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Abstract

Across scales ranging from individual blades to river reaches, the interaction between

water flow and vegetation has important ecological and engineering implications. At

the reach-scale, vegetation is often the largest source of hydraulic resistance. Based

on a simple momentum balance, we show that the resistance produced by vegetation

depends primarily on the fraction of the channel cross-section blocked by vegetation.
For the same blockage, the specific distribution of vegetation also plays a role; a large

number of small patches generates more resistance than a single large patch.

At the patch-scale, velocity and turbulence levels within the canopy set water

renewal and sediment resuspension. We consider both steady currents and wave-

induced flows. For steady flows, the flow structure is significantly affected by canopy

density. We define sparse and dense canopies based on the relative contribution of

turbulent stress and canopy drag to the momentum balance. Within sparse canopies,
velocity and turbulent stress remain elevated and the rate of sediment suspension

is comparable to that in unvegetated regions. Within dense canopies, velocity and

turbulent stress are reduced by canopy drag, and the rate of sediment resuspension

is lower. Unlike steady flows, wave-induced oscillatory flows are not significantly

damped within vegetated canopies. Further, our laboratory and field measurements

show that, despite being driven by a purely oscillatory flow, a mean current in the

direction of wave propagation is generated within the canopy. This mean current is

forced by a wave stress, similar to the streaming observed in wave boundary layers.

At the blade-scale, plant-flow interaction sets posture and drag. Through labora-

tory experiments and numerical simulations, we show that posture is set by a balance

between the hydrodynamic forcing and the restoring forces due to blade stiffness

and buoyancy. When the hydrodynamic forcing is small compared to the restoring

forces, the blades remain upright in flow and a standard quadratic law predicts the

relationship between drag and velocity. When the hydrodynamic forcing exceeds the

restoring forces, the blades are pushed over in steady flow, and move with oscillatory

flow. For this limit, we develop new scaling laws that link drag with velocity.

3



Thesis Supervisor: Heidi M. Nepf
Title: Professor, MacVicar Faculty Fellow

4



Acknowledgments

First and foremost, I would like to thank my advisor, Heidi Nepf, for her guidance,

patience, and support over the past five years. As a research mentor, Heidi has

been an incredible resource: knowledgeable, creative, and generous with her time and

expertise. As a teacher, Heidi has been a fantastic role model. Thanks must also

go to members of my thesis committee, Roman Stocker and Chiang Mei, for their

questions, advice, and critical insights into my work. At times, Roman has been a

wonderfully approachable and enthusiastic auxiliary research mentor too.

I would also like to express my gratitude to Nepf lab colleagues for equipment tu-

torials, experimental advice, and help in the laboratory: Yukie Tanino, Kevin Zhang,

Jeff Rominger, Sylvain Coutu, Eduardo Infantes, Aleja Ortiz, and Elizabeth Finn. As-

sistance provided by Tiffany Cheng, Samantha Fox, and Columbus Leonard, through

the MIT undergraduate research opportunities program was invaluable. Further, the

broader Environmental Fluid Mechanics group (including the Adams, Madsen, and

Stocker labs) was a fantastic sounding board for ideas.

Outside of research, my time at MIT has been immensely enjoyable, and a lot of

the credit must go to the wider Parsons community. Parsons is a truly supportive and

inspiring place, and I have been lucky enough to call many Parsons lab members (past

and present) friends. Finally, I am immensely thankful to my parents and brother for

their steady encouragement, and to my lovely wife, Aarti, for her patient support.

Financial support from MIT (Presidential Fellowship, Teaching Assistantship), the

Martin Family Foundation, and National Science Foundation grant OCE 0751358 is

gratefully acknowledged.

5



THIS PAGE INTENTIONALLY LEFT BLANK

6



Contents

1 Introduction

1.1 O utline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Steady flows through aquatic vegetation

2.1 Flow at the canopy-scale . . . . . . . . . . . . . . . . . . . . .

2.1.1 Canopy architecture and momentum balance . . . . . .

2.1.2 Sparse versus dense canopies . . . . . . . . . . . . . . .

2.1.3 A simple two-layer momentum balance . . . . . . . . .

2.1.4 Finite patches . . . . . . . . . . . . . . . . . . . . . . .

2.2 Vegetation resistance at the reach-scale . . . . . . . . . . . . .

2.2.1 Effect of vegetation distribution . . . . . . . . . . . . .

2.2.2 Predicting resistance coefficients in vegetated channels

3 Wave-induced flows inside seagrass canopies

3.1 Theory.........................

3.1.1 Canopy momentum balance . . . . .

3.1.2 Wave-induced current . . . . . . . . .

3.2 Laboratory study . . . . . . . . . . . . . . .

3.2.1 Experimental methods . . . . . . . .

3.2.2 R esults . . . . . . . . . . . . . . . . .

3.3 Field investigation . . . . . . . . . . . . . .

3.3.1 Study site and methodology . . . . .

3.3.2 R esults . . . . . . . . . . . . . . . . .

7

15

16

19

19

. . . . 19

. . . . 21

. . . . 24

. . . . 28

. . . . 29

. . . . 30

. . . . 33

39

. . . . . . . . . . . . . . 3 9

. . . . . . . . . . . . . . 4 1

. . . . . . . . . . . . . . 4 4

. . . . . . . . . . . . . . 4 7

. . . . . . . . . . . . . . 4 7

. . . . . . . . . . . . . . 5 0

. . . . . . . . . . . . . . 5 9

. . . . . . . . . . . . . . 5 9

. . . . . . . . . . . . . . 6 3



3.4 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Reconfiguration of flexible aquatic vegetation in steady flow 73

4.1 Theory........ ................................... 73

4.1.1 Model predictions . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Laboratory experiments . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.1 M odel blades . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Natural aquatic vegetation . . . . . . . . . . . . . . . . . . . . 90

4.4 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4.1 Phenotypic plasticity in Turbinaria ornata . . . . . . . . . . . 96

4.4.2 Accounting for canopy effects . . . . . . . . . . . . . . . . . . 97

4.4.3 Other considerations . . . . . . . . . . . . . . . . . . . . . . . 104

5 Wave-induced dynamics of flexible model vegetation 109

5.1 Dynamic blade model . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Laboratory experiments . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 D iscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4.1 Flexibility can enhance forces . . . . . . . . . . . . . . . . . . 129

5.4.2 Effective blade length . . . . . . . . . . . . . . . . . . . . . . . 132

6 Conclusions and remaining questions 139

A Programmable wavemaker 145

B Shooting method to calculate blade posture 149

C Dynamic blade model 153

8



List of Figures

2-1 Schematic showing steady, uniform through a submerged canopy . . . 22

2-2 Difference in total suspended solids (TSS) between vegetated and un-

vegetated locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2-3 Depth-averaged velocities for laboratory experiments . . . . . . . . . 27

2-4 Effect of vegetation distribution on channel-averaged velocity . . . . . 31

2-5 Predicted velocities for the field studies by Green [38] and Nikora et

a l. [7 5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 5

2-6 Manning roughness plotted against the blockage factor for the field

studies by Green [38] and Nikora et al. [75] . . . . . . . . . . . . . . . 37

2-7 Predicted velocities for the field studies by Green [38] and Nikora et

al. [75] using a simplified model . . . . . . . . . . . . . . . . . . . . . 38

3-1 Setup for laboratory wave experiments with model canopy . . . . . . 48

3-2 Qualitative overview of flow pattern for the laboratory wave experiments 51

3-3 Vertical profiles of RMS wave velocity, mean velocity, and Reynolds

stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3-4 Measured mean currents plotted against theoretical predictions. . . 54

3-5 Effect of the ratio between the wave orbital excursion and stem spacing 56

3-6 Dimensionless profiles of mean wave-induced currents . . . . . . . . . 56

3-7 Field study location and setup . . . . . . . . . . . . . . . . . . . . . . 60

3-8 Measured significant wave height, peak period, and RMS velocity for

field study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3-9 Velocities measurements made above and within meadow . . . . . . . 65

9



3-10 Predicted and measured streaming velocities . . . . . . . . . . . . . . 66

3-11 A comparison of predicted and measured streaming velocities for the

high wave periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3-12 Ratio of oscillatory velocities within and above meadow . . . . . . . . 69

4-1 Coordinate system and force balance used to derive mathematical re-

configuration m odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4-2 Model predictions for the effective blade length . . . . . . . . . . . . 79

4-3 Schematic of experimental setup for reconfiguration experiments . . . 85

4-4 Measured forces and posture for 5 cm- and 25 cm-long blades . . . . 87

4-5 Variation of measured effective length with Cauchy number . . . . . . 89

4-6 Comparison of model predictions for seagrass posture with observations

made by Abdelrhman [1] . . . . . . . . . . . . . . . . . . . . . . . . . 91

4-7 Comparison of model predictions for seagrass height with observations

made by Fonseca and Kenworthy [28] . . . . . . . . . . . . . . . . . . 94

4-8 Effective blade length plotted against velocity for Turbinaria ornata

for the observations made by Stewart [89] . . . . . . . . . . . . . . . . 96

4-9 Reconfiguration response for three different velocity profiles . . . . . . 99

4-10 Predictions made by iterative two-layer model compared to measure-

ments from Ghisalberti and Nepf [35] . . . . . . . . . . . . . . . . . . 103

4-11 Empirical relationship for effective length, 1,/l . . . . . . . . . . . . . 107

5-1 Coordinate system for dynamic blade model . . . . . . . . . . . . . . 110

5-2 Schematic illustrating the small- and large-excursion limits . . . . . . 114

5-3 Flat plate CD and CM for oscillatory flows . . . . . . . . . . . . . . . 116

5-4 Schematic of experimental setup for wave-induced blade motion exper-

im ents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5-5 Measured and fitted wave velocity . . . . . . . . . . . . . . . . . . . . 120

5-6 Blade motion and hydrodynamic force for 5 cm-long HDPE blade over

a w ave cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5-7 Profiles of normalized blade excursion . . . . . . . . . . . . . . . . . . 123

10



5-8 Blade motion and hydrodynamic force for 20 cm-long HDPE blade over

a w ave cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5-9 Blade motion and hydrodynamic force for 20 cm-long foam blade over

a w ave cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5-10 A comparison of predicted and measured horizontal forces generated

by m odel blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5-11 Vortex shedding from 10 cm-long HDPE blade . . . . . . . . . . . . . 131

5-12 Effective length plotted against CaL . . . . . . . . . . . . . . . . . . 134

A-1 Schematic showing the programmable piston-type wavemaker. . . . . 145

11



THIS PAGE INTENTIONALLY LEFT BLANK

12



List of Tables

2.1 Field data reported by Green [38] and Nikora et al. [75], and the addi-

tional assumptions made to arrive at velocity predictions . . . . . . . 34

3.1 Wave and vegetation parameters for laboratory experiments . . . . . 49

3.2 Observed and predicted velocity ratio for unidirectional flow. . . . . . 58

4.1 List of test cases for the reconfiguration experiments with model blades 84

4.2 Assumed seagrass blade properties to generate the model predictions

for comparison to data from Fonseca and Kenworthy [28] . . . . . . . 92

4.3 Material and geometric properties for the macroalga Turbinaria ornata,

as reported by Stewart [89] . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Geometric and material properties for the model vegetation used by

Ghisalberti and Nepf [35] . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 List of test cases for the dynamic blade experiments. . . . . . . . . . 118

A.1 Variation in piston response coefficient with frequency . . . . . . . . . 146

13



THIS PAGE INTENTIONALLY LEFT BLANK

14



Chapter 1

Introduction

Historically, aquatic vegetation was viewed as little more than a source of hydraulic

resistance that exacerbated flooding and impeded the transport of potable and irri-

gation water [19, 50]. As a result, it was often removed entirely from river channels,

streams, and canals. It is now recognized that aquatic vegetation provides important

ecological services that make it a vital part of freshwater and coastal ecosystems.

By creating regions of low flow, aquatic vegetation provides habitat for economically

important fish and shellfish [46], reduces sediment suspension [4], and stabilizes the

substrate [94]. By taking up excess nutrients from the water and producing oxygen,

vegetation improves water quality [11]. In coastal zones, mangrove forests, seagrass

beds, and salt marshes offer vital protection by dissipating wave energy [8].

Some of the ecosystem services mentioned above (e.g., stabilizing the substrate,

providing habitat, dissipating wave energy) arise because the presence of the vegeta-

tion canopy changes the local flow conditions [7]. Others, such as nutrient cycling and

oxygen production, are mediated by the rate of mass transfer between the canopy and

the surrounding water [49]. At the scale of individual blades, hydrodynamic forces

dictate plant posture, which influences light availability [105]. An upright posture

exposes the vegetation to higher light intensities, whereas a streamlined posture in-

creases the projected leaf area absorbing the incoming light but makes self-shading

among neighboring plants more likely. Posture can also control nutrient [42] and

oxygen [63] exchange between the vegetation and the surrounding water. Faster flows
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perpendicular to the vegetation lead to thinner diffusive boundary layers around the

vegetation, which enhances nutrient and oxygen transfer. Finally, excessive hydrody-

namic forces can lead to stem rupture [19] or dislodgement from the substrate [85].

Because of its importance to flood and ecosystem management, the interaction

between water flow and aquatic vegetation has received significant attention re-

cently [74]. Previous studies have successfully described fully developed, steady flow

through submerged (see e.g., [32, 33, 34, 35]) and emergent (see e.g., [52, 95, 100])

canopies of vegetation. Yet, many important gaps in our knowledge remain. Despite

the fact that predicting vegetation resistance is of vital importance to effective flood

management, little of the physical understanding gleaned from the canopy-scale work

has been transferred to reach-scale field studies. Field studies have focused primarily

on developing empirical relationships linking friction coefficients such as Manning's

nM with vegetation properties such as blockage (i.e., the fraction of the channel cross-

section blocked by vegetation, e.g., [38, 75]) and biomass (e.g., [17, 18]). For coastal

habitats such as seagrass beds, which are some of the most valuable [11] natural

systems in the world, waves rather than currents are the dominant hydrodynamic

forcing. However, unsteady wave-induced flows through vegetated canopies are not

very well described. Finally, most aquatic plants are flexible, which means that they

are pushed over (reconfigured) by steady currents, and move in response to wave-

induced oscillatory flows [98]. Relative to rigid vegetation, this leads to a reduction

in the hydrodynamic forces generated. However, the behavior of flexible plants in

steady and oscillatory flows is not well understood. In fact, the drag generated by

flexible plants has been the subject of significant recent debate [87]. Through a series

of experimental and analytical studies, we address these open questions.

1.1 Outline

In @2, we describe steady flows through aquatic vegetation, at the scale of individual

canopies or patches, and at the scale of entire river reaches. We discuss the impact of

vegetation density on the flow structure and sediment suspension, and develop a sim-
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ple two-layer momentum balance model to predict the flow rate through submerged

canopies. We also extend this simplified momentum balance model for application

at the reach-scale. We use this model to consider the effect of vegetation patchiness

(i.e., number of individual patches across the channel cross-section) on flow, and to

yield estimates for hydraulic resistance in the field. Note that most of @2 is derived

from the publication Luhar and Nepf (2012) [57]. However, we also include excerpts

from Luhar et al. (2008) [59].

@3 describes laboratory and field studies investigating the wave-induced flow struc-

ture within seagrass beds. The laboratory study, published as Luhar et al. (2010) [56],

employed flexible model vegetation, scaled to be dynamically similar to real sea-

grasses. The field study was carried out in Cala Millor, located on the eastern coast

of Mallorca Island in the Mediterranean Sea. Our measurements reveal that a mean

current is generated within the seagrass canopies, similar to the streaming observed

in wave boundary layers. To predict the magnitude of this streaming velocity, we

develop a simple momentum- and energy-balance model. Further, we also investi-

gate the degree to which wave-induced oscillatory flow is reduced within canopies of

vegetation.

In 64, we characterize the drag generated by flexible aquatic vegetation in steady,

uniform flow. We develop a model that calculates vegetation posture based on a

force balance involving vegetation stiffness, buoyancy, and the hydrodynamic forcing.

For simplicity, we develop the model for individual blades with rectangular cross-

sections, characteristic of seagrasses. However, we show that this model is able to

predict posture and drag for laboratory experiments with model blades, as well as real

seagrasses, and marine macroalgae of more complex morphology. Finally, to study

the effect of vegetation reconfiguration on flow resistance, we extend the two-layer

model developed in @2 to account for plant flexibility. The majority of this chapter

is published as Luhar and Nepf (2011) [58].

65 describes the motion of flexible blades in wave-induced oscillatory flows. We

extend the blade reconfiguration model developed in @4 to account for time-varying

flow, and unsteady hydrodynamic forces. In general, this model adequately repro-

17



duces the observed blade motion and measured hydrodynamic forces for laboratory

experiments with model blades (@5.2). Interestingly, our experiments show that in

some cases, the force generated by flexible blades can be greater than that expected

for rigid blades. Finally, in 56, we provide a brief summary of our findings, and discuss

possible environmental and engineering implications.
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Chapter 2

Steady flows through aquatic

vegetation

This chapter describes steady flows through aquatic vegetation, at the scale of in-

dividual canopies or patches, and at the scale of entire river reaches. In §2.1, we

discuss the impact of vegetation density on flow structure and sediment suspension,

and develop a simple two-layer momentum balance model that predicts the flow rate

through submerged canopies. In §2.2, we extend this simplified momentum balance

model for application at the reach-scale. We use this model to consider the effect

of vegetation patchiness (i.e., number of individual patches across the channel cross-

section) on flow, and to yield estimates for hydraulic resistance in the field. Except

§2.1.2, all of this chapter appears in Luhar and Nepf (2012) [57]. §2.1.2 is an excerpt

from Luhar et al. (2008) [59].

2.1 Flow at the canopy-scale

2.1.1 Canopy architecture and momentum balance

Aquatic vegetation most often exists in canopies or meadows, i.e., close groupings

of individual plants. To understand stem-scale processes, such as flux across the

boundary layer of an individual leaf, one must parametrize the morphology of the leaf.
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However, at the scale of an entire canopy, the complex morphology of individual plants

is less important and the vegetation can be characterized by an average parameter:

the frontal area per unit volume, a. When the vegetation has a blade-like morphology,

the frontal area per unit volume is a = nb, where n is the number of blades per unit

bed area, and b is the blade width. The parameter a can only be defined over a

horizontal scale larger than several blade spacings. So, using this representation for

the canopy, we cannot resolve the flow at scales smaller than several blade spacings.

Within the canopy, the solid volume fraction occupied by the vegetation is #= ad

where d is the blade thickness. For steady, uniform flows through porous (# < 1)

canopies, the following simplified momentum balance applies [59]:

dT
0 = pgS + 1/2pCDalulu (2.1)

Here, p is the water density, the slope S = O(H + Zb)/OX is the gradient in water

depth, H, and bed elevation, zb, in the streamwise (x) direction, T is the turbulent

shear stress, CD is the drag coefficient for the vegetation, and u(z) is the streamwise

velocity. The coordinate z is normal to the bed, and g is the acceleration due to

gravity.

For the case where the vegetation is submerged (canopy height smaller than water

depth, h < H), the momentum balance above the patch can be expressed at pgS +

r /Oz = 0. This momentum balance is identical to that for turbulent flows over rough

boundaries, for which the velocity profile is described by the well known logarithmic

law of the wall. Given the poor scale separation between plant height and flow depth,

it is unlikely that a genuine logarithmic layer exists in aquatic flows over vegetation.

However, previous studies (e.g., [59, 76, 66]) have shown that a modified logarithmic

profile provides a reasonable description of the velocity field above the canopy:

u(z) = UIn zzm (2.2)
K _z0

Here, U* = gS(H - zm) is the friction velocity and K= 0.4 is the von Karman con-

stant, while zm and zo are the displacement and roughness heights, respectively. The
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displacement height, zm = h - 6, depends on the length scale, 3, over which turbulent

stresses penetrate into the canopy. Scaling analyses and experimental observations

suggest that this penetration scale is inversely proportional to the canopy drag, with

3 - 0.1(CDa) 1 [71]. In general, the parameter (CDa) 1 represents the length scale

over which any momentum transferred into the canopy is dissipated by drag. For

submerged canopies, the length scale 6 splits the canopy into two zones. Turbulent

momentum and mass transfer are important in the upper region of the canopy, i.e.,

for (h - 6) < z < h. However, for z < (h - 6), the turbulent stress term in Eq. 2.1

can be assumed negligible, and so the velocity is:

2gS
F = S (2.3)
CDa

Lightbody and Nepf [52] show that turbulent stresses can also be neglected for dense

patches of emergent vegetation (i.e., h > H), for which case Eq. 2.3 successfully

describes the flow field over the entire water depth.

2.1.2 Sparse versus dense canopies

If the canopy is sparse enough such that the length scale of turbulence penetration

is approximately equal to the canopy height, 3 - 0.1(CDa-' _ h, the displacement

height for the logarithmic overflow becomes zm = h - 3 0. At this limit, where

CDah < 0. 1, the entire flow resembles a turbulent boundary layer (see Fig. 2-1). This

is often referred to as sparse canopy behavior (see e.g., [72]). For dense canopies,

with CDah > 0.1, the drag discontinuity at the top of the canopy creates an inflection

point in the velocity profile. This inflection point leads to the generation of large,

coherent vortices via the Kelvin-Helmholtz instability [77], which dominate mass and

momentum exchange between the canopy and the overlying water (e.g., [22, 32, 35]).

Indeed, the length scale 3 is set by the distance to which these coherent structures

penetrate into the canopy (see Fig. 2-1).

Although the drag coefficient, CD, varies with flow and morphology, it is typically

of 0(1). Therefore, the transition between sparse and dense canopies can be taken at
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a) sparse canopy, ah < 0.1

Z
H

u(z)
stem-

h

b) dense canopy, ah > 0.1

H

h

u(z) KHvotx

RTh R15J CD a

T(Z)

sediment resuspension

r(z)

Figure 2-1: Flow within and above a submerged canopy. Profiles of mean velocity and
turbulent stress are shown. (a) For a sparse canopy, the profile resembles a turbulent
boundary layer, and the turbulent stress remains elevated at the bed. (b) For a dense
canopy, an inflection point at the top of the canopy generates vortices via the Kelvin-
Helmholtz (KH) instability. The turbulent stress near the bed is significantly reduced
due to canopy drag.
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ah 0.1. Note that this parameter is essentially the frontal area per unit bed area for

the vegetation canopy. In sparse canopies, we expect turbulence and turbulent stress

to remain elevated close to the bed, whereas in dense canopies turbulence and turbu-

lent stress near the bed are reduced due to canopy drag. Because the turbulent shear

stress near the bed dictates sediment resuspension, we anticipate lower resuspension

and reduced suspended sediment concentration within dense canopies (see Fig. 2-1).

Observations from Moore (2004) [69] support this conjecture. Moore [69] investigated

the influence of the seagrass Zostera marina on water quality by contrasting vegetated

and unvegetated sites within the Lower Chesapeake Bay. His observations suggested

that the difference in total suspended solids (TSS) inside and outside the grass beds,

ATSS, depended on seagrass biomass. Further, he noted that the difference in TSS

between the vegetated and unvegetated sites was negligible when the average above-

ground biomass per unit area was less than 100 g m-2 (dry mass). The dry mass

measure can be converted to frontal area index using:

Biomass/m 2 = p ahd (2.4)

For Zostera Marina the characteristic blade thickness is d = 0.3 ± 0.05mm [21],

and the material density is p, u 760 kg m-3 [23]. The difference in TSS between

vegetated and unvegetated sites can now be considered in the context of the transition

in flow structure described by Fig. 2-1. The threshold noted by Moore [69], 100 g

m2 , corresponds to ah = 0.4. A significant drop in TSS is observed for canopies

with ah greater than this value (see Fig. 2-2). Thus, the observed transition in TSS

is consistent with the transition threshold predicted from the momentum balance.

Specifically, when ah > 0.1, the turbulent stress cannot penetrate close enough to

the bed to generate sediment resuspension. Above this density, a meadow promotes

sediment retention, thereby stabilizing the bed and improving light conditions. These

two feedbacks may promote meadow survival. Conversely, a reduction in canopy

density below this threshold sets off a negative feedback, with increased sediment

resuspension leading to a loss of bed stability and a reduction in light availability,
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Figure 2-2: Difference in total suspended solids (TSS) between vegetated and unveg-
etated locations. The data is from [69]; Eq. 2.4 is used to convert the reported dry
mass values to frontal area. Note that ah - 0 corresponds to an inshore site with no
vegetation.

both of which can lead to further canopy deterioration.

2.1.3 A simple two-layer momentum balance

To develop a two-layer model, we integrate Eq. 2.1 over z assuming constant (i.e.,

vertically-averaged) velocities U, and U, in the in the overflow (h < z < H) and

vegetated (0 < z < h) layers, respectively. Further, we assume that there is no shear

stress at the water surface. This yields the following physically intuitive momentum

balances for the overflow and for the patch:

0 = pgS(H - h) - Th (2.5)

0 = pgSh + Th - Tb - (1/2)pCDahU'2  (2.6)

In Eq. 2.5 and Eq. 2.6, Th is the shear stress at the interface between the patch

and the overflow, Tb is the bed stress. Strictly, with this two-layer formulation, the

friction velocity is u* = Th/p = gS(H - h), which is not consistent with the form
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shown earlier (u* = VgS(H - zm), see Eq. 2.2). In essence, the following additional

assumption is being made: the canopy is dense enough such that 6 0.1 (CDa) 1< h,

and so the displacement height for the logarithmic profile is zm = h -6 h. To arrive

at estimates of U, and Uc, appropriate parameterizations for the interfacial stress

and bed stress are required. We employ constant friction coefficients at the interface,

C,, and at the bed, Cf, such that Th = (1/2)pCU 2 and r = (1/2)pCf U' 2 . This

expression for Th is appropriate when the velocity within the patch is much smaller

than the overflow velocity, i.e., U, < U0 . However, as discussed above, for sparse

vegetation the in-patch velocity is likely to be comparable to the overflow velocity,

and so the shear stress will depend on the difference, i.e., Th= (1/2)pCv(Uo - UV)2

If the canopy is sparse enough such that the length scale of turbulence penetration

is approximately equal to the patch height, 6 ~ 0.1(CDa) 1 ~ h, the entire flow

resembles a turbulent boundary layer, and the two-layer assumption breaks down.

The stress parameterizations discussed above yield the following expressions for

the overflow and in-patch velocities:

UO 2gS( H - h) 1/27(U Y h)=/ (2.7)
CV

= (2gSh+CU 0 2 )1/ 2  2gSH 1/2

CDah + Cf CDah + Cf

The depth-averaged velocity is:

UT= Uo(H - h) + Uvh (2.9)
H

Cheng [10] uses a similar approach to predict the flow through submerged vegeta-

tion, but assumes that the interfacial friction factor f,(= 4C,) varies with vegetation

properties. Such an assumption is reasonable physically; however, the laboratory

data aggregated by Cheng [10] show only a weak relationship between f, and veg-

etation properties. Similarly, Murphy et al. [70] show that the interfacial friction

coefficient is not a strong function of either meadow density or depth of submergence

for H/h > 2. As a simpler alternative, we employ a constant friction coefficient,
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Cv = 0.04 (fs = 0.16), which is in the middle of the range (fs ~ 0.02 - 0.5 or

Cv ~ 0.005 - 0.13) suggested by Cheng. Huthoff et al. [43], also use a similar frame-

work to the one described here. However, they allow C, to vary as a function of

the submergence ratio, H/h, to ensure physically reasonable behavior at the limit of

emergent vegetation. For constant Co, Eq. 2.7 predicts that U, -* 0 as h -± H, which

is not realistic as one would expect that U, > Uc, even if the overflow is very shallow.

Despite these simplifications, Fig. 2-3 shows that the two-layer model described by

Eq. 2.7-2.9, with C, = 0.04, predicts depth-averaged velocities well for multiple sets

of laboratory experiments measuring flow through submerged patches of vegetation

(data aggregated by [10]). Note that, to arrive at the predicted velocities shown in

Fig. 2-3, we made a few additional assumptions. Specifically, the laboratory experi-

ments employed rigid cylinders, and so we assumed that the height of the vegetated

layer is equal to cylinder length, h = 1, and that a ndc, where n is the number of

cylinders per unit bed area and dc is the cylinder diameter. Further, we used the well-

known drag coefficient for cylinders, CD = 1. We also assumed that vegetation drag

is the dominant momentum sink within the patch and so the bed stress may be ne-

glected, Cf < CDah, such that Eq. 2.8 simplifies further to U, = [(2gSH)/(CDah) /2 .

This assumption is justified because typically CDah > 0(0.1) for the laboratory ex-

periments, while we expect that Cf - 0(0.01) for the relatively smooth beds char-

acteristic of laboratory flumes. The data collected by Poggi et al. [76], for which

CDah < 0.1, notably deviates from the line of good fit. As discussed above, at this

sparse vegetation limit, the entire flow resembles a turbulent boundary layer and the

two layer model described by Eq. 2.7-2.9 is inappropriate.

