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Abstract

We consider the control of possibly time-varying wireless networks under reconfiguration
delays. Reconfiguration delay is the time it takes to switch network resources from one
subset of nodes to another and it is a widespread phenomenon observed in many practical
systems. Optimal control of networks has been studied to a great extent in the literature,
however, the significant effects of reconfiguration delays received limited attention. More-
over, simultaneous presence of time-varying channels and reconfiguration delays has never
been considered and we show that it impacts the system fundamentally.

We first consider a Delay Tolerant Network model where data messages arriving ran-
domly in time and space are collected by mobile collectors. In this setting reconfigura-
tion delays correspond to travel times of collectors. We utilize a combination of wireless
transmission and controlled mobility to improve the system delay scaling with load p from

(( _p)2) to 8(n), where the former is the delay for the corresponding system without
wireless transmission. We propose control algorithms that stabilize the system whenever
possible and have optimal delay scaling.

Next, we consider a general queuing network model under reconfiguration delays and
interference constraints which includes wireless, satellite and optical networks as special
cases. We characterize the impacts of reconfiguration delays on system stability and delay,
and propose scheduling algorithms that persist with service schedules for durations of time
based on queue lengths to minimize negative impacts of reconfiguration delays. These al-
gorithms provide throughput-optimality without requiring knowledge of arrival rates since
they dynamically adapt inter-switching durations to stochastic arrivals.

Finally, we present optimal scheduling under time-varying channels and reconfigura-
tion delays, which is the main contribution of this thesis. We show that under the simul-
taneous presence of these two phenomenon network stability region shrinks, previously
suggested policies are unstable, and new algorithmic approaches are necessary. We pro-
pose techniques based on state-action frequencies of Markov Decision Process theory to
characterize the network stability region and propose throughput-optimal algorithms. The
state-action frequency technique is applicable to a broad class of systems with or without
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reconfiguration delays, and provides a new framework for characterizing network stability
region and developing throughput-optimal scheduling policies.
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Title: Professor
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Chapter 1

Introduction

We consider the impact of reconfiguration delays on network scheduling in this thesis. Re-

configuration delay is the duration of time required for the network to switch its resources

from a subset of users to another subset, and it occurs in many telecommunication applica-

tions such as wireless, satellite, optical or delay tolerant networks (DTNs) [3], [20], [81],

[126]. Optimal scheduling problem for communication networks subject to time-varying

link gains and constraints on simultaneous usage of network resources has been a very ac-

tive field (e.g., [43, 50,75, 82, 86, 87, 99, 103,109,110,122,125]). However, the significant

effects of server switching delays or the time to reconfigure schedules have been largely

ignored. In satellite networks where multiple mechanically steered antennas are servicing

ground stations, the reconfiguration delay can be due to the time for a satellite antenna

to steer from one station to another. This delay can be around lOms [20], [112], which

is of the same order as the time to transmit multiple packets. Similarly, in optical com-

munication systems, laser tuning delay for different wavelengths can take significant time

(ps-ms) [26], [81]. For an optical transceiver transmitting a packet of length 10000 bits at

10 Gb/s, even relatively small reconfiguration delays on the order of micro seconds corre-

spond to the time to transmit multiple packets [81]. Large switching delays occur in Delay
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Tolerant Networks (DTNs) where mobile servers (e.g., unmanned aerial vehicles (UAV))

are used as data collectors from sensors in a field [90], [117]. In wireless networks, delays

for electronic beamforming or channel switching that occurs in oscillators can be more

than 200pts [3], [20], [112], [126]. Worse yet, such small delay is impossible to achieve

due to delays incurred during different processing tasks such as channel estimation, signal

to interference ratio calculation, and power control at the physical layer [3], [58], and stop-

ping and restarting the interrupt service routines of various drivers in upper layers [3], [95],

which cause switching delays on the order of milliseconds [95].

We consider several network models such as DTNs, wireless uplinks/downlinks, single-

hop networks, or optical networks and study the impact of reconfiguration delays on through-

put and delay performance of such networks. We model networks as stochastic and possibly

time-varying systems and use queuing theoretical analysis to study their performance. Un-

der such a network model, messages (or packets) arrive to network nodes according to a

stochastic process and are transmitted to their destinations over network links. These trans-

missions need to be scheduled because simultaneous transmissions may interfere with each

other. Sets of links that can be activated simultaneously without interfering with each other

are called feasible schedules or interference constraints of the system, and we assume that

such schedules are made available to the network scheduler (controller). Such constraints

may be due to, for instance, Signal to Interference and Noise Ratio (SINR) requirements

at the receiver nodes [69]. Furthermore, wireless links may have gains that vary over time.

Such time variations may be due to, for instance, fading or shadowing effects [86], [110].

In this thesis, we model such time variations in link gains as stochastic processes.

Reconfiguration delay is a relatively new component of this network model that re-

ceived limited attention in the literature. Moreover, networks subjected to the simultaneous
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presence of reconfiguration delays and time-varying channels have not been considered

in the literature. Such networks are significantly harder to analyze and we show that the

simultaneous presence of time-varying channels and reconfiguration delays significantly

reduces the system stability region and changes the structure of optimal policies.

1.1 Related Work

In this section we give a brief overview of related work as it pertains to the overall thesis. In

addition, within each chapter, we discuss previous work specifically related to that chapter

in detail. Optimal control of queuing systems and communication networks has been a very

active research topic over the past two decades (e.g., [43, 50,75, 82,86, 87, 103, 109, 110,

122,125]). In the seminal paper [109], Tassiulas and Ephremides characterized the stability

region of multihop wireless networks and proposed the throughput-optimal Max-Weight

scheduling algorithm. In [110], the same authors considered a parallel queuing system

with randomly varying connectivity where they characterized the stability region of the

system explicitly and proved the throughput-optimality of the Longest-Connected-Queue

scheduling policy. These results were later extended to joint power allocation and routing

in wireless networks in [86, 87] and optimal scheduling for switches in [99, 103]. More

recently, suboptimal distributed scheduling algorithms with throughput guarantees were

studied in [28, 69, 75, 122], while [43, 82] developed distributed algorithms that achieve

throughput-optimality (see [50], [84] for a detailed review). The effect of delayed channel

state information was considered in [60,91, 125] which showed that the stability region

is reduced and that a policy similar to the Max-Weight algorithm is throughput-optimal.

These works do not consider switching delays.

Switching delay has been considered in Polling models in the Queuing Theory com-

17



munity. Data collection by a server from a finite number of queues has been thoroughly

analyzed under Polling models in Queuing Theory literature (e.g., [8], [21], [22], [24],

[45], [51], [72], [77], [124]). Stability of Polling systems under Exhaustive, Gated or Lim-

ited service disciplines under different routing models was studied in [8], [45], and [51].

Steady-state queue length distribution and various delay properties were considered in [21],

[22], [24] and [124], and optimal server routing and various dominance relationships were

analyzed in [72] and [77]. These works do not consider time-varying channel gains in the

system. A detailed survey of the works in this field can be found in [105] or [114].

The problem of optimally servicing job requests by mobile servers in a 2-dimensional

space, related to the data collection problem in DTNs, has been extensively studied in

the Vehicle Routing Problems (VRPs) literature (e.g., [7], [12], [16], [46], [80], [107],

[115], [116]). The common example of a VRP is the Euclidean Traveling Salesman Prob-

lem (TSP) in which a single server is to visit each member of a fixed set of locations on

the plane such that the total travel cost is minimized. Several extensions of TSP have

been considered in the literature such as random demand arrivals and the use of multi-

ple servers [16], [17], [46], [117]. Of particular relevance to the work on DTNs in this

thesis is the Dynamic Traveling Repairman Problem (DTRP) due to Bertsimas and Van

Ryzin [16], [17], [18]. DTRP is a stochastic and dynamic VRP in which vehicles are to

serve demands that arrive randomly in time and space. Fundamental lower bounds on de-

lay were established and several vehicle routing policies were analyzed for DTRP for a

single server in [16], for multiple servers in [17], and for general demand and interarrival

time distributions in [18]. Later, [115], [116], [117] generalized the DTRP model to ana-

lyze Dynamic Pickup and Delivery Problem (DPDP), where fundamental lower bounds on

delay were established and several dynamic pick up and delivery policies were analyzed.
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Furthermore, [117] considered the wireless DPDP problem for the first time, where the

simultaneous use of controlled mobility and wireless transmission was studied for a sim-

ple two-queue network. The system was analyzed from a physical layer perspective and

the stability properties of system as well as trade-offs between throughput and delay were

studied. The first chapter of this thesis considers simpler wireless communication models

as compared to the wireless DPDP problem in [117] and generalizes the DTRP model to

wireless networks where the demands are data messages to be transmitted to a collector

that can receive messages from a distance using wireless transmission.

1.2 Contributions

The main contribution of this thesis is solving the scheduling problem in networks subject

to three fundamental features which are reconfiguration delays, time-varying channels and

interference constraints. We develop different queueing models tailored for analysis of

different network models such as DTNs, wireless uplinks/downlinks, single-hop networks,

or optical networks and analyze the impact of reconfiguration delays on throughput and

delay performance of such networks.

1.2.1 Data Collection via Mobile Servers in DTNs

We first consider a DTN model where messages arriving randomly in time at random lo-

cations in the network are collected by mobile receivers (collectors). The collectors are

responsible for receiving these messages through wireless communication by dynamically

adjusting their position in the network using controlled mobility. In such a setting, switch-

ing delays are in the form of travel times of mobile collectors. Our goal is to utilize the

combination of wireless transmission and controlled mobility effectively to improve the
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throughput and delay performance in such networks. First, we consider a system with a

single collector. We show that the necessary and sufficient stability condition for such a

system is given by p < 1 where p is the expected system load. We derive lower bounds

for the expected message waiting time in the system, and develop policies that are stable

for all loads p < 1 and that have asymptotically optimal delay scaling. We show that the

combination of mobility and wireless transmission results in a delay scaling of 8(1)

with the system load p, in contrast to the E3( (1 ,)2) delay scaling in the corresponding sys-

tem without wireless transmission, where the collector must visit each message location.

We propose dynamic routing and data collection policies based on the Traveling Salesman

Problem with Neighborhoods (TSPN) and on partitioning the network region into subre-

gions. We show that these policies stabilize the system whenever possible, and have optimal

delay scaling.

Next, we consider the system with multiple collectors. In the case where simultaneous

transmissions to different collectors do not interfere with each other, we show that both

the stability condition and the delay scaling extend from the single collector case. More-

over, generalizations of the single collector policies, i.e., partitioning the network region

into subregions, one for each collector, and then applying a single collector policy in each

subregion, achieves optimal delay scaling. In the case where simultaneous transmissions to

different collectors interfere with each other, we consider a simple grid mobility model and

formulate a dynamic scheduling problem. In this case, the switching delay is given by the

time to reshuffle the positions of mobile servers on the grid. We characterize the stability

region of the system and show that a frame-based version of the well-known Max-Weight

policy stabilizes the system using the arrival rate information. The topic of data collection

via mobile servers in DTNs is addressed in Chapter 3.
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1.2.2 Scheduling in Networks with Reconfiguration Delays

Motivated by the DTN scheduling problem under interference, we consider a general queu-

ing model in Chapter 4 and study the scheduling problem for a large class of networks

under interference constraints and reconfiguration delays, where reconfiguration delay in

this case denotes the duration of time required to switch between feasible schedules. The

general queuing model we consider in this part of the thesis is applicable to wireless net-

works without channel variations (i.e., without multipath fading, shadowing etc.), optical

networks, or satellite networks. Under zero reconfiguration delay it is well-known that the

Max-Weight scheduling algorithm is throughput-optimal without requiring knowledge of

arrival rates. However, we show that this property of the Max-Weight policy no longer

holds when there is a nonzero reconfiguration delay, as the policy makes schedule switch-

ing decisions frequently, incurring large throughput losses during switching. Therefore,

algorithms that dynamically arrange scheduling service intervals as functions of the system

state and the reconfiguration delay are necessary.

We propose scheduling algorithms that persist with the current service schedule for a

duration of time determined as a function of the queue sizes. We comprehensively analyze

several such methods for choosing the length of service intervals.We propose the Variable

Frame-Based Max-Weight (VFMW) algorithms that are implemented over frames, and that

employ the Max-Weight schedule corresponding to the beginning of the frame during an

interval of duration set as a deterministic function of the queue lengths at the beginning of

the frame. Next, we consider algorithms that persist with the current schedule by giving an

additive bias to the weight of the current schedule, which are functions of queue lengths

in the system. We call such algorithms the Switching Curve Based (SCB) algorithms. We

show that the bias sizes that are subliner functions of the current queue lengths lead to good
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throughput and delay properties. The SCB policies provide more adaptability to bursts in

arrivals by allowing the system to track the queue dynamics more closely as compared to

the VFMW policies. This is because the SCB algorithms do not set a fixed frame-size at

the beginning of each frame, but they rather make switching decisions based on the current

queue states. The VFMW and the SCB algorithms provide throughput-optimality without

requiring knowledge of the arrival rates since they dynamically adapt the inter-switching

duration to the stochastic arrivals using queue sizes.

1.2.3 Scheduling in Networks with Time-Varying Channels and Re-

configuration Delay

Next, we move onto the main contribution of this thesis in chapters 5 and 6; namely, the op-

timal network scheduling problem under simultaneous presence of time-varying channels

and switching delays, which has not been considered previously in the literature. We show

that, as compared to the scheduling problem in networks subject to the presence of only

one of these phenomenons, the network stability region shrinks, and optimal algorithms

change; namely, previously suggested policies such as Max-Weight or Exhaustive schedul-

ing are unstable. We propose techniques based on Markov Decision Processes (MDPs) in

order to characterize the stability region of such networks and propose throughput-optimal

algorithms with good delay properties.

We first consider the problem of dynamic server allocation over parallel queues subject

to time-varying channels and server switching delay between the queues in Chapter 5. At

each time slot the server dynamically decides to stay with the current queue, or switch

to another queue based on the connectivity and the queue length information. We show

that, as compared to systems without switching delay, the simultaneous presence of time-
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varying channels (or randomly varying connectivity) and switching delay can significantly

reduce the system stability region depending on the memory in the channel processes.

Furthermore, we show that throughput-optimal policies take a very different structure from

the celebrated Max-Weight algorithm or its variants.

In the first part of the chapter, we consider a system of two parallel queues, and develop

an approach that explicitly characterizes the stability region of the system using state-

action frequencies which are stationary solutions to a Markov Decision Process (MDP)

formulation. We then develop a frame-based dynamic control (FBDC) policy, based on the

state-action frequencies, and show that it is throughput-optimal asymptotically in the frame

length. The FBDC policy is applicable to a broad class of network control systems and pro-

vides a new framework for developing throughput-optimal network control policies using

state-action frequencies. Furthermore, we develop simple Myopic policies that provably

achieve more than 90% of the stability region.

In the second part of the chapter, we extend our results to systems with an arbitrary finite

number of queues. In particular, we show that the stability region characterization in terms

of state-action frequencies and the throughput-optimality of the FBDC policy follow for

the general case. Furthermore, we characterize an outer bound on the stability region and

an upper bound on sum-throughput and show that a simple Myopic policy can achieve this

sum-throughput upper-bound in the corresponding saturated (fully-backlogged) system.

Finally, in Chapter 6, we consider the most general setting and study the optimal

scheduling problem for single-hop networks subjected to time-varying channels, reconfig-

uration delays, and interference constraints. We model the network by a graph consisting

of nodes, links, and a set of link interference constraints, where based on the current net-

work state, the controller decides either to stay with the current link-service configuration
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or switch to another service configuration at the cost of idling during schedule reconfigura-

tion.

We first consider the case of memoryless (i.i.d.) channel processes where we charac-

terize the stability region in closed form as the convex hull of feasible activation vectors

weighted by the average channel gain of each link. This result shows that, in the pres-

ence of reconfiguration delays, it is not possible to take advantage of the diversity in time-

varying channels because the i.i.d. channel processes refresh during each reconfiguration

interval. Moreover, we show that the class of Variable Frame-based Max-Weight (VFMW)

algorithms considered in Chapter 4, adjusted to make scheduling decisions based on aver-

age channel gains, stabilizes the system by keeping the current schedule over a frame of

duration that is a sublinear function of the queue lengths.

Next, we consider Markov modulated channel processes with memory. We generalize

the state-action frequency framework of Chapter 5 to arbitrary single-hop networks and

characterize the stability region of the system. We show that the stability region enlarges

with the memory in the channel processes, which is in contrast to the case of no reconfig-

uration delays [50], [86], [110]. Furthermore, we extend the frame-based dynamic control

(FBDC) policy to single-hop networks and show that it achieves the full stability region.

To our knowledge, this is the first throughout-optimal scheduling algorithm for wireless

networks with time-varying channels and reconfiguration delays.
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Chapter 2

System Description and Assumptions

Throughout this thesis we will model wireless networks as queueing systems, where data

packets that arrive at network nodes are to be transmitted to their destinations using the

network medium. For the Delay Tolerant Network (DTN) model in Chapter 3, we consider

mobile servers that are responsible for gathering messages that arrive randomly in time

at randomly distributed geographical locations in the network region. The messages are

transmitted when a collector is within their communication range and depart the system

upon successful transmission. The queueing model in Chapter 3 is a continuous-time model

and it is described in Chapter 3 in more detail. In the following, we describe the common

features of the models used in chapters 4, 5, and 6, and leave details specific to each chapter

to be explained in the corresponding chapter.

For chapters 4, 5, and 6, we consider the impact of reconfiguration delays on network

models given by a graph structure 9(N, £) of nodes AN and links fE c-== {1, 2, ..., L},

where L -LI. Examples of networks that fall under the model studied in this the-

sis include single-hop wireless networks as shown in Fig. 2-1, satellite networks or up-

link/downlinks as shown in Fig. 2-2, or input queued switches, and optical networks. [99].

For such systems, we consider discrete-time (slotted) systems, where the time index t takes
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A1, Node
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-Inactive Link

A2 --- Active Link

Figure 2-1: System model. A single-hop wireless network with interference constraints, time-varying chan-

nels and reconfiguration delays.

values in the set {0, 1, 2, ...}. Data packets arriving at each link f are to be transmitted

to their single-hop destinations, where we refer to the packets waiting for service at link

f as queue f. An integer number of data packets can arrive at or depart from the queues

corresponding to each link during each time slot. Let Aj(t), denote the number of ar-

rivals to queue f at time slot t. We assume that the processes At(t) takes nonnegative

integer values, i.e., At(t) E No where No {0} U N. We also assume that the processes

At(t) are independent of each other and are i.i.d. over time with P'{A(t) = 0} > 0,

E[Ae(t) 2 ] < (Amax) 2 , E[Af(t)] = A < Amax,Vf E cL. Let Q(t) = {Ql(t),...,QL(t)}

denote the queue sizes at the links at the beginning of time slot t. Each link f may

be subject to a time-varying channel process denoted by C(t) that takes values in a set

C = {0, pmin, ---, Amax}, where Ct(t) corresponds to the number of packets that can be

served from queue f at time t. Note that C(t) = 1, Vf E L, for the model in Chapter 4

where we consider time-invariant networks.

Let T, denote the system reconfiguration delay, namely, it takes T, time slots for the

system to change a schedule, during which all the servers are necessarily idle. The set of
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A4

Server 1 Server 2 Server 3

Figure 2-2: An example 4x3 satellite network. Ground stations are subject to time-varying channels C 1, C 2,

C 3 , C4 and the servers are subject to Tr slot reconfiguration (switchover) delay. Server 2 is forced to be idle

due to interference constraints.

all schedules in the system, I, is given by the set offeasible finite integer valued activation

vectors I = (Ie)e=1..L. The set I is assumed to be arbitrary, except we assume that there is

a uniform departure rate bound, ymax, over all schedules and queues: It < pmax, Vf, I. If

the activation vector I(t) is used at time slot t, then min {C(t)Ie(t), Qt(t)} packets depart

from queue f 1. We include the vectors dominated by the feasible activation vectors, as

well as the zero vector I = 0 in I, where the activation vector I(t) is equal to 0 for all time

slots during which the system is undergoing reconfiguration. Let H(T) - [Q(t)]|7jQ U

[1(t)] IT- U [C(t)] ITo denote the full history of the system until time t and let T (I) denote

the set of all probability distributions on the set of all actions I. A control policy 7r is a

mapping from H(t) to T(I) [86], [94].

The availability of a schedule is determined by the interference constraints in the sys-

tem, which are assumed to be arbitrary. For instance, in a wireless mesh network as shown

in Fig. 2-1, the set I can be determined according to the well-studied k-hop interference

'1I(t) takes binary values for time-varying networks, and integer values for time-invariant networks (i.e.,

Ce(t) = 1, V, t).
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model [50]. Alternatively, for a satellite network of N queues and M servers where there

are a possible L = NM links as shown in Fig. 2-2, the set I can be the set of all bi-

nary vectors of dimension NM with at most M nonzero elements such that no two active

servers interfere with each other [32]. For an NxN input-queued optical switch, the set I

can be the set of all matchings [99]. Finally, for the single-server parallel queueing system

considered in Chapter 5, I are unit vectors of length equal to the number of queues in the

system. We assume that the system is initially empty and that the arrivals take place after

the departures in any given time slot. Under this model, the queue sizes evolve according

to the following expression.

Qt(t + 1)=rmax {Qe(t) - It(t)Ce(t), 0} + At(t), V E L. (2.1)

Throughout this thesis we explore the impact of reconfiguration delays on stability and

delay performance of networks.

Definition 1 (Stability [84],[86]) The system is stable if

It-1
lim sup E[Qj(T)] < oo.

t-+oo r0 0 T=O tEC

For the case of integer valued arrival and departure processes, this stability criterion implies

the existence of a stationary distribution for the queue size Markov chain with bounded first

moments [84].

Definition 2 (Stability Region [84],[86]) The stability region A is the closure of the set

of all arrival rate vectors A = (A, ... , AL) such that there exists a control algorithm that

stabilizes the system.
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A policy is said to be throughput-optimal if it stabilizes the system for all input rates strictly

inside A. The 6-stripped stability region is defined for some 6 > 0 as A6 = {Al (A, +

6, ..., AL + 6) E A}. A policy is said to achieve 7-fraction of A, if it stabilizes the system

for all input rates inside -yA, where -y = 1 for a throughput-optimal policy.

Finally, throughout the thesis, we represent vectors, matrices, and sets with bold letters

and we explicitly state when a matrix is utilized. We use the following notation for the

inner product of two L-dimensional vectors: u - v E_ uve.
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Chapter 3

Data Collection via Mobile Servers in

DTNs

There has been a significant amount of interest in performance analysis of DTNs or mobil-

ity assisted wireless networks in the last decade (e.g., [54], [78], [90], [100] [101], [117]).

Typically, throughput and delay performance of networks have been analyzed where nodes

moving according to a random mobility model are utilized for relaying data (e.g., [54],

[48]). More recently, networks deploying nodes with controlled mobility have been con-

sidered focusing primarily on route design and ignoring the communication aspect of the

problem (e.g., [27], [49], [59], [78], [101], [117]). In this chapter we explore the use of

controlled mobility and wireless transmission in order to improve the throughput and de-

lay performance of such networks. We consider a dynamic vehicle routing problem where

vehicles (collectors) use a combination of physical movement and wireless reception to

receive randomly arriving data messages.

Our model consists of collectors that are responsible for gathering messages that arrive

randomly in time at uniformly distributed geographical locations. The messages are trans-

mitted when a collector is within their communication range and depart the system upon
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Figure 3-1: The system model for the case of a single collector. The collector adjusts its position in order

to collect randomly arriving messages via wireless communication. The circles with radius r* represent the

communication range and the dashed line segments represent the collector's path.

successful transmission. Collectors adjust their positions in order to successfully receive

these messages as shown in Fig. 3-1 for the case of a single collector. This setup is par-

ticularly applicable to networks, such as DTNs, deployed in a large area so that mobile

elements are necessary to provide connectivity between spatially separated entities in the

network [59], [78], [101]. Moreover, this model can be used to analyze the delay perfor-

mance of a densely deployed sensor network where mobile base stations collect data from

a large number of sensors inside the network [61], [101]. Our model is also applicable to

a network where Unmanned Aerial Vehicles (UAVs) are used as data harvesting devices

in a battlefield environment [90], [59], and to networks where data rate is relatively low

so that data transmission time is comparable to the collector's travel time, for instance, in

underwater sensor networks [4].
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3.0.4 Related Work

Vehicle Routing Problems (VRPs) have been extensively studied in the past (e.g., [7], [12],

[16], [46], [80], [107], [115], [116]). The common example of a VRP is the Euclidean

Traveling Salesman Problem (TSP) in which a single server is to visit each member of a

fixed set of locations on the plane such that the total travel cost is minimized. Several ex-

tensions of TSP have been considered in the past such as stochastic demand arrivals and the

use of multiple servers [16], [17], [46], [117]. In particular, in the TSP with neighborhoods

(TSPN) problem, a server is to visit a neighborhood of each demand location [12], [80],

which can be used to model a mobile collector receiving messages from a communication

distance. A more detailed review of the literature in this field can be found in [68], [80]

and [117].

Of particular relevance to us among the VRPs is the Dynamic Traveling Repairman

Problem (DTRP) due to Bertsimas and Van Ryzin [16], [17], [18]. DTRP is a stochastic

and dynamic VRP in which a vehicle is to serve demands that arrive randomly in time and

space. Fundamental lower bounds on delay were established and several vehicle routing

policies were analyzed for DTRP for a single server in [16], for multiple servers in [17],

and for general demand and interarrival time distributions in [18]. Later, [115], [116], [117]

considered the Dynamic Pickup and Delivery Problem (DPDP) as a generalization of the

DTRP problem, where fundamental lower bounds on delay were established and several

dynamic pick up and delivery policies were analyzed. The wireless DPDP problem was

considered for the first time in the last chapter of [117], where the simultaneous use of con-

trolled mobility and wireless transmission was studied for a simple two-queue network. A

communication model based on a physical layer perspective was utilized and the stability

properties of the system as well as trade-offs between throughput and delay were studied.
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This chapter considers a simpler wireless communication model as compared to the wire-

less DPDP problem in [117] and applies the DTRP model to wireless networks where the

demands are data messages to be transmitted to a collector which can receive messages

from a distance using wireless transmission.

Models similar to the DTRP problem have been considered in the past. Altman and

Levy studied spatial polling models in two or higher-dimensional spaces in [6], [7], which

are closely related to the work in this chapter. In [7], they considered the Queuing in

Space model which is similar to the DTRP model, however, it is more general in that it

allows stochastic arrivals to queue up at particular locations in the Euclidean plane. They

showed that p < 1 is a necessary and sufficient condition for stability and that a greedy

version of the cyclic and Globally Gated policy, which serves the nearest message among

the messages in the current cycle, stabilizes the system. Similar to DTRP, the delay scaling

with load is shown to be 9(1/(1 - p) 2 ). This model was later extended to general inde-

pendent arrival processes with only first-moment conditions on service and walking times

in [6]. Tassiulas considered a similar model in [107], where they proposed adaptive rout-

ing policies that achieve maximum throughput independent of the statistical parameters of

the system. Similar to DTRP, in these works the collector must visit each message loca-

tion without the possibility of wireless transmission. Continuous polling systems where

wireless servers used as data relays on a one-dimensional space (such as a circle) were

considered in [62] and [63], and expected waiting time and workload in the system were

analyzed. In [61], the same authors considered the use of message ferries as data relays on

periodic routes determined offline.

In a system where multiple mobile nodes with controlled mobility and communication

'We refer to the DTRP model as the system without wireless transmission since in this model the collector

needs to be at the message location in order to be able to serve it.
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capability relay the messages of static nodes, [100] derived a lower bound on node travel

times. Message sources and destinations were modeled as static nodes in [100] and queuing

aspects were not considered. A mobile server harvesting data from two spatial queues in

a wireless network was considered in [90] where the stability region of the system was

characterized using a fluid model approximation.

Another closely related body of literature lies in the area of utilizing mobile elements

that can control their mobility to collect sensor data in Delay Tolerant Networks (DTN)

(e.g., [27, 101, 128]). Route selection (e.g., [101]), scheduling or dynamic mobility con-

trol (e.g., [27], [128]) algorithms were proposed to maximize network lifetime, to provide

connectivity or to minimize delay. These works focus primarily on mobility and usually

consider particular policies for the mobile element. The work in this chapter is the first

attempt to develop fundamental bounds on delay in a network where a collector is to gather

data messages randomly arriving in time and space using wireless communication and con-

trolled mobility.

3.0.5 Contributions and Outline

This work is the first attempt to develop fundamental lower and upper bounds on delay in

a system where a collector is to gather data messages randomly arriving in time and space

using wireless communication and controlled mobility. We first consider a system with a

single collector and extend the results of [7] and [16] to the communication setting. In

particular, we show that p < 1 is the necessary and sufficient stability condition where

p is the system load. We derive lower bounds on delay and develop algorithms that are

asymptotically within a constant factor of the lower bounds. We show that the combination

of mobility and wireless transmission results in a delay scaling of E(1/(1 - p)). This is in
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sharp contrast to the E(1/(1 - p) 2 ) delay scaling in the system where the collector visits

each message location analyzed in [7], [16].

Next, we consider the system with multiple collectors under the assumption that si-

multaneous transmissions to different collectors do not interfere with each other. We show

that the necessary and sufficient stability condition is still given by p < 1, where p is

the load on multiple collectors. We develop lower bounds on delay and generalize the

single-collector policies, analyzed in the first part, to the multiple-collectors case. Finally,

we study a multiple-collector system subject to interference constraints on simultaneous

transmissions to different collectors. We consider a simplified grid mobility model and for-

mulate a scheduling problem and characterize the stability region of the system in terms of

interference constraints. We show that a frame-based version of the Max-Weight schedul-

ing policy can stabilize the system whenever it is feasible to do so at all.

This chapter is organized as follows. In Section 3.1 we consider the single-collector

case. We present the model in Section 3.1.1, and characterize the necessary and sufficient

stability condition in Section 3.1.2. We derive a delay lower bound in Section 3.1.3, and

analyze single-collector policies in Section 3.1.4. In Section 3.2, we extend the results

for the single-collector to systems with multiple collectors whose transmissions do not

interfere with each other. Finally, in Section 3.3 we present preliminary results for the

system with interference constraints on simultaneous transmissions.

3.1 The Single Collector Case

In this section we consider the case of a single collector and develop fundamental insights

into the problem. We extend the stability and the delay results of [7] and [16], established

for the system where the collector visits each message location, to systems with wireless
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transmission capability. We show that the combination of mobility and wireless transmis-

sion results in a delay scaling of E(1) with the system load p, which is in contrast to the

E ( TliP) ) delay scaling in the corresponding system without wireless transmission in [7]

and [16].

3.1.1 Model

Consider a square region R of area A and messages arriving into R according to a Poisson

process (in time) of intensity A. Upon arrival the messages are distributed independently

and uniformly in 1R and they are to be gathered by a collector via wireless reception. An

arriving message is transmitted to the collector when the collector comes within the com-

munication range of the message location and grants access for the message's transmission.

Therefore, there is no interference power from the neighboring nodes during message re-

ceptions.

We assume a disk model [36], [55] for determining successful message receptions. Let

r* be the communication range of the collector. Under the disk model, a transmission can

be received only if it is within a disk of radius r* around the collector. Note that this model

is similar to the Signal to Noise Ratio (SNR) packet reception model [36], [54], [55], under

which a transmission is successfully decoded at the collector if its received SNR is above

a threshold. Under this model, if the location of the next message to be received is within

r*, the collector stops and attempts to receive the message. Otherwise, the collector travels

towards the message location until it is within a distance r* from the message. Under the

disk model, transmissions are assumed to be at a constant rate taking a fixed amount of

time denoted by s.

The collector travels from the current message reception point to the next message re-
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ception point at a constant speed v. We assume that at a given time the collector knows

the locations and the arrival times of messages that arrived before this time. The knowl-

edge of the service locations is a standard assumption in vehicle routing literature [7], [16],

[46], [80]. Location information can be obtained from GPS devices or Inertial Measure-

ment Units (IMUs), and distributed using a low-rate, but long-range, control channel. In

the context of sensor networks, location information can also be obtained via distributed

localization schemes using wide-band signalling [121].

Let N(t) denote the total number of messages in the system at time t. The system is

said to be stable under a given control policy 7 if the number of messages in the system

N(t) converges in distribution to a stationary process with a finite mean. Let p = As denote

the load arriving into the system per unit time. For stable systems, p denotes the fraction of

time the collector spends receiving messages. The stability region A is the set of all loads

p such that there exists a control algorithm that stabilizes the system. A policy is said to be

stabilizing if it stabilizes the system for all loads strictly inside A.

We define T as the time between the arrival of message i and its successful reception.

T has three components: Wd,j, the waiting time due to collector's travel distance from the

time message i arrives until it gets served, W,,i, the waiting time due to the reception times

of messages served from the time message i arrives until it gets served, and s, reception

time of the message. The total waiting time of message i is given by Wi = Wd,j + W,,i,

hence W = T - s. The expected waiting time W is defined as W limi, E[Wi]

whenever the limit exists. T, W, Wd and W, are defined similarly, and T = Wd + W, + s,

whenever the limits exist. Finally, T* is defined to be the optimal system time which is

given by the policy that minimizes T.
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3.1.2 Stability

Next we show that p < 1 is a necessary and sufficient condition for stability of the system.

Note that this condition is also necessary and sufficient for stability of the corresponding

system without wireless transmission, as shown in [7], as well as for a G/G/1 queue [65].

We first lower bound the number of messages in the system by that in the equivalent system

in which travel times are zero (i.e., v = oc). This idea was used in [7] to establish a

necessary stability condition for the corresponding system without wireless transmission.

Lemma 1 A necessary condition for stability is p < 1.

The proof of this lemma can be found in in Appendix A. It is based on an induction argu-

ment that the total number of messages in the system dominates that in the corresponding

infinite-speed system, i.e., the MID/i queue, for which the stability condition is p < 1.

Next, we show that p < 1 is a sufficient condition for stability of the system under a

policy based on Euclidean TSP with neighborhoods (TSPN). TSPN is a generalization of

TSP in which the server is to visit a neighborhood of each demand location via the shortest

path [12], [80], for which polynomial-time (1 +E)-approximation algorithms parameterized

by c > 0 has been developed [80]. In our case, the neighborhoods are disks of radius r*

around each message location.

Under the TSPN policy, the collector performs a cyclic service of the messages present

in the system starting and ending the cycle at the center of the network region. Let time tk be

the time that the collector returns to the center for the kth time, where to = 0. Suppose the

system is initially empty at time to. The TSPN policy is described in detail in Algorithm 1.

Let the total number of messages waiting for service at time tk, N(tk), be the system state

at time tk. Note that {N(tk)}; k E N is an irreducible Markov chain on countable state

space N.
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Algorithm 1 TSPN Policy

1: Wait at the center of R until the first message arrival, move to serve this message and

return to the center.

2: If the system is empty at time tk, k = 1, 2, ..., repeat the above process.

3: If there are messages waiting for service at time tk, k = 1, 2, ..., compute the TSPN

tour through all the messages that are present in the system at time tk, receive these

messages in that tour and return to the center. Repeat 2 and 3.

Theorem 1 The system is stable under the TSPN policy for all loads p < 1.

The proof is given in Appendix B. It follows techniques similar to those of [7] and [24] to

first establish a bound on the waiting time of an arbitrary message. Then the proof utilizes

the stationary version of Little's law to establish the finiteness of the expected number of

messages in the system.

