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Early experiments on spin-blockaded double quantum dots revealed robust, large-amplitude current

oscillations in the presence of a static (dc) source-drain bias. Despite experimental evidence implicating

dynamical nuclear polarization, the mechanism has remained a mystery. Here we introduce a minimal

albeit realistic model of coupled electron and nuclear spin dynamics which supports self-sustained

oscillations. Our mechanism relies on a nuclear spin analog of the tunneling magnetoresistance

phenomenon (spin-dependent tunneling rates in the presence of an inhomogeneous Overhauser field)

and nuclear spin diffusion, which governs dynamics of the spatial profile of nuclear polarization. The

proposed framework naturally explains the differences in phenomenology between vertical and lateral

quantum dot structures as well as the extremely long oscillation periods.

DOI: 10.1103/PhysRevLett.110.086601 PACS numbers: 72.25.Pn, 05.45.�a, 75.40.Gb, 75.76.+j

The coupling of electron and nuclear spin dynamics is
responsible for a wide variety of intriguing transport phe-
nomena in semiconductor devices. Electron-nuclear spin
exchange is crucial in systems such as spin-blockaded
quantum dots, where transport is highly sensitive to spin
selection rules [1–7]. Furthermore, the nuclear spins
produce a hyperfine (Overhauser) field that shifts the
electronic Zeeman energy. This field, which can reach a
few tesla for fully polarized nuclei, can have dramatic
consequences for transport in double quantum dots
(DQDs), where discrete levels may be shifted into or out
of resonance [4,8–10]. The combination of these two
effects—electron-nuclear spin exchange, which polarizes
nuclear spins, and subsequent backaction on energy-
dependent spin-flip rates—gives rise to interesting non-
linear dynamical effects such as multistability, hysteresis,
and intermittency [8–15].

Perhaps the most striking phenomenon observed in
DQDs is the appearance of spontaneous, stable current
oscillations under the application of a dc source-drain
bias [8,16]. The oscillations occur with very long periods
ranging from seconds to hundreds of seconds. These
time scales are 107–109 times longer than the microscopic
time scales associated with single electron transit,
ð1 pAÞ=e� 100 ns, and are also considerably longer than
the time scales arising from coherent oscillation mecha-
nisms [17]. The oscillations are also accompanied by long
transients when the source-drain bias is changed. After
many years of experiments by different groups, the oscil-
lations have only ever been seen in vertical DQDs; they
have never been observed in gate-defined lateral DQDs.

The strong influence of nuclear magnetic resonance on
the oscillations indicates that nuclear spin dynamics play a
key role [8]. However, despite wide interest in the problem,

a viable mechanism has thus far remained elusive. Here we
present a straightforward mechanism which produces
oscillations with similar phenomenology. The mechanism
relies on nuclear spin diffusion [18,19] and on spin-
dependent tunneling rates [20] which are controlled by
the spatial profile of the Overhauser field diffusing into
the barrier.
Nuclear spin diffusion, being a slow process, introduces

the correct time scale into the dynamics. The time scale is
set by the process of nuclear polarization diffusing from
the dot into the barrier. The corresponding length scale in
vertical DQDs is set by the combination of barrier and
quantum well half-widths, which is typically a few tens of
nanometers. For typical diffusion parameters [18,19] this
translates into a time scale on the order of 10 s, consistent
with the observed oscillation periods [8,16].
While the mechanism is robust for vertical DQDs, the

phenomenology is expected to be quite different for lateral

FIG. 1. Mechanism of dynamical nuclear polarization (DNP)
oscillations in a spin-blockaded double quantum dot.
Polarization is driven on a short time scale by resonant hyperfine
transitions inside the DQD. Spin injection in the presence of an
inhomogeneous Overhauser field leads to a polarization over-
shoot in the dot. Nuclear spin diffusion homogenizes the
Overhauser field on a much longer time scale. Spin-flip transi-
tion rates inside the DQD adapt but lead to an overshoot in the
opposite direction.
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DQDs. First, because spin diffusion is isotropic in the
semiconductor material surrounding the DQD, the nuclear
polarization reaching the barrier is much weaker for lateral
DQDs than for vertical DQDs. Second, the dot-barrier
distance is over 10 times that for vertical DQDs, leading
to a 102–103-fold increase in diffusion times. These times,
ranging from tens of minutes to several hours, can exceed
spin relaxation times. In this case, nuclear polarization
generated in a dot would not reach the barrier, rendering
the feedback effect via polarization-dependent tunneling
ineffective. This is consistent with the observation that
oscillations are frequently observed in vertical structures
but never in the lateral structures.

