases, challenges do exist to their successful development. First, the

development and manufacture of mAbs can be more expensive than that of small molecules, making

antiviral therapeutics potentially more expensive. Additional costs arise from the biological nature

of mAbs compared to purely synthetic small molecules. The increased use of mAbs as therapies,

such as in oncology, has helped foment increased efficiency and decreased costs in mAb

development and manufacture, thus contributing towards cost reductions.

Another significant challenge to the development of effective antiviral mAbs stems from the

high antigenic variability present for many viruses. Much of viral antigenic variability arises from

immune pressure combined with the ability of viruses to evolve rapidly, as observed with notable

examples of HIV and influenza virus. Substantial challenges thus exist in identification of mAbs with

potent neutralizing activity across the many subtypes/genotypes of a virus. One approach to

address this challenge is the utilization of multiple mAbs (a mAb 'cocktail') which have

complementary activity towards different strains, thereby enabling high breadth of targeting.
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Multiple mAbs per drug product can significantly increase regulatory challenges as well as

development and manufacture expenses, with the latter already being a substantial barrier to

market realization of antiviral mAb therapeutics. Therefore, a single broadly neutralizing mAb may

be preferred for many viral disease areas. A critical, and often limiting, challenge to successful

development of mAb therapeutics for antiviral diseases rests in the identification of potent, broadly

neutralizing mAbs.

1.5. Thesis Outline and Specific Aims

This thesis aims to utilize structure-function approaches to characterize and engineer

complex biopolymers - polysaccharides and antibodies - towards improving their therapeutic

profiles. A structure-function approach is applied to two polysaccharides - pectin as a potentially

new drug and an established drug, heparin - and to an antibody directed against dengue virus

having therapeutic potential. Towards this thesis, three specific aims are investigated:

1. Establish a robust structure-function understanding of modified pectin having

anticancer activity. (Chapter 2)

2. Develop a structure-function approach to define a contaminant in batches of

heparin associated with an outbreak of adverse clinical events. (Chapter 3)

3. Employ structure-function-based rational design to engineer a broad spectrum

neutralizing antibody to dengue virus having therapeutic potential. (Chapter 4)
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2. Structure-function characterization of anticancer modified
citrus pectin

2.1. Introduction and motivation

Pectin is a structurally complex, naturally occurring polysaccharide that is a major

component of plant primary cell walls [1, 2]. In its native state in plants, pectin has well

characterized roles in plant growth, development, and defense. Dietary pectin has shown to exhibit

multiple potential health benefits, including lowering cholesterol, stimulation of the immune

system, and modulation of glucose metabolism [2]. This gelling, non-toxic polysaccharide has

additionally been adapted for application in a wide range of industries including food, cosmetics,

adhesives, and medical devices. More recently, modified pectins have come under extensive

investigation for their promising role as cancer therapeutics [3-10].

Pectin may be . broadly characterized as a carbohydrate network consisting of

interconnected linear polysaccharides rich in galacturonic acid (GalA) interspersed with

structurally diverse neutral oligosaccharide branches [1]. Fragmentation of the pectin network with

alkali, acid, heat, and/or pectin-degrading enzymes yields modified pectin formulations with

distinct physical, chemical, and biological properties [11-13]. The effects of these treatments are

distinct but interconnected: high temperature and alkaline treatment primarily fragment and de-

esterify the linear GalA-rich pectin backbone [13, 14] while acid treatment favors hydrolysis of

glycosidic linkages within the neutral oligosaccharide branches [12]. The first pectins with reported

anti-tumor activity were generated from citrus pectin powders extensively fragmented through a

combination of heat, alkaline, and acid treatments [5-7], though other activation approaches have

recently been reported [4, 10]. Consequent digestion and increased solubilization of the pectin

network is hypothesized to enhance binding of pectin structures to galectin-3 (Gal-3) [7, 15, 16], a

P-galactose-binding lectin that is a multi-faceted regulator of tumor progression [17, 18]. Modified



pectins have been demonstrated to reduce tumor growth and/or metastasis in a range of models

including melanoma [4, 5, 16], breast [7], colon [3], and prostate cancer [6, 8].

Anticancer modified pectins show promise for clinical translation and have undergone

small phase I and II trials which have demonstrated initial activity and a good safety profile [8, 19-

23]. However, despite showing promising signs of clinical efficacy, little is still known regarding the

link between pectin structure and anticancer activity. This is likely due, at least in part, to the high

structural complexity and heterogeneity of pectin, varied starting pectin sources used in studies,

and paucity of structural characterization reported with biological activities. In turn, this has led to

variable and sometimes conflicting reports regarding the activities of modified pectins [3-7, 9, 10].

As a result, the identity of the bioactive pectin fragments, effective modification procedures, and

pectin's anticancer mechanism of action remain poorly understood. To advance this promising area

of cancer research and drug development, we describe here an integrated approach combing

complementary analytical techniques with molecular, cellular and animal model functional studies

to establish a modified pectin structure-function relationship. We generated a modified pectin

termed activated citrus pectin (ACP) directly from lemon peel-derived native citrus pectin (NCP), a

non-modified pectin. ACP demonstrated marked anticancer activity when compared to NCP and

exhibited distinct structure features compared to NCP. Collectively, we demonstrate an integrative

approach for the analysis of anticancer pectin and provide a new link between structure, function

and in vivo outcome of therapeutic pectins.

2.2. Methods

2.2.1. Pectin preparation

The following citrus pectin powders were obtained for compositional analysis: Sigma P-

9135 Lot #098K0032 [P1], Lot #99H0029 [P2], Lot #013K0007 [P3], and Fluka 76280 [P4]. NCP

was isolated from lemon peels by a modification of a published procedure [24]. Briefly, albedo was

separated from fresh lemon peels, suspended in distilled water (pH 2) and microwaved for 20 sec
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in a 23 mL General Purpose Acid Digestion Bomb (Parr Instruments). Crude pectin solution was

filtered and precipitated before pellet recovery by centrifugation. Typical yield of pectin (NCP)

extraction was 1 mg of pectin per 1 mL of crude extract. NCP (10 mg/mL in distilled water) was

pre-heated to 800C for 4 minutes and incubated with 50 mM NaOH at 800C for 90 minutes with

mixing every 15 minutes. The resulting pectin was cooled to RT, adjusted to pH 5 with HCl, and

concentrated by lyophilization. Isolation of the ACP fraction was achieved by HPLC (10 mM

ammonium acetate pH 6.9, 1 mL/min flow rate) on a YMC-Pack Diol-200 (300 x 8 mm ID, S-5 um,

20 nm; YMC, Inc.) size exclusion column. ACP eluted between 9.5 - 15 min and was collected.

Pectins were filter sterilized and pH adjusted for biological assays. ACP and NCP were fractionated

for structural analysis after passage through a CarboPac PA1 column (10 mM potassium acetate pH

6, 0.9 mL/min flow rate) and collection of unbound material in void volume. Charged fractions were

obtained by isolating material that required more than 800 mM potassium acetate to elute from the

same column.

2.2.2. Capillary electrophoresis

Pectins (40 [tL, 20 [tg) were partially depolymerized by incubation with 200 mM TFA at

800C for 72 h. The resulting hydrolysates were lyophilized and resuspended in 30 [tL of 60 mM

sodium acetate (pH 5) containing 3 mM CaCl 2. Two ptL of dialyzed pectinase mixture (Sigma, 0.3 U /

mL) were added, and the sample was incubated for 48 hours at 45oC to achieve full

depolymerization [25]. The pectinase reaction products were lyophilized and labeled with 8-

aminopyrene-1,3,6-trisulfonic acid trisodium salt (APTS) according to a modified procedure [26].

Briefly, 15 ptL of 25 mM APTS in 15 % acetic acid and 5 [tL of 1 M NaBH 3CN were added to dry

pectin powder. The mixture was incubated at 55oC for 90 min before stopping the reaction by

adding 500 VL of distilled water. Monosaccharide standards representing the composition of pectin

were also labeled with APTS as described. Capillary electrophoresis analysis of APTS-labeled pectin

components was performed with a ProteomeLab PA 800 (Beckman-Coulter Inc.) with a 40 cm bare-

fused silica capillary (Polymicro Technologies) running 42 mM sodium tetraborate buffer (pH 10.2)

with Ar laser detection.
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2.2.3. 1H-NMR

1H-NMR was performed at 800C using a Bruker 400 MHz instrument with an average of 256

measurements. Sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 (TMSP) (Cambridge Isotope

Laboratories Inc.) was used as a reference. Pectin was prepared for NMR by lyophilization and

resuspension in D2 0. Pectin concentrations were 10 mg / mL, pD of the solution was 4.

Methodology for calculating pectin methylation and relative amount of 4,5-dehydrogalacturonic

acid have been previously described [27, 28].

2.2.4. In vivo tumor studies

For primary tumor growth studies, 2.5 x 105 B16F10 melanoma cells were implanted in the

left flank of male C57/BL6 mice on day 0. ACP (20 mg / kg) or NCP (20 mg / kg) were diluted in 100

[tL PBS and injected s.c. every third day starting on day 7 when the tumors had reached 100 mm 3 in

volume. All mice were sacrificed as required by control tumor burden on day 17. For experimental

metastasis studies, 5 x 105 B16F10 melanoma cells were treated with 0.5% NCP (40 mg / kg), 0.5%

ACP (40 mg / kg) or PBS for 30 minutes and injected into the tail vein of C57/BL6 mice on day 0

similarly to previously described [5]. On day 10, mice were sacrificed and the lungs were excised

and fixed in Bouin's solution. Metastatic nodules were counted with the aid of a dissecting

microscope.

2.2.5. Cell viability

Cell viability was measured using the WST-1 reagent (Roche) according to manufacturer's

instructions. Briefly, B16F10 cells were seeded in a 96 well plate such that they were 50% confluent

after 24 h. Cells were then treated with 1 mg/mL NCP, 1 mg/mL ACP, or PBS control. After an

additional 24 hours, cells were incubated with 10% WST-1 reagent and cell viability was quantified

by absorbance at 450 nm.

2.2.6. Chemoinvasion through matrigel

A measure of chemoinvasion was performed similarly to that described previously [29].

Briefly, Transwell inserts (Corning Inc; 8 ptm pore size, 6.5 mm diameter) were coated with 15 ptg of
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Matrigel (Becton Dickinson) and allowed to dry overnight in a sterile laminar flow hood. Serum-

deprived (0.1% FBS, overnight) B16F10 cells (2 x 105) were treated with APC or NPC at various

concentrations and then added to the top of inserts. Reservoirs below inserts contained growth

medium (500 [d) supplemented with growth factor (40 ng/mL HGF) as a chemoattractant. After 40

h incubation, non-invaded cells were removed using cotton swabs, and invaded cells were fixed

using 2.5% gluteraldehyde in PBS. Invaded cells were stained with crystal violet and counted with

a Zeiss Axiovert 200M microscope using 9 fields of view per insert.

2.2.7. Western blotting

Cell monolayers were lysed in sample buffer and resolved on a 4-12% gradient SDS-

polyacrylamide-gel electrophoresis gel. The proteins were transferred to a nitrocellulose

membrane, blocked, and probed with primary antibodies to phospho-Akt(Thr308), phospho-

PTEN(Ser380), and AKT (Cell Signaling) as well as actin as a loading control (Santa Cruz

Biotechnology). Proteins were detected by chemiluminescence after incubation with the

appropriate secondary horseradish peroxidase-labeled antibodies and visualized with a Kodak

2000 gel-imaging system.

2.2.8. Cloning of human Gal-1 and Gal-3

Gal-1 and Gal-3 were cloned using cDNA isolated from HUVECs. The galectin genes were

cloned into the NheI / Sail restriction sites of pET-28a(+) vector (Novagen). Protein expression was

carried out using E. coli Rosetta2 (DE3) (Novagen) and purified by IMAC using a HiTrap Chelating

HP column (GE Healthcare). Proteins were dialyzed through a 2000 MWCO membrane (Spectrum

Laboratories Inc.) against PBS and concentrated with 3000 MWCO Centriplus Centrifugal Filter

Devices (Millipore) at 4 oC. Histidine tags were removed with thrombin (Sigma) treatment.

Galectins were labeled with CFSE fluorescent label from Fluka. Proteins at 0.5 mg /mL in 50% PBS

buffer were incubated with 1.5 mg/mL CFSE (in DMSO) in 9:1 ratio (v/v) for 2 h at RT and

subsequently dialyzed.

2.2.9. Gal-1 and Gal-3 interaction with pectin
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Colorless polystyrene microspheres (3.0 pim diameter, Polysciences) were passively

adsorbed with either ACP or NCP by incubation (-109 microspheres) with 50 pg of ACP/NCP in

carbonate/bicarbonate buffer (50mM, pH 9.6) at 37 oC for 3 h. Microparticles were then washed

with water. Treated microparticles (~106) were probed by incubation with recombinant,

fluorescein-labeled Gal-1 or Gal-3 (1 gg/mL) in the presence of increasing concentrations of lactose

in PBS on ice for 30 min. Microparticles were then washed and analyzed by flow cytometry.

2.2.10. In Vitro cell binding

To measure cellular binding of ACP, B16F10 cells were incubated with 8-aminopyrene

1,3,6-trisulfonic acid (APTS)-labeled ACP at various concentrations in the presence or absence of 10

mM lactose or glucose in PBS (CaCl 2/MgCl 2 supplemented) for 30 minutes and cells were analyzed

by flow cytometry.

2.2.11. Adhesion

Untreated 96-well plates (Becton Dickinson) were coated with matrigel (25 [tg/ml), laminin

(50pg/ml), or fibronectin (50 [tg/ml) and incubated at 4oC for 18 hrs prior to blocking with 1% BSA

(1 hr, 37oC). 4x10 4 pretreated (1 mg/mL ACP or NCP, 15-60 minutes, 37 oC) B16F10 cells in 100 l

basal medium containing 0.1% BSA were added to each well and incubated for 15-60 minutes at

37oC. Non-adherent cells were removed by gently washing cells three times. To quantify adhesion,

adherent cells were fixed with 2.5% gluteraldehyde in PBS and stained with crystal violet. Excess

dye was washed away before solubilizing with 2% SDS and measuring absorbance at 550 nm.

Alternatively wells were first coated with a confluent monolayer of HUVECs before addition of

pretreated and fluorescently labeled (Vybrant CFDA SE cell tracer, Invitrogen) B16F10 cells for 30

minutes. Adherent cells were quantified by fluorescence (excitation 485 nm, emission 538 nm).

2.2.12. Flow cytometry

Intracellular quantification of protein phosphorylation by flow cytometry was performed as

previously described [30, 31]. Following treatment with ACP, NCP, PBS, or LY294002 in the

presence or absence of Gal-3/-1 antibodies for 30 minutes, cells were gently detached from the
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culture plate with 0.02% EDTA in PBS, immediately fixed with 2.5% v/v formaldehyde in PBS for 5

minutes on ice, and permeabilized in 100% methanol for 10 minutes on ice. The following primary

antibodies were used at 5 pg/mL or diluted 1:75 in FX buffer (0.1% w/v BSA, 0.05% w/v NaN3 in

PBS, pH 7.4), 25 minutes on ice: phospho-Akt(Thr308), phospho-PTEN(Ser380), PTEN (Cell

Signaling), phospho-PI3K(Tyr5O8) (Santa Cruz Biotechnology), and rabbit IgG (Sigma) as an isotype

control. Cells were washed and stained with Alexa 488-conjugated anti-rabbit or anti-goat

antibodies (Invitrogen), 5 jig/mL in FX buffer, 20 minutes on ice. Data acquisition was performed

on a Beckman-Coulter Cell Lab Quanta SC flow cytometer equipped with MPL robot. Means and

coefficients of variance produced by the Quanta Analysis' software were used for statistical

evaluations.

2.2.13. siRNA knockdown

PTEN expression was reduced using the SignalSilence PTEN siRNA kit (Cell Signaling)

according to manufacturer's instructions. Briefly, B16F10 cells were plated in a 96 well plate such

that they would reach -50% confluence after 24 hours. At this time, PTEN expression was knocked

down using the targeted siRNA constructs with the supplied transfection reagent overnight. Media

was replaced and cells were treated with NCP (1 mg/mL), ACP (1 mg/mL) or PBS control for 30

minutes before harvesting for protein analysis. Intracellular flow cytometry quantification of

protein phosphorylation was performed as described above.

2.2.14. MALDI-MS

MALDI-MS was performed with a Voyager-DE STR BioSpectrometry Workstation

(PerSeptive Biosystems) typically detecting mass range of 500 - 7000 Da. Samples were irradiated

with a N2 laser (337 nm) using laser intensity 2200 and 100 shots were averaged for every mass

spectrum. Negative and positive mode MALDI-MS were performed using an ATT/Nafion and 2,5

dehydroxybenzoic acid (DHB) matrix respectively. The matrix was mixed in a 1:1 ratio with 2

mg/mL pectin and added to a stainless steel MALDI probe. The spots were dried at atmospheric

humidity. In order to identify structures represented by MALDI-MS, peaks were annotated with all
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theoretically possible mass identities. Theoretical identities were ranked according to

mathematical fits based on data from NMR and CE, and the set that best satisfied data collected

from CE and NMR experiments was selected for final structure assignment.

2.3. Results

2.3.1. Anticancer ACP is generated directly from lemon NCP

NCP from the homogeneous citrus source of lemons, a common source of citrus pectin [11],

was used as the starting material for isolating anticancer modified pectin fractions. Heat and base
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Figure 2.1 Effect of ACP on tumor growth and metastasis in vivo. (a),(b) B16F10 primary site tumor growth

following treatment with NCP (20 mg / kg), ACP (20 mg / kg), and PBS control every third day after tumors reached 100

mm3 in volume. (c),(d) Number of metastatic lung nodules following tail vein injection of 5 x 105 B16F10 melanoma

cells treated with NCP (40 mg / kg), ACP (40 mg / kg) or PBS. On day 10, mice were sacrificed and metastatic nodules

counted with the aid of a dissecting microscope. Results are presented as means +/- s.e.m. *p < 0.05 vs. control.
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were employed to promote the demethylation and fragmentation of the GalA backbones (see

Methods). A regularly employed acid treatment step was omitted to preserve the structural

integrity of the neutral oligosaccharide branched regions which may be responsible for galectin

binding [15, 16, 32]. The resultant formulation was separated by HPLC-SEC to increase the

solubility of the partially digested pectin and to divide the material into defined fractions for

testing.

A low molecular weight fraction, termed ACP, demonstrated notably higher anticancer
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Figure 2.2 Anti-tumor efficacy of ACP in vitro. (a) Quantification of B16F10 cell chemoinvasion through matrigel after

treatment with designated concentrations of NCP, ACP, and PBS control. (b) B16F10 cell adhesion to matrigel, laminin,

fibronectin, and HUVECs after pretreatment with ACP (1mg / mL). Results expressed as percentage of adhesion

compared to B16F10 cells pretreated with NCP (1mg / mL). (c) Measure of cell viability using the WST-1 reagent.

Adherent B16F10 cells at 50% confluence were treated with NCP (1mg / mL), ACP (1mg /mL), or PBS and evaluated for

cell viability after 24 hours.
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activity compared to NCP both in vitro and in vivo. To assess the role of ACP on primary tumor

growth, B16F10 cells were implanted s.c. into C57/BL6 mouse flanks. Treatment every third day

with ACP inhibited tumor growth by -50% over the course of our study when compared to control

(Figure 2.1a,b). To assess the role of ACP on tumor metastasis, ACP-treated B16F10 cells were

injected i.v. into C57/BL6 mice. ACP treatment inhibited the formation of lung metastatic nodules

by -30% compared to control (Figure 2.1c,d). The in vivo efficacy was corroborated in vitro, with

ACP exhibiting a dose-dependent inhibition of B16F10 chemoinvasion through matrigel (Figure

2.2a). Interestingly, ACP treatment demonstrated no significant effect on B16F10 cell adhesion to

multiple basement membrane matrix proteins or to human umbilical vein endothelial cells

(HUVECs) (Figure 2.2b) in contrast to some previous modified pectin formulations [5, 16]. ACP

also did not inhibit B16F10 cell proliferation compared to NCP (Figure 2.2c) under in vitro culture

conditions. Collectively, these results demonstrate that ACP is a potent in vivo anti-tumor and anti-

metastatic agent and that this activity is not due to direct in vitro tumor cytotoxicity.

One hindrance to developing a reproducible, clinically relevant anticancer pectin formulation

is the potential for structural heterogeneity in the modified pectin formulations reported across

studies. The pre-processed pectin powders currently used as starting materials [5-7, 16] are often

mixed in citrus composition and may differ in processing conditions, and structural information is

not always known or reported [33]. We analyzed the compositions of pectin powders available

from common laboratory vendors to determine the extent of any compositional diversity (Figure

2.3a). The pectin powders analyzed contained similar relative concentrations of the major

monosaccharide constituents (GalA, rhamnose, and galactose), however greater differences were

noted in the relative concentrations of the minority monosaccharide components of the neutral

side chains (glucose, mannose, and arabinose). These differences were observed both in pectin

powders purchased from different vendors as well as between lots from the same vendor (Figure

2.3a). Since the bioactive structures within modified pectins remain largely unknown, these

compositional differences could impact the bioactivity of modified pectins and may be responsible
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for the variable reports of anti-tumor pectin function. The use of NCP as a starting material enables

the generation of a standardizable pectin for comparison across studies.

2.3.2. ACP is enriched for liberated neutral oligosaccharides

To characterize structural differences between NCP and ACP, we first investigated

modifications to the GalA pectin backbone. 1H-NMR analysis revealed that 70% of GalA residues are
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Figure 2.3 Capillary electrophoresis and 1H-NMR analysis. (a) Monosaccharide compositional analysis of

commercial citrus pectin powders by capillary electrophoresis. Pectins were depolymerized and enzymatically

digested prior to analysis as described in the Methods. All results were normalized relative to levels of pectin powder

P1 for purposes of comparison. P1 = Sigma P-9135 Lot #098K0032, P2 = Sigma P-9135 Lot #99H0029, P3 = Sigma P-

9135 Lot #013K0007, P4 = Fluka 76280. (b) Measurement of acetylation and methylation of NCP. The 400 MHz 1H-

NMR spectra of NCP shows formation of methanol and Na-acetate. Amounts of methylation and acetylation were

calculated by comparing ratios of H-4 of GalA (4.44 ppm) and H-4 of dGalA (5.78 ppm) with those of methanol (3.3

ppm) and Na-acetate (1.9 ppm). (c), (d): 400 MHz 1H-NMR spectra of ACP and NCP demonstrate differences in the

amounts of dGalA and methylation state. H-4 of GalA (4.44 ppm) and H-4 of dGalA (5.78 ppm) were used to determine

the relative amount of dGalA present.
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methylated in NCP and that ACP is free of methylation (Figure 2.3b) [27]. 'H-NMR was also used to

demonstrate the extent of GalA backbone fragmentation through monitoring the formation of 4,5-

dehydro-galacturonic acid (dGalA) after p-elimination [28]. dGalA is not present in NCP, however

over 8% of GalA was converted to dGalA in ACP, indicating significant fragmentation (Figure

2.3c,d). Collectively these results demonstrate that de-esterification and fragmentation of the GalA

backbone distinguish ACP from NCP.

Table 2.1 CE monosaccharide composition of charge-separated ACP and NCP fractions.