Eq. 2.5-2.9 are valid for both rigid and flexible vegetation, assuming that the

vegetation frontal area per unit volume, a, and canopy height, h, are known. For

rigid vegetation, a and h are constants but for flexible vegetation, which can be

pushed over by the flow, a and h vary with the canopy velocity, U,. Having shown

that the model developed above successfully predicts velocities for patches of rigid

vegetation where CDah > 0.1, we apply it to patches of flexible vegetation in @4.4.2,

by explicitly accounting for changes in drag and canopy height with velocity.
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Figure 2-3: Velocity predicted by Eq. 2.7-2.9 compared with laboratory measure-
ments. Laboratory data from [86, 20, 65, 91, 34, 76, 70, 53, 73, 102, 103] aggregated
by Cheng [10]. Note that the predicted velocities are significantly higher than the
some of the measurements from Stone and Shen (2002) [91]. This study employed

densely packed cylinder arrays, for which the effective drag coefficient is likely to be

higher than the assumed value of CD = 1 (see e.g. [95]).
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2.1.4 Finite patches

Strictly, the preceding two-dimensional analysis applies only for flows through vege-

tation patches that fill the channel width. For patches that do not fill the channel

width, momentum exchange at the lateral boundaries of the patch can also be impor-

tant. Laboratory observations, made by White and Nepf [100] for emergent patches

adjacent to open water, suggest that a constant friction coefficient is appropriate at

this interface as well. Specifically, White and Nepf [100] show that, over a range of

flow speeds and vegetation configurations, C, = 2r,/(pU 2) 0.02, where r- is the

shear stress at the lateral interface between the patch and the open water, and U is

velocity in the open water. This value for the friction coefficient is within the range

(C, = 0.005-0.13) reported by Cheng [10], suggesting that, as a first approximation,

the shear stress at all the interfaces between vegetated patches and open water may

be represented by a single friction coefficient. In §2.2, we use such an approach to

calculate velocity in vegetated river reaches.

Note that the momentum balances developed here only consider fully developed

flow. In many cases, vegetation exists in patches that have width and length scales

much smaller than the channel width and reach length. Rominger and Nepf [79] show

that at the leading edge of an emergent patch of finite width, flow development takes

place over a length scale L, that depends both on the scale of momentum dissipation

due to drag, (CDa)-1, and the width of the patch, w. Specifically, they show that

for dense or wide patches where CDaw > 4, the flow inside the patch adjusts over

a length scale set by the patch width, L. ~ w. While for sparse or narrow patches

with CDaw < 4, the adjustment length is set by the momentum dissipation length

scale, L2 - (CDa)-1 . For the patches of rigid vegetation considered in Rominger and

Nepf [79], the scale factors for these length scales were Lx 2.5w or Lx ~ 5(CDa-.

Finally, it is also important to distinguish between the development of flow inside

and outside the patch of vegetation. Rominger and Nepf [79] consider the length

scale over which the interior flow adjusts. For submerged canopies, Ghisalberti and

Nepf [34] show that the exterior flow adjusts over a distance that is roughly ten times
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the canopy height, 10h. Data shown in Rominger and Nepf [79] suggest a similar scale

to reach fully developed flow around emergent patches. That is, the exterior flow

adjusts over a length scale of about 5w, or 10 times the patch half-width. Assuming

flow symmetry about the patch centerline, the half-width of an emergent patch (in

the x - y plane) is geometrically equivalent to the height of a submerged patch (in

the x - z plane).

2.2 Vegetation resistance at the reach-scale

In general, vegetation resistance is influenced by a number of factors including plant

morphology, stiffness, and the distribution of vegetation within the channel. However,

recent field studies by Green [38] and Nikora et al. [75] suggest that at the scale of

river reaches, flow resistance due to vegetation is determined primarily by the blockage

factor, Bx, which is the fraction of the channel cross-section blocked by vegetation.

Both studies show strong correlations between Bx and simple measures of hydraulic

resistance such as the Manning roughness coefficient, nM, noting that the relationship

between nM and Bx is nonlinear. These observations are also in agreement with those

made by Ree [78] and later by Wu et al. [101], who showed that roughness in channels

lined with vegetation is influenced primarily by the submergence ratio, H/h.

A few studies (e.g., Bal et al. (2011) [3]) also suggest that the particular distribu-

tion pattern of the vegetation within the channel can play a role in dictating vegetation

resistance. To study the effect of different distribution patterns on channel resistance,

in @2.2.1 we extend the two-layer model described in @2.1.3 by including lateral mo-

mentum exchange between patches of vegetation and regions of unobstructed flow.

Specifically, we consider whether, for the same total blockage factor Bx, the distri-

bution of vegetation, in terms of the number of distinct patches, affects the hydraulic

resistance. The discussion below is presented primarily in terms of dimensionless ve-

locities (e.g., UT/(gSH)'i/2 ). However, note that for natural channels, the volumetric

flow is likely to be constant, set by the boundary conditions of the drainage basin.

So, changes in hydraulic resistance lead to changes in both velocity and water depth.
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2.2.1 Effect of vegetation distribution

To study the effect of vegetation distribution patterns on flow, and to evaluate whether

this refinement to momentum balance models is warranted, we consider the following

simplified scenario. We assume that at the scale of an entire reach, vegetated channels

may be modeled using a single representative cross-section, despite the fact that

patches of vegetation in natural channels can be of finite length and width, as well

as heterogeneously distributed. This assumption is justified because any measure of

hydraulic resistance at the reach scale must, by definition, be an integrated quantity.

Specifically, we consider a rectangular channel with width W and depth H, and we

assume that within this channel there are N identical patches of vegetation, each of

height h(< H) and width w/N, so that the total cross-sectional area of vegetation in

the channel is wh, and the blockage factor is Bx = wh/WH, irrespective of N (see

Fig. 2-4). The velocity in the unobstructed regions is U0, while the velocity within

each patch is U,. Further, we assume that at all interfaces between the unobstructed

flow and the vegetation patches, the shear stress is T = (1/2)pCU' 2. The bed

stress is given by Tb= (1/2)pCf U' 2 in the unobstructed regions. Within the patches,

the bed stress is assumed to be negligible compared to vegetation drag. With these

assumptions, the momentum balance in the unobstructed region is:

0 = pgS(WH - wh) - TL, - TbLb (2.10)

where L, (= 2Nh + w for w < W, h < H) is the total interfacial area per unit channel

length between the unobstructed flow and the patches, and Lb (= 2H + W - w for

w < W) is the contact area per unit channel length between the unobstructed flow

and the bed (see Fig. 2-4, inset). The momentum balance for each patch is:

0 = pgS(w/N)h + T VL,/N - (1/2)pCDah(w/N )U, 2  (2.11)

For flexible vegetation, CDah can vary with velocity. However, since accounting

for these effects would require additional assumptions regarding the morphology and

stiffness of the vegetation, for simplicity we assume that CDah is a known value.
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Substituting the assumed expressions for the shear stresses into Eq. 2.10 and 2.11,

and normalizing by the potential forcing, (gSH)i/2, we have the following expressions

for the dimensionless unobstructed flow and in-patch velocities:

U* = O =
(gSH)

1/ 2

U*- U _ 2
(gSH)1/2

( 2W(1 - Bx) 1/2Cf Lb + CvLv )

WBx + CLv(U*|2 1/2

CDaWHBx )

(2.12)

(2.13)

A comparison of Eq. 2.12 and 2.13 with Eq. 2.7 and 2.8 shows that the momentum

balance employed here is very similar in concept to that considered in 2.1.3, but

incorporates more complex channel and patch geometry. Finally, the dimensionless

average velocity in the channel is:

UT

U* (gSH)1/ 2 U*(1 - Bx) + U*Bx (2.14)
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We solve the above system of equations for a typical channel of width W = 5m,

and for two water depths, H = 0.5m (H/W = 0.1) and H = 1m (H/W = 0.2)

(c.f. [38, 75]). We consider N = 1 - 25 patches distributed evenly across the channel,

with the vegetation occupying half the channel width, w 0.5W, and half the water

depth, h = 0.5H. The blockage factor is therefore Bx 0.25 (see Fig. 2-4). For

simplicity, we assume that CD= 1, and Cf = C, = 0.04. The frontal area parameter,

a, can vary greatly in natural systems. We use a value typical for dense channel

vegetation, a ~ 100m- 1 [59].

Figure 2-4 shows that the dimensionless cross-sectional average velocity, UT/(gSH)i/ 2

(Eq. 2.14), decreases as the number of patches increases. This is because the interfa-

cial area between the patches and the unobstructed flow increases when the patches

are divided into smaller units (increasing N), leading to greater flow retardation due

to the interfacial shear. This increase in the interfacial area is analogous to an increase

in the wetted perimeter for the same cross-sectional area, i.e., it leads to a decrease

in the hydraulic radius. Note that this simplified model breaks down for large values

of N because, at this limit, the vegetation is essentially distributed uniformly across

the channel with a lower spatial density, rather than in distinct patches. To account

for this limitation, we also show in Fig. 2-4 (solid lines) the predicted velocities for

the same amount of vegetation distributed uniformly across the channel, i.e., with

w = W (instead of w = 0.5W) and a = 50m-1 (instead of 100m-1). The predicted

velocities for uniform vegetation and distinct patches coincide at N = 20 for the case

where the channel aspect ratio is H/W = 0.1 (Fig. 2-4, black crosses and line) and

at N = 11 for H/W = 0.2 (Fig. 2-4, gray circles and line). Beyond these points (at

higher N), the model assumption of distinct patches breaks down. So, we interpret

these velocities as the lower bounds for the systems considered.

Previous observations made in natural rivers and streams [40, 93] suggest that a

more realistic upper bound for the number of distinct patches across a river channel is

N = 5. Our simple model suggests that, for both channel aspect ratios, the velocity

for N = 5 decreases by less than 20% relative to that for N = 1. For the more typical

aspect ratio, H/W = 0.1, the velocity decreases by only 12%. Hence, we suggest that

32



N = 1 may be used to estimate velocities in the field for cases where blockage, Bx,

is known but the exact distribution pattern of the vegetation is unknown, bearing

in mind that this assumption introduces up to 20% uncertainty. Our results also

provide some guidance as to what vegetation removal patterns would lead to the

greatest decrease in hydraulic resistance. Flow resistance increases with increasing

interfacial area between the vegetation and the unobstructed flow, and so vegetation

removal strategies must try and minimize this interfacial area.

2.2.2 Predicting resistance coefficients in vegetated channels

Next, we use Eq. 2.12-2.14 to predict velocities for the field data collected by Green [38]

and Nikora et al. [75]. Table 2.1 lists the variables reported by both studies, as well

as the additional assumptions made to arrive at our predictions. The coefficients Cf

and C, were fitted to the data. Fig. 2-5 shows predicted average velocity plotted

against the measurements, along with the best-fit values for Cf and C, for each data

set. The predicted velocities show good correlation with the measurements: r 2 = 0.87

for Green [38], and r 2 = 0.57 for Nikora et al. [75]. Further, the fitted coefficients

for the Nikora et al. data, Cf 0.041 and C, = 0.05 lie within the expected range

(Cf - 0.015-0.19 [38]; Cv _ 0.005-0.13 [10]). However, the fitted value of C = 0.21

for the Green data is higher than the range suggested by the laboratory experiments.

The interface between the vegetation and the unobstructed flow may be rougher for

the high vegetation densities and complex plant morphologies typical of field condi-

tions, leading to a higher C,. The higher fitted value for C could also be due to

the single-patch assumption, N = 1 (Table 2.1). Since the interfacial area between

the vegetation and unobstructed flow increases as the number of distinct patches

increases, a lower Cv would generate the same retarding shear force for larger N.

Unfortunately, it is often difficult to make field measurements that allow indepen-

dent estimates for the bed friction coefficient, Cf (e.g., through measured grain size

distributions), and for the drag parameter, CDa (e.g., through stem density and plant

morphology studies). Further, the relationship between C, and vegetation properties

is not well defined (see e.g. [10]). As a result, the use of Eq. 2.12-2.14 to predict
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Table 2.1: Field data reported by Green [38] and Nikora et al. [75], and the additional
assumptions made to arrive at velocity predictions

Green [38]
Reported

UT
S
Bx

Assumptions
H=RH
W 10RH
w BSAW

CDa = 100m-
N = 1

Reported as V

Reported as Bx

Hydraulic radius, RH reported
Assuming a typical aspect ratio, H/W = 10
Surface area blockage, B A reported
Typical for channel vegetation1

Nikora et al. [75]
Reported

UT
S
H
W
h
w

Reported as U

Reported as hc
Reported as Wc

Assumptions
CDa = 100m-1
N = 1

Typical for channel vegetation
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Figure 2-5: Velocities predicted by Eq. 2.12-2.14 plotted against measurements from

(a) Green (2005) [38] and (b) Nikora et al. (2008) [75]. Best-fit values for the
friction coefficients were Cf = 0.052, C, = 0.21 for the Green (2005) data set, and

Cf = 0.041, Cv - 0.050 for the Nikora et al. (2008) data set.

velocities in the field may not be practical. As an alternative, we further simplify

the momentum balance for field application, where simple measures of hydraulic re-

sistance such as the Manning roughness, nM, are required. First, we assume that the

friction coefficients at the bed and at the interface between the vegetation and open

water are identical, Cf = Cv = C. This is reasonable given the natural variability

expected for these parameters, and also because the field and laboratory observa-

tions considered in this paper suggest similar ranges for Cf (= 0.015 - 0.19) and

Cv (= 0.005 - 0.13). Next, we assume that the channel is sufficiently shallow so

that the sum of the interfacial areas per unit channel length approximately equals to

the channel width, L, + Lb W. This is analogous to assuming that the channel

hydraulic radius, RH, is approximately equal to the channel depth, H. With these

simplifications, the dimensionless velocities in the unobstructed region (Eq. 2.12) and

within the patch (Eq. 2.13) become:

UO (2(1 - Bx) (
2

(gSH) 1/ 2
C
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= U _ 2Bx + 2(Lv/W)(1 - Bx) 1/2

(gSH)1/ 2  CDaHBX

The friction coefficient C 0 O(0.1) is likely to be two orders of magnitude smaller

than the drag parameter CDaH - 0(10) (assuming CD = 1, a ~ 100m- and

H ~ 0(0.1)m). Hence, the velocity inside the patch of vegetation is likely to be

an order of magnitude lower than that in the unobstructed flow, i.e., U* < U*.

Therefore, as a first approximation, we assume that the in-patch velocity may be

neglected, and so the expression for the average velocity in the channel cross-section

(Eq. 2.14) becomes:

(2 )1/20/

U* ~ U*(1 - Bx) = (1 - Bx)3 /2  (2.17)

The Manning roughness is defined as nm = (KRHS1/2)/Ur, where the constant

K = 1 mi/ 3 s1 is required to make the equation dimensionally correct, and the

hydraulic radius is approximately equal to channel depth, RH ~ H, for shallow

channels. Therefore, Eq. 2.17 suggests the following relationship between the Manning

roughness and blockage factor:

nm KH1 / 6 J2 (1 - Bx)-3/ 2  (2.18)

Somewhat surprisingly, Eq. 2.18 suggests that nm does not depend on the morphology

of the vegetation itself (e.g. on the frontal area per unit volume, a). Instead, channel

resistance is set primarily by the blockage factor. Conceptually, this is because the

primary effect of dense patches of vegetation with regard to flow resistance is to

redistribute the flow into a smaller region, thereby increasing the hydraulic radius

and resistance.

Importantly, note that when a large fraction of the channel is blocked by vegeta-

tion, the assumption that the in-patch velocity does not contribute significantly to

the total flow breaks down; so, Eq. 2.17 and 2.18 are no longer valid. In fact, for a

channel cross-section that is completely vegetated, Bx = 1, we expect from Eq. 2.16

that the average velocity is:
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Figure 2-6: Normalized Manning roughness, nM(g 1 /2 /KH 1/ 6 ), plotted against the
blockage factor, Bx for the field data collected by Green [38] and Nikora et al. [75].
Solid lines show predictions based on Eq. 2.18 using fitted values for the friction
coefficients, C = 0.13 (black line) and C = 0.052 (gray line). Filled gray circles
denote cases with Bx > 0.8.

U (= U)* (2.19)
U UV -CDaH

which is identical to the expression for emergent vegetation shown in Eq. 2.3. For a

completely vegetation channel therefore, the Manning roughness is:

( 9 1/ 2 ) (CDaH 1/2

/ 2) (2.20)

Figure 2-6 shows nm(g1/ 2 /KH/ 6 ) plotted against the blockage factor, Bx, for the

Green ([38], black crosses) and Nikora et al. ([75], gray circles) data sets. Also

shown are the predictions made using Eq. 2.18, with a fitted value of the friction

coefficient, C, for each dataset. The best fit suggests that C = 0.13 ± 0.03 for the

Green data (solid black line) and C = 0.05 ± 0.02 for the Nikora et al. data (solid

gray line). Both values for C are physically consistent since they fall between the

observed ranges for Cf and C,. The roughness predicted from Eq. 2.18 captures the

observed nonlinear relationship between nM and Bx. Further, the velocities predicted
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Figure 2-7: Velocities predicted by Eq. 2.17 plotted against measurements from
Green [38] and Nikora et al. [75]. Fitted values for the friction coefficient, C, are shown
on the plots. The filled gray circles in (b) show velocities predicted by Eq. 2.17 for the
three cases with Bx > 0.8 (see Fig. 2-6). The filled gray triangles show predictions
made using Eq. 2.19, which is more appropriate for Bx > 0.8.

using the simplified Eq. 2.17 are just as well correlated with the measurements as the

velocities predicted using Eq. 2.12-2.14. Specifically, r 2 
- 0.84 for Green [38], and

2 = 0.61 for Nikora et al. [75] (compare Fig. 2-5 and Fig. 2-7).

As discussed above, when a large fraction of the channel cross section is blocked

by vegetation, the assumptions that led to Eq. 2.17 and 2.18 are no longer valid;

Eq. 2.19 and 2.20 are likely to apply instead. As a result, we excluded the three

observations where more than 80% of the channel cross-section was blocked by veg-

etation (Bx > 0.8, filled gray circles in Fig. 2-6 and 2-7) in order to estimate C

for the Nikora et al. [75] data set. For CDaH ~ 10, we expect that from Eq. 2.20

that nM(g1/ 2/KH1/6 ) ~ 2.2 when the channel is completely vegetated, Bx = 1.

The observations shown in Fig. 2-6 are consistent with this prediction. Specifically,

for Bx = 1, the normalized Manning roughness is nm(g1/ 2 /KH1/ 6 ) = 2.4. Simi-

larly, Fig. 2-7 shows that velocities predicted using the blocked channel assumption,

Eq. 2.19 (gray triangles), for the three cases with Bx > 0.8 are closer to the measured

velocities compared to the predictions made using Eq. 2.17 (gray circles).
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Chapter 3

Wave-induced flows inside seagrass

canopies

This chapter describes laboratory and field studies investigating the flow structure

within seagrass beds subject to propagating waves. The laboratory study (@3.2)

employed flexible model vegetation, scaled to be dynamically similar to real sea-

grasses [33]. The field study (@3.3) was carried out in Cala Millor, located on the

eastern coast of Mallorca, one of the Balearic Islands in the Mediterranean Sea. Our

measurements reveal that a mean current is generated within seagrass canopies forced

by purely oscillatory, wave-driven flow. Further, the hydrodynamic drag exerted by

the vegetation leads to a reduction of the in-canopy oscillatory velocity. However, the

ratio of in-canopy to above-canopy velocity is significantly higher for oscillatory flows

(tested here) compared to the unidirectional case tested by Ghisalberti and Nepf [35].

Most of this chapter is derived from the article Luhar et al. (2010) [56]. The field

study (@3.3) is as yet unpublished.

3.1 Theory

For waves propagating over a flat bed in the absence of a canopy, linear wave theory

(e.g. [64]) leads to the following solutions for the horizontal (u,) and vertical (w")

oscillatory velocity fields:
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cosh(kz)
uw awo . cos(kx - wt) (3.1)

sinh(kH)

sinh kz)
ww aww .hQ sin(kx - wt) (3.2)

smnh(kH)

and wave-induced dynamic pressure

w cosh(kz)
PW = p-uw = pga cos(kx - wt) (3.3)k cosh(kH )

In the equations above, p is the water density, g is the acceleration due to gravity, aw

is the wave amplitude, w is the wave radian frequency, k is the wavenumber, H is the

mean water depth, x and z are the horizontal and vertical coordinates (z = 0 at the

bed), and t is time. Wave frequency, wave number, and water depth are related by

the dispersion relation: W2 = kg tanh(kH). Throughout this chapter, the subscript w

refers to purely oscillatory flows (i.e., time average of zero). When we refer specifically

to unidirectional flows (currents) the subscript c is used. Further, for oscillatory

velocities we use upper case symbols to denote amplitude, e.g., uw = Uw cos(kx -wt).

Turbulent, fluctuating velocities are represented by lower case letters with prime

symbols (u', w').

In addition to neglecting the nonlinear terms in the Navier-Stokes equations, linear

wave theory assumes perfectly inviscid, irrotational motion. Under these assumptions,

the horizontal and vertical velocities are exactly 900 out of phase with each other,

as evidenced by Eq. 3.1 and 3.2. However, this solution does not satisfy the no-slip

boundary condition at the bed. While the inviscid assumption is valid for most of

the water column, viscosity is important in the bottom boundary layer, which is of

thickness O( v/w) for laminar flow. Here, v is the kinematic viscosity of water. The

horizontal oscillatory velocity decays from the inviscid value, given by Eq. 3.1, at

the outer edge of the boundary layer to zero at the bed because of viscosity. This

modification to the inviscid solution causes a phase shift in the oscillatory velocities.

The horizontal and vertical velocities are no longer exactly 90' out of phase, creating

a steady, non-zero wave stress, uVwm f 0 (the over-bar denotes a time average).
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This wave stress is analogous to turbulent Reynolds stress. It represents a steady

momentum transfer out of the oscillatory flow, and generates a mean current in the

boundary layer. For laminar flows, the magnitude of this current, Uc, at the outer

edge of the boundary layer is [54]

3ao
Uc = --(ka,,) aw(3.4)

4 sinh2 (kH)

The forces exerted by seagrass canopies also lead to a phase shift between the oscilla-

tory velocities, resulting in a non-zero wave stress. Below, we present an overview of

the forces exerted by seagrass canopies on wave flow (based on Lowe et al. [55]) fol-

lowed by a new analysis estimating the wave-induced mean current generated within

seagrass canopies.

3.1.1 Canopy momentum balance

Lowe et al. [55] described the water motion within a rigid canopy (a model coral reef)

relative to the undisturbed flow above the canopy. Here, we consider the application

of their model to a flexible canopy (a seagrass meadow). For seagrass blades of width

b, and thickness d, the geometry of the canopy is described by two dimensionless

parameters: the frontal area per unit bed area, ah, and the solid volume fraction,

# = ad (c.f. 52.1). Here, a = nb is the frontal area per unit volume and h is the

height of the canopy; n is the number of individual blades per unit bed area. Because

of the forces exerted by the vegetation, the velocity scale within the meadow, Uwm, is

reduced relative to that above the meadow, U,,.. Note that the velocity scale inside

the meadow, Uw,m, represents a vertical average over the canopy height.

The velocity ratio, o' =Uw,m/Uw,o, depends on the relative importance of the

shear stress at the top of the meadow, (1/2)pClu,,lu,,, the drag exerted by the

meadow, (1/2)pCDah dw,m dw,m/(1-#), and the inertial forces including added mass,

pCM(#/(1 -#0)) (,m/ 8 t). CN is the added mass coefficient. As before, C, is friction

coefficient at the top of the canopy, and CD is the vegetation drag coefficient. These

three forces are characterized by the following length scales: the shear length scale:
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2h
Ls = (3.5)

the drag length scale:

2h(1 - #)LD = ~a (3.6)
CDah

and the oscillation length scale, which is simply the wave orbital excursion above the

meadow, A.,0 = Uwac/I. Conceptually, the drag and shear length scales describe the

scale at which the effects of drag and shear begin to influence fluid motion. Note that

the drag length scale LD is proportional to the length scale 6 _ 0.1(CDa>1 introduced

in @2.1, which describes the distance over which the momentum transferred into the

canopy from the overflow is dissipated by vegetation drag. So, in some ways, the

ratio LS/LD, which represents the relative magnitude of the shear stress and drag, is

analogous to 6/h, which is the fraction of the canopy over which momentum transfer

due to turbulent shear is important.

Following Lowe et al. [55], the canopy-averaged momentum balance based on the

force formulation shown above is:

(0w,m - tt)OC) _ U1 ',00  - 'Uwm Uw'm- C &'Uwum (3.7)
Ot Ls LD 1-0 Ot

Eq. 3.7 assumes that the horizontal velocity varies minimally over the height of the

canopy, such that uw(z = h) _ um(z 0). From Eq. 3.1, we see that for this

to be true, kh < 1 such that cosh(kh) 1. By considering only the first Fourier

harmonic, and introducing the complex notation ^Uw,m =R {#3Uw,c exp(iwt)} and

uWac =i { ,c exp(iwt)}, Eq. 3.7 can be written as:

8 AWC 8 A #Oi(# - 1) - 1' ' #|# - iCM (3.8)
37r Ls 37 LD 1--

To obtain Eq. 3.8, we assume that Uwac and Aw,,c are real and positive, while #
may be complex. The ratio of in-canopy velocity to the velocity above the canopy is

a = w,m/Uac =|.
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From Eq. 3.8, we see that if the wave excursion is smaller than the drag and shear

length scales, A, < (Ls, LD), the wave motion is unaffected by the drag and shear

stress, and the flow is dominated by inertia. At this limit, the velocity ratio is:

ai = P# = 1-o (3.9)
1 + (CM -- 1)#

with subscript i used to emphasize inertia-dominated conditions. At the other limit

of flow behavior, when the wave excursion is much longer than Ls and LD, the flow

resembles a steady current. At this limit, the inertial forces are negligible, and flow

within the meadow is determined by a balance between shear and drag. Using a

subscript c to denote this current-type limit, we have the following velocity ratio:

L =(3.10)

For the intermediate case, where the effects of both drag and inertia are important,

Eq. 3.8 must be solved iteratively to yield a = |#|. Lowe et al. [55) solved Eq. 3.7

numerically by providing an initial condition and marching forward in time until a

quasi-steady state was achieved. Alternatively, we propose the use of the Fourier

decomposition shown in Eq. 3.8, which yields identical results for the inertia and

current limits, but can be solved more easily for the general case.

Finally, note that Eq. 3.7 assumes that the canopy elements are rigid, which is

not the case with flexible seagrasses. However, incorporating the impact of wave-

induced blade movement in a predictive model is difficult and requires a coupled

flow-structure interaction model. We develop a simple dynamic blade model in @5,

which suggests that a rigid canopy model may be used to capture the forces exerted

by flexible seagrasses as long as an effective canopy height is used. This effective

height is defined as the vertical extent of the canopy over which the flexible blades do

not move significantly relative to the water. For simplicity, throughout this chapter,

we assume that the effective canopy height is equal to the blade length, h = 1.
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3.1.2 Wave-induced current

We propose that the forces generated within a seagrass meadow lead to a nonzero

wave stress at the top of the canopy, which drives a mean current through the meadow.

To estimate the magnitude of this wave stress, we consider the time-averaged energy

balance for the meadow. Wave energy is transferred from the outer flow into the

meadow via the work done by the wave induced pressure at the top of the meadow,

-Pw,ooWw,o, and the work done by the shear stress at the interface, rw,,Ouw,. The

energy transfer is balanced by dissipation within the meadow, ED:

-Pw,ooWW,, + Twsuw,o = ED (3.11)

Note that ED includes dissipation due to the forces exerted by the vegetation, dissi-

pation due to bed stress, and shear-induced viscous dissipation.

Above the meadow, we assume the horizontal oscillatory velocity, uw,,, and

dynamic pressure, pw,,, are specified by the linear wave solution; hence, p

p(w/k)uw, 0 as shown in Eq. 3.3. Then, Eq. 3.11 may be rearranged to yield the

time-averaged wave stress at the top of the canopy:

Paw,oww,oo k Tw,oUw , - ED (3.12)

Next, we assume that energy dissipation is dominated by the drag force, fD, exerted

by the vegetation i.e., excluding bed friction and viscous dissipation (see e.g., Mendez

and Losada [67], Bradley and Houser [8]),

h

ED fDumd Z (3.13)
0

where um = Uw,m + Ucm is the velocity within the meadow, anticipating the presence

of a mean current, Uc,m. We ignore the contribution of the inertia force since this

tends to be in phase with the flow acceleration, leading to a zero time-average when

multiplied by the velocity. Further, for typical values of C, and CDah the energetic

contribution of the work done by the shear stress, which is of O(pC Uw>o), is negligible

44



compared to the total energy dissipation, which is of O(CDah m). Specifically, the

magnitude of the in-canopy velocity, Uw,m, is comparable to the outer flow velocity,

U.,,, (see Table 3.1) but C, ~ 0(0.01 - 0.1) while CDah 0 O(1 - 10). With these

assumptions, the time-averaged wave stress at the top of the canopy simplifies to:

h

PUw,omWw,oC = f fDum dZ (3.14)
0

Integrating the time-averaged momentum equation over the canopy height leads to

the following, physically intuitive balance (see e.g., Fredsoe and Deigaard [31])

h

PUwoCw'oo + T(z = h) - T(z = 0) = fD dz (3.15)
0

where T is the mean shear stress. For simplicity, the &/&x convective acceleration

term, caused by slow wave decay in the x-direction and the mean pressure gradi-

ent have been assumed negligible. Assuming that the shear stresses are negligible

compared to the vegetation drag, Eq. 3.14 and 3.15 can be combined to yield:

h h

JDUm ] J- JD -1

0 0

The drag force, using a standard quadratic formulation, is fD= (1/2)pCDa (uw,m+

Uc,m) (Uw,m+Uc,m). However, experimental results [81] and numerical simulations [104]

suggest that a two-term formulation is more appropriate in combined wave-current

flows. Following Zhou and Graham [104], we decompose the drag force into its steady

and time-varying components with separate drag coefficients:

fD - fDc + fDw(t) = 2pa (CDcUcm + CD tUw,m(t) Uw,m(t)) (3.17)

Both CDc and CD depend on the Reynolds number, Re = Uw,mb/v, the Keulegan-

Carpenter number, KC = Uw,mTw/b (Tw is the wave period), and the ratio of mean

to oscillatory velocity, Uc,m/Um,m. However, the two drag coefficients are typically

comparable in magnitude.
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Substituting Eq. 3.17 into Eq. 3.16, and time averaging under the assumption that

the parameters CDw, CDC, and a are constants leads to:

h h

I CDcUc3m + jCDw U,m dz J CDcU2m dz (3.18)
W 37

0 0

The mean current is a second-order phenomenon, generated because of nonlinear

interaction between the oscillatory velocities, and so we anticipate U3 < U3,. For

simplicity, we also assume that the mean and oscillatory velocity do not vary over

the height of the canopy, i.e., Uc,m = Oc,m and Uw,m = Ow,m (the over-hat denotes a

canopy-average). With these further assumptions, Eq. 3.18 can be solved to yield a

simple estimate for the mean current generated within the meadow:

4 CD k (Uc,m = w m (3.19)
3DC W

Equation 3.19 indicates that the magnitude of the mean current is controlled pri-

marily by wave parameters (k, w, and Uw,m) and does not depend on the canopy

parameters (a and h). However, below we discuss how the conditions under which

Eq. 3.19 applies is dependent on the ratio of blade spacing and wave excursion, i.e.,

it will have some dependence on a. In addition to the wave conditions, an important

quantity governing the magnitude of the mean current is the ratio of drag coeffi-

cients, CDw/CDc. Zhou and Graham [104] carried out numerical simulations esti-

mating the force acting on a single, circular cylinder in combined wave-current flows.