Schematically, oscillations arise as described in Fig. 1.
An initial imbalance of hyperfine spin-flip rates for up and
down electron spins leads to a fast buildup of nuclear
polarization inside the DQD. The resulting inhomogeneity
of the Overhauser field between the DQD and its surround-
ings enhances the probability of injecting the spins with
the dominant hyperfine rate. This causes the polarization
inside the dot to ‘‘overshoot.’’ On a much longer time
scale, nuclear spin diffusion homogenizes the Overhauser
field. As the spin-injection probabilities react accordingly,
the balance of hyperfine transition rates inside the DQD
reverses and starts to drive the nuclear polarization in the
dot back toward zero. In a similar way, the polarization
inside the dot again overshoots and then the cycle repeats.

Here we describe the coupled electron and nuclear spin
dynamics through a model which, in our opinion, strikes an
appropriate balance between simplicity and completeness
in capturing the behavior of the essential degrees of free-
dom. We will write a set of dynamical equations for two
polarization variables, one representing the polarization
within the DQD, and one representing the polarization
under the tunnel barrier to the source lead. The intradot
polarization variable is driven by hyperfine spin-flip pro-
cesses with electron spins within the DQD. Polarization is
then transferred to the barrier via spin diffusion with a large
time constant. The delayed reaction of the barrier polar-
ization variable to the intradot spin dynamics leads to
oscillations as outlined above.

A key to our mechanism is the difference in probabilities
for spin-up and spin-down electrons to tunnel into the
quantum dot when it is empty [20]. Naively, one might
expect the respective tunneling rates to differ due to the
application of a homogeneous Zeeman field, since the final
state energies are different. However, in this gedankenex-
periment, spin-up and spin-down electrons would tunnel
under identical Zeeman-shifted barriers. Provided that the
dot levels are set far below the chemical potential of the
lead EF, and that the g factor is homogeneous, the rates are
not imbalanced by a homogeneous field.

A very different situation arises for an inhomogeneous
Overhauser field. For demonstration, consider the case
shown in Fig. 2(a), where the nuclear polarization is large

and negative under the barrier, and zero outside. Here the
Overhauser field locally increases the Zeeman energy
under the barrier, effectively creating a higher barrier for
down spins, and a lower barrier for up spins. In this
situation, an empty dot is more likely to be filled by a
spin-up electron than by a spin-down electron. The tunnel-
ing rates can also be imbalanced by nuclear polarization
localized inside the DQD, which alters the tunneling ener-
gies. Here, negative polarization favors tunneling of down
spins [see Fig. 2(b)].
It is interesting to note the similarity between this effect

and the phenomenon of tunneling magnetoresistance
(TMR) [21,22]. In both cases transport is dominated by
tunneling through a barrier, and spin polarization is used
as a knob to control tunneling rate. While in TMR the spin
polarization is due to magnetization in the regions sur-
rounding the barrier, in our case the dominant effect is
due to underbarrier nuclear spin polarization. The discov-
ery of TMR has had important consequences for magnetic
memory applications. One can envision that some of these
ideas can be transposed to DQD systems.
We now consider sequential electron transport through

a spin-blockaded double quantum dot connected to leads
with an applied dc source-drain bias, as, e.g., in
Refs. [8,11,12]. In the two-electron spin-blockade regime,
‘‘(1, 1)’’ orbital configurations with one electron in each
dot and a ‘‘(0, 2)’’ configuration with both electrons in the
second dot have nearly the same electrostatic energies;
see Fig. 3(a). In the (1, 1) configuration, where overlap
between electrons is negligible, all four spin states (one
singlet and three triplet states) are nearly degenerate in
energy. For the (0, 2) configuration, however, only the spin
singlet configuration is allowed due to the Pauli exclusion
principle (the single dot orbital level spacing is assumed to
be much larger than the applied bias). Interdot tunneling
hybridizes the (1, 1) and (0, 2) singlet states, producing the
states labeled jSi and jS0i in Fig. 3.
Tunneling out of the double dot occurs from the (0, 2)

singlet state, which is coupled to the drain lead. Through

FIG. 2 (color online). Spin-dependent tunneling due to inho-
mogeneous Overhauser field. (a) When nuclear polarization is
localized only under the barrier, x ¼ 0, y � 0, up and down
spins are subjected to different barriers (B ¼ 0 for illustration).
(b) When nuclear polarization is localized inside the dot, x � 0,
y ¼ 0, up and down spins tunnel in at different relative energies.
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hybridization, both singlet states jSi and jS0i acquire
finite lifetimes, reflected in their broadened line shapes
[Fig. 3(b)]. When only spin-conserving tunneling is taken
into account, the triplet states remain decoupled from the
drain. Therefore the rate-limiting step which controls cur-
rent through this system is the decay of the long-lived
triplet states through resonant hyperfine-assisted transi-
tions to the singlet states jSi and jS0i, or higher order
processes which may also break the conservation of spin
within the double dot [6]. Hyperfine assisted transitions
from jT�i to jSi and jS0i transfer angular momentum from
electron to nuclear spins, thus driving the nuclear polar-
ization dynamics.