ACP-N NCP-N ACP-C

Rha (%) 0.79 ± 0.05 0.02 ± 0.02 0.21 ± 0.02

Man (%) 10.73 ± 0.27 14.22 ± 0.25 0.06 ± 0.01

Glc (%) 6.35 ± 0.61 3.91 ± 0.05 0.03 ± 0.04

Xyl (%) 7.89 ± 0.33 3.14 ± 0.09 0.27 ± 0.05

Ara (%) 14.35 ± 0.4 43.22 ± 0.12 0.24 ± 0.05

Gal (%) 58.71 ± 0.27 17.45 ± 0.19 0.13 ± 0.03

GalA + dGalA (%) 1.18 ± 0.04 18.03 ± 0.33 99.07 ± 0.12

We next compared structures of the branched regions of ACP and NCP. ACP and NCP were

charge fractionated by HPLC-AEC into the least charged and most charged components

corresponding primarily to the branched and linear regions of pectin, respectively.

Monosaccharide composition by CE (Table 2.1) shows the presence of 99.07% GalA in the most

charged fraction of ACP (ACP-C) and only 1.18% GalA in the neutral fraction (ACP-N), indicating

that the branched regions of ACP were nearly completely liberated from the homogalacturonan

regions. To confirm these findings from 'H-NMR and CE, we next compared structures of ACP and

NCP by MALDI-MS. Peak assignments from negative mode MALDI-MS indicate that the charged

region of ACP consists only of unbranched GalA (Figure 2.4a). NCP retains a structurally complex

spectrum consistent with an intact network of neutral polysaccharide branches and the charged
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GalA backbone (Figure 2.4b). Positive mode MALDI-MS of ACP demonstrates that the branched

regions of ACP consist of oligosaccharides composed primarily of neutral pentoses and hexoses

(Figure 2.4c), results consistent with the predominance of galactans, arabinans, and

arabinogalactans of hairy regions [2]. Positive mode analysis of NCP however reveals peaks

corresponding to methylated GalA (Figure 2.4d). Taken together, our data demonstrate that ACP
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Figure 2.4 MALDI-MS analysis of ACP and NCP. (a),(b) Negative mode MALDI-MS spectra of ACP and NCP, respectively.

All major spectral peak masses of ACP are consistent with structures consisting of only GalA and dGalA as annotated

(number of GalA, number of dGalA). The major spectral peak masses of NCP can be described as a mixed combination of

charged and neutral constituents found within the pectin network. (c), (d) Positive mode MALDI-MS spectra of the neutral

components of ACP (ACP-N) and NCP (NCP-N), respectively.

consists of demethylated, fragmented GalA backbones, and that the branched regions of ACP have

been liberated from these backbones while retaining intact, structurally complex neutral

oligosaccharide structures.
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Figure 2.5 Role of galectins in ACP anti-tumor activity. (a) Quantification of the interaction of fluorescently labeled

Gal-1 and Gal-3 with NCP and ACP adsorbed to polystyrene beads by flow cytometry. MFI results are presented as

means and coefficients of variance produced by Quanta Analysis' software. (b) Quantification of the interaction of

B16F10 cells and APTS-labeled ACP at designated concentrations by flow cytometry. Competitive inhibition is

demonstrated in the presence of 10 mM lactose. (c) B16F10 expression of AKT, pAKT(Thr308), pPTEN(Ser380), and

actin after treatment with PBS, NCP, ACP, and LY294002 (LY), as measured by western blot. NCP or ACP treatment is at

1 mg/mL.

2.3.3. Galectin-1 and galectin-3 preferentially bind to ACP

Gal-3 is the proposed mediator of pectin activity [15, 16, 32], however recent evidence has

shown that modified pectins may still have anti-tumor activity against cell lines absent in Gal-3

expression [10]. In light of this report, we also investigated whether galectin-1 (Gal-1) contributed

to pectin anticancer activity. Gal-1, like Gal-3, is expressed by many tumors and is implicated as

participating in a regulatory role of tumor progression [34]. In order to investigate the ability of

ACP to bind to these galectins, ACP and NCP were passively adsorbed onto polymer microparticles

and probed using fluorescently labeled recombinant Gal-3 and Gal-1. Flow cytometric analysis of
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fluorescence intensity established binding of both Gal-3 and Gal-1 to ACP (Figure 2.5a).

Competitive inhibition by lactose demonstrated that ACP binding occurs at the galectin

carbohydrate recognition domains (CRDs) and that the relative specific binding interaction of both

galectins is greater for ACP than for NCP. These findings indicate that modifying pectin to generate

ACP creates or exposes CRD-specific binding structures for both Gal-3 and Gal-1. To explore the

functional consequence of this galectin binding, we quantified the interaction of B16F10 cells with

fluorescently labeled ACP in vitro in the presence or absence of lactose. Competitive inhibition by

lactose partially inhibited the interaction of ACP with B16F10 cells (Figure 2.5b), supporting a role

for galectins in the anticancer mechanism of ACP.

2.3.4. Galectins modulate ACP activity through AKT signaling

An intracellular mechanism of action for anticancer pectins has yet to be established in solid

tumors. The involvement of the AKT pathway has been linked to pectin treatment of myeloma [35],

and this pathway is a central modulator of tumor processes including invasion, survival, and

metabolism [36]. Recent evidence has also supported the involvement of both Gal-1 and Gal-3 in

modulating this pathway [37-39]. To investigate a link between the anti-tumor effect of ACP against

B16F10 melanoma and intracellular AKT signaling, we treated B16F10 cells in vitro with ACP and

quantified AKT protein phosphorylation. Treatment with both ACP and the phosphoinositide 3-

kinase (PI3K) inhibitor LY294002 reduced AKT phosphorylation at the Thr308 residue, while no

change to AKT phosphorylation was observed after treatment with NCP relative to PBS control

(Figures 2.5c and 2.6a). We next investigated whether AKT dephosphorylation is mediated by the

interaction of ACP with galectins. B16F1O cells were treated with ACP in combination with

antibodies to either Gal-1 or Gal-3. Antibodies to both galectins partially reversed the ACP-induced

reduction of AKT phosphorylation (Figure 2.6a), supporting that both galectins are involved in

modulating ACP's effect on AKT signaling.

2.3.5. Tumor PTEN is necessary for ACP-induced signaling

We further investigated the mechanism of ACP-induced AKT dephosphorylation by

examining the involvement of P13K and PTEN in this pathway. P13K and PTEN are two opposing
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regulators of AKT phosphorylation: P13K phosphorylates PIP2 to PIP3 to phosphorylate AKT while

PTEN reverses this process to dephosphorylate AKT [40, 41]. B16F10 cells treated with ACP

showed increased phosphorylation of PTEN at Ser385 with no change to P13K phosphorylation

(Figures 2.5c and 2.6b). In contrast, the control inhibitor LY294002 reduced phosphorylation of

P13K (Figure 2.6b) but did not affect phosphorylation of PTEN (Figure 2.6a). In order to

determine whether functional PTEN is necessary for ACP activity, a knockdown of B16F10 PTEN

was achieved using siRNA (Figure 2.6b). Knockdown of PTEN eliminated ACP's reduction of AKT

phosphorylation, though the effect of LY294002 was unchanged (Figure 2.6b). These results

collectively demonstrate that functional PTEN is necessary for AKT dephosphorylation after ACP

treatment and that P13K is not a mediator of ACP activity.
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Figure 2.6 Pathway analysis of ACP anti-tumor activity. (a) Quantification of B16F1O AKT and PTEN phosphorylation

by flow cytometry after treatment of cells with ACP or NCP and co-treatment with Gal-1/-3 antibodies. (b) B16F10

phosphoprotein levels after siRNA knockdown of PTEN expression followed by treatment with NCP, ACP, iP3K

(LY294002) or PBS control, as measured by flow cytometry. MFI results are presented as means and coefficients of

variance produced by Quanta Analysis"' software.
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2.4.Discussion

Modified citrus pectins currently offer promise as a solution to the ongoing search for non-

toxic, inexpensive and effective clinical therapies. Modified pectins have demonstrated anti-tumor

and/or anti-metastatic efficacy in a range of animal models while demonstrating low systemic

toxicity [5-7, 16]. The identity of the bioactive pectin fragments and their mechanism of action

remain cryptic however. Treatment of pectin to expose galactose and arabinose-containing

structures within the neutral branched regions of pectin has been directly connected with

increased pectin interaction with Gal-3, a known regulator of tumor progression [15, 32]. A tumor

apoptosis-inducing fragment within pectin has also recently been shown to contain an essential

ester linkage other than a carboxylmethylester, though a specific structure was not identified [10].

Since modified pectin formulations are often ubiquitously fragmented, little additional information

has been reported regarding the identity of the bioactive fragments or the optimal modification

procedure to generate these fragments. In this study, we isolated a new anti-tumor modified pectin

fraction, termed ACP, enriched for proposed bioactive constituents. The GalA-rich pectin backbone

was fragmented and demethylated using heat and alkali treatment to liberate the neutral branched

regions of pectin implicated in galectin binding. A commonly employed acid-treatment step was

omitted to preserve the structural integrity of the neutral branches and to protect any unidentified

bioactive linkages within these regions. Size exclusion chromatography increased the solubility of

our formulation and avoided the need for additional pectin fragmentation.

Pectin's mechanism of action is also still an active area of investigation. Early studies

identified a mechanism for anticancer pectins in Gal-3-mediated processes including cell adhesion,

aggregation, and migration [7, 16]. There are conflicting reports regarding whether modified

pectins directly inhibit tumor cell viability in vitro. While several studies have demonstrated that

modified pectins induce tumor cell apoptosis [10, 15], others demonstrate a lack of direct tumor

cytotoxicity[4] and still others do not report on this finding [5, 7, 16]. Indirect mechanisms of anti-

tumor activity have also been documented for different modified pectins including an anti-

angiogenic function [7] as well as the ability to stimulate the host immune system [4]. An additional
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complication for the identification of a consensus mechanism of activity is the use of different

modified pectin formulations across studies. Many studies employ pre-processed pectin powders

heterogeneous in citrus source [5-7, 16] and still others use pectins isolated from non-citrus

sources altogether [4, 15]. The diversity of direct and indirect anti-tumor mechanisms and the

evidence that different modified pectin formulations demonstrate distinct functional activities in

vitro indicate the likelihood of a complex interaction of multiple mechanisms dependent upon key

and as yet unknown differences in pectin fine structure. To generate a structurally reproducible

anticancer pectin formulation for comparison across studies, we generated ACP from NCP directly

from the citrus source of lemon fruit.

Anticancer pectins have previously been proposed to regulate tumor progression through

binding and modulation of Gal-3 signaling. Gal-3 has established roles in physiological processes

related to tumor progression including tumor signaling, inflammation, and immunity [17, 18]. A

recent study demonstrated for the first time that at least certain anti-tumor pectin formulations are

effective against cell lines that do not express Gal-3 [10], supporting the role for additional

mediators of pectin activity. Gal-1 is an additional galectin with established roles in regulating

tumor progression and may have the untested binding affinity for structures present within the

pectin matrix [34, 42]. We demonstrate here that Gal-1 and Gal-3 bind to ACP and that galectins are

involved in mediating direct ACP-tumor cell interaction as well as modulating tumor signaling. This

study is the first to our knowledge to demonstrate the involvement of Gal-1 in mediating anticancer

pectin activity.

We also describe here key constituents in the first pectin-induced anti-tumor signaling

cascade reported in solid tumors. The AKT pathway directs numerous intracellular processes, and

the phosphorylation state of AKT is a central regulator of tumor survival and progression [36]. We

demonstrate that ACP treatment inhibits the phosphorylation of tumor AKT similarly to treatment

with the P13K inhibitor LY294002. Intriguingly, we also demonstrate that the effect of AKT on this

pathway is dependent upon functional tumor PTEN expression and, unlike LY294002, is

independent of the classical P13K-mediated drug pathway.
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In conclusion, we present here a new integrated methodology for generating and

characterizing the modified pectin formulation ACP using activation and isolation conditions that

enrich for the formation of soluble, galectin-binding pectin structures. We demonstrate the first

structure-function link that Gal-1 and Gal-3 interaction with bioactive structures enriched within

ACP promotes an anticancer intracellular signaling cascade mediated by the dephosphorylation of

AKT. This activity is dependent upon the presence of functional PTEN, and suggests the use of ACP

for treatment of PTEN-expressing tumors. ACP's ready availability and low toxicity would further

support the use of this agent in combination therapy regimes with traditional chemotherapy agents.

It is our hope that the link provided here between pectin structure, mechanism, and therapeutic

outcome will assist in bringing anticancer pectins closer to widespread clinical use.
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3. Identification of a contaminant in heparin by structure-function

characterization

The following work was published in a series of papers, as follows:

1. Guerrini M, Beccati D, Shriver Z, Naggi A, Viswanathan K, Bisio A, Capila I, Lansing JC, Guglieri S,

Fraser B, Al-Hakim A, Gunay NS, Zhang Z, Robinson L, Buhse L, Nasr M, Woodcock J, Langer R,

Venkataraman G, Linhardt RJ, Casu B, Torri G, Sasisekharan R. Oversulfated chondroitin sulfate is

a contaminant in heparin associated with adverse clinical events. Nat Biotechnol, 2008

Jun;26(6):669-75. Reproduced with kind permission from Nature Publishing Group.

2. Kishimoto TK, Viswanathan K, Ganguly T, Elankumaran S, Smith S, Pelzer K, Lansing JC,

Sriranganathan N, Zhao G, Galcheva-Gargova Z, Al-Hakim A, Bailey GS, Fraser B, Roy S, Rogers-

Cotrone T, Buhse L, Whary M, Fox J, Nasr M, Dal Pan GJ, Shriver Z, Langer RS, Venkataraman G,

Austen KF, Woodcock J, Sasisekharan R. Contaminated heparin associated with adverse clinical

events and activation of the contact system. N Engl J Med. 2008 Jun 5;358(23):2457-67.

Reproduced with kind permission from Massachusetts Medical Society, Copyright

Massachusetts Medical Society.

3. Blossom DB, Kallen AJ, Patel PR, Elward A, Robinson L, Gao G, Langer R, Perkins KM, Jaeger JL,

Kurkjian KM, Jones M, Schillie SF, Shehab N, Ketterer D, Venkataraman G, Kishimoto TK, Shriver

Z, McMahon AW, Austen KF, Kozlowski S, Srinivasan A, Turabelidze G, Gould CV, Arduino MJ,

Sasisekharan R. Outbreak of adverse reactions associated with contaminated heparin. N Engl J

Med. 2008 Dec 18;359(25):2674-84. Reproduced with kind permission from Massachusetts

Medical Society, Copyright Massachusetts Medical Society.
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heparin associated with adverse clinical events
Marco Guerrinil' 7, Daniela Beccati2 7, Zachary Shriver 2 37, Annamaria Naggil, KarthikViswanathan ,
Antonella Bisiol, Ishan Capila2, Jonathan C Lansing2, Sara Guglieril, Blair Fraser 4, Ali Al-Hakim4, Nur Sibel Gunay2,
Zhenqing Zhang5, Luke Robinson 3, Lucinda Buhse4, Moheb Nasr4, Janet Woodcock4, Robert Langer3 ,6,
Ganesh Venkataraman 23,, Robert J Linhardt5 , Benito Casul, Giangiacomo Torri & Ram Sasisekharan3

Recently, certain lots of heparin have been associated with an acute, rapid onset of serious side effects Indicative of an
allergic-type reaction. To identify potential causes for this sudden rise in side effects, we examined lots of heparin that
correlated with adverse events using orthogonal high-resolution analytical techniques. Through detailed structural analysis, the
contaminant was found to contain a disaccharide repeat unit of glucuronic acid linked 01-+3 to a 0-N-acetylgalactosamine.
The disaccharide unit has an unusual sulfation pattern and is sulfated at the 2-Oand 3-Opositions of the glucuronic acid as
well as at the 4-0 and 6-0 positions of the galactosamine. Given the nature of this contaminant, traditional screening tests
cannot differentiate between affected and unaffected lots. Our analysis suggests effective screening methods that can be used
to determine whether or not heparin lots contain the contaminant reported here.

Heparin, a complex glycosaminoglycan polysaccharide, is widely entities8 . Definitive identification of how these heparin lots differ
used as an anticoagulant In a number of settings, Including kidney from the clinically approved heparin thus becomes imperative9

.
dialysis and acute coronary syndromes' 3

. The most serious adverse To understand the structure or structures of the contaminant(s)
event associated with heparin, aside from a potential bleeding risk, present within specific lots of heparin, we sought to identify these
is thrombocytopenia. Recently there has been a marked increase in contaminants. This exercise required the use of multiple orthogonal
serious adverse events associated with heparin therapy, with hundreds techniques, including multidimensional NMR, to overcome the chal-
of Individuals affected1 7

. Although heparin therapy is generally well lenges inherent in the analysis of complex polysaccharides, Includ-
tolerated, recently patients presented-within several minutes after ing heparin, which in and of itself comprises a complex mixture of
intravenous infusion of unfractionated heparin-with angioedema, glycosaminoglycan chains. In doing so, we were able to determine
ypotenslon, swelling of the larynx and related symptoms, which in definitively the structure of the contaminant, isolate it and confirm

some cases ended in death. Because heparin is a drug commonly used its structural identity by comparison to a chemically synthesized
in the clinic, occurrence of these adverse events resulted In a crisis in standard.
the United States. Germany and other nations in the European Union
have observed similar phenomena, turning this health problem into RESULTS
an international issue4".The rapid onset of these symptoms suggests NMR shows unusual N-acetyl signals not seen in heparin
an anaphylactic responsebut theexact etiology is currently unknown. For this study, we examined lots that were associated with adverse
Given the clinical history of heparin, this spike in adverse events clinical reactions (designated S1-S6) as well as four control lots of
suggests the potential contamination of heparin. However, standard heparin not associated with adverse events (designated C1-C41.
testing of heparin lots for typical biological contaminants, includ- Initial analysis of S1-S6 by one-dimensional NMR Indicated that
ing protein, lipids and DNA (which, If present, may elicit such side all of these samples produced an unusual series of N-acetyl signals
effects), indicated that there is no difference in these regards between (Fig. la, Supplementary Figs. 1 and 2 online). For example, par-
lots that elicit adverse events and those that do not .Despiteextensive ticularly evident in the proton spectrum of S1 is the signal at 2.16
analysis, no obvious differences were found with respect to other p.p.m. corresponding to an N-acetyl group different from that of
potential contaminants, including lead, dioxins and other molecular heparin (2.04 p.p.m.). ThisN-acetyl signal is also distinct from that of
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Figure 1 NMR analysis of contaminated heparin. (a) Comparison of
anomeric and acetyl regions of the proton spectra of standard heparin,
heparin containing natural dermatan sulfate (DeS) and contaminated
heparin. (b) Comparison of carbonyl (i), sugar (ii) and N-acetyl regions (iii) of
the carbon spectra of standard heparin, heparin containing natural dermatan
sulfate, and contaminated heparin. Signals due to the contaminant are
highlighted by asterisks. (c) HSQC spectrum of the contaminated sample S1
overlaid on control sample C1.
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dermatan sulfate, a known impurity in heparin samples (2.08 p.p.m)1
0
.

To complement and extend the proton analysis, carbon (100 MHz)

NMR spectroscopy was performed. Comparison of the carbon spectra

of S1 and Cl indicates the presence of several additional signals not

normally associated with heparin structural signatures (Fig. ib). The

acetyl signal at 25.6 p.p.m together with the signal at 53.5 p.p.m are

indicative of the presence of an O-substitutedN-acetylgalactosamine
residue of unknown structure, but again distinct from theN-acetylga-

lactosamine contained within dermatan sulfate, with corresponding

signals at 24.8 p.p.m and 54.1 p.p.m, respectively. Other signals are

visible in the ring and anomeric regions of the carbohydrate moiety.

Thelatter signals(103-105 p.p.m) agreewith a beta configuration of

glycosidic linkages for the contaminant.
To further identify the number and type of any major contami-

nants, we collected multidimensional heteronuclear single quantum

coherence (HSQC) spectra on Si and C1 to separate the observed

signals in two dimensions-the carbon and proton signals. Ten

major signals observed in sample S1 were not seen in C1. These same

signals were observed in samples S2-S6 but not in samples C2-C4

(Supplementary Figs. 3 and 4 online). In addition, these results and
those from other two-dimensional experiments, including total cor-

relation spectroscopy (TOCSY), correlation spectroscopy (COSY)
and rotating-frame nuclear Overhauser effect spectroscopy (ROSEY),

were also consistent with the basic findings outlined above, namely
that the principal contaminant consists of a polymeric repeat of
N-acetylgalactosamine linked to glucuronic acid exclusively through

beta linkages.

Identification of an Impurity and a contaminant in heparin
Much of the analysis outlined above focused on sample Sl, as it

possessed signals in theN-acetyl region at 2.04 p.p.m (arising from

heparin) and at 2.16 (arising from the unknown contaminant). In

addition to this unusual signal at -2.16 p.p.m, some samples (S2-S6
and C2-C4) possessed an additionalN-acetyl peak (Supplementary

Fig. 5b online), which had a chemical shift of 2.08 p.p.m, indicating

the presence of another species that is distinct from the contami-
nant. Given the observed chemical shifts, this species is most likely

dermatan sulfate, a known natural impurity of heparin'
0

"'. To con-

firm the identity of this species, we performed a two-dimensional

(2D) IH-1C HSQC experiment on C2 (Supplementary Fig. 5d) and

compared the results to those obtained on C1, a sample that did not

show this additional signal. The chemical shifts observed in C2 but

not in C1 are similar to those reported in the literaturel, and this

observation suggests that the additional peaks in the HSQC of C2 can

be assigned to dermatan sulfate. This assignment was confirmed by
comparison to 'H and HSQC data obtained on a standard of derma-

tan sulfate (Supplementary Fig. 5a,c). Through an analysis similar

to that completed on sample C2, we confirmed the presence of der-
matan sulfate in those samples presenting a proton NMR signal at

2.08 p.p.m. Therefore, samples S2-S6, but not sample Si, contained
both dermatan sulfate (an impurity typically found in heparin) and

the unusual contaminant.
Finally, to confirm the findings from the NMR analysis of the

samples, we conducted enzymatic digestion of S1-S6 and Cl-C4

with either a combination of heparinases or heparinases plus A4,5

glycuronidase and 2-0 sulfatase followed by separation and analy-

sis by high-performance liquid chromatography (HPLC). Digestion

with the heparinases reduces heparin to its component di-, tri- and

tetrasaccharides and imparts a A4,5 bond that can be monitored at

232 nm; completed in conjunction with treatment with glycuronidase
and sulfatase, this digest permits the identification of minor heparin
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species, including those disaccharides containing a modified galact-
uronic acid 2

"1
3
. Thus, concomitant use of a matrix of enzymes,

especially In conjunction with liquid chromatography-tandem mass
spectrometry analysis, allows for the complete separation, identifica-
tion and quantification of heparin components in the mixture 4

. We
find that the total areas under the curve, calculated by integration
of all heparin di-, tri- and tetrasaccharides observed in the HPLC
and summation of the resulting areas, of digested SI-S6 are substan-

, tially less than those of thecontrol samples, indicating that the major
contaminant is not substantially digested by the heparinases (Table

a 1). Furthermore, the difference In the area under the curve is cor-
related with the amount of contaminant present within the sample;
samples with larger amounts of contaminant (as measured by pro-
ton NMR) had a lower area under the curve as measured by HPLC.
Finally, the relative quantities of the individual heparin components

. are similar between the controls and suspect samples, with only minor

0 differences.
To Identify the unknown compound present in the contaminated

heparin samples, we attempted to isolate the contaminant using a
c variety of methods. Given the overall properties of the contaminant,

elucidated through NMR, capillary electrophoresis and HPLC analy-
sis, we reasoned that this material could be differentially precipitated
upon addition of an organic solvent. Partial purification of the con-

c taminant was indeed achieved through the addition of increasing
amounts of ethanol to an aqueous solution of Si. Similarly, because
the contaminant contains N-acetylhemosamine (and not N-sulfohex-

CD osamine), it was also purified by degradation of heparin by nitrous
C acid and isolation of the remaining components.