Theorem 1 establishes that p < 1 is also sufficient for stability. The travel time does

not affect the stability region of the system as expected. Note that for the analysis above,

we assumed that the computation time of the TSPN tour is negligible as compared to the

travel time of the collector. In a real-world scenario, having to wait for the computation can

potentially affect the stability region. For instance, if the computation time takes E-fraction

of the expected cycle duration, then the TSPN policy cannot stabilize the system for arrival

rates in the outer e-strip of the stability region. Note that the Partitioning policy proposed

in Section 3.1.4 is a simpler policy in that it does not require the knowledge of the message

locations or arrival times, nor it needs to compute a tour for each cycle. The advantage

of the TSPN policy is that it leads to shorter travel times in each cycle resulting in delay

savings. Finally, simple greedy and cyclic policies based on receiving the closest message

in the current cycle were considered in [7] and [71]. These policies do not need any tour
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computation, however, the analysis of such policies in the context of wireless transmission

does not appear to be tractable.

While the wireless transmission capability does not enlarge the stability region, it fun-

damentally affects the delay scaling in the system as we show in the next section.

3.1.3 Lower Bound On Delay

For wireless networks with a small area or very good channel quality such that r* > VA~I,

the collector can receive messages from the center of the network region. In that case we

have an MID/1 queue and the associated queuing delay is given by the P-K formula as

W = As 2 /(2(1 - p)). However, when r* < V/A/2, the collector has to move in order to

receive some of the messages. In this case the reception time s is still a constant, however,

the travel time per message is a random variable. Next we provide a delay lower bound,

similar to a lower bound in [16], with the added complexity of communication capability

in our system.

Theorem 2 The optimal expected message waiting time in steady-state T* is lower bounded

by

E[max(O,||Ufl - r*)] As2

T* > + +s. (3.1)
~ v(1 - p) 2(1 - p)(.1

where U is a random variable that has a uniform distribution over the network region R,

and |U| is the distance of U to the center of R.

Note that the E[max(O, l|Ull - r*)] term can be further lower bounded by E[IUI] -r

where E[ IU1 ] = 0.383,/A [16]. Proof: As outlined in Section 5.1.1, the expected delay
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of a message in steady state has three components:

T=Wd+W,+ s. (3.2)

A lower bound on Wd is found as follows: Note that Wd.v is the expected distance the

collector moves during the waiting time of a message. This distance is at least as large

as the average distance between the location of the message and the collector's location

at the time of the message's arrival less the reception distance r*. The location of an

arrival is determined according to the unifonn distribution over the network region, while

the collector's location distribution is in general unknown as it depends on the collector's

policy. We can lower bound Wd by characterizing the expected distance between a uniform

arrival and the best a priori location in the network that minimizes the expected distance to

a uniform arrival. Namely, we are after the location v that minimizes E[ I IU - v I] where

U is a uniformly distributed random variable. The location v that solves this optimization

is called the median of the region and in our case the median is the center of the square

shaped network region. Thus, we obtain the following bound:

Wd > E[max(O, Il U|| - r*)] (3.3)
V

Let N be the expected number of messages served in a waiting time and let R be the

average residual service time. Due to the PASTA property of Poisson arrivals [13, p. 171]

a given arrival in steady state observes the steady state occupancy distribution. Therefore,

the average residual time observed by an arrival is also R, and it is given by As2 /2, which

gives [16]

W, = sN + R. (3.4)
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When the system is stable and in steady state, the expected number of messages served

during a waiting time is equal to the expected number of arrivals during a waiting time,

which in turn is equal to the expected number of messages in the system in steady state

[16]. To see this, note that since the future arrivals are independent of the current number

of messages in the system under Poisson arrivals, the steady state occupancy distribution

observed by a Poisson arrival is the same as the time-stationary distribution of the number

of messages in the system [13, pp. 172]. Furthermore, since the messages are served

one at a time, every state N(t) = n is visited infinitely often in a stable system, and

the steady state occupancy distribution observed by a departing customer is also equal to

the occupancy distribution observed by an arriving customer [47, pp. 173]. Therefore,

the expected number of messages served during a waiting time, N, must be equal to the

expected number of messages that arrive during a waiting time, which is also equal to the

expected number of messages in the system. Finally, the last quantity is given by the steady

state version of Little's law to be N = AW = A (Wd + W,) [16], [117]. Substituting this in

(3.4) we obtain

As2

W = sA(Wd +Ws) + 2
2

This implies

We = Wa + -s (3.5 )1 - p 2 (1 - p)(

Substituting (3.3) and (3.5) in (3.2) yields (3.1). 0

Theorem 2 shows that, in addition to the expected waiting time of an MIGI1 queue

As2 /(2(1 - p)), the queueing delay has another component dependent on the travel time of

the collector.
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3.1.4 Collector Policies

We derive upper bounds on expected delay by analyzing policies for the collector. From

(3.19) it can be shown that the expected number of messages in steady state under the TSPN

policy is O(1/(1 - p)). Threfore, the TSPN policy has optimal delay scaling. We consider

the First Come First Serve (FCFS) and the Partitioning policies that are much simpler than

the TSPN policy, and have good delay properties. In particular, the FCFS policy is delay-

optimal at light loads and the Partitioning policy has delay performance that is very close

to the lower bound when the travel and reception times are comparable.

First Come First Serve (FCFS) Policy

A straightforward policy is the FCFS policy where the messages are served in the order

of their arrival times. A version of the FCFS policy, call FCFS', where the collector has

to return to the center of the network region after each message reception was shown to

be delay optimal at light loads for the DTRP problem [16], i.e., TFCFs' -+ T* as p -4 0.

This is because the center of the network region is the location that minimizes the expected

distance to a uniformly distributed arrival. Since in our system we can do at least as well

as the DTRP by setting r* = 0, FCFS' is delay optimal also for our system at light loads.

Furthermore, the FCFS' policy is not stable for all loads p < 1, namely, there exists a value

p such that the system is unstable under FCFS' policy for all p > #. This is because under

the FCFS' policy, the average per-message travel component of the service time is fixed,

which makes the average arrival rate greater than the average service rate as p increases.

Therefore, it is better for a policy to serve more messages in the same "neighborhood" in

order to reduce the amount of time spent on mobility.
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Partitioning Policy

Next we propose a policy based on partitioning the network region into subregions and

the collector performing a cyclic service of the subregions. This policy is an adaptation

of the Partitioning policy of [16] to the case of a system with wireless transmission and it

implements a cyclic polling discipline with exhaustive service. An adaptive version of the

Partitioning policy of [16] was considered in [107], where the subregion sizes are deter-

mined adaptively based on the number of service demands in the system, and the system

is stabilized without requiring the knowledge of the arrival rates. We explicitly derive the

delay expression for this policy and show that it scales with the load as O( ).

We divide the network region into (Vdr* x Vf2r*) squares as shown in Fig. 3-2. This

choice ensures that every location in the square is within the communication distance r*

of the center of the square. The number of subregions in such a partitioning is given by2

n. = A/(2(r*)2 ). The partitioning in Fig. 3-2 represents the case of n, = 16 subregions.

The collector services the subregions in a cyclic order, as shown in Fig. 3-2, by receiving

the messages in each subregion from its center using an FCFS order. The messages within

each subregion are served exhaustively, i.e., all the messages in a subregion are served

before moving to the next subregion. The collector then serves the messages in the next

subregion exhaustively using FCFS order and repeats this process. The distance traveled by

the collector between each subregion is a constant equal to V2r*. It is easy to verify that the

Partitioning policy behaves as a multiuser MIGII system with reservations and exhaustive

service (see [13, p. 198]), where the n, subregions correspond to users and the travel time

2Note that such a partitioning requires vF~~ = A/ (2(r*)2 ) to be an integer. This may not hold for a

given area A and a particular choice of r*. In that case one can partition the region using the largest reception

distance r* < r* such that this integer condition is satisfied.

45



Figure 3-2: The partitioning of the network region into square subregions of side V2Zr*. The circle with

radius r* represents the communication range and the dashed lines represent the collector's path.

between the subregions corresponds to the reservation interval. Using the delay expression

for the multiuser MIGI queue with reservations and exhaustive service in [ 13, p. 200] we

obtain,

Ta As2  + " V 2r* + s. (3.6)
2(1 - p) 2v(1 - p)

Combining this result with (3.1) and noting that the above expression is finite for all loads

p < 1, we have established the following observation.

Observation 1 The expected message waiting time in steady state scales as 89( ) with

the load p, and the Partitioning policy is stable for all p < 1.

Despite the travel component of the service time, we can achieve 8(-i) delay as in the

MIG/1 queue. This is the fundamental difference between this system and the correspond-

ing system where wireless transmission is not used, where the delay scaling with load is

E( ) [7], [16]. This difference can be explained intuitively as follows. Denote by N

the average number of departures in a waiting time. The W, expression as a function of Wd

in (3.5) implies that N can be lower bounded by d. For the system in [16], the minimum

per-message distance traveled in the high load regime scales as Q() [16]. This is due to
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the fact that the nearest neighbor distance among N uniformly distributed points on a square

of area A is Q(A). Therefore, for this system we have Wd e NQ(A) Q(vNA)

which gives N ~ Q( (1 2 ). In contrast, with the wireless reception capability, the collec-

tor does not need to move for messages that are inside a disk of radius r* around it. Since a

finite (constant) number of such disks cover the network region, Wd can be upper bounded

by a constant independent of the system load.

It is interesting to note that [39] considered the case where messages were transmitted to

the collector according to a random access scheme, i.e., transmissions occur with probabil-

ity p in each time slot. There the delay scaling of Q ( ( p)2) was observed, which is similar

to the system without wireless transmission. The reason for this is that in order to have

successful transmissions under the random access interference of neighboring nodes, the

reception distance should be of the same order as the nearest neighbor distances [39], [54].

Numerical Results-Single Collector

We present numerical results corresponding to the analysis in the previous sections. We

lower bound the delay expression in (3.1) using E[max(O, I U1 I - r*)] > E[l|U1l] - r

where [I|Utl] = 0.383V is the expected distance of a uniform arrival to the center of

square region of area A [16]. Fig. 3-3 shows the delay lower bound as a function of the

network load for increased values of the communication range r* 3. As the communication

range increases, the message delay decreases as expected. For heavy loads, the delay in

the system is significantly less than the delay in the corresponding system without wireless

transmission in [16], demonstrating the difference in the delay scaling between the two

3 For the delay plot of the system without wireless transmission, the point that is not smooth arises since

the plot is the maximum of two delay lower bounds proposed in [16].
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Figure 3-3: Delay lower bound vs. network load using different communication ranges for A = 200, o = 1

and s = 1.

systems. For light loads and small communication ranges, the delay performance of the

wireless network tends to the delay performance of [16].

Fig. 3-4 compares the delay in the Partitioning Policy to the delay lower bound for

two different cases. When the travel time dominates the reception time, the delay in the

Partitioning policy is about 10 times the delay lower bound. For a more balanced case, i.e.,

when the reception time is comparable to the travel time, the delay ratio drops to 2.4.

3.2 Multiple collectors - Interference-Free Networks

The analysis in the previous section can be extended to a system with m > 1 identical col-

lectors that do not interfere with one another. This can be done, for example, by partitioning

the network region into m subregions and performing independent single-collector policies

within each subregion. We call the class of such policies the network partitioning policies.

For this class of policies, the interference-free assumption is satisfied if transmissions in

different subregions use different frequency bands.

The main difference in analysis as compared to the single-collector case is that we
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Figure 3-4: Delay in the Partitioning policy vs the delay lower bound for r* = 2.2, #3 = 2 anda = 4.

Case-i: Dominant travel time (A = 800, v = 1, s = 2). Case-2: Comparable travel and reception times

(A = 60, v = 10, s = 2).

utilize the rn-median problem in order to bound the travel times of the collectors and a load

balancing argument in order to derive a delay lower bound. We show that similar to the

single-collector case, the stability region is the set of loads such that p < 1 and the delay

scaling is 9(1/(1 - p)), where p = As/rn.

A necessary condition for stability of the multi-collector system is given by p = As/rn <

1. This is because the number of messages in the system considered stochastically dom-

inates that in the corresponding system with zero travel times (i.e., an M/D/in queue, a

queue with Poisson arrivals, constant service time and mn servers) similar to Section 3.1.2.

Lemma 2 A necessary condition for the stability is p = As/rn < 1. Furthermore, the

optimal steady state time average delay T* is lower bounded by

As 2  mn-i1.s2

T* > r +-) r s (3.7)

where p = As/rn is the system load.
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The proof of this lemma can be found in Appendix C. For showing the sufficiency of the

stability condition p < 1, we can generalize the single-collector TSPN policy to the case

of multiple collectors through network partitioning, and obtain that the system under the

generalized TSPN policy is stable for all loads p < 1.

Next, we derive a lower bound on Wd, the average waiting time due to the collectors'

travel, using a result from [56] for the m-median problem.

Lemma 3

Wa2max (0, j -r*.(38Wd >_(3.8)
V

Proof: Let Q be any set of points in R with IQ| = m. Let U be a uniformly distributed

location in R independent of Q and define Z* A minE1o| U - v ||. Let the random

variable Y be the distance from the center of a disk of area A/m to a uniformly distributed

point within the disk. It is shown in [56] that,

E[f(Z*)] > E[f(Y)] (3.9)

for any nondecreasing function f(.). Using this result we obtain E[max(O, Z* - r*)] >

E[max(O, Y - r*)]. Note that Wd can be lower bounded by the expected distance of an

arrival whose location is uniformly distributed on the network region to the closest collector

at the time of arrival less r*. Because the travel distance is nonnegative, we have

Wd E[max(O, Y - r*)]/v > max(O, E[Y] - r*)/v,

where the second bound is due to Jensen's inequality. Substituting E[Y] = A into the

above expression completes the proof. 0
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Intuitively the best a priori placement of m points in R in order to minimize the distance

of a uniformly distributed point in the region to the closest of these points is to cover the

region with m disjoint disks of area A/m and place the points at the centers of the disks.

Such a partitioning of the region is not possible, however, using this idea we can lower

bound the expected distance as in (3.9).

When Wd is lower bounded by a constant, a simple convexity argument shows that the

equal area partitioning of the network region minimizes the resulting delay expression over

all area partitionings. Using this result, and similar steps to the proof of Theorem 2, yields

the following lower bound on average delay for the class of network partitioning policies:

Lemma 4 For the class of network partitioning policies, the optimal steady state time av-

erage delay T* is lower bounded by

max (0, -r*)
T* '> F4+ s. (3.10)

v(1 - p)

where p = As/m is the system load.

This lemma is proved in Appendix D. This lower bound is more useful than (3.7) since it

takes travel time into account.

Finally, by partitioning the region into m subregions and then applying the single-

collector Partitioning Policy in each subregion shows that the average delay of this gener-

alized Partitioning Policy is given by the average delay of the single-collector Partitioning

Policy applied to a system with arrival rate A/m and area A/m:

Tpart + 2v2r* + s. (3.11)2m(1 -- p) 2v(1 - p)
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From (3.10) and (3.11), we have that the delay scaling in the system is E(1 1.), in contrast

to the E9( ( 1,)2) delay scaling for the multi-collector DTRP [17].

3.3 Multiple Collectors - Systems with Interference Con-

straints

In this section we consider systems in which simultaneous transmissions to different col-

lectors interfere with each other. The problem is to dynamically determine a subset of

collectors to route and schedule for transmission based on the present collector configura-

tion and the number of messages in the system. The objective is to minimize the expected

message waiting time in the system. This is a joint scheduling and euclidian vehicle rout-

ing problem which has not been considered previously. Here we obtain preliminary results

for this problem by emphasizing the scheduling aspect through fairly general interference

constraints and simplifying the mobility aspect by discretizing the collectors' motion. We

characterize the stability region of the system in terms of interference constraints and show

that a frame-based version of the Max-Weight scheduling policy [25], [109], can stabilize

the system whenever it is feasible to do so at all.

First we explain the mobility and the interference models. We assume that time is

slotted, t = 0, 1, 2, ..., where the slot length is equal to one message transmission time s.

The collectors are confined to move on a grid 9 of (rx-) squares, i.e., K A

square cells of diameter r* as shown in Fig. 3-5. Assuming a fixed ordering of the K cells,

where each cell i = 1, 2, ..., K, receives Poisson arrivals with rate A - A/K. Let Ai(t)

denote the number of messages that arrive into cell i at time slot t. The expected load

entering cell i per time slot is given by pi = Ais. Let Ni(t) be the number of messages

in cell i at the beginning of time slot t, let N(t) [Ni(t), ... , NK (t)] denote the vector of
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queue sizes, and let N(t) - Ni(t) + ... + NK(t) denote the total number of messages in

the system at time slot t.

Definition 3 (Cell Interference Model) Given a collector that is at the common corner of

multiple adjacent cells, a transmission to the collector from one of the cells is successfully

received if there is no other transmission within any adjacent cell.

The Cell Interference Model essentially creates an exclusion region of up to 4 cells around

a collector receiving a message. Similar interference models have been considered in the

literature. For example, the Protocol Model considered in [55], [100], assumes successful

transmission if a disk region around the receiver has no other transmission. We characterize

the interference constraints of the system in terms of activation vectors. We call a cell active

if at least 1 message in the cell is scheduled for transmission, and we assume that each cell

k = 1, 2, ..., K is associated with exactly one pick up location on the grid g 4. For instance,

the pick up location for each cell could be the upper left corner of the cell as shown in

Fig. 3-5. Therefore, specifying the set of cells to activate also specifies the locations of the

collectors. A feasible activation vector I E I is one under which transmissions from a set

of active cells do not interfere with each other, where I is the set of all feasible activation

vectors. The set I consists of K-dimensional vectors of at most m nonzero entries, where

Ik = 1 if cell k is active under I, and Ik = 0 otherwise. Note that we include the zero

vector I = 0 in I for convenience.

Let T, denote the maximum reconfiguration time, i.e., the number of time slots re-

quired for a collector to move from the lower right corner of g to it's upper left cor-

ner. The corresponding system with infinite speed, i.e., T, = 0, is a parallel queueing

40f course such an assumption may reduce the stability region. Here we make this assumption in order

to present preliminary results for the general problem.
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Figure 3-5: The network model. Red regions are the exclusion zones for the servers currently in service.

Two servers are forced to be inactive since the messages in their vicinity are in the exclusion zones of other

servers.

system with multiple servers and interference constraints, which is a special case of [86]

or [109]. When T, = 0, the stability region of this system, A0 , consists of all load vectors

p = [P1, P2, ---,PKI = s[AA 2 , ..., AK] in the convex hull of 1 [25]:

A0 = {plp E Conv{T}}. (3.12)

When T, > 0, we have a significantly different system for which previously proposed al-

gorithms are not stabilizing. Since we lose service opportunities during the reconfiguration

times we have

A C A0 . (3.13)

We will show that A = A0 . The celebrated Max-Weight scheduling algorithm was in-

troduced in [109] and was shown to stabilize the system for all p E A0 when T, = 0.

Specifically, the Max-Weight policy activates the set of users in * (t) where

I*(t) = arg max N(t) -1, (3.14)
IEI
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where a - b albi + + aKbK-

3.3.1 Framed-Max-Weight Policy

For systems with nonzero reconfiguration times, the Max-Weight policy is not stabiliz-

ing [25]. The intuitive reason behind this is that the Max-Weight policy makes frequent

reconfiguration decisions, resulting in throughput loss during reconfiguration intervals. A

frame based version of the Max-Weight policy where the same schedule is used throughout

the frame incurs less throughput loss. A similar frame-based approach was used in [25]

in the context of optical networks. We show that the Framed-Max-Weight (FMW) policy

defined below stabilizes the system considered in this section. We prove this result using a

quadratic Lyapunov drift technique.

Under the FMW policy, time is divided into intervals of length T slots. The FMW

policy employs the activation vector corresponding to the Max-Weight configuration at the

beginning of each frame for T - T, slots, where the first T, slots of each frame are reserved

for the servers to travel to their assigned locations. The policy requires T > T/E(p) where

c(p) is determined by solving the Linear Program below [25].

C(p) A max ( -ai)
\IEI

subject to pi Ais < 3 a1I, i E {1, ... , K}
IEI

a, < 1, and a > 0, VI E I. (3.15)
IET

Note that c(p) is a measure of distance of the load vector to the boundary of the stability

region [25]. The FMW policy is described in Algorithm 2 below.
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Algorithm 2 Framed-Max-Weight Policy

1: Assuming the system is at the jth frame, find

I* = arg max N(jT) - I. (3.16)
IEI

2: Reconfigure the collectors to their new locations for the next T, slots.

3: Apply the activation vector I* for T - Tr slots.

Theorem 3 For any p = [P 1, PK] strictly inside Ao, the FMW policy stabilizes the

system as long as T > Tr / c(p).

The proof is given in Appendix E. The reason that the FMW policy stabilizes the system

is that as the load approaches the boundary of the stability region, the policy employs

maximum-weight schedules over longer frames, decreasing the fraction of time spent on

reconfiguration. The proof in Appendix E is based on a quadratic Lyapunov drift argument

over frames of duration T. The proof establishes that the T-step expected drift of the queue

lengths satisfies

E [L(N(jT + T)) - L(N(jT)) IN(jT)] < KBT 2 - 2(T - ) Ni(jT), (3.17)

where B = 1 + A + 2 is a constant. From (3.17) we see that the drift becomes negative

when the queue size is sufficiently large. Stability follows from this condition, similar to the

proof of Theorem 1. Combining Theorem 3 with (3.13), we have the following Corollary.

Corollary 1

A = Ao.

Similar to the case of collectors whose transmissions do not interfere, the stability region

is not affected by the collector travel times.
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3.4 Concluding Remarks

In this chapter we considered the use of dynamic vehicle routing in order to improve the

throughput and delay performance of wireless networks where messages arriving randomly

in time and space are gathered by mobile collectors via wireless communications. For the

case of a single collector, we characterized the stability region of this system. We devel-

oped a fundamental lower bound on expected message waiting time as well as matching

upper bounds. For the case of multiple collectors whose communications do not interfere

with each other, we extended the stability and delay scaling results of the single collector

case. Our results show that combining controlled mobility and wireless transmission results

in E( 1 1 P) delay scaling with load p. This is the fundamental difference between our sys-

tem and the system without wireless transmission (DTRP) analyzed in [16] and [17] where

the delay scaling with the load is 8( ( 'p)2). Finally, for the the case where simultaneous

transmissions to different collectors interfere with each other, we formulated a schedul-

ing problem and characterized the stability region of the system in terms of interference

constraints. We show that a frame-based version of the Max-Weight policy is stabilizing

asymptotically in the frame length.

We have utilized a simple wireless communication model based on a communication

range. Possible future directions include more sophisticated communication and interfer-

ence models that take into account the signal to interference and noise ratio (SINR).

Appendix A - Proof of Lemma 1

We first show that the unfinished work and the delay experienced by a message in the

system stochastically dominates that in the equivalent system with zero travel times for the
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collector.

Lemma 5 The steady state time average delay in the system is at least as big as the delay

in the equivalent system in which travel times are considered to be zero (i.e., v = 00).

Proof: Consider the summation of per-message reception and travel times, s and di, as

the total service requirement of a message in each system. Since di is zero for all i in

the infinite velocity system and since the reception times are constant equal to s for both

systems, the total service requirement of each message in our system is deterministically

greater than that of the same message in the infinite velocity system. Let D 1 , D 2 , ..., D"

and D'I, D',..., D' be the departure instants of the 1 ", 2 "d and similarly the nI message

in the original and the infinite velocity system respectively. Similarly let A 1 , A 2 , ..., A,, be

the arrival times of the 1", 2 "d and the nth message in both systems. We will use induction

to prove that Di > D' for all i. Since the service requirement of each message is smaller

in the infinite velocity system, we have Di > D'. Assuming we have D" > D', we need

to show that Dn+1 > D'

An+ 1 < Dn+1 - s, (3.18)

hence the n + 1 th message is available before the time Dn+1 - s. We also have

D' < Dn < Dn+1 -S

The first inequality is due to the induction hypothesis and the second inequality is because

we need at least s amount of time between the nh and n + 1h transmissions. Hence there

is at least one collector available in the infinite velocity system before the time Dn+1 - s-

Combining this with (3.18) proves the induction. Now let D(t) and D'(t) be the total

number of departures by time t in our system and the infinite velocity system respectively.
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Similarly let N(t) and N'(t) be the total number of messages in the two systems at time

t. Finally let A(t) be the total number of arrivals by time t in both systems. We have

A(t) = N(t) - D(t) = N'(t) - D'(t). From the above induction we have D(t) < D'(t)

and therefore

N(t) > N'(t).

Since this is true at all times, we have that the time average number of customers in the

system is greater than that in the infinite velocity system. Finally using Little's law proves

the lemma. [

Since in our case the infinite velocity system behaves as an M/G/1 queue (an M/G/1

queue is a queue with Poisson arrivals, general i.i.d. service times and 1 server and an

M/D/1 queue has constant service times), the average waiting time in this system is given by

the Pollaczek-Khinchin (P-K) formula for M/G/1 queues [13, p. 189], i.e., As2 /(2(1- As)).

Furthermore, a direct consequence of this lemma is that a necessary condition for stability

in the infinite speed system is also necessary for our system. It is well-known that the

necessary (and sufficient) condition for stability in the M/G/1 systems is given by p < 1

(see e.g., [13] or [50]).

Appendix B - Proof of Theorem 1

Proof: Let N(t) denote the number of messages in the system at time t, and let W denote

the delay experienced by the jth message. Recall the definition of time tk, k > 1, the time

at which the collector returns to the center of the network region for the kth time, where

to = 0. Let N(tk) denote the total number of messages waiting for service at time tk. We

will denote N(tk) by Nk for notational simplicity. The duration of time between tk-1 and

tk is called the kth cycle, and is denoted by Ck, k E Z+. Note that {Nk k E N} is
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an irreducible Markov chain on countable state space N, termed the Cycle Markov chain.

Given the system state Nk at time tk, we find the TSPN tour of length Lk through the Nk

neighborhoods'. We prove Theorem 1 by establishing the following properties:

1. We first prove that the discrete-time Markov chain {Nk} is positive recurrent and has

a steady state distribution with a finite first moment.

2. Using this steady state distribution, we derive bounds on the first and second mo-

ments of the cycle duration, as well as the residual and past cycle durations under the

TSPN policy.

3. Next, we show that the message delays {Wj : j E Z+} and the queue length pro-

cess {N(t) : t > 0} form positive recurrent regenerative processes, and therefore,

converge in distribution to stationary processes.

4. Using the bounds on the residual and the past cycle times, we show that the stationary

process of message delays has a finite expectation.

5. Finally, we utilize the stationary version of Little's law to show that the stationary

process of number of messages in the system has finite expectation.

Cycle Markov Chain {Nk}

First, we will use the Foster-Lyapunov criterion to show that the Markov chain described

by the states NAk is positive recurrent. We use the linear Lyapunov function V(Nk) = sNk,

the total load served during the kth cycle. Note that V(O) = 0, Sk = {x : V(x) < B}

5 Lk can be upper bounded by a constant L for all Nk. This is because the collector does not have to move

for messages within its communication range, and a finite number of such disks can cover the network region

for any r* > 0. The collector then can serve the messages in each disk from its center incurring a tour of

constant length L. An example of such a tour is shown in Fig. 3-2.
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is a bounded set for all finite B and V(.) is a non-decreasing function. Since the arrival

process is Poisson, the expected number of arrivals during a cycle can be upper bounded as

follows:

E[Nk+lNk] < A(L/v + sNk). (3.19)

Hence, we obtain the following drift expression for the load during a cycle.

E[sNk+l - sNkINk] < pL/v - (1 - p)sNk. (3.20)

Since p < 1, there exist a 6 > 0 such that p + 6 < 1:

E[sNk+l - sNkINk] < pL/v - 6sNk.

Fix c E (0, 6). A simple derivation shows that when Nk is outside the finite and bounded

set S = {N E N : N < } the drift expression is given by

E[sNk+l - sNk INk] < -E(1 + sNk).

For Nk E S, using p < 1 - 6 and the definition of the set S, we have from (3.19),

E[sNk+lNk] < pL/v + (1 - 6)sNk < pL/v + (1 - 6)(pLv < o.
(6 - C)

Moreover, since the state space is countable, the set S is finite, and since the states in

the Markov chain {Nk} have nonzero probability of self transition, the Markov chain is

strongly aperiodic. Therefore, all the conditions of Lemma 4.2 in [7] are satisfied (by the

choice of the function g(Nk) = 1 + sNk), and we have that the Markov chain {Nk} is

positive (Harris) recurrent, Nk has a steady state distribution, where we let the random
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variable N' denote this steady state distribution. Moreover, E[Nk] converges to E[N"], and

the expected number of messages in steady state, E[N], is finite [7].

Moments of Cycle Duration

Next, we derive bounds on the first and second moments of the cycle duration, and the

expected residual and past cycle durations. These bounds will be necessary in order to

obtain an upper bound for the expected message delay and the number of messages in the

system. We will prove the finiteness of the expected number of messages in the system by

first establishing that the expected message delay in the system is finite, and then utilizing

the stationary version of Little's law. The analysis in this section is similar to that in [7].

Let Ck denote the duration of the kth cycle, Ck = sNk + LkI/v. The location distributions

of messages in different cycles are independent and uniformly distributed and the TSPN

policy obtains the travel paths, Lk, using a stationary algorithm [80]. Therefore, Ck is a

function of Nk and the location distribution of these Nk messages. Note that the lengths of

the travel paths Lk are uniformly bounded from above by L for all k E Z+. Let E 0 denote

expectation at the time corresponding to the beginning of a cycle, in steady state. We let

N' and C denote the steady state versions of Nk and Ck. Taking the expectation of (3.19)

with respect to the steady state distribution at the beginning of the cycles we have

AL
EO[Ne] < -+ pE [N],

V

which implies that

EQ[Nc] < .L (3.21)
v(1 - p)
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Using the bound on the cycle time Ck = sNk + Lk/v < sNk + L/v we have'.

pL L
E[C] < p + - (3.22)

vIl - p) V

In order to lower bound the expected cycle duration, we lower bound the expected travel

distance per cycle. This distance is at least as large as the expected distance between a

uniformly distributed point (message location) in the network region and the center of the

region less r*. For a square shaped region of area A, this distance can be lower bounded by

d = 0.383v/Z - r* [16]. Therefore, we have

E[Nk+lNk] > A(d/v + sNk).

Upon taking expectations we have

Ad
EO[Nc] > A- (3.23)

V(1 - p)

and

d
1E0[C] v-p) (3.24)

v(1 - p)

Next, we characterize the second moment of the cycle duration. Let T, denote the time

it takes to serve Poisson arrivals arriving in a time interval of random duration D. If the

interarrival times, service times s, and the duration of time D are independent, the second

6Note that letting A(ti, t 2) denote the number of Poisson arrivals in the time interval (4, t 2), we have

A(ti, t2 ) = A(t 2 - t1 ), and Nk+1 = A(Ck). Taking expectations gives E[Nk+1] - AE[Ck]. Finally, taking

the limit as k -- oo yields El [C] = E0 [Nc]/A, which gives the same relationship as (3.22).
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moment of T, is given by [64, pp. 238] or [7, pp. 1107]

E[Ts] = A2E[s]2 E[D 2] + AE s2]E[D].

This result can be applied to the workload in our system, where the workload for the (k +

1)th cycle in our system is given by sNk+1, and the random duration of interest is the

kth cycle duration Ck. The reason we can use the result from [64] in our system is that

the duration of the kth cycle is a function of the arrivals in the previous cycle, and it is

independent of the interarrival times during the kth cycle. Therefore,

E[s 2N2+ 1) = A 2S2E[C ] + As2 E[Ck]. (3.25)

Thus, we have

EO[s 2 (Nc) 21
pL L

< P2 EO[(sN+ L/v)2] + AS2 ( L )
v(1 - p) V

p 2(EO[s2(Nc)2 + 2sLEO[NC + + AsL2( _
\ vv2 ) v(1 - p) v

which upon utilizing

(3.22) gives

the upper bounds on the first moments of N' and C in (3.21) and

E0[s 2 (N*)2j <

2p3L2 ± p2L2 ± p2sL + pqL
v 2 (1-p) v2  v(1-p) v

I-p 2

1-p 2
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where we let Nc denote the finite constant on the right hand side. Using the bound on

EO[(Nc)2 ], we can upper bound the second moment of the cycle duration easily as follows:

E [C2] < Eo[(sNc + L/v) 2] = E0 [s2 (Nc )2 + 2sLNc/v + L 2/v 2]

-- 2sL AL L2

v v(1 - p) v 2

Expected Waiting Time

Next, we bound the expected waiting time in order to bound the expected number of mes-

sages in the system via Little's law. For this, we first establish that the delay process

{Wj : j E Z+}, and the queue length process {N(t) : t > 0} converge to stationary

processes.

Lemma 6 The processes {W : j Z+} and { N(t) : t > 0} form positive recurrent

regenerative processes under the TSPN policy.

The proof is given at the end of the proof of Theorem 1. It establishes that the times

when an arrival finds an empty system with the collector at the center of the network re-

gion constitute regeneration epochs for the system. Because the regeneration processes

{N(t) : t > 0} and {W : j E Z+} are positive recurrent and their regeneration periods

are aperiodic, the sequences of message delays converge in distribution to a (customer)-

stationary process, denoted by W, and the queue length process {N(t) : t > 0} converge

in distribution to a time-stationary process, denoted by N, see [102]. Now, we derive a

bound on the expected waiting time, E[W], according to the stationary delay distribution.

This bound is derived in a similar way to [7] or [24]. The delay of an arbitrary message

is upper bounded by the sum of the residual cycle time CR, plus the duration of the next

cycle CN. Note that the cycle during which the arrival occurs is a-typical and has expected
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duration E[CR] + E[Cp], where E[CR] and E[Cp] denote the expected residual and past

cycle times and are given by E0 [C2]/2E0 [C] [7], [24]. Therefore,

E0[C21
E[W] < E[CRI + E[C] <[CN]- (3.27)

2E03 [C]

Note that CN is also a-typical and equal to the sum of the travel time plus the amount of

workload that arrived during the previous cycle. Therefore, we have [7],

E[CN] < p(E [Cp] + E[CR]) + - (3.28)
V

Finally, combining (3.28) with the expression for the expected residual time, E[CRI =

E [C2) /2EO[C], we have from (3.27),

1 E0[C2] L
E[W] < (p + -)2E+[C) <O

where the last inequality holds due to (3.24) and (3.26),

Finally, the stationary version of Little's law gives a relationship between the first mo-

ment of the time-stationary process N, and the first moment of the customer-stationary

process W: We have

E[9] = AE[W] < oc.

This establishes the stability of the TSPN policy for any load p < 1. O

Lemma 6 Proof: Let the arrival time of the jth message be tj, and its delay Wj. We

consider the Markov chain {Nk : k E N} at the beginning of cycles which is positive

recurrent, and therefore, hits the empty state infinitely often. Consecutive epochs and times
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at which an arrival finds the collector at the center of an empty system (i.e., start of a

cycle) constitute an embedded renewal process for both processes {W : j E Z+}, and

{N(t) : t > 0}. Namely, let the sequence {f, : n E Z+} denote the sequence of

arrivals that find an empty system with the collector at the center. Because the arrival and

the service processes are stationary, the discrete sequence {f n E Z+} serve as an

embedded renewal process for the delay process {W, n E Z+}, and the continuous times

ttn serve as one for the queue length process {N(t) t > 0}. More precisely, we have

that the process {N(ei + t) : t > 0} is independent of {N(t) t < i,} and of i,, and

the process {N(ij + t) : t > 0} is stochastically identical to {N(t) : t > 0}. Similarly,

the process {We+n : n E Z+} is independent of {Wn : n < e1} and of f 1 , and the process

{We+n : n E Z+} is stochastically identical to {Wn : n E Z+}, see [102].