Here we focus on the regime of large detuning where jS0i
is far separated in energy from the triplet states and can be
ignored in the calculation of hyperfine-assisted triplet-
singlet transitions. We seek a coupled set of dynamical
equations in two polarization variables. The first variable
represents the net polarization of the DQD. We define the
fractional polarization in the DQD as x ¼ ðNþ � N�Þ=
ðNþ þ N�Þ, where Nþ (N�) is the number of nuclear spins
oriented along (against) the external field. For a typical
device, N � Nþ þ N� � 106. The second variable, which
we denote by y, represents the fractional polarization
within the tunnel barrier connecting the source lead to
the first dot.

The intradot polarization x controls feedback through
the Overhauser shift of the electronic triplet levels, which
can bring these levels into or out of resonance with the
singlet. The energies "� of the triplet states jT�i, relative
to the energy of jSi, are given by

"� ¼ "� g��BB� Ax; (1)

where " is the singlet-triplet detuning [" < 0 in Fig. 3(b)],
g� is the effective g factor (g� � �0:44 in GaAs), �B is

the Bohr magneton, B is the magnetic field strength, and
A� 100 �eV is the hyperfine coupling constant.
Each time an electron decays from jTþi or jT�i to jSi

via hyperfine exchange, one nuclear spin is flipped from
down to up or up to down, respectively. The probability for
an electron that enters the dot to cause a positive (negative)
increment to the nuclear polarization during its escape is
determined by the probability fþ (f�) that the electron
entered into the state jTþi (jT�i), and by the probability
that the electron escapes via the hyperfine exchange
process rather than by alternative nuclear-spin-
independent mechanisms [11,23]. The hyperfine spin-flip
probabilities are determined by the ratios Whf�=ðWhf� þ
W�Þ, where Whf� is the hyperfine decay rate of jT�i and
W� describes the net effect of various nonhyperfine pro-
cesses (spin-orbit coupling, spin exchange with the leads,
and cotunneling, etc.).
In our model, we assume that all nuclear spin flips due to

hyperfine exchange with the electrons occur within the
DQD. Therefore, the dot polarization x receives kicks
(with magnitude 1=N) on the time scale of single electron
hopping through the dot, 100 ns to 1�s, while the barrier
polarization y has no dynamics on this small time scale. On
a much longer time scale, nuclear polarization may diffuse
from the dot region into the barrier region, providing a
source for y.
Mathematically, it is simplest to analyze the regime

where W� � Whf� . Here the total current, i.e., the effec-
tive frequency of electrons passing through the double
dot, is determined by W�. Additionally, the hyperfine
decay probabilities reduce to Whf� =W�. The dependence
on W� cancels from the nuclear polarization rate, which
depends on products of attempt frequencies and spin
flip-probabilities, leaving behind contributions propor-
tional to the hyperfine rates Whf� weighted by the loading
probabilities f�:

_x ¼ ðfþWhfþ � f�Whf� Þ=N � 2�Dðx� yÞ; (2)

_y ¼ �2�Dyþ �Dx; (3)

where �D � 0:1 s�1 is the inverse of the time constant for
diffusion from the dot to the barrier. The hyperfine spin-
flip rates Whf� are given by Fermi’s golden rule [11]:

Whf� ¼ A2

N

ð1� xÞ�
"2� þ �2

; (4)

where � is the decay rate of jSi due to its coupling to the
drain. We account for the dependence of the loading
probabilities f� on the Overhauser field inhomogeneity
in a lowest-order expansion in x and y:

f� ¼ 1

4
½1� �ðx� yÞ	; (5)

FIG. 3 (color online). Two-electron energy levels involved in
spin-blockaded transport (adapted from Ref. [23]). (a) As a
function of potential bias, which controls the asymmetry of the
double well potential, the (1, 1) and (0, 2) singlet states exhibit
an anticrossing. (b) Energy levels at large detuning, indicated by
the dashed vertical line in (a). The singlet levels are broadened
due to the coupling of the (0, 2) state to the drain lead.
Hyperfine-assisted transitions from jT�i to jSi provide a source
for the nuclear polarization x within the DQD.
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where � controls the sensitivity of the loading probabil-
ities to a polarization gradient. The factors of 2 in front of
�D in Eqs. (2) and (3) account for the fact that polariza-
tion diffuses in both directions (up and down).