2 isolation of the contaminant allowed definitive identification
After Isolation, the proton spectrum of the isolated contaminant

* reveals a residual heparin content of -10-30% (depending on the
isolation method used) as determined by one-dimensional NMR

z (data not shown). We carried out additional, detailed NMR studies
on this isolated sample. To facilitate an understanding of the experl-
ments and their interpretation, the disaccharide repeat structures of

O heparin, chondroitin sulfate, dermatan sulfate and heparin, together
with positional nomenclature, are presented in FIgure 2. In the carbon

* pectrum, at neutral pH values, one apparent signal arises at 177.6
p.p.m, characteristic of carbonyl groups. Acidification of a solution
of the product from pH 6.5 to pH 4 (Fig. 3a) reveals two distinct
carbonyl signals consistent with the carbonyl group of an N-acetyl
function and the protonated form of carboxylic acid, respectively.

Table 1 Total area under the curve for heparinase digests of S1-S6
and C1-C4
Sample Total area

Cl 2.52 x 107

C2 2.70 x 107

C3 2.33 x 107

C4 2.39 x 107

Si 1.74 x 107

S2 9.50 x 106

S3 1.94 x 107

S4 1.59 x 107

S5 1.91 x 107

S6 1.96 x 107

Similar shifts were not observed for any other signals except C-5 of
uronic acid (US), for which this carbon's chemical shift is sensitive
to the ionization state of the carboxylic acid as well as the identity of
the counterion present (Fig. 3b). To further characterize the isolated
sample, we used homonuclear (COSY and TOCSY, data not shown)
and heteronuclear (HSQC, HSQC-TOCSY and heteronuclear multiple
bond correlation (HMBC)) 2D-NMR spectroscopy (Fig. 3c,d). These
analyses indicated the presence of two types of residues. Chemical
shift patterns were in agreement with one type of monosaccharide
being a 4,6-O-sulfo-N-acetylgalactosamine and the other being a
2,3-0-sulfoglucuronic acid. In addition to confirming the assignments
of the sugar moieties, the HMBC spectrum demonstrated the correla-
tion across the glycosidic linkages, indicating the presence of a @-1,4
linkage between galactosamine and glucuronic acid and a P-1,3 link-
agebetween the glucuronic acid and the galactosamine. Confirmatory
evidence of this structure was provided by the long-range correlations
of Hi of the galactosamine and H5 of glucuronic acid with two differ-
ent carbonyl groups (177.5 and 177.8 p.p.m) owing to theN-acetyl of
galactosamine and the carboxylic group of glucuronic acid.

Synthetic oversulfated chondroitin matches contaminant
The identification of the contaminant as an oversulfated chondro-
tin sulfate containing a tetrasulfated disaccharide unit consisting
of glucuronic acid linked to N-acetylgalactosamine was surpris-
ing, as this Is an unusual structure. To ensure the accuracy of this
assignment, we prepared a standard by oversulfation of chon-
droitin sulfate using well-established chemistry. We analyzed this

Figure 2 Chemical structures of major repeat units. (a-c) Schematic of major disaccharide repeat units of chondroitin sulfate (a), dermatan sulfate (b) and
heparin (c). The carbon atoms are numbered for each monosaccharide of the disaccharide repeat. For chondroitin sulfate, R1-R4 can be either sulfated or
unsubstituted.
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standard by 2D NMR and carefully compared the HSQC spectra
to both the literature

5 
and the HSQC spectrum obtained for the

isolated contaminant. Comparison of the HSQC spectrum of the
synthesized standard with that of the isolated contaminant (Fig. 4)
confirmed that the major contaminant consists of per-O-sulfated
chondroitin sulfate, with all of the hydroxyl groups of both the
uronic acid and galactosamine residues bearing sulfate substituents.

Furthermore, the proton chemical shifts of the contaminant (Table 2)
are in agreement with those assigned to fully sulfated chondroitin

(degree of sulfation = 4)5. In addition, mass spectrometry completed
after enzymatic digestion of a chemically desulfated16 version of the
contaminant was consistent with the proposed structure (Fig. 5). The
final derived structure of the major contaminant present in heparin

is shown in Figure 2a, with R1, R2, Rs and R4 all sulfated.
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Figure 3 Detailed NMR structural analysis of the contaminant. (a) Carbonyl region of the carbon
spectrum of the contaminant measured at pH 6.5 and 4. (b) Sugar region of the carbon spectrum of the
contaminant measured at pH 6.5 and 4. The arrow points to the shift in the C5 of glucuronic acid (U5)
upon pH adjustment. (c) A portion of the 600-MHz HMBC spectrum of the contaminant. Intramolecular
two- and three-bond proton-carbon correlations are shown in black: interglycosidic proton-carbon
correlations are indicated in blue; carbon connectivity shown in red. (d) Portion of the 600-MHz HMBC
spectrum of the contaminant. Long-range correlation between the H1 of N-acetylgalactosarnine (Gal)
with the C=0 of the acetyl group and H5 of glucuronic acid (U) with the carboxylic group are shown.
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DISCUSSION
Several factors required the use of multiple
approaches to ensure an accurate struc-
tural determination of the oversulfated
chondroltin contaminant. First, heparin is
a chemically complex polydisperse mixture
of saccharides, making careful interpretation
of results necessary to avoid misinterpreta-
tion. Detailed analysis is especially important
when addressing the multiple isomeric pos-
sibilities within the chains of a complex mix-
ture, and it necessitates the use of orthogonal
techniques, including an enzyme matrix and
multidimensional NMR Second, oversul-
fated materials, such as the chondroitins, are
resistant to enzymatic digestion techniques
and copurify with heparin, rendering their
isolation challenging" 7

.
These complexities manifest themselves in

a number of ways: for example, structurally
distinct species may have overlapping signals
and properties, thereby'masking' them within
a single analysis. A nonintegrated approach
can therefore potentially lead to false conclu-
sions, especially when attempting to differen-
tiate between heparin, dermatan sulfate and
oversulfated chondroitin sulfate in any given
sample. In this study, wepresent a set of exper-
imental techniques that discriminate between
dermatan sulfate (a known impurity of hepa-
rin) and oversulfated chondroitin sulfate.

The structure of the contaminant, which
contains a tetrasulfated disaccharide repeat,
is highly unusual. First, the presence of a 3-0-
sulfated glucuronic acid is rare, only observed
in specific contexts within certain organ-
Isms". In addition, a tetrasulfated disac-
charide repeat unit has not been isolated to
date from animal tissues. Consequently, it is
highly unlikely that the contaminant reported
here is produced naturally. Finally, chemically
synthesized tetrasulfated disaccharide repeat
units of chondroitin sulfate are known to
exhibit a high degree of anti-factor Ha activ-
ity'5, which could explain how contaminated
heparin would pass an activity screen, such
as a whole-blood coagulation test. Further
investigation is warranted to understand how
this contaminant was introduced.

With respect to the potential biological
ramifications of this finding, it is possible
that the presence of an oversulfated chon-
droitin sulfate within heparin preparations
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FIgure 4 Structural assignment of the contaminant by NMR using isolated and synthetic materials. (a) 'H-NMR and HSQC spectra of the isolated
contaminant. Signals for 4,6-O-sulfo-N-acetylgalactosamine (A) and of 2,3-0-sulfo-glucuronic acid (U) are labeled. (b) IH-NMR and HSQC spectra of the
chemically synthesized oversulfated chondroitin.

can provoke increased side effects. In the case of chondroitins, chon-
droitin sulfatesA and C are expressed by human cells and are generally
non immunogenic. Highly sulfated polysaccharides, however, such as
oversulfated chondrottins, have been shown to be potent mediators
of the immune response'9- 22. Indeed, complications associated with
administration of highly sulfated chondroitins havebeen observed in
humans. Arteparon, an oversulfated chondroitin that is structurally
identical to the contaminant23 (Fig.2), injected Intramuscularly in
humans24, was marketed for the treatment of degenerative joint dis-
ease In Europe. It was demonstrated that this product can induce an
allergic-type response25.Because of patient deaths, most likely due to
thromboembolic complications, the product was rapidly withdrawn
from the European market 2

6. The structural determination of the

contaminant described here enables further investigation into the
biological roles and potential pharmacological effects of oversulfated
chondroitins, present within heparin preparations, in the recently
reported adverse events.

Taken together, our orthogonal analytical experiments provide
strong support for the structure we have assigned to the contami-
nant. This study also provides a set of screening methods that could
be used to monitor the heparin supply and ensure the absence of
oversulfated chondroltin sulfate contamination. For example, using
the structural information presented here, it is now possible to
(i) design referencestandards that ensureaccuracy, quantification and
specificity of analysis for a given analytical method and (11) devise an
experimental protocol to clearly define the nature and extent, if any,

able 2 Chemical shifts observed for contaminant by two independent laboratories and comparison to literature data on oversulfated
chondroitin sulfate

Monosaccharlde Lab I' Lab 2b 1H (iterature)c, fully
IH (observed) 1aC (observed) 'H (observed) 

3
C (observed) O-sulfonated CS

4,6-O-Sulfo-N-acetyl-
galactosamlne

H1I/0 4.77 105.0 4.79 104.8 4.86
H2/C2 4.06 54.0 4.10 54.0 4.10
H3/C3 4.05 80.7 4.03 80.7 4.10
H4/C4 4.98 78.0 5.00 78.0 5.02
H5S5 4.05 74.8 4.07 74.7 4.06

H6.6'/C6 4.28 69.3 4.30 69.2 4.29

N-Acetyl 2 .12d 25.6 2,16* 25.6 2.16
2,3-0-Sullo-

glucuronic acid

H1/C1 4.87 104.5 4.87 104.3 4.97
H2/C2 4.47 80.0 4.49 80.0 4.53
H31C3 4.95 79.3 4.98 79.2 4.94

H4/C4 4.46 80.9 4.51 80.8 4.55
H51C5 4.12 82.0 4.17 82.2 4.20

Chemical shifts are measured at 303 K and referenced to external 2.2-dimethyl-2-ilapentane-5-sulfonate sodium salt (DSS). ChemIcal shifts are measured at 308 K and referenced to external
sodium trimethylsilyipropionate (TSP) (which resonates 0.12 p.p.m upfleld of DSS20. Measured at 303 K and referenced to TSP (ref. 15) CS, chondrotin sulfate. 'Additional minor signals
observed at 2.20 and 2.07 p.p.m. 'Additional rninor signals observed at 2.23 and 2.11 p.p.m.
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Figure 5 Liquid chromatography-rnass spectrometry (LC-MS) analysis
of the contaminant. (a) Total ion chromatogram with detection of three
peaks (1-3). (b) Specific ions and associated structures observed in each
peak. After desulfation, the contaminant was digested with chondroitinase
ABC and analyzed by LC-MS. The presence of saturated and unsaturated
oligosaccharides indicates that the backbone of the impurity could be
digested with chondroitinase ABC and sugests that the backbone is a
glucuronic acid-N-acetylgalactosamine repeat (UA-GaINAc).

of contamination in a given lot of heparin. Finally, the ramifications
of these findings extend beyond scientific considerations and include
clinical and health policy issues.

METHODS
Materials. Chondroitin sulfate type A from whale cartilage, pyridine-sulfur

trioxide complex, tributylamine, dryNN-dimethyformamide, pyridine, metha-

nol, dimethylsulfoxide, NaNO,,NaBH, 2,2-dimethyl-2-silapentane-5-sulfonate
sodium salt and sodium trimethylsllylproplonate were purchased from Sigma-

Aldrich. Tetrabutylammonium chloride was purchased from Fluka. 99.9% D,0,

1

2
3

71

a and 99.96% D,O were obtained from Cambridge Isotope laboratories. The fol-
lowing ten lots of unfractionated heparin were tested: Si, S2, S3, S4, S5, S6, Cl,
C2, C3 and C4. All heparin samples were supplied by the FDA.

NMR analysis. Samples for IH-NMR or 2D NMR analysis were dissolved
in 0.7 ml of D20 (99.9%) and were either freeze-dried repeatedly to remove
exchangeable protons or directly measured without any treatment to preserve
potential volatile components. The thoroughly dried samples were dissolved in
0.7 ml of DO (99.96%). Before spectrum acquisition, samples were sonicated
for 60 s to remove air bubbles. Spectra were obtained at 303 K or 308 K using
a 600-MHz Varian VNMRS spectrometer or a 600-MHz Bruker Avance 600
spectrometer, both equipped with a 5-mm triple-resonance inverse cryoprobe.
Monodimensional 'H spectra were obtained with presaturation of residual
HOD, for 32-128 scans. DQF-COSY and 2D-TOCSY spectra were acquired
using 32 scans per series of 2,048 x 512 data poInts. HSQC and HSQC-TOCSY
spectra were recorded with carbon decoupling during acquisition with 320
increments for 12-64 scans. The polarization transfer delay was set with a t 1c.H
coupling value of 155 Hz. HMBC spectrum was recorded with 320 increments
of 64 scans for each, without carbon decoupling and with twofold low-pass I-
filter to suppress one-bond correlations27

. The delay for evolution of long-range
couplingswas setwith a Jsof 8 Hz. Samples for "C-NMR analysis were dissolved
in DO (99.9%) at 40 mg/mi and analysis was performed at 303 K with a 400-
MHz Bruker spectrometer equipped with a multinuclear probe.

Composition analysis bylon-pair RPHPLC. Samples were constituted in cap-
llary electrophoresis-grade water and digested under two different conditions.

The first digest used an enzyme cocktail of heparinases 1 (500 mIU), 11 (400
mIU) and III (500 mIU) at 30 *C, for 16 h.A portion of this digest was further
treated with 2-0-sulfatase (1,000 mIU) and A4,5-glycuronidase (2,000 mIU)
for 6 h at 30 *C to obtain the second digest. Each digest was passed through a
N 2* spin column (Qlagen) and analyzed by Ion-pair RPHPLC similar to as
previously described". Elution was monitored byUV detection at 232 am.

Isolation of rajor contaminant. Absolute ethano was added to sample 51
(300 mg), dissolved In 1.5 ml of water until a white precipitate appeared (etia-
nol 23%, vol/vol). Precipitated material was separated by centrifugation for
5 min at 5,000 r.p.m. (-4,000g) on a Labofuge 200 (Herseus). In addition to
the above, sample S1 was treated with nitrous acid2l. A solution of the sample
(500 mg) was dissolved In 20 ml of HO and cooled at 4 *C. Also at 4 *C.
140 mg of NaNO2 dissolved In 1 mi of water was added to the sample and the
pH was adjusted to 1.7 with 0.1 M HC. The solution was stirred at 4 *C for
20 min; an additional 100 mg NaNO2 was added and the solution stirred for
another 20 min. The solution pH was then adjusted to 7 with NaOH and the
resulting reaction was brought to room temperature. Solid NaBH 4 (200 mg)
was added in several portions with stirring. After 2 h, the pH was adjusted to
4 with 0.1 M HCI and the solution was neutralized with 0.1 M NaOH. The
product, obtained by precipitation with four volumes of methanol, was recov-
ered by centrifugation, dissolved in water and freeze-dried.

Chemical sulfonation of chondroitin sulfate. Fully sulfated chondroltin
sulfate was prepared from chondroltin sulfate, as described"5 . Chondroitin
sulfate (108 mg) was converted into its tributylamine salt and dissolved in dry
NN-dimethyiformamide (1 ml). After addition of 159 mg of pyridine-sulfur
trioxide complex. the solution was heated for 1 h at 40 *C. The reaction was
Interrupted by addition of 2 ml of water and the product was precipitated at
4 *C by addition of 35 ml of an ethanol solution saturated with sodium acetate.
The product recovered by centrifugation was dissolved in water, dialyzed at
room temperature and recovered by freeze-drying.

Note: Supplementary information is available an theNaturc Biotechnology website.
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ABSTRACT

BACKGROUND

There is an urgent need to determine whether oversulfated chondroitin sulfate (OSCS),
a compound contaminating heparin supplies worldwide, is the cause of the severe
anaphylactoid reactions that have occurred after intravenous heparin administration
in the United States and Germany.

METHODS

Heparin procured from the Food and Drug Administration, consisting of suspect
lots of heparin associated with the clinical events as well as control lots of heparin,
were screened in a blinded fashion both for the presence of OSCS and for any bio-

logic activity that could potentially link the contaminant to the observed clinical
adverse events. In vitro assays for the activation of the contact system and the comple-
ment cascade were performed. In addition, the ability of OSCS to recapitulate key
clinical manifestations in vivo was tested in swine.

R ES U LTS

The OSCS found in contaminated lots of unfractionated heparin, as well as a syn-
thetically generated OSCS reference standard, directly activated the kinin-kallikrein
pathway in human plasma, which can lead to the generation of bradykinin, a potent
vasoactive mediator. In addition, OSCS induced generation of C3a and C5a, potent
anaphylatoxins derived from complement proteins. Activation of these two pathways
was unexpectedly linked and dependent on fluid-phase activation of factor XII. Screen-
ing of plasma samples from various species indicated that swine and humans are
sensitive to the effects of OSCS in a similar manner. OSCS-containing heparin and
synthetically derived OSCS induced hypotension associated with kallikrein activation
when administered by intravenous infusion in swine.

CONCLUSIONS

Our results provide a scientific rationale for a potential biologic link between the
presence of OSCS in suspect lots of heparin and the observed clinical adverse events.
An assay to assess the amidolytic activity of kallikrein can supplement analytic tests
to protect the heparin supply chain by screening for OSCS and other highly sulfated
polysaccharide contaminants of heparin that can activate the contact system.
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IN JANUARY 2008, HEALTH AUTHORITIES IN

the United States began receiving reports of
clusters of acute hypersensitivity reactions in

patients undergoing dialysis that had been oc-
curring since November 2007. Symptoms includ-
ed hypotension, facial swelling, tachycardia, ur-
ticaria, and nausea. Although initial investigations
focused on dialysis equipment, an investigation
by the Centers for Disease Control and Preven-
tion identified the receipt of heparin sodium for
injection (1000 U per milliliter, in 10-ml and 30-ml
multidose vials), manufactured by Baxter Health-
care, as a common feature of the cases.' This
finding led Baxter Healthcare to recall, on Janu-
ary 17, 2008, nine lots of heparin sodium for in-
jection. As of April 13, 2008, there were 81 reports
of death that involved at least one sign or symp-
tom of an allergic reaction or hypotension in pa-
tients receiving heparin since January 1, 2007. How-
ever, the fact thatallergic symptoms or hypotension
were reported does not mean that these were the
cause of death in all cases.

After this initial recall, there were continuing
reports of allergic-type reactions, including some
deaths, after injection of bolus heparin not only
in patients undergoing dialysis but also in patients
in other clinical settings, such as those undergoing
cardiac procedures. On February 28, 2008, Baxter
Healthcare recalled all remaining lots and doses
of its multidose and single-dose vials of heparin
sodium for injection and HEP-LOCK heparin flush
products. Since that recall, monitoring by the Food
and Drug Administration (FDA) has indicated that,
in March 2008, the number of deaths reported in
association with heparin usage had returned to
baseline levels.2

However, on March 6, a heparin recall was an-
nounced in Germany because of a cluster of reac-
tions in patients undergoing dialysis that were
linked to a different manufacturer's heparin. On
the same day, the FDA posted descriptions of ana-
lytic methods on its Web site and recommended
that all manufacturers and regulatory authorities
screen for a contaminant in heparin.3 This screen-
ing revealed widespread contamination of the
heparin supply in at least 12 countries.

The contaminant was recently identified as an
unusual oversulfated form of chondroitin sulfate
(OSCS) representing up to approximately 30%
wt/wt in suspect lots of heparin; no other con-
taminants were observed.' In addition, dermatan
sulfate, a known impurity of heparin, was found
in selected samples. Both heparin and chondroi-

tin sulfate are members of the glycosaminoglycan
family of complex polysaccharides; heparin con-
tains a disaccharide repeat unit of glucuronic-
iduronic acid linked to glucosamine, and chon-
droitin sulfate contains a disaccharide repeat unit
of glucuronic acid linked to galactosamine. Anal-
ysis of the contaminant unexpectedly revealed an
unusual type of sulfation not found in any natu-
ral sources of chondroitin sulfate and indicated
that OSCS, containing four sulfates per disaccha-
ride unit, is structurally similar to heparin (see the
Supplementary Appendix, available with the full
text of this article at www.nejm.org).

However, the biologic link between the pres-
ence of the OSCS in heparin and the adverse clini-
cal events remained to be established. Highly
charged polyanionic polymers are known to mod-
ulate various enzymatic cascades in plasma, af-
fecting coagulation, fibrinolysis, inflammation,
and vasculature function.5' 6 Bradykinin, a potent
vasoactive peptide mediator, is generated through
the activation of the contact system of coagula-
tion, which is initiated upon contact of factor XII
with a negatively charged surface in the presence
of prekallikrein and high-molecular-weight kinin-
ogen. Highly sulfated polysaccharides have been
shown to serve as a negatively charged surface that
can initiate fluid-phase activation of the contact
system.57 However, initial attempts to recapitulate
the adverse responses in experimental models
were unsuccessful. Without a definitive link be-
tween the contaminant and the clinical reactions,
concerns remain that the screening tests currently
in place may not be adequate to prevent further
cases. We therefore set out to identify a biologic
basis for a link between OSCS and allergic-type
reactions.

CASE REPORT

A representative case involved a 63-year-old wom-
an with a complex medical history, including
end-stage renal disease treated with the use of
hemodialysis for 7 years, who received heparin
intravenously during hemodialysis (5000-U load-
ing dose and 500 U per hour during the proce-
dure) three times weekly. In mid-January 2008,
the development of "low blood pressure" was re-
ported, along with nausea and dyspnea, during
dialysis. She was treated with normal saline and
oxygen (2 liters per minute), and the rates of ul-
trafiltration and blood flow were slowed. She re-
covered after 30 minutes, and dialysis was contin-
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Figure 1. Effect ofOSCS on Kafllkrein Activity.

Pooled human plasma samples were treated with control unfractionated heparin (UFH) or OSCS-contaminated heparin (0.025 to 250 pg
per milliliter) or with chondroitin sulfate A, synthetic OSCS, or purified OSCS contaminant (0.0025 to 25 pg per milliliter). Amidolytic
activity was assessed by the addition of the S-2302 chromagenic substrate (D-Pro-Phe-Arg-p-nitroniline); the effect on kallikrein amido-
lytic activity is shown (Panel A). The presence of OSCS in heparin was associated with the induction of kallikrein activity. Twenty-nine
samples of heparin, representing both suspect heparin lots and control lots, were analyzed in a blinded fashion for both the presence of
OSCS and the ability to activate kallikreln (Panel B). The presence of OSCS was detected and quantified by one-dimensional nuclear
magnetic resonance spectroscopy (see Figure 2 in the Supplementary Appendix). The percentage of each sample that was OSCS is
shown below the plot. Kallikrein amidolytic activity was assessed at various concentrations of heparin; Sample 7 was not analyzed for
kallikrein activity owing to the limited quantity available. ND denotes not detectable, and OD optical density. In Panel A, T bars indicate
standard deviations of replicate measurements.

ued. Two days later, she again received intravenous 2 days later, after recovery. Further dialysis was
heparin (5000-U loading dose and 500 U per hour) performed with the use of heparin from another
from the same lots of heparin from the same manufacturer.
manufacturer (Baxter Healthcare). Immediately
after dialysis was initiated, the patient had an ana- M E TH o Ds
phylactoid reaction, with a sudden drop in blood
pressure (to 65/34 mm Hg), dyspnea, nausea, vom- TEST SAMPLES

iting, and constitutional symptoms. She was treat- Twenty-nine clinical lots of heparin, including 13
ed with a bolus of normal saline and oxygen (2 li- associated with clinical adverse events, were pro-
ters per minute). Hemodialysis was continued for cured from the FDA and coded as unknown sam-
another hour. The patient continued to feel ill, ples 1 through 29. A laboratory lot of heparin was
was admitted to the hospital, and was discharged included as a control. For all analytic and biologic
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tests, samples were dosed on a weight basis; spe-
cific activity of heparin is typically approximately
180 U per milligram. OSCS was purified to ho-
mogeneity from a lot of heparin that was known
to be contaminated, as previously described.4 Brief-
ly, OSCS-contaminated heparin was subjected to
anion-exchange chromatography followed by alco-
hol precipitation to isolate the contaminant.4 The
identity of the contaminant was confirmed by
means of multiple orthogonal techniques, includ-
ing multidimensional nuclear magnetic resonance
(NMR), enzymatic digestion followed by high-per-
formance liquid chromatography, and liquid chro-
matography-mass spectrometry.4 After identifi-
cation of the contaminant as OSCS, a synthetic
standard was generated through chemical sulfo-
nation of chondroitin sulfate A and was exhaus-
tively characterized to ensure authenticity, as pre-
viously described. 4 The synthetic OSCS was used
in spiking experiments to qualify the analytic pro-
cedures (especially one-dimensional proton NMR,
described below) to determine limits of detection
and to establish accurate quantification.4 The lim-
it of detection for this assay was determined to be
0.3% on a weight basis for both dermatan sulfate
and OSCS.