Next, we show that these renewal processes are positive recurrent. Namely, we show

that the expectation of the interrenewal periods, {ten - '4,_- : n E Z+}, are finite. Let T,

be the duration of the rth renewal period, where the sequence {T, : r E Z+ is i.i.d., and

we need to show that E[T] < oo. Let mo be the mean recurrence time of the empty state

(i.e., the state Nk = 0) in the Markov chain {Nk}, which is finite since the Markov chain

is positive recurrent. Note that mo also denotes the expected number of cycles between

renewals. Given K let M(K) be the number of renewals that have taken place up to and

including cycle K. Since the last renewal might have taken place before cycle K, we have

C=1 . (3.29)

67



Furthermore, we have from Strong Law of Large Numbers (SLLN)

lim MV) - 1 a.s. (3.30)
K-+oo K mno

The extended version of the Strong Law of Large Numbers (SLLN) for nonnegative valued

random variables states that if the expectation of the random variables involved is infinite,

then their average converges to infinity, see for example [97, pp. 370]. Now, applying the

extended version of the SLLN to T, we have,

I M(K)
liM m k) E Tr = E[T1], a.s. (3.31)

Koo M()r=1

Note that we will establish that the above expectation is indeed finite. We utilize the upper

bound on the cycle times Ck < sNk + L/v in (3.29) to have

: _1 ( s Na

Y1 (K) ± ~> 1. (3.32)
ZM(K)Tr

Since the Markov chain {Nk : k E N} is ergodic, we have

K

lim E N= E[N'], a.s. (3.33)
K-+oo K

k=1

Finally, rewriting (3.32), taking the limit as K tends to infinity, and applying (3.30), (3.3 1),
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and (3.33), we have

K LEK sN±+L sEO[Nc] + L
hrm T k=1 = MOV >1

K-+oo M(K) 1 zM(K) T E[T1J
M(K) 'r=1 r

which implies that

E[T] < mo sE[N] + -) = mo(pL + -) < O,
V v(1 - p) v

where we used (3.21) for the last inequality. This establishes the fact that the regenerative

processes {W: j E Z+} and {N(t) : t > 0} are positive recurrent. [

Appendix C - Proof of Lemma 2

Proof: The proof is similar to the proof of Lemma 1 in Appendix A. First consider the

following lemma.

Lemma 7 The steady state time average delay in the system is at least as big as the delay

in the equivalent system in which travel times are considered to be zero (i.e., v = 00).

Proof: The proof is similar to the proof of Lemma 5. Consider the summation of per-

message reception and travel times, s and di, as the total service requirement of a message

in each system. Since di is zero for all i in the infinite velocity system and since the

reception times are constant equal to s for both systems, the total service requirement of

each message in our system is deterministically greater than that of the same message in

the infinite velocity system. Let D1 , D2 , ..., D. be the departure instants of the first, second

and similarly the n 1 h message in the system. Similarly let D', D', ..., D' be the departure

instants of the first, second and similarly the n h message in the infinite velocity system.
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Similarly let A1 , A 2 , ..., A, be the arrival times of the first second and similarly the nth

message in both systems. We will use complete induction to prove that Di D' for all

i. Since the service requirement of each message is less in the infinite velocity system,

we have D 1 > D'. Assume we have Di > D" for all i < n. We need to show that

Dn+1 > D' 1 in order to complete the complete induction. We have

An+1 < Dn+1 - s, (3.34)

hence the n + 1 th message is available at time Dn+1 - s. We also have

Dn+-m < Da -m < Dn+1 - s-

The first inequality is due to the complete induction hypothesis and the second inequality is

due the fact that the m'h last departure before the n + 1 h departure has to occur before the

time Dn+1 - s. Hence there is at least one collector available in the infinite velocity system

before the time Dn+1 - s. Combining this with (3.34) proves the complete induction. Now

let D (t) and D'(t) be the total number of departures by time t in our system and the infinite

velocity system respectively. Similarly let N(t) and N'(t) be the total number of messages

in the two systems at time t. Finally let A(t) be the total number of arrivals by time t in

both systems. We have N(t) = A(t) - D(t) and N'(t) = A(t) - D'(t). From the above

induction we have D (t) < D'(t) and therefore N(t) > N'(t). Since this is true at all times,

we have that the time average number of customers in the system is greater than that in the

infinite velocity system. Finally using Little's law proves the lemma. 0

When the travel time is considered to be zero, the system becomes an M/D/in queue (a

queue with Poisson arrivals, constant service time and m servers). Therefore we can bound
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T* using bounds for general G/G/m systems. In particular, the waiting time WG/G/m in a

G/G/m queue with service time s is bounded below by [65, p. 48]

m. r-i1s 2

WG/G/m;W rn (3.35)
m 2s'

where W is the waiting time in a single server system with the same arrivals as in the G/G/m

queue and service time s/m. Since in our case the infinite velocity system behaves as an

M/D/m system, W has an exact expression given by the P-K formula: W = As2 /(2m 2 (1 _

p)) where p = As/m. Substituting this in (3.35) and using Lemma 7 we have (3.7). 0

Appendix D - Proof of Lemma 4

Proof: Here we use an approach similar to the proof of Theorem 2. We divide the average

delay T into three components:

T = Wd + W, + s. (3.36)

We utilize the lower bound proposed in Lemma 3 for Wd. We now derive a lower bound on

W.. Let R', R 2, ..., R" be the network partitioning with areas A', A 2 , ... , A" respectively

(Z= A' = A). Consider the message receptions in steady state that are received by

collector j eventually. Let Al be the fraction of the arrival rate served by collector j. Due

to the uniform distribution of the message locations we have

Ai A'
A A
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Let Ni be the average number of message receptions for which the messages that are

served by collector j waits in steady state. Similarly let Wj and Wj be the average waiting

times for messages served by collector j due to the time spent on message receptions and

collector j's travel respectively. Using (3.4) and lower bounding the residual time by zero

we have

W- > sN.

Using Little's law (NI = Aj (Wj + Wd)) similar to the derivation of (3.5) we have

A' s
W > sWd (3.37)

-1 - Ass

The fraction of messages served by collector j is Ai/A. Therefore, we can write W. as

W,= LAWS
j=1

mA A ss
> A - A W. (3.38)

j=1

For a given region Ri with area A', Wd is lower bounded by (similar to the derivation of

(3.3)) the distance of a uniform arrival to the median of the region less r*.

Wi> E[max(, I U -ul l - r*)]
V

V
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where v is the median of Ri and | U - vI is the distance of U, a uniformly distributed

location inside R', to v. The inequality in (3.39) is due to Jensen's inequality for convex

functions. A disk shaped region yields the minimum expected distance of a uniform arrival

to the median of the region. Using this we further lower bound Wd by noting that for a disk

shaped region of area Ay, E[ |U - y |] is just the expected distance of a uniform arrival to

the center of the disk given by j . Hence

max(O, - r*) _ max(0, ciA - r*)
W> ,+ -(3.40)Wd-V V

where ci = 2= 0.376. Letting f(Ai) = , which is a convex and increasing
Ai

function of Aj, we rewrite (3.38) as

W A' max (0, c1/Zi - r*). (3.41)
j= 1

Next we will show that the function f(Aj)Ajmax(0, civ/i4 - r*) is a convex function of

Ai via the two lemmas below.

Lemma 8 Let f(.) and g(.) be two convex and increasing functions (possibly nonlinear)

defined on [0, A]. The function h(.) = f.g(.) is also convex and increasing on its domain

[0, A]x[0, A].
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Proof: Clearly h is increasing. Let x and y be two points in the domain of h and let

a E (0, 1) be a real number.

h(ax + (1 - a)y)= f(ax + (1 - az)y)g(ax+ (1 - a)y)

< (af (x) + (1 - a)f (y)).

.(ag(x) + (1 - a)g(y))

= a2 f (x)g(x) + (1 - a)2 f(y)

+a(1- a)f(x)g(y) +a(1- a)f (y)g (x)),

where the inequality is due to the convexity of f and g. We add and subtract af(x)g(x)

and after some algebra obtain

h(ax + (1 - a)y)< ah(x) + (1 - a)h(y)

+a(1 - a)(f(x) - f(y))(g(y) - g(x))

< ah(x) + (1 - a)h(y),

where the last inequality is due to the fact that f and g are increasing functions. 0

Lemma 9 h(x) = xmax(0, cifi - c2) is a convex and increasing function of x.

Proof: It is clear that h(x) is an increasing function of x. Let x and y be two points in the

domain of h and let a E (0, 1) be a real number.
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h(ax+(1 - a)y) =

= (ax + (1 - a)y)max(0, ci ax + (1- a)y - c2 )

= max(O, c1(ax + (1 -a)y)2 - C2(CX + (1 -)y))

<max(0, c(ax + (1 -a)y) - c2 (x (1 -a)y))

= max(0, ax(ciVFX - c2 ) + (1 - a)y(cify - c2 ))

< max (0, atX(ci v/X-C2))+ max (0, (1 -a) Y(ci fi - C2))

= ah(x) + (1 - a)h(y),

3where the first inequality is due to the convexity of the function x2 . O

Letting g(Ai) = f (A)Aimax(0, civ'Ai - r*), we have from the lemmas 8 and 9 that

the function g(AJ) is convex. Now rewriting (3.41) we have

W ;( ) g (Ai).
j=1

Using the convexity of the function g(Ai) we have

W" ;> ()g "E A-)

max(O, ci

mg(4)

A/m --r*) _ pmax(ci -r*)
V I-p V

(3.42)
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The above analysis essentially implies that the W, expression in (3.41) is minimized by the

equitable partitioning of the network region. Finally combining (3.36), (3.8) and (3.42) we

obtain (3.10). O

Appendix E - Proof of Theorem 3

We prove Theorem 3 for a broader class of arrival processes. We assume that each cell i has

an arrival process Ai(t) that is i.i.d. over time and satisfies E[A (t) 2 ] < A 2 independent

of the number of messages in the system, which is satisfied if the overall arrival process

into the system is Poisson. Note that we have E[Ai(t)] = ks independent of the number

of messages in the system. Let tk, k = 0, 1, ... , be the first time slot of the kth frame. Let

Di(t), t E {tk + Tr, tk+1 - 1}, be 1 if cell i is scheduled to be active during the kth frame

and zero otherwise. Note that Di(t) is the service opportunity given to cell i at time slot t

and not the actual departure process. Let Ni(t) be the number of messages in cell i at the

beginning of time slot t. We assume that arrivals take place at the end of time slots. We

have the following queue evolution relation.

Ni(t + 1) = max{Ni(t) - Di(t), 0} + Ai(t).

Similarly, the following T-step queue evolution expression holds:

Ni(tk +T) < max Ni(tk) - E Di(tk + T), 0 +( Ai(tk +T).
t 7=0 I =0
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The inequality is due to the fact that cell i might become empty and that some arrivals

depart during the frame. Squaring both sides we have,

(Ni(tk+ T))2 - (Ni (tk)) 2

T-1

<M Di(t
r=0

2 T-1

+T))± Ai(tk
r=O

T -1

- 2N (tk)(ZDi(tk
-O

T-1

+1-)-Z Ai(tk + T)). (3.43)

Define the quadratic Lyapunov function

L(N(tk)) =

K

Z N2(t4),
i=1

and the T-step conditional Lyapunov drift

AT(tk) A E {L(N(tk + T)) - L(N(tk))IN(tk) .

Summing (3.43) over the queues, taking conditional expectation, using Di(t) < 1 for all

time slots t, E{A (t)2} A2 and E{A2(ti)Ai(t 2)} /E{Ai(t 1)} 2E{Ai(t2)}2  A

for all ti and t 2 we have

AT (tk) < KBT 2+ 2E
T-1

Ni (tk) E [Ai(tk + T) - Di(tk + T)] IN(tk)

= KBT 2 + 2T Ni(tk)Ais -2 Z
i i

Ni(tk)E {ZDi(tk+ T)IN(tk)
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where B =1 + A' is a constant. Note that Di(t + T) = 0, Vi E {, ... , K} for r E

{0, 1, ..., T, - 1} since the system is idle for the first T, slots of the frame under the FMW

policy. Therefore,

T-1

AT(tk) < NBT 2 + 2T ( Ni(tk)Ais - 2 ( ( N (tk)E { Di(tk + -)|N(tk)}
i r=T,

Now using the fact that for any load vector p = As that is strictly inside A', there exist real

numbers ai,..., all| such that a > 0,Vj El, ..1, I11, gIj = 1 - E for someE > 0 and

I

j=1

where Ii is a K-dimensional vector in I. Over the time interval [t + Tr, t + T - 1], the

FMW policy applies the activation vector that has the property

I*(tk) = arg max N(tk) - . (3.44)
IET

Therefore Ej Ni(tk)Di(tk + T) = N(tk) - I*(tk). Hence, we have
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AT(tk) < KBT2 + 2TN(tk). aiF) - 2T(1 - +)N(t).I*(tk)

j=1

- KBT 2 - 2T aj(N(t).I*(tk) - N(tk).Ij)
j=1

|l
- 2T(1 - Zaj)N(t).I*(tk) + 2TrN(tk).I*(tk)

j=1

< KBT 2 - 2TEN (tk ).I*(tk) + 2TTN(tk).I*(tk)

Tr
= KBT2 - 2T(e - Ty)N(t).I*(tk). (3.45)

Note that we have N(tk).I*(tk) > - E N(tk) since the maximum weight schedule has

more weight than the average. Therefore, for T > T we have

AT (tk) < KBT 2 - 2T(c - Tr Ni(tk). (3.46)

Therefore, the T-step conditional Lyapunov drift is negative if T > T and if the queue

sizes are outside a bounded set. Therefore, the stability at the frame boundaries follows

from Lemma 4.2 in [7] due to a similar reasoning to the proof of Theorem 1. This implies

the stability of the system since the frame length T is a constant.
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Chapter 4

Scheduling in Queueing Networks with

Reconfiguration Delays

In the previous chapter, we first studied the use of controlled mobility and wireless trans-

mission in order to improve the throughput and delay performance of DTNs under the as-

sumption that simultaneous transmissions to different collectors do not interfere with each

other. Then, for DTNs under interference, we simplified the mobility of the servers to a

grid and formulated a scheduling problem subject to switching delays, which were given by

the time to reshuffle collectors' positions on the grid. We showed that a Max-Weight pol-

icy implemented over frames of fixed duration can stabilize such systems if the arrival rate

information is available. Motivated by this scheduling problem, in this chapter we consider

a general queueing model for networks with interference constraints and reconfiguration

delays, where interference constraints are given by feasible schedules, and reconfiguration

delay is defined as the duration of time required for one (feasible) service schedule to be

dropped and a distinct service schedule to be adopted in the network. The network model

we consider includes single-hop networks as shown in Fig. 4-1, wireless uplinks/downlinks

or satellite networks as shown in Fig. 4-2, or optical networks [81], [99] as special cases.
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- Inactive Link
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Figure 4-1: System model. A single-hop wireless network with interference constraints and reconfiguration

delays.

Dynamic scheduling of such stochastic networks with interference constraints has been a

very active field (e.g., [43], [75], [82], [86], [87], [125], [103], [109], [110], [122]). How-

ever, the significant effects of server switching delays or the time to reconfigure schedules

have been largely ignored. Reconfiguration delay is a widespread phenomenon that is ob-

served in many practical telecommunication systems such as satellite networks [20], [112],

optical communication systems [26], [81], or wireless networks, [3], [20], [112], [126].

In this Chapter, we study the impact of reconfiguration delays on throughput and delay

performance of such networks, and on throughput-optimal policies.

We consider communication networks in the absence of time-varying channels in this

chapter, which can model wired (static) networks, time-invariant wireless or satellite net-

works, or optical networks. The time-invariance condition is relaxed in the subsequent two

chapters, where we show that the simultaneous presence of time-varying channels and re-

82



A4

Server 1 Server 2 Server 3

Figure 4-2: System model with N = 4 queues and M = 3 servers. Server 2 is forced to be idle due to

interference constraints.

configuration delays results in fundamentally different system characteristics and requires

a separate treatment. It is known that, in the absence of time-varying channels, switching

delay does not reduce the stability region [26], [32]. However, as we show in Section 4.4,

the celebrated Max-Weight policy and its variations do not achieve maximum throughput

as they reconfigure the schedule too often, incurring large throughput losses during recon-

figuration. In order to overcome the negative effects of reconfiguration delays, [26] consid-

ered a frame based scheme which persists with a Max-Weight schedule during a frame of

fixed duration. This scheme, i.e., the Framed-Max-Weight policy considered at the end of

Chapter 3, was shown to be throughput-optimal when the arrival rate vector was known in

advance.

When the arrival rate information is not available, algorithms that dynamically arrange

the scheduling service intervals in order to account for the switching delay are necessary.

We propose scheduling policies that keep the active schedule for a duration of time deter-

mined as a function of the queue lengths. We consider several such methods for choosing

service intervals, such as service intervals that are deterministic or randomized functions
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of queue lengths. We first consider a frame-based policy, the Variable Frame Max-Weight

(VFMW) policy, which operates over frames of length based on the queue sizes. The

VFMW policy applies the Max-Weight schedule corresponding to the beginning of the

frame during an interval of length that is a deterministic and sublinear function of the queue

sizes at the beginning of the frame, and maximizes the throughput in the system without

requiring knowledge of the arrival rates.

Next, we consider more adaptive classes of policies that have the capability of making

switching decision instantly in case of a large batch of arrivals. We propose the Hysteresis

Based (HB) policies that give a bias based on queue sizes to the weight of the current sched-

ule at each switching instant, and wait for this bias to diminish before the next switching

decision. Next, we consider the Switching Curve Based (SCB) policies that make switch-

ing decisions based on appropriately designed switching curves as functions of the queue

lengths. We show that the bias sizes and the switching curves that are sublinear functions

of the current queue lengths lead to good throughput and delay properties. These classes

of policies are more adaptive to bursts in arrivals since they track the queue dynamics more

closely as compared to the VFMW policies. This is because the HB and the SCB policies

do not set a fixed frame-size at the beginning of each frame, but rather make switching

decisions based on the current queue lengths. We develop sufficient conditions on the first

and second moments of service intervals that guarantee stability without requiring knowl-

edge of the arrival rates, and show that these policies satisfy these conditions. The reason

the VFMW, the HB and the SCB policies do not require the knowledge of arrival rates

is that they dynamically adapt the interswitching duration to the stochastic arrivals using

queue lengths. Numerical results regarding the application of the HB, the SCB and the

VFMW policies demonstrate that these policies outperform the well-known Max-Weight
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policy, and also that the SCB policies have a better delay performance as compared to the

VFMW and the HB algorithms.

4.1 Related Work

Switching delay has been considered in Polling models in Queuing Theory community usu-

ally in the context of a single server serving a finite number of queues (e.g., [8], [72], [77],

[114]). Steady-state queue length distribution of various Polling models with and with-

out switchover delays was analyzed in [21], where the impact of the switchover delay was

studied, and a method for computing moments of message waiting time was proposed. Sta-

bility of Polling systems under various service disciplines was studied under cyclic routing

in [8], [51], and under state-dependent routing in [45]. In this context, [24] and [124] char-

acterized mean waiting times for Exhaustive, Gated and Globally Gated service disciplines,

while [22] derived the pseudo conservation law for mean waiting times. Finally, optimal

server routing and various dominance relationships were analyzed in [72] and [77]. An

extensive review of related work in the context of Polling Systems can be found in [105]

or [114]. These works either consider a system with a single server or multiple servers

that do not interfere with each other, and usually analyze the performance of algorithms

that do not rely on queue length information, such as the Exhaustive, (Globally) Gated, or

Limited-service disciplines.

Tassiulas and Ephremides characterized the stability region of wireless networks with

interference constraints in [109] and proved throughput-optimality for the Max-Weight

scheduling policy that works without requiring arrival rate information. These results were

later extended to joint power allocation and routing in wireless networks in [86,87], and op-

timal scheduling for switches in [99, 103]. More recently, suboptimal distributed schedul-
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ing algorithms with throughput guarantees were studied in [28,69,75, 122], while [43,82]

developed distributed algorithms that achieve throughput-optimality (see [50], [84] for a

detailed review). These models do not consider the server switching delays and they fail to

provide stability when there are switching delays.

Of particular relevance to our work in the literature are the works in [26] by Brzezinsky

and Modiano, and [108], [111] by Tassiulas and Papavassiliou, which consider perturba-

tions such as switching delays in a network setting. The models and the assumptions con-

sidered in these works are significantly different from this chapter. While [26] assumes the

knowledge of arrival rates, [108] considers a deterministic setting where servers or queues

do not interfere. Furthermore, [111] proposes a policy similar to one of the policies pro-

posed in this chapter, however, the system considered in [111], i.e., a single server serving

multiple queues with asynchronous transmission opportunities in the absence of switching

delays, is significantly different from our model. After we present the results in this chap-

ter, we discuss the similarities and the differences between these works and the work in this

chapter in more detail.

4.2 Organization

This chapter is organized as follows. In Section 4.3 we describe the system considered in

more detail. We give a motivating example in Section 4.4 showing that the Max-Weight

policy is not throughput-optimal for systems with non-zero reconfiguration delays, and

build insight into the properties of stable policies. We introduce sufficient conditions for

throughput-optimality of a policy and show that the class of VFMW and the SCB algo-

rithms satisfy such conditions in Section 4.5.1. Finally, we present simulation results re-

garding the application of the VFMW, SCB, algorithms to different network models in
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Section 4.6.

4.3 System Description and Preliminaries

Consider a single-hop wireless network given by a graph structure g(AF, L) of nodes AP

and links f E 1 = {1, 2, ... , L}, where L L 1. This model can also be used to analyze

parallel queuing systems as shown in Fig. 4-2. In addition to the modeling assumptions in

Chapter 2, we model the interference constraints in the system by the set of all possible

activation vectors (schedules), I = {I, . .., 11111, where vectors I E I take non-negative

integer values. Namely, if the activation vector I(t) = (Ie(t))e. is used at time slot

t, then min {It(t), Qe(t)} packets depart from queue f. We assume that the queues are

initially empty and that the arrivals take place at the end of time slots. Under this model,

the queue sizes evolve according to the following expression.

Qt(t +1)=max{Qe(t) - I(t), O} + At(t),VE E L. (4.1)

Let H(T) = [Q(t)] i U [I(t)] I denote the full history of the system until time t and

let T (I) denote the set of all probability distributions on the set of all actions I. A control

policy ir is a mapping from H(t) to T(I) [86], [94].

When T, = 0, the stability region of this system, A0 , consists of all arrival rate vectors

A in the convex hull of the vectors in I [86], [109], i.e., A0 = {AIA E Conv{I}}. The

Max-Weight algorithm, which applies the activation vector 1* (t) = arg max Q (t) - I in
IEI

each time slot, is throughput-optimal for T, = 0. As we show in the next section, this

property of the Max-Weight algorithm no longer holds when T, > 0. Because we lose

service opportunities during the reconfiguration times, the stability region of our system
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satisfies A C A0 . We will establish that A = A0 .

4.4 Motivation

In this section we first show the instability of the Max-Weight policy in systems with non-

zero reconfiguration delays. Then, using the insight from this analysis, we give intuition

regarding the properties of throughput-optimal algorithms.

We show the instability of the Max-Weight policy for a 2-queue and single server sys-

tem with i.i.d. Bernoulli arrivals with probability p < 1/2. The set of available activation

vectors is I = {(1, 0), (0, 1)}, and the switching delay is T, = 1 slot. The stability region

of this simple system is {pjp < 1/2}. The Max-Weight policy decides to switch when the

boundary Q1 = Q2 is crossed where the prior decision is maintained on the boundary. By

construction, the queue lengths are confined to satisfy |Q1 - Q21 < 3, and there are an

infinite number of service switches almost surely (a.s.).

Lemma 10 Max-Weight policy is not throughput-optimal. Furthermore, there exists an

arrival rate P < 0.5 such that both queues grow to infinity a.s. for all p > P.

The proof is given in Appendix A. For the system considered in this example, the Max-

Weight policy decides to switch the server every time the Qi (t) = Q2 (t) line is crossed (i.e.,

the 45 degree line in the first quadrant), spending a significant fraction of the server's time

during reconfiguration. A better policy should keep the current schedule for an extended

period of time, and should minimize the fraction of time spent on switching. Moreover,

this average fraction of time spent on switching should be decreasing as the arrival rates

are get close to the boundary of the stability region. Therefore, the question that must be

addressed is how to dynamically arrange the interswitching times. In the next sections, we
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discuss 2 major classes of algorithms that decide on the next switching instant based on

queue sizes achieve the objectives listed above.

4.5 Throughput-Optimal Algorithms

In this section we present a general method of obtaining throughput-optimal algorithms

termed the Generalized Max-Weight Algorithms (GMW). These algorithms all have in

common the property that they apply the Max-Weight schedule corresponding to the be-

ginning of the current service interval for a certain duration of time. They differ in the

method utilized in determining the next switching epoch, termed the stopping rule. This

choice of the duration of the service interval is crucial as it determines stability and delay

performance of the GMW algorithms. A precise description of the GMW policies is given

below. Assume that the current switching epoch is tk, and the stopping rule utilized is E.

STRUCTURE of GMW POLICIES

1: Find the Max-Weight activation vector at time tk, I* (tk):

I*(tk) = arg max Q (t) -
IET

2: If I*(tk) $ I*(tk-1), then let the system reconfigure for T, slots.

3: Serve queues in I* (tk) until the stopping rule E is realized.

4: Repeat above for the next service interval starting at tk+1.

We first present sufficient conditions which lead to stability if they are satisfied by a given con-

trol algorithm. Next, we give examples of classes of control algorithms that satisfy such conditions,

such as the Variable Frame-Based Max-Weight algorithms (VFMW) that fixes the frame sizes at

the beginning of the service intervals. Next, we present the class of Switching Curve Based (SCB)

policies that are more adaptive to bursts in arrivals and show their throughput-optimality.
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4.5.1 Sufficient Stability Conditions

Let Xk be the length of the k + 1th service period, i.e., Xk = tk+1 - tk. In the following, a function

F(.) is called sublinear if it is a satisfies F(.) > 0 and

lm F(y) =0.
y-00 y

Theorem 4 Suppose the following conditions are satisfied under a given GMW-type control policy:

There exists a compact set C such that whenever Q(tk) is outside C, we have

i) E{XbQ(tk)] ;T + ciF(S(Q(t)))2  (4.2)

ii) E[XkIQ(tk)] c2(1 - 6(Q(tk)))F(S(Q(tk))) (4.3)

where ci and c2 are constants, 5(-) is a decreasing function of S(Q(tk)), and F(-) is a monotoni-

cally increasing sublinear function. Then the system is stable for all arrival rates A E AO without

requiring knowledge of A.

The proof of Theorem 4 is given in Appendix B. An example for function F is (Ze Qe(tk))a for

a fixed o E (0, 1). The proof is based on establishing a negative drift over the switching epochs

tk using a quadratic Lyapunov function, and then utilizing this result to establish stability of the

overall system. A given policy prescribes a stopping time that marks the end of the current service

interval. The proof is novel in that it performs a drift analysis over a period of random duration

determined by the stopping rule as a function of the queue sizes. The basic intuition behind the

proof is that if the queue sizes are large, under stable policies, total accumulated negative drift of

the queue sizes over this random service interval must overcome the total positive drift accumulated

during reconfiguration. Note that choosing the function F(.) as a sublinear function of the queue

sizes is critical. This is because GMW algorithms use the Max-Weight schedule corresponding to

the beginning of the service interval, which "loses weight" as the interval goes on. Therefore, one
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needs to make sure that the system is not subjected to this "light-weight" schedule for too long. In

particular, service intervals sublinear in queue sizes work, however, those that are linear in queue

sizes do not guarantee stability.

Next we give examples of classes of policies that satisfy the conditions of Theorem 4.

Variable Frame Based Max-Weight (VFMW) Algorithm

The VFMW policy operates over frames whose lengths are determined solely as a function of the

queue sizes at the beginning of the frame, Q(tk). The VFMW policy applies the Max-Weight

schedule I*(tk) for an interval of duration F(S(Q(tk))) slots where F(.) > 0 is a monotonically

increasing sublinear function. The VFMW policy is defined in detail in Algorithm 3.

Algorithm 3 VFMW ALGORITHM

1: Apply the GMW structure with the stopping rule EVFMw defined through the associ-

ated service period Xk:

Xk = Tr + F(S(Q(tk))),

where F(-) > 0 is a monotonically increasing sublinear function.

Theorem 5 The system is stable under the VFMW policy for all arrival rates A E AO without

requiring knowledge of A.

Proof: The stopping rule EVFMW is a deterministic function of S(Q(tk)) for the VFMW policy.

Namely, given Q(tk), the duration of the frame is fixed at Xk -' Tr + F(S(Q(tk))). Therefore, the

stability of the VFMW policy follows from Theorem 4. 0

This establishes that there exists a stabilizing policy for all A E A0 . Therefore, we have the follow-

ing corollary:
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Corollary 2 A = AO.

Under the VFMW policy the frequency of service reconfiguration is small when the queue

sizes are large, limiting the fraction of time spent to switching. Note that this frequency should

not be too small otherwise the system becomes unstable as it is subjected to a bad schedule for an

extended period of time. Indeed, frame sizes linear in queue lengths do not guarantee stability in

our framework. When the queue sizes are small, the VFMW policy gives frequent reconfiguration

decisions, becoming more adaptive.

Below we present the HB and the SCB policies which do not fix the duration of the current

service interval, but determine the next switching time according to a stopping rule based on the

current queue sizes. This gives the HB and the SCB policies the ability to switch the service schedule

instantly, making it more responsive to changes in queue sizes.

4.5.2 Hysteresis Based (HB) Algorithms

The HB policies calculate a built in bias for the current schedule at each switching instant, and wait

for this bias to diminish before the next switching decision. The HB policy is defined in detail in

Algorithm 4. We let Tk = Tr + r denote the associated stopping time. Note that the Li norm ||Q1

Algorithm 4 HB ALGORITHM

1: Apply the GMW policy structure with the following stopping rule SHB.

Stop when the following inequality is achieved

\IQ(tk + Tr +T) - Q(tk) I I HBF(S(Q(tk))),

where 0 < (HB < 1 is a fixed constant to be chosen shortly, and F(.) > 0 is the

monotonically increasing sublinear function.

for a vector Q = [Q1, ... , QN]' of N elements is given by EN1 QW.
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Theorem 6 HB algorithms stabilize the system for all arrival rates A E AO without requiring

knowledge of A.

The proof is given in Appendix C. It establishes that Tk satisfies the first and second moment con-

ditions of Theorem 4. This is because the first and second moments of the time until we observe a

change in queues lengths of size F(S(Q(tk))) is proportional to F(S(Q(tk))) and F(S(Q(tk)))2 .

Next, we introduce the SCB policies that make switching decisions based on appropriately

designed switching curves as functions of the queue lengths.

4.5.3 Switching Curve Based (SCB) Algorithms

The SCB policy is defined in detail in Algorithm 5. In Appendix D, we show that the SCB

Algorithm 5 SCB ALGORITHM

1: Apply the GMW policy structure with the following stopping rule ESCB.

Stop the current service interval if there exists a schedule I(t) that satisfies

Q(t) -I(t) > F(S(Q(t))) + Q(t) -I*(tk), (4.4)

F(.) > 0 is a monotonically increasing sublinear function.

algorithm provides stability at the decision times (frame boundaries), for all arrival rates A E A0.

Namely, the embedded Markov chain Q(tk), k E {0, 1, 2, ...} is positive recurrent, and has a finite

expectation in steady-state. However, we do not have the full stability for the SCB policy. The

technical difficulty associated with this is that the SCB policy requires a competing schedule I(t) to

pass the weight of the current schedule * (tk) by a certain margin. Because the arrival processes are

unbounded, the the last arrivals that cause the stopping event ESCB can have arbitrarily large values.

In particular, expectations of these stopping arrivals may be infinite for certain arrival processes.

Therefore, our analysis does not apply. On the other hand, if the arrival processes are bounded, i.e.,
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if Ae(t) < Ama, < oo, VE, Vt, then it can be shown, via an analysis very similar to that for the HB

algorithm in Appendix C, that XSCB satisfies the sufficient stability conditions of Theorem 4.

The technique used in Appendix D to show the stability of the SCB policy at the frame bound-

aries for general arrival processes is novel. It first shows that XscB(w) XHB(W) for all sample

paths w for an appropriate choice of the constant (HB. Next, using the definition of SCB policy in

4.4, it shows that for queue lengths outside a compact set, the one-step drift of the queue lengths is

negative with respect to the quadratic Lyapunov function. Therefore, during the time interval be-

tween the stopping events EHB and ESCB, the SCB policy keeps accumulating more negative drift

until the switching curve SCB is hit, leading to stability at the decision times.

The SCB policies employ a schedule whose weight is sufficiently close to the current Max-

Weight schedule. The stopping rules £HB and ESCB guarantee this property by making sure that

the weight of the currently active schedule is at most F(S(Q (t))) away from the Max-Weight sched-

ule. Since F(S(Q(t))) is an increasing function of S(Q(t)), the SCB policies do not switch too

frequently unlike the ordinary Max-Weight policy. Furthermore, since F(S(Q(t))) is a sublinear

function of S(Q(tk)), the system is not subjected to a possibly light-weight schedule for too long.

The main advantage of the SCB policies as compared to the VFMW policies is that the SCB

policies are more responsive (or adaptive) to bursts in arrivals. This is because the VFMW policies

determine each frame size at the beginning of the frame and stick to the schedule until the end of the

frame. Whereas the SCB policies can switch the schedule instantly if there is large burst of arrivals

to a queue that is not currently receiving any service.

The VFMW and the SCB algorithms have much lower computational complexity than the or-

dinary Max-Weight algorithm since they perform scheduling computation only once per frame. As

first suggested in [89], by using out-of-date queue length information, algorithms that operate over

frames can be implemented to perform the computation of the next schedule during the current

frame, without reducing the stability region. Therefore, letting CMW denote the computational

complexity of the ordinary Max-Weight algorithm per time slot, the VFMW or the SCB algorithms
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have CMw/E[X] computational complexity per time slot, where E[X] is the steady-state expected

frame length.

4.6 Simulations

We performed simulation experiments that determine average queue occupancy values for the Switch-

ing Curve Based (SCB), Hysteresis Based (HB), and the Variable Frame Based Max-Weight (VFMW)

policies, as well as the ordinary Max-Weight policy and the Max-Weight policy with fixed frame

sizes (MWFF). The average queue occupancy of queue t over T slots is given by T =1 Qe(t)

and the sublinear function F(.) for the SCB, HB, and the VFMW policies is chosen to be F(S(Q (t))) =

(Et Qf(t)) 0.7 . Through Little's law, the long-run packet-average delay in the system is equal to the

time-average number of packets divided by the total arrival rate into the system.

We considered a network of 4 links and 3 servers as shown in Fig. 4-2, where servers 1 and 3 are

dedicated to links (queues) 1 and 4 respectively, and server 2 is shared between queues 2 and 3. This

system can also model an appropriate single-hop wireless network. Due to interference constraints,

no two links that are "adjacent" to each other can be activated simultaneously, namely, the set of

feasible activations are given by I = [1010], 12 = [0101], and I 3 - [1001]. The stability region

for this network is given by A = Conv{I0 , Ii, I2, J3}, where I0 = [0000], and the sum throughput

bound is given by E:4 At 2. We also consider the 2-queue network described in Section 4.4,

except that we have different Bernoulli arrivals to each queue and that the switchover delay Tr is

taken to be greater than 1 in the experiments. For the two-queue system, the stability region is given

by A = {(A1, A2)A 1 + A2  1, Al, A2 > 0}.