Simulation results for Uc/Uw = 0.25 showed the drag coefficient ratio to decrease

from CDw/CDc 1.8 for KC = 0.2 (Re = 40) to CDw/CDc 0.5 for KC = 26

(Re = 5200), with Re and KC based on cylinder diameter. For the laboratory ex-

periments described in this chapter, the Keulegan-Carpenter number based on blade

width and near-bed orbital velocity, ranges from KC r 14 (Re - 90) to KC e 94

(Re z 590). If the stem diameter is used instead of blade width, which might be more

appropriate near the base of the model plants used for the experiments (see @3.2), the

ranges are KC e 5.8 - 39 (Re a 220 - 1400). Given the overlap in range between the

experiments conditions considered here, and the numerical simulations carried out by
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Zhou and Graham [104], it is reasonable to assume that CDw/CD- 0().

3.2 Laboratory study

3.2.1 Experimental methods

The experiments were performed in a 24 rn-long, 38 cm-wide and 60 cm-deep flume

equipped with a paddle-type wave maker. The vertical paddle was actuated using a

hydraulic piston driven by a Syscomp WGM-101 arbitrary waveform generator. The

waveform generator was programmed to produce surface waves of the desired ampli-

tude and frequency based on the closed-form solution for paddle motion described

in Madsen [60] (see Appendix A). A plywood beach of slope 1:5, covered with rub-

berized coconut fiber, limited reflections to less than 10% of the incident wave. The

model canopy was 5 m long (see Fig. 3-1). The canopy comprised of model plants

placed in four pre-drilled baseboards 1.25 m long. Two additional baseboards were

placed both upstream and downstream of the model vegetation to ensure a uniform

bed roughness across the test section. Each model plant consisted of six polyethylene

3. r1 A 1 10
(density p, = 920 kg m- ; elastic modulus E = 3 x 10' Pa) blades of length = 13

cm, width b = 3 mm, and thickness d = 0.1 mm attached to a 2 cm long wooden

dowel of diameter 0.64 cm using rubber bands. With the rubber bands in place, the

maximum diameter of the dowels was distributed with a mean 0.92 cm and standard

deviation 0.03 cm. Where necessary, a mean stem diameter, dc = 0.78 cm, is used.

When inserted into the baseboards the stems (dowels) protruded 1 cm above the bed.

Velocity measurements were made with a 3-dimensional Acoustic Doppler Ve-

locimeter (ADV, Nortek Vectrino). Synchronous measurements of the wave height

were made at the same x-location using a wave gage of 0.2 mm accuracy. The analog

output from the wave gage was amplified and logged to a computer using an analog-

digital converter (National Instruments NI-USB6210). Both the ADV and wave gage

were mounted on a trolley moving on precision rails. Vertical profiles of velocity were

measured at two longitudinal locations: midway through the canopy and upstream of
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Figure 3-1: Schematic showing experimental setup. The bold dashed line indicates
measurement locations for the vertical profile of velocity. Not to scale.

the canopy. The model bed was shifted longitudinally along the flume to ensure that

the measurement location midway through the canopy corresponded to an anti-node

of the partially standing waves created by reflections from the downstream end of

the flume. The other measurement location was chosen to be an anti-node at least

half a wavelength upstream of the canopy. This eliminated the lower order, spatially

periodic variation in wave and velocity amplitude associated with the 10% reflection.

Velocities were measured at 1-cm vertical intervals. At each location, velocities and

surface displacement were measured for 6 minutes at 25 Hz. The height of the lowest

measurement location varied between 0.1 and 0.9 cm above the bed (z = 0).

A schematic of the setup is shown in Fig. 3-1. Wave period (T = 0.9 - 2.0 s)

and amplitude (a, = 0.8 - 5.3 cm), water depth (H = 16 - 39 cm) and vegetation

density (n, = 300 - 1800 stems m 2 , or n = 1800 - 10800 blades m- 2 ) were varied

systematically. These parameter ranges were chosen based on typical field values for

the dimensionless parameters am/H, kH, h/H and ah. The conditions for each ex-

perimental run are shown in Table 3.1. In order to measure velocities close to the bed

within the meadow, all vegetation was removed from a circular area approximately

10 cm in diameter, which was the minimum cleared area necessary to prevent blades

from entering the ADV measurement control volume. To test if the clearing had an

appreciable impact on the velocity structure near the bed, three runs were repeated

with the wooden dowels (with rubber bands, but no blades attached) left in place in
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Table 3.1: Wave and vegetation parameters for the laboratory experiments. The last row indicates typical uncertainty.
Run n H T a,, A.,,/S a (z = 1 cm) az (3.8)** o (3.9)** Oc,m t z(Uc = 0) T Uc,m (3.19)**

[cm-2] [cm] [s] [cm] [cm S-1] [cm] [cm s-1]
D1 0.03 39 1.4 3.2 0.5 0.95 0.97 0.97 0.5 11.2 2.1
D2 0.06 39 1.4 3.1 0.7 0.92 0.94 0.94 0.9 12.7 1.9
D3 0.09 39 1.4 3.1 0.8 0.92 0.91 0.92 1.0 13.1 1.9

D4* 0.12 39 1.4 3.1 1.0 0.94 0.87 0.89 1.8 10.9 1.9
D5 0.15 39 1.4 3.0 1.1 0.94 0.84 0.87 1.9 13.3 1.9
D6 0.18 39 1.4 2.9 1.1 0.92 0.82 0.84 1.6 14.1 1.8
D6t 0.18 39 1.4 3.1 1.2 0.79 0.81 0.84 1.9 11.1 2.0
Hi 0.12 16 1.4 0.9 0.6 0.95 0.89 0.89 0.3 5.2 1.0
H2 0.12 24 1.4 1.7 0.8 0.94 0.88 0.89 0.8 9.0 1.5
H3 0.12 32 1.4 2.4 0.9 0.93 0.88 0.89 1.4 9.2 1.7
H4* 0.12 39 1.4 3.1 1.0 0.94 0.87 0.89 1.8 10.9 1.9
Ti 0.12 39 0.9 2.8 0.4 0.93 0.89 0.89 0.4 1.9 0.7
T2 0.12 39 1.1 3.3 0.7 0.92 0.88 0.89 1.1 9.1 1.6
T3* 0.12 39 1.4 3.1 1.0 0.94 0.87 0.89 1.8 10.9 1.9
T4 0.12 39 2.0 3.2 1.6 0.89 0.85 0.89 2.2 13.4 2.5
Al 0.12 39 1.4 0.8 0.2 0.94 0.89 0.89 0.1 1.7 0.3
Alt 0.12 39 1.4 0.8 0.3 0.92 0.89 0.89 0.1 4.9 0.3
A2 0.12 39 1.4 1.7 0.5 0.95 0.89 0.89 0.4 10.2 0.8
A3* 0.12 39 1.4 3.1 1.0 0.94 0.87 0.89 1.8 10.9 1.9
A4 0.12 39 1.4 4.3 1.4 0.94 0.86 0.89 3.3 12.0 3.2
A5 0.12 39 1.4 5.2 1.6 0.91 0.85 0.89 4.2 11.9 4.2
A5t 0.12 39 1.4 5.3 1.7 0.80 0.85 0.89 4.3 12.2 4.3

[0.003] [0.5] [0.05] [0.2] [0.1] [0.03] [0.3] [0.5]
* Identical runs; listed in multiple locations for clarity
t Repeats with wooden dowels left in place in the clearing
** Indicates equations used to arrive at the predicted values
i Indicates measurements from experiment



the cleared area. These runs are marked with a superscript b in Table 3.1. The dy-

namic influence of this cleared area on both unsteady and steady velocity components

is discussed shortly.

The velocity measurements were decomposed into mean (Uc, Wc), root-mean

square (RMS) oscillatory (Uw,RMS, Ww,RMS) and turbulent (u', w') components using

a phase-averaging technique. The velocity readings were binned into different phases

based on the upward zero-crossings (4J = 0 rad) of the synchronous wave elevation

measurements. Wave elevation is defined as the instantaneous surface displacement

minus the mean water level. The wave crest and wave trough correspond to 1 7 r/2

rad and ( D 37/2 rad respectively. The velocity measurements for each phase bin

where then ensemble-averaged for the entire record (180-396 waves, depending on

frequency) to yield the phase-averaged velocity values, u(1) and w(1). The mean

and RMS velocities were then calculated by performing the following operations (only

x-velocities shown for brevity):

27r

Uc 2 Ju(4) dD (3.20)
0

1 27

Uw,RMS = 1J(u(4) - Uc) 2 d4 (3.21)
0

Similarly, the turbulent Reynolds stress, n'w'(1), was calculated by subtracting the

phase-averaged velocities from the instantaneous velocities, multiplying the vertical

and horizontal components, and ensemble-averaging over all data within that phase

bin. The time-averaged turbulent Reynolds stress was then calculated as:

27r

0

3.2.2 Results

A qualitative overview of the observations at the scale of the entire meadow is pre-

sented in Fig. 3-2. Upstream of the model seagrass meadow, the RMS oscillatory
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Figure 3-2: A qualitative overview of the flow pattern at the meadow scale. The
decay in wave height (fine black line) along the meadow results in a proportional
decrease in the oscillatory velocity fields. The black ellipses with arrows indicate the
wave orbitals. Vertical profiles of the mean current (heavy gray lines) are shown at an
upstream, downstream, and in-meadow position. At each position the vertical dashed
lines indicates the axis position for the profile. The local circulation pattern, shown
by the large gray arrows results from the difference in the velocity profile within and
outside the meadow. The direction of wave propagation is from left to right.

velocities match predicted values based on linear wave theory. A small mean flow

is generated close to the bed; the magnitude of this mean current is in reasonable

agreement with the Longuet-Higgins [54] solution for induced drift in laminar wave

boundary layers. Within the meadow, the waves induce a mean current; this mean

current is stronger and extends over a larger vertical distance than the boundary

layer drift observed upstream of the meadow. Qualitative observations using a pas-

sive tracer (food coloring) indicate that the mean current is established within -50

cm of the start of the meadow and persists for a similar distance downstream of the

meadow, beyond which the velocity structure resembles the observations made up-

stream of the meadow. Because the flume is a closed system, the wave-induced mean

current drives the local circulation pattern indicated by large gray arrows in Fig. 3-2.

The velocity measurements shown in Fig. 3-3 support this qualitative description

of the velocity structure. Upstream of the meadow, the RMS oscillatory velocities are

predicted to within 5% by linear wave theory (Fig. 3-3a), and the mean velocity is

maximum at the measurement location closest to the bed (Fig. 3-3b). The magnitude

of this mean current, Uc = 2.4 cms -1, is roughly consistent with the laminar boundary

layer solution (Eq. 3.4), which predicts that the induced drift will be Uc = 1.9 cm

s-1 outside the wave boundary layer. For laminar flows, the boundary layer thickness
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Figure 3-3: Vertical profiles of RMS wave velocity, mean velocity, and Reynolds stress
for Run A5 (see Table 3.1). (a-c) correspond to the measurement location upstream
of the meadow. (d-f) show profiles for the measurement location within the meadow.
Results for the case where a 5 cm radius circle was completely cleared of vegetation
are plotted as gray squares. Black squares represent the case where stems were left in
this clearing and only blades were removed. Solid lines in panels (a) and (d) represent
RMS velocity profiles predicted by linear wave theory, Eq. 3.1.
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is O(jv/w) ~ 0.05 cm. Over a smooth bottom, the boundary layer transitions

from laminar to turbulent for a wave Reynolds number, Re, = UwAw/v > 5 x 104

(U., A. correspond to near-bed values, e.g. [31]). For the wave conditions tested

here, Re < 104 . Hence, we expect the bottom boundary layer to remain laminar.

Further, the turbulent Reynolds stress (Fig. 3-3c) is essentially zero within uncertainty

throughout the water column as expected for linear waves. Note that the Reynolds

stress measurements at heights z = 8.4 and 9.4 cm are not reliable because these

locations correspond roughly to the weak spots of the ADV. At this height, acoustic

reflections from the bed interfere with the signal from the measurement volume,

resulting in occasional spikes in velocity. The spikes tend to be more frequent during

set phases of the wave cycle, resulting in a coherent bias of the u'w' estimate.

Within the meadow, the RMS oscillatory velocity is reduced relative to predic-

tions based on linear theory below z ~ 4 cm (Fig. 3-3d). For the 10 cm clearing

completely devoid of model vegetation, the RMS orbital velocity is reduced to 91%

of the predicted linear wave velocities at the lowest measurement location (z = 0.6

cm, gray squares). However, with the stems left in the clearing, the RMS orbital

velocity is reduced to 73% of the value predicted by linear wave theory at z = 0.3 cm

(black squares). The presence of wooden dowels in the clearing leads to an additional

reduction in the RMS orbital velocity for z < 1 cm, suggesting that our measure-

ments within the meadow underestimate the reduction of RMS velocity because of

the clearing. The clearing does not affect the mean current significantly (Fig. 3-3e).

The maximum measured mean current is Uc = 7.3 cm s-1 for the complete clearing

and maximum Uc = 7.6 cm s-i with the stems left in place; these values agree within

experimental uncertainty. The mean current recorded at the lowest measurement

location is close to that predicted for a laminar boundary layer. The magnitude of

this mean current increases away from the bed and is greatest at z ~ 4 cm. Because

the flume is a closed system, a return current develops above the meadow (z > 13

cm). Vertical profiles of the turbulent Reynolds stress are physically consistent with

the profiles of mean velocity (Fig. 3-3f). The turbulent stress is opposite in sign to

BUc/Oz, and it crosses zero at the same height as BUc/Oz ~ 0.
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Figure 3-4: Measured mean currents plotted against theoretical predictions. (a) Com-
pares the maximum mean currents with the current induced in laminar boundary

layers, Eq. 3.4. White circles represent upstream measurements, gray squares indi-

cate in-canopy measurements for the complete clearing and black squares represent

repeat in-canopy measurements with the model stems left in place. (b) Compares
the canopy-averaged measured current, UcM, with the theoretical prediction shown

in Eq. 3.19 (gray and black squares as before). Note the different axes scales.
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Figure 3-4a compares the maximum mean current measured upstream of, and

within, the canopy with the predicted mean velocity for laminar boundary layers

Eq. 3.4. Consistent with Fig. 3-3, the maximum measured currents upstream of the

canopy agree reasonably well with predicted values for boundary layers. However, the

currents generated within the meadow can be 3 to 4 times larger than the laminar

boundary layer prediction. The simple theory developed earlier (Eq. 3.19, Fig. 3-

4b) gives a better prediction of the measured in-canopy currents. Note that Eq. 3.4

predicts the maximum current outside the boundary layer, while Eq. 3.19 predicts the

vertically averaged mean flow in the seagrass meadow. To reflect this, the maximum

mean current is plotted in Fig. 3-4a, while the canopy-averaged mean current, Uc,m, is

plotted in Fig. 3-4b. Uc,m is calculated as the vertical average of the measured mean

flow profile below the zero crossing for U, (e.g., z < 13 cm in Fig. 3-3e).

To arrive at a prediction for in-canopy currents using Eq. 3.19, the following

assumptions were made: the in-canopy oscillatory velocity is equal to the near-bed

velocity predicted by linear wave theory, UW,m = Uw,o = aww/sinh(kH) (Eq. 3.1),

and that the ratio of drag coefficients is CDW/CDc = 1. With these assumptions,

Eq. 3.19 is c,m [(4k/3ro)U o]1/2. The use of the near-bottom oscillatory velocity

iSres le b t increase n horizontal oscillatory veloctie overth height

of the canopy is modest. The ratio of the oscillatory velocity at the top of the canopy

to the near-bed velocity based on linear theory (Eq. 3.1) is coshkh < 1.2 for all

the laboratory experiments. Further, vegetation resistance only leads to a limited

reduction of in-canopy oscillatory velocities as discussed below. The drag coefficient

ratio CDw/CDc =1 is chosen based on the range suggested by Zhou and Graham [104],

CDw/CDc 0.5 - 1.8.

For cases D1, D2 and D3 (Fig. 3-4b), the observed mean current is significantly

lower than the values predicted. These cases correspond to the lowest stem densities

(n, in Table 3.1) tested here. Deviation at the lowest stem densities is not surprising,

as the wave-induced drift must transition back to the boundary-layer streaming below

some threshold density. We suggest that the ratio of orbital excursion, Aw, ', to

stem center-center spacing, S = n, 1/2 dictates this transition. This is confirmed
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(see Table 3.1).
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by Fig. 3-5a, which shows the observed canopy-averaged mean currents normalized

by the predicted values plotted against the ratio AW,O/S. The observed velocity

matches the predictions very well for A,,/S > 1, while Eq. 3.19 over-predicts Ucm

for A ,WO/S < 1. The vertical extent over which the mean flow is positive within the

canopy, z(Uc = 0), is also a function of Awo/S (Fig. 3-5b). The height z(Uc = 0) is

roughly equal to the blade length, 1, for AW,O/S > 1 but is smaller than the blade

length for AW,O/S < 1, consistent with a transition to boundary layer streaming.

If we consider only the cases for which A., /S > 1, the measured profiles col-

lapse to a similar form when normalized by the predicted velocity-scale (Fig. 3-6),

further confirming the theoretical model. Physically, the large orbital excursions en-

sure that all the water parcels moving back and forth encounter the model vegetation

for AW,O/S > 1. Hence, the bulk representation of seagrass canopy drag employed

here is accurate. In contrast, for Aw,O/S < 1, only the water parcels moving back

and forth in the vicinity of the model plants interact with vegetation, and the hydro-

dynamic impact of the canopy on the wave-induced orbital velocities is diminished.

In effect, a bulk representation of canopy drag is strictly valid only for AW,O/S > 1.

However, if we retain the distributed drag model for simplicity, the wave canopy drag

coefficient Is reuced for A ,UL/ I<Iu n Io the ulllu dIa coiient, rlting

in a lower ratio, CDw CDc (and therefore, a lower predicted value for Uc,m).

Next, we consider the reduction in oscillatory velocity within the canopy, which

is characterized by the ratio of observed to predicted (from linear theory) RMS ve-

locities. The velocity reduction is estimated for all cases at z = 1 cm. When mea-

surements are not available at z = 1 cm, we interpolate linearly between the two

lowest velocity measurements. The resulting velocity ratio, a (z = 1 cm) is listed in

Table 3.1. Table 3.1 also lists velocity reductions predicted by Eq. 3.9 for the inertia-

dominated limit, and by the general solution, Eq. 3.8. The elevation z = 1 cm was

chosen as the basis for comparison for two reasons. First, velocity reductions were

greatest near the bed, making the relative uncertainty smaller. Second, z < 1 cm

corresponds to the stem region. For z > 1 cm, the forces exerted by the vegetation

depend on the relative motion between the water and the flexible blades.
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Table 3.2: Observed and predicted velocity ratio for unidirectional flow over seagrass
model; data from Ghisalberti and Nepf [35]. Run numbers follow convention used by
the above authors. The last row in the table indicates typical uncertainty.

Run h CDa C, c (3. 10)t
[cm] [cm-i]

F1 21.5 0.064 0.08 0.22 0.25
F2 21.3 0.060 0.06 0.23 0.21
F3 20.0 0.047 0.06 0.22 0.24
F4 18.6 0.045 0.06 0.23 0.27
F5 17.0 0.040 0.05 0.26 0.26
F6 15.5 0.034 0.04 0.28 0.27

[0.5] [0.003] [0.01] [0.01] [0.01]
* Estimated based on measurements
t Indicates equation used

Since the elevation z = 1 cm corresponds to the stem-region, the velocity reduction

for the inertia-only limit is calculated using a value of # for the stems, # F =nad2/4.

The added mass coefficient is assumed to be Cm = 1, as is the case for cylinders.

To estimate the velocity reduction using the general solution (Eq. 3.8), we assume to

the frontal area parameter to be ah = ndch, + nib, where h, 1 cm is the height of

the stem. Further, we use a drag coefficient, CD= 1, based on the typical value for

cylinders at Re > 0(100), and a shear coefficient, C, = 0.05, based on velocity and

Reynolds stress profiles measured by Ghisalberti and Nepf [35] for a similar model

vegetation in unidirectional flow (see Table 3.2, and discussion below).

As Table 3.1 shows, for all the wave conditions tested here, there is very little

difference between velocity reductions predicted by the general solution compared to

the inertia-dominated limit. This is in agreement with Lowe et al. [55], who note

that the general solution diverges substantially from the inertia-dominated limit only

when the wave excursion to spacing ratio, A,O/S, is greater than unity; this ratio

is smaller than 2 for all the cases tested here. Consistent with the observation made

earlier, the measured velocity ratio is higher than predicted for most of the cases

where the model vegetation was removed to allow ADV access. The wave-induced

flow adjusts locally to the clearing; hence, the removal of the model vegetation results

in higher velocities locally. For the cases where the model stems were left in place in
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the clearing, agreement between the observed and predicted velocity ratios improves.

Given that the smallest velocity ratio we observe is 80% (i.e., a reduction of 20%),

the experiments suggest that the reduction in oscillatory velocities within seagrass

meadows is limited for wave-dominated conditions, consistent with the assumptions

made in predicting the wave-induced mean current.

In contrast, velocities are significantly reduced in seagrass meadows for unidirec-

tional flows (Ghisalberti and Nepf [35]), as shown in Table 3.2. Ghisalberti and

Nepf [35] measured unidirectional velocity profiles over a similar model seagrass

meadow of density 230 stems m- 2 (1380 blades m- 2). As expected for flexible mead-

ows, the canopy height h decreased with increasing flow speed (Table 3.2). The

compression of blades with increasing flow speed makes the interface with the over-

flow hydraulically smoother, reducing the friction coefficient of this interface (C'), a

trend that was also noted by Fonseca and Fisher [26]. The blade density considered

by Ghisalberti and Nepf [35] is at the lower limit of the conditions used here for the

wave experiments (Table 3.1), yet the velocity ratio is ac < 0.28, i.e., a reduction

of 72% or more. With denser meadows, the reduction will be greater. For a typical

dense canopy used here (1200 stems m--2, ah ~ 2.9), Eq. 3.10 predicts a velocity ratio

of a- = 0.13, a reduction of 87%. The implications of these vastly different in-cannpy

velocities under wave- and current-dominated conditions are discussed in @3.4.

3.3 Field investigation

3.3.1 Study site and methodology

The field study was conducted in Cala Millor, located on the eastern coast of Mallorca,

one of the Balearic Islands in the Mediterranean Sea (Fig. 3-7). Cala Millor is an

intermediate barred sandy beach in an open, micro-tidal bay (spring tidal range <0.25

m). The bay has an area of approximately 14 km 2 , and is exposed to the incoming

wind and waves from the East. Within the bay, the seagrass Posidonia oceanica,

a species endemic to the Mediterranean Sea, forms an extensive meadow at depths
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Figure 3-7: Field study location and setup. (a-c) Maps showing field site location.
(c) shows depth contours and the bottom type at the measurement location, which
is marked with an 'x'. (d) Photograph showing ADV setup.

between 6 m and 35 m [45]. Field measurements [44] suggest the following seagrass

meadow properties: mean shoot density, n = 620 + 30 m-2, mean shoot length,

1 = 0.8 + 0.1 m, and an average leaf area of a' = 210 t 20 cm 2 per shoot. The

seagrass frontal area per unit bed area is therefore ah = na' = 13 t 2, and assuming

a typical blade thickness of d = 0.5 mm [61], the seagrass solid volume fraction within

the canopy is # =nat d/l = 0.008 i 0.001.

Two self-contained ADVs (Nortek Vector) were used to make pressure and velocity

measurements at a water depth of H = 9 m from July 7th to July 23rd, 2009. The

measurement location is shown in Fig. 3-7c. The ADVs were mounted on a stainless

steel structure comprising a vertical pole and two horizontal arms. An upward facing

ADV measured velocity above the seagrass meadow at a height z ~ 1.4 m above the

bed, and a downward facing ADV measured velocity within the meadow at z ~ 0.5

m (Fig. 3-7d). The pressure sensors for both ADVs were located ~ 1 m above the

sea-bed. Pressure and velocity were measured in bursts of 15 min every two hours
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at a sampling frequency of 4 Hz (i.e., M, = 3600 samples in each burst). Each ADV

was equipped with a built-in compass and tilt-sensor. So, velocities were recorded in

an East-North-Vertical reference frame. Since the contours of bed elevation (and the

shoreline, Fig. 3-7c) are oriented roughly North-South at the measurement location,

we consider East-West to be the cross-shore direction.

For each burst, we calculated the mean (i.e., time averaged) East- and North-

velocities, above and within the seagrass meadow, using a simple arithmetic average

of all the individual samples, Ej and Nj, in the measurement burst, e.g.

1 M,
Ec = M- Ey E(3.23)

The mean velocities were then subtracted from the record to calculate root-mean-

square (RMS) oscillatory velocities, e.g.

1 M,
EZs M (Ej - Ec) 2  (3.24)

As before, we use the subscripts c and w to refer to the mean- and wave-components

of velocity, respectively. The variables Uc and Um, refer to the total horizontal velocity,

i.e., l E + N and |UwRMS = ERMS + N ,RS. The magnitude of the

wave-induced oscillatory velocities was calculated from the measured RMS velocities

assuming perfect sinusoids, i.e., U, =-v 2 Uw,RMS. Finally, we use a subscript m to

denote in-meadow velocity and a subscript oo to denote above-meadow velocity.

The significant wave height, Hs, and peak wave period, Tp, for each burst, were

estimated from the velocity measurements using the following procedure. First, the

spectral densities, SE and SN, for the East- and North- velocities were calculated

using Welch's method (MATLAB, MathWorks Inc.). The velocity spectra were then

scaled to represent a surface elevation spectrum, SH, assuming linear wave theory:

sinh(kgH) 2
SHj (SEj + SNj)( sh(k) (3.25)

W cosh(kez)

SHj, SEj, and SNj, refer to the spectral densities corresponding to frequency wj; kj
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is the wave number. The peak period was estimated as Tp = 27r/wp, where Wp is

the frequency corresponding to peak in the surface elevation spectrum. Using the

standard definition, the significant wave height was calculated as:

Hs = 4 Z SHjAWj (3.26)

where Aw is the bandwidth for frequency wo. Across all frequencies, the bandwidth

was constant, Awj = 0.0245 rad, set by the sampling frequency and the algorithm

used to calculate spectral densities.

Laboratory measurements described in @3.2.2 show that, above the meadow, oscil-

latory velocities are predicted reasonably well by linear wave theory. So, we estimated

the significant wave height based on above-meadow ADV measurements. Since the

velocities within the meadow are likely to be damped, we did not use the in-meadow

measurements to calculate Hs and Tr. To limit the effect of any measurement noise

on estimates of Hs and Tp, the surface elevation spectrum was restricted to frequen-

cies for which the amplification factor in Eq. 3.25, sinh 2 (kj H)/(wj cosh(kj z)) 2 , was

smaller than 200. In effect, this restricts the spectrum to waves of period greater

than T = 2.9 s. The chosen cutoff amplification factor (200) is somewhat arbitrary;

however, it does not significantly affect the estimates for Hs. Hs changes by less

than 10% if the cutoff is chosen to be 100 (T = 3.05) or 400 (T = 2.75). Based

on the reported accuracy for the ADVs, we anticipate an instrument uncertainty of

approximately i0.005 m s-'. Therefore, our subsequent analysis and discussion is

limited to period of high wave activity, where UW,RMS > 0.05 m s-1 (i.e., so that

the measurements are -10 times greater than the uncertainty). Finally, most field

studies typically infer surface elevation spectra, Eq. 3.25, from the measured dynamic

pressure spectra (see e.g. [8]). Using a procedure similar to the one described above,

significant wave heights calculated based on pressure measurements, Hsp, showed

good agreement with the velocity based estimates, Hs. Specifically, over all the mea-

surement bursts, Hsp/Hs = 1.06 + 0.08 (mean i s.d., N = 178).
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Figure 3-8: (a) Significant wave height, Hs, and (b) peak period, Te, estimated from
velocity measurements made above the meadow. (c) RMS horizontal velocities within
and above the meadow (Eq. 3.24).

3.3.2 Results

Figure 3-8 shows the significant wave height, Hs, the peak period, Te, and the RMS

horizontal velocities within and above the meadow over the measurement period.

The shaded regions indicate measurement periods with high wave activity, i.e., bursts

with UW,Ss > 0.05 m s 1 This threshold corresponds roughly to bursts where wave

heights exceeded Hs > 0.35 m (Fig. 3-8a), and peak periods exceeded Ty > 4.5s

(Fig. 3-8b). We captured four such periods: on July 13-16, July 18, July 20-21, and

July 22. Outside of these high-wave periods, the peak period was typically Te 3s,

which is the cutoff frequency described earlier (see e.g., July 10-12). For most of the

measurement bursts (and all of the high wave periods), the RMS velocities measured
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within the canopy were reduced relative to those above the meadow (Fig. 3-8c).