ANALYTIC METHODS

To ensure accurate identification and quantifica-
tion of any contaminants and impurities, the 29
coded test samples were subjected to orthogonal
analytic techniques. Proton NMR., anion-exchange
chromatography, and capillary electrophoresis were
used to screen the samples for the presence of
OSCS, dermatan sulfate, and other nonheparin
components. The levels of OSCS and dermatan
sulfate were quantified with the use of a 600-MH z
NMR. instrument to ensure peak resolution. The
details of quantification, as well as a representa-
tive spectrum, are given in Figure 1 and Table 1
in the Supplementary Appendix. For samples with
unusual patterns, the identity of contaminants or
impurities, including OSCS, was confirmed by
means of detailed characterization, including the
use of multidimensional NMR. 4

AMIDOLYTIC ACTIVITY OF KALLIKREIN

Pooled human plasma or factor XII-depleted plas-
ma (American Diagnostica) was treated with vari-
ous concentrations of coded test samples of hep-
arin, chondroitin sulfate A, or synthetic OSCS for
5 minutes at 37*C. The amidolytic activity of kal-

likrein (with a small contribution of factor XII)9

was assessed by adding the S-2302 chromagenic
substrate (D-Pro-Phe-Arg-p-nitroaniline [pNA])
for 30 minutes at 370 C, followed by spectropho-
tometric measurement of the absorbance at
450 nM.

GENERATION OF C3a AND CSa

Pooled human EDTA plasma or factor XII-depleted
plasma (American Diagnostica) was treated with
various concentrations of OSCS-contaminated
heparin, control heparin, chondroitin sulfate A,
or synthetic OSCS for 30 minutes at 37"C. C3a and
C5a activation products of the complement cas-
cade were assayed by means of a sandwich enzyme-
linked immunosorbent assay (ELISA), as specified
in the manufacturer's instructions (Becton Dick-
inson and Integrated Biotech Laboratories for C3a
and C5a, respectively).

IN VIVO STUDIES

The swine were handled and treated in compli-
ance with the Public Health Service Policy on Hu-
mane Care and Use of Laboratory Animals and
the federal Animal Welfare Act. The experimen-
tal procedures were performed according to the
Institutional Animal Care and Use Committee-
approved protocol of the Virginia Polytechnic In-
stitute and State University, Blacksburg. Domes-
tic Yorkshire crossbred swine were of either sex
(Virginia Polytechnic Institute and State Univer-
sity) and ranged in weight from 10 to 25 kg. They
were initially anesthetized with an intravenous
injection of 6 mg of tiletamine hydrochloride per
kilogram of body weight and 2.2 mg of xylazine
per kilogram, and then a single-lumen silicone
catheter was implanted in the left jugular vein of
each animal. Adequate anesthesia was maintained
throughout the procedure with the administra-
tion of supplemental tiletamine. After a 5-minute
stabilization period, each pig received an intrave-
nous bolus infusion of 5 mg of the test substance
per kilogram (three to six pigs per test sub-
stance). All the pigs were continuously monitored
for vital signs with the use of an oscillometric
blood pressure monitor (Cardell 940119403, CAS
Medical Systems) for systolic, diastolic, and mean
arterial blood pressures, pulse oximetry for pulse
and respiratory rates, and a rectal probe for body
temperature. At the end of the 60-minute obser-
vation period, the animals were euthanized with
the use of an intravenous infusion of Fatal Plus
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(Vortech Pharmaceuticals) at a dose of 0.22 ml
per kilogram. Blood samples were collected at
baseline and at 5, 10, 20, 40, and 60 minutes and
were kept in 5 mM EDTA. Plasma was isolated
after centrifugation at 4*C and flash-frozen on
dry ice. Frozen samples were thawed at 40C and
assayed for amidolytic activity of kallikrein with
the addition of the S-2302 chromagenic substrate
(D-Pro-Phe-Arg-pNA), as described above.

RESULTS

Given the association of activation of the contact
system with negatively charged polysaccharides, we
sought to elucidate whether an in vitro biologic re-
sponse could be correlated with the identity or lev-
els of contaminant within heparin lots. To this end,

we examined the ability of a sample of OSCS-con-
taminated heparin, containing 19.3% wtlwt OSCS
(Table 1 in the Supplementary Appendix), to acti-
vate kallikrein amidolytic activity in human plas-
ma (Fig. 1A). The contaminated heparin showed a
bell-shaped dose response, which is typical of gly-
cosaminoglycan-mediated responses.o10 At 2.5 and
25 pjg per milliliter, robust activation of kallikrein
was found with the contaminated heparin sample
but not with a control sample of uncontaminated
heparin. These concentrations are in the range of
a clinically efficacious concentration of heparin of
approximately 1 to 5 pg per milliliter, based on a
specific activity of about 180 U per milligram. High
concentrations of the OSCS-contaminated hepa-
rin (250 pg per milliliter) induced little or no ami-
dolytic activity of kallikrein, suggesting that at this
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Figure 2.OSCS-Induced Activation of Kallikrain in Normal or Factor XII-Depleted Plasma.

Control unfractionated heparin (UFH), OSCS-contaminated UFH, chondroltin sulfate A, and synthetic OSCS were
incubated with normal plasma (Panel A) or with factor XII-depleted plasma (Panel 5); OSCS-induced activation of
kalikrein is dependent on factor Xil, as indicated. Kaolin-containing buffer was evaluated as a positive control acti-
vator of the contact system. Buffer alone was Included as a negative control. Amidolytic activity was assessed by the
addition of the S-2302 chromagenic substrate (D-Pro-Phe-Arg-p-nitroaniline). OD denotes optical density.
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Figure 3. OSCS and the Generation ofComplement-Derived CSa
Anaphylatoxin in Human Plasnaa.

OSCS-contaminated unfractionated heparin (UFH) and control UFH (0.5 to
500 gg per milliliter) (Panel A) or chondroitin sulfate A, synthetic OSCS,
and purified OSCS contaminant (0.005 to 50 g per milliliter) (Panel B)
were incubated with normal plasma anticoagulated with EOTA. The genera-
tion of C5a was assessed by means of ELISA. T bars indicate standard devi-
ations of replicate measurements.

concentration, heparin may inhibit or cause de-
pletion of factor XII, as previously described. 7 "",
This high concentration of heparin also prevented
activation of the contact system in response to ka-
olin, a potent activator (data not shown).

To further verify that the contaminant was
responsible for the activation of the contact sys-
tem, OSCS was purified to homogeneity by means
of anion-exchange chromatography followed by
alcohol precipitation. In addition, an OSCS stan-
dard was created through chemical sulfonation of
chondroitin sulfate A, to form OSCS.4 The puri-
fied contaminant and the OSCS standard were

2462

identical, as judged by several orthogonal analytic
techniques, including two-dimensional NMi,. 4

Both the purified contaminant and the synthetic
OSCS showed robust activation of kallikrein ac-
tivity at 0.25 pg and 2.5 pg per milliliter (Fig. 1A).
The peak activity of the purified contaminant and
the synthetic OSCS standard were observed at a
level that was approximately an order of magni-
tude lower than that found for the contaminated
heparin sample. This is consistent with the obser-
vation that the OSCS constituted approximately
20% of the contaminated sample. Chondroitin
sulfate A showed no induction of amidolytic ac-
tivity.

These results are in good agreement with the
observations of Hojima et al.,5 who demonstrated
that oversulfated chondroitin, but not chondroi-
tin A, B, or C, can activate the kinin pathway.
Heparin also activated the contact system in an
in vitro model system involving purified protein
components5"3 but did not in plasma," suggest-
ing that negative-regulatory factors present in
plasma may prevent activation of the contact sys-
tem by heparin. One such mechanism is the fact
that heparin is known to enhance antithrombin
III-mediated inhibition of factor XII. Our results
indicate that OSCS, in contrast to heparin but
similar to dextran sulfate," can activate the con-
tact system in plasma.

The 29 heparin samples procured from the
FDA, consisting of both suspect heparin lots as-
sociated with clinical events as well as control
heparin lots, were screened in a blinded fashion
for both the presence of OSCS and the ability to
activate the contact system (Fig. 1B). There was
complete correspondence between the presence
of detectable amounts of OSCS by one-dimen-
sional proton NMR. and the ability of a sample
to induce robust amidolytic activity of kallikrein
(Fig. 1B). The biologic activity was generally char-
acterized as an all-or-none response, with all 13
samples containing detectable levels of OSCS hav-
ing a positive response at 25 sg or 2.5 sLg per
milliliter. Sample 11, which contained the high-
est level of contaminant (27.4%), also showed
activity at 0.25 pg per milliliter, whereas Sample
25, which contained the lowest level of contami-
nant (2.4%), showed only modest activity at 2.5 jg
per milliliter. In contrast, there was no associa-
tion between the level of inducible kallikrein ac-
tivity and the level of dermatan sulfate (Fig. 2 in
the Supplementary Appendix), an impurity found
in many heparin preparations.
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Direct activation of the contact system by the
contaminated heparin and the synthetic OSCS
standard was confirmed through the use of hu-
man plasma depleted of factor XII, the upstream
activator of prekallikrein"1 (Fig. 2). The contami-
nated heparin, the synthetically derived OSCS, and
the positive control (the kaolin-containing reagent)
all failed to induce the amidolytic activity of kal-
likrein in factor XII-deficient plasma.

We next examined the ability of contaminated
heparin to generate C3a and C5a, potent anaphyla-

toxins derived from complement proteins. Expo-
sure of human plasma to the contaminated hepa-
rin, but not to control heparin, induced the
production of C5a (Fig. 3). OSCS-induced C5a gen-
eration showed a bell-shaped dose response sim-
ilar to that found for kallikrein activation. Peak
Csa activity was observed at 50 pg and 5 pg per
milliliter of heparin containing 19.3% OSCS. At
500 jpg per milliliter, significant generation of C5a
was not observed. Similar results were obtained
with the purified OSCS isolated from contami-
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Figure 4. OSCS Induction of Complement-Derived C3a and CSa Anaphylatoxins and Its Relationship to the Contact System.

Factor XlI-depleted plasma was incubated with chondroitin sulfate A, OSCS, or control buffer in the presence or absence of 5 mM
EDTA, zymosan (1 mg per milliliter), or aprotinin (400 IU per milliliter) (Panel A). Specific samples were reconstituted with purified fac-
tor XiI, as indicated. Normal human plasma or factor Xil-depleted plasma was incubated with chondroitin sulfate A, OSCS, or control
buffer In the presence or absence of 5 mM EDTA, zymosan (1 mg per milliliter), or both (Panel B). C3a and C5a generation was assessed
by means of ELISA. T and I bars indicate standard deviations of replicate measurements.
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nated heparin and the synthetic OSCS standard,
but not with chondroitin sulfate A.

Surprisingly, the generation of C5a by OSCS-
contaminated heparin was more robust in the
presence of EDTA, a Ca 2

+- and Mg2+-chelating
agent, than in the absence of EDTA. The classic
and alternative pathways of complement activa-
tion are known to be dependent upon Ca 2 + and
Mg2 +, respectively. As expected, EDTA blocked
C3a and C5a generation in response to zymosan,
a potent activator of the alternative pathway (Fig.
4). These results suggested the possibility that
OSCS induces the generation of C3a and C5a in
a manner that bypasses the C3 and C5 conver-
tases. To determine whether the generation of
C3a and C5a was linked to the activation of the
contact system, we next examined C3a and Csa
generation in factor XII-depleted plasma (Fig. 4).
As expected, zymosan induced the generation of
C3a and C5a in factor XII-depleted plasma, and
this activity was inhibited by EDTA. In contrast,
neither C3a nor C5a was generated in factor XII-
depleted plasma activated with OSCS, suggest-
ing that OSCS bypasses the normal pathways for
complement activation in a manner that is de-
pendent on contact activation through factor XII.
The generation of C5a could be restored by re-
constituting the factor XII-depleted plasma with
purified factor XII (Fig. 4A). This finding is fur-
ther supported by the observation that C5a gen-
eration induced by OSCS-contaminated heparin
can be inhibited by aprotinin, a protease inhibi-
tor of kallikrein but not of factor XIla (Fig. 4A).
Crosstalk between the contact system and the
complement cascade has been suggested previ-
ously.15-1s For example, factor XII has been shown
to activate the classical pathway by activating
C1.1 It has also been proposed to substitute for
factor D in activating the alternative pathway. 1
However, in these cases, activation of the comple-
ment cascade still occurs through divalent cat-
ion-dependent pathways. Kallikrein has been
shown to act directly on C5 to generate C5a-like
biologic activity.17 

Both kallikrein and factor XII

can activate the plasminogen pathway leading to
the activation of plasmin, which has also been
implicated in complement activation.'" Prelimi-
nary data suggest that OSCS is unable to induce
C5a generation in plasminogen-depleted plasma
(data not shown).

To identify an appropriate species for in vivo
testing of OSCS, a panel of plasma samples were

Figure 5 (facing pag). In Vitro and In Vivo Activity
ofOSCS.
Human, rat, rabbit, pig, and horse plasma samples
were incubated with various concentrations of OSCS-
contaminated unfractionated heparin (UFH) or control
UFH (Panel A). Kaolin-containing buffer was tested as
a positive control. Buffer alone was Included as a nega-
tive control. Kallikrein amidolytic activity was assessed
by the addition of the 5-2302 chromogenic substrate;
OSCS induces hypotension and kallikrein activity in
swine (Panels 8 and C). Anesthetized Yorkshire cross-
bred pigs (three to six pigs per group) were treated
with a single intravenous bolus (5 mg per kilogram)
of control UFH, OSCS-contaminated UFH, chondroitin
sulfate A, or synthetic OSCS. Representative data for
the heart rate, the mean arterial pressure, the systolic
blood pressure, and the diastolic blood pressure are
shown (Panel B). EDTA-anticoagulated plasma was col-
lected at baseline and at 5, 10, 20, 40, and 60 minutes
after infusion of test samples (Panel C). OD denotes
optical density. In Panels A and C, T and I bars indicate
standard deviations of replicate measurements.

screened for amidolytic activity in response to
OSCS-contaminated heparin (Fig. 5A). Only swine
plasma supported robust amidolytic activity of
kallikrein in response to kaolin and OSCS-con-
taminated heparin but not control heparin. In
contrast, rabbit, horse, and rat plasma showed
moderate-to-robust amidolytic activity in response
to kaolin but not to OSCS-contaminated heparin.
These findings are consistent with a report that
initial attempts to provoke an allergic response
with suspect lots of heparin were unsuccessful."
Similarly, we found that rabbits treated with 5 mg
of intravenous OSCS-contaminated heparin per
kilogram showed no change in temperature, blood
pressure, or heart rate as compared with rabbits
treated with control heparin (data not shown).
Wiggins19 demonstrated previously that dextran
sulfate can induce hypotension in rabbits, but only
at a high dose (20 mg per kilogram) and in a
manner independent of complement or kinin ac-
tivation. In contrast, moderate doses of dextran
sulfate (5 mg per kilogram) induced a robust hy-
potensive response in pigs that was dependent on
activation of the contact system. 20

To test the in vivo activity of OSCS, pigs were
treated with a single intravenous dose (5 mg per
kilogram) of OSCS-contaminated heparin, control
heparin, synthetic OSCS, or chondroitin sulfate
A and were monitored for 60 minutes. Animals
treated with control heparin and those treated
with OSCS-contaminated heparin showed simi-
lar anti-Xa activity during the entire 60-minute
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observation period (activity at 5 minutes, approxi-
mately 3 to 4 IU per milliliter) (Fig. 4 in the Supple-
mentary Appendix). Animals treated with chon-
droitin sulfate A or synthetic OSCS showed no
anti-Xa activity. These results suggest that any
anticoagulant activity ofOSCS is mediated through
a non-antithrombin III-dependent mechanism.
Two of six animals treated with OSCS-contami-
nated heparin had at least a 30% drop in blood
pressure over the first 30 minutes after infusion
(Fig. 5B). One animal remained in a hypotensive
state for more than 15 minutes. In contrast, none
of the four animals treated with control heparin
showed any substantive changes in blood pressure.
The adverse events were more severe in pigs
treated with the synthetic OSCS, a result consis-
tent with the greater exposure to OSCS in ani-
mals treated with pure OSCS as compared with
contaminated heparin containing approximately
20 to 30% OSCS. All three pigs treated with
synthetic OSCS showed a profound drop in blood
pressure (maximal decrease, 45 to 59%) and a
concurrent increase in heart rate within minutes
after infusion. One animal had difficulty breath-
ing and became cyanotic after a precipitous drop
in blood pressure. The heart rate of a second
animal increased from 114 beats per minute to
196 beats per minute within 4 minutes after the
infusion of OSCS. The third pig showed a tran-
sient but pronounced spike in heart rate with a
corresponding drop in blood pressure (Fig. 5B).
In contrast, none of the three pigs treated with
chondroitin sulfate A showed any significant
changes in blood pressure or heart rate within
the first 30 minutes after drug infusion. Thus, in-
travenous infusion of OSCS is capable of recapitu-
lating the hallmark cardiovascular features of
the reaction in swine. The changes in physiolog-
ical parameters were mirrored by rapid induction
of the amidolytic activity of kallikrein (Fig. 5C).
Kallikrein activity remained high throughout the
observation period, even after the vital functions
returned to normal, suggesting depletion ofhigh-
molecular-weight kininogen and inactivation of
bradykinin by kininases in vivo, as previously
shown with dextran sulfate.20 Induction of kal-
likrein activity was evident in all animals that re-
ceived OSCS-contaminated heparin, even when no
substantive changes in blood pressure were ob-
served. These findings suggest that activation of
kallikrein does not always manifest as clinical
symptoms, perhaps because of individual varia-

tion in control mechanisms that regulate brady-
kinin activity. Nonetheless, these results also sug-
gest that swine may be an appropriate species in
which to assess the potential consequences of
OSCS contaminant in cardiovascular and dialy-
sis models as well as in heparin-coated devices.

DISCUSSION

The recent reports of allergic-type serious adverse
events in patients receiving heparin and the sub-
sequent detection of widespread contamination
have caused intense international concern about
the safety of this essential drug. Urgent problems
included an immediate and unknown risk to pa-
tients' lives, a threat to the supply of a widely used,
essential drug, and the need for international co-
operation in managing the integrity of a global
supply chain. This crisis necessitated an urgent
need to both understand the basis for these clin-
ical events and to prevent future occurrences. The
development of an analytic assay for OSCS, cou-
pled with the rapid response of manufacturers
and regulatory authorities around the world, has
undoubtedly limited the harm. However, in the
absence of a biologic link between the OSCS con-
taminant and the adverse events, the adequacy of
screening heparin lots to prevent a recurrence is
a concern.

Determining whether a link exists between the
presence of OSCS and a biologic response required
the convergence of two distinct analyses. First, there
was a requirement to develop analytic techniques of
sufficient sensitivity and specificity to ensure accu-
rate identification and quantification of contami-
nants or impurities that are present within hepa-
rin. Second, there was a requirement to develop a
sensitive, clinically appropriate biologic test to de-
termine at what levels, if any, the OSCS would have
relevant biologic activity.

With regard to the analytic techniques, a tiered
approach was required to ensure effective transla-
tion to biologic characteristics. Screening methods
were developed to rapidly identify whether heparin
lots were contaminated or impure. Then, methods
were further developed to enable quantification of
the contamination levels. Finally, more sophisti-
cated techniques, such as multidimensional NMR,
enabled complete characterization of the contami-
nant or impurity. This tiered approach was neces-
sitated by the fact that heparin is a polydisperse
mixture of glycosaminoglycan chains; orthogonal
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techniques were therefore required to ensure cap-
ture of the other nonheparin components.

Here, we demonstrate that the OSCS present in
suspect heparin lots, as well as a synthetic OSCS
standard, can directly activate the contact system
and induce the generation of C3a and CSa ana-
phylatoxins in vitro. Moreover, OSCS activates kal-
likrein in vivo and can induce a profound hypoten-
sive response in pigs, thus providing a potential
biologic link between the contaminant and the
anaphylactoid reactions seen in affected patients.
The finding that hypotension did not develop in all
animals treated with OSCS-contaminated heparin,
even at a relatively high dose, is consistent with the
observation that the majority of patients who re-
ceived contaminated heparin did not experience an
adverse event. However, it is important to note that
all animals treated with OSCS-contaminated hepa-
rin showed evidence of kallikrein activation in vivo,
even in the absence of clinical signs. Patients un-
dergoing dialysis who are also receiving heparin
therapy are already at high risk for hypotension
because of their exposure to the dialysis mem-
brane, which can also activate the contact system,
and their treatment with angiotensin-converting-
enzyme inhibitors, which inhibit bradykinin degra-

dation. Exposure to OSCS-contaminated heparin
may further increase the risk and could potentially
trigger an adverse event. Finally, these findings
also suggest that a simple in vitro bioassay could
complement the previously described analytic
tests4 to help protect the global supply chain of
heparin, by allowing the screening of heparin
lots for the presence not only of OSCS but also of
other polysulfated contaminants that may have
unintended pharmacologic consequences.
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ABSTRACT

BACKGROUND

In January 2008, the Centers for Disease Control and Prevention began a nationwide
investigation of severe adverse reactions that were first detected in a single hemo-
dialysis facility. Preliminary findings suggested that heparin was a possible cause
of the reactions.

METHODS

Information on clinical manifestations and on exposure was collected for patients
who had signs and symptoms that were consistent with an allergic-type reaction after
November 1, 2007. Twenty-one dialysis facilities that reported reactions and 23 fa-
cilities that reported no reactions were included in a case-control study to identify
facility-level risk factors. Unopened heparin vials from facilities that reported reac-
tions were tested for contaminants.

R ESU LTS

A total of 152 adverse reactions associated with heparin were identified in 113 pa-
tients from 13 states from November 19, 2007, through January 31, 2008. The use of
heparin manufactured by Baxter Healthcare was the factor most strongly associated
with reactions (present in 100.0% of case facilities vs. 4.3% of control facilities,
P<0.001). Vials of heparin manufactured by Baxter from facilities that reported reac-
tions contained a contaminant identified as oversulfated chondroitin sulfate (OSCS).
Adverse reactions to the OSCS-contaminated heparin were often characterized by
hypotension, nausea, and shortness of breath occurring within 30 minutes after ad-
ministration. Of 130 reactions for which information on the heparin lot was avail-
able, 128 (98.5%) occurred in a facility that had OSCS-contaminated heparin on the
premises. Of 54 reactions for which the lot number of administered heparin was
known, 52 (96.3%) occurred after the administration of OSCS-contaminated heparin.