For the two-queue network of Section 4.4, Fig. 4-3 compares the stability regions of the SCB,

VFMW and the Max-Weight policies when T, = 2. This experiment can model single-hop optical

networks where the reconfiguration time Tr is usually relatively small. Fig. 4-3 (a) confirms that

the plain Max-Weight policy is not throughput-optimal, and the points corresponding to the sudden
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Figure 4-3: The total average queue size for (a) the Max-Weight policy, (b) the SCB policy and (c) the VFMW

policy for 2 queues and Tr = 2 slots.
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jump in the plot represent the boundary of the region stabilized by the Max-Weight policy. Figures

4-3 (b) and (c) show that the SCB and the VFMW policies have bounded queue sizes for all arrival

rates inside the stability region A. Note that the HB policy applied to this network yields a similar

plot, and therefore it is not presented here.

Fig. 4-4 presents the delay as a function of throughput for the VFMW, Max-Weight and the

MWFF (with frame sizes T = 30 and T = 80) policies along the main diagonal line. The

switchover delay in this experiment, T, = 20 slots, is relatively large, which could represent a

DTN application such as mobile elements gathering data from sensors in a field. Fig. 4-4 confirms

that the VFMW policy is throughput-optimal for this system and that the system quickly becomes

unstable under the Max-Weight policy as the arrival rate is increased. In Fig. 4-4, the MWFF policy

with frame length T = 30 has similar delay performance to the Max-Weight policy for small arrival

rates, however, under this policy the system becomes unstable around A, = A2 = 0.2. Increasing

the frame length improves the stability region of the MWFF policy at the expense of delay perfor-

mance for small arrival rates. As opposed to fixed frame lengths, the VFMW policy dynamically

adapts the frame length as a function of the queue states and stabilizes the system whenever possi-

ble, while providing a delay performance that is similar to that of the Max-Weight policy for small

arrival rates.

Fig. 4-5 presents the delay as a function of throughput for the SCB, HB, and the VFMW

policies along the main diagonal line. The switching delay in this experiment is Tr = 20 slots

and the maximum sum-throughput is 2. The SCB policy has 22% maximum, 13% on average for

higher loads (Ef At > 0.2), and 3% on average overall delay saving as compared to the VFMW

policy. As compared to the HB policy, the SCB policy has 85% maximum, 77% on average for

higher loads (Et At > 0.2), and 63% on average delay saving. The SCB policy has a better delay

performance than the VFMW policy since the SCB policy is more adaptive to changes in the queue

lengths as compared to the VFMW policy. This is because the SCB policy is able to switch the

service schedule whenever the switching condition is satisfied, whereas, the VFMW policy keeps
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Figure 4-4: Delay (total average queue size) vs the throughput under the Max-Weight, MWFF and the VFMW

policies for 2 queues and T, = 20 slots.
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Figure 4-5: Delay (total average queue size) vs the throughput under the VFMW, HB, and the SCB policies

for the 4-queues and 3-servers system and T, = 10 slots.
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the current schedule until the end of the predetermined frame duration.

4.7 Related Work

In this section we discuss papers that are of particular relevance to our work. A frame based scheme

for optical networks which persists with a Max-Weight schedule during a frame of fixed duration

was considered in [26]. This scheme was shown to be throughput-optimal when the arrival rate

vector was known in advance. The fluid limit of the system was considered in [26] and throughput-

optimality was established under rate stability'. As shown in Fig. 4-4, when the arrival rate infor-

mation is not available, such schemes can be significantly outperformed by the VFMW policy in

terms of both throughput and delay.

A single server allocation problem over N parallel queues without switchover delay in a con-

tinuous time system was considered in [108], where the service of a queue can only be initiated at

certain connectivity instances that are asynchronous for different users. The server can serve only

a single queue at a given time when the connectivity instance of the queue arrives, and the arrival

times of these connectivity instances are either deterministic and periodic or according to a Poisson

process. At any time t, the future connectivity instances are available for scheduling decisions and

the service time is fixed at r seconds. As a result, the connectivity instances that arrive within the

same r-second service times conflict with each other. An algorithm similar to the VFMW algorithm

was proposed in [108] in order to stably schedule this system. Even though the idea of keeping a

schedule for a duration of time that is sublinear in queue lengths stabilizes the system in [108], this

system is significantly different than the model considered in this chapter.

A scheduling problem in a multihop network of multiple queues and servers with nonzero

switchover delay was considered in [111]. There are no interference constraints for servers or

1A queue of length Qe(t) at time t is rate stable if limto Qe(t)/t = 0. This is a weaker notion of

stability as compared to strong stability in Definition 1 which implies bounded first moments of a stationary

measure.
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queues in [111]. Namely, each server can switch independently of other servers, and all servers can

be active simultaneously. Hence, there is no global scheduling in [111], but a local scheduling that

is separate for each server, simplifying the scheduling aspect of the problem. Furthermore, the sys-

tem considered in [111] is deterministic in that arrivals and service processes do not have random

components. In order to deal with the adverse effects of switching delays, [111] arranges switching

frequencies separately for each server by giving a multiplicative bias to the queues in service based

on queue sizes. The system considered in this chapter is significantly different from the system

in [111] in that we analyze networks with arbitrary interference constraints between the servers and

the queues. Hence our results, analysis, and protocols depend on interference constraints in the

system. Moreover, we consider stochastic arrival processes which make the analysis more challeng-

ing for networks under nonzero reconfiguration delays. Furthermore, we consider various different

classes of throughput-optimal policies such as policies that choose service intervals that are deter-

ministic or randomized, and sublinear or linear functions of queue sizes.

4.8 Concluding Remarks

We investigated the scheduling problem for networks under arbitrary interference constraints and

reconfiguration delays. We showed that the Max-Weight scheduling algorithm is not throughput-

optimal for such systems and we first developed sufficient conditions on the expected inter-switching

time that leads to stability. We discussed the class of Variable Frame Based Max-Weight (VFMW),

Hysteresis Based (HB) and and Switching Curve Based (SCB) algorithms that satisfy these condi-

tions and that provide throughput-optimality 2 without requiring the knowledge of the arrival rates.

The VFMW algorithms persist with the Max-Weight schedule during an interval of duration

dependent on the queue sizes, which dynamically adapts the frame sizes to stochastic arrivals and

provides a reasonable delay performance in addition to stability. The HB and the SCB policies are

more adaptive to bursty arrivals in that these policies do not have a fixed frame-size at the beginning

2SCB algorithms are throughput optimal for bounded arrival processes.
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of each frame, but they switch based on the instantaneous queue states.

Possibly future directions include developing low-complexity distributed algorithms with large

throughput guarantees and joint scheduling and routing algorithms in multihop networks with inter-

ference constraints and switchover delays.

Appendix A - Proof of Lemma 10

Let tk denote the epoch immediately after kh reconfiguration and let Mk Qi (tk) + Q2(t4), k =

0, 1, 2, - -- , where Mo = 0 by definition. Consider the total drift along the Qi(t) = Q2(t) line

(the main diagonal) and suppose without loss of generality that queue 1 is being served. We call

slot t a freeze slot if the queues retain their state in the next slot, i.e., Q(t + 1) = Q(t). Note that

all other state changes are called progressive since they bring the queue states closer to the main

diagonal. A freeze slot happens with probability p(l - p) and hence the number of freeze slots until

a progressive state is ~ Geom(1 - p(1 - p)) with mean A . Furthermore the drift along the

main diagonal per service slot is, - (1 - 2p) , which is toward the origin for p < 1/2. Observe

that at most 4 progressive state changes will lead to Q2 > Qi, where for small queue sizes smaller

number of progressive steps may cause switching. It follows that the expected accumulated drift

during a service interval is bounded from above by,

4 (1 - 2p) x (. p 1
±p2)

During the 1 slot reconfiguration the drift away from the origin is 2p. Therefore, the expected drift

along the main diagonal must be positive provided,

2p-4(1-2p) x 1+ Al11- 7A 2)> 0, (4.5)
1 -p+p
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which implies p > 0.42049-. We have thus shown that there is a p < 1/2 such that the sequence

Mk satisfies

E [Mk+lIMk| Mk + 7,

where y > 0 is a fixed constant. We now show that Mk -+ 00 a.s. which in turn implies Qe(t) - oo.

Define Zk via Mk+1 = Mk + Zk, k = 0, 1, 2,--- and observe that Zk 6. Define Rk 1Mk+1'

and observe

E 1 IT] 1 EZk
Mk+1 + 1 Mk + 1 -(Mk + 1)(Mk + 1 + Zk)]

1 n7

SMk+1 (Mk+1)(Mk+1+6)'

from which it follows that Rk is a nonnegative supermartingale where Tk is an appropriate sigma

algebra at time slot tk. Hence limk Rk < 1 exists as. and so does limk Mk. Finally

E [Ro] < liminf E [Rk]< 1 - [
k k=0I (Mk + 1) ( Mk +7) 'k=O

which implies

0 = lim inf E
k ( Mk + 1) (k + 7)]

> lim inf E n
k I(Mk +7 I

This shows that lim infk(Mk +7)- 1 = 0, a.s. from Fatou's lemma and since actually there is a limit

we have limk Mk = oo a.s. But this implies limk Qt(tk)oc a.s., since IQ1 - Q21 _ 3. Moreover

if t satisfies, tk t < tk+1 then IQj(t) - Qe(tk)I 4, f = 1, 2 so that Qe(t) -+00 a.s. Since

00 = E [limt Qt(t)] lim inft E [Qt(t)I so the stability criterion does not hold.
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Appendix B - Proof of Theorem 4

Consider the following Xk-step queue evolution expression:

Qe(tk + Xk) max Q(tk)-(Ie(tk+r), +Z A(tk +-).

-r=0 r=0

To see this, note that if EZZ If(tk + r), the total service opportunity given to queue f during

the kth frame, is smaller than Qe(tk), then we have an equality. Otherwise, the first term is 0 and

we have an inequality. This is because some of the arrivals during the frame might depart before

the end of the frame. We first prove stability at the frame boundaries. Squaring both sides, using

max(O, x) 2  2 x, Vx E R, and Ij(t) pmax, Vt we have

Xk-
1

Qt(tk + Xk)2-ft 2 k Xmax + 1 ( A,(tk +7))
r=O

kk-1 Xk-1

- 2 Qj(tk) (>1(tk + T)-ZA(t k + -0)). (4.6)
r=0

Define the quadratic Lyapunov function L (Q(t)) = 1 Q (t), and the Xk-step conditional Lya-

punov drift

AXk(tk) AlE [L(Q(tk +Xk)) - L(Q(tk))IQ(tk)]
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We sum (4.6) over the queues, take the conditional expectation and use Wald's equality to have the

following Xk-step drift expression

Axk(tk) aL naxE[X2Q(tk)]+Z

xk-)

E [(E At (tk +r 2|)Q(tk)
. =0I

FXk-1
+ 21E[XkIQ(tk)IZQt(tk)AN-2ZEQE(tk)E E t~k

t =
r) IQ(tk)] (4.7)

where B = A ax + pmax is a constant and we used the fact that the arrival processes are i.i.d. over

time, independent of the queue lengths. Now we apply the following facts:

* E [x IQ(tk)| TrF + c1F(S(Q(tk)))2

* E[xkIQ(tk)] c2(1 - 6(Q(tk)))F(S(Q(tk)))

" Recalling that the system is idle for the first Tr slots of the frame, we have

E, Qt(tk)E [z"_~ It(tk + r)IQ(tk)]=(E[XkIQ(tk)] - Tr)Q(tk) - I*(tk)

" for any arrival rate vector A that is strictly inside A0 , there exist real numbers #1, , 11

such that #> 0, Vj E 1, ... ,111, E 1 0i = 1 -, eforsome c > 0 andA = j 2 1 #iIi [26].
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Using these results in (4.7) we have

Axk(tk) Ljinax(T + F(S(Q(tk))2 )) +( E
e

Xk-1

( E
.r=o

A(tk + ) 2IQ(tk)]

III
+ 2E[xkIQ(tk)]Q(tk) - ] s1- -2(E[xkIQ(tk)] - T)Q(tk) - I*(tk)

j=1

Lpinax(Tr + F(S(Q(t )) 2 )) +ZE AI(tk + T) )2IQ(tk)]

- 2c2(1 - 6)F(S(Q(tk)))Q(tk)- I*(tk)(c) + 2TQ(tk) -I*(k), (4.8)

where in the last inequality we used the fact that Q (tk) - I*(tk) 2 Q(tk) - I,VI E 1. We use the

following lemma in [93] to bound the second term in (4.8):

Lemma 11 Let {Y} be a sequence of independent variables E[Y] = Aj, Var(Y) = o? < oo. Let

T be a stopping time T E o-(Yi, ..., Yn, ...), and T be an integer-valued random variable independent

of the Ys but having the same distribution as T. Let ST = Yi + Y2 + ... + YT. Then,

E[ST] 5 2E [Sj2] = 2E [
21riJ

- T

+ 2E( Ai)]. (4.9)

Applying this result to the second term in (4.8), we have

A(tk+r)) 2Q(tk)]

kk-1

S2E ( A2ax
I r=o

- A, Q(tk)] A\) 2 Q(tk)1+2E |

= 2 - A2)E[xkiQ(tk)] + 2AE[x2Q(tk)]
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Using E[X2IQ(tk)] T + c1F(S(Q(tk)))2, we have

E[
.r=o

At(tk + ) 2 Q(tk)] c3 F(S(Q(tk)))2 (4.10)

where c3 is an appropriate constant. Using this result in (4.8) we have

Axk(tk) LymaxT,2 + (Lmax + c3 )F(S(Q(tk)))2

- 2F(S(Q(tk)) (C2(1

Since F(S(Q(tk))) is a monotonically increasing function of F(S(Q(tk))), and 6(S(Q(tk))) is a

monotonically decreasing function of S(Q (t)), there exists a constant c4 such that, if S(Q (tk)) >

c4, C2(1 - 6)E - F(S(Q J,))) 0:

Axm(tk) L/LaxT, + (Lnax + C3 )F(S(Q(tk)))2 - 25 1F(S(Q(tk))Q(tk) -I*(tk).

Hence, for S(Q(tk)) > c4, we use Q(tk) -I*(tb) > Et QN(tk) to have

Axk(tk) LymaxTr + (Lpax + c3 )F(S(Q(tk)))2 
- F

Since F(.) is a sublinear function of S(Q(tk)), there exists a constant c such that

Axk(tk) c - 52 F(S(Q(tk))S(Q(tk)), (4.11)

where 62 A 61/L. Taking expectations with respect to Q(tk), we have

E[L(Q(tk+l))] - E[L(Q(tk))] 5 c - 62E [F(S(Q(tk))S(Q(t))] .
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Writing a similar expression over the frame boundaries tk, k E {0, 1, 2, ..., K}, summing them and

telescoping these expressions leads to

K-1

L(Q(tK)) - L(Q(O)) 5 Kc - J2 Z1E[F(S(Q(tk))S(Q(tk))].
k=O

Using L(Q(tK)) > 0 and L(Q(0)) = 0, we have

1 K-1< 
0

KJE E[F(S(Q(t))S(Q(tk))] < C
k=O

This implies that

K-1

lim sup - ) E [F(S(Q(tk))S(Q(tk))] < < oo.
KFxr K k=h a2

Furthermore, we have

K-1

lim sup k f E[Qe(tk)] _ < o.
K-+cx k=O . 2

(4.13)

(4.14)

This establishes stability (as defined in Definition 1) at the frame boundaries tk, k E {0, 1, 2, ...}.
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Now, we have for all frames k E {0, 1, 2, ...},

5Qf(tk + T)
e

Xk
1

:5 E (cQ(tk)
-r=0 f

XkQt(tk)

Xk-1

+ E At(tk +T1)
-ri=0

Xk-1

+Xk E

Xk-
1

r=0

XkQe(tk)

Xk-
1

r 1=0

A tk+ Ti)

1 +A(tk+r))

1+ A j(tk+ r1)))

Taking conditional expectation we have

(Qt(tk +T)IQ(tk)lE I _< E [xkIQ(tk)] E Q(tk)+( E
t f [( Xk-1

5 (1
ri=0

+ A(tk +71i)) 2 Q(tk)

where we used the fact that arrival processes are i.i.d. and independent of the queue lengths. Ap-

plying Lemma 11 to the second term on the right hand side

Xk-
1

E ( Z (1 + A(t + )) Q(tk)J
r=0 .I

Xk 1

S2E E(1 +
.r-0

2A + Anax -

+ 2E (Xk-1
EO(1

ri=0

+ Aj) - IQ(tk)

2(A2x + 1+ 2A, - A2)E[Xk|Q(tk)]

+ 2(1 + A2)E[x2IQ(tk)].
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r=O

Xk-

E (E
r=0

A) Q(tk)]

(4.15)
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Applying this result and using E[ xIQ(tk)] Tr + ciF(S(Q(tk)))2, we have

Xkl 1

Qf(tk + T)IQ(tk) c5 (S(Q(tk)) + F(S(Q(tk)))S(Q(tk)) + F(S(Q(tk)))2 )

where c5 is an appropriate positive constant. Taking expectation w.r.t. Q(tk) we have

Qt(tk + r1 < C5 (JE [S(Q(tk))] + E [F(S(Q(tk)))S(Q(tk))] + E [F(S(Q(tk)))2])
Xk-1

E =

Now, for any given large T, let KT be the number of frames up to and including T. We have

KT-1

E [Qj(t)] ! E 3c6 E [F(S(Q(t k)))S(Q(tk))]

T-1

t=0 f k-0

Using renewal theory arguments, we establish in Lemma 12 that KT/T converges to a constant as

T tends to infinity. Therefore, dividing both sides by T, using the fact that T > KT for any T,

taking the lim SUPT of both sides, using (4.13) and 0 < a < 1, we have

FKT I T-1 L

limsup E E '[Q(t)] < 00.
T-~oT KTt=O £e=d

(4.16)

Therefore, the system is stable.

Lemma 12 We have that limTao KT/T is a finite constant. Additionally,

" the queues are all empty infinitely often (i.o.) with finite mean recurrence time slots

" the queue sizes follow an irreducible and positive recurrent Markov chain

" the stationary measure of the Markov chain has bounded first moments.
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Proof: We first show the results for the queue process at the frame boundaries. Using this, we

establish the results everywhere. The queue processes at the frame boundaries (Qe(tk))k>o evolve

according to a discrete time Markov chain on countable state space No. We first prove the positive

recurrence of the (Qe(tk))kyo Markov chain. From (4.14), the Lyapunov function is a non-negative

supermartingale outside some compact set containing the origin, call C. Therefore, C is visited i.o.

and hence (Qe(tk))k>o is an irreducible and positive recurrent Markov chain. Therefore, there is a

stationary distribution, QI, such that Q(tk) converges in distribution to Qf. From (4.14) we see

that

C
lim inf E[Qe(tk)] < o . (4.17)

By Theorem 5.3 of Billingsley [19], we have

E[Qf ] < lim inf E[Qe(tk)] < 00, (4.18)

therefore, the stationary distribution has finite first moments. Since there is a positive probability of

no arrivals to each queue and that the arrival processes to each queue are independent, the queues

will empty and stay empty after a bounded number of frames with positive probability. Hence, the

all queues empty state at the start of the frame is in the Markov chain. Therefore, all queues are

empty i.o. over frames and the process of all-empty queue sizes at the frame boundaries is a renewal

process with finite mean. This establishes the theorem at the frame boundaries.

Now we show that the mean number of slots between two renewal frames is also finite. The

above argument shows that the mean number of frames between all queues empty has finite mean

in frames. Define the total duration of the first K frames in slots to be,

K

SK ZXk-
k=1
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It follows from (4.13) that

lim sup -E[SK) < - < 00. (4.19)
K- oo K J2

Next, define X, to be the duration of the nth renewal period in slots. Xi is the total time in slots to

the first frame boundary after time 0, with all queues empty. Let s - E[X 1 ], and note for now that

s may be infinite. Finally let mo < oc be the finite expected number of frames between all queue

empty frames. Given K, a number of frames, define M(K) to be the number of renewals, which

have taken place up to and including frame K. We have

MK) X (4.20)

M(K) increases with K, and by the SLLN and the definition of M(K) we have

n M(K) ± = a.s.
K-+ox K mO

Consider the following extended version of the SLLN which argues that if the mean of the

variables involved is infinite, the time average is also infinite: Suppose that Yn 2 0, n = 1, 2,...,

are i.i.d. and such that E[Y1] = o. Define, YK - min{Yn, K} for K > 0. It follows that

MK = E[YK] -* E[Y1] = oo, by the Monotone Convergence Theorem. Also,

N 1 N

mK = N YK <; liminf Yn, a.s.
N ~NN

n=1 n=1

Hence, it follows that

lim ZYn=00, a.s.
n=1
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Now, applying the extended version of the SLLN to X,, we have

li 1 M(K)
lim 1 M(XK) s < oo a.s.

K-+oo M(K) _ Xn
n=1

Rewriting (4.20), we have

K K >
M(K) 1 M(K)X ~M(K) n=1 f

It follows that when we take a sequence Km -+ 00 such that we converge to the lim inf of the

numerator, we have

im inf r<4Su
MO linK ;> 1 a.s.

S

Taking expectations and applying Fatou's lemma we have

E[lim inf K] _ liminf -E[SK] <r limsup E[SK) < < 00,

which follows from (4.19). Hence,

s < mc/5 2 < 00.

This establishes that KT/T converges to the finite constant mo/s as T tends to infinity. Since s is

finite, using the fact that the queue sizes at the frame boundaries are stable and they empty i.o., the

queues within the frame boundaries empty with a frequency at least 1/s. Therefore, the mean time

in slots between all queues empty for the full process is finite.

Note that the service opportunity given to a queue depends on the queue sizes at the beginning

of the frame. Therefore, the queue sizes that are within the frame boundaries do not follow a Markov

chain. However, if we define a new process with state H(t) - (Q(t), Q(tk), E(t)), where E(t) is

the age in the current frame (i.e., t - tk < Xk), then the new process H(t) is a Markov chain. This
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irreducible Markov chain hits the state H(t) = (0, 0, 0) i.o. due to above arguments. Therefore, it

is positive recurrent and it has a steady state distribution H = (Q, Qf, E).

Finally, using (4.14) and a similar argument that lead to (4.18) gives

E[E] < oo,

E[Qf] < lim inf E[Qe(t)] < C < 00.
j

Therefore, the first moment of the stationary distribution of the Markov chain H(t) is finite. 0

Appendix C - Proof of Theorem 6

The event that

IIQ(tk + Tr + T)- Q(tk)I | | HBF(S(Q(tk))),

happens if a single queue size changes by an amount M = (HBF(S(Q(tk))). Since we utilize the

Max-Weight schedule w.r.t. to the queue lengths at time slot tk, as we show next, there always exists

a queue, say queue e, with negative drift (It > At) and length larger than (HBF(S(Q (tk))) for some

0 < (HBF(S(Q(tk))) < 1. For A strictly inside A, there exists and c such that (1 + c)A E A.

Therefore, the Max-Weight schedule I* (tk) = [Ii, ..., I*] satisfies

S Qt(tk)1 I t Qt(tk) At + E Q Q(t).

Therefore,

ZQ (tk)(If - At) e(Q(tk).
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Since some queues might have negative contributions to the sum on the left hand side, we have

Qt(k)J - At) EQ (tk)

Let f* be the queue with the maximum contribution to the sum on the left hand side. We have

Qt tk ! E ZQ(tkx

where we let (HB a . We will use the time until Q* (tk) decreases by M in order to upper

bound XHB-

Lemma 13 (Upper Bound on Second Moment of XhB)

E[XHBIQ(tk)] < T,2 + c1F(S(Q(tk)))2 . (4.21)

where ci is a constant.

Proof:

Let Y be the random variable denoting the time until Q* (tk) decreases by 2M. Note that we

work with the decrease amount of 2M since the length of queue f* might increase during reconfig-

uration. We have

XHB st Y-

In each time slot after reconfiguration, the Qf- (t) decreases by Dj.. Therefore, the random variable

Y satisfies

2M FY/De* 1

T=0

This expression holds, since considering queue f* in isolation, the time until Q2(tk) decreases by

M is at least [2M/Dj-] plus all the descendants of each of the [2M/Dt-] new arrivals. To see this,
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consider queue f* in isolation and note that since De. > Aj., queue f* gets empty with probability

1. Therefore, queue e* must decrease by M. Using the fact that the service rate is Dj., we have the

above equality for Y. Let M = F2M/D.]. Considering queue e* in isolation, the time to decrease

by M can be expressed as the summation of M busy periods:

Y = E Bj,
i=1

where Bi are i.i.d. random variables denoting the time to decrease by De. for an isolated queue of

i.i.d. arrival process A 2 (t) and constant service rate D.. Bi have finite first and second moments

since we have E[A 2 (t) 2] 5 A2 for all t. Let E[B |Q(tk)] B2 which implies E[B1|Q(tk)]
- max 1Q(k B wihipisE[1IQ(k

B, where B is a constant independent of Q(tk). Finally, conditional on Q(tk), M is independent

of the future arrivals (A2(tk + T));>o. Therefore,

E[xHBIQ(tk)I 2 kE[Y
2 QWW)] = E[P|Q(tk)]E[B2 |Q(tk)]+ E[( -1) 1|Q(tk)]E [B1 IQ(tk)] 2 ,

where we used the independence of the random variables Bk in the last inequality. Simplifying,

E[X2BQk 20HBF(S(Q(t))) B 2 + B 2 2 HBF(S(Q(tk))) 2
HBQtk] I Dj- I BDf.

Tr + c1F(S(Q(tk)))2,

where ci is an appropriate constant. 0

Lemma 14 (Lower Bound on First Moment of XHB)

E[xHBJQ(tk)] C2(1 - J(Q(tk)))F(S(Q(tk))), (4.22)

where 6 is a decreasing function of S(Q(tk)).
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Proof:

First consider the case where switching occurs right after the current reconfiguration interval,

i.e., at time slot tk + T,. This event will be denoted by Ae:

Ae= w : [(At(tk+T) > HBF(S(Q(tk)))}.
r=0 .f=1.

By Markov's inequality, the strong Markov property, and independence of the arrivals following

switching,

P{Ae} _ HBF(S(Q(tk)))

Letting 6 -- LTr Et At/ HBF(S(Q(tk))), 6 a decreasing function of S(Q(t4)), and it can be

arbitrarily small for Q(tk) outside a large enough compact set.

Now consider the case where switching does not occur immediately after reconfiguration. To

obtain a lower bound we may consider the arrivals and departures separately and add their changes.

This leads to an earlier stopping time, TE(w) < XHB(w), strictly finite such that,

TE-1 TE-1

E E A(tk + T) + E E D(tk + T) HBF(S(Q(tk)))
r=0 t Tr e

Note that since we are obtaining a lower bound, we may as well work with virtual as opposed to

actual departures for the time during reconfiguration and for queues that empty. Applying optional

stopping we find that [19],

TE-1

E E E (At(-r) + Iz(r)) =E [TE] At + (E [TE] - Tr ) EIt
r=0 t . I tf
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Therefore,

E [XHB j E :HBF(S(Q(tk)))
(Ee At + It)

where the inequality follows from the fact that at stopping the process must exceed (HBF(S(Q(tk)))

by definition. This is the required lower bound on E [XHBIQ(tk))

Now conditioning on XHB > Tr and XHB Tr we have

E[XHBIQ(tk)= P{XHB > TrIQ(tk)}E[XHBIQ(tk),XHB > Tr]

+ P{XHB =TrIQ(tk)}E[XHBIQ(tk),XHB = Tr]-

Finally, we obtain

E[XHBIQ(tk)I (1 - JHBF(S(Q(tk)))

where 6 is a decreasing function of S(Q(tW)). 0

The stability of the Bias-Based policies now follow from lemmas 13, 14 and Theorem 4.

Appendix D - Stability of the SCB Algorithm at Decision

Epochs

Let XSCB be the stopping time associated with the stopping rule ESCB in (4.4). We define EHB

such that XHB(w) < XscB(w) for all sample paths w, and we show that stability of the HB policy

at the frame boundaries (frame-stability) implies the frame stability of the SCB policy using the fact

that the schedule currently employed under the SCB policy is at most F(S(Q(t))) away from the
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current Max-Weight schedule. Specifically, define the quadratic Lyapunov function:

L

L(Q(t)) = Qt(t)
i=e

(4.23)

Define the single-step drift:

A1(t) - E [L(Q (t +1)) - L(Q (t))|Q(t)]

We first show that for Q(tk) outside a compact set, the single-step drift for the SCB policy is nega-

tive.

1-Step Drift

The following I-step queue evolution expression holds for the SCB policy whenever the system

is not in a reconfiguration interval.

Q(t + 1) max {Qt(t) - It(t),0} + At(t). (4.24)

Squaring both sides, using max(O,z) 2 < X2,Vx E R, Ie(t) _< ymax,Vt, and max(Qt(t) -

It(t), 0) < Qe(t) we have

Qe(t + 1)2 _ Q,(t)2 < 1 + At(t)2 - 2Q(t)(It(t) - Ae(t)) (4.25)

Summing over the queues and taking conditional expectations we have

Ai(t) LB +2ZQf(t)e - 2ZQt(t)E[If(t)IQ(t)]

where B 1±+ A .ax, Now, for the SCB policy, the weight of the current schedule is at most
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F(S(Q(t))) away from the weight of the Max-Weight schedule at time t, I* (t)

Q(t)E[It(t)|Q(t)] > Q (t) - I*(t) - F(S(Q(t))). (4.26)

For any arrival rate vector A that is strictly inside A, there exist real numbers al, ... , al1 such that

a ;> 0, j E 1,...,, E ai = 1 -c for some E > 0 and A = E aiI Therefore,

Al(t) < LB+2Q (t) -(a Ii)-2 (Q (t) -I* (t) - F(S(Q (t)))

= L (B + F(S(Q(t))) ) +-2Q(t) - I*(t)(1 - c) -2Q(t) - I*(t)

= L (B + F(S(Q(t)))) - 2eQ(t) -I*(t)

L (B+ F(S(Q(t))) QE (t)

--Qt~t)

<KZQ(t)

as long as Q(t) is outside a compact set C. We can further bound right hand side by

it E- Q(t),

as long as Q (t) is outside a compact set C, where for the last inequality we used the fact that the

queues that do not belong to the current schedule can only increase their queue lengths. Therefore,

the 1-step drift is negative during the whole frame (except reconfiguration interval) as long as the

queue sizes are outside a compact set, denoted by C.

We now show that the stopping time XHB happens before the stopping time XSCB if the queue

lengths are outside a compact set. The intuition behind this result is that the stopping rule for XscB,
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i.e., the event that the weight of some schedule becomes larger than the weight of the current sched-

ule by an amount F(S(Q(tk))), necessitates a change in the queue sizes of the order F(S(Q(tk))).

Lemma 15 We have XHB(W) XSCB(w) for all sample paths W if Q (tk) is outside a compact set

C.

This lemma is proved in Appendix E. As an example, if F(IIQ(tk)I) is chosen to be IIQ(tk)||,

then the reverse condition that XHB(W) > XSCB(w) leads to

(1 - (Lymax HB) 2)IIQ(tk)II < (HB ||Q(tk)II,

which is violated if IIQ (tk)|| >2B/(1 (Lr ) 2 ) 2

Lemma 16 (Accumulation Lemma) Let Lt ;> 0, t = 0, 1, 2, ... be a non-negative supermartin-

gale with respect to the filtration ht, t = 0, 1, 2, - , satisfying,

E [LtIF-1] = Lt-1 - ot

where 6t > 0 is a nonnegative previsible decrement with (necessarily) finite expectation. Further let

T be a stopping time which is finite a.s. then

T~

E[LO] - E [LT] >_ E [&I .
t=1.

This lemma is proved in Appendix F. This result has a clear interpretation in gambling terms: ot

represents a loss to the gambler which is known in advance. Lemma 16 then states that under any

rule to stop play, the expected loss will be at least the sum of the expected previsible losses.

We apply this lemma to the L(Q(t)) process for the SCB policy where Jt - f Etger gk) QA(tk).

Considering the two stopping times for the HB and the SCB policies, XHB and XSCB, such that

120



XHB(w) XScB(w), applying the Strong Accumulation Lemma starting from time XHB(w) in-

stead of time 0 until the time XscB (w) yields

E [L(Q(tk + XSCB))] E [L(Q(tk + XHB)) (4.27)

whenever Q(tk) is outside the compact set C of Lemma 15. We established in Appendix C that

XHB satisfies the conditions of Theorem'4. Therefore, the following expression, similar to (4.12) in

the proof of Theorem 4, holds for XHB:

E[L(Q(tk + XHB))| - E[L(Q(tk))] 5 C -62E [F(S(Q(tk))S(Q(tk)).

Therefore, (4.27) implies that

E[L(Q(tk + XSCB))| - E[L(Q(tk))| 5 C - 62E [F(S(Q(tk))S(Q(tk))I.

Writing a similar expression over the frame boundaries tk, k E {0, 1, 2, ..., K}, summing them and

telescoping these expressions leads to

K-i

L(Q(tK)) - L(Q(O)) ! KC - 2 ZE[F(S(Q(tk))S(Q(tk))1.
k=O

Using L(Q(tK)) ; 0 and L(Q(0)) = 0 we have

1 K-1
E E [F(S(Q(t))S(Q(tk))] < oC .
k=0

This implies that

1 K-1
lim sup E [F(S(Q(t))S(Q(t))] < < oo. (4.28)
K-+cc KO2
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Furthermore, we have

K-1

lim sup IEEZE[Q(tk)] < 00.
K-+oo k= 2

(4.29)

This establishes stability of the SCB policy at the frame boundaries tk, k E {0, 1, 2, ...}.

Appendix E - Proof of Lemma 15

Let De(t) be the actual number of packets departing from queue f (as opposed to service opportu-

nities) at time slot t, and let A(t) and D(t) denote the vector of arrivals and departures at times slot

t respectively. Fix a sample path w. We suppose that the stopping time XSCB has happened, and

show that XHB must also have happened. Our supposition implies that

<b a Q(t) - I*(t) - Q(t) -I*(tk)

XSCB-1

- (Q(tk)+ (A(tk +T) - D(tk + T))) - (I*(t) - I*(t))
T=0

> F(S(Q(t))) (4.30)

Using Q(t) -I*(t) Q(t) L- *(t), we have from Schwartz's Inequality

XSCB-1

b | I E (A(tk+T)-D(tk+T))||Lymax-
T=O

Assume for contradiction that XHB has not happened. Then, we have

XSCB-1

|1 | (A(tk +r) - D(tk +T))|| HBF(S(Q(tk))).
T=0

(4.31)
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That is, because of our assumption that XHB has not happened, the stopping rule for XHB cannot

have been satisfied at XSCB. Therefore,

<D < Ljmax HBF(S(Q(tk))).

Furthermore, from (4.30) we have

XSCB-
1

E
r=0

> F (IIQ(tk)II
XSCB-

1

-|| -110

(A(tk+T) -D(tk+T))||

(A(tk + T) - D(tk + T))||

(4.33)

where we used (4.31) for the last inequality. Combining (4.32) and (4.33) we have

LLmax6HBF(|IQ(tk)lI) : F(||Q(t y|| - 6HBF(IIQ(tk)I|)). (4.34)

We choose (HB such that Lymax HB < 1. Then, for sufficiently large IIQ (tk)| , (4.34) is violated,

and we have a contradiction.