The plots in Fig. 3-9a,b show that both the Eastern and Northern components of

wave velocity measured within the meadow correlated well with those measured above

the meadow. However, Fig. 3-9c,d show no correlation for the mean currents. Even

during measurement bursts in which mean velocities |Ucl > 0.05ms- 1 were recorded

above the meadow (Fig. 3-9c, see e.g., July 10-12), the mean currents within the

meadow were small, |Uc,ml < 0.Olms-1. This is not unexpected because, as discussed

above, oscillatory velocities are damped less within vegetated canopies compared to

unidirectional currents.

Importantly, our measurements clearly show that a mean current in the direction

of wave propagation (i.e., in the Westward, onshore direction) was generated within

the meadow during periods of high wave activity (Fig. 3-9d). For example, on July

14, mean currents as large as Uc,ml 0.04 m s- (~20% of the oscillatory veloc-

ity) were measured in the onshore direction within the meadow, while the measured

currents above the meadow were smaller, |Ucl < 0.02 m s-1. A visual comparison

suggests that the magnitude of the onshore currents mirrors the magnitude of the

wave velocities (c.f. Fig. 3-9a and b), which is indicative of a wave-driven, stream-

ing phenomenon. During periods of low wave activity, the measured mean currents

within the meadow were small, comparable to instrument uncertainty (Fig. 3-10).

Figure 3-10 compares the measured onshore currents, -Ec,m, with predictions

based on the model developed in @3.1.2 (Eq. 3.19). The predictions assumed that

the ratio of drag coefficients was CDWDCD= 1 as before. The frequency was calcu-

lated from the peak period, Wp = 27/Tp, and the wave number, kp, was calculated

based on the dispersion relation, w = kpgtanh(kpH). Note that the total wave-

velocity measured within the meadow, Uw,m, was used in Eq. 3.19 to calculate the

total streaming velocity in the direction of wave propagation, Uc,m. The cross-shore

component was assumed to be -Ec,m = (E,RMS/Uw,RMS)Uc,m-

The predictions show the same trends as the measurements, but the magnitude of

the streaming velocity is under-predicted. Fig. 3-11, which shows data from only the

high wave periods, suggests that Eq. 3.19 under-predicts the measured currents by a
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Figure 3-9: (a,b) Wave velocities measured above (a) and within (b) meadow. The
shaded regions indicate periods of high wave activity, i.e., with UW,RMS > 0.05 m s-1
above the meadow. (c,d) Mean velocities measured above (c) and within (d) meadow.
North is as indicated in (a). Since the cross-shore direction is approximately East-
West (Fig. 3-7), onshore is upwards in this figure (see panel d).
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Figure 3-10: Measured onshore mean velocity, -Ec,m during the two-week field de-
ployment. Also shown is the predicted streaming velocity, Eq. 3.19 (solid line).

factor of r3.9. This difference may stem from the fact that we measured velocities at

a single point within the meadow, while the model developed in §3.1.2 is for depth-

averaged quantities. It is possible that the measured mean current, Uc,m, is not repre-

sentative of the meadow-average, Uc,m. However, we measured velocities at z - 0.5 m

above the bed (or z/1 r 5/8) and the laboratory experiments (Fig. 3-6) indicate that

Uc,m a Uc,m at this elevation. The predictions also assume that the measured wave

velocity (Um) approximately equals the meadow-average (Uw,m). This assumption,

along with any measurement error in Uw,m, offers another possible explanation for the

discrepancy between the measurements and predictions. Although, Eq. 3.19 suggests

that U,m c' O[/2, and based on this scaling, the wave velocity would have to increase

by a factor of ~ 2.5 (250%) to offset the factor r 3.9 under-prediction in the measured

mean current. This is much larger than the measurement error, which was < 10%

during the high-wave periods. Further, wave velocities measured above the meadow,

UW,0, were typically < 30% greater than the velocities measured within the meadow,

Uw,m (see Fig. 3-9a,b). Because U,, sets the upper bound for the meadow-averaged

wave velocity, Uw,m, any uncertainty arising from the assumption that 2,m - Uw,m

is limited to 30% in the upward direction.
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Figure 3-11: Measured onshore mean velocity plotted against the predictions. The
dashed line indicates perfect agreement. The solid line and text show the best-fit
between measurements and predictions. The main source of error in the measured
values is the instrument uncertainty of 0.005 m s-1.

Since experimental limitations do not provide a satisfactory explanation for the

factor ~ 3.9 discrepancy between measured and predicted mean velocities, some of

the model assumptions that led to Eq. 3.19 must be reconsidered. Critically, Eq. 3.19

assumes that the vegetation within the meadow remains still and so the water velocity

may be used to estimate drag. Natural seagrasses are flexible and move in response

to flow, which alters the drag generated by the plants. To account for this effect, the

relative velocity between the water and the plants may be used to characterize drag

(see §5). Alternatively, retaining the model developed in §3.1.2, the drag coefficients

CD, and CDc may be calibrated (i.e., lowered) to account for plant flexibility. Further,

the predictions for Uc,m assumed that CDWCDc = 1, which was based on numerical

simulations for a rigid cylinder in isolation at Keulegan-Carpenter numbers, KC <

26 [104]. However, we use this value to predict mean currents through a canopy of

flexible seagrass at KC = U.Tp/b > 25 (assuming Um > 0.05 m s--, Tp > 4.5s,

b = 9 mm). Based on these factors, we believe that uncertainty in the value for

CDW/CDc may explain the discrepancy between measured and predicted velocity.

Since Uc'm o CDw/CDc (Eq. 3.19), the measured streaming velocities indicate that

for flexible seagrasses, the effective value for CD/CDc(~~ 3.92) is much higher than
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the assumed value (= 1). Unfortunately, the motion of flexible plants in combined

wave-current flows is still an open research problem, so we cannot provide a physical

explanation for this higher effective ratio.

Figure 3-12 shows the ratio of the oscillatory velocities, a =Uw,/Uw,. Also

shown are the model predictions, Eq 3.8, along with the inertia- and drag- dominated

limits, ai = 0.87 and ac = 0.05, given by Eq. 3.9 and Eq. 3.10. Given that seagrass

blades resemble flexible flat plates, the predictions assume a flat plate drag coefficient,

CD= 1.95. Following Vogel [98], the added mass coefficient was assumed to equal the

ratio of the typical blade width (9 mm) to thickness (0.5 mm) for Posidonia oceanica,

CM - 18. The friction coefficient was assumed to be C, = 0.05, as in §3.2.2. In

agreement with the predictions, the ratio of measured velocities decreased during

periods of high wave activity, i.e., as the wave excursion increased and the effects of

shear and drag become more pronounced. The velocity ratio for all the high wave

periods was a = 0.78 ± 0.03 (mean ± s.d., N = 55). During the low wave periods,

the velocity ratios were roughly unity with a = 0.95 t 0.14 (mean ± s.d., N = 123),

i.e., oscillatory velocities within and above the meadow were comparable. However,

measurements made during the low wave periods carried significant uncertainty, and

so these results must be interpreted with caution.

Note that, in general, the measured velocity ratios were larger than the predictions

(Fig. 3-12). For example, when the predicted ratio was lowest, a = 0.50 (July 14), the

measured ratio was a = 0.76. The following factors may explain why the measured

velocity ratios were higher than the predictions. First, the predictions assumed a

rigid, upright morphology and a drag coefficient, CD = 1.95, for flat plates. As

discussed above, and as we show in §5, for flexible blades moving with the flow, drag

and added mass must be calculated based on the relative velocity and acceleration

between the blade and the water. In effect, accounting for flexibility would decrease

CD (increase LD), and therefore increase the predicted velocity ratio (see Eq. 3.8

and 3.10). Further, the model predictions are for depth-averaged quantities, while

the measurements were made more than half-way up the canopy (z/l _ 5/8). The

oscillatory velocity is likely to be reduced to a larger extent lower in the meadow,
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Figure 3-12: Measured ratio of oscillatory velocity within the meadow to that above
the meadow, Uw,m/Uwoc. Also shown is the predicted ratio, based on Eq. 3.8. The
inertia-dominated, ai (Eq. 3.9), and current-only, ac (Eq. 3.10), limits are shown as
horizontal dashed lines.

where the seagrasses do not move as much.

3.4 Discussion

Perhaps the most interesting aspect of this study is the wave-induced mean current

generated within (both model and real) seagrass canopies. A significant body of

analytical, numerical and experimental work regarding wave-induced mean currents

within laminar and turbulent boundary layers over smooth, rippled and rough beds

already exists (see e.g., Davies and Villaret [12] and Marin [62] for relatively recent

reviews). However, to our knowledge, this is the first instance of a similar current

being observed within submerged canopies. For field applications, our results suggest

that in addition to wind- and tidal-forcing, mean currents within submerged canopies

can also be induced by wave forcing.

While the simple energy- and moinentuni-balance model (Eq. 3.19) developed

in @3.1.2 predicts the mean currents measured in the laboratory reasonably well, it

under-predicts the mean currents measured in the field by a factor of ~~4. Eq. 3.19
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requires that the ratio of the wave and current drag coefficient, CDw/CDc be known.

We assume that this ratio is equal to 1 based on numerical simulations performed for a

single rigid cylinder [104]. Unfortunately, the drag generated by a single flexible plant

in purely steady and oscillatory flows is still the subject of active research (see @4 and

§5), and to our knowledge, no previous studies have considered combined wave-current

flows. So, the value of CDW/CDc could be very different for a single flexible plant,

let alone for a canopy of flexible vegetation. For example, qualitative observations of

our model meadow indicate that the induced drift introduces an asymmetry in blade

posture, whereby the blades lie stream-wise in the direction of wave propagation

under the wave crest, and remain more upright under the wave trough. The resulting

increase in frontal area may lead to greater drag under the wave trough, when the

horizontal oscillatory velocity is negative, thereby reinforcing the mean current. For

a plant canopy, wake interactions between neighboring plants could also influence the

drag coefficients.

The generation of a mean current within submerged seagrass meadows has impor-

tant implications for the health of meadows, and for the ecologic services provided

by the seagrasses. For example, the mean current can lead to a bias in blade posture

over a wave cycle. Blade posture can control light uptake and hence, productivity in

seagrass meadows [105]. The mean current can also introduce a directional bias in

the dispersal of spores, thereby dictating the direction of meadow expansion. Fur-

ther, the mean currents induced within the meadow may play a role in mediating the

economically important nutrient cycling services provided by seagrasses. Nutrient

cycling slows down if the rate at which seagrasses extract nutrients from the water is

faster than the rate at which the water, and hence nutrients, are replenished within

the meadow as a whole. In oscillatory flows, one mechanism of water renewal for

seagrass meadows is turbulent exchange with the overlying water column. By sys-

tematically flushing the meadow (see Fig. 3-2), a wave induced mean current may

provide a second mechanism of water renewal. Notably, the wave-induced current

also has the potential to transport sediment and organic matter in the direction of

wave propagation. Oscillatory wave velocities can generate turbulence close to the
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bed and suspend sediment, but can only move the suspended sediment back and forth.

In contrast, the wave-induced current can advect the material away.

Finally, the weaker damping of in-canopy velocity observed for oscillatory flows

compared to mean currents may lead to different horizontal spatial structure within

a meadow. In the presence of currents, a meadow can greatly reduce the near-bed

velocity (Table 3.2), and hence bed stress, e.g., as shown in Fig. 2.1.2. This can

create a feedback that maintains a fragmented meadow structure. For unidirectional

flows, an isolated patch of seagrass reduces the bed stress within the patch, and

the diversion of flow away from the patch enhances the bed stress on the adjacent

bare bed. Similarly, flow is enhanced locally within channels cutting through the

meadow, inhibiting regrowth and thereby stabilizing the channels [96]. The scenario

is different in wave-dominated conditions, because the meadow does not significantly

reduce near-bed velocity (and bed stress) relative to the adjacent bare bed, e.g., as

seen in Table 3.1. When a local area of meadow is lost, the bed stress in the bare

patch does not increase appreciably, and the vegetation can grow back.

Based on this difference in wave- and current-dominated conditions, we anticipate

that regions dominated by current will have more fragmented meadows, because any

channels and eits in the meadow will be maintained by the local adjustment in

near-bed flow and bed stress. In contrast, regions dominated by waves will have

more uniform vegetation distributions, because under waves there is little local flow

adjustment to the meadow. Some support for the above hypothesis can be found in

the field literature. Fonseca et al. [29] observed that as the hydrodynamic conditions

became more current-dominated, the meadows became more fragmented. Similarly,

Fonseca and Bell [24] measured the percent of meadow cover across 50 m x 50 m plots

and found higher correlations in linear regression between percent cover and current

(r 2 = 0.60) than between percent cover and wave exposure (r 2 = 0.45). Using a

multiple regression, they found that percent cover was predominately explained by

current (r 2 = 0.54) with only a minor contribution from wave exposure (r 2 = 0.07).
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Chapter 4

Reconfiguration of flexible aquatic

vegetation in steady flow

This chapter characterizes the drag generated by flexible aquatic vegetation in steady,

uniform flow. In 64.1, we develop a model that calculates vegetation posture based

on a force balance involving vegetation stiffness, buoyancy, and the hydrodynamic

forcing. For simplicity, we develop the model for individual blades with rectangular

cross-sections, characteristic of seagrasses. However, the same physical principles hold

for other morphologically complex salt- and freshwater vegetation. Indeed, the model

is able to predict posture and drag for laboratory experiments with model blades

(@4.3.1), as well as real seagrasses, and marine macroalgae of more complex morphol-

ogy (@4.3.2). Most of this chapter is published as Luhar and Nepf (2011) [58]. How-

ever, in §4.4.2, we link blade-scale reconfiguration with canopy-scale hydrodynamics

using the simplified two-layer framework developed in @2.1.3; this is an excerpt from

Luhar and Nepf (2012) [57].

4.1 Theory

To develop a model describing the flow-induced reconfiguration of buoyant, flexible

seagrass blades, we start with a few simplifying assumptions. First, we assume that

the blades can be modeled as isolated, buoyant, inextensible elastic beams of constant
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6

force balance for s > s*

f t
B

9*
sV* i*

s*

Figure 4-1: Schematic showing the coordinate system and force balance used to derive
the mathematical model for the flow-induced reconfiguration of aquatic vegetation.

width b, thickness d, density pv, and elastic modulus E. Second, the horizontal

velocity U is uniform over depth. Third, we consider steady flow where the dominant

hydrodynamic force is form drag. Viscous skin friction is assumed to be negligible.

In §4.4, we discuss how the model can be modified to account for more complex

vegetation morphologies as well as spatial variations in vegetation and flow properties.

We also develop a formal criterion to indicate when skin friction becomes important.

Unsteady flows, such as those induced by surface waves, are considered in §5.

We use the curvilinear coordinate system shown in Fig. 4-1, in which s is the

distance along the blade from the base and 0 is the local bending angle of the blade

relative to the vertical (0 - 0 denotes an upright posture). The blade length is 1, so

that s = 1 represents the tip of the blade. Form drag, which derives from the velocity

normal to the blade surface, is represented using a standard quadratic law. The drag

force per unit blade length is:

fD= (1/2)pCDbU 2 cos 2 0 (4.1)

Where p is the density of the water and CD is the drag coefficient [5, 84]. The drag

force is resisted by blade stiffness and blade buoyancy. The blade-normal restoring
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force due to stiffness (V) is the spatial derivative of the internal bending moment,

M = EI(dO/ds), i.e.,

V = -EI (4.2)
ds2

where I(= bd3/12) is the second-moment of area [2, 36]. The vertical buoyancy force

per unit blade length is:

fB = Apgbd = (p - p,)gbd (4.3)

The inset in Fig. 4-1 shows the blade-normal force balance for s > s*, where

s* is an arbitrary position along the blade. This force balance yields the governing

equation for posture:

V* + fBsin 0* ds - Dcos(O - 0 (4.4)
S* S*

V* is the blade-normal restoring force due to stiffness at s = s*, and 0* is the bending

angle at s = s*. The buoyancy force acts vertically and so the component of buoyancy

acting in the direction of V* is fB sin 0* per unit blade length. Hence, the integral on

the left-hand side of Eq. 4.4 represents the projection in the direction of V* of the

total buoyancy force for s > s*. Similarly, fD is the blade-normal drag force per unit

length, and so the integral on the right-hand side represents the projection in the

direction of V* of the total drag force for s > s*. A force balance parallel to the blade

would yield an expression for the blade tension at s*. However, we do not explicitly

calculate blade tension here. Using the complete expressions for fB (Eq. 4.3) and fD

(Eq. 4.1), and evaluating the integral on the left-hand side, Eq. 4.4 can be rewritten

as:

d20
-EI 2 + Apgbd(l - s*) sin 0* PCDbU2 cos2 0 COS(0 - 0*) ds (4.5)

ds2 S* 2
S*
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To make Eq. 4.5 dimensionless, we replace s with a normalized coordinate s = s/i

so that = 1 represents the tip of the blade and * = s*/i is an arbitrary position

along the blade, as before. With this normalization, the curvature term in Eq. 4.5

scales as |d2 0/ds2  21/1, and the restoring force due to blade stiffness scales as EI/ 2 .

This scaling is reasonable when the blade bends gradually over its entire length. For

streamlined postures, however, the blades bend significantly over a short distance

close to the bed, producing curvature that is much larger than 1/12. Therefore, keep

in mind that the scale EI/ 2 underestimates the restoring force due to blade stiffness

when bending occurs locally, e.g., only near the bed.

Dividing Eq. 4.5 by the factor E-/ 2 yields the following dimensionless equation

for posture, i.e., describing 0* = f(s*)

d20 1

d2. + B(1 - s*) sin0* = Ca cos2 0 cos(O - 0*) d (4.6)

Posture is essentially controlled by two dimensionless parameters:

B =Apgbdl' (4.7)
El

1 pCDbU2l3
Ca = (4.8)

2 EI

Physically, B represents the ratio of the restoring force due to buoyancy and the

restoring force due to stiffness. We call this the buoyancy parameter. Ca is the

Cauchy number, which indicates the relative magnitude of the hydrodynamic drag

and the restoring force due to stiffness. Finally, we impose the following boundary

conditions: the base of the blade is a clamped joint, 0 = 0 at s 0, and the tip of

the blade is free, d/ds = 0 at s = 1.

Crucially, B and Ca reflect the assumptions made in order to normalize Eq. 4.5.

Specifically, the drag and buoyancy scales represent the maximum possible values for

these forces, whereas the scale EI/12 can underestimate the stiffness restoring force, as

discussed previously. The potential mismatch in scales is evident in Eq. 4.6. The term
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reflecting the buoyancy force is proportional to the factor (1 - s) sin 0 which cannot

exceed 1. Similarly, the value of the integral on the right-hand side, representing the

drag force, also cannot exceed 1. However, the curvature term is unbounded. For

streamlined postures, where blade curvature is large close to the bed, d20/ds2  1,

the restoring force due to blade stiffness is larger than that suggested by the scale

EI/12.

Reconfiguration reduces drag through two different mechanisms. First, reconfigu-

ration reduces the frontal area of the vegetation, and second, the reconfigured shape

tends to be more streamlined [13]. To quantify the reduction of drag due to recon-

figuration we propose an effective blade length, 1e. This is defined as the length of a

rigid, vertical blade that generates the same horizontal drag as the flexible blade of

total length 1. In dimensionless terms, the effective length is:

f(1/2)pCDbU2 cos3 Ods 1
_e _ o _ S cos 6d (4.9)

1 (1/2)pCDblU 2  0

Based on this definition, the total horizontal drag force is F, = (1/2)pCDbl U2,

where the drag coefficient, CD, for the flexible blades is identical to that for rigid,

vertical blades. The effective length is equal to the blade length, le = 1, if the

blades remain upright in flow (0 = 0). As the blades are pushed over (0 > 0),

the effective length decreases so that le < 1. Note that the effective length defined

in Eq. 4.9 accounts for drag reduction both due to the reduced frontal area in the

reconfigured state, and due to the more streamlined shapes of the bent blades. In

contrast, the deflected vegetation height, often used to quantify drag reduction due

to reconfiguration, accounts only for a reduction in frontal area. For the coordinate

system used here, the dimensionless deflected height of the blades is:

1

= Jcos 0 ds (4.10)
0

Comparing Eq. 4.9 and 4.10, it is clear that the effective length is always less than,

or equal to, the deflected height, _ < h.
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4.1.1 Model predictions

Before describing the general case, where both blade buoyancy and stiffness play a

role, we first consider the two limiting cases: zero stiffness and zero buoyancy. For

the zero stiffness case, Eq. 4.6 simplifies to:

(1 - s*) sin 0* = (B- Ca) cos2 0 cos(o - 0*) ds (4.11)

The parameter B-'Ca represents the ratio of the drag force and the buoyancy force.

With zero stiffness, the blade cannot sustain any internal bending moments. Hence,

the boundary condition at the base of the vegetation changes from a clamped joint

to a pin joint, dO/ds = 0 at A = 0. Further, because there is no restoring force due

to blade curvature, the angle 0 reflects the local balance between drag and buoyancy.

Since the model does not consider any spatial variations in blade density or flow speed,

the angle 0 is constant along the blade. This is evident by balancing the blade-normal

components of the forces shown in Eq. 4.1 and 4.3. If b, d, Ap and U are constant

along A, 0 must also be. As a result, Eq. 4.11 simplifies further to:

sinO = (B-'Ca) cos 2 0 (4.12)

Eq. 4.12 can be solved easily to yield the blade angle, 0, as a function of B-'Ca.

For 0 constant along the blade, the blade remains straight as it tilts over (see Fig. 4-

2a, inset), and the effective blade length and deflected height are le/1 = cos3 0 and

h/i = cosO, respectively (Eq. 4.9 and 4.10).

The predicted effective length for the zero-stiffness case is plotted as a function of

the parameter B-'Ca in Fig. 4-2a. The inset in Fig. 4-2a shows predicted postures

for B-'Ca = 0.1 and B 'Ca = 3.2. When the hydrodynamic forcing is much smaller

than the buoyancy force, B-'Ca < 1, the blade remains upright in flow. Specifically,

the effective length is approximately equal to the blade length, 0.9 < (le/l) < 1,

for B-'Ca < 0.25. As the hydrodynamic forcing increases relative to the buoyancy

force, the blade is pushed over and the effective length is reduced. As an example,
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Figure 4-2: Model predictions for the effective blade length le/l and blade posture.

(a) Effective blade length plotted against the ratio of hydrodynamic forcing and blade

buoyancy, B- 1Ca, for zero-stiffness blades. Also shown are predicted blade postures

for the cases marked with a dot: B 1 Ca = 0.1 and B'Ca = 3.2. (b) Effective

blade length plotted against the Cauchy number, Ca, for blades that are neutrally

buoyant. The blade postures shown in the left and right subplots correspond to the

cases marked with a dot, Ca = 1 and Ca = 32, respectively. (c) Effective blade

length plotted against the Cauchy number for four different values of the buoyancy

parameter: B = 0 (bold black line), 10 (fine black line), 50 (bold gray line), and 100
(fine gray line). The predicted blade postures shown in the subplots correspond to

the cases marked with a dot, Ca = 1, Ca = 32, and Ca = 1000, from left to right,
respectively.
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for B-'Ca = 3.2, 0 = 590 , the effective length is le/l = 0.14, and the deflected height

is h/i = 0.52, as shown in Fig. 4-2a. For B- 1Ca > 1, the blade is pushed toward

a near-horizontal posture, for which sin0 ~ 1, and Eq. 4.12 simplifies to cos0 ~

(B-'Ca)-1/2 . In the limit of large B-'Ca, therefore, the deflected height and effective

length are (h/i) ~ (B-'Ca)-1/ 2 and (le/l) - (B 'Ca) -3/2, respectively (Fig. 4-2a).

The Cauchy number (Eq. 4.8) is proportional to the square of the velocity, Ca cx U2 ,

and so the above scaling implies that for B-'Ca > 1, the effective length is inversely

proportional to the velocity cubed, 1e cC U-3 , and the horizontal drag decreases with

increasing velocity, F c U 2l c U-1. More generally, for B-'Ca > 1, the effective

length decreases with increasing velocity as (le/l) ~ (B-lCa)- , where the generic

exponent A is greater than 0.5. Hence, the horizontal force, F , oc U2 le oc U(22A),

increases sub-linearly with velocity. That is, F, c UA with A = (2 - 2A) < 1.

Next we consider the case where only blade stiffness is important the zero-

buoyancy case. For this case, the boundary condition at the base is a clamped joint,

with 0 = 0 at s = 0. Because B 0, the governing Eq. 4.6 simplifies to:

d20
d .= Ca cos 2 0 cos(0 - 0*) d6 (4.13)

This equation for blade posture is solved to an accuracy of 10-3 in 0 using an iterative

shooting method (e.g., Stoer and Bulirsch [90], see Appendix B). The predicted

effective length (Eq. 4.9) for the zero-buoyancy case is plotted against the Cauchy

number in Fig. 4-2b, along with the predicted blade postures for Ca = 1 and Ca = 32.

The model suggests that for Ca < 0(1), the hydrodynamic forcing is unable to

overcome blade stiffness and the blade remains upright in flow. Specifically, the

effective blade length is approximately equal to the blade length, 0.9 < (le/l) < 1,

for Ca < 2. For these conditions, the drag force increases with the square of velocity,

F, cx U2. However, as the Cauchy number increases (U increasing), the blade is

pushed over by the flow, and both the deflected height and effective blade length

decrease. As an example, for Ca = 32 (inset, Fig. 4-2b), the effective length is

(le/1) = 0.30 and the deflected height is (h/i) = 0.61. Note that the decrease in
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effective length with increasing velocity (i.e., increasing Ca) is more gradual for the

zero-buoyancy case compared to the zero-stiffness case described above (Fig. 4-2a).

The model predicts that for Ca >> 1, the effective length scales as (le/l) ~ Ca-1/3

(Fig. 4-2b). This scaling suggests that le c U- 2/ 3 (c.f. le oc U-3 for the zero-

stiffness case). Hence, the drag force increases with velocity as F c U2le o U4/ 3, in

agreement with the results obtained by Alben et al. [2] and Gosselin et al. [36] for

non-buoyant bodies. The scaling le/l - Ca- 1/3 emerges directly from the balance of

drag and the restoring force due to stiffness. For streamlined postures (e.g., Fig. 4-2b,

inset, Ca = 32), the blades bend more severely near the base producing a smaller

radius of curvature than that implied by the scale Id2Od62 1 1/12 used in Eq. 4.6,

and so the restoring force due to blade stiffness is larger than that implied by the

scale EI(1/l)2. For bent postures, the effective length, le, captures the magnitude

of the restoring force more accurately because it reflects the length over which the

blade is actually bending, leading to EI(d 2 /ds 2 ) ~ EI(1/le)2. Since the restoring

force due to stiffness and the drag force must balance in the reconfigured state, we

have EI(1/le)2 ~ (1/2)pCDbleU 2. Expressing this balance in dimensionless form (see

Eq. 4.8), we see that the effective length scales as (le/l) - Ca-/ 3 .

We now discuss the general case, where blade buoyancy and stiffness are both im-

portant. As before, we solve Eq. 4.6 numerically using an iterative shooting method.

The four curves in Fig. 4-2c show effective lengths for the zero-buoyancy case de-

scribed above, B = 0 (bold black line), along with the cases B = 10 (fine black line),

50 (bold gray line) and 100 (fine gray line). Comparing these four curves indicates

that the addition of buoyancy delays the onset of blade reconfiguration relative to

the zero-buoyancy case, i.e., the blades remain upright at higher velocities. For the

zero-buoyancy case, the effective length is approximately equal to the blade length,

(le/l) ~ 1, for Ca < 0(1). For B > 1, the effective length is approximately equal to

the blade length as long as the drag force scale does not exceed the buoyancy force

scale, (B-4Ca) < 0(1), or Ca < O(B). As an example, for B = 100, le/l ~1 for

Ca < 0(100) (Fig. 4-2c). Above these thresholds, the blades are pushed over by the

flow and the effective length decreases.
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If the hydrodynamic forcing becomes significantly larger than blade buoyancy,

(B- Ca) >> 1, blade stiffness becomes the dominant restoring mechanism. Specifi-

cally, all the curves collapse onto the scaling law developed above, (le/l) ~ Ca-1/3,

and the effective length becomes independent of the buoyancy parameter, B. This is

illustrated by the predicted blade postures for Ca = 1000 (Fig. 4-2c, right-most inset).

Close to the base, blade posture is very similar for all four values of the buoyancy

parameter, indicating that the curvature close to the bed is set purely by a balance

between drag and the restoring force due to blade stiffness. The effect of buoyancy

only becomes apparent closer to the top of the blades; the more buoyant blades are

raised a bit higher in the water. However, given the near-horizontal orientations, the

top of the blades do not generate significant drag. The majority of the drag is gen-

erated very close to the base, where the blades are clamped and remain vertical due

to blade stiffness. As a result, blade buoyancy does not significantly affect the drag

generated, and the effective length becomes independent of the buoyancy parameter.

4.2 Laboratory experiments

To validate the model developed above, we conducted laboratory experiments mea-

suring drag and blade posture for model blades designed to be dynamically similar to

seagrasses. Due to variations in material properties, morphology and flow conditions,

the buoyancy parameter and Cauchy number vary considerably in natural systems.