CONCLUSIONS

Heparin contaminated with OSCS was epidemiologically linked to adverse reactions
in this nationwide outbreak. The reported clinical features of many of the cases fur-
ther support the conclusion that contamination of heparin with OSCS was the cause
of the outbreak.
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ADVERSE REACTIONS ASSOCIATED WITH CONTAMINATED HEPARIN

U NFRACTIONATED HEPARIN IS AN ANTI-
coagulant medication that is used to pre-
vent or treat thromboembolic disorders.

Heparin is also commonly used to prevent clotting
of extracorporeal blood during hemodialysis and
cardiac surgery, as well as to maintain the pat-
ency of intravenous devices. Chemically, heparin
is a heterogeneous mixture of sulfated polysaccha-
rides; its main anticoagulant activity is mediated
through activation ofantithrombin. Commercially
available heparin is derived from animal tissues;
only porcine-derived heparin is approved for the
U.S. market. Although heparin-induced thrombo-
cytopenia is a well-described immune-mediated
phenomenon among patients receiving heparin,
immediate hypersensitivity reactions (e.g., exan-
themas, bronchospasm, angioedema, and anaphy-
laxis) that are directly attributable to heparin have
rarely been reported.1

2

On January 7, 2008, the Missouri Department
of Health and Senior Services notified the Centers
for Disease Control and Prevention (CDC) about
a cluster of allergic-type reactions among patients
undergoing hemodialysis at a pediatric hospital 3

Symptoms occurred within minutes after the ini-
tiation of a dialysis session, and manifestations
included facial edema, tachycardia, hypotension,
urticaria, and nausea. The CDC's national case-
finding effort identified, in multiple states, addi-
tional clusters of similar reactions among patients
undergoing hemodialysis, and subsequently among
patients undergoing photopheresis or treatment
for cardiac conditions. A common feature that
preceded many of the reactions was the receipt of
heparin produced by Baxter Healthcare. On Janu-
ary 17, 2008, nine lots of vials of heparin manufac-
tured by Baxter were voluntarily recalled.4 A more
extensive recall of heparin products manufactured
by Baxter occurred on February 28, 2008.'

In March 2008, the Food and Drug Adminis-
tration (FDA) announced that a "heparin-like"
compound had been identified as a contaminant
in the active pharmaceutical ingredient used in
heparin manufactured by Baxter. This contami-
nant was identified as oversulfated chondroitin
sulfate (OSCS)," and the ability of OSCS in the
active pharmaceutical ingredient to activate the
contact and complement systems was shown. 7 In
this report, we describe the CDC epidemiologic
investigation that was undertaken to establish the
cause of the allergic-type reactions among patients
undergoing dialysis, provide a clinical description
of the reactions that occurred after the adminis-

tration of heparin, and report on laboratory tests
for the presence of OSCS in finished-product hepa-
rin vials that were related to these reactions.

METHODS

EPIDEMIOLOGIC INvESTIGATION OF REACTIONS

AMONG PATIENTS UNDERGOING DIALYSIS

Case Finding
After being notified about the Missouri cluster,
the CDC began active case finding. Inquiries about
allergic-type reactions were circulated by various
methods, including the use of e-mail distribution
lists targeting providers in the field of nephrology
and the CDC's Epidemic Information Exchange.
We used a standard form to collect information
about the adverse events, as well as information
about the demographic and clinical characteristics
of the patients who had reactions and exposures
of those patients to medication and medical de-
vices. Since the original cluster and the majority
of reactions that were reported subsequently oc-
curred among patients undergoing dialysis, our
initial case definition was restricted to reactions
associated with dialysis. For this aspect of the
investigation, we characterized a definite case as
the sudden onset of angioedema (i.e., facial ede-
ma) or urticaria in a patient within 1 hour after
the initiation of a hemodialysis session that oc-
curred after November 1, 2007. A probable case was
characterized by the development, within the same
period after initiation ofhemodialysis, of hypoten-
sion, loss of consciousness, or signs and symptoms
from at least two of the following categories: sen-
sation of burning, warmth, or flushing; numbness
or tingling; difficulty swallowing; shortness of
breath, audible wheezing, or chest tightness; tachy-
cardia; and nausea, vomiting, or diarrhea.

Facility-Based Case-Control Study
Because a clustering of cases was noted in specific
dialysis facilities, and patients within a facility had
relatively uniform exposures to medical products,
we conducted a case-control study to identify risk
factors, using the facility as the unit of analysis.
Dialysis facilities that completed a case-report
form for at least one definite or probable case (21
facilities in 11 states) were considered to be case
facilities and were compared with control facili-
ties that reported no such reactions (23 facilities
in 9 states). Control facilities were identified with
the use of the Centers for Medicare and Medicaid
Services Dialysis Facility Compare Web site."These
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Facilities with at Least
One Case of

Adverse Reaction
(N -21)Characteristic

Facilities with No Case
of Adverse Reaction

(N -23)

no. (%)

Manufacturer of heparin used

Baxter Healthcare

APP Pharmaceuticals

Other

Manufacturer of dialysis machines used

Gambro

Fresenius Medical Care

8. Braun

Other

Manufacturer of dialyzers used

Gambro

Fresenius Medical Care

Other

Reused dialyzers

Saline priming solution delivered to patient*

Patient census >70 patients

21 (100.0)

2 (9.5)

0

16 (76.2)

9 (42.9)

1 (4.3)

1 (4.3)

10 (47.6)

9 (42.9)

7 (33.3)

15 (71.4)

11 (52.4)

10 (47.6)

1 (4.3)

20 (37.0)

2 (8.7)

7(30.4)

13 (56.5)

3 (13.0)

0

8 (34.8)

14 (60.9)

6(26.1)

9 (39.1)

13 (56.5)

12 (52.2)

P Value

<0.001

<0.001

0.49

0.03

0.55

0.61

0.48

0.54

0.37

0.75

0.04

0.76

1.00

* Saline solution is used to clear the tubing and dialyzer of air and residual disinfectant. In some instances, some of the
priming solution that has passed through the circuit is delivered to the patient.

facilities were selected randomly among the pooled
dialysis facilities in the 11 states in which case fa-
cilities were located. Owing to the pooling of po-
tential controls, two states with case facilities were
not represented among the control facilities. A rep.
resentative of each case and control facility was
contacted by telephone and surveyed between Jan-
uary 28, 2008, and February 8, 2008. Oral consent
was obtained, and a clinical manager was asked
to identify the medical products and supplies that
had been used at the facility in the period after
December 15, 2007, including heparin products and
dialysis equipment (e.g., machines, tubing, and di-
alyzers), and to describe the facility's practices with
respect to dialyzer reuse and reprocessing. Pro-
portions were compared with the use of Fisher's
exact test and Stata software, version 9.0 (Stata).
All reported P values are two-sided.

ASSESSMENT OF REACTIONS, H EPARIN PRODUCTS,

AND EXPOSURE TO CONTAMINATED LOTS

Clinical Description of Heparin Reactions
After preliminary findings suggested that hepa-
rin was strongly associated with cases and simi-

lar reactions were reported among patients who
were not undergoing hemodialysis, we expand-
ed our case definition to include reactions in a
broader population of patients. For the purposes
of describing heparin reactions in this broader
population, a probable or definite adverse reaction
associated with heparin met the same clinical and
temporal criteria as those in the case definition
for patients undergoing dialysis but was defined
as occurring within 1 hour after the administra-
tion of heparin (rather than within 1 hour after the
initiation of a hemodialysis session).

Analytic and in Vitro Ealuation of Heparin
Products
Unopened finished-product vials of heparin were
solicited from health care facilities that reported
cases. Heparin vials received by the CDC were cat-
egorized by lot number; 10 lots of heparin manu-
factured by Baxter Healthcare were tested. Samples
from each unique lot number and three controls
were tested for the presence of OSCS and were
assessed for their effect on the amidolytic activity
of kallikrein in human plasma as a measure of the
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activation of the kinin-kallikrein pathway. The
quantification of OSCS levels and the measurement
of amidolytic activity were performed with the use
of previously described methods. 6 7

Exposure to Contaminated Heparin Lots
Although the specific lot number of heparin that
had been administered in each case patient was
requested, most facilities did not routinely record
this information. Instead, many facilities, reported
likely exposures on the basis of the heparin lots
that were present in the facility at the time of the
reaction. Exposure to heparin lots contaminated
with OSCS was described in the following man-
ner. A known exposure to an OSCS-contaminated
lot was defined as either documented receipt by a
patient of heparin from a lot that tested positive
for OSCS or exposure of a patient to one of several
heparin lots in the facility, all of which tested pos-
itive for OSCS.

RESULTS

DIALYSIS CASES

A total of 131 adverse events met our initial case
definition. of these cases, 128 (97.7%) occurred af-
ter the administration of heparin; in 122 of those

cases (95.3%), the heparin that was used was man-
ufactured by Baxter Healthcare. The only other fac-
tors identified in more than 50% of the cases were
the use of acid concentrate manufactured by Minn-
tech (59.5%), the use of dialysis machines (53.8%)
and dialyzers (53.5%) manufactured by Gambro,
and the practice of reusing hemodialyzers (52.0%).

FACILITY-BASED CASE-CONTROL STUDY

Twenty-one case facilities in 11 states had been
identified by late January 2008 and were included
in the study. The mean number of cases at case
facilities was 4.2 (range, 1 to 11). Fifty-two facili-
ties were contacted to obtain 23 control facilities
in nine states. Of the 29 facilities that were con-
tacted but not included as controls, 16 refused to
participate, 7 did not respond, 5 reported a possi-
ble allergic-type reaction, and 1 was not a dialysis
facility.

In univariate analysis, the use of Gambro di-
alysis machines and the administration of Baxter
heparin were significantly associated with the
presence of adverse reactions at the facility (Ta-
ble 1). The factor with the strongest association
was the use of Baxter heparin, which was reported
by all case facilities and only one control facility
(100.0% vs. 4.3%, P<0.001).
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Figure 1. Cases of Adverse Reactions Associated with Heparin, According to Week of Onset.
The figure shows a total of 152 cases of adverse reactions associated with heparin that were reported to the Centers
for Disease Control and Prevention from November 19. 2007, through January 31, 2005.
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A total of 152 heparin reactions that met our case
definition were identified from November 19, 2007,
through January 31, 2008 (Fig. 1), among the 194
events that were reported to the CDC. The 152
cases occurred in 113 patients from 13 states and
included 130 reactions in 100 patients undergoing
hemodialysis, 8 reactions in 6 patients undergoing
treatment for cardiac conditions, and 14 reactions
in 7 patients undergoing photopheresis. The aver-
age age of the 113 case patients was 53 years; 57
(50.4%) of the case patients were women.

Table 2 shows the clinical characteristics of the
152 heparin reactions in 113 case patients. The
mean time to a reaction after exposure to heparin
was 5.1 minutes among patients undergoing he-
modialysis. The most common manifestations
were hypotension (50.0%), nausea (48.7%), and
shortness of breath (37.5%). Thirty-six reactions
(23.7%) involved facial swelling. Although urticaria
was reported in several of the cases in the initial
cluster, this feature was infrequent (3.3%) among
all cases. Fever (0.7%), chills (1.3%), wheezing
(0%), and difficulty swallowing (0%) were also rare

Table 2. Clinical Characteristics of the 152 Adverse Reactions after Administration of Heparin.*

Probable Dennite
All Reactions Reactions Reactions

Characteristic (N -152) (N -116) (N -36)

Time from administration of heparin to reaction
- min

During hemodialysis 5.1*9.1 5.3*10.0 4.5*6.2

During treatment for cardiac conditions 14*17.2 1 5.9±1 7.7 1*0

During photopheresist 30*13.1 30±13.1 -

Manifestation - no. (%)

Facial edema

Any 36 (23.7) 0 36 (100)

Ups 23 (15.1) 0 23 (63.9)

Eyelids 17 (11.2) 0 17 (47.2)

Throat 12 (7.9) 0 12 (33.3)

Tongue 11 (7.2) 0 11 (30.6)

Mouth 10(6.6) 0 10(27.5)

Urticaria 5 (3.3) 0 5 (13.9)

Low blood pressure 76 (50.0) 69 (59.5) 7 (19.4)

Systolic pressure <80 mm Hg 17(11.2) 14(12.1) 3 (.3)

Nausea 74 (48.7) 56 (48.3) 18 (50.0)

Shortness of breath 57 (37.5) 38(32.8) 19 (52.5)

Vomiting 37 (24.3) 27 (23.3) 10 (27.8)

Tingling 36 (23.7) 23 (24.1) 8 (22.2)

Flushing 35 (23.0) 31 (26.7) 4 (1.1)

Tachycardia 33 (21.7) 29(25.0) 4 (11.1)

Diaphoresis 23 (15.1) 23 (19.8) 0

Abdominal pain 17 (11.2) 12 (10.3) 5 (13.9)

Diarrhea 8 (5.3) 7 (6.0) 1 (2.3)

Loss of consciousness 6(3.9) 6(5.2) 0

Chills 2 (1.3) 2 (1.7) 0

Fever 1 (0.7) 1 (0.9) 0

Difficulty swallowing 0 0 0

Wheezing 0 0 0

N ENGLJ M ED 359;25 www.NEJM.ORG DECEMBER 1S, 2008

The New England Journal of Medicine
Downloaded from nejm.org at MIT LIBRARIS on July 23, 2012. For personal use only. No other uses without permission.

Copyright 0 2008 Massachusetts Medical Society. All rights reserved.

88

2678



ADVERSE REACTIONS ASSOCIATED WITH CONTAMINATED HEPARIN

Table 2. (Continued.)

Probable Definite
All Reactions Reactions Reactions

Characteristic (N -152) (N - 116) (N - 36)

Follow-up care - no./total no. (%)

Blood cultures obtained$ 32/144 (22.2) 26/109 (23.9) 6/35 (17.1)

Evaluation in an emergency departments 22/144 (15.3) 9/109 (8.3) 13/35 (37.1)

Hospitalizationi 13/144 (9.0) 5/109 (4.6) 8/35 (22.9)

Use of intravenous heparin - no. (%) 149 (93.0) 115 (99.1) 34(94.4)

Brand of heparin - no. (%)

Baxter Healthcare 141 (92.8) 110 (94.3) 31 (86.1)

APP Pharmaceuticals 6 (3.9) 4 (3.4) 2 (5.6)

Baxter or APP 2 (1.3) 1 (0.9) 1 (2.8)

Not reported 3 (2.0) 1(0.9) 2 (5.6)

* Plus-minus values are means ±SD.
t Although heparin is administered at the beginning of photophoresis, the patient is not exposed to it until later in the

process.
4 The total numbers exdude eight reactions (one definite and seven probable) owing to missing data.
I The total numbers exclude the eight reactions (one definite and seven probable) that occurred in patients undergoing

treatment for cardiac conditions because these patients were hospitalized at the time of the adverse reactions.

or absent. In 15.3% of the cases, the reaction re-
quired further evaluation in the emergency depart-
ment, and in 9.0% of the cases, required hospital-
ization. A total of 149 reactions (98.0%) occurred
after intravenous administration of heparin. The
other three involved exposure to heparin through
other means (e.g., a dialysis circuit primed with
heparin). The brand of heparin most commonly
used (in 92.8% of the cases) was manufactured by
Baxter Healthcare.

None of the 113 patients with adverse reactions
that met our case definition died immediately after
the reaction. Three deaths among patients under-
going treatment for cardiac conditions were re-
ported to the CDC, but the reactions in these pa-
tients did not meet our case definition because
they occurred between 8 and 11 hours after ad-
ministration of the heparin.

ANALYTIC AND IN vITRO FINDINGS

The samples tested included 10 different lot num-
bers of heparin vials collected from facilities and
3 control samples (Fig. 2). Of the lots collected from
facilities, Lots A through G and Lot J represent
eight of the nine lots of Baxter heparin that were
recalled on January 17, 2008. A high level of activa-
tion of kallikrein was observed with samples from
Lots A through D and F through J at concentrations
of 2.5 and 25 pg per milliliter. These concentra-
tions are in the range of a clinically efficacious con-

centration of heparin of approximately 1 to 5 pg
per milliliter, based on a specific activity of ap-
proximately 180 U per milligram. There was little
activation of kallikrein from heparin samples that
did not contain OSCS, including the control sam-
ples and Lot E.

EXPOSURE TO CONTAMINATED HEPARIN LOTS

Information on the lot of Baxter heparin was re-
ported for 130 of the 152 heparin reactions. In 128
of the 130 (98.5%), OSCS-contaminated heparin
was present in the facility; in 106 of the 130 (81.5%),
facility records indicated that only OSCS-contam-
inated heparin could have been received by the
patient (either because all heparin lots present in
the facility tested positive for OSCS or because the
single lot received by the patient was known and
tested positive). Furthermore, of 54 heparin reac-
tions for which the specific lot number of admin-
istered heparin was known, 52 (96.3%) resulted
from an OSCS-contaminated lot.

The 106 reactions for which there was known
exposure to OSCS-contaminated heparin occurred
in 77 case patients. Of these case patients, 40
(51.9%) had a reported allergy to medication,
most commonly to antibiotics. Six patients (7.8%)
had a reported food allergy. An angiotensin-con-
verting-enzyme (ACE) inhibitor was prescribed for
20 of these case patients (26.0%) at the time of the
reaction.
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Table 3 shows the clinical characteristics of
the heparin reactions in case patients who were
known to have received OSCS-contaminated hep-
arin (106 reactions) and heparin that contained
more than 20% OSCS (18 reactions). Low blood
pressure was documented in 58.5% of the reac-
tions; a systolic pressure lower than 80 mm Hg,
however, was reported for only 9.4% of the reac-
tions. Other common symptoms in case patients
included nausea (46.2% of reactions), vomiting
(28.3%), shortness of breath (25.5%), flushing
(25.5%), tingling (24.5%), and tachycardia (24.5%).
Facial swelling was associated with 17 reactions
(16.0%). The 18 reactions involving heparin con-
taminated with more than 20% OSCS showed
similar manifestations, although nausea was more
frequent in this subgroup of cases (occurring in
72.2% of reactions), as was shortness of breath
(38.9%).

DISCUSSION

We describe findings from a national investiga-
tion of adverse reactions among patients who re-
ceived heparin and characterize 152 cases that
occurred between November 19, 2007, and Janu-
ary 31, 2008. Our initial evaluation of reactions
among patients undergoing hemodialysis sug-

gested that heparin was a potential cause, and a
facility-based case-control study confirmed a
strong epidemiologic association between the re-
ceipt of heparin produced by Baxter Healthcare
and reactions. Reports to the CDC of heparin re-
actions declined after the initial Baxter recall of
nine lots of heparin vials on January 17, 2008
(Fig. 1). By February 28, 2008, when all Baxter hep-
arin products had been recalled, the CDC was no
longer receiving reports of cases. Our findings con-
firm the presence of OSCS in finished-product vi-
als of heparin manufactured by Baxter Healthcare
that were used by facilities that reported cases, as
well as the ability of these vials to induce kallikrein
activation, and provide evidence that the vast ma-
jority of the patients with reactions had been ex-
posed to heparin vials contaminated with OSCS.

Kishimoto et al.? previously demonstrated kal-
likrein activation from OSCS in the active pharma-
ceutical ingredient of contaminated heparin. Since
finished-product vials may contain heparin from
more than one lot of the active pharmaceutical
ingredient, the vials tested in this investigation
best represent the heparin product that case pa-
tients received. We found similar biologic activity
among multiple vials of heparin that were known
to result in adverse reactions, and the clinical pic-
ture described among the outbreak cases nation-
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Figure 2. Association ofOversulfated Chondroltin Sulfate (OSCS) In Unfractionated Haparin with Induction

ofKalllkrain Activity.

Thirteen samples of heparin, including one sample of non-clinical-grade hepsuin (control heparin 1), representing
both suspect heparin lots and control lots, were analyzed in a blinded fashion for both the presence of OSCS and
the ability to activate kallikrein. The presence of OSCS was detected and quantified as described elsewhere.

6 
The

amidolytic activity of kallikrein was assessed at various concentrations of heparin, as indicated. Lots A through D

and F through J contained OSCS. Samples from Lot E, as well as controls 1 through 3, contained no detectable

OSCS. Lots A through G and Lot J were recalled on January 17, 2003. T bars indicate standard deviations of replicate

measurements. ND denotes not detected.
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Table 3. Clinical Characteristics ofthe 106 Adverse Reactions in Patients Confirmed to Have Received Heparin
Contaminated with OSCS and with >20% OSCS.*

Reaction with Heparin
Reaction with OSCS- Contaminated

Contaminated Heparin with >20% OSCS
Characteristic (N -106) (N -18)

Case status - no. (%)

Probable 39 (54.0) 16 (83.9)

Definite 17 (16.0) 2 (11.1)

Patient population - no. (%)

Dialysis 85(30.2) 18 (100)

Cardiac 7 (6.6) 0

Photopheresisj 14 (13.2) 0

Time from administration of heparin to reaction - min

During dialysis 4.5*9.0 3.7*1.7

During treatment for cardiac conditions 15.9*17.7 -

During photopheresis 30*13.2 -

Manifestations - no. (%)

Facial edema

Any 17(16.0) 2 (11.1)

Eyelids 11(10.4) 0

Ups 11 (10.4) 1 (5.6)

Tongue 5 (4.7) 1 (5.6)

Mouth 5 (4.7) 2 (11.1)

Throat 3 (2.8) 1 (5.6)

Urticaria 2(1.9) 0

Low blood pressure 62 (53.5) 10 (55.6)

Systolic pressure <80 mm Hg 10 (9.4) 0

Nausea 49 (46.2) 12 (66.7)

Vomiting 30 (23.3) 4 (22.2)

Shortness of breath 27 (25.5) 7 (38.9)

Flushing 27 (25.5) 4 (22.2)

Tachycardia 26 (24.5) 0

Tingling 26 (24.5) 7 (38.9)

Diaphoresis 17 (16.0) 5 (27.8)

Loss of consciousness 4 (3.9) 0

Difficulty swallowing 0 0

* Forty-six reactions are not included: 2 were in patients who did not receive OSCS-contaminated heparin, and 22 were in
patients who may have received OSCS-contaminated heparin but for whom receipt could not be confirmed; for the re-
maining 22 reactions, we did not receive lot information and were thus unable to make a determination. Plus-minus
values are means ±SD. OSCS denotes oversulfated chondroitin sulfate.

f Although heparin is administered at the beginning of photophoresis, the patient is not exposed to it until later in the
process.

ally is consistent with the biologic mediators previ- symptoms, initially among patients undergoing
ously identified in response to OSCS. hemodialysis. Some manifestations were overt

The adverse reactions that were reported to the (e.g., facial edema), others were more subtle (e.g.,
CDC encompassed a constellation of signs and flushing), and many were not uncommon for pa-
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tients undergoing hemodialysis or treatment for
cardiac conditions (e.g., hypotension and dyspnea).
Our initial case definition was intentionally broad
to accommodate the many presentations and po-
tential sources of allergic-type reactions in the
absence of a clear cause or mechanism.