Under what conditions might we expect to find oscilla-
tions in the flow defined by Eqs. (2) and (3)? Typically,
oscillations are found when the linearized system has the
form of an ‘‘unstable spiral’’:

_u ¼ �uþ v; _v ¼ ��uþ �v; (6)

with �þ �> 0 and ð�� �Þ2 � 4�< 0. These condi-
tions ensure that the eigenvalues are complex, with positive
real part. Comparing with Eq. (3), we see that _y� x, with a
positive coefficient of x due to the fact that polarization
preserves its sign as it flows into the barrier. Therefore,
we need the coefficient of y in Eq. (2) to be negative.
Substituting expression (5) for f� into Eq. (2), this gives
a condition �> 4�D=W0, where W0 is the hyperfine spin-
flip rate at the unstable fixed point.

Going further, we can expand Eqs. (2) and (3) in the
deviations ~x and ~y from the (unstable) fixed point of the
nonlinear system. Notably, because y only appears to linear
order in the original expressions, only ~y-independent or
~y-linear terms show up in the expansion. In general, all
other terms appear:

_~x � c10~xþ c01~yþ 
 
 
 ; _~y ¼ �D~x� 2�D~y; (7)

where the dots represent higher order terms c20~x
2 þ

c11~x ~yþc30~x
3 þ c21~x

2~yþ 
 
 
 . Comparing to Eq. (6), we
see that we need c10 > 2�D > 0 to ensure a positive real
part of the eigenvalues, and c01 < 0, ðc10 þ 2�DÞ2 <
4jc01j�D to ensure a negative discriminant. These consid-
erations lead to the oscillatory regime shown in Fig. 4.

Using the vast separation of time scales between the
hyperfine spin-flip driven polarization dynamics and
the slow diffusion processes, we explore another avenue
of analysis. Assuming that the barrier polarization y
is constant on the time scale of changes in the dot
polarization, we examine the fixed points of the resul-
ting quasi-one-dimensional dynamical system (2). This
regime can be straightforwardly analyzed by mapping
out the x nullclines, defined by the zero-growth condi-
tion _x¼0. Figure 4 shows the stable (white) and unstable
(red, dark) x nullclines, superimposed on the velocity
field map of the full system (arrows indicate direction of
the polarization velocity, and the color scale indicates its
magnitude).

Pictorially, oscillations occur through fast horizontal
motion (i.e., rapid changes of the dot polarization x),
followed by slow drift along the stable x nullclines [blue
looplike trajectory in Fig. 4(a)]. The slow drift accounts for
nuclear spin diffusion from the DQD to the barrier.
Corresponding time traces are shown in Fig. 4(b). In a
realistic model, current depends on the polarization

values in the two dots in a complicated way. Here we
demonstrate the time dependence of current by plotting a
related quantity, the average hyperfine transition rate,
�Whf ¼ 1

2 ðWhfþ þWhf� Þ. Similar to the current measured in

experiments, this quantity displays highly nonsinusoidal
behavior. The oscillation period is dominated by the length
of the excursions along the nullclines. As a result, the
period grows with the oscillation amplitude, also consistent
with experiment [8].
In summary, we have identified a straightforward physi-

cal mechanism which can produce stable oscillations of
dynamical nuclear polarization in spin-blockaded DQDs.
The mechanism relies on nuclear spin diffusion into a
tunnel barrier and is active only in vertical DQDs. The
dependence of spin-injection probabilities and spin diffu-
sion times on barrier width provides a clear experimental
signature of this mechanism. Persistent oscillations can
serve as a new probe of nuclear spin diffusion and spin
dynamics in vertical structures.

FIG. 4 (color online). Polarization dynamics in the oscillatory
regime. (a) Velocity field, with arrows indicating the direction of
the flow defined by Eqs. (2) and (3). Bright (dark) background
color indicates fast (slow) velocity. The white and red curves
show the stable and unstable x nullclines, respectively. The limit
cycle trajectory shown in blue arises from a two stage process:
alternating fast DNP buildup between nullclines and slow drift
along the nullclines due to nuclear spin diffusion (see text).
(b) Time traces of the limit cycle trajectory, from numerical
solution of Eqs. (2) and (3). Upper panel: Dot polarization x
(blue, dark) and barrier polarization y (red, light). Lower panel:
Average hyperfine transition rate, approximately demonstrating
the highly nonsinusoidal oscillatory time dependence of current.
Parameter values: "=A ¼ �0:0025, �=A ¼ 0:075, B ¼ 0, � ¼
0:2, N ¼ 105, �D=A ¼ 10�12.
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