For example, the typical density of the seagrass Zostera marina varies in the range

700 -900 kg m-3 [1, 23, 30], so that Ap ~ 125-325 kg m-3 (the density of seawater is

assumed to be 1025 kg m- 3), and the range of reported values for the elastic modulus

is E 0.4 - 2.4 GPa [8]. Zostera marina blades can also vary greatly in length with

observations ranging from I ~ 15 - 200 cm [33]. Using a more typical blade length

range of I = 30 - 60 cm, and assuming the blade width and thickness are b = 0.8

cm and d = 0.35 mm [56], we estimate that the buoyancy parameter (Eq. 4.7) ranges

between B ~ 1 - 170. For a typical velocity range of U = 5 - 50 cm s- 1 , we estimate

the Cauchy number (Eq. 4.8) ranges from Ca ~zz_ 10 - 40, 000.
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To span the estimated range for the buoyancy parameter, we constructed model

blades from two different materials, silicon foam (E = 500 kPa; Ap = 330 kg m-3;

d = 1.9 mm) and high-density polyethylene (HDPE, E = 0.93 GPa; Ap = 50 kg m-3;

d = 0.4 mm). We tested model blades of five different lengths ranging from 1 = 5 cm

to I = 25 cm in 5 cm-increments. The blade width was b = 1.0 cm in all cases. For the

foam blades, the buoyancy parameter ranged from B = 2.7 for the 5 cm-long blades

to B = 340 for the 25 cm-long blades (see Table 4.1). For the HDPE blades, the

buoyancy parameter ranged from B = 0.005 for the 5 cm-long blades to B = 0.62 for

the 25 cm-long blades (Table 4.1). In general, the foam blades represented buoyancy-

dominated cases, while the HDPE blades represented stiffness-dominated cases. All

the model blades were subjected to eight different flow speeds, ranging from U = 3.6

cm s-1 to U = 32 cm s-'. The maximum value of the Cauchy number tested was

Ca = 5500 for the foam blades, and Ca = 320 for the HDPE blades. Note that

because the model blades resemble flat plates, these values for the Cauchy number

have been calculated based on the drag coefficient for long, flat plates perpendicular

to the flow, CD = 1.95 [98]. Table 4.1 lists the buoyancy parameter and the Cauchy

number for all eighty test cases.

For fluw speesu s!iwaller Uanl U = 1o 1, tlhe uxpriLments VeI peiuimteU

in a 24 m-long, 38 cm-wide and 60 cm-deep re-circulating flume. For flow speeds

greater than U = 15 cm s-1, the experiments were carried out in a 28 m-long, 76

cm-wide and 90 cm-deep re-circulating flume. Both flumes had glass sidewalls. A

schematic of the experimental set-up is shown in Fig. 4-3. At every flow speed, the

horizontal drag force, F, acting on a single model blade of each length tested was

measured using a submersible s-beam load cell (Futek LSB210). The measurements

were logged to a computer using a bridge completion and data acquisition module

(National Instruments NI-USB 9237). Based on a calibration with known weights

performed prior to the experiments, the resolution of the load cell was 0.001 N and

the accuracy was 10%. Two separate calibrations showed that the load cell responded

linearly over the range 0 - 0.015 N, and over the range 0 - 0.042 N.

To ensure that the flow did not interfere with the force measurement apparatus,
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Table 4.1: List of test cases for the reconfiguration experiments with model blades
U [cm s-1 ]

3.6 7.1 11 14 16 22 27 32
l [cm] B Ca

HDPE 5 0.005 0.032 0.12 0.28 0.5 0.66 1.2 1.8 2.5
E = 0.93 i 0.08 GPa 10 0.04 0.25 0.99 2.2 4 5.3 9.3 15 20
Ap = 50 10 kg m-3 15 0.13 0.86 3.3 7.5 14 18 32 50 68
b = 1.0 0.05 cm 20 0.32 2 7.9 18 32 42 75 120 160
d = 0.4 i0.04 mm 25 0.62 3.9 15 35 63 83 150 230 320

Silicon foam 5 2.7 0.55 2.1 4.8 8.7 11 20 32 44
E = 500 i 60 kPa 10 22 4.4 17 38 70 92 160 260 350
Ap = 330± 50 kg m-3 15 73 15 58 130 240 310 550 860 1200
b = 1.0 ± 0.05 cm 20 170 36 140 310 560 730 1300 2000 2800
d - 1.9 ± 0.10 mm 25 340 69 270 600 1100 1400 2500 4000 5500

00



not to scale
z [cm]

20

30 cm

U10 <+- model blade

<- blade holder
0 10 20 30 <-torce sensor + ylic box

U[cm s] 12.7 cm
,, 5 em ,102 em , 45 e ,

Figure 4-3: Schematic of the experimental set-up. Also shown are the measured
profiles of velocity for the eight different flow speeds tested in this study (Table 4.1).
Note the vertical exaggeration.

the load cell was housed inside a trapezoidal, acrylic box of length 192 cm and height

12.7 cm, as shown in Fig. 4-3. In all cases, the total water depth was H = 42.7

cm, so that the depth of the water above the acrylic box was 30 cm. The load cell

was fixed to the top surface of the box, midway along the length of the box. A

cylindrical, stainless steel blade holder, which protruded through a hole of diameter

1.25 cm, was used to attach the model blades to the load sensor (Fig. 4-3). The blade

holder extended 4 cm above the top of the box. As a result, the model blades were

positioned above the bottom boundary layer, ensuring a uniform flow speed over the

length of the blade. Prior to the experiments, we measured vertical profiles of velocity

above the acrylic box using an ADV (Nortek Vectrino) for all eight flow speeds. We

measured the velocity profiles midway along the box at a vertical resolution of 1 cm.

At each measurement location, 4-min records were obtained at 25 Hz. The vertical

profiles, shown in Fig. 4-3, confirm that the horizontal flow speed varied by less than

5% above blade holder. Note that the velocity values, U , listed in this chapter denote

the mean horizontal flow speed above the blade holder.

Force measurements were made for a period of 4 min at a sampling rate of 2 kHz

(i.e., 480,000 samples). The drag force was calculated based on the arithmetic mean

of all the samples. We also measured the force generated by the blade holder alone

for each of the eight flow speeds tested. In order to estimate the drag force generated

by the blades alone, the drag generated by the blade holder was subtracted from the
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total drag (i.e., blade holder and blade). In addition to measuring the drag force, we

also photographed the model blades for each flow speed using a digital still camera

(Nikon D60). Multiple photographs were taken for each test case to account for any

short-term fluctuations in blade posture.

4.3 Results

4.3.1 Model blades

Figure 4-4 shows force measurements (Fig. 4-4a,b) and observed blade postures (Fig. 4-

4c-f) for the shortest (5 cm) and longest (25 cm) model blades tested. Vortex-induced

vibrations of the HDPE blades were observed at velocities greater than 20 cm s-1.

However, the standard deviations from the mean measured forces were smaller than

10% in all cases. Hence, the errorbars in Fig. 4-4a,b reflect the 10% accuracy of the

load cell. Model predictions for drag and blade posture are also shown in Fig. 4-4.

The model force predictions agree with the observations for all but the shortest HDPE

blade. For the 5 cm HDPE blade, the horizontal force, F , is over-predicted by the

model (Fig. 4-4a, black squares and line). This over-prediction may be due to the

fact that for flat plates with small length-to-width ratios, pressure recovery near the

tip leads to a drag coefficient that is lower than the value assumed here, CD= 1.95.

When the Cauchy number is small, the blades do not reconfigure significantly

and the standard quadratic drag law applies. For example, the 5 cm HDPE blade

(Ca < 2.5 for all flow speeds, Table 4.1) remained near-vertical even at the highest

velocity tested (Fig. 4-4c), and the measured horizontal forces were approximately

proportional to the square of velocity (Fig. 4-4a). Specifically, the horizontal force

increased with velocity as F, oc UA, with A = 1.86 ± 0.05. As the Cauchy num-

ber increases so that Ca > 1, reconfiguration becomes significant and the quadratic

law overestimates drag. As an example, the 25 cm HDPE blade exhibited some

reconfiguration over the entire range of velocities tested here (Ca = 3.9 - 320, Ta-

ble 4.1). The blade remained vertical near the clamped base, but blade curvature
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Figure 4-4: (a) Horizontal force (F,), plotted against velocity (U), for the model
blades made from high density polyethylene (HDPE). The black squares and black
line correspond to the measured and predicted forces for the 5 cm-long blade. The
gray circles and gray line correspond to the measured and predicted forces for the 25
cm-long blade. (b) Same as (a), but for the model blades made from silicone foam.

(c-f) Observed blade postures for two different flow speeds. The overlaid white curves
are model predictions, and the scale bar is 5 cm. (c, e) correspond to the 5 cm- and
25 cm-long HDPE blades, respectively. (d, f) correspond to the 5 cm- and 25 cm-long
foam blades.
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increased with increasing velocity (Fig. 4-4e). This flow-induced streamlining led to

a near-linear relationship between the measured drag force and velocity (Fig. 4-4a).

Specifically, F, oc UA with A = 1.31 i 0.10, in agreement with the predicted scaling

law, Fx oc U4/3. Note that, because of reconfiguration, the drag generated by the

25 cm HDPE blade was comparable to the drag generated by the 5 cm blade for

velocities greater than 25 cm s-1 (Fig. 4-4a). This is because reconfiguration reduces

drag both by reducing frontal area and by producing more streamlined shapes. For

U = 32 cm s1, the 25 cm HDPE blade had a larger frontal area than the 5 cm

blade (see Fig. 4-4c,e). However, the drag generated by the longer blade was reduced

because it was pushed over into a more streamlined posture compared to the upright

shorter blade.

For the 25 cm foam blade (B = 340, Table 4.1), the reconfiguration response

resembled the zero-stiffness limiting case, with a nearly constant 0 along most of

the blade length. However, curvature is observed at the bed because the blade is

clamped, not pinned, as assumed by the model for the zero-stiffness case. Note that

the curvature occurs over a much shorter length scale (i.e., smaller radius of curvature)

than that observed for the stiffer HDPE blade (see Fig. 4-4e,f). This reinforces the

idea that, even for buoyant blades with B > 1, stiffness plays a role in determining

posture near the bed. The observed postures for the foam blades are slightly more

upright compared to the model predictions for U = 16 cm s-1 (Fig. 4-4d, f). This

discrepancy may be due to the uncertainty in B caused by variations in the foam

density (Table 4.1).

For velocities between 5 cm s- and 20 cm s-, the drag generated by the 25 cm

foam blades (Fig. 4-4b, gray circles) increased sub-linearly with velocity i.e., F, c UA

with A = 0.69 t 0.22. This sub-linear relationship between drag and velocity is

characteristic of a buoyancy-dominated response, as discussed earlier. For velocities

greater than U ~ 20 cm s-1, however, the drag-velocity behavior of the 25 cm foam

blade converged with that of the 5 cm foam blade, for which A = 1.54 + 0.20 (Fig. 4-

4b, black squares). This exponent suggests a transition to the value 4/3 predicted

for stiffness-dominated regimes, which is expected for B 1Ca > 0(1). Indeed, for
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Figure 4-5: (a) Effective blade length (le/l), plotted as a function of the Cauchy

number (Ca), for the model blades made from HDPE. The markers show experimental

observations for the five different blade lengths tested, 1 = 5 cm (squares), 10 cm

(asterisks), 15 cm (triangles), 20 cm (crosses), and 25 cm (circles), and the solid

lines represent model predictions. The inset legend shows the value for the buoyancy

parameter (B) for each of the five blade lengths. (b) Same as (a), but for the model

blades made from foam.

U > 20 cm s-, B- 1Ca > 6 (Table 4.1). Hence, we see that a single blade can

transition between the buoyancy-dominated and stiffness-dominated regimes with

increasing velocity. When the drag force scale exceeds blade buoyancy, B 1 Ca >

0(1), blade stiffness becomes the dominant restoring mechanism, and the predicted

scaling law F, oc U 4/ 3 applies, even if the value of B (> 1) implies that buoyancy

Consistent with the data shown in Fig. 4-4, the model is able to accurately pre-

dict the effective blade length, le/l, for all eighty test cases (Fig. 4-5). The measured

effective lengths were calculated from the measured forces, F2, using the relation:

(le/l) = Fx/(1/2pCDblU2 ). The effective lengths for all the HDPE blades fall onto a

single curve (Fig. 4-5a), which is similar to the zero-buoyancy case shown in Fig. 4-

2b. This result suggests that for B < 1, blade stiffness is the dominant restoring

mechanism and the effect of buoyancy on reconfiguration may be neglected. Further,

in agreement with model predictions, the data suggest the following scaling relation-

ships at the stiff and flexible limits: (le/l) ~ CaA, with A = -0.071t 0.03 for Ca < 2,

and A = -0.41 + 0.06 for Ca > 10.

In contrast, the effective lengths for the foam blades of different length follow

distinct curves (Fig. 4-5b) that depend on the value of the buoyancy parameter,
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confirming the model prediction (Fig. 4-5b, solid lines) that blade buoyancy delays

the onset of reconfiguration. However, all five curves seem to collapse together for

B- 1Ca > 0(1) (see Fig. 4-5b, Ca > 1000), again indicating that once the hydrody-

namic forcing exceeds blade buoyancy, blade stiffness becomes the dominant restoring

mechanism. So, blade stiffness may not be neglected even if B > 1. Recall that even

at the highest B, curvature is observed near the bed (Fig. 4-4f), indicating that

stiffness must influence posture.

Note that the model predictions described in this section were based on the known

blade properties, flow speed and the drag coefficient for flat plates. No empirical

fitting parameters were used. Agreement between the experimental observations and

the predictions therefore confirms that the model effectively captures the physics

underlying the flow-induced reconfiguration of buoyant, flexible blades. Of course,

the experiments were designed to fit the simplifying assumptions made to develop

the model. For example, the model blades had a constant, rectangular cross-section,

and the blade material properties did not vary over the blade length. The flow speed

was also constant over the length of the blade. Below, we show that the model

developed here is also able to predict drag and posture for real aquatic vegetation in

flow, where some of these simplifying assumptions break down.

4.3.2 Natural aquatic vegetation

Abdelrhman [1] photographed Zostera marina blades exposed to three different flow

speeds, U = 6 cm s-1, 12 cm s-1, and 14 cm s-1. The model described here accu-

rately predicts the observed postures (Fig. 4-6). As mentioned above, the geometric

and material properties for Zostera marina blades vary significantly in natural sys-

tems. To arrive at our estimates for blade posture, we assumed that the blade width

and thickness were b = 0.8 cm and d = 0.35 mm, respectively [56). As before, we

assumed that the drag coefficient was identical to that for flat-plates, CD = 1.95.

Abdelrhman [1] reported that the blade density was 700 kg m- 3 , so that Ap = 325

kg m-3, and the blade length was 1 40 cm. We estimated blade postures for two

different values of the elastic modulus, E = 0.4 GPa and E = 2.4 GPa, corresponding
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Figure 4-6: Comparison of model predictions for blade posture with the observations
made by Abdelrhman [1] for the seagrass Zostera marina exposed to a flow of speed
U = 6 cm s-1. Predicted blade postures are shown as black curves on the left, while
the observations are shown on the right (images from fig. 8 in Abdelrhman [1]). Note
that the two predicted blade postures correspond to the highest and lowest assumed
values for the blade elastic modulus, as described in the text. (b, c) Same as (a) but
for flow speeds U = 12 cm s-I and U = 14 cm s-1, respectively.

to the minimum and maximum values reported by Bradley and Houser [8]. The more

upright predicted posture corresponds to the higher elastic modulus, E = 2.4 GPa.

Abdelrhman [1] also developed a coupled flow-structure model to predict seagrass

posture in flow, which was able to predict the deflected height of the seagrass rea-

sonably well. However, this model assumed that blade stiffness was negligible, and

that posture was set by a balance between hydrodynamic forces (drag, lift and skin

friction) and buoyancy. Unsurprisingly, the blade posture predictions made by this

model resemble the postures shown in Fig. 4-2a for the zero-stiffness case (i.e., pin-

joint at the bed and a constant angle 0). Clearly, this is not consistent with the
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Table 4.2: Assumed seagrass blade properties to generate the model predictions for
comparison to data from Fonseca and Kenworthy [28]

Species b* d* I ET Ap B

[cm] [mm] [cm] [GPa] [kg m-3
Thalassia testudinum 1 0.45 20* 1 85T 0.4

(10-30) (0.4 - 2.4) (0.2 - 3.3)
Halodule wrightii 0.2 0.4 15* 1 85 0.2

(10-20) (0.4 - 2.4) (0.03 - 1.3)
Zostera marina 0.8 0.35 40t 1 325f 20

(30-50) (0.4 - 2.4) (3.5 - 98)
t From Abdelrhman [1]
* From Bradley and Houser [8]
* From Luhar et al. [56]

images shown in Fig. 4-6, which indicate that the seagrasses remain upright close to

the bed. The images also show that an increase in velocity leads to an increase in

curvature near the bed. These observations suggest that blade stiffness is important.

Fonseca and Kenworthy [28] observed the deflected height, h/l, for three differ-

ent species of seagrass exposed to flow: Thalassia testudinum, Halodule wrightii, and

Zostera marina. Figure 4-7 compares the observations (symbols) with model predic-

tions (lines, Eq. 4.10). Table 4.2 lists the reported blade properties for each species

of seagrass that were used here to predict deflected height. The natural variability in

seagrass blade properties is reflected in the upper- and lower-bound predictions shown

as dashed lines. The upper- and lower-bound predictions correspond to the stiffest

(lowest B, Table 4.2) and most flexible (highest B, Table 4.2) cases, respectively.

In general, the observations lie within the limits predicted by the model. However,

there are some discrepancies. Figure 4-7a shows that the observed deflected height for

Thalassia testudinum lies closer to the upper-limit predicted by the model. Also, some

outliers appear above the upper-limit. These results indicate that the assumed blade

properties underestimate blade stiffness or blade buoyancy for the specific population

of Thalassia testudinum studied by Fonseca and Kenworthy [28]. For instance, the

elastic modulus may have been greater than the assumed value, E = 2.4 GPa. Note

also that we do not consider any variations in seagrass buoyancy, or blade thickness.

Seagrass blade buoyancy can change over time and in response to flow conditions,
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and so the assumed density difference between the blades and the water (Ap = 85

kg m-3), could be an underestimate. Similarly, the blade stiffness is proportional

to the cube of blade thickness, I oc d', and so even a relatively small increase in

blade thickness could lead to significantly stiffer blades. Finally, previous studies (see

e.g. [27]) suggest that the maximum bending for Zostera marina is achieved at a

velocity of ~ 50 cm s-1. The predictions shown in Fig. 4-7c are consistent with this

observation.

Stewart [89] measured the forces acting on the marine macroalga Turbinaria or-

nata exposed to currents. This macroalga consists of a central stipe, or stem, that is

covered with blades and pneumatocysts along part of its length. Stewart noted that

populations of this macroalga in sheltered backreef habitats had buoyant pneuma-

tocysts, while populations in wave-exposed forereef habitats lacked pneumatocysts,

or that the pneumatocysts were very small and non-buoyant. Instead, algae from

the forereef sites had shorter, thicker stipes. To test how these variations in mor-

phology affected drag, Stewart measured the forces acting on algae samples obtained

from an exposed forereef site, and a sheltered backreef site, for velocities ranging

from U = 32 cm s-1 to U = 75 cm s-. The force measurements were used to es-

timate the drag coefficient in the reconfigured state, Ch, using the quadratic drag

law, C* = Fx/(1/2pAvU2 ), where Av is the planar surface area for the algae in

an un-deflected state. Recall from Eq. 4.9 that the effective length is defined as

(le/l) = Fx/(1/2pCDAvU2 ). We calculated the effective length from the reported

values of C* by combining the above relations, leading to (le/l) = Ch/CD. The data

shown in Stewart [89] suggest that the drag coefficient was CD ~ 2 at the limit when

the macroalgae remained upright in the water. Hence, we assumed CD= 1.95, as

before.

To arrive at model predictions for this morphologically complex macroalga, we

calculated the buoyancy parameter as B = FB 2 /EI (c.f. Eq. 4.7), where FB is the

total buoyancy of each alga, 1 is the total stipe length, E is the elastic modulus and

I = Fr4/4 is the second moment of area for the stipe of radius r. Similarly, we

calculated the Cauchy number based on the relation Ca = (1/2)pCDAvU 2
1

2 /(EI)
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Figure 4-7: (a-c) Deflected blade height (h/1), plotted against velocity (U). Obser-

vations made by Fonseca and Kenworthy [28] are shown as squares, while the model

predictions are shown as solid and dashed lines. The solid line corresponds to model

predictions that use the elastic modulus and blade length that are in the middle of

the range reported in previous literature. The dashed lines correspond to predictions

made with the upper- and lower-limit of elastic modulus and blade length (Table 4.2).

(a) shows the data for the seagrass species Thalassia testudinum, while (b, c) show
the data for Halodule wrightii and Zostera marina, respectively.
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Table 4.3: Material and geometric properties for the macroalga Turbinaria ornata,
as reported by Stewart [89]. Also shown are the estimated buoyancy parameter and

range of Cauchy number. A negative value of the buoyancy parameter corresponds

to the case where the vegetation is denser than the water.
Backreef Forereef

E [MPa] 29 34
/ [cm] 19 9.9
r [mm] 1.3 1.6
A, [cm 2]* 12 7.0
FB [mN] 23 -10
B 15 -0.56
Ca (U = 32 - 75 cm s- 1 ) 76-400 4.0-21
* Indirect estimate based on other reported properties

(c.f. Eq. 4.8). The vegetation parameters used to estimate B and Ca were either

reported by Stewart [89], or estimated from values given in that paper. We repeat

them in Table 4.3 for convenience. The buoyancy parameters were B = 15 and

B = -0.56 for the backreef and forereef samples, respectively. The negative value for

the buoyancy parameter indicates that the forereef algae were denser than water.

Despite the more complex vegetation morphology, agreement between the ob-

served and predicted values for effective length is very good (Fig. 4-8). The shorter,

stiffer forereef samples remained more upright over the range of velocities tested, and

therefore had higher effective lengths. In contrast, the longer, more flexible backreef

samples were pushed over by the flow, leading to lower effective lengths. The flow

speeds tested by Stewart were higher than those recorded in the sheltered backreef lo-

cation but lower than those for the exposed forereef site. The ranges of field conditions

reported by Stewart [89] are marked by shaded regions in Fig. 4-8. For conditions

characteristic of the backreef site, the hydrodynamic forcing and buoyancy are com-

parable, B- 1Ca ~ 0(1), and so the model predicts that the buoyant, backreef algae

are likely to remain upright. However, for conditions characteristic of the forereef

site, the Cauchy number is large, Ca > 0(10), and so the model predicts significant

reconfiguration for the forereef algae. Below, we briefly discuss the possible ecological

implications of these results.
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Figure 4-8: Effective blade length (le/l) plotted against velocity (U) for the marine
macroalga Turbinaria ornata. The black squares correspond to the measurements
made by Stewart [89] for samples collected from a wave-exposed forereef site, while
the gray circles correspond to the measurements for samples collected from a sheltered
backreef site. The black and gray lines show model predictions for the forereef and
backreef samples, respectively. The shaded areas represent the velocities reported by
Stewart for each site.

4.4 Discussion

4.4.1 Phenotypic plasticity in Turbinaria ornata

By considering the differences in the reconfiguration response for buoyancy- and

stiffness-dominated cases, we can start to address how selective pressures may pro-

duce differences in vegetation morphology across different flow environments, such as

those observed by Stewart [89]. As described above, Stewart observed that popula-

tions of the macroalga Turbinaria ornata in sheltered backreef habitats had buoyant

pneumatocysts, while populations in exposed forereef habitats lacked pneumatocysts,

or had pneumatocysts that were small and non-buoyant. This variation can perhaps

be explained based on the limited nature of the restoring force due to buoyancy.

Stewart [88] suggests that an upright posture can benefit benthic vegetation both

by increasing light availability and by enhancing nutrient and oxygen transfer. If

the primary purpose of the buoyant pneumatocysts is to help maintain an upright

posture, investment in pneumatocysts would only be worthwhile if the additional

buoyancy has a significant effect on posture. This is only possible if the drag force
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scale is smaller than the buoyancy force, B-Ca < 0(1). The material and geometric

properties listed in Table 4.3 suggest that this is unlikely to be the case for these

macroalgae at velocities typical of the forereef site (U ~ 100 cm s-1, Fig. 4-8). Even

if the forereef samples were as buoyant as the backreef samples, so that FB= 23 mN

(instead of -10 mN, Table 4.3), the buoyancy parameter would be B 1.4 (instead

of B = -0.6), while the Cauchy number would be Ca ~ 37 for U = 100 cm s-,

leading to B- 1Ca > 1. As a result, the additional buoyancy afforded by the pneu-

matocysts would have little effect on posture. In contrast, for velocities typical of the

sheltered backreef site (U ~ 15 cm s-1, Fig. 4-8), the Cauchy number is Ca ~ 17,

which is comparable to the value of the buoyancy parameter for the backreef samples,

B = 15. In this case, since B- 1Ca - 0(1), investment in the pneumatocysts may be

worthwhile because buoyancy can help maintain an upright posture.

We must stress that the above discussion is presented primarily as a starting point

for further study. A more complete analysis of the ecological trade-offs associated with

allocating resources towards pneumatocysts rather than stem or leaf tissue needs

to account for many other factors in addition to posture in the water column. A

deeper understanding of the energetic costs involved is necessary. The effect of this

considered. Further, Turbinaria ornata grows in wave-dominated environments and

so any discussion of hydrodynamic performance must take into account wave-induced

forces (see e.g. [14, 15, 16]).

4.4.2 Accounting for canopy effects

A number of assumptions were made to yield the governing Eq. 4.6 for blade posture.

The assumption of a rectangular beam cross-section is reasonable for seagrasses but

the cross-section and material properties can vary along a real blade [8, 30]. In

addition, the flow speed is likely to vary along the blade. We can account for spatial

variations in vegetation properties (E, I, Ap, b, d, CD) and velocity (U) by reverting

Eq. 4.5 to a more general form:
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d dO 1
ds Eds + Apgbd sin 0* ds J pCDbUcos2 cos(0 - 0*) ds (4.14)

S* S

Eq. 4.14 can then be made dimensionless as before. However, because the blade

material properties and flow vary along the blade length, the buoyancy parameter

(Eq. 4.7) and Cauchy number (Eq. 4.8) must be defined using characteristic values

(e.g., an average) for these quantities.

Depth-uniform flow is a reasonable assumption for individual plants (or very sparse

canopies) over smooth beds such that vegetation does not significantly affect the

flow, and the height of the bottom boundary layer is small compared to the height

of the vegetation. However, the presence of neighboring blades can change the flow

structure, which can affect the reconfiguration response. To explore this point, we

compare the reconfiguration response for a depth-uniform flow of velocity U(O < z <

h) = U,, with that for the two representative velocity profiles shown in Fig. 4-9. For

sparse vegetation canopies, the velocity profile approaches that of a rough, turbulent

boundary layer (see Fig. 2-1a). As an abstraction of this case, we consider a profile

where the velocity, U(z), increases linearly from 0 to 2U, over the canopy height, h

(sparse canopy, Fig. 4-9). For dense canopies, the velocity profile resembles a shear

layer with an inflection point near the top of the canopy (see Fig. 2-1b). As an

abstraction of this case, we consider the velocity in the lower half of the canopy to be

constant, U(z < h/2) = 2U,/3, and in the upper half of the canopy (h/2 < z < h)

to be linearly increasing from 2U,/3 to 2U, (dense canopy, Fig. 4-9). We solve the

governing Eq. 4.14 for these velocity profiles using an iterative shooting method for

two different values of the buoyancy parameter, B = 0 and B = 100. For all three

velocity profiles, the average velocity over the canopy height is U,. Hence, we calculate

the Cauchy number (Ca) and effective length (le/l) using U, as the velocity scale.

For both values of B, the predicted deflected canopy heights (h/I, Fig. 4-9b)

for each of the three velocity profiles are nearly identical for Ca = 1 - 1000. The

maximum absolute difference in h/i is 0.04 over this range, suggesting that the simple
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Figure 4-9: Reconfiguration response for three different velocity profiles. (a)
Schematic of the three velocity profiles: the depth-uniform case (solid line), the dense
canopy case (bold dashed line), and the sparse canopy case (fine dashed line). (b)
Deflected canopy height (h/i) plotted against the Cauchy number (Ca) for two values
of the buoyancy parameter, B = 0 (black lines) and B = 100 (gray lines). The solid
lines denote the depth-uniform case while the bold and fine dashed lines correspond
to the dense and sparse canopy cases. (c) Similar to (b) but showing the effective
length (le/l) plotted against the Cauchy number (Ca).
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depth-uniform model developed here may be used to reasonably predict h/i for field

conditions as long as the canopy-averaged velocity is used to calculate Ca. The

effective lengths (le/l, Fig. 4-9c) for the three velocity cases also show similar trends.

However, there are some differences. For Ca = 1, the effective lengths are higher for

the sparse and dense canopy cases compared to the depth-uniform case. At Ca = 1,

the plants remain nearly upright and drag is generated along the entire canopy height.

Since drag per unit length is proportional to U(z)2 and the canopy-average of U(z)2

is greater than U, for both the sparse and dense canopy velocity profiles, the effective

length is larger. In contrast, for Ca = 1000, the depth uniform case has the largest

effective length. At Ca = 1000, the vegetation is pushed over so far that the drag is

generated primarily in the lower part of the canopy. Since U(z) < U, in the lower

part of the canopy for the sparse and dense canopy velocity profiles (Fig. 4-9a), the

drag generated for these cases is lower than that for the depth-uniform case.