Similar adverse reactions have been document-
ed among patients undergoing dialysis and have,
in the past, been attributed to many causes, in-
cluding dialyzer membranes, water impurities, re-
sidual disinfectants, and medications such as ACE
inhibitors.91" A systemic inflammatory response
has also been described in the setting of cardiopul-
monary bypass and has been attributed to activa-
tion of the contact system resulting from interac-
tion of blood with the artificial surfaces of the
bypass circuit and other mechanisms that activate
the kinin-kallikrein pathway, complement system,
and other systems. 2

Heparin alone rarely causes the symptoms,
such as angioedema, that were observed in this
investigation." Heparin has antiinflammatory
properties, and the use of heparin-coated devices
is thought to decrease the risk of an inflammatory
response. 14

-
1 Although there have been occasional

adverse reactions associated with heparin that have
been attributed to animal proteins or allergens,2
most adverse events reported in association with
heparin products have been the result of either
intrinsic or extrinsic microbial contamination.*2

Various clinical manifestations were observed
in patients with adverse reactions who received
OSCS-contaminated heparin. Although hypoten-
sion was the most common, a large proportion
of case patients had nausea, shortness of breath,
vomiting, tingling, flushing, and diaphoresis. Urti-
caria was not a prominent feature among the case
patients. This finding is consistent with reactions
that are not mediated by mast cells and supports
the role of bradykinin and other mediators in-
stead.21 In addition, there was no substantial dif-
ference between reactions that occurred as a re-
sult of heparin contaminated with OSCS and those
that occurred as a result of heparin contaminated
with a high concentration of OSCS (>20%). This
finding may be consistent with data showing that
at clinical concentrations of heparin (2.5 and 25 yAg
per milliliter), the level of kallikrein activation is
similar, regardless of the concentration of OSCS.
Furthermore, the relatively infrequent need for
case patients to be evaluated in the emergency
department or hospitalized supports the notion

that the clinical manifestations of these adverse
reactions were mostly transient.

Twenty-six percent of case patients were taking
an ACE inhibitor when they received OSCS-con-
taminated heparin and had the reaction. ACE in-
hibitors cause an accumulation of bradykinin and,
thus, might be expected to predispose patients to
a reaction or to worsen the reaction. The preva-
lence of ACE-inhibitor use among patients who
received OSCS-contaminated heparin at these fa-
cilities but did not have reactions is unknown. In
two studies of patients undergoing hemodialysis,
the prevalence of ACE-inhibitor use was 24% and
51%, 22 2

3 suggesting that the prevalence among
case patients in this investigation was not greater
than expected.

On the basis of available evidence, an allergic
mechanism seems to be an unlikely cause of these
reactions. Thus, it is interesting that a preexisting
allergy to medication was identified among 51.9%
of case patients, although it is possible that these
reports of a history of intolerance to medication
did not truly indicate allergic phenomena, and the
prevalence of preexisting allergies among patients
who did not have a reaction is unknown.

It should be recognized that the cases described
in this report do not represent the entire outbreak.
As of May 31, 2008, the FDA Adverse Event Report-
ing System had received reports of more deaths
after heparin administration (238 deaths) than we
had reports of cases. 24 No determination of a
causal association between these deaths and hepa-
rin administration has been reported, and many
deaths occurred among patients with severe un-
derlying or life-threatening conditions.

We could not calculate attack rates because we
did not know the total number of patients in the
United States who received heparin during this
period. We suspect that OSCS-contaminated hep-
arin was used more broadly than in only those
facilities that reported cases. According to national
sales distribution data from the IMS National
Sales Perspectives (IMS Health), approximately
7,163,700 single-dose and 3,339,400 multidose vi-
als of Baxter heparin were sold by the manufac-
turer to distributors in the United States during
the period from November 2007 through January
2008 (data abstracted by the FDA from IMS
Health: IMS National Sales Perspectives: Retail
and Non-Retail. Nov '07-Jan. '08. Extracted Sep-
tember 4, 2008). These data do not provide a di-
rect estimate of use, but they do provide a national
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estimate of the number of vials sold by the man-
ufacturer into retail and nonretail channels of

laboration among public health agencies, clini-
cians, basic-science researchers, and industry to

distribution. The lack of reports from other facili- prevent future safety threats associated with medi-
ties may represent underreporting or underrecog-
nition of reactions, evidence of intermittent con-
tamination, patterns of distribution and use, or
other factors.

There were several challenges to this investiga-
tion. First, health care facilities rarely recorded lot
numbers of the heparin that was administered to
patients. In many cases, we could determine only
the heparin lots that a patient might have received.
Second, our case descriptions are limited by the
accuracy of information provided by health care
personnel at reporting facilities. However, the fact
that health care personnel reported reactions with
the use of standard case-report forms probably
increased the overall quality of the clinical infor-
mation we obtained, as compared with informa-
tion obtained by other methods. Finally, it was
difficult to build precise case definitions owing
to inherent uncertainties in this investigation. We
attempted to reduce misclassification by estab-
lishing limits with respect to the time of onset
and the symptoms that were required to be clas-
sified as a case, but some true cases may have been
misclassified as noncases.

This report of a nationwide outbreak attribut-
ed to a newly discovered contaminant in heparin
products contributes to our understanding of the
epidemiology and biology of the adverse reactions
that occurred. It also underscores the importance
of a public health mechanism to address serious
noninfectious adverse events in health care set-
tings, the pivotal role of clinicians who recognize
and report clusters of unusual events to public
health authorities, and the need for ongoing col-
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3.1.Summary and overall significance

In late 2007 and early 2008, clusters of serious anaphylactoid-type responses were

observed in patients undergoing kidney dialysis. In total, more 200 deaths worldwide were linked

to the outbreak. The number and severity of reactions in patients coupled with the notion that

heparin is an essential drug used in a variety of clinical situations underscored an urgent need to

understand the basis of the reactions and prevent future occurrences. Initial investigations by the

Centers for Disease Control (CDC) and Food and Drug Administration (FDA) identified a link

between adverse reactions and certain batches of heparin manufactured by Baxter Laboratories,

which prompted the recall of all heparin manufactured by the company. Efforts to identify the

source of adverse reactions eliminated more obvious potential causes, such as viral agents or

greater levels of protein impurities in suspect lots. To further investigate and determine the root

causes of the reactions, the FDA assembled a multidisciplinary team consisting of members from

academia, industry, and the agency.

Heparin is composed of a complex mixture of polysaccharide chains. The similar chemical

properties of the constituent chains leads to overlapping properties and signals in analytical

techniques and thus challenges the complete structural elucidation of all components in heparin,

and in particular, any additional components with similar physicochemical properties. To

overcome these challenges, a framework encompassing multiple orthogonal analytical techniques

was employed to identify the cause of the reactions. Results from enzymatic digestions, HPLC, MS,

and multidimensional NMR converged on the identification of oversulfated chondroitin sulfate

(OSCS) as the major contaminant. Importantly, the use of multiple analytical methods which

provide complementary structural information enabled identification of the contaminant as OSCS

with greater confidence while also ruling out other structurally related constituents, including the

natural impurity dermatan sulfate. To further characterize OSCS as the cause of adverse reactions,

an investigation into the biological activity of OSCS was performed. The presence of OSCS was

shown to induce activation of the contact system, which can lead to a rapid onset of an

anaphylactoid response, as well as activation of the complement system anaphylatoxins C3a and
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C5a. These in vitro findings were corroborated with in vivo studies using pig, a relevant animal

system to mimic the human response based on in vitro screening of plasma from different animal

species. Administration of OSCS or OSCS-contaminated heparin to pigs resulted in blood pressure

and heart rate changes consistent with activation of the contact system. Lastly, an epidemiological

study demonstrated that confirmed and probable cases of anaphylactoid responses in patients

significantly correlated with administration of heparin containing OSCS, a finding which further

supported the role of OSCS as causing adverse clinical events.

The results of these studies have important implications, both for ensuring the safety of

heparin products as well as for the regulation of other drugs and biologics more broadly. First,

heparin is an essential drug, widely used in a variety of medical situations. Therefore, identification

of the root cause of the outbreak was critical not only to resolve the immediate crisis but also to

prevent future occurrences for this essential drug. To ensure accuracy in assigning the cause of the

adverse reactions, it was critical to define and characterize the contaminant structurally,

biologically and epidemiologically in the context of clinical presentation and symptoms. Multiple

lines of evidence across these fields all converged on OSCS as the major contaminant responsible

for the observed anaphylactoid reactions, thus reinforcing findings from each area of investigation

- structure, activity, and epidemiology of OSCS-contaminated heparin.

Second, the findings of these studies highlight the need for regulatory tests that are specific

to the molecular features of drug products, both in terms of structure and activity. Heparin is a

complex biological product present as a mixture of related structures. Before the 2007-2008

heparin contamination outbreak, regulatory tests, as outlined in the US and other pharmacopeias,

were based on more general structural and activity features of heparin, which described attributes

of heparin but lacked much descriptive details of the mixture. Such tests were unable to detect the

presence of OSCS due to its similar chemical and activity properties as heparin. Modern analytical

techniques, such as those utilized in these studies, provide increased resolution and information

content in characterizing structural features of complex drug products. For example in the case of

heparin, 1H-NMR enables distinction between heparin and OSCS, in part, by detecting the fine

96



differences in N-acetyl groups. Thus, incorporation of high-resolution analytical techniques into an

overall set of regulatory tests significantly improves the ability to define impurities and

contaminants in drug products. In addition to structure-determination assays, activity tests more

specific to the biological mechanisms of drug products aid the detection and discernment of

impurities and contaminants. In the case of heparin, the required potency test utilized a crude

clotting assay with sheep blood, an assay in which many agents, including heparin and OSCS,

demonstrate anticoagulant activity. In response to these issues, the US pharmacopeia for heparin

has been updated with new tests, including 1H-NMR, anion-exchange HPLC, and anti-Xa/anti-IIa

activity ratio, which characterize more specific molecular and activity features of heparin.

Third, the supply chain for drug products is increasingly globalized and with greater

complexity, including that for heparin. Most raw material for pharmaceutical heparin is obtained

from pigs in China, and increasingly, the manufacture and production of heparin is also occurring in

China. The increasing reliance of the importation of drug products into the US necessitates global

regulation strategies to ensure the safety (and efficacy) of drugs, however significant challenges

and barriers exist. Harmonization of regulatory standards across the globe is a critical facet

towards addressing international supply chain issues. Indeed, in the case of heparin before the

contamination outbreak, significant differences existed between regulatory tests implemented and

criteria required, perhaps most notably of which was differences in heparin activity. In addition to

increased harmonizing of standards, regulatory tests need to be updated for products, particularly

those which have long market lives, to ensure assays appropriately monitor impurities and

components which are most likely to lead to issues in safety and efficacy in the context of modern

manufacture procedures. The potential consequences of not having updated tests in place was seen

for heparin; as a drug used for multiple decades, many of the tests in place were outdated and did

not provide sufficient molecular characterization to detect many potential impurities, such as OSCS.

Collectively, the increased complexity and globalization of pharmaceutical supply chains prompt

modified surveillance strategies which incorporate greater harmonization across regulatory bodies

as well as vigilant and modernized post-marketing monitoring of drug products.
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Lastly, these studies provide a practical lesson towards and insight into the coordination of

efforts between the FDA and scientists and physicians from academia and industry to rapidly

resolve urgent drug issues. Circumstances surrounding the heparin contamination outbreak,

including the immediacy of the reactions and the essentialness of heparin as a medical drug,

necessitated an investigation to rapidly determine the cause of reactions and hence prevent

additional harm. Formation of a multidisciplinary team provided the expertise to thoroughly and

expediently characterize suspect versus control lots of heparin, but the speed and success of such a

broad-team investigation critically hinged on coordination of people, resources, and results. Indeed,

with such a team assembled and appropriately coordinated for the heparin contamination

investigation, it was possible to converge on identification of the contaminant and formation of a

biological link in less than three months. The scientific and managerial leadership of the heparin

contamination may be a useful model for the coordination of efforts to resolve other urgent medical

and drug-related issues.

Attributions I would like to acknowledge that these studies were team-based investigations

involving many individuals from different academic, industry, and FDA groups. My participation in

these studies involved assisting with the development of the kallikrein activity assay and applying

the assay to test multiple lots of heparin.
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4. Engineering of a broad spectrum neutralizing antibody to
dengue virus by structure-guided rational design

4.1. Introduction and motivation

Dengue is the most common vector-borne viral disease in humans, with an estimated 3.6

billion people at risk for infection. Globally, more than 200 million dengue infections occur each

year, resulting in approximately 21,000 deaths [1]. The high morbidity associated with dengue

leads to significant public health, social, and economic impact on populations and countries where

dengue is endemic [2]. Currently, no approved vaccine or specific therapy exists for dengue, leaving

a large unmet public health need.

Dengue virus (DV), the causative agent of dengue disease, is a member of the Flaviviridae

family and exists as a complex of four serotypes (DV1-4). The 50 nm DV particle is composed of a

10.7 kb positive-sense RNA genome, host-derived lipid bilayer, and multiple copies of three viral

structural proteins - capsid (C), precursor membrane/membrane (prM/M), and envelope (E)

proteins [3]. The surface of a mature DV particle has 180 copies of M and 90 copies of E protein

homodimers, which form a compact architecture with the E proteins oriented parallel to the viral

membrane, thus giving the mature virus a smooth, spike-less appearance [4]. The arrangement of E

proteins on the virion surface yields an icosahedral lattice in which each of the three E protein

monomers per icosahedral asymmetric unit has a different chemical environment (Figure 4.1) [4].

The E protein is composed of three domains: EDI, EDII, and EDIII (Figure 4.1) [5]. EDII displays a

conserved fusion loop at its distal end, which is responsible for facilitating fusion with host cell

endosomes, and EDIII is thought to be responsible for binding yet-unidentified host cell receptor(s)

[6].

Monoclonal antibodies (mAbs) as novel antiviral therapeutics and prophylactics are of

growing interest owing to their high biochemical specificity, activity by both direct and indirect
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mechanisms (i.e., effector functions), long serum half-life, and decreasing costs of manufacture [7-

9]. Development of potent neutralizing mAbs against the DV complex to combat severe disease

offers a promising therapeutic and prophylactic strategy, however no mAbs have yet been

identified which potently neutralize all four serotypes. The principal target of neutralizing

antibodies is the E protein, which shares approximately 70% sequence identity in its amino acid

sequence between serotypes, thus leading to substantial antigenic diversity [10]. Cross-reactive

neutralizing mAbs to DV have been shown to typically localize to one of two epitopes: the highly

conserved EDII fusion loop (fl) or the 'A'

@-strand on EDIII (Figure 4.1).

Antibodies recognizing the EDII-fl show

broad neutralization (i.e., all four

serotypes), however their neutralization

potency is low due to inaccessibility of

this epitope in the mature virion

structure [11, 12]. In contrast, EDIII A-

strand antibodies tend to show potent

neutralizing activity, however with

limited breadth, neutralizing only 1-3

serotypes [13-15]. Another significant

challenge to the development of a

therapeutic mAb for dengue is

addressing concerns regarding

antibody-dependent enhancement Figure 4.1 Structure of DV and E protein. DV surface structure i

(further discussed in Section 4.4 composed of 90 dimers of E protein arranged with icosahedra

"Discussion"). symmetry. Numbers represent the 5-, 3-, and 2-fold axes of symmetr3

The high potency but limited

cross-reactivity of EDIII A-strand mAbs

The E protein is composed of three domains: EDI (red), EDII (yellow),

and EDIII (blue). Cross-reactive neutralizing epitopes are marked:

EDII fusion loop (green) and EDIll A-strand (magenta).
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makes this class of DV mAbs attractive targets for rational engineering towards the development of

a potent broad-spectrum therapeutic/prophylactic DV mAb. The A-strand mAb 4E11, originally

isolated from a mouse infected with DV1 [16], displays potent to modest neutralizing activity

against DV1-3 but weak DV4 neutralizing activity [15]. We reasoned that, using a structure-

function-based approach, 4E11 could be rationally re-engineered for increased neutralization

activity to DV4 while maintaining DV1-3 activity.

In this chapter, 4E11 is rationally mutated using structure-guided approaches for increased

affinity and neutralizing activity to DV4 while preserving neutralizing activity to DV1-3. An

integrated structure-function approach is employed in which a structure-based empirical

informatics computational methodology is developed to predict affinity-enhancing mutations in

4E11, and functional binding and neutralization assays are applied to characterize the mutations.

An engineered mAb is developed and experimentally defined, revealing an activity profile with

binding and potent neutralization to all four serotypes.

4.2. Methods

4.2.1. Cells & viruses

Vero (African green monkey kidney) and C6/36 (Aedes albopictus) cells were purchased

from ATCC. Vero cells were cultured with DMEM/F-12 (50:50) medium (Invitrogen) supplemented

with 10% FBS (Invitrogen) in a 37oC humidified 5% CO2 incubator. C6/36 cells were maintained in

EMEM (ATCC) supplemented with 10% FBS in a 28oC humidified 5% CO2 incubator. Suspension

Freestyle 293 cells (Invitrogen) were cultured in Freestyle 293 medium (Invitrogen) in flasks

maintained at 135 RPM in a 37oC humidified 8% CO2 incubator. Dengue viruses TH-S-man

(serotype 1), NGC (serotype 2), and H87 (serotype 3), and BC287/97 (serotype 4) were purchased

from ATCC or BEI Resources. Viruses were propagated by infection of C6/36 cells (MOI -0.1) and

harvested after 5-8 days. Aliquots were stored at -80oC.

4.2.2. Focus forming assay
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Viruses were titered by focus forming assay with Vero cells and expressed as focus-forming

units (FFU) per ml. Serial dilutions of virus were incubated for 2 hours with 95% confluent Vero

cells in 24-well plates at 37oC, after which one ml of viscous overlay (DMEM/F12 containing 1%

Aquacide II [EMD Millipore]) was added to the monolayer. After 4-6 day incubation period at 37oC,

the overlay was removed, cells were fixed with formalin, and foci were revealed by sequential

incubation with pan-flavivirus 4G2 mouse antibody, HRP-conjugated goat anti-mouse IgG antibody

(Santa Cruz Biotechnology), and TrueBlue Peroxidase Substrate (KPL).

4.2.3. Expression and purification of antibodies and EDIII proteins

Chimeric 4E11 (designated '4E11') was generated by DNA synthesis (DNA 2.0) of 4E11 VH

and VL regions (GenBank accession numbers AJ131288.1 and AJ131289.1, respectively) and cloned

using standard techniques into pcDNA 3.3 plasmid (Invitrogen) containing the constant region of

either human IgG1 heavy chain or human kappa light chain. For mouse 4E11 (designated 'm4E11'),

the same DNA sequences were cloned into mouse IgG2a heavy chain (pFUSEss-CHIg-mG2a) and

mouse kappa light chain (pFUSEss-CLIg-mk) plasmids (InvivoGen). Mutant mAbs were generated

by either site-directed mutagenesis (Agilent) or variable region DNA synthesis (DNA 2.0).

Antibodies were expressed in Freestyle 293 cells by transient transfection with polyethyleneamine

(PEI) and purified by protein A chromatography. EDIII DNA sequences (corresponding to E protein

amino acid residues 293-400) of strains TH-S-man, NGC, H87, and BC298/97, representing

serotypes 1-4, respectively, were synthesized (DNA 2.0) with C-terminal 6X-His tags and cloned

into pJExpress414 plasmids. The proteins were expressed in Origami2(DE3) E. coli (EMD

Millipore), essentially as described [17]. Briefly, overnight cultures of Origami2 cells harboring

EDIII-pJExpress414 plasmids were used to inoculate 500 ml cultures, which were then grown at

37oC until OD60o reached 0.6. The culture was equilibrated to room temperature for one hour, after

which IPTG was added (1 mM, final) to induce expression for 3 hours at room temperature.

Bacterial cells were harvested by centrifugation and lysed by sonication. After removal of insoluble

material by centrifugation, EDIII from centrifugation supernatant was purified by IMAC using His-

Trap columns (GE Healthcare) and stored at 4oC or -20oC for long-term storage.
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4.2.4. Indirect ELISA

EDIII in PBS (0.1 Vg/well) was adsorbed to Maxisorp 96-well plates (Nunc) at 40C overnight.

Plates were then washed with PBS-T (PBS containing 0.1% Tween-20) and blocked with PBS-T

containing 1% BSA for 1 hour. Serial dilutions of antibody were added to wells and incubated for 2

hours, and after washing, bound antibody was revealed by HRP-conjugated rabbit anti-human IgG

(Jackson ImmunoResearch) followed by TMB substrate (KPL) addition. The reaction was stopped

by 1N sulfuric acid, and OD450 was determined using a Molecular Devices spectrophotometric plate

reader. Apparent dissociation constant, K'D, was determined by fitting a standard four-parameter

logistic model to the data, with the inflection point being equal to K'D.

4.2.5. Competition ELISA

The affinities of antibodies to EDIII, in solution at equilibrium, were determined by

competition ELISA [18]. In 96-well plates, serial dilutions of EDIII were mixed with antibody at 0.2

nM in PBS-TB (PBS containing 0.01% Tween-20 and 0.01% BSA). The mixtures were incubated

overnight to allow equilibrium to be reached. Subsequently, an optimized EDIII indirect ELISA was

performed to measure the concentration of unbound or singly bound antibody. The conditions of

the ELISA were developed such that antibody concentration is linearly proportional to absorbance

and that the equilibrium is not significantly disturbed, conditions important for obtaining accurate

results [18]. Maxisorp plates coated with EDIII-DV1 (2.5 ng/well, 4oC overnight) were blocked with

PBS-TB containing 1% BSA for 1 hour. After washing wells with PBS-TB, equilibrium antibody-EDIII

mixtures were added to the wells and incubated for 20 min. After washing, bound antibody was

detected by incubation with diluted HRP-conjugated rabbit anti-human IgG (Jackson

ImmunoResearch) for 1 hour, followed by addition of TMB substrate (KPL). The reaction was

stopped with 1N sulfuric acid, and OD 450 was determined. The data were fit, by least squares

regression in Excel (Microsoft), to the following model derived from mass action and as described

[19], with adjustment to take into account antibody bivalence [20]:
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Vu 2 + 4KD [mAb]o - w wz -4[EDIII]~mAb]O
Ai =(Ama - Ao) X x + 1 + AOmax2[mAb], 2[mAb]O

where

u = [EDIII] - [mAb]0 + KD

and

w = [EDIII]1 + [mAb]o + KD

and [mAb]o is the initial antibody concentration, [EDIII]i is the variable concentration of EDIII, At is

the OD 45 o at [EDIII]i, Amax and Ao are the maximal and minimal OD 450 (when [EDIII] = 0 and [EDIII] =

oo, respectively), and KD is the equilibrium dissociation constant. For data fitting, KD was the sole

floating parameter.

4.2.6. Surface plasmon resonance

Surface plasmon resonance (SPR) experiments were performed with a Biacore 3000 (GE

Healthcare) instrument. Briefly, substoichiometrically biotinylated antibody (ligand) was applied to

a CAPture Kit chip (GE Healthcare), and EDIII protein flowed as the analyte. Kinetic parameters (kon

and koff) were determined by fitting resultant RU curves to a 1:1 binding model using BlAevaluation

software (GE Healthcare). Since no binding of WT 4E11 was detected to EDIII-DV4, this interaction

was also tested by steady state experimental conditions, which increases sensitivity of detection to

KD < 0.1 mM. KD was determined by the ratio kof/kon.

4.2.7. Focus reduction neutralization test (FRNT)

Neutralizing activity of antibodies was assessed by the focus reduction neutralization test

(FRNT). Serially diluted antibody was mixed with an equal volume of diluted virus (30 FFU/well)

and incubated for 2 hour at 37oC. The mixtures were then transferred to Vero cell monolayers in
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24-well plates. Foci were detected by focus forming assay as described above. Each antibody

concentration was run in duplicate. Data are expressed as the relative infectivity:

Relative infectivity = (Average # foci at [mAb]i) 100
(Average # foci with no mAb)

A standard four-parameter logistic model was fit to the data by least squares regression in Excel

with the slope factor and inflection point as floating parameters. The FRNTso is equal to the

inflection point, which is the concentration of mAb at 50% virus neutralization.