Appendix F - Proof of Lemma 16

Define MO := LO

t

r=1
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(4.32)

> F (||Q(tk)|| - HBF(S(Q(tk)))),

<D > F ||IQ(tk)|| +| 1



then M > 0 is a nonnegative supermartingale. This follows as

E [Mt|Ft _1 ] = E [LtIFt-1| + E ( o5|Ft-1, t 1

t-1

SLt-1 + E57
r=1

SMt_

where the sum is understood to be 0, if t = 1.

Since this is the case, as a consequence of Fatou's lemma, it follows that,

E [M] - E [MT] 0

which upon substitution implies

T 1'
E [ Lo| - E [LT| -> E 67r
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Chapter 5

Dynamic Server Allocation over Time

Varying Channels with Switching Delay

In the previous chapter, we studied the impact of switching delays for networks with static chan-

nels, i.e., networks with constant channel gains over time. Time variation in channel gains is a

common property in wireless networks due to phenomenon such as multipath fading, shadowing

etc. The topic of this chapter is to study the effect of server switching delays on throughput and de-

lay performance of wireless uplinks and downlinks subject to time-varying channel gains as shown

in Fig. 5-1. As compared to the previous chapters, the combination of time-varying channels and

switching delays results in fundamental changes in system stability and calls for new scheduling

algorithms. We show that the stability region changes as a function of the memory in the channel

processes, and it is significantly reduced as compared to systems subject to solely either switching

delay or time-varying channels. Furthermore, we show that throughput-optimal policies take a very

different structure from previously proposed network scheduling algorithms such as the celebrated

Max-Weight or Exhaustive policies.

More specifically, we consider a dynamic server allocation problem over parallel queues with

time-varying channels and server switching delay between the queues. At each time slot, the server

decides either to stay with the current queue or switch to another queue based on the current con-
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nectivity and the queue length information. In the first part of the chapter we consider a two-queue

system and develop fundamental insights for the problem. We first consider the case of memoryless

(i.i.d.) channels where we characterize the stability region explicitly and show that simple Exhaus-

tive type policies that ignore the current queue size and channel state information are throughput-

optimal.

Next, we consider the Gilbert-Elliot channel model which is a commonly used model to abstract

physical channels with memory [1], [52]. We develop a new methodology to characterize the stabil-

ity region of the system using state-action frequencies which are steady-state solutions to an MDP

formulation for the corresponding saturated system, and characterize the stability region explic-

itly in terms of the channel parameters. Using this state-action frequency approach, we develop a

frame-based dynamic control (FBDC) policy and show that it is throughput-optimal asymptotically

in the frame length. The FBDC policy is the only known policy to stabilize systems with randomly

varying connectivity and switchover delay and it utilizes the state-action frequencies of the MDP

formulation in a dynamic queuing system. Moreover, we develop a simple 1-Lookahead Myopic

policy that provably achieves at least 90% of the stability region, and myopic policies with 2 and

3 lookahead that achieve more than 94% and 96% of the stability region respectively. Finally, we

present simulation results suggesting that the myopic policies may be throughput-optimal and more

delay efficient than the FBDC policy.

In the second part of the chapter we consider the model with arbitrary finite number of parallel

queues. For memoryless (i.i.d.) channel processes, we explicitly characterize the stability region

and the throughput-optimal policy. For channels with memory, we show that the stability region

characterization in terms of state-action frequencies extends to the general case and establish a tight

outer bound on the stability region and an upper bound on the sum-throughput explicitly in terms of

the connectivity parameters. We quantify the switching loss in sum-throughput as compared to the

system with no switchover delays and show that simple myopic policies achieve the sum-throughput

upper bound in the corresponding saturated system. We also show that the throughput-optimality

126



AN

Server

Figure 5-1: System model. Parallel queues with randomly varying connectivity processes

C 1 (t), C 2 (t), ... , CN (t) and ts = 1 slot switching time.

of the FBDC policy extend to the general case. In fact, the FBDC policy provides a newframework

for achieving throughput-optimal network control by applying the state-action frequencies of the

corresponding saturated system over frames in the dynamic queueing system. The FBDC policy is

applicable to a broad class of systems whose corresponding saturated model is Markovian with a

weakly communicating and finite state space, for example, systems with arbitrary switchover delays

(i.e., systems that take any finite number of time slots for switching the server from a given queue to

another queue) and general Markov modulated channel processes. Moreover, the framework of the

FBDC policy can be utilized to achieve throughput-optimality in systems without switchover delay,

for instance, in classical network control problems such as those considered in [87], [99], [110],

[125].

5.0.1 Related Work

In the seminal paper [110], Tassiulas and Ephremides considered a parallel queuing system with

randomly varying connectivity where they characterized the stability region of the system explicitly

and proved the throughput-optimality of the Max-Weight (or the Longest-Connected-Queue First)

scheduling policy. These results were later extended to more general systems in [86] and [87]. The

effect of delayed channel state information was considered in [60,91, 125], which showed that the

stability region is reduced and that a policy similar to the Max-Weight algorithm is throughput-
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optimal.

Perhaps the closest problem to ours is that of dynamic server allocation over parallel channels

with randomly varying connectivity and limited channel sensing that has been investigated in [1,

73, 127] under the Gilbert-Elliot channel model. The saturated system was considered and the

optimality of a myopic policy was established for a single server and two channels in [127], for

arbitrary number of channels in [1], and for arbitrary number of channels and non-interfering servers

in [2]. The problem of maximizing the throughput in the network while meeting average delay

constraints for a small subset of users was considered in [85]. The average delay constraints were

turned into penalty functions in [85] and the the theory of Stochastic Shortest Path problems, which

is used for solving Dynamic Programs with certain special structures, was utilized to minimize the

resulting drift+penalty terms. Finally, a partially observable Markov decision process (POMDP)

model was used in [29] to analyze dynamic multichannel access in cognitive radio systems. These

existing works do not consider the server switching delays.

Switching delay has been considered in Polling models in queuing theory community (e.g.,

[8,72,77, 114]), however, randomly varying connectivity was not considered since it may not arise

in classical Polling applications. A detailed survey of the works in this field can be found in [114].

5.0.2 Main Contribution and Organization

The main contribution of this chapter is solving the scheduling problem in parallel queues with

time-varying channels and server switching delays for the first time. For this, we provide a new

framework for solving network control problems via characterizing the stability region in terms of

state-action frequencies and achieving throughput-optimality by utilizing the state-action frequen-

cies over frames.

This chapter is organized as follows. We consider the two-queue system in Section 5.1 where

we characterize the stability region together with the throughput-optimal policy for memoryless

channels. We develop the state-action frequency framework in Section 5.1.3 for channels with

memory and use it to explicitly characterize the system stability region. We prove the throughput-
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optimality of the FBDC policy in Section 5.1.4 and analyze simple myopic policies in Section 5.1.5.

We extend our results to the general case in Section 5.2 where we also develop outer bounds on the

stability region and an upper bound on the sum-throughput achieved by a simple Myopic policy. We

present simulation results in Section 5.3 and conclude in Section 5.4.

5.1 Two-Queue System

5.1.1 System Model

Consider two parallel queues with time varying channels and one server receiving data packets

from the queues. Time is slotted into unit-length time slots equal to one packet transmission time;

t E {0, 1, 2, ...}. It takes one slot for the server to switch from one queue to the other, and m(t)

denotes the queue at which the server is present at slot t. Let the i.i.d. stochastic process Ai(t)

with average arrival rate Ai denote the number of packets arriving to queue i at time slot t, where

E[A?(t)] <; A2, i E {1, 2}. Let C(t) = (C1 (t), C 2 (t)) be the channel (connectivity) process

at time slot t, where Ci(t) = 0 for the OFF state (disconnected) and Ci(t) = 1 for the ON state

(connected). We assume that the processes A 1 (t), A2 (t), C1(t) and C 2 (t) are independent.

The process Ci(t), i E {1, 2}, is assumed to form the two-state Markov chain with transition

probabilities plo and poi as shown in Fig. 5-2, i.e., the Gilbert-Elliot channel model [1], [52], [73],

[127], [131]. The Gilbert-Elliot Channel model has been commonly used in modeling and analysis

of wireless channels with memory [1], [73], [119], [127], [131]. For ease of exposition, we present

the analysis in this section for the symmetric Gilbert-Elliot channel model, i.e., plo = Poi = E,

and we state the corresponding results for the non-symmetric case in Appendix D. The steady state

probability of each channel state is equal to 0.5 in the symmetric Gilbert-Elliot channel model.

Moreover, for e = 0.5, Ci(t) = 1, w.p. 0.5, independently and identically distributed (i.i.d.) at each

time slot. We refer to this case as the memoryless channels case.

Let Q (t) = (Q1 (t), Q2 (t)) be the queue lengths at time slot t. We assume that Q (t) and C(t)
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Poi

Figure 5-2: Markov modulated ON/OFF channel process. We have pio + poi < 1 (e < 0.5) for positive

correlation.

are known to the server at the beginning of each time slot. Let at E {0, 1} denote the action taken

at the beginning of slot t, where at = 1 if the server stays with the current queue and at = 0 if

it switches to the other queue. One packet is successfully received from queue i at time slot t, if

m(t) = i, at = 1 and Ci(t) = 1.

In the following, we start by explicitly characterizing the stability region for both memoryless

channels and channels with memory and show that channel memory can be exploited to enlarge the

stability region significantly.

5.1.2 Motivation: Channels Without Memory

In this section we assume that e = 0.5 so that the channel processes are i.i.d. over time. The stability

region of the corresponding system with no-switching time was established in [110]: Ai, A2 E

[0, 0.5] and A1 + A2 < 0.75. Note that when the switching time is zero, the stability region is the

same for both i.i.d. and Markovian channels, which is a special case of the results in [86]. However,

when the switching time is non-zero, the stability region is reduced considerably:

Theorem 7 The stability region of the system with i.i.d. channels and one-slot switching delay is

given by,

A = {(A1 , A2)|A1 + A2 5 0.5, A1 , A2 ;> 0}. (5.1)

In addition, the simple Exhaustive (Gated) policy is throughput-optimal.
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Figure 5-3: Stability region under memoryless (i.i.d.) channels and channels with memory (Markovian with

e < 0.5) with and without switching delay.

The proof is given in Appendix A for a more general system. The basic idea behind the proof is that

as soon as the server switches to queue i under some policy, the time to the ON state is a geometric

random variable with mean 2 slots, independent of the policy. Therefore, a necessary condition for

stability is given by the stability condition for a system without switching times and i.i.d. service

times with geometric distribution of mean 2 slots as given by (5.1). The fact that the simple Gated

policy is throughput-optimal follows from the observation that as the arrival rates are close to the

boundary of the stability region, the fraction of time the server spends receiving packets dominates

the fraction of time spent on switching [114].

As depicted in Fig. 5-3, the stability region of the system is considerably reduced for nonzero

switching delay. Note that for systems in which channels are always connected, the stability region

is given by A1 + A2  ; 1, A1, A2 > 0 and is not affected by the switching delay [114]. Therefore, it

is the combination of switching delay and random connectivity that result in fundamental changes

in system stability.

Remark 1 As shown in Appendix A, the results in this subsection can easily be generalized to the
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case of non-symmetric Gilbert-Elliot channels with arbitrary switching delays. For a system of 2

queues with arbitrary switching delays and i.i.d. channels with probabilities pi, i E {1, 2}, A is

the set of all A > 0 such that A1/pi + A2/P2 <; 1. Moreover, simple Exhaustive (Gated) policy is

throughput-optimal.

When channel processes have memory, it is clear that one can achieve better throughput region

than the i.i.d. channels case if the channels are positively correlated over time. This is because we

can exploit the channel diversity when the channel states stay the same with high probability. In

the following, we show that indeed the throughput region approaches the throughput region of no

switching time case in in [110] as the channels become more correlated over time. Note that the

throughput region in [110] is the same for both i.i.d. and Markovian channels under the condition

that probability of ON state for the i.i.d. channels is the same as the steady state probability of ON

state for the two state Markovian channels. This fact can be derived as a special case of the seminal

work of Neely in [86].

5.1.3 Channels With Memory - Stability Region

When switching times are non-zero, the memory in the channel can be exploited to improve the

stability region considerably. Moreover, as E -+ 0, the stability region tends to that achieved by the

system with no-switching time and for 0 < E < 0.5 it lies between the stability regions correspond-

ing to the two extreme cases c = 0.5 and E -4 0 as shown in Fig. 5-3.

We start by analyzing the corresponding system with saturated queues, i.e., both queues are

always non-empty. Let A, denote the set of all time average expected departure rates that can be

obtained from the two queues in the saturated system under all possible policies that are possibly

history dependent, randomized and non-stationary. We will show that A = As. We prove the

necessary stability conditions in the following Lemma and establish sufficiency in the next section.

Lemma 17 We have that

A C As.
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This lemma is proved in Appendix B.

Now, we establish the region A, by formulating the system dynamics as a Markov Decision

Process (MDP). Let st = (m(t), C1 (t), C2 (t)) E S denote the system state at time t where S is the

set of all states. Also, let at E A = {0,1} denote the action taken at time slot t where A is the

set of all actions at each state. Let H(t) = [sr]| t=o U [ar] |t-' denote the full history of the system

state until time t and let T(A) denote the set of all probability distributions on A. For the saturated

system, a policy is a mapping from the set of all possible past histories to T (A) [10], [79]. A policy

is said to be stationary if, given a particular state, it applies the same decision rule in all stages and

under a stationary policy, the process {st; t E N U {0}} forms a Markov chain. In each time slot t,

the server observes the current state st and chooses an action at. Then the next state j is realized

according to the transition probabilities P(j Is, a), which depend on the random channel processes.

Now, we define the reward functions as follows:

71(s, a) 1 if s = (1, 1, 1) or s = (1, 1, 0), and a=1 (5.2)

72 (s, a) e1 if s = (2, 1, 1) or s = (2, 0, 1), and a =1, (5.3)

and T1 (s, a) = 72(s, a) = 0 otherwise. That is, a reward is obtained when the server stays at

an ON channel. We are interested in the set of all possible time average expected departure rates,

therefore, given some al, a2 2 0, ai + a2 = 1, we define the system reward at time t by T(s, a) =

017 1 (s, a) + a272(s, a). The average reward of policy ir is defined as follows:

1 K

r, a limsup E (s,, at)
K-+oo K t=1

Given some ai, a2 0, we are interested in the policy that achieves the maximum time average

expected reward r* max, r'. This optimization problem is a discrete time MDP characterized

by the state transition probabilities P(jIs, a) with 8 states and 2 actions per state. Furthermore,
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any given pair of states are accessible from each other (i.e., there exists a positive probability path

between the states) under some stationary-deterministic policy. Therefore this MDP belongs to the

class of Weakly Communicating MDPs1 [94].

The State-Action Frequency Approach

For Weakly Communicating MDPs with finite state and action spaces and bounded rewards, there

exists an optimal stationary-deterministic policy, given as a solution to standard Bellman's equation,

with optimal average reward independent of the initial state [94, Theorem 8.4.5]. This is because

if a stationary policy has a nonconstant gain over initial states, one can construct another stationary

policy with constant gain which dominates the former policy, which is possible since there exists a

positive probability path between any two recurrent states under some stationary policy [79]. The

state-action frequency approach, or the Dual Linear Program (LP) approach, given below provides

a systematic and intuitive framework to solve such average cost MDPs, and it can be derived using

Bellman's equation and the monotonicity property of Dynamic Programs [Section 8.8] [94]:

Maximize E J T(s, a)x(s, a) (5.4)
sESaEA

subject to the balance equations

x(s; 1) + x(s; 0) = ZP(sls', a)x(s', a), V s E S, (5.5)
s'ES aEA

the normalization condition

x(s; 1) + x(s; 0) = 1, (5.6)
sES

'In fact, other than the trivial suboptimal policy 7r, that decides to stay with the current queue in all states,

all stationary deterministic policies are unichain, namely, they have a single recurrent class regardless of the

initial state. Hence, when 7r, is excluded, we have a Unichain MDP.
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and the nonnegativity constraints

x(s, a) ;> 0, s E S, a E A. (5.7)

The feasible region of this LP constitutes a polytope called the state-action polytope X and the

elements of this polytope x E X are called state-action frequency vectors. Clearly, X is a convex,

bounded and closed set. Note that x(s; 1) can be interpreted as the stationary probability that action

stay is taken at state s. More precisely, a point x E X corresponds to a stationary randomized policy

that takes action a E {0, 1} at state s w.p.

P(action a at state s)= , a E As E S2, (5.8)
x(s; 1 ) + x(s; 0)a

where S, is the set of recurrent states given by S= {s E S : x(s; 1) + x(s; 0) > 0}, and actions

are arbitrary for transient states s E S/Sx [79], [94].

Next we argue that the empirical state-action frequencies corresponding to any given policy

(possibly randomized, non-stationary, or non-Markovian) lies in the state-action polytope X. This

ensures us that the optimal solution to the dual LP in (5.4) is over possibly non-stationary and

history-dependent policies. In the following we give the precise definition and the properties of the

set of empirical state-action frequencies. We define the empirical state-action frequencies xT(s, a)

as

2T(s, a) -- 1 Ifst=s,at=a} (5.9)
t=1

where IE is the indicator function of an event E, i.e., IE = 1 if E occurs and IE = 0 otherwise.

Given a policy -7r, let P' be the state-transition probabilities under the policy 7r and < = (#.,) an

initial state distribution with sE~S #5 = 1. We let x (s, a) be the expected empirical state-action
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frequencies under policy -r and initial state distribution #:

xz, (s, a) =Er, [ T(s, a)]

I s'P'(st = s, at = also = s').
t=1 s'ES

We let xxg E T(S x A) (as in [79], [94]) be the limiting expected state-action frequency vector, if

it exists, starting from an initial state distribution #, under a general policy 7r (possibly randomized,

non-stationary, or non-Markovian):

xx,4(s, a) = lim x T(s, a). (5.10)
T-+oo

Let the set of all limit points be defined by

XO a {x E T(S x A) : there exists a policy 7r s.t.

the limit in (5.10) exists and x = x,,4 }.

Similarly let XO, denote the set of all limit points of a particular class of policies H', starting from an

initial state distribution #. We let HSD denote the set of all stationary-deterministic policies and we

let co(E) denote the closed convex hull of set E. The following theorem establishes the equivalency

between the set of all achievable limiting state-action frequencies and the state-action polytope:

Theorem 8 [94, Theorem 8.9.3], [79, Theorem 3.1]. For any initial state distribution #

co(X ) = X = X.

We have co(XS) C X0 since convex combinations of vectors in X0s, correspond to limiting

expected state-action frequencies for stationary-randomized policies, which can also be obtained
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by time-sharing between stationary-deterministic policies. The inverse relation co(XO,) D XO

holds since for weakly communicating MDPs, there exists a stationary-deterministic optimal policy

independent of the initial state distribution. Next, for any stationary-deterministic policy, the un-

derlying Markov chain is stationary and therefore the limits x,,o exists and satisfies the constraints

(5.5), (5.6) and (5.7) of the polytope X. Using co(Xoj,) = X0 and the convexity of X establishes

X C ; X. Furthermore, via (5.8), every x E X corresponds to a stationary-randomized policy for

which the limits xx,4 exists, establishing X' ; X.

Letting ext(X) denote the set of extreme (corner) points of X, an immediate corollary to Theo-

rem 8 is as follows:

Corollary 3 [79],[94]. For any initial state distribution #

ext(X) = X .
IISD

The intuition behind this corollary is that if x is a corner point of X, it cannot be expressed as a

convex combination of any two other elements in X, therefore, for each state s only one action has

a nonzero probability.

Finally, we have that under any policy the probability of a large distance between the empirical

expected state-action frequency vectors and the state-action polytope X decays exponentially fast

in time. This result is similar to the mixing time of an underlying Markov chain to its steady state

and we utilize such convergence results within the Lyapunov drift analysis for the dynamic queuing

system in Section 5.1.4.

The Rate Polytope A,

Using the theory on state-action polytopes in the previous section, we characterize the set of all

achievable time-average expected rates in the saturated system, A. The following linear transfor-
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mation of the state-action polytope X defines the 2 dimensional rate polytope [79]:

As ={(ri, r 2)| ri = Z x(s, a)fi(s, a)
sES aEA

r 2 = E x(s, a)72(s, a), x E X,
sESaEA

where f1(s, a) and 72(s, a) are the reward functions defined in (5.2) and (5.3). This polytope is the

set of all time average expected departure rate pairs that can be obtained in the saturated system,

i.e., it is the rate region A. An explicit way of characterizing A, is given in Algorithm 6.

Algorithm 6 Stability Region Characterization

1: Given ai, a 2 > 0, ai + a 2 = 1 solve the following Linear Program (LP)

max. airi(x) + a 2r 2 (X)

subject to x E X. (5.11)

2: For a given a 2 /ai ratio, there exists an optimal solution (rt, r*) of the LP in (5.11) at a

corner point of A.. Find all possible corner points and take their convex combination.

The fundamental theorem of Linear Programming guarantees that an optimal solution of the

LP in (5.11) lies at a corner (extreme) point of the polytope X [15]. Furthermore, the one-to-one

correspondence between the extreme points of the polytope X and stationary-deterministic polices

stated in Corollary 3 is useful for finding the solutions of the above LP for all possible a2/ai ratios.

Namely, there are a total of 28 stationary-deterministic policies since we have 8 states and 2 actions

per state and finding the rate pairs corresponding to these 256 stationary-deterministic policies and

taking their convex combination gives A. Fortunately, we do not have to go through this tedious

procedure. The fact that at a vertex of (5.11) either x(s; 1) or x(s; 0) has to be zero for each s E S

provides a useful guideline for analytically solving this LP. The following theorem characterizes the

stability region explicitly. It shows that the stability region enlarges as the channel has more memory
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and that there is a critical value of the channel correlation parameter given by Ec = 1 - V//2 at

which the structure of the stability region changes.

Theorem 9 The rate region A, is the set of all rates rl 0, r2 > 0 that for e < e, satisfy

eri + (1 - C)2r2 ( - E)2
S2

(1 - e)r 1 + (1 + c

(1 + e - E2)r1 + (

- E2)r 2  3 -

3 c

3 2
1 -E ) r 2 < 4 2

(1 - E)2ri + Er2
< (1-E)

2

2 '

and forc > Ec satisfy

ri + (1 - c)(3 - 2E)r2
< (1 - E)(3 - 2c)

2

3c
rl+r2  < - -

4 2

(1 - c)(3 - 2c)r1 + r2
< (1 - E)(3 - 2c)

2

The proof of the theorem is given in Appendix C and it is based on solving the LP in (5.11) for all

weights ai and a2 to find the corner points of A8 , and then applying Algorithm 6. The following

observation follows from Theorem 9.

Observation 2 The maximum achievable sum-rate in the saturated system is given by

3 c
13 2
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Note that r 1 + r 2 < 1 is the boundary of the stability region for the system without switching delay

analyzed in [110], where the probability that at least 1 channel is in ON state is 3/4. Therefore,

E/2 is the throughput loss due to the 1 slot switching delay. This throughput loss corresponds to the

probability that the server is at a queue with an OFF state when the other queue is in an ON state.

The stability regions for the two ranges of c are displayed in Fig. 5-4 (a) and (b). As c -+ 0.5,

the stability region converges to that of the i.i.d. channels with ON probability equal to 0.5. In

this regime, knowledge of the current channel state is of no value. As e -+ 0 the stability region

converges to that for the system with no-switching time in [110]. In this regime, the channels are

likely to stay the same for many consecutive time slots, therefore, the effect of switching delay is

negligible.

The rate region A, for the case of non-symmetric Gilbert-Elliot channels is given in Ap-

pendix D.

Remark 2 The stability region characterization in terms of state-action frequencies is general. For

instance, this technique can be used to establish the stability regions of systems with more than two

queues, arbitrary switching times, and more complicated Markovian channel processes. Of course,

explicit characterization as in Theorem 9 may not always be possible.

5.1.4 Frame Based Dynamic Control (FBDC) Policy

We propose a frame-based dynamic control (FBDC) policy inspired by the characterization of the

stability region in terms of state-action frequencies and prove that it is throughput-optimal asymptot-

ically in the frame length. The motivation behind the FBDC policy is that a policy gr* that achieves

the optimization in (5.11) for given weights ai and a2 for the saturated system should achieve a

good performance in the original system when the queue sizes Q1 and Q2 are used as weights.

This is because first, the policy gr* will lead to similar average departure rates in both systems for

sufficiently high queue sizes, and second, the usage of queue sizes as weights creates self adjusting

policies that capture the dynamic changes due to stochastic arrivals similar to Max-Weight schedul-
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Figure 5-4: Stability region under channels with memory, with and without switching delay for (a) e =

0.25 < Ec and (b) E = 0.40 > E.
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ing in [109]. Specifically, we divide the time into equal-size intervals of T slots and let Q1(jT)

and Q2(jT) be the queue lengths at the beginning of the jth interval. We find the deterministic

policy that optimally solves (5.11) when Qi (jT) and Q2(jT) are used as weights and then apply

this policy in each time slot of the frame. The FBDC policy is described in Algorithm 7 in details.

Algorithm 7 FRAME BASED DYNAMIC CONTROL (FBDC) POLICY

1: Find the policy 7r* that optimally solves the following LP

max.{r1 ,r2 } Qi(jT)r1 + Q 2(jT)r2

subject to (ri, r 2 ) E A, (5.12)

where A, is the rate polytope derived in Section 5.1.3.

2: Apply ir* in each time slot of the frame.

There exists an optimal solution (ri, r*) of the LP in (5.12) that is a corner point of A, [15] and

the policy -r* that corresponds to this point is a stationary-deterministic policy by Corollary 3.

Theorem 10 For any 6 > 0, there exists a large enough frame length T such that the FBDC policy

stabilizes the system for all arrival rates within the 6-stripped stability region A1 = A, - 61.

An immediate corollary to this theorem is as follows:

Corollary 4 The FBDC policy is throughput-optimal asymptotically in the frame length.

The proof of Theorem 10 follows from the proof of the FBDC policy for a more general system

given in Appendix E. It performs a drift analysis using the standard quadratic Lyapunov function.

However, it is novel in utilizing the state-action frequency framework of MDP theory within the

Lyapunov drift arguments. The basic idea is that, for sufficiently large queue lengths, when the

optimal policy solving (5.12), -r*, is applied over a sufficiently long frame of T slots, the average

output rates of both the actual system and the corresponding saturated system converge to r*. For

the saturated system, the probability of a large difference between empirical and steady state rates
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decreases exponentially fast in T [79], similar to the convergence of a positive recurrent Markov

chain to its steady state. Therefore, for sufficiently large queue lengths, the difference between

the empirical rates in the actual system and r* also decreases with T. This ultimately results in a

negative Lyapunov drift when A is inside the 6(T)-stripped stability region since from (5.12) we

have Qi(jT)r* + Q2 (jT)r2 > Q1(jT)A1 + Q2(jT)A2 .

The FBDC policy is easy to implement since it does not require the arrival rate information for

stabilizing the system for arrival rates in A - 6(T)1, and it does not require the solution of the LP

(5.12) for each frame. Instead, one can solve the LP (5.12) for all possible (Q1, Q2) pairs only once

in advance and create a mapping from (Qi, Q2) pairs to the corners of the stability region. Then,

this mapping can be used to find the corresponding optimal saturated-system policy to be applied

during each frame. Solving the LP in (5.12) for all possible (Q1, Q2) pairs is possible because first,

the solution of the LP will be one of the corner points of the stability region in Fig. 5-4, and second,

the weights (Q1, Q2), which are the inputs to the LP, determine which corner point is optimal. The

theory of Linear Programming suggests that the solution to the LP in (5.12) depends only on the

relative value of the weights (Qi, Q2) with respect to each other. Namely, changing the queue size

ratio Q2/Q1 varies the slope of the objective function of the LP in (5.12), and the value of this

slope Q2/Q1 with respect to the slopes of the lines in the stability region in Fig. 5-4 determine

which corner point the FBDC policy operates on. These mappings from the queue size ratios to the

corners of the stability region are shown in Table 5.1 for the case of e < c, and in Table 5.2 for the

case of E > c. The corresponding mappings for the FBDC policy for the case of non-symmetric

Gilbert-Elliot channels are shown in Appendix D. Given these tables, one no longer needs to solve

the LP (5.12) for each frame, but just has to perform a simple table look-up to determine the optimal

policy to use in each frame.

In the next subsection we provide an upper bound to the long-run packet-average delay under

the FBDC policy, which is linear in T. This suggest that the packet delay increases with increasing

frame lengths as expected. However, such increases are at most linear in T. Note that the FBDC
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F'~ ,7-, V,-1 4 I 1 t)I-tJ Qi

corner b5  corner b4  corner b3  corner b2  bcorner b1 corner

(1,1,1): stay (1,1,1): stay (1,1,1): stay (1,1,1): stay (1,1,1): switch (1,1,1): switch
(1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): switch
(1,0,1): stay (1,0,1): switch (1,0,1): switch (1,0,1): switch (1,0,1): switch (1,0,1): switch
(1,0,0): stay (1,0,0): stay (1,0,0): stay (1,0,0): switch (1,0,0): switch (1,0,0): switch
(2,1,1): switch (2,1,1): switch (2,1,1): stay (2,1,1): stay (2,1,1): stay (2,1,1): stay
(2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): stay
(2,0,1): switch (2,0,1): stay (2,0,1): stay (2,0,1): stay (2,0,1): stay (2,0,1): stay
(2,0,0): switch (2,0,0): switch (2,0,0): switch (2,0,0): stay (2,0,0): stay (2,0,0): stay

Table 5.1: FBDC policy mapping from the queue sizes to the corners of A5, bo, bi, b2 , b3 , b4 , b5 shown in Fig.

5-4 (a), for E < Ec. For each state s = (m(t), C1 (t), C2(t)) the optimal action is specified. The thresholds on

Q2/Q1 are 0, Ti* e/(1 - e)2, T = (1 - e)/(1 + E - E2), 1, T3 = (1 + E- e2)/(1 - e), T4 (1 - E)2/E.

0 T*(e) 1 T *(e) _Q2

corner b3  corner b2  corner b1  corner bo

(1,1,1): stay (1,1,1): stay (1,1,1): stay (1,1,1): switch
(1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): switch
(1,0,1): stay (1,0,1): switch (1,0,1): switch (1,0,1): switch
(1,0,0): stay (1,0,0): stay (1,0,0): switch (1,0,0): switch
(2,1,1): switch (2,1,1): stay (2,1,1): stay (2,1,1): stay
(2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): stay
(2,0,1): switch (2,0,1): stay (2,0,1): stay (2,0,1): stay
(2,0,0): switch (2,0,0): switch (2,0,0): stay (2,0,0): stay

Table 5.2: FBDC policy mapping from the queue sizes to the corners of A5, bo, bi, b2, b3 shown in Fig. 5-4

(b), for c > E. For each state s = (m(t), C 1 (t), C 2 (t)) the optimal action is specified. The thresholds on

Q2/Q1 are 0, Ti* = 1/((1 - E)(3 - 2E)), 1, T2* = (1 - E)(3 - 2E).
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policy can also be implemented without any frames by setting T = 1, i.e., by solving the LP in

Algorithm 7 in each time slot. The simulation results in Section 5.3 suggest that the FBDC policy

implemented without frames has a similar throughput performance to the original FBDC policy.

This is because for large queue lengths, the optimal solution of the LP in (5.12) depends on the

queue length ratios, and hence, the policy -r* that solves the LP optimally does not change fast

when the queue lengths get large. When the policy is implemented without the use of frames, it

becomes more adaptive to dynamic changes in the queue lengths, which results in a better delay

performance than the frame-based implementations.

Delay Upper Bound

The delay upper bound in this section is easily derived once the stability of the FBDC algorithm is

established. The stability proof utilizes the following quadratic Lyapunov function

2

L(Q(t)) = Q(t),
i=1

which represents a quadratic measure of the total load in the system at time slot t. Let tk denote the

time slots at the frame boundaries, k = 0,1, ... , and define the T-step conditional drift

AT (tk) A E [L(Q(tk +T)) - L(Q(tk))IQ(tk)]

The following drift expression follows from the stability analysis in Appendix E:

Tk < BT - Qi(tk))

where B = 1+Aax, A is strictly inside the 6-stripped stability region A - 61, and ( > 0 represents

a measure of the distance of A to the boundary of A -61. Taking expectations with respect to Q (t),
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writing a similar expression over the frame boundaries tk, k E {0, 1, 2, ..., K}, summing them and

telescoping these expressions lead to

K-1-

E[L(Q(tK))] - E[L(Q(O))] < 2KBT 2 - 2 TZE [ZQ(tkj.

k=0 i .

Using L(Q(tK)) > 0 and L(Q(0)) = 0, we have

1 K-1 BT
lim supkZ E[Qi(tk)] < BT

K--+ooK k=O i

For t E (tk, tk+1) we have Qi(t) < Qi(tk)+ET- 1Ai(tk+T). Therefore, E[Qi(t)] E[Qi(tk)]+

TAi 5 E[Qi(tk)] + TAmax. Therefore, for TK - KT we have

s 
KT-1

limsup TT E E E[Qi(t)]
TK-+=O i

K-1 (B+Amax)T
<lim sup TZ T]E [Qi (tk)]+T 2Amax B

K-+oo TKk-0O i

Dividing by the total arrival rate into the system Ej Ai and applying Little's law, the average delay

is upper bounded by an expression that is linear in the frame length T.

In the next section we consider Myopic policies that do not require the solution of an LP and that

are able to stabilize the network for arrival rates within over 90% of the stability region. Simulation

results in Section 5.3 suggest that the Myopic policies may in fact achieve the full stability region

while providing better delay performance than the FBDC policy for most arrival rates.
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5.1.5 Myopic Control Policies

We investigate the performance of simple Myopic policies that make scheduling/switching decisions

according to weight functions that are products of the queue lengths and the channel predictions for

a small number of slots into the future. We refer to a Myopic policy considering k future time

slots as the k-Lookahead Myopic policy. We implement these policies over frames of length T

time slots where during the jth frame, the queue lengths at the beginning of the frame, Qi(jT)

and Q2 (jT), are used for weight calculations during the frame. Specifically, in the One-Lookahead

Myopic policy, assuming that the server is with queue 1 at some t E {jT, ..., j(T + 1) - 1}, the

weight of queue 1 is the product of Qi (jT) and the summation of the current state of the channel

process C1 and the probability that C1 will be in the ON state at t + 1. The weight of queue 2

is calculated similarly, however, the current state of the channel process C 2 is not included in the

weight since queue 2 is not available to the server in the current time slot. The detailed description

of the One-Lookahead Myopic policy is given in Algorithm 8 below.

Algorithm 8 ONE-LOOKAHEAD MYOPIC POLICY

1: Assuming that the server is currently with queue 1 and the system is at the jth frame,

calculate the following weights in each time slot of the current frame;

W 1(t)= Q1(jT)(C1(t) + E[C1 (t + 1)|C1(t)])

W2(t) =Q 2(jT)E[C2 (t + 1) C2(t)]. (5.13)

2: If W1(t) > W 2 (t) stay with queue 1, otherwise, switch to the other queue. A similar

rule applies for queue 2.

Next, we establish a lower bound on the stability region of the One-Lookahead Myopic Policy

by comparing its drift over a frame to the drift of the FBDC policy.