Since the canopy-averaged velocity, U, provides a reasonable description of the

reconfiguration response, we now apply the two-layer momentum balance model devel-

oped in @2.1.3 to canopies of flexible vegetation, by explicitly accounting for changes

in drag and canopy height due to reconfiguration. For flexible vegetation, the mo-

mentum balance above the canopy remains as shown in Eq. 2.5, so that the velocity

above the canopy is (c.f. Eq. 2.7):

U (2gS(H - h) 1/ 2  (4.15)
CV

However, the vegetation drag term for the canopy momentum balance (Eq. 2.6) must

be modified to (1/2)pCDaleU to account for the reduction in drag due to reconfigu-

ration. With this modification, the in-canopy velocity is (c.f. Eq. 2.8):

U= (2 SI) 1/2 (4.16)
CDale

where we assume that the vegetation drag is much larger than the friction at the bed,

as before, Cf < CDale. Recall that S is the slope, H is the water depth, h is the

canopy height, C, is the canopy friction coefficient and a = nb is the canopy frontal
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area per unit volume (n is the density of individual blades per unit bed area). The

depth-averaged velocity is:

UT = Uo(H - h)±Uvh (4.17)
H

If the geometric (e.g., b,d,l, and a = nb) and material (e.g., p,,E) properties of the

vegetation are known, the reconfiguration model described in this section can be

incorporated into the patch scale momentum balance from 52.1.3 using the following

iterative procedure:

1. Assume that vegetation is rigid, i.e., h = le = 1, and calculate the velocity

above, UO, and within, U, the patch using Eq. 4.15 and Eq. 4.16, respectively.

2. Use the estimated velocity within the patch, U, to calculate the Cauchy number

Ca (Eq. 4.8) and the buoyancy parameter B (Eq. 4.7), based on the known

vegetation properties.

3. Use the values of Ca and B estimated in step 2 to solve the governing equation

for posture (Eq. 4.6) and calculate the effective length, le (Eq. 4.9), and the

canopy height, n' (q. 4.10).

4. Use the values of 1e and h estimated in step 3 to calculate new estimates for the

overflow velocity, UO (Eq. 4.15), and the velocity within the patch, U, (Eq. 4.16).

5. Repeat steps 2-4 until the velocities calculated in step 4, agree with the velocities

calculated in the previous iteration within a desired tolerance.

6. Calculate the depth-averaged velocity, UT, using Eq. 4.17.

We used this iterative procedure to predict canopy heights and depth-averaged

velocities for the laboratory experiments with flexible model vegetation performed by

Ghisalberti and Nepf [35], who measured velocities for six different cases, denoted F1

F6 (from low to high velocity). Table 4.4 lists geometric and material properties for

the model vegetation, along with the water depth, H, measured canopy height, h,
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Table 4.4: Geometric and material properties for the model vegetation used by Ghisal-
berti and Nepf [35]. Hydrodynamic parameters for the six runs (denoted F1 F6)
required for the iterative procedure described in 4.4.2 are also listed.

F1 F2 F3 F4 F5 F6
E [MPa] 200*
PV [kg m 3 ] 920
b [m] 3.8 x 10-3
d [m] 0.2x 10-3
1 [m] 0.215
H [m] 0.47
a [m--11 5.2
S x 105 [-] 0.44 1.2 1.9 3.1 3.8
h [m] 0.215 0.213 0.2 0.186 0.17
* Lower than reported value, 300 MPa, but within the
range reported by most manufacturers, 200-400 MPa.

5.5
0.155

and slope, S, for each case. Recall that the reconfiguration model assumes a value of

CD corresponding to rigid, upright vegetation of the same morphology. Ghisalberti

and Nepf reported CD 1.3 for run F1, for which the model vegetation remained

upright, and so we use this value for the drag coefficient. Finally, we assume that

friction coefficient is C, = 0.04, as in @2.1.3.

Fig. 4-10a compares the canopy height, h, predicted by the iterative procedure

(circles) with the measurements (crosses). In general, the predicted and measured

heights are in good agreement. Fig. 4-10 compares the predicted and measured

depth-averaged velocities. For comparison, we also show the velocities predicted by

the simple two-layer model assuming that the vegetation remains rigid and upright

in flow (Fig. 4-10b, asterisks). The velocities predicted based on the rigid vegeta-

tion assumption are significantly lower than the measurements, indicating that the

reduction in drag due to reconfiguration can be very important at the patch scale.

The model that incorporates reconfiguration does much better (Fig. 4-10b, circles),

confirming that the iterative procedure described above is a simple, yet physically rea-

sonable, method to incorporate the effects of vegetation reconfiguration in patch scale

models. However, note that the predicted velocities are still slightly lower than the

measured velocities even when the iterative procedure is used to account for vegeta-

tion reconfiguration. As discussed in Ghisalberti and Nepf [35], this could be because
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Figure 4-10: Predictions made by iterative two-layer model described in §4.4.2 com-
pared to measurements from Ghisalberti and Nepf [35]. (a) Predicted (circles) and

measured (crosses) canopy height, h, for the six runs denoted F1-F6 in [35]. Vertical

lines denote measurement uncertainty for F1 and F2, and the vertical excursion due

to the passage of a monami for F3-F6. (b) Model predictions for average velocity
in channel (circles) plotted against measurements. Also shown are the predicted ve-
locities assuming rigid, upright vegetation (asterisks). (c) Measured (crosses) and
predicted (lines) velocity profiles.
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the momentum exchange between the overflow and patch is less efficient (i.e., lower

CO) when the vegetation is irregular in height and moves in the flow. As a result,

we would expect C, for flexible vegetation to decrease with increasing velocity. Since

our model assumes a constant C., the mean velocity in the overflow U, predicted by

the iterative scheme (Fig. 4-10c) is lower than the measurements made by Ghisalberti

and Nepf.

4.4.3 Other considerations

While seagrass blades have relatively simple, strap-like morphologies, other marine

and freshwater macrophytes can have more complex forms. For example, many marine

(see e.g., Stewart [89]) and freshwater (e.g., Sand-Jensen [80]) macrophytes consist of

a stem covered with leaf-like structures and buoyant, gas-filled pneumatocysts. The

Turbinaria ornata case study described above shows that the model developed here

remains applicable for such macrophytes as long as appropriate changes are made to

the buoyancy parameter and Cauchy number. Specifically, the restoring force due

to vegetation stiffness should be scaled on the properties of the central structural

element - the stem, while the drag force should be scaled on the planar surface

area of the vegetation to account for the contribution of the leaves. The buoyancy

parameter should be scaled on the net buoyancy force generated by the gas-filled

pneumatocysts. Other aquatic macrophytes such as kelp have drag- and buoyancy-

generating structures concentrated near the top of the stem. For such cases, the

spatial distribution of drag and buoyancy in the governing equation (Eq. 4.14) must

be modified.

The model developed here only considers form drag. As the blades assume more

streamlined postures, skin friction can become important. To assess when skin friction

becomes significant, we consider the limit at which skin friction equals 10% of the

horizontal form drag, F= (1/2)PCDble 2. The skin friction force on a horizontal

beam of length I and width b is Ff = (1/2)pCfblU 2 where Cf is the skin friction

coefficient [51]. A comparison of Ff and F, shows that skin friction becomes important

when the effective length is
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le < (4.18)
1 CD

This limit is conservative since it compares form drag in the reconfigured state with

skin friction on the entire blade length. As before, the drag coefficient for flat plates

normal to flow is CD = 1.95. For horizontal plates with laminar boundary layers,

the skin friction coefficient is Cf = 1.33Re-1/2, where Re = U/v is the Reynolds

number based on plate length, 1 [51]. Substituting these expressions for CD and

Cf into Eq. 4.18, we see that skin friction becomes important as the effective blade

length decreases below (le/l) < 6.8Re-1/2. However, this relationship breaks down if

the boundary layer on the blades becomes turbulent. The transition to a turbulent

boundary layer depends both on flow properties and surface roughness. For smooth

surfaces, this transition occurs as the Reynolds number increases above Re 105

[51]. Using I = 30 cm as a typical blade length, the Reynolds number approaches this

limit for a flow speed of U e 30 cm s-1. For a range of flow speeds U = 3 - 300 cm

s 1 , the Reynolds number is Re = 104 - 106, so that the skin friction coefficient for

laminar boundary layers is Cf ~ 0.001 - 0.01. For turbulent boundary layers, Cf is

also expected to be of 0(0.01). For Cf 0.01, Eq. 4.18 suggests that skin friction is

important for (le/l) < 0.05. However, note that smooth surfaces are rare in the field.

Even relatively smooth seagrasses are often covered by epiphytes, which are likely to

increase skin friction.

The model and results obtained in this chapter can also inform the debate about

the how to best characterize reconfiguration and drag for flexible macrophytes (see [39,

92, 87]). Using the quadratic law, the drag force is usually expressed as F, =

(1/2)pCDAU 2. As discussed in Statzner et al. [87], the effects of reconfiguration may

be captured by changing either the drag coefficient, CD, or the characteristic area, A,

or by changing both. One option is to use the frontal area of the reconfigured vege-

tation as the characteristic area scale. However, as discussed above, reconfiguration

reduces drag through two mechanisms: reduced frontal area and more streamlined

shapes. As a result, using the frontal area would additionally require changing the
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drag coefficient to account for the more streamlined shapes. With two changing pa-

rameters, comparing results across studies is difficult. Instead, we suggest the use of

an effective length, 1e, so that the characteristic area is A = ble, where b is a char-

acteristic width. This approach allows us to account for the two distinct physical

phenomena that can affect drag: Reynolds number effects can be accounted for via

the drag coefficient, CD, and vegetation reconfiguration may be accounted for via

the effective length, le, which is governed by the Cauchy number, Ca, and buoyancy

parameter, B. The drag would then be estimated as F, = (1/2)pCDbl U2, using the

drag coefficient, CD, for a rigid, upright blade.

As it is not practical in all cases to develop a model similar to that described

here, as an approximation, we provide the following physically-motivated empirical

relationship for effective length:

le 1 - 0.9Ca- 1/3

1 1 + Ca- 3/2(8 + B 3/ 2 )

The functional form of Eq. 4.19 was chosen to match model predictions for the zero-

stiffness (Fig. 4-2a) and zero-buoyancy (Fig. 4-2b) cases. Eq. 4.19 reduces to (le/l) ~ 1

when the drag force scale is smaller than either the restoring force due to buoyancy

(B-'Ca < 1) or the restoring force due to stiffness (Ca < 1). For the zero-stiffness

case, Eq. 4.19 yields (le/l) ~ (B-'Ca) -3/2 as B-'Ca > 1. Similarly, for the zero-

buoyancy case, Eq. 4.19 simplifies to the predicted scaling (le/l) ~ Ca-1/ 3 for Ca >

1. Figure 4-11 shows that this empirical relationship (dashed lines) follows model

predictions (solid lines) extremely well for the general case. The maximum absolute

difference between the two predictions for effective length, le/l, is 0.03 over the range

of parameters shown (B = 0 to 100, Ca = 0.1 to 104).

Finally, the predicted scaling law for effective length, (le/l) - Ca-13 , can also

be interpreted in terms of the Vogel [98] exponent, often reported as a measure of

reconfiguration. The Vogel exponent, y, quantifies deviations from the quadratic drag

law by assuming the following relationship between drag and velocity: F, o U2 +.

The quadratic drag law holds for rigid, upright bodies at high Reynolds number,
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Figure 4-11: Effective blade length (le/l) plotted against the Cauchy number (Ca) for

a range of values of the buoyancy parameter, B = 0 (bold black line), 10 (fine black

line), 50 (bold gray line), and 100 (fine gray line). The solid lines denote predictions
made by the numerical model, while the dashed lines correspond to the empirical

relationship shown in Eq. 4.19.

for which - ~ 0. However, because flexible bodies are pushed over by the flow,

the drag is reduced, leading to -y < 0. Using the predicted relationship, (le/l)

Ca- 1/3, the drag force is proportional to U 4/ 3, which leads to a Vogel exponent of

Y = -2/3. Consistent with this prediction, the observations made by Boller and

Carrington [6] indicate that 7 -0.6 for the intertidal macroalga Chondrus crispus.

For the terrestrial giant reed Arundo donax, Harder et al. [41] observed that the

Vogel exponent transitions from a value of -y = -0.12 for velocities smaller than

U 1.5 m s-1, to = -0.71 for velocities greater than U 1.5 m s-1. The

low-velocity condition is consistent with a quadratic drag law (7 = 0), implying

that these flows do not induce reconfiguration. However, for U > 1.5 m s-1, the

observed coefficient is consistent with the stiffness dominated reconfiguration ('y =

-2/3). The observations described above suggest that the predicted scaling law

for stiffness-dominated reconfiguration, Fx c U4/3, holds for many systems. Note

that for buoyancy-dominated systems (B > 1), the drag force can increase sub-

linearly with velocity (Fig. 4-2b), so that 7' < -1. However, once the drag scale

exceeds blade buoyancy, B- Ca > 0(1), the predicted scaling law for effective length,

(le/1) ~ Ca- 1/3, applies again and the Vogel exponent reverts to 7y = -2/3.
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Chapter 5

Wave-induced dynamics of flexible

model vegetation

This chapter describes the dynamics of flexible blades forced by wave-induced oscil-

latory flows. In @5.1, we extend the blade reconfiguration model developed in @4.1

to account for time-varying flow and hydrodynamic force. In general, this model ad-

equately reproduces the observed blade motion and measured hydrodynamic forces

for laboratory experiments with model blades (@5.2). Interestingly, the experiments

show that in some cases, the force generated by flexible blades can be greater than

that expected for rigid blades (@5.4.1).

5.1 Dynamic blade model

Similar to @4.1, we develop the dynamic model for elastic, inextensible blades of

width b, thickness d, length 1, elastic modulus E, and density p,. We assume that

the flow field is described by horizontal and vertical time varying velocities, um(t)

and ww(t), respectively. The coordinate system used is shown in Fig. 5-1, where s is

the distance along the blade from the base, and 0 is the local bending angle of the

blade relative to the vertical. To describe the force balance for the blade in both the

horizontal and vertical directions, we use complex notation, such that the complex

velocity is i = um, + iww, and z = x(s) + iz,(s) describes the position of a point
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(xv, zo) notation:

x= xv+ iz,

i= uW+ iww
S

ur= it- O2|&t

eiO= cos9 + i sin0

Figure 5-1: Schematic showing the coordinate system, and notation used to for dy-
namic blade model.

along the blade in the x - z (horizontal-vertical) plane. Using the standard definition

ed -cos 0 + i sin 0, the inextensibility condition can be expressed as:

S

z i exp(-iO) ds' (5.1)
0

where s' is a dummy variable. As shown in Fig. 5-1, t, = ii - aiz/at, is the relative

velocity between the blade and the water; t is time.

The dynamics of the flexible beam are controlled by a number of internal and

external forces. The internal forces include tension, T, which acts in the blade-parallel

direction, and shear, V = -EI( 2 0/a 2 ), which acts in the blade-normal direction.

As before, I is the second moment of area for the blade cross-section (I = bd3/12 for

rectangular cross-sections). We assume that the external forces acting on the blade

can be described by the well-known Morison formulation (see e.g. [15]). The external

forces per unit blade length include (i) the net buoyancy force,

fB (p - p,)gbd (5.2)

which acts in the vertical direction, (ii) the virtual buoyancy force,
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fVB = pbd (5.3)
at

which acts in the direction of flow acceleration, (iii) the drag force,

fD = pC b IR (i hre Re (5.4)

which depends on the relative velocity normal to the blade, R(&re'), and acts in the

blade-normal direction, and finally (iv) the added mass force,

fAM - pCmb2J e (5.5)

which depends on the relative acceleration between the flow and the blade, and also

acts in the blade-normal direction. As before, p is the density of water, CD is the drag

coefficient, and CM is the added mass coefficient. The notation R is used to denote

the real component. Following Keulegan and Carpenter [47], we use the cylinder-

equivalent blade cross-sectional area, 7rb 2 /4, to represent the added mass force in this

chapter. Recall that in @3, we used the actual blade cross-sectional area, bd. With

the cylinder-equivalent cross-sectional area, the added mass coefficient is expected

to be Cm = 0(1). For the actual cross-sectional area, Cm O(b/d). We make

this notational change primarily for convenience. As discussed below, we hypothesize

that flat-plate CD and CA may be used to model the behavior of flexible blades in

oscillatory flows, as long as the relative velocity between the blade and the water is

used. Most previous studies that report values of CD and Cm for rigid, flat plates

(e.g. Keulegan and Carpenter [47]) employ the cylinder-equivalent cross-sectional

area, 7rb 2/4, to model the added mass force; so, we follow the same notation.

A balance of the internal and external forces described above yields the following

physically intuitive equation governing blade dynamics:

as ((V + iTe-) + ifB + (fD + fAM)e7- 0 + fVB = pbd 2 (5.6)
as tt 2

The term on the right-hand side of Eq. 5.6 represents blade inertia. The real part of
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Eq. 5.6 represents the horizontal force balance, and the imaginary part represents the

vertical force balance. Note that the blade-normal (V, fD, fAM) and blade-parallel

(T) forces have been multiplied by the factor e-' to rotate them into the x - z

directions. Evaluating the first term on the left-hand side of Eq. 5.6, introducing the

expression for fVB shown in Eq. 5.3, and multiplying by e 0 , we have:

(V +iT) - i (V +iT)+ifBio+ fD+ fAM + pbdv je2g =0 (5.7)
as as at p at2

Multiplication by e&o rotates the force balance in Eq. 5.6 such that the real part of

Eq. 5.7 represents the blade-normal force balance, and the imaginary part represents

the blade-parallel force balance. Similar to @4, the boundary conditions for this

dynamic model are: clamped at the base of the blade, 0 = 0 at s = 0, and free at the

tip, 00/s = ( 290/ 2 = T = 0 at s = 1.

To make the governing Eq. 5.7 dimensionless, we use the following normalized

variables (denoted by over-hats):

s 1 ; t=t/w ; i=UJ ; T =(EI/ 2 )T (5.8)

The blade coordinates s and zr have been normalized by the blade length, 1. Time

has been normalized based on the wave radian frequency, w = 27r/T, where T"

is the wave period. Velocity has been normalized using the horizontal oscillatory

velocity scale, U, = Aw, where A, is the horizontal wave excursion. Tension is

normalized with the assumed scaling for the internal shear force, EI/I2 (see also

§4.1). Substituting these normalized variables, along with the expressions for V and

the external forces (Eq. 5.2-5.5), in Eq. 5.7, and dividing through by EI/a, we have

the following dimensionless equation describing blade dynamics:

a_ _20 t 00 ( 020 t- - +2 2g _ _
OA+i -i2 +iT 0
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1
+iBei0 + -CD Ca J( Lreio) IJ?(&re

0 )
2

2,r2  Ca (r on, CaS ona a2i
+ 2CM C R ( e' +2 ( - -pL e =0 (5.9)

4 KC Ot KC it Ot 2

where

Ur = f - L (82/ai) (5.10)

is the dimensionless relative velocity between the blade and the water, and

L 1 (5.11)
Uw Aw

is the ratio of the blade length, 1, to the wave excursion, A,. Similar to the steady-

flow reconfiguration model developed in @4, the dimensionless parameters governing

blade motion include the Cauchy number, Ca, which is the ratio of hydrodynamic

drag and the restoring force due to blade stiffness, and the buoyancy parameter, B,

which is the ratio of blade buoyancy to the stiffness restoring force:

Ca = E (5.12)
E I

B = (p-p)gbdl3  (5.13)
El

Note that, in contrast to g4, we do not include CD in the definition of Ca in this

chapter. This is because CD varies with the Keulegan-Carpenter number, KC =

UWTW/b, for wave-induced oscillatory flows (see discussion below). Finally, Eq. 5.9

also includes the ratio of densities, p' - pr/p, and the blade slenderness, S = d/b.

In dimensionless form, the boundary conditions are: 0 = 0 at s = 0, and (0/s) =

(020/0 2) T 0 at A = 1. The inextensibility condition (Eq. 5.1) becomes:

= i exp(-i) d6' (5.14)
0
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L<1 <

2A~j.

Figure 5-2: Schematic illustrating the difference in blade behavior at the limit of large
and small wave excursions, L < 1 and L > 1, respectively.

where s' is a dummy variable.

Importantly, Eq. 5.10 shows that as the wave excursion becomes much greater

than the blade length, A > I (L < 1), the relative velocity between the blade

and the water is approximately equal to the water velocity, ir ~ t. Further, for the

cases considered here, the blade width is smaller than the blade length, b/i < 1. So,

at this large excursion limit, the Keulegan-Carpenter number is KC = UwT./b -

2rAw/b > 1. For KC > 1, the inertial terms (added mass, virtual buoyancy, blade

inertia) in the last row of Eq. 5.9 are negligible. For fL, ~ ft and negligible inertia,

Eq. 5.9 resembles the steady-flow reconfiguration model developed in §4. Indeed, for

L = 0 and KC -3 oc, an integration of the real component of Eq. 5.9 yields the

governing equation for posture from §4 (Eq. 4.6). Physically, at this large excursion

limit, we have a quasi-steady situation where the blade is pushed over by the flow

in the early stages of a wave-half cycle (see Fig. 5-2). The blade remains bent until

the oscillatory flow reverses direction at the end of the wave half-cycle, with the bent

posture reflecting a balance between hydrodynamic drag and the restoring forces due

to buoyancy and stiffness.

At the other limit, when the horizontal wave excursion is much smaller than the

blade length, A. < I (L > 1), we anticipate that the blade remains nearly vertical

throughout the wave cycle (see Fig. 5-2), and that the horizontal blade excursion

scales with the wave excursion, i.e., Ixzo ~ O(Aw). More formally, we expect that
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O ~ O(L-1) < 1 and so the inextensibility condition (Eq. 5.14) becomes:

SA

x J i4exp(-iO) ds' ~ i(1 - i) d' = is + ] ds' (5.15)
0 0 0

In dimensional terms, this leads to z,(s) ~~ s (i.e., nearly-vertical blade) and (x,/s)

O (i.e., |xj ~ 01 ~ A,). The implications of this scaling for the hydrodynamic forces

generated by flexible blades are discussed in @5.4.

Note that this dynamic blade model requires an accurate description of CD and

Cm. In @4, we showed that the flat plate drag coefficient for steady flows, CD = 1.95,

can be used to accurately capture the drag generated by flexible blades, as long as the

blade-normal velocity is used in the quadratic law. So, we hypothesize that the flat

plate CD and CM may also be used for flexible blades in oscillatory flows, as long as the

blade-normal relative velocity and acceleration are used to characterize the drag and

added mass forces. Flat-plate CD and CA from [47, 82] are plotted in Fig. 5-3. Both

data sets show that CD and Cm depend on the Keulegan-Carpenter number, KC.

Following Graham [37), we model the relationship between the drag coefficient and

Keulegan-Carpenter number as CD = 1OKC-1/3 (solid line in Fig. 5-3a). However, as

Klu -+ (i.e., TW -+ 00), tLie dlag cUefficien11 mut appUacl lte steauy flUW value,

CD 1.95. Therefore, a more complete definition is CD= max(10KC- 1/3 , 1.95).

Unlike the monotonically decreasing relationship between CD and KC, the variation

of Cm with KC is more complex. In general, Cm increases gradually with KC, but

there is a pronounced dip in Cm at KC 18. This dip corresponds to the case where

a single eddy is shed from the plate during each wave half-cycle [47). We use the

spline shown as a solid-line in Fig. 5-3b to describe the variation in CNI with Kc.

To predict blade motion and drag, we solve the governing Eq. 5.9 numerically

using finite differences. The blade-normal force balance (real component of Eq. 5.9)

is solved explicitly to yield 0(s); although, the third-order spatial derivative is treated

implicitly for stability. The blade-parallel force balance (imaginary component of

Eq. 5.9) is solved implicitly to yield the tension, T(s). To force the dynamic blade

model, we use wave-induced velocity fields measured in the laboratory (see @5.2). A
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Figure 5-3: Drag and added mass coefficients, CD (a) and CM (b), for rigid flat
plates in oscillatory flows plotted against the Keulegan-Carpenter number, KC. The
data shown are from [47, 82]. The shaded regions represent the range of KC for the
laboratory experiments described in §5.2.

description of the numerical scheme, and a code listing, can be found in Appendix C.

5.2 Laboratory experiments

We pursued laboratory experiments that simultaneously (i) measured the hydrody-

namic force generated by flexible blades over a wave-cycle, (ii) imaged blade motion,

and (iii) measured the local velocity field using particle image velocimetry (PIV). The

experiments were carried out in a 24 m-long, 38 cm-wide, 60 cm-deep wave flume fit-

ted with a paddle wavemaker. The paddle was actuated using a programmable signal

generator (see §3.2 and Appendix A for details). As before, we tested model blades

made of two different materials: silicon foam (E = 500 kPa; p, = 670 kg m-3 ;

d = 1.9 mm) and high-density polyethylene (HDPE, E = 0.93 GPa; p, = 950 kg

m3 ; d = 0.4 mm). We tested model blades of four different lengths ranging from

1 = 5 cm to 1 = 20 cm in 5 cm increments. The blade width was b = 2.0 cm in

all cases. The model blades made of HDPE exhibited a small degree of curvature in

the cross section. Because of this curvature, the HDPE blades had a second moment
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Figure 5-4: Schematic showing the experimental setup. The laser light sheet was
placed 0.5 mm behind the model blades. The wave gage was placed 15 cm behind
the blades. The direction of wave propagation was from left to right. Not to scale.

of area, I e bd3/6. So, the HDPE blades were twice as stiff as they would have

been if the cross-section had been perfectly flat and rectangular (I = bd3/12). The

estimated buoyancy parameter ranged from B = 0.002 to B = 0.15 for the HDPE

blades, and from B = 2.7 to B - 170 for the silicon foam blades (Table 5.1). Each

model blade was tested in eight different wave conditions: waves of frequency f = 0.5

Hz (T = 2.0 s) with amplitudes a, ~ 1, 2, 3, 4 cm; waves of frequency f = 0.7 Hz

(T = 1.4 s) with amplitudes a, e 2,4 cm; waves of frequency f = 0.9 Hz (T" = 1.1

s) with amplitudes a,, 2,4 cm. A list of all the test cases is shown in Table 5.1.

To measure the total horizontal force generated by the blade, F2, we used a sub-

mersible s-beam load sensor (Futek LSB210). The measurements were logged to

a computer using a bridge completion and data acquisition module (National In-

struments NI-USB9237). To study how F2 varies over a wave cycle, the local wave

elevation, 17, was measured synchronously with F using a wave gage of 0.2 mm accu-

racy. The analog output from the wave gage was amplified and logged to a computer

using an analog-digital converter (National Instruments NI-USB6210). We measured

F2 and q for a period of 3 min at a sampling rate of 2000 Hz. Thus, we captured

between 90 and 162 waves, depending on wave frequency. The measurements were

then phase-averaged (see §3.2), to yield representative descriptions of F, and 11 over a

single wave cycle. As shown in Fig. 5-4, the load cell was mounted inside a trapezoidal

box of height 8 cm and total length 192 cm. The model blade was attached to the
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Table 5.1: List of test cases for the dynamic blade experiments.
aw [cm]* 1 2 3 4 2 4 2 4

(±0.1 cm) (0.9) (1.9) (2.9) (3.9) (1.7) (3.5) (1.7) (3.6)
TW [s] (±0.1 s) 2 2 2 2 1.4 1.4 1.1 1.1
Uw [cm s-1] (±0.9 cm s-1) 5.0 10.1 15.4 20.6 8.9 16.7 6.6 12.8
KC 5.0 10.1 15.4 20.6 6.4 11.9 3.7 7.1
l [cm] B Ca

HDPE
E = 0.93 ± 0.08 GPa 5 0.002 0.02 0.12 0.28 0.50 0.09 0.36 0.06 0.20
Ap = 50 ± 10 kg m- 3 10 0.02 0.24 1.0 2.5 4.0 0.76 2.8 0.41 1.5
b = 2.0 :- 0.05 cm 15 0.06 0.81 3.2 7.2 13 2.7 9.7 1.5 5.7
d = 0.4 ± 0.04 mm 20 0.15 2.2 7.5 19 36 6.2 21 3.5 13

Silicon foam
E £ 500 t 60 kPa 5 2.7 1.0 4.4 9.9 17 3.5 12 1.7 6.8
Ap = 330 ± 50 10 22 8.9 36 90 160 27 95 15 52
b = 2.0 ± 0.05 cm 15 73 33 120 280 530 100 310 53 210
d = 1.9 ± 0.10 mm 20 170 71 300 680 1200 240 800 110 470
* In the text, we refer to each wave condition using these values for the amplitude aw. Measured aw are shown
in parentheses below.
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load cell via a stainless steel blade holder that protruded through a 1.25 cm-diameter

hole in the trapezoidal box. The blade holder placed the base of the blade 4 cm above

the box surface. The total water depth was 38 cm. Note that the model blade was

mounted in the middle of the flume, while the wave gage was mounted approximately

15 cm behind the blade at the same x-location (i.e., the wave gage was 4 cm from

the flume sidewall).

For the blade motion and PIV measurements, illumination was provided by a

laser light sheet. The light sheet was placed in the x - z plane, 0.5 mm behind the

model blade (see Fig. 5-4). Images were captured at 60 frames per second (fps) using

a monochrome CCD camera (Dalsa Falcon 1.4M100HG) of resolution 1400 pixels x

1024 pixels. The field of view was approximately 42 cm x 31 cm, leading to a spatial

resolution of 0.03 cm pixel-1. For each case tested, we captured images over 3 wave

cycles, e.g., for waves of period T = 2 s, we captured 6 s worth of images. For

the PIV measurements, the water was seeded with Pliolite particles (density 1020 kg

m-3). PIVlab, a MATLAB software package, was used to calculate the horizontal,

uw, and vertical, w., velocity fields from the images. The PIV software calculated

velocities for blocks of 16 pixels x 16 pixels (i.e., 0.5 cm x 0.5 cm). Assuming that

the r V algorithm calculates velociltUis accuratt LU p1PIxel per f11me, VV ciULkALpate a

velocity resolution of 10.9 cm s-1.