4.2.8. Ala-scanning

To identify paratope hot spots of binding interaction, Ala-scanning of 4E11 CDR loops was

performed. Briefly, all residues in 4E11 CDR loops were individually mutated to Ala (or Ala->Gly),

expressed, purified, and tested for binding to EDIII-DV1-3 by indirect ELISA, as described above.

Energetic hot spots were defined as those in which K'D increased by >100-fold for at least two

serotypes.

4.2.9. Computational methods

Computational docking of 4E11 to EDIII was performed in a series of steps. First, a model of

4E11 was generated using the PIGS server [21]. Docking was performed using ZDOCK (Discovery

Studio), and mapped epitope and H3 paratope residues [22, 23] were used to constrain the docking

to ensure the poses do not deviate significantly from the native complex. The best ranking model

from each run was analyzed further for physicochemical features typical of antibody-antigen

interfaces, and the top-ranking model was selected. Prediction of energetic hot spots in different

docked models was performed with the KFC2 server [24] using a cutoff of -0.4 confidence score.

For rational design of 4E11 mutations, CDR loop residues were examined one at a time. At a

given CDR position, the WT residue was systematically substituted by the remaining amino acids

excluding glycine and proline and the CDR contact potential score was evaluated at each instance.

Single mutations that lead to a better contact potential score than the wild type mAb were modeled

and evaluated. Proline and glycine residues were not modified to avoid alteration in the backbone
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conformation. Replacements were modeled, and reevaluated computationally to find mutations

that met the following requirements - (1) do not alter phi-psi values, (2) do not bury polar groups

and (3) improved H-bonds, salt bridges, van der Waals, and hydrophobic contacts and packing.

4.3. Results

4.3.1. Generation of 4E11-EDIII structural model and design of affinity-enhancing
mutations

Rational design of affinity-enhancing mutations for 4E11 required a structural

understanding of how 4E11 binds its epitope on EDIII. With no available co-crystal structure of

4E11:EDIII at the inception of this study, an accurate 4E11:EDIII model had to be computationally

generated. To generate such a model, a three-step approach was undertaken. A structural model of

4E11 was developed using the PIGS server [21], and this model was then docked computationally

to EDIII, leading to five model poses with similarly high scoring values. The generation of false

positives by computational docking of protein-protein interactions is a common challenge which

contributes to the difficulty of a priori prediction of correct protein-protein interaction

configurations [25]. In order to remove docking decoys and establish an accurate structural model,

the five poses were assessed by their interface features, including number of different types of

contacts (i.e., hydrogen bonds, electrostatics, and hydrophobic packing), interface surface area,

planarity, and charge distribution. Comparison of interface features of the five posed to statistical

averages derived from antibody-antigen co-crystal structures led to the removal of four of the five

models as likely false positives. To validate the remaining pose, a comparison was performed

between paratope and epitope hot spots computationally predicted [24] from the pose and hot

spots experimentally identified. Paratope energetic hot spots were determined by experimental

Ala-scanning of each position in all CDR loops of 4E11 with binding assessment by indirect ELISA

(see Methods), while epitope energetic hot spots have been previously characterized [22]. Hot spot

prediction of the selected pose correctly identified 61% of experimentally determined hot spots,
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whereas the remaining poses had hot spot prediction accuracies of <45% (range 28-44%), thus

indicating that the selected pose was likely to reflect the true 4E11:EDIII binding configuration.

To design affinity-enhancing, cross-reactive mutations, it was hypothesized that important

structural features of antibody-antigen interfaces could be mined from the large collection of

available antibody-antigen co-crystal structures (>500) in the Protein Data Bank (PDB). Identified

structural features correlating with specificity and intermolecular contacts could be applied to

predict mutations in 4E11 which would increase contacts with EDIII-DV4 while not detrimentally

affecting EDIII-DV1-3 contacts. A mathematical model was designed in which pairwise interactions

between epitope and paratope were mined in a manner that takes into account secondary structure

of epitope residues (see Methods). A resultant index which quantifies the propensity for particular

epitope amino acids given a neighboring paratope residue was applied to predict paratope

mutations which could yield greater contacts with neighboring epitope residues than the WT

paratope residue. Each predicted mutation from this set was individually modeled to determine

mutations likely to make new H-bonds, salt bridges, van der Waals contacts, and hydrophobic

packing with DV4 while not perturbing DV1-3 contacts. This computational analysis resulted in a

final set of 87 mutations predicted to increase 4E11 affinity to DV4 while not significantly affecting

DV1-3 affinities.

4.3.2. Experimental assessment of DV4 affinity-enhancing mutations

Antibodies harboring the 87 predicted affinity-enhancing mutations, individually, were

generated by site-directed mutagenesis and expressed in 293 cells. Affinities of single mutant

antibodies were assessed by indirect ELISA with recombinant EDIII proteins, which revealed 10

mutations having increased EDIII-DV4 affinity and approximately unchanged affinity to EDIII-DV1-

3 relative to WT 4E11 (Table 4.1). Eight of the 10 identified mutations were located in the VL, with

7 being in CDR L2 alone. The physicochemical properties of the positive mutations were mostly

charged or polar in nature. Using the 4E11:EDIII-DV4 structural model, the location of these

paratope residues were shown to reside at the periphery of the antibody-antigen interface area

(Figure 4.2). Interestingly, the number and variety of DV4-affinity-enhancing mutations

107



accommodated at each identified position varied substantially. For example, for VL-N57, a mutation

to Ser or Glu, but not Asp, yielded increased EDIII-DV4 affinity, while for VL-E59, mutations to Gln,

Asn, Val, Tyr, Trp, Thr, Ser, Ala, and Asp all showed increased EDIII-DV4 affinity but only Gln and

Asn did so while not significantly decreasing affinity to EDIII-DV1-3.

Table 4.1 Mutations with increased EDIII-DV4 affinity and similar affinity to EDIII-DV1-3 relative to WT 4E11, as

determined by EDIII indirect ELISA.

Chain and CDR Position WT residue Mutation

VH - H2 55 Ala Glu

VH - H2 55 Ala Asp

VL - L1 31 Arg Lys

VL - L2 57 Asn Glu

VL - L2 57 Asn Ser

VL - L2 59 Glu Gln

VL - L2 59 Glu Asn

VL - L2 60 Ser Trp

VL - L2 60 Ser Tyr

VL - L2 60 Ser Arg

Initial studies to determine quantitative affinity values of mAbs harboring mutations was

performed by EDIII indirect ELISA, a method frequently used to assess antibody affinities towards

dengue and other flavivirus EDIII proteins [26-30]. Results, however, were found to be inconsistent

with affinity measurements by SPR (data not shown). This discrepancy motivated the development

of a new affinity measurement method to achieve greater accuracy than the EDIII indirect ELISA

and greater throughput than SPR. A competition ELISA method, which enables measurement of

affinity constants at equilibrium in solution [18], was optimized for antibodies and DV EDIII (see

Materials and Methods section). Qualitative correspondence was found between the affinity-
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enhancing mutations identified by indirect ELISA and results obtained by competition ELISA,

indicating the indirect EDIII ELISA accurately identified mutations with affinity improvements.

IV H

Figure 4.2 Affinity-enhancing mutations localize to the periphery of the 4E11:EDIII-DV4 interface. The positive

positions identified in the binding screen are highlighted (red) in a structural model of 4E11:EDIII-DV4 interaction. All

positive mutations are located at the periphery of the binding interface. The two panels represent different views of the

same model. EDIII, VH, and VL proteins are represented by blue, green, and yellow, respectively. Images generated with

PyMOL visualization software.

Competition ELISA results with five single mutant antibodies, representing those mutations

which demonstrated the best DV1-4 affinity profiles for each position, are described in Figure 4.3.

The extent of DV4 affinity enhancement ranges from 1.1-fold (VL-R31K) to 9.2-fold (VH-A55E).

Somewhat unexpectantly, two mutations conferred increased affinity to other serotypes; VH-A55E

resulted in a 16- and 7-fold affinity increase to EDIII-DV2 and EDIII-DV3, respectively, while VL-

N57E demonstrated a 3-fold affinity increase to EDIII-DV2. Only three of the 15 affinities measured

to serotypes 1-3 (with the five single mutant antibodies) showed a decrease greater than 2-fold,

and only one antibody-EDIII affinity (VL-E59Q for EDIII-DV3) resulted in greater than a 3-fold

decrease in affinity. Collectively, these results demonstrate that 4E11 can be re-engineered for

increased DV4 affinity while not significantly affecting DV1-3 affinities, and that multiple mutations

in 4E11 can confer these activities. The mutations individually, however, resulted modest DV4

affinity gains.
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ASSE H2 0.295

R31K L1 0.378 5.35 21.1 37,292

NS7E L2 0.281 33.9

E59Q L2 0.772 10.8

S60W L2 0.284 6.30 23.1 26,351

Affinity relative to WT

0.1 1 10+

Figure 4.3 Affinities of single mutant antibodies with increased EDIII-DV4 affinity and similar EDIII-DV1-3

affinities relative to 4E11 WT. Mutations included are those which, for each identified position, demonstrated greatest

EDIII-DV4 affinity while approximately maintaining EDIII-DV1-3 affinity. KD values represent the average of at least two

independent experiments.

4.3.3. Affinity and neutralizing activity of engineered mAb 4E-5A

The 10 identified mutations were modeled to assess their steric and contact inter-

compatibility in the 4E11:EDIII structural model. From this analysis, a set of mutation combinations

was predicted for further increasing DV4 affinity of the engineered mAb. The combination mutants

were expressed and tested by competition ELISA. Interestingly, the combination which yielded the

greatest affinity to EDIII-DV1-4 was a quintuple mutant, thus a combination of mutations at each of

the positions identified. This combination mutant, termed 4E-5A, consisted of VH-A55E, VL-R31K,

VL-N57E, VL-N59Q, and VL-S60W mutations. 4E-5A demonstrated affinities of 0.309, 0.246, 16.5,

and 91.2 nM for EDIII-DV1-4, respectively, representing a 1.1-, 21.1-, 1.3-, and 447-fold

enhancement in affinity for EDIII of serotypes 1-4, respectively (Table 4.2). A thermodynamic

analysis was performed to assess whether the mutations of 4E-5A, when combined, displayed

additive or cooperative effects on affinity to EDIII-DV4 (Table 4.3) [31]. The change in free energy

of 4E-5A relative to 4E11 (AAGWT. 4E-5A = -3.61 kcal/mol) was slightly lower than the sum of the

change in free energy for the individual mutations (IAAGind mut = -3.33 kcal/mol), however the
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difference was within experimental error. Thus, the energetic contributions of the mutations in 4E-

5A display additivity, with a possibility of small positive intramolecular cooperativity. A lack of

cooperativity (or slight positive cooperativity) indicates the mutations are independent of each

other, such that their presence or contacts to EDIII are not significantly affecting other mutations.

Table 4.2 Affinities of 4E11 WT and combined mutant antibody 4E-5A determined by competition ELISA

EDIII-DV1 EDIII-DV2 EDIII-DV3 EDIII-DV4

Antibody KD (nM)a Relative KD (nM) Relative KD (nM) Relative KD (nM) Relative
affinityb afnity affinity affinity

4E11 WT 0.328 - 5.2 - 21.8 - 40,793 -

4E-5A 0.309 1.1 0.246 21.1 16.5 1.3 91.2 447.3

aKD values represent the average of at least two independent experiments
bRelative affinity is defined as mutant affinity (KD) relative to WT affinity (KD)

Table 4.3 Free energy assessment of individual mutant antibodies and the combination mutant antibody 4E-5A

Antibody EDIII-DV4 AG EDIII-DV4 AAG
(kcal/mol)a (kcal/mol)b

4E11 WT -5.98 ---

VH-A55E -7.29 -1.31

VL-R31K -6.03 -0.05

VL-N57E -6.92 -0.93

VL-E59Q -6.76 -0.77

VL-S60W -6.24 -0.26

4E-5A -9.59 -3.61

aFree energy calculated by AG = RTln(KD) at 25oC
bAAG = AGmutant - AGwT

To further explore and validate the biophysical properties of 4E-5A, SPR experiments were

employed to measure binding affinities and kinetic parameters of 4E11 and 4E-5A (Table 4.4).

Parameters were obtained for both antibodies with serotypes 1-4 except 4E11 with EDIII-DV4, in

which no significant binding was observed (with both kinetic and steady state experiments),
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indicating a KD approximately >100 iiM (the lower detection limit of the Biacore instrument). An

affinity of 4E11 for EDIII-DV4 equal to lower than 100 pM is in approximate agreement with the

competition ELISA results, which demonstrated a low affinity of 41 [M. The remaining KD results

are in good overall quantitative agreement with those obtained by competition ELISA, further

validating both sets of data. 4E-SA demonstrated a >877-fold affinity increase to EDIII-DV4

(assuming a WT KD >100 M), similar to that obtained by competition ELISA (447-fold). The on-

rates for both antibodies were similar across serotypes 1-4 (~106 M-1s-1), values typical of antibody-

antigen interactions. The lack of significant variability in the on-rate is expected, as the association

rates for larger molecules such as proteins are typically diffusion-limited [32]. In contrast, the off-

rates varied substantially between serotypes for a given antibody as well as between antibodies for

the same serotype, particularly for EDIII-DV2. The off-rates range from 5.51x10-4 s-1 for 4E11

interaction with EDIII-DV1 to 8.75x10-2 s-1 for 4E-5A interaction with EDIII-DV4. The affinity

increase associated with 4E-5A to EDIII-DV2 relative to 4E11 is derived from a -10-fold slower off-

rate.

Table 4.4 Kinetic binding parameters and dissociation constant for WT 4E11 and 4E-5A determined by SPR.

EDIII-DV1 EDIII-DV2 EDIII-DV3 EDIII-DV4

mAb kona ko ( nM)c kona koffb KD (nM) kona kof KD (nM) kona ko# KD (nM)

4E11 1.11 5.51 0.50 1.98 123 6.20 1.34 102 7.58 NBd NB >100,000e

4E-5A 1.17 20.8 1.78 2.01 14.1 0.70 2.76 143 5.19 0.766 875 114

akon values are expressed as (x10 6 M-1S-1)
bkoff values are expressed as (X10-4 S-1)

cKD was calculated by koff/kon
dNB designates no binding
eSPR steady state experiments revealed no binding, indicating a KD >0.1 mM based on sensitivity limit of instrument

To determine whether the enhanced affinity to EDIII-DV4 conferred increased virus

neutralizing activity, WT 4E11 and 4E-5A antibodies were assessed by a focus reduction

neutralization test (FRNT) with DV1-4 (Figure 4.4). The data were fit to a standard four-parameter

logistic model, and the FRNTso, representing the mAb concentration which neutralized 50% of
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Figure 4.4 In vitro neutralizing activity of antibodies assessed by FRNT. Neutralization assays were performed with

DV1-4 and antibodies 4E11 WT, m4E11 WT, 4E-5A, and 4G2. Serial dilutions of antibody were mixed with equal amounts

of virus and added to Vero cell monolayers with a viscous overlay. After 4-6 days, cells were fixed and foci were

immunostained and counted. Data points represent averages of duplicates with error bars representing standard

deviation. A standard four-parameter logistic model was fit to the data using least squares regression. 4E-5A shows

similar neutralizing activity to 4E11 and m4E11 for DV1-3 and a substantial increase in neutralizing activity to DV4. 4G2,

a representative flavivirus fusion-loop specific antibody, demonstrates lower neutralizing activity for DV1-3 and only

slightly higher activity to DV4 relative to 4E-5A.

virus, was determined (Table 4.5). Since WT 4E11 used in most experiments in this study was a

human chimeric antibody (see Materials and Methods) and 4E11 was originally isolated from a

mouse [16], an antibody harboring mouse constant regions with 4E11 variable domains (m4E11

WT) was also assessed for neutralizing activity. 4E11 and m4E11 showed no significant

neutralization activity differences, indicating that the constant region change from mouse to human

did not significantly affect antibody binding to the viruses, as anticipated. Neutralization activity of
113
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4E11 was greatest for DV2 (0.034 pg/ml), with activities towards DV1, DV3, and DV4 lower by 1.8-,

15-, and >9,000-fold, respectively, demonstrating the relatively potent activity towards DV1-3 while

very low activity towards DV4. The low activity of 4E11 for DV4, however, was specific, as an

isotype-controlled unrelated mAb showed no neutralizing activity at a concentration of 312.5

ig/ml (data not shown). 4E-5A neutralizing activity, relative to 4E11, was similar for DV2-3, slightly

reduced for DV1 (-3-fold), and substantially greater for DV4 (>75-fold), indicating a general

correspondence with the changes in affinity. Comparison to the flavivirus fusion loop-specific mAb

4G2 revealed that 4E11 and 4E-5A showed greater neutralizing activity for DV1-3, as anticipated,

since fusion loop-specific mAbs display low neutralizing activities due to the inaccessibility of their

epitope. For DV4, 4E-5A demonstrated slightly lower neutralizing activity compared to 4G2 (-3-

fold). Overall, 4E-5A approximately maintains neutralizing activity to DV1-3 with a >75-fold

increase to DV4. The results are in general agreement with 4E-5A affinity results with some small

exceptions. Notably, 4E-5A affinity to EDIII-DV2 relative to 4E11 is increased -10-20-fold, however

this increased affinity did not translate into an increase in neutralizing activity. Additionally, 4E-5A

affinity to EDIII-DV1 relative to 4E11 is unchanged (by competition ELISA) and -3.5-fold lower (by

SPR), and this small affinity change corresponds to a 3-fold decrease in neutralizing activity (see

"4.4 Discussion" for further discussion). Collectively, these results demonstrate that the engineered

affinity increases observed in 4E-5A translated to a substantial neutralization enhancement to DV4

while approximately maintaining DV1-3 neutralizing activities.

Table 4.5 Quantification of antibody neutralizing activity by FRNTso.

DV1 DV2 DV3 DV4

FRNT5o Relative FRNT5o Relative FRNTso Relative FRNT5O Relative

Antibody (Ig/ml) activitya (pg/ml) activity (Rg/ml) activity (pg/ml) activity

4E11 WT 0.062 1.0 0.034 1.0 0.52 1.0 >312.5 1.0

m4E11 WT 0.055 1.1 0.030 1.1 0.88 0.6 >125 -

4E-5A 0.19 0.3 0.028 1.2 0.77 0.7 4.00 >75

4G2 0.62 0.1 0.67 0.05 5.85 0.09 1.23 >254

aRelative activity defined as FRNTso of 4E11 WT divided by FRNTso of the test antibody
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4.3.4 Structural analysis of 4E-5A antibody

To gain further structural GLU-55

insight into the five mutations of 4E-5A,

a structural model of 4E-5A with EDIII
L$310

of DV1-4 was generated using the four
L!-323

4E11:EDIII models (Figure 4.5). As

described above, the mutations localize

to the periphery of the binding interface

(Figure 4.2). An analysis of the
GW- 27

predicted contacts formed by mutations

to EDIII-DV4 revealed a predominance

of electrostatic interactions (i.e., 4

GW-57
hydrogen bonds and salt bridges)

(Table 4.5). Only one hydrophobic

packing contact is predicted (VL S60W). VL VH EDIll-DV4

The paucity of new hydrophobic Figure 4.5 Structural prediction of 4E-5A and contacts formed

by its five mutations. The five mutations of 4E-5A were substituted
contacts is consistent with the general onto the 4E11:EDIII model. Intermolecular contacts are represented

localization of the residues near the by dashed lines. VL domain and residues are represented in yellow,

periphery of the interface which VH in orange, and EDIII-DV4 in purple.

generally is solvent accessible. Overall,

two new salt bridges, two new hydrogen bonds, and a new hydrophobic packing contact are

features of 4E-5A interaction with EDIII-DV4 compared to 4E11.

The co-crystal structure of 4E11 in complex with EDIII of DV1-4 was recently published

[33] and thus enabled comparison of the model predicted in this study to the experimentally

determined structure. A reasonable confidence was associated with the model of 4E11:EDIII used

in this study due to several reasons: (1) the modeling process took into account the functionally

mapped epitope; (2) the final model was selected based on statistical physicochemical information
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Table 4.6 Predicted hydrogen

EDIII-DV4.

bond, salt bridge, and hydrophobic packing contacts formed by mutations in 4E-5A to

Mutation Predicted EDIII-DV4 Associated epitope Predicted WT residue
contact(s) residue(s) contact

VH A55E H-bond, salt bridge K310, K323 None

VL R31K Salt bridge E311 Salt bridge

VL N57E Salt bridge K305 H-bond

VLE59Q H-bond E327 None

VL S60W Hydrophobic packing A329 None

of antibody-antigen interfaces, an approach

which complements energy minimization

used to generate model poses; (3) the final

model had high correlation between

experimentally determined energetic hot

spots and predicted hot spots of the model;

and (4) the model successfully led to the

design of crossreactive-compatible DV4

affinity-enhancing mutations. The accuracy of

the model was assessed by structural

alignment with the solved crystal structure of

4E11 with EDIII of DV1-4 (Figure 4.6). The

Ca backbone root mean square distance

(RMSD) between the model of the crystal

structure was <1 A for all four serotypes

(0.812, 0.789, 0.834, and 0.89 A for serotypes

1-4, respectively), demonstrating good

agreement of the model with the

experimentally determined structure.

VE VH
Model Model

Figure 4.6 Alignment of 4E11:EDIII structural model with

solved co-crystal structure. The structural models were

aligned with the solved co-crystal structures of 4E11:EDIII-

DV1-4 using PyMOL. The resultant alignment with EDIII-DV2

is shown. The model is colored (yellow represents VL and

orange represents VH) and the antibody crystal structure is

indicated in grey.
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4.4. Discussion

4.4.1. Summary

In this study, with the aim of developing a broad spectrum potent neutralizing therapeutic

antibody for clinical use, a structure-guided approach was undertaken to improve the neutralizing

activity of the DV cross-reactive antibody 4E11. First, a structural model of 4E11 in complex with

EDIII was generated, and validation of the model was performed by (1) analysis of interface

physicochemical features of the model compared to a statistical database of antibody-antigen

interfaces and (2) comparison to experimentally determined paratope and epitope binding hot

spots. An empirical informatics approach was developed and implemented, which resulted in the

identification of 87 mutations predicted to increase affinity of 4E11 to DV4 while not significantly

affecting affinities to DV1-3. Mutations were experimentally tested, which resulted in the

identification of 10 mutations with the targeted affinity profile. Mutations were characterized for

affinity changes relative to WT 4E11, and combinations of mutations combinations were tested for

further affinity enhancement. A quintuple mutant, termed 4E-5A, was shown to have increased

affinity to DV4 by -450-fold while approximately maintaining affinity to DV1-3 relative to WT

4E11. Increased affinity to DV4 translated to a >75-fold increase in neutralizing activity to DV4

while approximately maintaining neutralizing activity to DV1-3. The mutations in 4E-5A were

predicted to localize at the periphery of the antibody-antigen interface, and resulted mostly in

increased electrostatics interactions. Collectively, 4E-5A exhibits an interesting broad spectrum

neutralization profile and is an antibody of interest for potential therapeutic development for

treatment of dengue disease. This body of work has implications in a set of distinct but related

areas:

* Properties of known cross-reactive neutralizing mAbs to DV (Section 4.4.2)

* Molecular factors governing neutralization potency of flavivirus antibodies (Section

4.4.3)

e Advancements in computational and experimental methodologies (Section 4.4.4)
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* Clinical potential of antiviral mAbs for the prevention or treatment of dengue disease

(Section 4.4.5)

4.4.2. Potent cross-reactive antibodies to DV

The combined breadth and neutralization potency of 4E-5A represents a new activity

profile of DV-specific antibodies not yet observed from antibodies isolated from humans or animals

infected with DV. Studies investigating the antibody response to DV infection have generally

revealed a paucity of potently neutralizing broad-spectrum mAbs [14, 30, 34-37]. In both mice and

humans, a significant portion of isolated antibodies is directed against the highly conserved EDII

fusion loop [34, 37-39]. This class of antibodies is generally complex-specific (i.e., reactive to DV1-4

complex), however they show low neutralizing activity due to the poor accessibility of this epitope

in the mature virion structure [11]. EDIII-specific antibodies, in contrast, demonstrate higher

neutralizing activity but typically lower cross-reactivity, and are often type-specific (i.e., reactive to

only one serotype) [40, 41]. Cross-reactive EDIII-specific antibodies have been identified from DV-

infected mice and humans, and biophysical studies have indicated that their epitopes generally

localize to the A-strand of EDIII [13, 14, 28]. Cross-reactive A-strand antibodies tend to show higher

neutralization potency than fusion loop-specific antibodies, however they typically neutralize only

two or three serotypes (or very low neutralization activity to a fourth serotype, e.g., WT 4E11) [13,

14, 26-28, 30, 34]. Engineered mAb 4E-5A, having high neutralizing activity to DV1-2 (PRNTso < 0.1

gg/ml), moderate activity to DV3 (PRNTso < 1 [tg/ml), and low neutralizing activity to DV4 (PRNTso

< 10 [ig/ml), is an A-strand EDIII antibody with neutralizing activity to all four serotypes and thus

demonstrates an interesting profile of neutralizing potency and breadth of reactivity.