Theorem 11 The One-Lookahead Myopic policy achieves at least -y-fraction of the stability region

A. asymptotically in T where -y > 90%.
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The proof is constructive and will be establish in various steps in the following. The basic idea

behind the proof is that the One-Lookahead Myopic (OLM) policy produces a mapping from the set

of queue sizes to the stationary deterministic policies corresponding to the corners of the stability

region. This mapping is similar to that of the FBDC policy, however, the thresholds on the queue

size ratios Q2/Qi are determined according to (5.13):

Mapping from queue sizes to actions. Case-1: E < c

For e < ec, there are 6 corners in the stability region denoted by bo, bi, ..., b5 where bo is (0, 0.5) and

b5 is (0.5, 0) as shown in Fig. 5-4 (a). We derive conditions on Q2/Q1 such that the OLM policy

chooses the stationary deterministic decisions that correspond to a given corner point.

Corner bo:

Optimal actions are to stay at queue 2 for every channel condition. Therefore, the server chooses

queue 2 even when the channel state is Ci(t), C2 (t) = (1, 0). Therefore, using (5.13), for the

Myopic policy to take the deterministic actions corresponding to bo we need

Q1

This means that if we apply the Myopic policy with coefficients Qi, Q2 such that Q2/Q1 > (1 -

e)/c, then the system output rate will be driven towards the corner point bo (both in the saturated

system or in the actual system with large enough arrival rates).

Corner bi:

The optimal actions for the corner point bi are as follows: At queue 1, for the channel state 10:stay,

for the channel states 11, 01 and 00: switch. At queue 2, for the channel state 10: switch, for the

channel states 11, 01 and 00: stay. The most limiting conditions are 11 at queue 1 and 10 at queue
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2. Therefore we need, Qi(2 - E) < Q2(1 - E) and Q1(1 - E) > Q2 E. Combining these we have

2 - Q2 1-E

1 - E Qi

Note that the condition E < c, = 1 - V/2/2 implies that Y > N

Corner b2 :

The optimal actions for the corner point bi are as follows: At queue 1, for the channel state 10 and

11:stay, for the channel states 01 and 00: switch. At queue 2, for the channel states 10: switch,

for the channel states 11, 01 and 00: stay. The most limiting conditions are 11 at queue 1 and 00.

Therefore we need, Q1(2 - E) > Q2(1 - E) and Qi < Q2. Combining these we have

<Q2 <2 - E
1 < -- < .Qi 1 -

The conditions for the rest of the corners are symmetric and can be found similarly to obtain the

mapping in Fig. 5.3.

Mapping from queue sizes to actions. Case-2: E > Ec

In this case there are 4 corner points in the throughput region. We enumerate these corners as

bo, b2 , b3 , b5 where bo is (0, 0.5) and b5 is (0.5, 0).

Corner bo:

The analysis is the same as the bo analysis in the previous case and we obtain that for the Myopic

policy to take the deterministic actions corresponding to be we need

Q2 >C b

Corner b2:
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This is the same corner point as in the previous case corresponding to the same deterministic policy:

At queue 1, for the channel state 10 and 11:stay, for the channel states 01 and 00: switch. At

queue 2, for the channel states 10: switch, for the channel states 11, 01 and 00: stay. The most

limiting conditions are 10 at queue 2 (since E > Ec we have y < Z-) and 00. Therefore we need,

Q1(1 - E) > Q2E and Qi < Q2. Combining these we have

1 < Q< .~

The conditions for the rest of the corners are symmetric and can be found similarly to obtain the

mapping in Fig. 5.4 for E > Ec

The conditions for the corners b2 and b3 are symmetric, completing the mapping from the queue

sizes to the corners of A. for E > ee shown in Table 5.4. This mapping is in general different from

the corresponding mapping of the FBDC policy in Table 5.2. Therefore, for a given ratio of the

queue sizes Q2/Q1, the FBDC and the OLM policies may apply different stationary deterministic

policies corresponding to different corner points of A., denoted by r* and f- respectively. The

shaded intervals of Q2/Q1 in Table 5.4 are the intervals in which the OLM and the FBDC policies

apply different policies. A similar mapping can be obtained for the OLM policy for E < E. The

corresponding mapping for the OLM policy for the case of non-symmetric Gilbert-Elliot channels

is given in Appendix D.

The following lemma is proved in Appendix F and completes the proof by establishing the 90%

bound on the weighted average departure rate of the OLM policy w.r.t. to that of the FBDC policy.

Lemma 18 We have that

* Ei Qi(t)r; > 90%. (5.14)
EZ Qi(t)r! -

Furthermore, IQ > 90% is a sufficient condition for the OLM policy to achieve at least 90% of A.
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0 T1(e) T*(e) T2 (e) T2() 1 T3(e) T3 (e) T4(e) T4 (e) g

%S

corner b5  corner b4 \ corner b3  I corner b2  corner b1  | corner bo

(1,1,1): stay (1,1,1): stay (1,1,1): stay (1,1,1): stay (1,1,1): switch (1,1,1): switch
(1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): switch
(1,0,1): stay (1,0,1): switch (1,0,1): switch (1,0,1): switch (1,0,1): switch (1,0,1): switch
(1,0,0): stay (1,0,0): stay (1,0,0): stay (1,0,0): switch (1,0,0): switch (1,0,0): switch
(2,1,1): switch (2,1,1): switch (2,1,1): stay (2,1,1): stay (2,1,1): stay (2,1,1): stay
(2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): stay
(2,0,1): switch (2,0,1): stay (2,0,1): stay (2,0,1): stay (2,0,1): stay (2,0,1): stay
(2,0,0): switch (2,0,0): switch (2,0,0): switch (2,0,0): stay (2,0,0): stay (2,0,0): stay

Table 5.3: One-Lookahead Myopic policy mapping from the queue sizes to the corners of A.,

bo, b1, b2 , b3 , b4, b5 shown in Fig. 5-4 (a), for E < E. For each state s = (m(t), C1(t), C 2 (t)) the opti-

mal action is specified. The thresholds on Q2/Q1 are 0, Ti = E/(1 - E), T2 = (1 - E)/(2 - E), 1, T3 =

(2 - c)/(1 - E), T4 = (1 - E)/E. The corresponding thresholds for the FBDC policy are 0, T*, T2*, 1, T3*, T4.

For example, corner b2 is chosen in the FBDC policy if 1 < Q2/Q1 < T3*, whereas in the OLM policy if

1 < Q2/Q1 < T3 .

asymptotically in T.

A similar analysis shows that the Two-Lookahead Myopic Policy achieves at least 94% of As,

while the Three-Lookahead Myopic Policy achieves at least 96% of A. The k-Lookahead Myopic

Policy is the same as before except that the following weight functions are used for scheduling

decisions: Assuming the server is with queue 1 at time slot t,

W1 (t) = Qi(jT)(C 1 (t) + E =1 E[C(t + T)IC1(t)]) and W 2 (t) = Q2 (jT)ZEi E[C2 (t +

T)|C 2(t)].

5.2 General System

In this section we extend the results developed in the previous section to the general case of an

arbitrary number of queues in the system.
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0 TI(e) T1*(e) 1 T2() T2 (Q)
a __ _ I

corner b.5  corner b3 corner b2 corner bo

(1,1,1): stay (1,1,1): stay (1,1,1): stay (1,1,1): switch
(1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): switch
(1,0,1): stay (1,0,1): switch (1,0,1): switch (1,0,1): switch
(1,0,0): stay (1,0,0): stay (1,0,0): switch (1,0,0): switch

(2,1,1): switch (2,1,1): stay (2,1,1): stay (2,1,1): stay
(2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): stay

(2,0,1): switch (2,0,1): stay (2,0,1): stay (2,0,1): stay

(2,0,0): switch (2,0,0): switch (2,0,0): stay (2,0,0): stay

Table 5.4: One-Lookahead Myopic policy mapping from the queue sizes to the corners of A5, bo, bi, b2, b3

shown in Fig. 5-4 (b), fore > ec. For each state s = (m(t), C1 (t), C2(t)) the optimal action is specified. The

thresholds on Q2/Qi are 0, Ti = e/(1 - e), 1, T 2  (1 - e)/e. The corresponding thresholds for the FBDC

policy are 0, T*, 1, T2*. For example, corner bi is chosen in the FBDC policy if 1 < Q2/Q1 < T2*, whereas

in the OLM policy if 1 < Q2/Qi < T 2 -

5.2.1 Model

Consider the same model as in Section 5.1.1 with N > 1 queues for some N E N as shown in

Fig. 5-1. Let the i.i.d. process Ai(t) with arrival rate Aj denote the number of arrivals to queue i

at time slot t, where E[A(t)] < a , i E {1, 2,..., N}. Let Ci(t) be the channel (connectivity)

process of queue i, i E {1, 2, ..., N}, that forms the two-state Markov chain with transition proba-

bilities Poi and plo as shown in Fig. 5-2. We assume that the processes Ai(t), i E {1, ... , N} and

Cj(t), i E {1, ..., N} are independent. It takes one slot for the server to switch from one queue

to the other, and m(t) E {1, ..., N} denotes the queue at which the server is present at slot t. Let

st = (m(t), C1(t), ... , CN(t)) E S denote the state of the corresponding saturated system at time

t where S is the set of all states. The action a(t) in each time slot is to choose the queue at which

the server will be present in the next time slot, i.e., at E {1, ... , N} A where A is the set of all

actions at each state.
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5.2.2 Stability Region

In this section we characterize the stability region of the general system under non-symmetric chan-

nel models2 . For the case of i.i.d. channel processes we explicitly characterize the stability region

and the throughput-optimal policy. For Markovian channel models, we extend the stability region

characterization in terms of state-action frequencies to the general system. Furthermore, we develop

a tight outer bound on the stability region using an upper bound on the sum-throughput and show

that a simple myopic policy achieves this upper bound for the corresponding saturated system.

A dynamic server allocation problem over parallel channels with randomly varying connectivity

and limited channel sensing has been investigated in [1, 2, 127] under the Gilbert-Elliot channel

model. The goal in [1, 2, 127] is to maximize the sum-rate for the saturated system, where it is

proved that a myopic policy is optimal. In this section we prove that a myopic policy is sum-rate

optimal under the Gilbert-Elliot channel model and 1-slot server switching delay. Furthermore,

our goal is to characterize the set of all achievable rates, i.e., the stability region, together with a

throughput-optimal scheduling algorithm for the dynamic queuing system.

Memoryless Channels

The results established in Section 5.1.2 for the case of i.i.d. connectivity processes can easily be

extended to the system of N queues with non-symmetric i.i.d. channels as the same intuition applies

for the general case. We state this result in the following theorem whose proof can be found in

Appendix A.

Theorem 12 For a system of N queues with arbitrary switching times and i.i.d. channels with

2For Markovian (Gilbert-Elliot) channels, we preserve the symmetry of the channel processes across the

queues.
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probabilities pi, i E {1, ..., N}, the stability region A is given by

A= A N A <1.
i=1 P

In addition, the simple Exhaustive (Gated) policy is throughput-optimal.

As for the case of two queues, the simultaneous presence of randomly varying connectivity and the

switching delay significantly reduces the stability region as compared to the corresponding system

without switching delay analyzed in [110]. Furthermore, when the channel processes are memory-

less, no policy can take advantage of the channel diversity as the simple queue-blind Exhaustive-type

policies are throughput-optimal.

In the next section, we show that, similar to the case of two queues, the memory in the channel

improves the stability region of the general system.

Channels With Memory

Similar to Section 5.1.3, we start by establishing the rate region A, by formulating an MDP for rate

maximization in the corresponding saturated system. The reward functions in this case are given as

follows:

Ti(s, a)- l if m = i, Ci = 1, and a=i, i = 1, ..., N, (5.15)

and Ti(s, a) = 0 otherwise, where m denotes the queue at which the server is present. That is, one

reward is obtained when the server stays at a queue with an ON channel. Given some ai 2 0, i E

{1, ... , N}, j ai = 1, we define the system reward at time t as

N

T(s,a) = aEiri(s, a).
i=1
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The average reward of policy 7r is defined as

1 K
r = lim E ( (st,a') .

K-*oo K _J

Therefore, the problem of maximizing the time average expected reward over all policies, r*

max, r', is a discrete time MDP characterized by the state transition probabilities P(s'Is, a) with

N2N states and N possible actions per state. Furthermore, similar to the two-queue system,

there exists a positive probability path between any given pair of states under some stationary-

deterministic policy. Therefore, this MDP belongs to the class of Weakly Communicating MDPs

[94] for which there exists a stationary-deterministic optimal policy independent of the initial state

[94]. The state-action polytope, X is the set of state-action frequency vectors x that satisfy the

balance equations

E x(s, a) = P(sls', a)x(s', a), V s E S, (5.16)
aEA s'ES aEA

the normalization condition

x(s, a) 1,
sES aEA

and the nonnegativity constraints

x(s, a) > 0, for s E S, a E A,

where the transition probabilities P (sls', a) are functions of the channel parameters plo and poI.

The following linear transformation of the state-action polytope X defines the rate polytope A8 ,
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namely, the set of all time average expected rate pairs that can be obtained in the saturated system.

As={rri= x(s, a)Ti(s, a), x E X, i E {1, 2, ... N}
sES aEA

where the reward functions Ti(s, a), i E {1, ..., N}, are defined in (5.15). Algorithm 9 gives an

alternative characterization of the rate region As.

Algorithm 9 Stability Region Characterization

1: Given ai, ... , aN > O, ai = 1, solve the following LP

N

max. airi(x)
i=1

subject to x E X. (5.17)

2: There exists an optimal solution (ri, ... , r*) of this LP that lies at a corner point of A,.

Find all possible corner points and take their convex combination.

Similar to the two-queue case, the fundamental theorem of Linear Programming guarantees

existence of an optimal solution to (5.17) at a corner point of the polytope X [15]. We will establish

in the next section that the rate region, As is in fact achievable in the dynamic queueing system,

which will imply that A = A. For the case of 3 queues, Fig. 5-5 shows the stability region A. As

expected, the stability region is significantly reduced as compared to the corresponding system with

zero switching delays analyzed in [110].

Analytical Outer Bound For The Stability Region

In this section we first derive an upper bound to the sum-throughput in the saturated system and

then use it to characterize an outer bound to the rate region As. Let C(N) I N

probability that all channels are in OFF state in steady state.
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Figure 5-5: Stability region for 3 parallel queues for pio = poi = 0.3.

Lemma 19 An upper bound on the sum-rate in the saturated system is given by

N

Sri C1 CN) _ ( (1 _(N)) C(N))
i=1

(5.18)

The proof is given in Appendix G. In the next section we propose a simple myopic policy for

the saturated system that achieves this upper bound. Similar to the case of two-queues, the surface

E=1 r 1- C(N) is one of the boundaries of the stability region for the system without switching

delay analyzed in [110], where the probability that at least 1 channel is in ON state in steady state is

1 - C(N). Therefore, P10(1 - C N)) - P01 C(N) is the throughput loss due to 1 slot switching delay

in our system. The analysis of the myopic policy in the next section shows that this throughput loss

due to switching delay corresponds to the probability that the server is at a queue with OFF state

when at least one other queue is in ON state. For the case of N = 3 queues, the sum-throughput

upper bound in Lemma 19 is the hexagonal region at the center of the plot in Fig. 5-5.

157



0.5

0.4

0.3 -----

0.1

0.1 0.5

0.0. 0.

Figure 5-6: Stability region outer bound for 3 parallel queues for pio = poi - 0.3.

Because any convex combination of ri, i E {1, ..., N}, must lie under the sum-rate surface,

(5.18) is in fact an outer bound on the whole rate region A. Furthermore, no queue can achieve

a time average expected rate that is greater than the steady state probability that the corresponding

queue is in ON state, i.e., poi/(pio +poi). Therefore, the intersection of these N+ 1 surfaces in the

N dimensional space constitutes an outer bound for the rate-region A. Note that this outer bound

is tight in that the sum-rate surface of the maximum rate region A,, as well as the corner points

Poi/(plo + p0) coincide with the outer bound. This outer bound with respect to the rate region are

displayed in Fig. 5-6 for the case of N = 3 nodes.

5.2.3 Myopic Policy for the Saturated System

We show in this section that a simple and intuitive policy, termed the Greedy Myopic (GM) policy,

achieves the sum rate maximization for the saturated system. This policy is a greedy policy in

that under the policy, if the current queue is available to serve, the server serves it. Otherwise, the

server switches to a queue with ON channel state, if such a queue exists. The policy is described in

Algorithm 10. Recall that m(t) denotes the queue the server is present at time slot t.
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Algorithm 10 Greedy Myopic Policy

1: For all time slots t, if Cm(t)(t) = 1, serve queue m(t).

2: Otherwise, if 3j E {1, ... , N},j 34 m(t), such that Cj(t) = 1, among the queues that

have ON channel state, switch to the queue with the smallest index in a cyclic order

starting from queue m(t).

The cyclic switching order under the GM policy is as follows: If the server is at queue i and the

decision is to switch, then the server switches to queue j, where for i = N, j = arg minjE{1,...,N-1}(Cj (

1) and for i : N if 3j E {i+1, ..., N}, such that Cj(t) = 1, we have j = arg mnnJE{i+l,...,N}(Ci(t)

1), if not, then j = arg minj.I 1 i_1 (Cj(t) = 1).

Theorem 13 The GM policy achieves the sum-rate upper bound.

Proof: Given a fixed decision rule at each state, the system state forms a finite state space, ir-

reducible and positive recurrent Markov chain. Therefore, under the GM policy, the system state

converges to a steady state distribution. We partition the total probability space into three disjoint

events:

E1: the event that all the channels are in OFF state,

E2: the event that at least 1 channel is in ON state and the server is at a queue with ON state

E3: the event that at least 1 channel is in ON state and the server is at a queue with OFF state

Since these events are disjoint we have,

1 = P(E1 ) + P(E2 ) + P(E 3 ).

We have P(E1 ) = C(N) by definition. Since the GM policy decides to serve the current queue if it

is in ON state, P(E 2 ) gives the sum throughput Ej ri for the GM policy. Therefore, we have that

under the GM policy

Zri = 1 - C(N) - P(E3).
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We show that P(E 3 ) = p10(1 - C N)) - pol c N). Consider a time slot tin steady state and let n(t)

be the number of channels with ON states at time slot t and let Eo(t) be the event that the server is

at a queue with OFF state at time slot t. We have

P(E 3 )=P(Eo(t) and1 ;K(t)< N-1) =P(Eo(t) and r(t) 1)

=P(Eo(t) and i'(t) 2 1|K(t -1) 1)P((t -1) > 1)

+P(Eo(t) and ti(t) > 1|K(t -1) = O)P(i,(t -1) = 0).

Since t is a time slot in steady state, we have that

P((t - 1) = 0) = C N). Therefore, P(E 3 ) is given by

p (K(t) 21|Eo (t), K(t - 1) 21 )P(Eo (t)|I K(t - 1) 2:1) (1-_C (N)

+p (r'(t) I1EO(t), '(t - 1)=_0)P?(E0 (t)|s(t -1)=0)C (N).

We have P(Eo(t) I,s(t -1) 1) = plo since the GM policy chooses a queue with ON state if there is

such a queue and P(Eo(t) I(t - 1) = 0) is the probability that the queue chosen by the GM policy
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keeps its OFF channel state, given by 1 - poI.

P(E3 )=(1 -Pp((t) = OIEo (t), r(t-1) 1))p10 (1 - CN)

+ (1 - P(rQ(t) = 01Eo (t), K(t- 1) 0))(1 - poi)C N)

pio(1 - CN

+P ( - piC(N)

=po(1 - CN

+(1 -p1)C N)

P(n(t) = 0, E0 (t)|In(t - 1) 2:1)
P(Eo(t)|~(t-1) 1)

P(K(t) = 0,Eo(t)|(t-1)=0)

P(Eo(t) I(t -1) = 0)

P(~)=0 K(t -1 21)

Pio

( 1 I(K(t) OI(t-1)=0)

1 - Po1

We have that P(,(t) = 0|,(t -1) :1) is given by

P(K(t) = 0) - P(K(t) = Olji(t - 1) = 0)P((t - 1) = 0)
P(K(t - 1) > 1)

which is equivalent to (CON) - (1 - p01 )NC N))/(l _ C(N)). Therefore, P(E3 ) is given by

P(E3 )=pio(1 - CN

+( 1 )C(N) (

CON) - ( (N)

Pio(1 - CON))

(1 - 0 1 ),N

1 -P01

=P 10(1 - Cc(N - p0 N)

As mentioned in the previous section, P(E3 ) is the throughput loss due to switching as it represents

the fraction of time the server is at a queue with OFF state when there are queues with ON state in
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the system.

5.2.4 Frame-Based Dynamic Control Policy

In this section we generalize the FBDC policy to the general system and show that it is throughput-

optimal asymptotically in the frame length for the general case. The FBDC algorithm for the general

system is very similar to the FBDC algorithm described for two queues in Section 5.1.4. Specifi-

cally, the time is divided into equal-size intervals of T slots. We find the stationary-deterministic

policy that optimally solves (5.17) for the saturated system when Qi (jT), ... , QN (jT) are used as

weights and then apply this policy in each time slot of the frame in the actual system. The FBDC

policy is described in Algorithm 11 in details.

Algorithm 11 FRAME BASED DYNAMIC CONTROL (FBDC) POLICY

1: Find the optimal solution to the following LP

max.{r} ZN1 Qi(jT)ri

subject to r = (ri, ... ,rN) E A, (5.19)

where A, is the rate region for the saturated system.

2: The optimal solution (r*, ... , r*) in step 1 is a corner point of A, that corresponds to a

stationary-deterministic policy denoted by -r*. Apply ir* in each time slot of the frame.

Theorem 14 For any 6 > 0, there exists a large enough frame length T such that the FBDC policy

stabilizes the system for all arrival rates within the 6-stripped stability region A1 = A8 - 61.

The proof is very similar to the proof of Theorem 10 and is omitted. The theorem establishes the

asymptotic throughput-optimality of the FBDC policy for the general system.

Remark 3 The FBDCpolicy provides a new framework for developing throughput-optimal policies

for network control. Namely, given any queuing system whose corresponding saturated system is
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Markovian with finite state and action spaces, throughput-optimality is achieved by solving an LP in

order to find the stationary MDP solution of the corresponding saturated system and applying this

solution over aframe in the actual system. In particular the FBDC policy can stabilize systems with

arbitrary switching times and more complicated Markov modulated channel structures. The FBDC

policy can also be used to achieve throughput-optimality for classical network control problems

such as the parallel queueing systems in [87], [110], scheduling in switches in [99] or scheduling

under delayed channel state information [125].

Similar to the delay analysis in Section 5.1.4 for the two-queue system, a delay upper bound

that is linear in the frame length T can be obtained for the FBDC policy for the the general system.

Moreover, the FBDC policy for the general system can also be implemented without any frames

by setting T = 1, i.e., by solving the LP in Algorithm 11 in each time slot. The simulation results

regarding such implementations suggest that the FBDC policy implemented without frames has a

similar throughput performance and an improved delay performance as compared to the original

FBDC policy.

Discussion

For systems with switching delay, it is well-known that the celebrated Max-Weight scheduling pol-

icy is not throughput-optimal [26]. In the absence of randomly varying connectivity, variable frame

based generalizations of the Max-Weight policy are throughput-optimal [32]. However, when the

switching delay and randomly varying connectivity are simultaneously present in the system, the

FBDC policy is the only policy to achieve throughput-optimality and it has a significantly different

structure from the Max-Weight policy.

The FBDC policy for a fixed frame length T does not require the arrival rate information for

stabilizing the system for arrival rates in A - 6(T)1, however, it requires the knowledge of the

channel connectivity parameters plo, poi. To deal with this problem one can estimate the channel

parameters periodically and use these estimates to solve the LP in (5.19). This approach, of course,
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incurs a throughput loss depending on how large the estimation error is.

As mentioned in Remark 3, the FBDC policy can stabilize a large class of network control

problems whose corresponding saturated system is weakly communicating Markovian with a finite

state and action spaces. However, one caveat of the FBDC policy is that the state space of the LP that

needs to be solved increases exponentially with the number of links in the system. The celebrated

Max-Weight policy (which is not stabilizing for the system considered here) has linear complexity

for the single server system considered in this chapter. However, for general multi-server systems

with N servers or for a single hop network with N interfering links, the Max-Weight policy has to

solve a maximum-independent set problem over all links at each time slot, which is a hard problem

whose state space is also exponential in the number of links N. The FBDC policy on the other hand,

only has to solve an LP, for which there are standard solvers available such as CPLEX. Furthermore,

the FBDC policy has to solve the LP once per frame, whereas the the Max-Weight policy performs

maximum-independent set computation each time slot. If the frame length for the FBDC policy

is chosen to be bigger than the computational complexity of the LP in (5.19), then the per-slot

computational complexity of the algorithm is reduced to 0(1). Such a frame-based implementation

is also possible for the Max-Weight policy to reduce its complexity to 0(1) per time slot. On the

other hand, the shortcoming of such an approach for both policies is the increase in delay as a result

of the larger frame length. This outlines a tradeoff between complexity and delay, whereby tuning

a reduction in complexity by adjusting the frame length comes at the expense of delay.

The celebrated Max-Weight policy was first introduced in [109] for multi-hop networks and,

despite its exponential complexity in number of links, it provided a useful structure for designing

queue length based scheduling algorithms. Later, this structure suggested by the Max-Weight pol-

icy lead to suboptimal but low-complexity algorithms, as well as distributed implementations of the

Max-Weight policy for certain systems (see e.g., Greedy-Maximal network scheduling in [122]).

Our aim in proposing the FBDC policy and the state-action frequency framework for network

scheduling is to give a structure for throughput-optimal algorithms for systems with time-varying
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channels and switching delays, and hopefully to provide insight into designing scalable algorithms

that can stabilize such systems. The Myopic control policies we discuss in the next section constitute

a first approach towards characterizing the structure of some more scalable algorithms.

5.2.5 Myopic Control Policies

In this section, we generalize Myopic policies that we introduced for the two-queue system in

Section 5.1 to the general system. Myopic policies make scheduling decisions based on queue

lengths and simple channel predictions into the future. We present an implementation of these

policies over frames of length T time slots where during the jth frame, the queue lengths at the

beginning of the frame, Q1 (jT), ... , QN (jT), are used for weight calculations during the frame.

We describe the One-Lookahead Myopic (OLM) policy for the general system in Algorithm 12.

Algorithm 12 ONE-LOOKAHEAD MYOPIC POLICY

1: Assuming that the server is currently with queue 1 and the system is at the jth frame,

calculate the following weights in each time slot of the current frame;

Wi(t)=Q(jT)(C(t) +E[C 1 (t + 1)1C1(t)])

Wi(t) =Qi( jT )E (Ci(t + 1)|lCi(t )] . (5.20)

2: If W 1 (t) > W(t), Vi E {2, ... , N}, then stay with queue 1. Otherwise, switch to a

queue that achieves

maxQj(jT)E[Cj(t + i)|Ci(t)].

A similar rule applies when the server is at other queues.

The technique used for the case of two queues for analyzing the stability region achieved by

the OLM policy is extremely cumbersome to generalize to the general system with N queues.

Therefore, for the general system, we have investigated the performance of the OLM policy in
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simulations. The simulation results in Section 5.3 suggest that the OLM policy may achieve the full

stability region while providing a better delay performance as compared to the FBDC policy.

Similar to the FBDC policy, the Myopic policies can be implemented without the use of frames

by setting T = 1, i.e., by utilizing the current queue lengths for updating the decision rules every

time slot. This could potentially lead to more delay-efficient policies that are more adaptive to

dynamic changes in queue lengths. We elaborate on this via the numerical results in the next section.

Similar to the system with two queues, the k-Lookahead Myopic Policy is the same as before

except that the following weight functions are used for scheduling decisions: Assuming the server

is with queue 1 at time slot t,

W1(t) = Qi(jT)(Ci(t) + E 1 [C1(t + -r)IC(t)]) and W(t) = Qj(jT) k. 1 E[C,(t +

r)ICi(t)], i E {2, ..., N}.

These policies have very low complexity and they are simpler to implement as compared to the

FBDC policy.

5.3 Numerical Results

We performed simulation experiments that present average queue occupancy results for the FBDC,

the One-Lookahead Myopic (OLM) and the Max-Weight (MW) policies for systems with N = 2

or N = 3 queues. We first verified that in the simulation results for the FBDC policy, queue sizes

grow unbounded only for arrival rates outside the stability region, and then performed experiments

for the One-Lookahead Myopic (OLM) policy. In all the reported results, we have A E A with

0.01 increments. For each point at the boundary of A, we simulated one point outside the stability

region. Furthermore, for each data point, the arrival processes were i.i.d., the channel processes

were Markovian as in Fig. 5-2 and the simulation length was T, = 100, 000 slots.

Fig. 5-7 (a) presents the total average queue size, Qavg ETi(Qi(t) + Q 2(t))/T, under the

FBDC policy for N = 2 queues, c = 0.25 < c,, and a frame size of T = 25 slots. The boundary

of the stability region is shown by (red) lines on the two dimensional A1 - A2 plane. We observe
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that the average queue sizes are small for all (A1 , A2 ) E A, and the big jumps in queue sizes occur

for points outside A. Fig. 5-7 (b) presents the performance of the OLM policy with T = 25 slot

frames for the same system. The simulation results suggest that there is no appreciable difference

between the stability regions of the FBDC and the OLM policies. Note that the total average queue

size is proportional to long-run packet-average delay in the system through Little's law. For these

two figures, the average delay under the OLM policy is less than that under the FBDC policy for

81% of all arrival rates considered.

Next, we implemented the FBDC and the OLM policies without the use of any frames (i.e.,

for T = 1). When there are no frames, the FBDC policy solves the LP in Algorithm 7 in each

time slot, and the OLM policy utilizes the queue length information in the current time slot for the

weight calculations in (5.13). Fig. 5-8 (a) and (b) present the total average queue size under the

FBDC and the OLM policies for N = 2 queues, T = 1, and e = 0.40 > ec. Similar to the frame

based implementations, we observe that the average queue sizes are small for all (A1 , A2 ) E A

for both policies and the big jumps in queue sizes occur for points outside A, which suggests that

the the non-frame based implementation of the FBDC and the OLM policies may achieve the full

stability region. The reason why the FBDC and the OLM policies provide stability without the

use of frames is because for large queue lengths, the corner point that these policies choose to

apply depend completely on the queue length ratios, and hence, the choice of corner points and the

associated saturated-system policies utilized in the FBDC and the OLM policies do not change fast

when the queue lengths get large. Furthermore, the no-frame implementations of these policies are

more adaptive to dynamic changes in the queue sizes as compared to implementations with large

frames.

For the same system (i.e., N = 2 queues and c = 0.40 > c,), Fig. 5-9 presents the long-run

packet average delay as a function of the sum-throughput A1 + A2 along the main diagonal line (i.e.,

A1 - A2 ). We compare the delay performance of the FBDC and the OLM policies with T = 1, and

the Max-Weight policy which, in each time slot t, chooses the queue that achieves maxi Qi(t)Ci (t).
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Figure 5-9: Delay vs Sum-throughput for the FBDC, the OLM, and the Max-Weight policies implemented

without the use of frames (i.e., for T - 1) for N = 2 queues and e = 0.40.

The maximum sum-throughput is 0.75 -e/2 = 0.55 as suggested by Theorem 9. Fig. 5-9 shows that

while FBDC and the OLM policies stabilize the system for all Ai + A2 < 0.55, the system becomes

unstable under the Max-Weight policy around Ai + A2 = 0.45. This result also confirms that the

OLM policy has a much better delay performance than the FBDC and the Max-Weight policies.

For N = 3 queues and e = 0.30, Fig. 5-10 presents the long-run packet-average delay as

a function of the sum-throughput E; Ai along the main diagonal line (i.e., A, = A2 = A3). The

maximum sum-throughput is 1 -0. 5 N -6*(1-0.5N)+E*0.5N = 0.65 1-e -0.5N(1-2E) = 0.65

as suggested by Lemma 19. Similar to the previous case, Fig. 5-10 shows that FBDC and the OLM

policies stabilize the system for all E> A; < 0.65, the system becomes unstable under the Max-

Weight policy around E> Ai = 0.48. This result also confirm that the OLM policy has a delay

performance than the other two policies.

The delay results in this section show that the OLM policy is not only simpler to implement as

compared to the FBDC policy, but it can also be more delay efficient.
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Figure 5-10: Delay vs Sum-throughput for the FBDC, the OLM, and the Max-Weight policies implemented

without the use of frames (i.e., for T = 1) for N = 3 queues and e - 0.30.

5.4 Concluding Remarks

We investigated the dynamic server allocation problem with time-varying channels and server

switching time. For the case of two queues, we analytically characterized the stability region of the

system using state-action frequencies that are stationary solutions to an MDP formulation for the

corresponding saturated system. We developed the throughput-optimal FBDC policy. We also de-

veloped simple Myopic Policies that achieve a large fraction of the stability region. We extended the

stability region characterization in terms of state-action frequencies and the throughput-optimality

of the FBDC policy to the general system with arbitrary number of queues. We characterized tight

analytical outer bounds on the stability region using an upper bound on the sum-rate and showed

that a simple greedy-myopic policy achieves this sum-rate bound. The stability region characteriza-

tion in terms of the state-action frequencies of the saturated system and the throughput-optimality

of the FBDC policy hold for systems with arbitrary switching times and general Markovian chan-

nels. Furthermore, the FBDC policy provides a new framework for developing throughput-optimal

policies for network control as this policy can be used to stabilize a large class of other network

control problems. Possible future directions include explicitly characterizing the stability region of

general system models with multiple-slot switching times and general Markov modulated channels,
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and developing Myopic policies with large throughput guarantees. .

Appendix A - Proof of Theorem 7

We prove Theorem 7 for a more general system with N-queues and travel time between queue-i

and queue-j given by Dij slots. We call the term EN Ai/pi the system load and denote it by p

since it is the rate with which the work is entering the system in the form of service slots.

Necessity

We prove that a necessary condition for the stability of any policy is p = EN 1 Ai/pi < 1. Proof:

Since queues have memoryless channels, for any received packet, as soon as the server switches to

some queue i, the expected time to ON state is 1/pi. Namely, the time to ON state is a geometric

random variable with parameter pi, and hence, 1/p is the "service time per packet" for queue i. In

a multiuser single-server system with or without switching delays, with i.i.d. arrivals whose aver-

age arrival rates are Ai, i E { 1, ..., N}, and i.i.d. service times independent of arrivals with mean

1/pi, i E {1, ..., N}, a necessary condition for stability is given by the system load, p, less than

1 [23]. 0 To futher ellaborate on this, consider the polling system with zero

switching times, i.i.d. arrivals of mean Ai and i.i.d. service times of mean 1/pi. The throughput

region of this system is an upperbound on the throughput region of the corresponding system with

nonzero switching times. This is because for the same sample path of arrival and service processes,

the system with zero switching time can achieve exactly the same departure process as the system

with nonzero switching times by making the server idle when necessary. A necessary condition for

the stability of the former system is p = Aq/pi + AN/PN + ... + A11pN < 1, (e.g., [118], [23]).

Finally, note that this necessary stability condition can also be derived by utilizing the state-action

frequency approach of Section 5.1.3 for the system with i.i.d. connectivity processes.

Sufficiency Proof: Under the Gated cyclic policy, we have a Polling system with i.i.d. arrivals with
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mean Aj, i E {1, ..., N}, i.i.d. service times independent of arrivals with mean 1/pi, i E {1, ..., N},

and finite and constant switching delays. It is shown in [23] that the Gated cyclic policy results in

an ergodic system if p = 1 < 1, the expected per-message waiting times in steady-state are

finite, and they satisfy a pseudo-conversation law. Through Little's law ( [47, pp. 139] or [7, pp.