To characterize the wave-induced flow field, we used the velocities measured ap-

proximately 15 cm upstream of the model blade. These upstream measurements were

used because the measured velocities were relatively smooth sinusoids. Velocities mea-

sured closer to the blade were less smooth because of the turbulence generated by the

blade itself. Further, the presence of the blade, blade holder, and wave gage in the

field of view led to noisier PIV estimates because, unlike the Pliolite seeding particles,

these elements do not track the local flow field. To estimate the local magnitudes,

Uw and W., of the wave-induced oscillatory velocities, uw(t) and ww(t), we fitted

sinusoids to the velocity measurements (Fig. 5-5). The dimensionless parameters,

Ca, KC, and L, were estimated using the maximum fitted horizontal velocity, U"

(Table 5.1), for a vertical location corresponding to the base of the blade (i.e., at
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Figure 5-5: PIV-measured horizontal wave velocity, u. (dashed black line), for waves
of period T = 2.0 s and amplitude a. 4 cm. Also shown is the fitted sinusoidal
velocity employing only one harmonic (solid gray line), as well as the fitted velocity
employing the first four harmonics (solid black line).

zV ~ 0). For the wave conditions tested here, the Keulegan-Carpenter number was

KC = 3.7 - 20.6. The Cauchy number was Ca = 0.02 - 36 for the HDPE blades,

and Ca = 1.0 - 1200 for the foam blades (see Table 5.1). The ratio of blade length to

wave excursion, L = 1/Aw, was smallest for the 5 cm-long blades in waves of period

Tw = 2.0 s and amplitude a, ~ 4 cm, with L = 0.8. L was largest for the 20 cm-long

blades in waves of period T = 1.1 s and amplitude a, ~ 2 cm, with L = 17. To force

the numerical model described in §5.1, we used sinusoidal fits to velocities measured

15 cm upstream of the model blade. For all the wave conditions, we found that the

first four harmonics adequately captured the temporal variation in velocity. The use

of higher harmonics did not significantly improve the fits as any further differences

between the measured and fitted velocities stemmed from high-frequency turbulent

fluctuations or noise (Fig. 5-5).

We carried out numerical simulations (Eq. 5.9) corresponding to each of the sixty

four cases tested in the laboratory (Table 5.1). For the simulations, we used the

known blade material and geometric properties, the PIV-measured velocity fields,
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and CD and CM as described in Fig. 5-3. The numerical simulations were run until

a quasi-steady state was achieved i.e., once blade motion did not vary from one

wave cycle to the next. Typically, this quasi-steady state was achieved within 7 or 8

wave cycles. Below, we compare numerical predictions with laboratory experiments.

The experiments measured the total horizontal force generated by the model blades,

F,. A force balance for the entire blade shows that F, is equal to the blade-normal

internal shear force, V = -EI(82 60/s 2 ), at the base of the blade (s = 0). So, we use

-EI(&2 0/s 2 )|,=o to calculate the numerically-predicted, time varying F,.

5.3 Results

Figure 5-6 (panels a-l) shows that even for the highest velocity (U,) waves tested here

(T = 2.0 s and a, a 4 cm, Table 5.1) the 5 cm-long HDPE blades did not move

significantly in flow. These observations are reproduced by the numerical model. The

Cauchy number was Ca < 0.5 for the 5 cm-long HDPE blades. At this limit where

Ca < 1, the hydrodynamic forcing is not strong enough to overcome blade stiffness;

in effect, the blade is rigid. Importantly, the predicted and measured horizontal force,

F,, also show good agreement throughout the wave cycle (Fig. 5-6m). This confirms

that the Morison force formulation, with values of CD and CM based on previous

literature, provides a good description of the forces generated by the model blades

in oscillatory flows. There is an 0.03 N, discrepancy between the measurements

and predictions near t - 0.5 s. However, such discrepancies are not unexpected given

that the Morison force formulation is simply a physically intuitive approximation

representing the true time-varying hydrodynamic forces generated by the model blade.

Even for rigid flat plates, the best-fit values of CD and CM shown in Fig. 5-3 lead to

some differences between measured and predicted forces [47].

For the same wave condition, the 20 cm-long HDPE blade moved much more with

the wave-induced flow (Fig. 5-8, panels a-i) compared to the 5 cm-long blade. For

example, the total horizontal excursion at the blade tip was [max(x,) - min(xz)] z

17.5 cm for the 20 cm-long blade, while the tip of the 5 cm-long blade moved back
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Figure 5-6: 5 cm-long HDPE blade in waves of period T = 2.0 s and amplitude
a ~ 4 cm. (a-1) Observed and predicted (red) blade posture over the wave-cycle.
Note that the real blade (black) is hidden by the model overlay (red) for most of the
wave cycle. (m) Measured (black) and predicted (red) horizontal force, F, generated
by blade. The shaded region represents estimated uncertainty.
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Figure 5-7: Profiles of the total horizontal blade excursion over a wave cycle,
[max(x) - min(xz)], normalized by the local wave excursion, 2A.,, along the blade
length, s = s/l. Note that A.,, was calculated using the measured velocity at the
mean vertical position of blade location s (i.e., z,(s)) over a wave cycle. Solid lines
denote outputs from numerical simulations. Symbols denote blade tip excursions ex-
tracted from the laboratory experiments. All data correspond to waves of amplitude
a,,. 4 cm and period Tw = 2.0 s.

and forth by ~~ 0.5 cm. The total wave excursion for these cases (a, ~ 4 cm and

T = 2.0 s) was 2A, ~ 13 cm. So, the tip of the 20 cm-long HDPE blade moved

through a distance roughly 1.3 times the wave excursion, while the tip excursion for

the 5 cm-long HDPE blade was less than 10% of the wave excursion (i.e., the blade

remained almost still). These observations are supported by Fig. 5-7, which shows the

variation in the horizontal blade excursion (normalized by the local wave excursion)

along the length of the blade, as predicted by the numerical model, for both of these

cases. The predicted excursion for the 5 cm-long HDPE blade was less than 10% of

the wave excursion along the entire blade length (fine black line in Fig. 5-7), while

the excursion for the 20 cm-long HDPE blade was comparable to the wave excursion

for the upper part of the blade. Specifically, the blade excursion was within 35% of

the wave excursion for s > 0.58 (i.e., for the upper ~ 40% of the blade).

Passive motion for the upper part of the 20 cm-long HDPE blade is also reflected

123



in the measured force. The maximum measured force for the 20 cm-long blade was

0.12 N (Fig. 5-8m), while the maximum measured force for the 5 cm-long blade was

0.09 N (Fig. 5-6m). If the 20 cm-long blade had remained still and upright in the

water like the 5 cm-long blade, we would have expected the maximum horizontal

force generated to be 4 x 0.09N ) 0.36 N. The Cauchy number was Ca = 36 for

this case. At this limit where Ca > 1, the hydrodynamic forcing is large enough to

overcome blade stiffness, and so the upper portion of the blade moves passively with

the flow. Hydrodynamic forces are generated primarily near the base of the blade

which remains still relative to the flow. As explained in @4, this reduction in force

can be characterized by the use of an effective rigid blade length, le, which decreases

with increasing Ca. We define 1e for wave-conditions in @5.4 below; we also discuss in

greater detail the variation in 1e with the dimensionless parameters governing blade

motion: Ca, B, and L.

The blade postures and forces predicted by the numerical model show good agree-

ment with the observations for the 20 cm-long HDPE blade, especially under the wave

crest (see e.g., t < 0.5 in Fig. 5-8). For example, the predicted blade tip excursion is

17.8 cm (c.f. the observed 17.5 cm, see bold black line and circle in Fig. 5-7), and the

maximum predicted force is 0.10 N (c.f. the measured 0.12 N). However, there are

some discrepancies between the measurements and the predictions under the wave

trough, t 1.5 s in Fig. 5-8. The predicted blade posture is more upright compared

to the measurements, and the magnitude of the predicted force is lower (a difference

of rzz0.04 N). Possible reasons for this discrepancy are discussed in @5.4.

In waves of period T. = 2.0 s and amplitude a, _ 4 cm, the Cauchy number for

the 20 cm-long foam blade was Ca = 1200. As a result, a larger portion of the foam

blade (Fig. 5-9, panels a-1) moved passively with the flow compared to the HDPE

blade (see also Fig. 5-7, bold gray line). Recall that, for the 20 cm-long HDPE blade,

the numerically-predicted blade excursion was within 35% of the wave excursion along

the upper r 40% of the blade. For the 20 cm-long foam blade, the excursion was

within 35% of the wave excursion for s > 0.29 (i.e., along the upper - 70% of the

blade, bold gray line in Fig. 5-7). Force measurements (Fig. 5-9m) confirm that a
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Figure 5-8: 20 cm-long HDPE blade in waves of period T, = 2.0 s and amplitude
a ~- 4 cm. (a-1) Observed and predicted (red) blade posture over the wave-cycle.
(m) Measured (black) and predicted (red) horizontal force, F', generated by blade.
The shaded region represents estimated uncertainty.
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Figure 5-9: 20 cm-long foam blade in waves of period T. = 2.0 s and amplitude
aw ~4 cm. (a-1) Observed and predicted (red) blade posture over the wave-cycle.
(m) Measured (black) and predicted (red) horizontal force, F', generated by blade.
The shaded region represents estimated uncertainty.
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larger portion of the foam blade moves passively in the flow. The maximum measured

force was much lower for the foam blade, 0.03N, compared to the HDPE blade, 0.12N.

Note that, for the foam blade, the model predicts blade motion that is more

symmetric than the observations. The simulated blade moved back and forth roughly

symmetrically about the vertical, while the real blade leaned to the right near the

tip (Fig. 5-9d,j). However, the predicted and observed blade excursions are similar

over most of the blade. Because the simulated and real blade move through the

same distance over a wave cycle, they experience the same relative velocity. Since

the hydrodynamic force generated by the blade depends on this relative velocity, the

predicted (red) and measured (black) forces agree, within uncertainty, through most

of the wave cycle (Fig. 5-9m). Fig. 5-7 shows that the measured blade excursion at the

tip (gray circle, [max(xz)-min(x,)]/2A,, = 1.23±0.06) was slightly greater than that

predicted by the numerical model (bold gray line, [max(x,) - min(x,)]/2AWA = 1.09).

We believe this discrepancy arises because we do not account for any pressure recovery

at the blade tip in the numerical model, and so the simulated blade experiences greater

drag at the tip compared to the real blade.

The three cases described above suggest that the numerical model developed in

§5.1, although not perfect, adequately describes the dynamics of flexible blades over

the range of conditions tested in the laboratory. This is further confirmed by Fig. 5-

10, which compares the measured and predicted root-mean-square (RMS) force over

a wave cycle, Fx,R, for all the laboratory experiments. In general, the model under-

predicts the forces acting on the HDPE blades, and over-predicts forces for the foam

blades. Specifically, for the foam blades, the ratio of predicted to measured FX,R was

1.27 ± 0.30 (mean ± s.d.). For the HDPE blades, the ratio was 0.78 + 0.19. Given the

10% accuracy of the load cell, the measurements agree with the predictions within

uncertainty. Uncertainty in material properties offers another possible explanation for

these discrepancies. This is especially true for the foam blades, where the uncertainty

in both the density difference, Ap, and the elastic modulus, E, was greater than 10%

(Table 5.1).

Upon closer inspection, Fig. 5-10a suggests that while the measured and predicted
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Figure 5-10: (a) Predicted RMS horizontal forces, F,R, plotted against the measure-
ments for the HDPE blades for all test cases. (b) Same as (a) but for foam blades.
Blade lengths as indicated on plot.

forces agree very well for the 5 cm-long (squares) and 20 cm-long (crosses) HDPE

blades, the measurements are consistently larger than the predictions for the 10 cm-

long and 15 cm-long blades. For example, over all eight wave conditions, the ratio

of predicted to measured RMS force was 0.66 + 0.09 (mean t s.d.) for the 10 cm-

long blades. In contrast, this ratio of predicted to measured force was 0.98 t 0.05

for the 5 cm-long blades and 0.88 t 0.20 for the 20 cm-long blades. We discuss why

the measured forces were larger than predictions for the 10 cm-long HDPE blades in

§5.4.1 below.

5.4 Discussion

Without the use of any tuned parameters (recall that CD and CM were based on

previous literature for flat plates), the numerical model developed in §5.1 predicts the

forces generated by the model blades in laboratory tests reasonably well across a range

of blade properties and flow conditions. This confirms that our model captures the

salient physics governing the wave-induced dynamics of flexible blades. Specifically,

our results suggest that rigid-body CD and CM may be used for flexible bodies as
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long as the relative, body-normal velocity and acceleration are used to calculate the

drag and added mass forces. However, it is important to keep in mind that, although

it has been used with relative success in previous studies (and in this chapter), the

Morison force formulation is merely a physically intuitive, simplified representation

of the true unsteady forces acting on the blade. There are often large differences

between the true force generated by the body, and that represented by a sum of the

drag and added-mass terms [47] with constant CD and Cm (see e.g., Fig. 5-6m).

There are differences between the predicted and observed blade postures, espe-

cially near the top of the blade (see e.g., Fig. 5-9). We suggest that these discrepancies

may arise because we assume that CD and CAj are constant over the length of the

blade. In reality, pressure recovery near the blade tip must lead to a reduction in

forces, and therefore a reduction in the effective CD and CM. Another possible expla-

nation for these differences could be the fact we do not account for the hydrodynamic

force generated due to blade curvature i.e., as the component of flow parallel to the

blade accelerates to follow the blade shape. This force is sometimes termed the re-

active force [9]. In the future, we hope to extend the numerical model to account for

these two effects.

5.4.1 Flexibility can enhance forces

Recall that the measured forces were significantly larger than the predictions for the

10 cm-long HDPE blades (Fig. 5-10a). Table 5.1 shows that the Cauchy number

ranged from Ca = 0.24 to Ca = 4.0 for these blades. For Ca 0 O(1), the hydro-

dynamic forcing and the restoring force due to blade stiffness are comparable. So,

over a wave cycle, there can be a transition between forcing-dominated and stiffness-

dominated conditions. As illustrated by Fig. 5-11, this transition leads to unsteady

blade behavior and an enhancement of forces that cannot be reproduced by the nu-

merical model. Specifically, we observe that a vortex is shed from the blade between

time t = 0.10 -0.20 s (Fig. 5-1la-d), which leads to a reduction in the hydrodynamic

force acting on the blade at that point in time. Because of this force reduction, the

blade springs backwards between t = 0.3 - 0.6 s (Fig. 5-1le-g). As the blade springs
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backwards, there is significant relative motion between the blade and the water, and

this leads to the generation of additional drag (Fig. 5-11h). In contrast to the real

blade, the simulated blade moves back gradually in the flow (red lines in Fig. 5-1le-g).

Hence, the relative motion between the blade and the water is lower for the simu-

lations, and so is the predicted force (red line in Fig. 5-11h). We suggest that the

numerical model cannot reproduce the observed behavior because it employs constant

CD and CM. In effect, the shedding event leads to a local (in time) reduction in the

added mass, CM.

Note that similar shedding events were also observed for the 5 cm-long and 20 cm-

long HDPE blades. However, because Ca < 1 for the 5 cm-long blade, it remained

motionless throughout the wave cycle, i.e., it was essentially rigid. For the 20 cm-

long blade, the Cauchy number was Ca > 1, and so we suggest that this blade

was not stiff enough to spring backwards following the local (in time) reduction in

the hydrodynamic forcing. Recall that for the same wave condition, the numerical

model was able to predict the measured forces reasonably well for both the 5 cm-long

(Fig. 5-6) and 20 cm-long (Fig. 5-8) HDPE blades.

Interestingly, because of this unsteady blade behavior, the RMS force generated

by the flexible 10 cm-long HDPE blade was greater than that predicted for a rigid

10 cm-long blade (blue line in Fig. 5-11h) for the same wave condition. Specifically,

F,,R = 0.074 N for the flexible blade, while we expect F,,R = 0.070 N for a rigid

blade. Indeed, for most of the laboratory tests with the 10 cm-long HDPE blades,

the measured F,R was greater than that predicted for a rigid blade (see Fig. 5-12

below). Observations of blade motion suggest that a mechanism similar to the one

described here (i.e., blade springing back) may be responsible for this enhancement.

Note that the rigid-blade force was calculated using the PIV-measured velocity field,

uw (Z, t), as:

F1 pCDb uwu + p(2CM + bd dz (5.16)'XMU -2 p~ (~J ) t
0

The first term inside the integral is the drag force (see Eq. 5.4), and the second term
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Figure 5-11: (a-d) Blade postures and PIV velocity field (green arrows) for 10 cm-long
HDPE blade between t = 0.1 - 0.2 s in waves of period T = 2.0s and amplitude
a, ~- 4 cm. The solid white line shows the variation in horizontal velocity along
the dotted white line. (e-f) Vortex shedding leads to the HDPE blade springing
backwards between t ~ 0.3 - 0.6 s. (g) A comparison of measured (black), predicted

(red), and rigid-blade (blue) forces.
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represents the added mass and virtual buoyancy forces (see Eqs. 5.5 and 5.3).

5.4.2 Effective blade length

Most of the discussion in §4 was presented in terms of an effective blade length. This

effective length, le, was defined as the length of a rigid, upright blade that generates

the same horizontal drag as the flexible blade of length 1. Because of the time-varying

nature of the hydrodynamic forces generated, the effective length can be defined in

multiple different ways for oscillatory flows. We define the effective length based on

the RMS force:

1 e,R _ measured F,,R- (5.17)
1 rigid F,,R

However, one may also use, for example, the maximum force over a wave cycle.

Recall that, for flexible blades in unidirectional flow, once the hydrodynamic forc-

ing becomes much larger than blade buoyancy and the restoring force due to blade

stiffness, Ca > B and Ca > 1, the following scaling law for effective length applies:

le/l - Ca-1/3 . This scaling law represents a balance between the restoring force due

to stiffness and drag in the reconfigured state, EI/l2 - pbleU 2 . In other words, both

the blade curvature, (820/0s2), and the pressure drag force, F, scale on the effective

length, 1e, in this reconfigured state. For wave-induced oscillatory flows, we anticipate

that a similar scaling law for le,R/I would emerge if the ratio of blade length to wave

excursion was small, L < 1. As discussed earlier, at the quasi-steady limit of L < 1,

the flexible blade is pushed over into a bent posture in the early stages of a wave

half-cycle, where it remains until the wave velocity reverses. This bent posture must

reflect a balance between the hydrodynamic forcing, which is dominated by pressure

drag for L < 1, and the restoring forces.

However, as discussed in §5.1, when the blade length is much larger than the

wave excursion, L > 1, the blade remains nearly upright as it moves back and forth

(Fig. 5-2). At this limit, we anticipate small blade angles, 0 - L-1 < 1, such that

the blade curvature term may be linearized as: EI(&20/OS2 ) ~ EI( 3 x4/z ) (see
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Eq. 5.15). Here, the horizontal blade excursion would scale on the wave excursion,

v ~" A,. Therefore, balancing drag and blade stiffness for this limit of L > 1, we

have:

83%
El za ~ Fx -± EI ~ Pble U2 (5.18)

V e

Using the definition of the Cauchy number Ca (Eq. 5.12) and the ratio L (Eq. 5.11),

the above equation can be re-arranged to yield:

(le/l) ~ (CaL) 1/4 (5.19)

Essentially, with this scaling, the effective length represents the blade length over

which there is significant relative motion between the blade and the water. The

upper part of the blade, zv > le, moves nearly passively with the flow and therefore,

forces are only generated in the lower part, z, < le.

To summarize, once the hydrodynamic forcing exceeds the restoring force due to

blade stiffness, we expect that 1e,R/l ~ Ca- 1/3 for L < 1, and that 1e,R/l ~ (CaL) -1/4

for L > 1. For the laboratory experiments described in @5.2, the ratio of blade length

to wave excursion ranged from L = 0.8 to L = 17. The measured effective lengths

(Eq. 5.17) for all sixty-four laboratory tests, shown in Fig. 5-12, indicate that for this

range of L (> 0.8), the small-excursion scaling, le,R/l ~ (CaL) 1/4, is more appropri-

ate. For example, all the measured effective lengths for the foam blades (gray symbols

in Fig. 5-12b) collapse together, with a best fit power-law suggesting the following re-

lationship: le,R/l = 0.70t0.05(CaL) 0.21±0.02 For CaL < 1, the blades are essentially

rigid in the flow. This is illustrated by the fact that the effective lengths for the 5 cm-

long HDPE blades (black squares in Fig. 5-12) are approximately constant and equal

to 1. A best-fit power law suggests 1e,R/l =1.08 ± 0.06(CaL)0 .0 2 O.0 4 (dashed line in

Fig. 5-12), confirming that there is no dependence between le,R/l and CaL, and that

le,R/l ~ 1 at this limit, i.e. the blade is behaving like a rigid flat plate. The measure-

ments for the 10 cm-long HDPE blades (black stars in Fig. 5-12) do not conform to the

predicted scaling law for effective length. As discussed above, the hydrodynamic forces
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Figure 5-12: le,R/l plotted against CaL. The solid black line shows the expected
scaling for small wave (L > 1) excursions, le,R/l - (CaL-1 /4 ). The dotted gray line
shows the best fit to all the foam data. The dotted black line shows the best fit to
the 5 cm-long HDPE blade data. Symbols and color scheme as indicated on plot.
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generated by these blades were enhanced as they sprung backwards in flow following a

vortex shedding event. However, the measured effective lengths for the longer HDPE

blades (black crosses in Fig. 5-12b) seem to agree with those measured for the foam

blades, suggesting that the scaling 1e,R/l ~ (CaL) 14 may apply again once Ca > 1.

Finally, the effective lengths shown in Fig. 5-12 represent the ratio of the measured

RMS force to the RMS force predicted for a rigid blade. The observed trends do not

change significantly if, instead of the RMS forces, we use the ratio of the maximum

forces, le,M/1 . Specifically, best-fits suggest leg = 1.05 0.12(CaL) 0.03±0.08 for the 5

cm-long HDPE blades, and le,M/l = 0.65±0.07(CaL) -0.22±0.02 for all the foam blades.

In @4, we saw that blade buoyancy delayed the onset of reconfiguration in steady

flows until the Cauchy number exceeded the value of the buoyancy parameter, Ca >

B. Specifically, when plotted against Ca (see Fig. 4-5b), the measured effective

lengths for the foam blades formed distinct curves that depended on the value of B.

However, buoyancy does not play as important a role for the foam blades moving in

wave-induced oscillatory flows. Despite the fact that the buoyancy parameter ranged

from B = 2.7 - 170, with Ca < B in some cases (Table 5.1), the measured effective

lengths all collapse onto a single line. These observations can again be explained

by thle factu tht o aeidcdocllatoryWV-11~k:, fn 1C lows withV VVL _j- >L JK1, he %%_ blades remain

relatively upright in the flow. For upright blades the contribution of buoyancy to

the blade-normal force balance, which dictates blade motion, is negligible. In the

governing equation, Eq. 5.9, the buoyancy term is: iBe 0 . The blade-normal (i.e.,

real) component of this term is -B sin 0. As discussed above, for L > 1 we expect

that the angle 0 L-1 < 1, and so B sin 0 ~ BO ~ (B/L). At this limit therefore,

buoyancy is only important as long as (B/L) > Ca, or (CaL) < B. While Ca < B

for some of the cases tested in the laboratory, CaL > B for all the cases. Therefore,

buoyancy did not play a significant role.

Importantly, the scaling law for effective length shown in Eq. 5.19 assumes that

drag is the dominant hydrodynamic forcing. This is reasonable for the range of

conditions tested in the laboratory, where the Keulegan-Carpenter number, KC >

3.7. At the limit of KC < 1, Eq. 5.9 suggests that the added mass force, which
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scales as Ca/KC, would become the dominant hydrodynamic forcing instead of drag,

which scales with the Cauchy number, Ca. For this limit, a force balance similar to

the one shown in Eq. 5.18, but with added mass instead of drag, leads to le/l ~

(CaL/KC)-1/4

The effective length framework developed in this chapter may also be useful for

studies of wave attenuation over canopies of flexible vegetation. Wave attenuation

by submerged vegetation has been studied in the laboratory [25, 48], in the field [8],

and using analytical methods or numerical models [48, 68, 67]. Most of these studies

recognize that it is the relative motion between water and vegetation that determines

energy dissipation. Yet, there is no consistently adopted methodology to account

for vegetation motion. In an analytical study, Mendez et al. [68], account for plant

motion by imposing a blade excursion that increases linearly with height, and use the

resulting relative velocity to calculate drag. In a field study, Bradley and Houser [8],

account for blade motion by recording the movement of seagrass blade tips from

above, and assuming a cantilever model to translate tip excursion into blade motion

over the entire blade height. Most other studies (e.g., Mendez and Losada [67]) use

bulk drag coefficients that are calibrated to account for vegetation motion.

Without a consistent framework, it is difficult to make comparisons across species

and systems. For example, the drag coefficient calibrations typically employ the

Reynolds number, Re, or Keulegan-Carpenter number, KC, as the independent gov-

erning parameters [8, 48, 67]. Re and KC can be used to account for the variation

in drag with hydrodynamic conditions (see e.g., Fig 5-3). However, they cannot ac-

count for any drag reduction due to plant flexibility because they do not reflect the

underlying physics. Given the likely variation in vegetation stiffness and buoyancy,

the calibrated drag coefficient for one species will not hold for another species. In-

stead, we suggest the use of an effective length, 1e, to account for vegetation motion.

The effective length approximates the length of blade over which relative motion be-

tween the blades and the water is significant. So wave energy dissipation within the

meadow can be calculated by assuming that the vegetation is rigid, but of length le,

rather than 1. Further, a characterization of 1e/l as a function of the dimensionless
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parameters that govern blade motion Ca, B, and L, is likely to hold across systems.

Note that, for field studies, Ca, B, and L, may be calculated based on measured

vegetation properties, and the significant wave height, Hs, and peak period, Tp (see

53.3). However, because of the broadband nature of waves in the field, defining an

effective length is more difficult. As observed by Bradley and Houser [8], the blades

may move in response to secondary frequencies rather than the peak frequency. For

such cases, the motion of the blades is not in phase with the water, resulting in some

relative motion over the entire blade length even if le < 1.
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Chapter 6

Conclusions and remaining

questions

This thesis has explored many aspects of the interaction between flow and aquatic

vegetation. We have studied physical processes at the scale of individual blades as

well as entire canopies; in steady and unsteady flows. Here, we summarize our key

findings, explore possible environmental and engineering implications, and highlight

problems that merit further study.

In §2.1.2, we showed that for submerged vegetation in steady flow, the penetration

of turbulence and momentum from the overflow has a significant influence on canopy

function. Specifically, for dense canopies where the vegetation frontal area per unit

bed area is ah > 0. 1, turbulent stress cannot penetrate to the bed. Above this density

a meadow can promote sediment retention, stabilizing the bed and improving light

conditions, two positive feedbacks that promote meadow persistence. Conversely, a

reduction in canopy density below this threshold will lead to increased flow and stress

near the bed, increased sediment resuspension, a loss of bed stability, and a reduction

in light climate, all of which can lead to further canopy deterioration.

In 52.2, we considered how the distribution of vegetation in a channel affects

the hydraulic resistance and velocity. Using a simplified momentum balance, we

showed that the Manning roughness, nm, due to vegetation depends primarily on

the blockage factor, Bx, which is the fraction of the channel cross-section blocked
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by vegetation. Specifically, for Bx < 0.8, we anticipate that nM c (1 - Bx)-3/2.

Although, approaching the limit where the entire channel is blocked by vegetation

(Bx = 1), the roughness depends on the canopy frontal area parameter, a. Our

model also suggests that, for the same channel blockage Bx(< 0.8), the velocity

decreases if vegetation is distributed as small patches rather than large contiguous

blocks, because the interfacial area between the flow and the vegetation increases

with an increasing number of patches. There is limited experimental support for this

hypothesis in existing literature (e.g. [3]). However, further laboratory experiments

testing varying plant distributions are required to quantify the effect of vegetation

patchiness on velocity and channel resistance.

For natural channels, the effect of vegetation patchiness is likely to be small;

we estimate reductions of velocity < 20%. This is comparable to the uncertainty

with which vegetation distributions can be measured at the reach scale using remote

sensing techniques (e.g. [99, 83]). So for now, incorporating the effect of specific

vegetation distributions at the reach scale may be impractical. One exception, for

which the specific distribution of vegetation may be of current practical interest, is

managed channels where vegetation is mowed periodically to reduce hydraulic resis-

tance; mowing patterns that produce less interfacial area per channel length (e.g. a

single continuous cut on one side of the channel) are likely to be the most effective in

reducing hydraulic resistance.

In §3, we showed that a mean current is generated within seagrass meadows under

wave forcing. Similar to boundary layer streaming, this mean current is forced by

a nonzero wave stress. This induced mean current could play an important role

in the net transport of suspended sediment and organic matter. By continuously

renewing the water within the meadow, the induced current may also mediate the

ecologically and economically important nutrient cycling services provided by seagrass

meadows. A simple model, developed in §3.1.2, is able to predict the magnitude of

the measured mean currents in the laboratory reasonably well. However, this model

under-predicts the velocities measured in the field by a factor of ~ 4. We believe

that this difference arises primarily because the model developed in §3.1.2 does not
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account for plant flexibility. To the best of our knowledge, no previous studies have

studied the drag generated by flexible plants in combined wave-current flows, and so

a range of important questions remain unanswered. For example, is the two-term

drag formulation used in §3.1.2 appropriate for flexible plants? If so, how do the

wave (CDw) and current (CDc) drag coefficients vary with hydrodynamic conditions

and plant properties?