In contrast to findings of the properties of EDIII mAbs isolated from mice, a recent in-depth

study of the human mAb response to DV infection identified a high level of broadly cross-reactive

EDIII antibodies [38]. Two isolated EDIII-specific mAbs demonstrated moderate to low

neutralization potency for all four serotypes, and two EDIII-specific mAbs exhibited high

neutralization activities (comparable to serotype-specific EDIII antibodies) with subcomplex

specificity (i.e., reactive to only two or three serotypes) [38]. Therefore, in contrast to mAbs thus far
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characterized from DV infection of mice, EDIII-specific mAbs from human DV infection can possess

broadly cross-reactive neutralization activity as well as high neutralization potency, though the

latter may be limited to subcomplex specificity. Characterization of the structural and functional

epitopes of these human cross-reactive EDIII mAbs would reveal interesting insights into

neutralization mechanisms of broadly reactive and highly potent EDIII-specific mAbs and enable

comparison to mouse cross-reactive mAbs which localize to the EDIII A-strand.

4.4.3. Molecular mechanisms of antibody neutralization potency

It was surprising that 4E-5A, while demonstrating 10-20-fold higher affinity to EDIII-DV2

than 4E11, exhibited the same neutralization potency as 4E11 to DV2, since increased affinity to a

neutralizing epitope is likely to lead to increased neutralization activity [42-44]. These results

indicate that, in the context of this epitope with DV2, affinity is not a limiting factor to increasing

neutralization activity. However, a different affinity-neutralization activity correlation was

observed for DV1: 4E-5A for DV1 consistently exhibited 2-4-fold lower neutralization activity than

4E11, which correlated well with a 3-fold reduction in EDIII-DV1 affinity relative to 4E11.

Studies investigating the molecular factors governing antibody neutralization potency of

flaviviruses have revealed that antibody affinity controls the percentage of viral epitopes bound by

an antibody, which thereby influences neutralization potency in a "multi-hit" model of virus

neutralization (reviewed in [44, 45]). Thus, for an antibody which binds a given neutralizing

epitope, increased affinity should translate to higher epitope occupancy on a DV particle and hence

higher neutralization potency. For 4E-5A, the lack of increased neutralization activity for DV2 with

increased affinity for EDIII-DV2 remains surprising in the context of this model. One possible

explanation is that 4E-5A affinity to recombinant EDIII of DV2 is different than its affinity to its

epitope in an intact virion. While such a difference seems unlikely, affinities of 4E11 and 4E-5A to

DV2 can be experimentally determined and such studies would be of interest to perform. Another

possible explanation for the apparent discrepancy is that affinity is not a limiting factor for 4E-5A-

mediated neutralization of DV2, and therefore increased affinity registers no neutralization

consequences. Such an explanation, however, appears inconsistent with the affinity-neutralization

119



results from DV1, in which for 4E-5A, a 3-fold decrease in affinity to EDIII-DV1 corresponded to a

-3-fold decrease in neutralization activity relative to 4E11. Overall, additional studies are required

to further tease apart these apparent inconsistencies between affinity and neutralization activity

for 4E-5A.

Affinity-enhancing mutations identified in this study provide a novel toolset to investigate

molecular mechanisms of flavivirus neutralization potency by antibodies, and in particular, the role

of affinity. While previous studies have drawn from correlations between affinities and

neutralization activities with multiple antibodies and associated multiple epitopes to define such

molecular factors [44, 46], 4E-5A (and related mutations) provides a system with a new level of

control in which affinity can be systematically varied for a fixed epitope and then correlated with

neutralization activity. Thus, 4E-5A and related mutations may be helpful in investigations to

extend the understanding of molecular mechanisms which govern flavivirus neutralization by

antibodies, studies which have implications for vaccine development and generation of therapeutic

mAbs.

4.4.4. Computational and experimental method developments

In this study, a structure-guided rational design approach was undertaken to engineer

increased affinity of the cross-reactive mAb 4E11. Success of such an approach was substantially

dependent on (1) an accurate structural understanding of the 4E11:EDIII complex, (2) the ability to

predict affinity-enhancing mutations, and (3) the accuracy of quantitative binding methods.

Substantial advancements in these areas developed in this study contributed to the computational

and experimental realization of a rationally re-designed cross-reactive mAb to DV.

First, at the inception of this study, no crystal structure of 4E11 or 4E11:EDIII complex was

available, and consequently a computational structural model had to be developed. Importantly, a

model which did not accurately reflect the true interaction would have significantly hampered or

possibly prevented the ability to rationally design affinity-enhancing mutations. Methods to

perform computational protein-protein docking have advanced significantly in recent years,
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however substantial challenges remain, including the inability to confidently remove ineffective

poses (i.e., false positives) from the pose which reflects reality [25]. Computational docking

approaches typically utilize shape complementarity and energetics-based analyses to predict

protein-protein molecular recognition. To improve upon the accuracy of these physical-based

methods, complementary information was incorporated into the assessment of docking poses.

Specifically, physicochemical features of antibody-antigen interfaces (e.g., number of contacts and

interface surface area) were mined from the PDB, and the models were compared to the empirically

derived statistical features. Such an approach led to the identification of four models having

attributes significantly inconsistent with statistical features of antibody-antigen interfaces, leaving

only one model in good agreement. The selected model was further validated by comparison to

experimentally determined energetic hot spots of 4E11, and this final model was shown to be in

good agreement with the solved crystal structure of 4E11:EDIII, which was later published [33].

The incorporation of empirical informatics of antibody-antigen interfaces, as developed in this

study, directly aided in the in silico generation of an accurate 4E11:EDIII model. Additional studies

are underway to assess the broader applicability of such an approach to improve computational

antibody-antigen docking.

Second, antibody affinity enhancement by computational design remains a formidable

challenge, with few studies achieving greater than -10-fold improvement in affinity (summarized

in Table 4.7). Previous studies have typically employed energetic minimization approaches for

rational design and with antibodies which recognize a single antigen. In this study, rational design

was employed for engineering 4E11, a cross-reactive antibody (i.e., binding to four serotypes), and

to obtain a substantial increase in affinity improvement (>100-fold) since the affinity of 4E11 to

DV4 is 1,800 to 130,000-fold lower than to DV1-3. As cross-reactive antibodies (inclusive of the

case of 4E11) can make different contacts with their different antigens, rational design approaches

applied to them must not only predict affinity-enhancing mutations but do so while not causing

detrimental effects to contacts being made with other antigens, thus greatly increasing the

complexity of design. Addressing these challenges was tractably approached by implementation of

empirical informatics, in which the probability of paratope residue replacement was evaluated at
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each instance using paratope-epitope pairwise propensities derived from known antibody-antigen

structures. This empirical informatics approach benefited from the utilization of information

directly from antibody-antigen structures and thus incorporated elements not easily recognized by

general energetics methods (e.g., high prevalence of Tyr residues in paratopes). Additionally, an

empirical informatics approach, as described here, has the distinct advantage of being less sensitive

to precise atom coordinates in a structure, which is of particular benefit for this study of

engineering 4E11, since the derived computational model of 4E11:EDIII does not carry the same

atomic-level confidence of experimentally determined crystal structures. The application of an

empirical informatics methodology and design of -450-fold affinity improvement for a cross-

reactive antibody represent new developments for antibody rational design (Table 4.7). Efforts are

underway to look at the broader applicability of empirical informatics for affinity-enhancing

mutation design for antibodies. It would also be of interest to combine empirical informatics with

energetic minimization methodologies for rational design, as they represent different yet

complementary approaches.

Table 4.7 Summary of studies employing

improvement.

rational design methods for antibody affinity

Crystal Modeling/ Number of Affinity
Study structure? Antigen design method mutations improvement

Lippow, et al. Nat Biotech Yes Single Energetic 6 140-fold
(2007) [47] minimization

Clark, et al. Protein Sci Yes Single Energetic 4 10-fold
(2006) [48] minimization

Marvin, et al. Yes Single Energetic 6 9-fold
Biochemistry (2003) [49] minimization

Farady, et al. Bioorg Med Yes Multiple Rule-
Chem Lett (2009) [50] (2) /Energetics- 1 -14-foldbased

Diskin, et al. Science Yes Many (HIV Structure- 1 -3-4-fold
(2011) [51] gp120) guided

This study No Multiple Empirical 5 ~450-fold
(4) informatics
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Third, the development of a method to rapidly and quantitatively determine mAb affinities

to recombinant EDIII became a challenge during the course of this study. As mentioned above, EDIII

indirect ELISA methods have been commonly employed in studies characterizing affinities of

antibodies to flavivirus (including DV) recombinant EDIII proteins [26-30]. In this study with 4E11,

initial investigations of antibody affinities by an EDIII indirect ELISA method demonstrated

substantial discrepancies with those obtained by SPR. Such discrepancies have been noted more

broadly with indirect ELISAs since they do not capture solution binding affinities (i.e., antigen is in

an solid state, immobilized on the surface of the plate), and antigen proteins may be denatured

upon adsorption to the plate surface [52]. A competition ELISA, which enables measurement of true

solution dissociation constants [18], was developed and optimized to address this challenge and

obtain accurate affinity measurements with higher throughput than by SPR.

The finding that the indirect EDIII ELISA method did not yield accurate results for 4E11 may

be more broadly applicable to other EDIII-specific antibodies. For example, a recent study

characterizing the structure and activity of a cross-reactive DV EDIII-specific antibody, 2H12, found

affinity results determined by EDIII indirect ELISA to not correlate well with binding to intact virus

nor neutralizing activity for DV1-4 [26]. A possible explanation for this apparent discrepancy may

be related to inaccurate affinity estimates determined by EDIII indirect ELISA, an explanation that

would be consistent with findings in this study of 4E11. The competition ELISA method developed

in this study, which was cross-validated by SPR, may be broadly useful for researchers investigating

affinities of flavivirus EDIII-specific antibodies.

4.4.5. Therapeutic potential of 4E-5A

The potential of a dengue antiviral therapeutic intervention in mitigating or preventing

development of severe disease is supported by epidemiological observations that individuals with

severe dengue disease (i.e., DHF/DSS) often have higher viremia levels by 1-2 logs compared to

individuals with less severe DF [53, 54]. The protective activity conferred by antivirals, including

antibodies, in animal models of DV infection further supports the potential of antivirals for dengue

disease treatment in humans [30, 34, 55, 56]. However, only one clinical trial of antiviral treatment
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of DV has been reported: chloroquine, an anti-malaria drug, was found to be ineffective in the time

to resolution of viremia and time to resolution of NS1 antigenemia [57], however the antiviral effect

of chloroquine in vitro is modest and has not been thoroughly studied [58, 59]. It thus remains

unclear whether, and to what extent, specific antiviral therapy may be effective in reducing or

preventing dengue severe disease. Importantly, DHF/DSS occurs in patients during defervesence

and when viremia levels have dramatically decreased or are undetectable. Therefore, antiviral

therapy likely would need to be administered prior to development of DHF/DSS state of disease.

Clinically, such a therapeutic window of opportunity may be present when patients first seek

medical attention upon development of DF signs and symptoms, as viremia is generally detectable

during this phase. However, viremia levels wane rapidly, indicating a potentially short therapeutic

window and requirement of rapid diagnostics.

In the absence of clinical information regarding the potential of antivirals to mitigate or

prevent disease, insights may be gleaned from studies with animal models of DV infection.

Interpretations of such studies, however, should be done cautiously as animal models, including

non-human primates, do not faithfully recapitulate elements of human dengue disease. Despite this

limitation, efficacy studies in animal models may provide additional information towards

understanding the therapeutic profile of antiviral candidates. A variety of studies have

demonstrated the protective role of antibodies in pre-exposure prophylactic and post-exposure

therapeutic protection in DV infection of mice [30, 34, 35, 38, 55, 56, 60]. Since most studies have

generally identified a correlation between in vitro neutralization potency and in vivo protection [34,

35, 61], protective capacity of mAbs can be estimated from their in vitro activity. 4E-5A, which

demonstrates high neutralizing activity to DV1-2 (PRNTso < 0.1 Rg/ml), moderate activity to DV3

(PRNTso < 1 ptg/ml), and low neutralizing activity to DV4 (PRNTso < 10 Vg/ml), may be predicted to

have significant protective activity for DV1-2 however activity to DV3-4 would be less certain.

Studies are underway to investigate the in vivo activity of 4E-5A.

The potential for antibodies to increase DV replication and hence disease burden in infected

individuals (and as explained by the ADE theory) raises substantial challenges to development of a
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clinically viable antibody therapeutic specifically for dengue infection. Multiple strategies involving

removal or modification of antibody Fc regions provide means to reduce the potential of increased

disease burden by antibody, with the rationale based on the hypothesis that ADE in humans occurs

via antibody binding to Fcy receptors on cell surfaces (Figure 1.3). Removal of an antibody Fc

region [e.g., Fab or single chain fragment variable (scfv) forms] eliminates the potential for

antibody fragments to bind Fcy receptors, thus preventing ADE. However, such a modification

diminishes Fc-mediated effector functions (i.e., activation of immune cells and complement) and the

extended half-life of the antibody, which is mediated by Fc binding to the neonatal Fc receptor.

Other strategies to prevent ADE include modification of the Fc region to specifically prevent binding

to Fcy receptors [38, 55, 62]. Such approaches retain the long half-life of the modified antibody but

effector functions are removed which may decrease antiviral activity of a mAb in vivo. Indeed, a

recent study demonstrated that poorly neutralizing cross-reactive antibodies provide protection in

vivo in mice via Fcy receptor effector functions, thus supporting a potentially substantial role of

antibody effector functions in dengue immunity [63]. However, other studies have demonstrated

that mAbs modified to prevent Fcy receptor binding can confer in vivo protection, including in one

mouse model system which captures ADE effects [38, 55]. Collectively, specific modification of the

Fc region of a mAb provides an efficient means to reduce risk for ADE in vivo, however it remains

unclear whether and to what degree the associated removal of Fc-mediated effector functions may

reduce antiviral activity of a therapeutic mAb in humans.

The substantial antigenic heterogeneity between the four serotypes of DV has motivated

multiple strategies for passive immunotherapy for dengue infection. One such strategy is the

development of mAbs which neutralize a single serotype, with the rationale that serotype-specific

antibodies demonstrate the most potent neutralization activities [35, 60, 64]. One such recently

reported antibody, HM14c10, recognizes a quaternary epitope on the surface of DV and

demonstrates potent in vitro and in vivo activity against multiple genotypes of DV1 [60]. Another

strategy is the use of a cocktail of mAbs which, when combined, have neutralizing activity to all four

serotypes [38]. In this study, a broad spectrum mAb, 4E-5A, was rationally designed with the aim of

generating a mAb with potent neutralizing activity to all four serotypes. While such an approach
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may yield mAbs with lower neutralization potency than the other strategies described, it offers the

distinct advantage of being more economical than the development of multiple antibodies for the

treatment of the four serotypes of DV. With the majority of the burden of dengue disease affecting

developing regions, therapeutic cost becomes a paramount concern for effective and widespread

use of a dengue therapeutic agent.

4.4.6. Overall significance and future directions

Overall, this study demonstrated the development and application of empirical informatics

design methods to rationally redesign mAb 4E11 for significantly increased affinity and

neutralizing activity to DV4 while approximately not changing affinity and activity to DV1-3. The

quintuple mutant mAb 4E-5A exhibits a unique affinity and neutralizing activity profile towards the

four serotypes of DV. These findings collectively provide the groundwork for: (1) further

development and assessment of empirical informatics-based computational tools for antibody

design and affinity enhancement, (2) more detailed investigation of the molecular mechanisms

governing neutralization potency of flavivirus antibodies and particularly the role of affinity in

affecting neutralization activity, and (3) the development of a broad spectrum neutralizing antibody

for therapeutic and prophylactic treatment of dengue.
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5. Summary and significance

Proteins and polysaccharides are of growing importance as a source for novel therapeutic

compounds due, in part, to their exquisite biological specificity, range of functionalities, and

accumulating evidence of their clinical efficacy and safety. Proteins and polysaccharides in their

natural form may demonstrate interesting "lead" activities by, for example, binding a therapeutic

target. However, as they did not evolve for use as drugs, improvement in their properties, such as

activity, affinity, specificity, and stability, among others, often is necessary to convert them to

clinically viable compounds. In turn, characterization and rational engineering of proteins and

polysaccharides that exhibit lead therapeutic activities are important steps towards the realization

of new and improved clinically viable biopolymer drugs. However, owing to their large and

structures, proteins and polysaccharides are faced with a unique set of challenges, compared to

small molecules, in their discovery and development as safe, efficacious drugs.

In this thesis, we describe the implementation of structure-function relationship

approaches to characterize and engineer polysaccharides and antibodies towards improving their

therapeutic activity profiles. First, using an integrated approach, we engineer a modified pectin that

exhibits significant in vivo anticancer activity, which we link to specific structural attributes and

cellular functional mechanisms. These results improve our structure-function understanding of

anticancer modified pectin, an important step towards the clinical use of this complex

polysaccharide. Second, we employ orthogonal analytical approaches to identify and characterize

oversulfated chondroitin sulfate, a glycan structurally related to heparin, as the major contaminant

in batches of heparin drug product associated with an outbreak of adverse events. We link presence

of the contaminant to activation of the contact pathway, thereby establishing a structure-function

understanding of contaminated heparin and improving the safety profile of this polysaccharide

drug. Lastly, we rationally design, using structure-based complementary approaches of energetics

and empirical informatics methods, a broad spectrum neutralizing antibody to dengue virus. The

engineered antibody demonstrates binding to all four serotypes of the virus and good in vitro
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potency, an activity profile that lends itself as a potential lead molecule for further development as

a therapeutic/prophylactic for treatment of dengue.

Beyond implications for the individual molecules studied herein (pectin, heparin, and

dengue antibody), this thesis reveals broader insights thematic to structure-function investigations

of polysaccharides and proteins. First, the use of multiple complementary structural methods,

which alone only reveal limited information, substantially improve the accuracy of structural

characterization through the provision of orthogonal types of information (Figure 5.1). In the cases

of pectin and heparin, utilization of multiple analytical techniques, including CE, NMR, MS, and

enzymatic digestion, was central to rapidly converging on key differences (i.e., between ACP and

NCP for pectin, and heparin from OSCS) without requiring exhaustive characterization of all

structural attributes of the multiple samples. For the engineered dengue mAb, empirical informatics

of antibody-antigen structures provided complementary and critical insights when coupled with

energetics-based methods for the generation of a 4E11:EDIII structural model and design of

affinity-enhancing mutations.

A second thematic insight from this thesis is the utility of statistical representation of

complex structures, in contrast with complete structural elucidation or description, to rapidly

develop robust structure-function relationships of polysaccharides and proteins (Figure 5.1). For

pectin and heparin, statistical descriptions of structural attributes, such as fragmentation

percentage and average sulfation density, helped facilitate an understanding of key structural

differences of samples without demanding complete structural elucidation. In the case of

engineering a dengue mAb, antibody-antigen interface structural features as well as paratope-

epitope amino acid preferences were captured and implemented by statistical representation, an

approach that enabled effective computational structural modeling and mutation design.

Focusing on the cases of pectin, heparin, and an anti-dengue antibody, this thesis has

contributed to the development and implementation of structure-function approaches for

characterizing and engineering polysaccharides and antibodies towards their safer and more

efficacious clinical use. Findings described herein provide information towards directly improving
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our ability to develop polysaccharide and antibody-based therapeutics to combat important

medical diseases with unmet treatment needs.

Anticancer modified pectin Contaminated heparin Engineered dengue mAb

Orthogonal analytical Orthogonal analytical Empirical information &
techniques for structure techniques for structure energetics for modeling

characterization characterization

Structural attributes as Structural attributes as Interface features and

statistical features statistical features pairwise interactions as
statistics

Figure 5.1 Summary of broader implications from this thesis regarding structure-function relationships of
complex biopolymers.
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List of Abbreviations

ACP Activated citrus pectin

ADE Antibody-dependent enhancement

AT Antithrombin

BSA Bovine serum albumin

C Capsid

CDC Centers for Disease Control

CDR Complementarity determining region

CE Capillary electrophoresis

COSY Correlation spectroscopy

CRD Carbohydrate recognition domain

DF Dengue fever

dGalA 4,5-dehydrogalacturonic acid

DHF Dengue hemorrhagic fever

DSS Dengue shock syndrome

DV Dengue virus

E Envelope

EDI Envelope protein domain I

EDII Envelope protein domain II

EDIII Envelope protein domain III

ELISA Enzyme-linked immunosorbent assay

ER Endoplasmic reticulum

Fc Fragment crystallizable

FDA Food and Drug Administration
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FFU Focus-forming units

FRNT Focus reduction neutralization test

GAG Glycosaminoglycan

Gal-1 Galectin-1

Gal-3 Galectin-3

GalA Galacturonic acid

GlcA Glucuronic acid

GlcNAc N-acetylglucosamine

GlcNS N-sulfonated glucosamine

HG Homogalacturonan

HIV Human immunodeficiency virus

HPLC High pressure liquid chromatography

HS Heparan sulfate

HSQC Heteronuclear single-quantum correlation spectroscopy

HUVEC Human umbilical vein endothelial cell

IdoA Iduronic acid

JEV Japanese encephalitis virus

KD Dissociation constant

LMWH Low molecular weight heparin

M Membrane

mAb Monoclonal antibody

MALDI Matrix-assisted laser desorption ionization

MS Mass spectrometry

NCP Native citrus pectin

NMR Nuclear magnetic resonance
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NS Non-structural

OSCS Oversulfated chondroitin sulfate

PBS Phosphate-buffered saline

PDB Protein data bank

P13K Phosphoinositide 3-kinase

PK Pharmacokinetics

prM Precursor membrane

PRSSV Porcine reproductive and respiratory syndrome virus

RGI Rhamnogalacturonan I

RGII Rhamnogalacturonan II

Rha Rhamnose

ROSEY Rotating frame nuclear Overhauser effect spectroscopy

SEC Size exclusion chromatography

TOCSY Total correlation spectroscopy

UFH Unfractionated heparin

WHO World Health Organization

WNV West Nile virus
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