1109]), this implies that the expected number of packets in the system in steady state is finite, which

in turn implies that the system is stable. [

Appendix B - Proof of Lemma 17

Given a policy 7r for the dynamic queueing system specifying the switch and stay actions based

possibly on observed channel and queue state information, consider the saturated system with the

same sample path of channel realizations for t E {0, 1, 2, ... } and the same set of actions as policy v

at each time slot t E {0, 1, 2, ...}. Let this policy for the saturated system be 7r'. Let Di(t), i E {1, 2}

be total number departures by time t from queue-i in the original system under policy 7r and let

D4(t), i E {1, 2} be the corresponding quantity for the saturated system under policy ir'. It is

clear that limtoo(D1 (t) + D 2 (t))/t I 1, where the same statement also holds for the limit of

D'(t), i E {1, 2}. Since some of the ON channel states are wasted in the original system due to

empty queues, we have

D1 (t) D'(t), and, D 2 (t) 5 D'(t). (5.21)

Therefore, the time average expectation of Di(t), i E {1, 2} is also less than or equal to the -time

average expectation of D (t), i E {1, 2}. This completes the proof since (5.21) holds under any

policy 7r for the original system.
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Appendix C - Proof of Theorem 9

We enumerate the states as follows:

s = (2, 1, 1) 5

s = (1, 1,0) 2,

s = (2, 1,0) 6

s = (1,0, 1) 3,

s = (2, 0, 1) 7

s = (1, 0, 0) 4,

s = (2, 0, 0) 8.

We rewrite the balance equations in (5.11) in more details.

x(1; 1) + x(1; 0) = (1 - E)2 (x(1; 1) + x(5; 0)) + E(1 - E) (x(2; 1) + x(6; 0))

+E(1 - E) (x(3; 1) + x(7; 0)) + E2(x(4; 1) + x(8; 0))

x(2; 1) + x(2; 0) =cE(1 - E) (x(1; 1) + x(5; 0)) + (1 - 6)2 (x(2; 1) + x(6; 0))

+E2 (x(3; 1) + x(7; 0)) + c(1 - E) (x(4; 1) + x(8; 0))

x(5; 1) + x(5; 0) = (1 - E)2 (x(5; 1) + x(1; 0)) + E(1 - E) (x(6; 1) + x(2; 0))

+E(1 - c)(x(7; 1) + x(3; 0)) + E2 (x(8; 1) + x(4; 0))

x(7; 1) + x(7; 0) = E(1 - E) (x(5; 1) + x(1; 0)) + E2 (x(6; 1) + x(2; 0))

+(1- E)2 (x(7; 1) + x(3; 0)) + E(1 - E) (x(8; 1) + x(4; 0))
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The following equations hold the channel state pairs (C1 , C2 ).

x(1; 1) + x(1; 0) + x(5; 1) + x(5; 0) = 1/4

x(2; 1) + x(2; 0) + x(6; 1) + x(6; 0) = 1/4

x(3; 1) + x(3; 0) + x(7; 1) + x(7; 0) = 1/4

x(4; 1) + x(4; 0) + x(8; 1) + x(8; 0) = 1/4.

(5.27)

(5.28)

(5.29)

(5.30)

Let ui = (x(1; 1) + x(2; 1) and U2 = (x(5; 1) + x(7; 1)). Summing up (5.23) with (5.24) and

(5.25) with (5.26) we have

cui = -(x(1; 0) + x(2; 0)) + e (x(3; 1) + x(4; 1)) + c(x(7; 0) + x(8; 0)) + (1 - c)(x(5; 0) + x(6; 0))

e= -(x(5; 0) + x(7; 0)) + e(x(6; 1) + x(8; 1)) + c(x(2; 0) + x(4; 0)) + (1 - E)(x(1; 0) + x(3; 0))

Rearranging and using (5.27)-(5.30) we have

Ui = I + E(x(3; 1) + x(4; 1) + x(7; 0)

- (1 - c)(x(5; 1) + x(6; 1))

+ x(8; 0)) - (2 - E) (x(1; 0) + x(2; 0))

(5.31)

(5.32)
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U2 = 2-+ e (z(2; 0) - x(4; 1) + x(6; 1) - x(8; 0)) - (2 - c) (x(5; 0) + x(7; 0))

- (1 - E) (xz(1; 1) + x (3; 1))



Using (5.25) in (5.31) and (5.23) in (5.32) we have

ui = + E (x(3; 1) + x(4; 1) + x(7; 0) + x(8; 0)) - 2 ((4; 0) + x(8; 1))

(1 - E)(3 - 2c) x(6; 1) + 1 ~ X(5;
2 - e E(2 -,E)

0)- 1 + E - E2x(1; 0)
0(2 -,E)

- (x(3; 0) + x(7; 1)) - (2 - 1 + )x(2; 0)
2-c 2- 

U2 = 2-c + Ec(x (2; 0) + x(6; 1)) - (c + 2) (x(4; 1)-+ x(8; 0))

+ 12 (1;
c(2 - e)

(x(2; 1) + x(6; 0)) - (2
2- c

0)- 1+ E E2 (5; 0)
6(2 - e)

- E + -(7 0).

Using (5.29) and (5.30) in (5.33) and (5.28) in (5.34) we have

S= 2(1-c)(3 -2c) ( 1E -+2 ) (x(4; 1) + x(8; 0)) + 2 (x(3; 1) + x(7; 0))

- (1 - E)(3 - 2c) (6; 1)
2 -c

+- L x(5; 0)
c(2 -,E)

- 2 E x(1;0) - 2 - E + 2- x(2; 0)

(5.35)

3- 2c
U2 -2

4( 6 )
- (c+ c ) (x(4 1) + x(8; 0)) + 1 (x(2; 0) + x(6; 1))

- (1- c)(3 - 2c) x(3; 1)
2-cE

+ x(1; 0)
c(2 - c)

- 2cc.x(5; 0)- (2-c +-)x(7;0).
cE(2-cE)2-

(5.36)
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Consider the LP objective function ai (x(1; 1) +x(2; 1)) + a2(x(5; 1)+x(7; 1)), and note that

the solution to this LP is a stationary deterministic policy for any given ai and a2. This means that,

for any state s either x(s; 1) or x(s; 0) has to be zero. In order to maximize a (x(1; 1) + x(2; 1)) +

a2(x(5; 1) + x(7; 1)) we need

x(7;0)=0 if a > 1
al ~ (2 - E)2+ (1 - E)2

x(3; 1) = 0 if > ,
ai ~ (1 -,E)(3 - 2E)'

x(8;0) =

x(5;0)=0 if a2 >
ai - 1

x(4; 1) = 0 if C > 1,
al

x(6; 0) = 0 if OZ > (1
al

1 - E
+ E - E2

- E)(3 - 2E),

x(1; 1) = 0 if 2 > 1 +'E- E2

ai- 1 -e

Note that we have

(2 -E)2 + (1 - E)2

(2 - E)2 + (1 - E)2

> (1 - E)(3 - 2c) > 1

1 +- E
1 1- E

holding for all E E [0, 0.5]. Consider the following two cases:
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Case-1: c > c, = 1 - 2

In this case we have (1 - e)(3 - 2c) < (1 + E - <2)/(1 - e). This means that we have the following

optimal policies depending on the value of a 2 /ai.

1 < < (1 - e)(3 - 2c):

@queue 1 : (1, 1, 1) : stay, (1, 1, 0) : stay,

@queue 2 : (2, 1, 1) stay, (2, 1, 0) switch,

(1, 0, 1): switch,

(2, 0, 1) :stay,

(1, 0, 0) : switch.

(2, 0, 0) : stay.

Substituting zero values for the state action pairs that are not chosen into

seen that this policy achieves the rate pair

(1 - E)(3 - 2() 3 - 2e
r1= 4(2 - e) '4(2 - E) "

Z > (1 - E)(3 - 2c):

@queue 2 : (2, 1, 1) : stay, (2, 1, 0) : stay, (2, 0, 1) : stay, (2, 0, 0) : stay.

In this case it is optimal to stay at queue 2 for all channel conditions. The decisions at queue 1 are

to switch to queue 2. Namely, it is sufficient that at least one state corresponding to server being at

queue 1 to take a switch decision, which is the case for a 2/ai > ((1-E)(3 -2c)), since x(3; 1) = 0

if a2/ai ;> 1/((1 - E)(3 - 2c)). Since the policy decides to always stay at queue 2, it achieves the

rate pair

r1 = 0, r 2 = 0.5.

Note that the case for a 2 /ai < 1 is symmetric and can be obtained similarly.
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Case-2: c <,ec = 1 - vf2/2

In this case we have (1 - E)(3 - 2E) > (1 + E - 2)/(1 - c). This means that before the state x(6; 0)

becomes zero, namely for (1 + E - E2)/(1 - e) < a2/al < (1 - c)(3 - 2E), having x(1; 1) = 0 is

optimal. This means that there is one more corner point of the rate region for e < ec. We have the

following optimal policies.

1 < a < 1+e-e2.
- ai - 1-E

@queue 1 : (1, 1, 1) : stay,

@queue 2 : (2, 1, 1) : stay,

(1, 1,0) : stay,

(2,1,0) : switch,

(1, 0, 1): switch,

(2, 0, 1): stay,

(1, 0, 0) : switch.

(2, 0, 0) : stay.

This policy is the same policy as in the previous case and it achieves the rate pair

(1 -,e)(3 - 2c)
rl= 4(2-E)

3 - 2e
J2 4(2 -e()'

a22 > 1+E-E2,
a1  1-e

We have the following deterministic actions.

@queue 1 : (1, 1, 1) : switch,

@queue 2 : (2, 1, 1): stay,

(1, 1, 0) :

(2, 1, 0) :

(1, 0, 1): switch,

(2, 0, 1): stay,

(1, 0, 0) : switch.

(2, 0, 0) : stay.

In order to find the final threshold on a 2/al, we substitute the above deterministic decisions in
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(5.24), (5.25) and (5.26). Utilizing also (5.27), (5.28), (5.29) and (5.30) we obtain

(1 - E)2=- (1 - e) 2x(6;1)

4

(5.37)

(5.38)

The previous threshold on a2 /ai for x(6; 0) to be zero, i.e., (1 - c)(3 - 2c), is valid for the case

where x(1; 0) = 0. Other decisions staying the same, when x(1; 0) is positive and x(1; 1) = 0,

r2 increases and r1 decreases. Therefore the threshold on a2/al for x(6; 0) to be zero changes, in

particular, a simple derivation shows that it becomes a2/ai > (1 - e)2/E. This gives the following

two regions:

The optimal policy is

@queue 1 : (1, 1, 1): switch,

@queue 2 : (2, 1, 1): stay,

(1, 1, 0): stay,

(2, 1, 0) :switch,

(1, 0, 1): switch,

(2, 0, 1): stay,

(1, 0, 0) : switch.

(2, 0, 0) : stay.

From (5.37) and (5.38) it is easy to see that this policy achieves

(1 -,E)2
4,

2 - E

l
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The optimal decisions at queue 1 are to switch to queue 2. This policy achieves

@queue 2 : (2, 1, 1) : stay, (2, 1, 0) : stay, (2, 0, 1) : stay, (2,0,0) : stay.

This policy achives

r, = 0, r 2 = 0.5.

Similar to Case-1, the case a2//al < 1 is symmetric and can be solved similarly.

Thus we have characterized the corner point of the stability region for the two regions of E.

Using these corner points, it is easy to derive the expressions for the lines connecting these corner

points, which are given in Theorem 9.

Appendix D - Generalization to Non-symmetric Gilbert-Elliot

Channels

In the following, we state results analogous to the results established in Section 5.1 for symmetric

Gilbert-Elliot channels to the case of non-symmetric Gilbert-Elliot channel model as given in Fig.

5-2.

Theorem 15 When the connectivity processes follow the non-symmetric Gilbert-Elliot channel
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model, the rate region A, is the set of all rates r1 2 0, r2 2 0 that for poi < 2-Po satisfy

p0 ir 1 + hir2

(1 - pio)r 1 + h2 r 2

< hi P01
Poi + Pio

2

< 1 - p o
(m10+ poi)2

2
rl + r2 < 1 P

(pio + poi)2

h2r 1 + (1 - pio)r 2

hir1 +poir 2

2

P0(pio + poi)

< hi- P ,
poi + Pi0o

Plopol
POI + P10

P1opol
Poi + Pio

PioPoi
Poi + Pio

where hi = (1 - poi)(I - pio), h2 = 1 + p2o, and for poi 2(2-po satisfy

poiri + h 3r 2 < h3  P01
P1o + Poi

rl + r2 < 1- po
(pio +poi) 2

h 3 r 1 + poir2 <h3
P10 + P01,

where h3 = (1 - pio)(pio + (pio + poi)(1 - Pio)).

Proof: We enumerate the states as follows:

s = (1, 0, 1) 3,

= (2, 0, 1) 7

s = (1, 0, 0) 4

s =(2, 0, 0) 8.
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Poi +plo

s = (2, 1, 1) 5
(5.39)

s =(1, 1, 0) 2,

s =(2, 1, 0) 6



We rewrite the balance equations in (5.11) in more details.

x(1; 1) + x(1; 0) = (1 - Pio)2 (x(1; 1)

+Ppoi(1 - pio)(x(3; 1)

x(2; 1) + x(2; 0) = pio(1 - Pio) (x(1; 1)

+poipio (x(3; 1)

x(5; 1) + x(5; 0) = (1

+P01(1

x(7; 1) + x(7; 0) = pio(1

+(1 - poi)(I

+ x(5; 0))

+ x(7; 0))

+ x(5; 0))

+ x(7; 0))

+

+

+

+

POI(1 - pio)(x(2; 1) + x(6; 0))

P0i (x(4; 1) + x(8; 0)) (5.40)

(1 - pio)(I - p0i) (x(2; 1) + x(6; 0))

Poi(I -poi)(x(4;1) +x(8;0)) (5.41)

- Pio)2 (x(5; 1) + x(1; 0)) + Poi(1 - pio)(x(6; 1) + x(2; 0))

- Pi) (x(7; 1) + x(3; 0)) + Po (x(8; 1) + x(4; 0)) (5.42)

- Pio) (x(5; 1) + x(1; 0)) + Piopoi (x(6; 1) + x(2; 0))

- Pio) (x(7; 1) + x(3; 0)) + P01(1 - p01) (x(8; 1) + x(4; 0)) (5.43)

The following equations hold the channel state pairs (C1, C2 ).

x(1; 1) + x(1; 0) + z(5; 1) + x(5; 0) - poi 1 i(P(2 + P+ ) 2

x(2; 1) + x(2; 0) + x(6; 1) + x(6; 0) - PoiPio
(P01 + p10)

x(3; 1) + x(3; 0) + x(7; 1) + x(7; 0) - 2
(poi + pio) 2

2
x(4;1)±+x(4; 0) +x(8; 1) +x(8; 0) - PiO

(P01 + plo) 2 *

(5.44)

(5.45)

(5.46)

(5.47)

Let ui = (x(1; 1) + x(2; 1) and U2 = (x(5; 1) + x(7; 1)). Summing up (5.40) with (5.41) and
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(5.42) with (5.43) we have

pioni = - (x(1; 0) + x(2; 0)) + poi (x(3; 1) + x(4; 1))

+ poi(x(7;0) + x(8;0)) + (1 -pio)(x(5;0) +x(6;0))

PioU2 = - (x(5; 0) + x (7; 0)) + poi (x(6; 1) + x(8; 1))

+ poi(x(2;0) +x(4;0)) + (1 -pio)(x(1;0) +x(3;0))

Rearranging and using (5.44)-(5.47) we have

31=o +poi (x(3; 1) + x(4; 1) + x(7; 0) + x(8; 0))
P01 +Pio

- (2 - pio) (x(1; 0) + x(2; 0)) - (1 - pio)(x(5; 1) + x(6; 1)) (5.48)

U2=poi(P +pio PoiPio) +poi (x(2; 0) -x(4; 1)+x(6; 1) -x(8; 0))

- (2-pio)(x(5;0)+x(7;0)) -(1-pio)(x(1; 1)+x(3; 1)). (5.49)
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Using (5.42) in (5.48) and (5.40) in (5.49) we have

Pol( +plo) (3 1 1 8 0)) - (4; 0)+x(8; 1))
- o+P ((3; 0)+(x(; 1) - 0) ± (50 1 )

1 +Pol X, +P,)Z\ +Xo P1o( 2-Plo)

2 (1=p )( + Po l o Plo) )x(6; 1) + ( -Plo - i (( 4 PloPloX(l; 0)

- Po ( 1 ) ) + p (2 - p
io)( ; P) 0((;0)

- o (x(3; 0) + x(7; 1))- 2-pl0+ (2 - P2o- )x(2; 0) (5.50)

P1(- p (-lo) Plo2~ 10 (27  - plo( 2

_ 1p)l Po l~ -1P-lo) x3; 1) + 1x(6 -~; 0)) (2+plo+I ~ Plo )z(7 (; 0)(51

pl 2- plo) Pio(2
- plo)
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Using (5.46) and (5.47) in (5.50) and (5.45) in (5.51) we have

= Poi(Pio)
Poi +P10

P( 1 (1 p Po)
(2 - pio) (poi+pio) 2 +

p01 (I-p 1o) (x(4; 1) + x(8; 0))
pio(2 -pio)

+ Pio2  -) (x(3; 1) + x(7; 0)) - (1-pi)(1+ ))x(6; 1)+ ( )x(5; 0)
p10(2 - pio) Pi0o(2 - pio) Pio (2 -pio)X

+Po -P1OX(
P1 Pi( 2 -pio)

1; 0) - (2-pio+ Px(1_pl0)2 )x(2; 0)

2=P (P1 1Po -poiplo)
(P01+p1O) 2

poi(I -pio) 2

(2 - pio)(poi +pio) 2 poi+ (-Pl)
0po(2 -plo)

(x(4; 1) +x(8; 0))

P -(x(2; 0) + x(6; 1)) - (1-pi)(1+ poi(1-pi))x(3; 1) + 1 xPO (1; 0)
Pio( 2 - plo) P1o(2-pio) pio( 2 - pio)

+P0Plox(
5 ;

P10o( 2 - pio)
0)- (2-p1+ P1(1 - plo) 2 ) x(7; 0).

Consider the LP objective function ai (x(1; 1) + x(2; 1)) + a2 (x(5; 1) + x(7; 1)), and note that the

solution to this LP is a stationary deterministic policy for any given c and a2. This means that, for

any state s either x(s; 1) or x(s; 0) has to be zero. In order to maximize ai (x(1; 1) + x(2; 1)) +

a2 (x(5; 1) + x(7; 1)) we need
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X(7;0)=O if 2 >P01
a1 pio(2 - pio)2 + poi(1 - pio)2'

x(3; 1) = 0 if Ce >
al

x(5; 0) = 0 if a >
a1,

if a2 >
al

x(6; 0) =0 if a2 >
al

x(1;1)=0 if 0 >
ai

Note that we have that

29
Pio( -Pio) + Poi1 -Pio)

Poi

Pio(2 - plo)2 + poi(l - plo) 2

p2

Pol

(1 - pio) (p10 (2 - pio) + po1( pio))

1 - Pio

1+pi -pio

1,

(1 -pio)(pio( 2 - pio) + poi(l plo))

Poi

1P+io - Po
P101 - Plo

-1 plo -p +

(1 - pio)(pio(2 - Pio) + poi(1 - Pio))

Poi

whenever Plo + plo < 1 (the condition for positive correlation). Consider the following two cases:

Case-1: poi > (2-plo
-

2 -pio

In this case we have (1-po)(po( 2 -pio)+poi(1-pio)) < 1+plo-p21 0 This means that we have the fol-Polo - i-Plo

lowing optimal policies depending on the value Of a2/al .
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>1,

x(8; 0) = x(4; 1) = 0
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< 2 K (1-pio)(pio(2-pio)+pol(1-pio)).
-el 01- Po

@queue 1 : (1, 1, 1) : stay,

@queue 2 : (2, 1, 1) : stay,

(1, 1, 0) : stay,

(2, 1, 0) : switch,

(1, 0, 1) : switch,

(2, 0, 1) stay,

(1, 0, 0) : switch.

(2, 0, 0) :stay.

Substituting the above zero variables into (5.52) and (5.53), it can be seen that this policy achieves

the rate pair

1 - Pi0 PoiPlo + Poi(1 - Plo) (Poi + Pio)
2 - plo (pol + plo) 2

1 Poipio + poi(1 - Pio)(Poi

(pol + plo) 2

S>(1-pio)(pio(2-pio)+poi(1-po)).
ai Poi

@queue 2 : (2, 1, 1) : stay, (2, 1, 0) : stay, (2, 0, 1) : stay, (2,0,0) : stay.

In this case it is optimal to stay at queue 2 for all channel conditions. The decisions at queue 1 are

to switch to queue 2. Namely, it is sufficient that at least one state corresponding to server being

at queue 1 to take a switch decision, which is the case for a2/al > ( ~pio)(pio(2-pio)+po1(1-pio))
PC'

since x(3; 1) = 0 if Ca2 /Oi ((1-plo) (pio( 2-pro)+pOi(1-plo)) )1. Since the policy decides to always
Pol

stay at queue 2, it achieves the rate pair

ri = 0, r 2  -
Pol + P1o

Note that the case for a 2/ai < 1 is symmetric and can be obtained similarly.
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Case-2: poi < (2-P10)2 -Plo

In this case we have 1 > 1 +P-plO. This means that before the state
Poi 1-Plo

1+piO-P
2

O __________________________lo)

x(6; 0) becomes zero, namely for 1PIO < a2/ai < (1-pio)(pio(2 -pio)+poi(-pio)), having

x(1; 1) = 0 is optimal. This means that there is one more corner point to the rate region for

Poi < 2-pl . We have the following optimal policies.

2
1 < 2 < 1+pio-pio.

-al - 1-pio

@queue 1: (1, 1, 1): stay,

@queue 2: (2, 1, 1): stay,

(1, 1,0) : stay,

(2, 1,0) : switch,

(1, 0, 1): switch,

(2, 0, 1) : stay,

(1, 0, 0) : switch.

(2, 0, 0) : stay.

This policy is the same policy as in the previous case and it achieves the rate pair

1 - Pio PoiPio + poi(1 - Pio) (Poi + Pio)
2 - Plo

1 Po1Plo + poi(1 -pio)(poi + pio)
(P01 + p1o)

2

12> 1 P10IaW 1-pio

We have the following deterministic actions.

@queue 1 : (1, 1, 1) : switch,

@queue 2 : (2, 1,1) : stay,

(1, 1, 0) : ?, (,0, 1) : switch,

(2, 1, 0) : ?,(2, 0, 1) :stay,

(1, 0, 0) : switch.

(2, 0, 0): stay.
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In order to find the final threshold on a2/ai, we substitute the above deterministic decisions in

(5.41), (5.42) and (5.43). Utilizing also (5.44), (5.45), (5.46) and (5.47) we obtain

x(2; 1) = (1 - )2(1 _) 2X(6; 1)
4

x(5; 1) + x(7; 1) = P0 2+ poi) + poix(6; 1)
(Poi + plo) 2

(5.54)

(5.55)

zero (-plo)(pio (2-pjo)+poi (l-plo)) i aiThe previous threshold on a 2/ai for x(6; 0) to be zero, i.e., Po 1, is valid

for the case where x(1; 0) = 0. Other decisions staying the same, when x (1; 0) is positive and

x(1; 1) = 0, r2 increases and r1 decreases. Therefore the threshold on a2/ai for x(6; 0) to be zero

changes, in particular, a simple derivation shows that it becomes a2/ai > (1 - pio)(1 - P0i)/Poi.

This gives the following two regions:

1+po (1 Pio)( -Pol/Poi:

The optimal policy is

@queue 1 : (1, 1,

@queue 2 : (2, 1,

1): switch,

1): stay,

(1, 1, 0) :stay,

(2, 1, 0) :switch,

(1, 0, 1) : switch, (1, 0, 0) : switch.

(2, 0, 1) : stay, (2, 0, 0) : stay.

From (5.54) and (5.55) it is easy to see that this policy achieves

ri= (1 -Po)(1 -Po) PoPo Poi(Pio - P1oi + POi)
(Po1 + p1o)2  2 (poi + pio)2

> (1 - Pio)(1 - PO)/Poi:
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The optimal policy is

@queue 2 : (2, 1, 1) : stay, (2, 1, 0) : stay, (2, 0, 1) : stay, (2, 0,0) : stay.

The optimal decisions at queue 1 are to switch to queue 2. This policy achieves

ri = 0, r2 = Po -

Poi + Pio

Similar to Case-1, the case a 2 /ai < 1 is symmetric and can be solved similarly.

Thus we have characterized the corner point of the stability region for the two regions of poi

and pio. Using these corner points, it is easy to derive the expressions for the lines connecting these

corner points, which are given in Theorem 15. 0

Closely examining the upper bound on sum-rate ri + r2 , the term 1 - plo/(pio + poi) 2 is the

steady state probability that at least one channel is in ON state. This is the maximum achievable

sum-rate value for the system with zero switching delay studied in [110]. Therefore, the term

P ' is exactly the loss due to switching delay. It can be shown that, under a sum-rate-optimal
P01 +PiO

policy, this term is equal to the steady state probability that server is at a queue with an OFF channel

state when the other queue is at an ON channel state.

The FBDC policy is asymptotically throughput-optimal under the non-symmetric Gilbert-Elliot

channel model. This is straightforward as the FBDC policy only needs to solve the LP in Al-

gorithm 7 for a given Markovian state transition structure, and the non-symmetric Gilbert-Elliot

channel model leads to a Markovian state transition structure. For the non-symmetric Gilbert-Elliot

channels case, the mappings from the queue sizes to the corner points of the rate region used by

the FBDC policy, analogues to the mappings in tables 5.2, and 5.1 can be obtained from the slopes

of the lines forming the boundary of the stability region. Furthermore, an analysis very similar to

the one in Section 5.1.5 gives the corresponding mapping for the One-Lookahead Myopic (OLM)
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0 T1(e) T*(e) T2 (e)T2*(e) 1

% %

corner b \ corner b4  corner b3  corner b2  | corner b1  /corner b0

(1,1,1): stay (1,1,1): stay (1,1,1): stay (1,1,1): stay (1,1,1): switch (1,1,1): switch
(1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): switch
(1,0,1): stay (1,0,1): switch (1,0,1): switch (1,0,1): switch (1,0,1): switch (1,0,1): switch
(1,0,0): stay (1,0,0): stay (1,0,0): stay (1,0,0): switch (1,0,0): switch (1,0,0): switch
(2,1,1): switch (2,1,1): switch (2,1,1): stay (2,1,1): stay (2,1,1): stay (2,1,1): stay
(2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): stay
(2,0,1): switch (2,0,1): stay (2,0,1): stay (2,0,1): stay (2,0,1): stay (2,0,1): stay
(2,0,0): switch (2,0,0): switch (2,0,0): switch (2,0,0): stay (2,0,0): stay (2,0,0): stay F

Table 5.5: Mapping from the queue sizes to the corners of A5 , bo, bi, b2 , b3 , b4 , b5 , for poi < 42_ . For

each state s = (m(t), C 1 (t), C2 (t)) the optimal action is specified. The thresholds on Q2/Qi for the FBDC

policyare0,T* =poi/((1 -poi)(1 - pio)), T2* = (1 - po)/(1 + po - pio), 1, T* = = 1/T*

and for the OLM policy are 0, Ti = poi/(1 - pio), T2 = (1 - pio)/( 2 - poi), 1, T3 = 1/T 2, T 4  1/TI.

For example corner bi is chosen in the FBDC policy if 1 < Q2/Q1 < T3*, whereas in the OLM policy if

1 < Q2/Q1 < T3 .

(-p1O) 2

policy. These mappings are shown in Table 5.5 for the case of poi < _ l , and in Table 5.6 for

the case of poi (1-po)2

Appendix E - Proof of Theorem 14

Let tk be the first slot of the kth frame where tk+1 = tk + T. Let Di (t) be the service opportunity

given to queue i at time slot t, where Di (t) is equal to 1 if queue i is scheduled at time slot t

(regardless of whether queue i is empty or not) and zero otherwise. We have the following queue

evolution relation:

Qj(t + 1) = max(Qj(t) - Di(t), 0) + Ai(t). (5.56)
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0 T1  T* 1 T2* T2

corner b3  \ corner b2 corner b1 corner bo

(1,1,1): stay (1,1,1): stay (1,1,1): stay (1,1,1): switch
(1,1,0): stay (1,1,0): stay (1,1,0): stay (1,1,0): switch
(1,0,1): stay (1,0,1): switch (1,0,1): switch (1,0,1): switch
(1,0,0): stay (1,0,0): stay (1,0,0): switch (1,0,0): switch
(2,1,1): switch (2,1,1): stay (2,1,1): stay (2,1,1): stay
(2,1,0): switch (2,1,0): switch (2,1,0): switch (2,1,0): stay
(2,0,1): switch (2,0,1): stay (2,0,1): stay (2,0,1): stay
(2,0,0): switch (2,0,0): switch (2,0,0): stay (2,0,0): stay

Table 5.6: Mapping from the queue sizes to the corners of As, bo, bi, b2 , b3, for po 1> 2(1 -P ) For each2 -plo

state s = (m(t), C1(t), C2 (t)) the optimal action is specified. The thresholds on Q2/Q 1 for the FBDC policy

are 0, T* = poi/((1 -pio)(pio + (pio +poi)(1 -pio))), 1, T2 = (1 -pio)(pio + (pio +poi)(1 -pio))/poi

and for the OLM policy are 0, Ti = poi/(1 - plo), 1, T2 = (1 - pio)/poi. For example corner bi is chosen

in the FBDC policy if 1 < Q2/Q1 < T2*, whereas in the OLM policy if 1 < Q2/Qi < T2.

Similarly, the following T-step queue evolution relation holds:

T-1 T-1

Qi(tk +T) max Qi(tk) -EDi(t +r),0 +( Ai(tk+), (5.57)
r=0 -r=0

where ET_ Di(tk + T) is the total service opportunity given to queue i during the k frame. To

see this, note that if ET_~1 Di(tk + T), the total service opportunity given to queue i during the kh

frame, is smaller than Qi(tk), then we have an equality. Otherwise, the first term is 0 and we have

an inequality. This is because some of the arrivals during the frame might depart before the end

of the frame. Note that ET_- Di(tk + r) denotes the link i departures that would happen in the

corresponding saturated system if we were to apply the same switching decisions over T time slots

in the corresponding saturated system. We first prove stability at the frame boundaries. Define the
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quadratic Lyapunov function

N

L(Q(t)) = ZQi(t),
i=1

which represents a quadratic measure of the total load in the system at time slot t. Define the T-step

conditional drift

AT(tk) - E [L(Q(tk +T)) - L(Q(tk))IQ(tk)]

where the conditional expectation is over the randomness in arrivals and possibly the scheduling

decisions. Squaring both sides of (5.57), using max(O, x) 2 < X2, Vx E N U {O}, and Di(t) 5 1, Vt

we have

Qi(tk +T) 2  (tk 2  T 2 + Ai(tk + T) 2

T-1 T-1

-2Qd(tk) (YjJi(tk + T) - Ai (tk + T)). (5.58)
-r=O r-O

Summing (5.58) over the queues, using E[Ai(t)2 ] <Aa and E[A(t1)Ai(t 2 )] <

/E[A;(ti)}2E[AF(t2 )]2 < Aa for all time slots ti and t 2 , we can easily derive the following

T-step conditional Lyapunov drift

N

AT(tk) NBT 2 + 2T Qi (tk)Ai
i=1

T -1

-2 ( Qi(tk)E Di(t + T)IQ(tk1,
r=0

where B - 1 + A2ax. Recall the definition of the reward functions Tj(st, at), i E {, ... , N,

in (5.15) and let Ti(st, at) be the reward function associated with applying policy lr* given in the
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definition of the FBDC policy in Algorithm 11 to the saturated system. Let 7i(t) denote 7i(st, at)

for notational simplicity, i E {l, ..., N}. Note again that ri(t) is equal to Di(t), since Di(t) is the

service opportunity given to link i at time slot t. Now let r* = (ri)i be the infinite horizon average

rate associated with policy -r*. Let x* be the optimal vector of state-action frequencies correspond-

ing to 7r*. Define the time-average empirical reward from queue i in the saturated system, rT,i (t4),

i E {1, ..., N} by

T-1

rT,i(tk) fi(k T

r=0

Similarly, define the time average empirical state-action frequency vector RT(tk; s, a).

ts+T --1
T(tk;i s, a) {sr=s,ar=a},

r=tk

where IE is the indicator function of an event E, i.e., IE = 1 if E occurs and IE = 0 otherwise.

Using the definition of the reward functions in (5.15), we have that

rT,i(tk) - Fi(s, a)kT(tk; s, a), i E {1, ...,N},
sES aEA

and rT(tk) = (T,1(tk))i. Similarly, we have

r= EjIZF(s, a)x*(s, a), i E {1,..., N}.
sES aEA

Again utilizing Lemma 4.1 in [79], we have that for every choice of initial state distribution, there

exists constants cl and c2 such that

P(I|iT(tk) - r*II 51) < cie-c2IT, VT > 1, V6 > 0. (5.59)
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Furthermore, convergence of fT(tk) to r* is w.p. 1. Now let RT(tk) >Ej Qi(tk)PT,i(tk) and

R*(tk) =Ei Qi(tk)r. We rewrite the drift expression:

AT(tk) NBT
2T 2 + ZQi(tk)Ai-E[RT(tk)Q(tk)]

i

NBT + Qi(tk)Ai - Qi(tk)r7

+ E [R*(tk) -RT(tk)IQ(tk)] . (5.60)

Now we bound the last term. For all 62 > 0 we have

E [R*(tk) - RT(tk)|Q(tk)] -

=E (R*(tk) - RT(tk)|IQ(t4), R* (tk) - R(tk) 2! 62|| Q(tk) 1]

.P (R*(tk) - RT(tk) 6211Q(tk)II IQ(tk))

+E (R* (tk) - RT(tk |Q (tk), R* (tk) - RT (tk) <6211Q (tk )||]

. P (R*(tk) - RT(tk) < 6211Q(tk)II Q(tk))

;(r Qit) |*(tk)-RT(tk)| !22Q(tk)II|Q(tk))

+ 6211Q(tk)II, (5.61)

where we bound the first expectation by E; Qi (tk) by using ||r* < 1, the second expectation by

62 | Q(tk) and the second probability by 1. By Schwartz inequality we have

P (IR*(tk) - RT(tk)I 6211Q(tk)II IQ(tk))

< P (I|r* - fT(tk)l 62|Q(tk)) . (5.62)
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Using (5.59) and (5.62) in (5.61), we have

E[R* (tk) -R(tk) IQ(tk)] Q (tk) c1e-c26T+ 62IQ(tk) II.

Hence, using IIQ(tk) I Ei Qi(tk), we bound (5.60) as

AT(tk) NBT
2T 2 + Qi(tk)Ai- Qi(t)r'

2T 2

+ Qi(tk)) (cie-C3 2T+62)

Therefore, calling 6 =ci'c3eT + 62, we have

AT(tk) NBT +J Qi (tk) -- Q (tk)r*+6 Qi(tk). (5.63)
2T -2i i

Now for A strictly inside the 6-stripped stability region A, there exist a small ( > 0 such that

A + (.1 r - 61, for some r E A.. Utilizing this and the fact that Ej Qj(t)(ri - ri') 5 0 by

definition of the FBDC policy in Algorithm 7, we have,

A tk) <NBT (1 Qi(tW) . (5.64)
2T - 2 -

Therefore, the queue sizes have negative drift when E> Qi (tk) is larger than NBT. This establishes

stability of the queue sizes at the frame boundaries t = kT, k = {0, 1, 2, ...} for A within the 6-

stripped stability region A6 (see e.g., [86, Theorem 3]). To see this; note that taking expectation of

both sides of (5.64) with respect to Q(tk), writing a similar expression over the frame boundaries
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tk, k E {0, 1, 2, ..., K}, summing them and telescoping these expressions lead to

L(Q(tK)) - L(Q(O)) KNBT2 - 2 TKE [z
k=0 i

Qi(tk)]

Using L(Q(tK)) ;> 0 and L(Q(0)) = 0, we have

1 K-1
lim sup E EE[Qi(t)] <
K-,x k-- i

NBT
2

Fort E (tk,tk+1) we have Qi(t) Qi(tk)+EZ _~j Ai(tk+r). Therefore, E[Qi(t)] _ E[Qi(tk)]+

TA; 5 E[Qi(tk)] + TAmax. Therefore, for TK = KT we have

1 KT-1
lim sup E[Qi(t)]

Tycnoot=0 i

ls 1 2 & (NB+2Amax )T

K-+oo k-{) i 2

This proves the stability of the overall system.