The laboratory and field measurements described in @3 also showed that wave-

induced oscillatory flows are damped less within seagrass canopies compared to uni-

directional flows. The higher in-canopy velocities associated with wave-dominated

conditions have been observed to enhance nutrient and oxygen transfer between the

seagrasses and the water [97]. Further, the limited reduction of in-canopy oscillatory

velocities suggests that in wave-dominated regions, the bed stress is not sufficiently

distinct in any cuts or channels compared to areas of healthy meadow. Hence, sea-

grasses may be able to recolonize areas of lost meadow, leading to more uniform

meadow structure. This is in contrast to tidal- or current-dominated regions where

any cuts or channels tend to be stable because of the local increase in flow and hence,

bed stress [96].

In §4, we showed that a simple model balancing the effects of hydrodynamic drag

with the restoring forces due to vegetation stiffness and buoyancy can successfully

predict posture and drag for a range of model and natural aquatic vegetation in

steady flows. We also showed that the scaling law, F, oc U4/ 3, consistently describes

the relationship between drag and velocity as flexible plants reconfigure in flow. This

scaling represents a balance between hydrodynamic drag and the restoring force due

to plant stiffness in the reconfigured state. Further, by incorporating blade-scale re-

configuration into a canopy-scale momentum balance (§4.4.2), we demonstrated that

the reduction in drag and channel blockage, Bx, due to plant flexibility can reduce

the Manning roughness and increase velocities significantly. The canopy-scale mo-

mentum balance presented in §4.4.2 was based on a two-box formulation where a

constant friction factor C, was used to model the shear stress at the interface be-

tween the vegetation canopy and the overflow. However, measurements made by
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Ghisalberti and Nepf [35] suggest that, for flexible plants, CV decreases with increas-

ing velocity because the interface between the vegetation canopy and the overflow

becomes smoother as the plants reconfigure in flow. Since a similar momentum bal-

ance model successfully predicts the roughness produced by channel vegetation at the

reach-scale (@2.2), further experiments quantifying the reduction in Cv with velocity

could be useful for field application.

In §5, we showed that the wave-induced dynamics of flexible plants can be charac-

terized by extending the force balance developed in §4 to account for oscillatory flows.

For flexible blades (Ca > 1), we defined two different limits of blade behavior based

on the ratio of the blade length to the wave excursion, L. When the blade length is

much longer than the wave excursion, L >> 1, the blade remains upright as it moves

back and forth with the wave-induced flow. In contrast, when the wave excursion is

much longer than the blade length, L < 1, the blade bends over during the early

stages of a wave half-cycle and remains in a bent posture until the flow reverses (i.e.,

similar behavior to that in a unidirectional current). We developed scaling laws that

described the relationship between drag and velocity for both these limits. However,

the laboratory experiments described in §5.2 only spanned the range L > 0(1). For

this range, the scaling law developed for the small excursion limit, L > 1, applied.

So, the transition between the large- and small-excursion limits is yet to be described

experimentally.

The canopy- and reach-scale studies described in §2 and §3 showed that the drag

generated by flexible plants has important ecological and engineering implications.

However, there is no universally accepted framework to describe drag reduction for

flexible plants. Given the success of the models developed in §4 and §5, we suggest

that future work should be framed in terms of the dimensionless parameters that

dictate the reconfiguration of flexible plants in steady flows, and govern plant motion

in oscillatory flows: Ca, B, and L. The use of this convention will make a quantitative

comparison possible across vegetation species and hydrodynamic conditions. Such an

approach would be especially useful in the wave decay literature, where most existing

studies fit drag coefficients to measurements. A reanalysis that translates the fitted
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drag coefficients into effective lengths (defined in @5), and considers the variation of

these effective lengths with Ca, B, and L, would be a useful first step towards bringing

together existing data, as well as providing a consistent methodology for future work.
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Appendix A

Programmable wavemaker

The wave experiments described in §3.2 and §5.2 were carried out in a 24 rn-long, 38

cm-wide, 60 cm-deep flume fitted with a piston-type wavemaker (Fig. A-1). The pis-

ton displacement as a function of time, (t), was controlled by a voltage signal, V(t),

from a programmable signal generator (Syscomp WGM-101). Through a graphic user

interface (GUI), the WGM-101 allows users to generate voltage signals of any shape

(e.g. sinusoidal, square-wave, saw-tooth, or user-defined) at a desired amplitude, Vo,

and frequency, f. Tests with sinusoidal voltage signals, V(t) = Vo sin(27rft), showed

that the piston displacement was proportional to the voltage signal; however, the

constant of proportionality, C., decreased with the frequency of the sinusoidal signal,

f, i.e. ((t) = Cw(f)V sin(27rft). The variation of Cw with frequency is given in

Table A.1.

WGM4Q01 Piston,

(t)ink -ct

WGM-101
signal generator Set ona

Figure A-1: Schematic showing the programmable piston-type wavemaker.
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Table A. 1: Variation in piston response coefficient with frequency
f [Hz] 0.0 0.1 0.3 0.5 0.7 0.9
Cw [cm V-1] 3.2 3.2 3.1 3.0 2.9 2.8

To generate water waves of a desired frequency, f, and amplitude, aw, in water

depth H, we employed the closed form solution for piston motion given in Madsen [60].

Specifically, Madsen [60] showed that to generate sinusoidal waves, r/ = aw sin(27rft),

without the bound and free secondary harmonics (see Madsen [60] for details), the

piston motion must be prescribed as:

((t) =o cos(wt) + a, - n') sin(2wt)) (A.1)0 2n1H (4sinh 2(kH) 2

Recall that w = 27f is the radian frequency, and k is the wavenumber, with W2

kgtanh(kH). The variables do and ni are:

o an, (A.2)tanh(kH)

1 ( 2k H \
ni = - 1 + (A.3)

2 sinh(2kH)

A MATLAB (Mathworks,Inc.) script to generate a wave form of the shape described

by Eq. A.1 is given below (syscompf inal.m). This script outputs text files that can

be loaded onto the WGM-101 signal generator. As an example, to generate waves of

amplitude aw = 2.0 cm, frequency f = 0.5 Hz, in water depth H = 39 cm:

1. The user types in syscompjfinal (2,0.5,39) in the MATLAB command win-

dow. This generates a text file with the name: f inalaw2f 0. 5H39V2.txt.

2. The user loads this file onto the signal generator using the WGM-101 GUI

button Load user waveform.

3. The desired waves can be produced by setting the Frequency slider to 0.5 Hz

and the Voltage slider on the WGM-101 GUI to the value indicated on the file

name: 2.OV ( ... V2. txt).
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function []= syscomp-final (aw, f H)

% Function to generate a waveform file to cancel the free second harmonic that can

be read by the function generator. For a theoretical derivation, see Madsen

(1971)

% aw is the desired wave amplitude (cm)

% f is the wave frequency (Hz)

% H is the water depth (cm)

% Vmax is the voltage set on the syscomp WGM-101 GUI (V)

%Input Conditioning

i f (H>45)

disp ('The small wave flume should not have H > 45 cm');

return

elseif (aw>0.3*H)

disp('Wave amplitude is high. Expect non-linearity ');

elseif (mod(f,0.1)~=U)

disp('Please enter frequency in 0.1 Hz increments');

return

end

%Gravity

g = 981; %/cm/s/s]

%Piston displacement coefficients [cm/V]

freq = [0 ,0.1:0.2:0.9]; %/HzI

C = [3.2 3.2 ,3.1 ,3.0 ,2.9 2.8];

%Interpolate

Cw = spline(freq ,C,f); %{cm/V]

%Radian frequency [rad/si

w = 2*pi*f;

%Find the wavenumber using the linear dispersion

k-trial = 0.001:0.001:1;

error-k = w*w-g*k_trial.*tanh(H*ktrial);

[~,k-index] = min(abs(error-k));

k = k-trial (k-index); %Wavenumber //

relation

cm]

%Calculate all the variables neede

nl = 0.5*(1+(2*k*H/sinh(2*k*H)));

XO = aw*nl/(tanh(k*H));

VO = XO/Cw;

Vmax = c e i l (VO)

%Cg/Cp

%Piston motion amplitude[cm]

%Maximum voltage required

%TO BE SET ON THE WGM-101 GUI

i f (Vmax<9)

disp ( strcat ('Please set the voltage amplitude on the WGM\-101 GUI to: ',num2str(

Vmax, '%0. 1f ') ,'V')) ;
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disp( 'See also the name for the output text file.');

elseif (VO>9)

disp ('Error: You should not need voltages this high. Check input parameters.')

return

end

%Calculate the waveform

i = 0:255;

V = VO*(cos(2* pi*i /256)+0.5*Cw*VO*tanh(k*H)*((0.75/(sinh (k*H) ^2)) -(0.5*nl))*sin (4*

pi*i/256)/(H*nl*nl));

S = VO*cos(2*pi*i/256);

%Plot to compare with basic sine wave

plot (i ,V, 'k')

hold on

plot (i ,S, 'k: ')

%Convert to a format accessible by the function generator and write to file

%Make the numbers palatable for the function generator

V = 0.5*V/Vmax; %Normalise to Vmax

V = 255*V; %Scale to 255

V = round(V); %Round to integers

V = V + 128; %Shift everything up to zero

V = 255-V; %Invert for the hardware

%Save to a text file

fileld = fopen(strcat('final-aw ' ,num2str(aw) , 'f' ,num2str(f) ,'H' ,num2str(H) ,'V',

num2str (Vmax) '.txt'), 'w');

for i = 0:255

fprintf(fileld , '%d\n',V(i+1));

end

fclose ( fileld )

end
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Appendix B

Shooting method to calculate blade

posture

To solve the equation governing blade posture shown in @4.1 (Eq. 4.6, repeated below

for convenience), we employed a standard shooting method [90]. Recall that the

governing equation was:

d20

d62 ,
(B.1)

and the boundary conditions were 0 = 0 at s = 0, and d0/ds = 0 at s 1. Using the

alternative coordinate, r = 1 - s, Eq. B.1 can be rewritten as:

+ B(r*) sin 0* - Ca cos 0* cos 3 0dr + sin 0*

0

r*

/cos 2 0 sin 0 dr)

and the boundary conditions become 0

can be discretized in space as:

+ Bri sin O81~ Ca (cos 0 I + sin O8I2)
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+ B(1 - s*) sin 0* = Ca cos2 0 cos(6 - 0*) d
S*

d20

dr 2 ,,
(B.2)

0 at r = 1, and d0/dr = 0 at r = 0. Eq. B.2

(B.3)- j+1 - 20i + 0 -



Here, O6 is the blade angle at grid-point ri. There are N grid-points and so, the spatial

step size is A = rji+ - ri = 1/(N - 1). With this discretization, r1 = 0, ri = (i - 1)A,

and TN = 1. To first order, the discrete integrals Ij and I2 can be approximated as:

_I Z(cos 3 0i-1/ 2 )A (B.4)
2

I Z(cos2 i-1/2 sin 6i-1/ 2 )A (B.5)
2

where 0i-1/2 = (1/2)(O6 + Oi_1). Note that I = I12 = 0. Finally, Eq. B.3 can be

re-arranged to yield:

Oj+ 1 ~ 20i - Bi_1 + A2 (Bri sin 0, - Ca (cos Oi lI + sin 6jI?)) (B.6)

The shooting method works as follows. We start with three initial guesses for

1 = [0, r/4, r/2]. The free boundary condition (dO/dr = 0 at r = 0) leads to 02 = 01.

Using the discretization shown in Eq. B.6, the governing equation for blade posture

(Eq. B.2) is integrated numerically from the blade tip (r = 0 or ri) to the base (r = 1

or rN) for these three initial guesses to yield 0, for i = 1 to N. Next, the three

numerical solutions are used to evaluate which of the two intervals spanned by the

initial guesses (e.g. 01 = [0 -7r/4] or [7r/4 - r/2]) contains the true solution that

satisfies the clamped boundary condition at the base (0 = 0 at r = 1, or ON = 0).

The governing equation is then integrated for three guesses for the blade tip angle, 01,

that span the smaller interval containing the true solution (e.g. 01 = [0, r/8, r/4] or

01 = [7r/4, 37r/8, -r/2]). This interval-bisection procedure is repeated until the interval

is smaller than the desired accuracy for 0. The MATLAB code listing provided below

(shootingf inal) performs this procedure for given values of N (grid-points), Ca

(Cauchy number, Eq. 4.8), and B (Buoyancy parameter, Eq. 4.7).
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function [s , thetafinal] shooting-final (N,Ca,B)

%Function to calculate blade posture based on the shooting method

%N is the number of gridpoints

%Ca: Cauchy Number = Drag/Rigidity

%B : Buoyancy Parameter = Buoyancy/Rigidity

%Starts from the free boundary condition at the tip

%The blade coordinate is s . s = 0 at the bed and s 1 at the tip.

%This code uses r = 1-s

%Domain and difference

r= linspace(0,1,N);

dr = r(2)-r(1);

s 1-r;

%Tolerance for theta

eps = 0.01/N;

%Initial guesses for tip angle

tip = linspace (0,pi/2,3);

%Initial guess for theta

theta = ones(N,1)*tip;

while(abs(theta(end,end)-theta(end,1))>eps)

%Initial guess for theta

theta = ones(N,1)*tip;

%Loop to step forward in space

for i = 2:(N-1)

%averaging for discrete integrals

tavg = 0.5*(theta(1:(i-1) ,:) + theta(2:i ,:));

%discrete integrals

1I = Ca*sum(dr*(cos(tavg).^3));

12 = Ca*sum(dr*( sin (tavg).*( cos (tavg). ^2)));

%step forward along r (=1-s)

dthta = min(zeros(1,3) ,(B*r(i)*sin(theta(i :) )-I1.*cos(theta(i ,:))-12.*sin

(theta (i ,:) )));

theta(i+1,:) = 2*theta(i ,:) theta(i -1,:) + dr*dr*dthta;

end

%Logic to calculate next theta interval

if (theta(end ,1)*theta(end,2) <0)

%Opposite signs for theta , so the real solution must lie in between

tip = linspace (theta(1 ,1) theta (1,2) ,3)

elseif (theta(end ,2) *theta(end,3) <0)

tip = linspace(theta(1,2),theta(1,3),3);

elseif (theta(end,2)==0)

thetafinal = fliplr (theta(:,2)');

s = flipir (s);
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return

else

disp ( 'error : system will not converge

return

end

end

thetafinal = fliplr (theta(: ,2)');

s = fliplr (s);

end
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Appendix C

Dynamic blade model

The real part of the equation governing the wave-induced dynamics of flexible blades

Eq. 5.9, which describes the blade-normal force balance, is:

030 00g
-- +T -

2,r 2  Ca

4 KC

CaS ~1n
+27r R

KC [\at

BsinO+ CDCa IRe(ii,iQ) IRe(iirCi 0 )
2

a t
L

2 ,I

LO2 )

-p'L ea) eio]
Oj2) I

e

-0

Employing the inextensibility condition, we can rewrite the time-derivatives in x as:

f = ie-

x- =i

at o0

at2
0

A d (C.2)

10
-e9t d'

820

ot 2 - i --t

(C.3)

(C.4)e-i d'
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Substituting the above time derivatives into Eq. C.1, and collecting terms, we have:

030 -i0
+ T-6 - B sin 0

1
+ CDCa 'irnR

2

+ 2xFCa ( cM+
KC (4

2wCaL ,r
KC (A

CM + p'S)
00) 2

(C.5)

Here, we linearize the drag term by assuming that the magnitude of the blade-normal

relative velocity ni" = JR(are"0 ) is known. Treatment of this term in the numerical

scheme is discussed shortly. We discretize Eq. C.5 in time as follows:

- BsinN +

(4CM

(CM

+S)

2 CDCa (iv R)D ai N iN N

iON

+ p'S )

8 N

r iON e

0 e

N 0 N _4gN-1 ±ON-2 2 ~'

2A d

3g1 [.N

= + CDCa LiiN R 1e2
2 L

( cX1 ONgN+1 20+ N N-1

1 A
2

0

In the above equation, a superscript N refers to values for that variable at time step
jN. The difference between subsequent time steps is A = tN+1 _ FN. Note that

154

[o

S 10

L Je -
0

ds'I)

S) on
at

io Je
0

j8 020

.aE2

T~gN

27Ca
+KC

2,Ca L
+KC

0

_N 0 N+1 - gN

2xCaL
+KC

1

2A

(C.6)

(f -

C



the third-order spatial derivative in 0 is treated implicitly. The nonlinear acceleration

term ~ (d/t) 2 (see the last line in Eq. C.5) is evaluated using a backward difference.

Similarly, we also evaluate the magnitude of the blade-normal relative velocity with

a backward difference:

3 N _jN-1 + -2\~
N __ igN gN- 4 (C. 7)

To discretize Eq. C.6 in space, we use a finite difference method with M evenly

spaced grid points, Si, s2, ... SM; si corresponds to s = 0 and sMK corresponds to s = 1.

The spacing is 6s = sai - sj = 1/(M - 1). The spatial derivatives were evaluated

using standard second-order-accurate difference matrices. The integrals shown on the

last two lines of Eq. C.6 were evaluated as follows:

IAN __ iGN IN N10 (A) ~R ~Cif iNA d J

0

= cos[N( ) ON (A')]AN /

0

0 - 0 AN

0:

cos(0N- ON) -.. COS(&N-0O) 0 AN

The integral on the third line of Eq. C.6 was also evaluated in a similar fashion. Note

that, because the integrand is imaginary, cos[ONQ§) _ ON(gI)] in Eq. C.8 is replaced

by sin[ON () __ gN(A/)]. Using the notation ICN(.) and <(.) to represent these discrete

integrals, and the notation D1 and D 3 to represent discrete first- and third-order

spatial derivatives, the governing Eq. C.6 can be written as:

TND N -B sin0N I 1 N 2MCa ( ND, - in +CDCa rnAu+j ±M+S AUT
2 KC (4 )
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2xRCaL (SI + p's) I ( 3 0N - 4 0 N-1 ON-2 2

KC _4 u 2A

=D3ON+I + 1 CDCa L ft N N ON+1 - 0 N-1
2 2A

2 20 N + NN-1
+ KC A CM + p'S ( (C.9)

Where A = 3R(eioNN) , and A N R[fiGN (i)N]. Equation C.9 represents a

system of linear equations for blade posture at the next time step, 0 N+1, that depend

on the internal blade tension and posture at the current and previous time steps

(tN IN gN-1 etc.), as well as the known velocity and acceleration fields, ftN and

(OiG/oF)N. We solve this system of equations using the built-in solvers in MATLAB.

A code listing (dynamicbladeFINAL) is provided below.

The internal blade tension, tN, was calculated implicitly by solving the imaginary

component of the governing Eq. 5.9:

D 1 TN + D 1 ON D2ON + B cos ON

2,rCa gN LN 02, N)~
+ ei - p'L t2KC at 2

± C5Ca [ eigN (&N - L N [iN - L _ ) 0 (C.10)

Where we use backward differences to calculate the blade velocity and acceleration

(see last two lines in Eq. C.10). Note that, for generality, we also include a skin-

friction term here (last line in Eq. C.10), which acts in the blade-parallel direction.

Finally, the program below uses the PIV-measured velocities and accelerations as

forcing. However, it can be modified easily to use known functions for velocity and

acceleration (e.g. from linear wave theory).
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function [] = dynamicbladeFINAL ( material, lv f , a)

%Numerical model to simulate dynamic behavior of flexible blades under

%wave forcing. Refer to model derivation from 11/30/2011

%material is either Foam or HDPE

%lv is the length (cm), a is the wave amplitude (cm) and f is the frequency

%(Hz)

%% Blade and other paramters {cm/g/s]

i f (strcmp ( material , 'HDPE'))

tv = 0.04; %thickness

rhov = 0.95; %density

Ev = 2.07*9.3e9; %Young 's modulus

basedir = 'C:\ Users\Mitul\Documents\Heidi Nepf\Experiments\Flow-Structure Waves

\2012 03 28 HDPE';

e ls e i f (strcmp ( material , 'Foam'))

tv = 0.19; %thickness

rhov = 0.67; %density

Ev = 5.0e6; %Young 's modulus

basedir = 'C:\ Users\Mitul\Documents\Heidi Nepf\Experiments\Flow-Structure Waves

\2012 03 29 Foam';

else

disp('Error: Unknown material')

return

end

directory = strcat(basedir ,'\lv',num2str(lv,'%0.2d'),'\f',num2str(10*f,'%0.2d'),'a

,num2str (10*a, '%0.2d'));

bv = 2.0; %width

Iv = bv*(tv^3)/12; %Second moment of area

rho = 1; %density

g = 981; %gravity

om = 2*pi*f; %radian frequency

%% Load measured wave velocities based on the PIV measurements

%Load PIV measured velocities

cmtopix = 4/130;

dt = 1/60;

load ( strcat (directory '\',material , 'lv ' num2str (lv , '%0.2d') , ' f ' ,num2str(10*f , '%0.2

d') , 'a' num2str(10*a, '%0.2d'),'PIV.mat'));

for i = 1:length(u)

u-temp = u{i 1}; %u is the PIV-measured horizontal velocity at step i

v-temp = v{i ,1}; %v is the vertical velocity

UU(: i ) u-temp(: ,3) *cmtopix/dt; %from [pix/imag pair] to [cm/si

VV(: i ) v-temp (: ,3) *cmtopix/dt

end

UU = inpaintnans (UU);

VV = inpaint-nans(VV);
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%smooth

for i = 1:max(size(y-conv))

UU(i ,:)= smooth (UU(i ,:) );

VV(i ,:) = smooth(VV(i ,:) )

end

clear u-temp v-temp u v

%Velocity scale (in cm/s)

[~,zOi] = min(abs(y-conv(:,1)));

U = max(abs(UU(zOi,:)));

clear zOi

%Normalize velocities

UU = UU/U; UUmeas = UU;

VV = VV/U; VVmeas = VV;

%Fit harmonic sinusoidals

t = t-norm ';

X = [ones(size (t)) cos(t) sin(t) cos(2*t) sin(2*t) cos(3*t) sin(3*t) cos(4*t)

sin (4*t)];

for i = 1:max( size (y-conv))

u-coeffs (: i) = X\UU(i ,:)

v-coeffs(: ,i) = X\VV(i ,:)

end

%% Now create a searchable grid of velocities from t = 0 to 2pi

t = linspace(0,2*piround(60/f)+1)';

clear X

X = [zeros(size(t)) cos(t) sin(t) cos(2*t) sin(2*t) cos(3*t) sin(3*t) cos(4*t)

sin(4*t) ];

%Fitted Velocities

UU = (X*u-coeffs)

VV = (X*v-coeffs)

%Calculate accelerations

Xt= [zeros(size(t)) -sin(t) cos(t) -2*sin(2*t) 2*cos(2*t) -3*sin(3*t) 3*cos(3*t

) -4*sin(4*t) 4*cos(4*t)];

%Fitted accelerations

UUT = (Xt*u-coeffs) ';

VVT = (Xt*v-coeffs)

clear X Xt

%Vertical coordinate for interpolation

z = y-conv (: ,3) +0.5;
%Make dimensionless

z = z/lv;

%Searchable grid for interpolation
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[TT,ZZ]=meshgrid(t ,z)

clear t z;

%% Set up model

%Model parameters

ns = 512; %Number of grid points

s = linspace(0,1,ns) ';%Grid

ds = s(2)-s(1); %spacing

ndt = 1;

dt (2*pi*f/60)/ndt; %Time

nt = ceil(10*2*pi/dt); %Number of time steps

i = sqrt(-1);

%2nd order accurate difference matrices.

D1 = fdmatrix (s ,1 ,2)

D2 = fdmatrix (s ,2,2);

D3 = fdmatrix (s ,3 ,2);

%Make matrices for finite differences

%Make matrix for implicit Tension calculation

DIT = D1;

%Fixed BC

D1T(end,:) = 0; D1T(end,end) = 1;

%Make matrix for conversion between theta and X

DIX = D1;

%Fixed BC

D1X( 1,: 0; D1X (1 ,1) = 1;

%% Dimensionless Parameters

KC = U*(1/ f)/bv; %Keulegan Carpenter Number

CD = max(1.95,10*KC^(-1/3)) ;%Drag coefficient

CD = CD*ones(ns,1) ;

CF = 0.1; %Friction

i f (KC<20)

CM1 = 1+(0.35*KC^ (2/3));

else

CM1 = 1+ (0. 15 *KC^ (2 /3));

end

CM2 = 1+ ((KC- 18) ^ 2) /49;

CM = min(CM1,CM2); %Added mass coefficient

% CM = 1;

rhop = rhov/rho; %Density ratio

B (rho-rliov)*g*bv*tv*(lv^3)/(Ev*Iv); %Buoyancy Parameter - Buoyancy/Rigidity

Ca rho*bv*U*U*(lv^3)/(Ev*Iv); %Cauchy Number -- Drag/Rigidity

L = lv*om/U; %Length ratio
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%Slenderness ratio

%% Estimate force on Rigid body

ZZ-log logical((ZZ(: ,1)>O)&(ZZ(: ,1)<1));

for ti = 1: size (TT,2)

Frigid(1,ti) = sum((0.5*CD(1)*Ca*(abs(UU(ZZ-log, ti)).*UU(ZZIog , ti))+(2*pi*pi/4)*

CM*(Ca/KC)*UUT(TZZ og,ti))*abs((ZZ(2,1)-ZZ(1,1))));

end

%% Initial conditions

%velocity and acceleration

u = zeros(ns,1);

ut- zeros(ns,1);

%theta

theta = zeros(ns,1);

thOld - theta;

thetat = zeros(ns,1);

%Calculate X from theta

RHSX = i*exp(-i*theta) ; RHSX(1)=O;

X = D1X\RHSX;

XOld = X; %Previous time step

XOld2= X; %Two time steps ago

Xt = zeros(ns,1);

%Tension

T = linspace(B,O,ns);

%% Integrate in time.

for tc = 1:nt

%Relative velocity normal to blade

UN = abs ( real (exp( i*theta) .*(u-L*Xt)));

%Make lower triangular matrices for integration

IS = ds* tril(sin (theta*ones(1,ns)-(theta*ones(1,ns))'),-1);

IC = ds* t r il (cos (theta*ones(1,ns)-(theta*ones(1,ns)) '), -1);

%Calculate all the terms treated explicitly

%Tension , Buoyancy

A1 = T.*(D1*theta) - B*sin (theta);

%Drag Forcing

A2 = (1/2)*Ca*CD.*UN.* real (exp( i*theta) .*u);

%Added mass and virtual buoyancy forcing

A3 = Ca*real(exp(i*theta) .*((2*pi/KC)*(pi*CM/4+S).*ut))
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%Terms due to time discretization

A4 = -Ca*L*(2*pi/KC)*(pi*CM/4+rhop*S).*(IS*(thetat. 2));

A5 = (1/2)*Ca*L*CD.*UN.*(IC*(thOld/2/dt));

A6 = Ca*L*(IC*((2*pi/KC)*(pi*CM/4+rhop*S).*(2*theta-thOld)/dt/dt));

%Total Forcing

RHS = (A1+A2+A3+A4+A5+A6);

%Account for BCs

RHS(1) = 0;

RHS(end) = 0;

RHS(end -1) = 0;

%Calculate the matrix for the LHS

LHS = (D3 + Ca*L*diag((1/2)*CD.*UN/2/dt + (2*pi/KC)*(pi*CM/4+rhop*S)/dt/dt)*IC);

%Fixed boundary condition

LHS(1,:) = 0;

LHS(1,1) = 1;

%No bending moment

LHS(end ,: ) = D1(end,:)

%No shear force

LHS(end-1,:) = D2(end,:)

%Evaluate !

thNew = LHS\RHS;

RHSX = i*exp(-i*thNew);

RHSX(1) =0;

XNew = D1X\RHSX;

%Update variables

%Rates of change

Xt = (1.5*XNew-2*X+0.5*XOld)/dt;

Xtt = (2.0*XNew - 5*X + 4*XOld - XOld2)/dt/dt;

thetat = (1.5*thNew-2*theta+0.5*thOld)/dt;

%Theta

thOld = theta;

theta = thNew;

%OX

XOld2= XOld;

XOld = X;

X = XNew;

%Water velocities and accelerations (from PIV measurements)

%Interpolation time

itime = mod(tc*dt+3*pi/2,2*pi);

%o orizontal
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ux = interp2(TT,ZZ,UU, itime ,imag(X) ,'linear ' ,interpl (TT(1 ,:) ,UU(1 ,:) itime));

uxt - interp2 (TT,ZZ,UJT, itime ,imag(X) ,'linear', interp1(TT(1 ,:) ,UUT(1 ,:) ,itime));

%Vertical

uz interp2 (TT,ZZ,VV, itime ,imag(X) ,'linear ', interp (TT(1 ,:) ,VV(1 ,:) itime)

uzt = interp2 (TT,ZZ,VVT, itime ,imag(X) ,'linear' interpl (TiT(1,:) ,VVT(1 ,:) , itime))

%Complex notation

u (1-exp(-tc*dt))*(ux+i*uz);

ut = (1-exp(-tc*dt))*(uxt + i*uzt);

%Relative velocity along blade

UT = abs(imag(exp(i*theta).*(u-L*Xt)));

%Now calculate tension implicitly;

BI = -(D2*thNew) .*(D1*thNew);

B2 = -B*cos(thNew);

B3 = -Ca*(2* pi/KC)*S*imag(exp(i*thNew).*(ut-rhop*L*Xtt));

B4 = -(1/2)*CF*Ca*UT.* imag (exp ( i *thNew) .*(u-L*Xt));

LHST = B1+B2+B3+B4;

RHST(end) = 0;

T = D1T\RHST;

%Parameters to be saved

saved.theta(:, tc) = theta;

saved .X(:, tc) = X;

saved .U(: ,tc) = u;

D2th = D2*theta ;

saved.F(tc) = D2th(1);

end

clearvars -except saved Frigid UU VV UUmeas VVmeas f a Ev Iv by tv U lv Ca B KC rhop

L CM CD CF material directory

savestr = 'dynamicblade.mat'

save ( savestr)

end
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