Finally, 5 = cle-c362T + 62 for any 62 > 0. Therefore, choosing 62 appropriately (for example,

62 = T-0.5+53 for some small 63 > 0), we have that 5(T) is a decreasing function of T. Therefore,

for any 6 > 0, we can find T such that the hypothesis of the theorem holds.

Appendix F - Proof of Lemma 18

We first establish that

Ei Qi(t)ri > 0.90.
EZ Qj(t)r 7-
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Considering the mappings in tables 5.3 and 5.4, for the regions of E where the OLM policy and the

optimal policy "choose" the same corner point, we have I = 1. In the following we analyze the

ratio T in the regions where the two policies choose different corner points, which we call "dis-

crepant" regions. We will use Qi and Q2 instead of Qi (t) and Q2 (t) for notational simplicity. We

first consider the case Q2 > Q1, and divide the proof into separate cases for different regions of c

values.

Weighted Departure-Rate Ratio Analysis, Case 1: c < c

Note that the following inequality always holds: > . However, we have }~ = (1~e2

for c = et 0.245 for the case of c < Ec = 0.293.

Case 1.1: c < et

For this case we have 2- < (1_6)
2

Discrepant Region 1: (1_E 2

In this case the OLM policy chooses the corner point bi whereas the optimal policy chooses the

corner point bo. Therefore,

Q1 ((1-4) 2) + Q21- (1 _,)2 E

2 2 2 1 -

E22

S1 - -> 0.9700.

Discrepant Region 2: (1+6-6 2)< Q2 < ~{
1- Q 1-E

In this case the OLM policy chooses the corner point b2 whereas the optimal policy chooses the
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corner point bi. Therefore,

Q 8 2 +8(2-,E) + 82( 8(2--))

Ql(( E) 2 ) + Q2(' - )

8 2+ 8(2-e) + Q - 8(2-e))

(1-E)2 + Q2(1 -
4 Qi 2 4

> 0.9002.

This is a minimization of a function of two variables for all possible c values in the interval

0 < E < Et, and the ratio - in the interval 2)
Qi < Q2< 2-

Q1 1-F-

CASE 1.2: Et < e < Ec

For this case we have 2- (1_E 2

Discrepant Region 1: < <7-

In this case the OLM policy chooses the corner point bi whereas the optimal policy chooses the

corner point bo. Therefore,

Qi (422) + Q2( -$

Q21
E ( - C)2 1

~ 2 2 1 -e

E
2

= 1 - > 0.9500.
2

Discrepant Region 2: (1_)2 <

In this case the OLM policy chooses the corner point b2 whereas the optimal policy chooses the
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corner point bo. Therefore,

() - 2 + 8(2-e)) + Q2( - 8(2-e))

Q2 2

1-e 3 e 3 e
( - E + ) > 0.9150.

- 4 4(2 - e) 4 4(2-s)

Discrepant Region 3: (_1~E*'2 ) < < (-6)2

In this case the OLM policy chooses the corner point b2 whereas the optimal policy chooses the

corner point bi. Therefore,

Qi(8 - 2 + 8(2-e)) + Q28 - 8(2-e))

Q (( 1 4C:
2 

) + Q2 (1 - E
4

> 8 8(2-e) + 8 ~8 8(2 -e)) > 0.9474.

Due to symmetry, the same bounds on T applies for Q2 < Qi.

Weighted Departure-Rate Ratio Analysis, Case 2: c > c

For the case where c > cc, we have (1 - E)(3 - 2c) _< (1 - E)/E and < . Therefore,

the only discrepant region between the FBDC and the OLM policies for Q2 > Qi is given by

(1 - c) (3 - 2c) < ; < - where for this interval the OLM policy chooses the corner point bi,

whereas the FBDC policy chooses the corner point bo.

Discrepant Region 1: (1 - c)(3 - 2E) < <

In this case the OLM policy chooses the corner point bi whereas the optimal policy chooses the
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corner point bo. Therefore,

1 - + 8(2-c) 8 (2-E)

Q22

2 ( 4 + (2--E e) + 4(2 - e) - '94

Due to symmetry, the same bound on 19 applies for Q2 < Q1. Combining all the cases, for all

E E [0, 0.5], we have that IF > 0.90 for all possible Qi and Q2-

Now the following drift expression for the OLM policy can be derived similarly to the derivation

of (5.63) used in the stability proof for the FBDC policy in Appendix E:

Ttk BT+ Qi(t)Ai- Qi(t)i+54 Qi(tk),
i i i

where 64(T) is a decreasing function of T. Using (5.14)

AT(tk) BT+ jQi(tk)Aj- 0.9ZQi(tk)r'+J4ZQi(tk).

Using an argument similar to that for (5.64) we have that for (A1 , A2) strictly inside the 0.9 frac-

tion of the 64 -stripped stability region, there exist a small ( > 0 such that (A1 , A2 ) + ((,()

0.9(ri, r2) - (64,64), for some r = (ri,r 2) E As. Substituting this expression for (Ai, A2 ) and

using Ei Qi(t)(r - rl!) 0 we have,

T < (B + K)T +0. 9 Qi (tk) (r - ri*|

-(zQi(tk) 64 - (zQi (tk) >+ ( Qi (tk)) 64.

202



After cancelations we have,

AT(tk) < BT - Qi(tk)>.
2T

Therefore, using an argument similar to the stability proof for the FBDC policy in Appendix E, the

system is stable for arrival rates within at least the 0.9 fraction of 64 -stripped stability region, where

64 (T) is a decreasing function of T.

Appendix G - Proof of Lemma 19

We follow similar steps to the stability region derivation for the case of two queues. In order to

obtain an expression for ri, i E {1, ..., N}, we sum the 2 N-1 equations in (5.16) for which the

server location m is i and the channel process of queue i, Ci, is 1. This gives for all i E {1, ... , N}

Plori= - E Ex(s, a) + polE x(s;i)
s:m=i afi s: m=i

Cil1C=

+ (1-Pio) x(s; i) + Po E x(s;i).
s: mAi s: moi

Ci=1 C=0
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Summing ri over all queues and using the normalization condition Es Za x(s, a) = 1, we have

N N

(P1o + PO) ri = P01 - X(s; j)
i=1 ji s:m=i

C'=1,C =0

N

- (Po + p10) E x(s; j)
i=1 joi s: m=i

ci=1 ,c=1

N

+ (1-poi-pio) 55 E x(s;j).
i= 1 j i Cm = 1

Ci~O cj

From Corollary 3, there exists a stationary-deterministic policy 7r that solves this LP of maximizing

E ri (x) over the state-action polytope X. Therefore, under this policy nr, at each state, at least one

of the actions must have 0 state-action frequency. Therefore, in order to maximize the sum-rate, the

terms that have negative contribution to the sum-rate must be zero:

N N

(P1o +Poi)5ri =Po1 + (1 -Po1 -P1) 5 5 x(s; j). (5.65)
i=1 i=1 A =1

Similar to the two-queue case in Appendix A, we utilize the expressions resulting from the fact

that the steady state probability of each channel state vector is known. For instance, for C(N)0

P((C1., CN) = (0,..., 0)) = N we have

N

E x(i, a) = CN)

i=1 s: m=i aEA
Cy =0,Vj
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Summing these expressions we obtain

N

x(s; j) = -CN)

i=1 jfi S: m i

Combining this expression with (5.65) we obtain

N

ri = 1 - C(N) - (1 _ C(N) _ P0 1 C(N)

i=1
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Chapter 6

Scheduling in Networks with

Time-Varying Channels and

Reconfiguration Delays

In the previous chapter, we studied the impact of a unit switching delay on stability of wireless

uplinks/downlinks with a simple two-state time-varying channel. In this chapter, we consider the

optimal scheduling problem for networks subject to arbitrary time-varying channels, reconfiguration

delays, and interference constraints. We model the network by a graph consisting of nodes, links,

and a set of link interference constraints. The network controller is to decide either to stay with the

current link-service configuration or switch to another service configuration based on the channel

process and the queue length information, where each decision to reconfigure leaves the network

idle for an arbitrary but finite duration of time, corresponding to the reconfiguration delay. Our

system model can be used to abstract single-hop wireless networks as shown in Fig. 6-1 or satellite

networks with M servers and N ground stations as shown in Fig. 6-2. Our goal is to study the

impact of reconfiguration delays on system stability and optimal algorithms. We show that the

simultaneous presence of time-varying channels and reconfiguration delays significantly reduces

the system stability region and changes the structure of optimal policies.

We first consider the case of memoryless (i.i.d.) channel processes where we characterize the
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Figure 6-1: System model. A single-hop wireless network with interference constraints, time-varying chan-

nels and reconfiguration delays.

stability region in closed form as the convex hull of feasible activation vectors weighted by the

average channel gain of each link. This result shows that in the presence of reconfiguration delays, it

is not possible to opportunistically take advantage of the diversity in time-varying channels because

the i.i.d. channel processes refresh during each reconfiguration interval. Moreover, we prove that a

Variable Frame Max-Weight (VFMW) scheduling algorithm that sets frame durations as a function

of the queue sizes and the average channel gains is throughput-optimal.

Next, we consider arbitrary Markov modulated channel processes with memory and character-

ize the stability region of the system using state-action frequencies which are stationary solutions

to a Markov Decision Process (MDP) formulation. We show that the stability region enlarges with

the memory in the channel processes, which is in contrast to the case of no reconfiguration de-

lays [50], [86], [110]. Moreover, we generalize the Frame-Based Dynamic Control (FBDC) policy

of Chapter 5 based on the state-action frequencies, and show that it is throughput-optimal asymp-

totically in the frame length. The FBDC policy is applicable to a broad class of network control

systems, with or without reconfiguration delays, and provides a new framework for network con-

trol by reducing stability region characterization and throughput-optimal algorithm development

to solving Linear Programs (LP) based on state-action frequencies. Finally, we consider simple

Myopic policies that do not require the solution of an LP, and that have better delay properties as

compared to the FBDC policy.
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A4

Server 1 Server 2 Server 3

Figure 6-2: An example 4x3 satellite network. Ground stations are subject to time-varying channels C 1 , C 2 ,

C 3 , C 4 and the servers are subject to T, slot reconfiguration (switchover) delay. Server 2 is forced to be idle

due to interference constraints.

6.1 Main Contribution and Organization

The main contribution of this chapter is solving the scheduling problem in single-hop networks

under arbitrary reconfiguration delays, time-varying channels and interference constraints. We in-

troduce the system model in detail in Section 6.2. For systems with memoryless channel processes,

we characterize the stability region and propose the class of throughput-optimal VFMW policies in

Section 6.3. We develop the state-action frequency approach and characterize the stability region

for systems with Markov modulated channels in Section 6.4.1. We develop the throughput-optimal

FBDC policy in Section 6.4.2 and present simulation results in Section 6.4.4.

6.2 Model

Consider a single-hop wireless network given by a graph structure G(K, L) of nodes K and links

f E L {1, 2, ... , L}, where L = |L . Data packets arriving at each link f are to be transmitted to

their single-hop destinations, where we refer to the packets waiting for service at link f as queue f.

We consider a discrete-time (slotted) system where an integer number of data packets can arrive at or

depart from the corresponding queue at each link during each time slot. In addition to the modeling
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assumptions in Chapter 2, we assume that each link f E L is subject to a time-varying channel

process denoted by C(t) that takes values in a set C ={, pmin, ---, Pmax} with K * |C, where

C(t) corresponds to the number of packets that can be served from queue f at time t. We consider

both memoryless channel processes and Markovian channels with memory as defined below.

Definition 4 (Memoryless Channels) The channel process {C(t); t > 0}, e E L, takes indepen-

dent and identically distributed (i.i.d.) values from the set C at each time slot t, according to a

probability distribution for link f, IE.

A simple example of a memoryless channel process is the Bernoulli process with 2-state i.i.d. ON-

OFF channels.

Definition 5 (Channels With Memory) The channel process {Ce(t); t>0} forms the K-state irre-

ducible and aperiodic Markov chain over the set C, according to a transition probability distribution

P'(-|j), j E C.

The basic example of a Markovian channel process with memory is the commonly used Gilbert-

Elliot channel model shown in Fig. 6-3. We let Ce denote the time-average channel quality of link

f, E L, defined by

t-1

C= elim Z C(r). (6.1)
r=0

The limit exists for both i.i.d. and Markovian channel processes and is equal to the corresponding

ensemble (steady state) average with probability (w.p.) 1 due to the Strong Law of Large Num-

bers (SLLN) [47]. We assume that all the arrival and channel processes, At(t), Ce(t), e E L, are

independent.

Let Tr denote the system reconfiguration delay, namely, it takes T time slots for the system to

change a schedule, during which all the servers are necessarily idle1 . The set of all schedules in the

'Note that in a slotted system, even a minimal reconfiguration delay will lead to a loss of a slot due to

synchronization issues
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Figure 6-3: Markov modulated ON/OFF channel process. The case of pio + poi < 1 provides positive

correlation.

system, I, is given by the set of feasible binary activation vectors I = (E)=1.L, 6 {0, 11. If

the activation vector I(t) is used at time slot t, then min {C(t)l(t), Qe(t)} packets depart from

queue f. We include the vectors dominated by the feasible activation vectors, as well as the zero

vector I = 0 in I, where the activation vector 1(t) is equal to 0 for all time slots at which the system

is undergoing reconfiguration. A policy 7r is a mapping from the set of all possible queue length,

channel process, and action histories H(T) = [Q (t)]| IT0 U [I(t)]|I_- 1 U [C(t)]I IT 0 , to the set of all

probability distributions on the set of all actions 1, T (E).

The availability of a schedule is determined by the interference constraints in the system, which

are assumed to be arbitrary. For instance, in a wireless mesh network as shown in Fig. 6-1, the set

I can be determined according to the well-studied k-hop interference model [50]. Alternatively,

for a satellite network of N queues and M servers where there are a possible L = NM links as

shown in Fig. 6-2, the set I can be the set of all binary vectors of dimension NM with at most

M nonzero elements such that no two active servers interfere with each other [32]. Finally, for an

NxN input-queued optical switch, the set I can be the set of all matchings [99].

We say that an activation vector I is ready to be activated in the current time slot if the system

does not need to reconfigure in order to activate I, i.e., in such a case the servers that will be activated

under I are present at their corresponding links at the beginning of the time slot. Finally, we assume

that the queues are initially empty and that the arrivals take place after the departures in any given

time slot. Under this model, the queue sizes evolve according to the following expression.

Q(t + 1)=max{Qt(t) - I(t)Ce(t),0} + At(t),Vf E L. (6.2)
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6.3 Memoryless Channels

6.3.1 Stability Region

We start by characterizing the system stability region for the case of memoryless channels.

Theorem 16 (Stability Region A - Memoryless Channels) The stability region A is given by

A=X 13 a 20,Ea 1, such that Ae Ce&a1It, Vf EL}. (6.3)
IEIT IEI

The necessity of the conditions in Theorem 16 is proved in Appendix A and the sufficiency of these

conditions are proved in the next section where we show that a variable frame-based algorithm that

keeps the current activation for a duration of time based on the current queue lengths is throughput-

optimal. Theorem 16 shows that in the presence of reconfiguration delays, no policy can take

advantage of the diversity in time-varying memoryless channels and achieve a greater rate than the

average channel gain for each link. This is because the system cannot switch to another schedule

instantly in order to opportunistically exploit better channel states of this schedule, but can switch

only after (at least) one time slot and observe an average channel gain upon switching. This is in

sharp contrast to the corresponding systems without reconfiguration delay considered in [87], [86]

and the references therein, where throughput-optimal policies are able to take advantage of the

diversity in i.i.d. channels by instantly and opportunistically switching schedules.

Theorem 16 also establishes that, as long as T, 2 1, the duration of the reconfiguration interval

has no effect on the stability region of the system with memoryless channel processes. This is be-

cause for memoryless channels, giving infrequent reconfiguration decisions minimizes the fraction

of time slots lost to reconfiguration. In fact, this is the intuition behind the throughput-optimal pol-

icy proposed in Section 6.3.2, which delays the reconfiguration decisions as a function of the queue

lengths and the channel gains.
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6.3.2 Variable Frame Based Max-Weight (VFMW) Algorithm

In this section we propose a throughput-optimal algorithm based on the following intuition: Given

that no policy can take advantage of the diversity in channel processes, giving infrequent reconfig-

uration decisions minimizes throughput lost to reconfiguration. For networks with nonzero recon-

figuration delays, in the absence of randomly varying connectivity, we proved in Chapter 4 that a

variable-size frame-based Max-Weight algorithm which keeps the same schedule over a frame of

duration based on the queue lengths is throughput-optimal. We show here that an adaptation of the

algorithm in Chapter 4 that also takes into account the average channel gains of time-varying links

is throughput-optimal for systems with memoryless channel processes. Specifically, let tk be the

first slot of the kth frame, let Q (tk) be the queue lengths at tk, and let S(Q (tk)) =E Qi(tk). The

VFMW policy calculates the Max-Weight schedule with respect to Q(tk) and (U1, CL),

and applies this schedule during the frame as defined in detail in Algorithm 13.

Algorithm 13 VFMW ALGORITHM WITH FRAME LENGTH Xk = Tr + F(S(Q(tk))):

1: Find the Max-Weight schedule at time tk, I* (tk), w.r.t. Q(tk) weighted by the average

channel gains C:

I*(tk) = argmax IOCeQ(tk)

2: If I*(tk) $ I*(tk-1), then invoke reconfiguration for the next Tr slots.

3: Apply I*(tk) for an interval of duration F(S(Q(tk))) slots where Xk - T, +

F(S(Q(tk))), F(-) > 0 is a monotonically increasing sublinear function, i.e.,

limyCOo F(y)/y = 0.

4: Repeat above for the next frame starting at tk+1 = tk + Xk.

The VFMW algorithm sets the frame length as a suitably increasing sublinear function of the

queue lengths, which dynamically adapts the frame duration to the stochastic arrivals. For instance,

Xk = Tr + (Ei Qi(tk))' with a E (0,1) satisfies the criteria for the frame duration. Under the
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VFMW policy, the frequency of service reconfiguration is small when the queue lengths are large,

limiting the fraction of time spent to switching. Note that this frequency should not be too small

otherwise the system becomes unstable as it is subjected to a bad schedule for an extended period of

time. When the queue lengths are small, the VFMW policy gives frequent reconfiguration decisions,

becoming more adaptive and providing good delay performance2 .

Theorem 17 The VFMW policy stabilizes the system for all arrival rates A E A, without requiring

knowledge of A.

An immediate corollary to this theorem is as follows:

Corollary 5 The conditions in (6.3) are sufficient for stability.

The proof of Theorem 17 is given in Appendix B and is presented using the frame length function

Xk = Tr + (>i Qi(tk))' for a fixed a E (0, 1) for ease of exposition. It establishes the fact that the

drift over the switching epochs, i.e.,

E[L(Q (tk + xk)) - L (Q(tk)) I Q (tk)], is negative using the quadratic Lyapunov function, L(Q (t)) =

L=1 Q (t). The basic intuition behind the proof is that if the queue sizes are large, the VFMW pol-

icy accumulates sufficient negative drift during the frame, which overcomes the cost accumulated

during reconfiguration. Moreover, for large queue lengths, since the policy keeps the same schedule

during the resulting long frames, we obtain the time-average channel gains in the system, as seen

in the stability condition in (6.13). Note that choosing the frame length as a sublinear function of

the queue sizes is critical. This is because the VFMW algorithm uses the Max-Weight schedule

corresponding to the beginning of the frame, which "loses weight" as the frame goes on. There-

fore, one needs to make sure that the system is not subjected to this "light-weight" schedule for too

long. In particular, frame lengths sublinear in queue sizes work, however, frame lengths that are

linear in queue sizes do not guarantee stability using the drift analysis approach in this chapter via
2Note that a similar policy was considered in [111] to stabilize a very different system, i.e., a system

without reconfiguration delays but with asynchronous transmission opportunities.
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Figure 6-4: Delay vs throughput under the VFMW, MW, and the FFMW policies.

quadratic (or other Polynomial) Lyapunov functions. This is because under frame lengths linear in

queue sizes, the drift in the queue lengths over the frames becomes positive under commonly used

polynomial Lyapunov functions L(.).

In Section 6.4, we show that for channel processes with memory, delaying the reconfiguration

decisions as in the VFMW algorithm does not work and more sophisticated algorithms are necessary

in order to exploit the channel memory.

6.3.3 Simulation Results - Memoryless Channels

We performed simulation experiments that determine average queue occupancy values for the VFMW

policy, the ordinary Max-Weight (MW) policy and the Max-Weight policy with fixed frame sizes

(FFMW), where the MW policy "chooses" the schedule arg max, Et Qe(t)C(t)It, and the FFMW

policy applies the same activation vector as the VFMW policy over frames of constant duration. The

average total queue occupancy over T, slots is defined by Qavg 'I ET i Zec Qef(t) and the

frame length for the VFMW policy is chosen as Xk = T + (Ei Qi(tk))0 -9. Through Little's law,

the average packet delay in the system is equal to the average queue size divided by the total arrival

rate into the system. We considered a network of 4 links and 3 servers as shown in Fig. 6-2, where

server 1 and 3 are dedicated to links (queues) 1 and 4 respectively, and server 2 is shared between
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queues 2 and 3. This system can also model an appropriate single-hop wireless network as in Fig.

6-1. Due to interference constraints, no two links that are "adjacent" to each other can be activated

simultaneously, namely, the set of feasible activations are given by I = [1010], 12 = [0101], and

J3 = [1001]. For each data point, the simulation length was 100,000 slots, and the arrival and the

channel processes were i.i.d. Bernoulli, with arrival rate A, and probability of ON channel state

equal to 0.5, respectively.

We simulated delay as a function of sum-throughput Ej Xe for A along the line between the

origin and the maximum sum-throughput point Ama given by arg maxEA J> Xe, where from

(6.3), Amax can be calculated to be [0.33 0.17 0.17 0.33] with Et At = 1. Note that maximum

sum-throughput for the corresponding system with zero reconfiguration delay is about 1.44 [50],

which shows the significant reduction in throughput due to the reconfiguration delay. Fig. 6-4

presents the delay as a function of sum-throughput for the VFMW, MW, and the FFMW (with

frame sizes T= 10 and T= 25) policies, for T,=5 slot reconfiguration delay. Fig. 6-4 confirms that

as the arrival rates are increased, the system quickly becomes unstable under the MW policy and

that the VFMW policy provides stability for all sum-rates less than 1. The FFMW policy has larger

stability region than that of the MW policy, and increasing the frame length of the FFMW policy

improves it's stability region at the expense of delay performance. The VFMW policy provides a

good balance by dynamically adapting the frame length based on the queue sizes and stabilizes the

system whenever possible, while providing a delay performance that is similar to that of a FFMW

policy with a small frame length for small arrival rates.

6.4 Channels With Memory

In this section we establish the stability region of the system and propose a throughput-optimal

dynamic control policy when the time-varying channels have memory. We generalize the frame-

work of characterizing the stability region in terms of state-action frequencies that we introduced

in Chapter 5 to wireless networks with reconfiguration delays, time-varying channels, and inter-
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ference constraints. The state-action frequency approach is a general and unifying framework in

that, for the simpler case of no-reconfiguration delay in the system, it provides the stability region

characterizations of classical network control papers such as [87], [99], [110].

We show that the stability region expands with memory in the channel processes, in particular,

it lies between the stability region for the case of i.i.d. channels and the stability region for the case

of no reconfiguration delay. For classical network control systems such as [87], [86], [110], the

memory in the channel processes does not affect the stability region [50]. Therefore, scheduling

under reconfiguration delays and time-varying channels calls for new control algorithms that can

improve their performance with increases in channel memory.

6.4.1 Stability Region

We start by analyzing the corresponding system with saturated queues, i.e., all queues are always

non-empty. Let A, denote the set of all time average expected departure rate vectors r = (ri, ..., rL)

that can be obtained in the saturated system under all possible policies that are possibly history

dependent, randomized, or non-stationary. We will show that the stability region A satisfies A =

A,. The following Lemma, which follows from Lemma 17 in Chapter 5, proposes an outer bound

on the stability region.

Lemma 20 We have that A C A.

We show in the next section that the region A, is indeed achievable.

We establish the region A, by formulating the system dynamics as a Markov Decision Process

(MDP).

MDP Formulation For Saturated System

For ease of exposition, we present the analysis for the case of a single slot reconfiguration delay,

i.e., Tr = 1 3. For Tr = 1, let st = (I(t), C(t)) E S denote the system state at time t, where

3We demonstrate how to generalize the analysis to the case of Tr > 1 whenever appropriate.
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I(t) is the schedule in use at time slot t, C(t) is the vector of channel processes at each link at time

slot t, and S is the set of all states. Also, let at E I denote the action taken at time slot t, which

determines the activation vector that will be available at the beginning of the next time slot. For

Tr > 1 the state would have one more variable that counts the number of time slots since the last

reconfiguration decision.

For the saturated system, a policy is a mapping from the set of all possible channel state and

action histories to the set of all probability distributions on the set of all actions [10], [79], [94].

Namely, a policy prescribes the probability of any particular action for every given system history.

A stationary policy is a policy that depends only on the current state, and under a stationary policy

the process {st; t > 0} forms a Markov chain. In each time slot t, the server observes the current

state st and chooses an action at. Then the next state j is realized according to the transition

probabilities P(j Is, a), which depend on the random channel processes. Let It be 1 if link f is

active under the activation vector I, and 0 otherwise. Now, we define the reward for link e as a

function of the state st = (I(t), C(t)) as follows:

7i(st, at) 4 C(t), if I(t) = 1 and at - I(t + 1)=I(t), (6.4)

and Te(s, a) - 0 otherwise. That is, a reward of C(t) is obtained if the controller decides to stay

with the current schedule and if link f is active under the current schedule. We are interested in the

set of all possible time average expected departure rates. Therefore, given some at 0, f E L, we

define the system reward at time t by the weighted sum-throughput T(st, at) Z E atet(st, at).

The average reward of policy 7r is defined by

1 T W

r' = lim sup E f(st, at". (6.5)
K-+ooT =

Given weights ae 0, fEL, we are interested in the policy that achieves the maximum time average

expected reward r* = max, r'. This optimization problem is a discrete time MDP characterized by
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the state transition probabilities P(.Is, a) with KL III states and Il actions per state, where K is the

number of channel states. Furthermore, any given pair of states are accessible from each other (i.e.,

there is a positive probability path between the states) under some stationary deterministic policy.

Therefore, this MDP belongs to the class of Weakly Communicating MDPs [94], for which there

exists a stationary deterministic optimal policy independent of the initial state [94].

State-Action Frequency Approach

The state-action frequency approach, or the Dual Linear Program (LP) approach, given below pro-

vides a systematic and intuitive framework to solve such average cost MDPs [Section 8.8] [94]:

max. 7(s, a)x(s, a) (6.6)
s ES aET

subject to the balance equations

E x(s, a) = P(ss', a)x(s', a), V s E S, (6.7)
aEI s'ES aEI

the normalization condition EsES EaEr x(s, a) = 1, and the nonnegativity constraints x(s, a) >

0, for s E S, a E I, where the transition probabilities P(sls', a) are functions of the channel

transition probabilities. The feasible region of this LP constitutes a polytope called the state-action

polytope X and the elements of this polytope x E X are called state-action frequency vectors. A

component of a state-action frequency vector, x(s, a), corresponds to the probability that the system

is at state s and action a is taken under the following stationary randomized policy: Action a is taken

at state s w.p.

P(action a at state s)= x(s, a) a E I, s E Sx, (6.8)
EarEI x(s, a')
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where S, is the set of recurrent states, i.e., S_ is the set of states with positive probability of occu-

pancy in steady state given by [79,94]

32 -- {s E S : x(s; a) > 0}.
aEIT

If there is a transient state s', i.e., s' E S/S, then an action that leads the system to the set S,

is chosen at s'. It can be shown that X is convex, bounded, and closed [79]. Furthermore, every

point x E X can be achieved by a stationary randomized policy as in (6.8) [79], [94]. An inverse

statement also holds, namely, the expected empirical state-action frequency vector of any policy lies

in X regardless of the initial state distribution. The following lemma establishes the equivalence

between the corners of the state-action polytope X and stationary deterministic policies [79], [94].

Lemma 21 The vertices of the LP in (6.6) have a one-to-one correspondence with stationary-

deterministic policies.

The intuition behind this lemma is that if x is a corner point of X, it cannot be expressed as a

convex combination of any two other elements in X, therefore, for each state s only one action

has a nonzero steady-state probability of occurrence. Furthermore, the state-action frequencies of

stationary randomized policies can be expressed as convex combinations of those for stationary

deterministic policies.

The Rate Polytope A,

Using the theory of state-action polytopes in the previous section, we characterize the set of all

achievable time-average expected rates in the saturated system, A. The following linear transfor-

mation of the state-action polytope X defines the L dimensional rate polytope [79]:

As = {rlre = Z tr(s, a)x(s, a), f E L 1, (6.9)
sES aEI

220



where T is the reward function for link E defined in (6.4). This polytope is the set of all time

average expected departure rate pairs that can be obtained in the saturated system, i.e., it is the rate

region A,. Furthermore, A, is a linear transformation of X. This is because the reward functions,

re, e E L in (6.9), are linear combinations of x(s, a), where, given a link e, the coefficient of the

linear combination Te(s, a) is equal to C if the action a is the same as the current schedule in the

state I, and if the lth component of I is 1 (see (6.4)). Therefore, corner points of A, are also achieved

by stationary deterministic policies. An explicit way of characterizing A, is given in Algorithm 14.

Note that (6.10) is an LP because re(x), e E L, are linear functions of x(s, a) defined through (6.4),

Algorithm 14 Stability Region Characterization

1: Consider the following LP for some ai, ... , aL> 0

L

max. are(x)
t=1

subject to x E X. (6.10)

2: There exists an optimal solution (r*, ..., r*) for this LP that constitutes a corner point

of A. and hence of X. Find all possible corner points by evaluating all basic-feasible

solutions of this LP, which corresponds to the state-action frequencies of stationary

deterministic policies, and take their convex combination.

where s = (I, C). The fundamental theorem of Linear Programming guarantees the existence of

an optimal solution to (6.10) at a corner point of the polytope X and hence of A, [15]. We will

establish in the next section that the rate region A, is in fact achievable in the dynamic queueing

system, which will imply that A = A. Furthermore, the one-to-one correspondence between the

extreme points of the polytope X and stationary deterministic polices stated in Lemma 21 is useful

for finding the solutions of the above LP. For instance, for the two-queue and single server system

introduced in Chapter 5, this LP can be solved explicitly to derive the rate region A. For more

complicated systems, the LP in (6.10) can be solved numerically.
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6.4.2 Frame Based Dynamic Control Policy

We extend the frame-based dynamic control (FBDC) policy introduced in Chapter 5 for the single

server system to single-hop networks. Similar to in Chapter 5. We show that the FBDC policy,

inspired by the state-action frequency approach, is throughput-optimal asymptotically in the frame

length. The motivation behind the FBDC policy is similar to before: a policy g-r* that achieves the

optimization in (6.10) for given weights at, e E L, for the saturated system should achieve a good

performance in the original system when the queue sizes Q are used as weights. The FBDC policy

is described in detail in Algorithm 15. The LP in (6.11) can be restated as max.{r} EZ=1 Qe(jT)r

Algorithm 15 FRAME BASED DYNAMIC CONTROL POLICY

1: Find the policy 7r* that optimally solves the following LP

max. R=1 Qj(jT)re(x)

subject to xEX (6.11)

2: Apply lr* in each time slot of the frame.

subject to r E A. There exists an optimal solution r* of the LP in (6.11) that is a corner point of X

(and hence of A,) [15], and the policy 7r* that corresponds to this point is a stationary deterministic

policy by Lemma 21.

Theorem 18 For any 6 > 0, there exists a large enough frame length T such that the FBDC policy

stabilizes the system for all arrival rates within the 6-stripped stability region A5 = A8 - 61.

The proof of this theorem is given in Appendix C and it is similar to the proof of the FBDC policy

for the single server system in Chapter 5. This theorem immediately implies that A = As.

Recall that the FBDC policy provides a new framework for developing throughput-optimal poli-

cies for network control. Namely, given any queuing system whose corresponding saturated system

is Markovian with finite state and action spaces, throughput-optimality is achieved by solving an LP
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in order to find the stationary MDP solution for the corresponding saturated system and applying

this solution over frames in the actual system.

Similar to the analysis of the FBDC policy for the single server system in Chapter 5, we can

derive a delay upper bound for the FBDC policy that is linear in the number of links L, and the

frame length T. Moreover, the FBDC policy can also be implemented without any frames by

setting T = 1, i.e., by solving the LP in Algorithm 15 in each time slot. The simulation results in

Section 6.4.4 suggest that the FBDC policy implemented without frames has a similar throughput

performance to the original FBDC policy. This is because for large queue lengths, the optimal

solution of the LP in (6.11) depends on the queue length ratios, and hence, the policy -r* that

solves the LP optimally does not change fast when the queue lengths are large. When the policy is

implemented without the use of frames, it becomes more adaptive to dynamic changes in the queue

lengths, which results in better delay performance than the frame-based implementations.

In the next section, we consider Myopic policies that do not require the solution of an LP.

Simulation results in Section 6.4.4 suggest that the stability region achieved by the Myopic policies

is close to the full stability region while delay performance of these policies are similar to that of

the FBDC policy.

6.4.3 Myopic Control Policies

We investigate the performance of simple Myopic policies that make scheduling/switching decisions

according to weight functions that are products of the queue lengths and the channel predictions for

a small number of slots into the future. We refer to a Myopic policy considering k future time slots

as the k-Lookahead Myopic policy. Specifically, in the One-Lookahead Myopic policy, assuming

that the system is employing schedule If at some time slot t, Wy3 , the weight of Ii is obtained as

follows: If link f is active under IF, the contribution of link f to Wyj (t) is the product of Qt(t)

and the expectation of C in the current and the next time slot. The weight of other schedules are

calculated similarly except that we consider the expectation of channel processes only at time slot
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t + 1 because the system will idle at time t in order to switch to other schedules. We describe the

One-Lookahead Myopic (OLM) policy in Algorithm 16.

Algorithm 16 ONE-LOOKAHEAD MYOPIC POLICY

1: Assuming that schedule I is currently being used at time slot t, calculate the following

weights;

Wl/ (t) = 3 It' (C,(t) + E [C(t + 1) C(t)] )Q(t)

W1i (t) = I'E [C (t + 1)Cz)]QtVi#j (6.12)

2: If Wy (t) ;> Wji (t), i / j, i E I, then stay with schedule I. Otherwise, switch to a

schedule with the maximum weight W1 (t).

We investigated the performance of the OLM policy in simulations. The simulation results in

Section 6.4.4 suggest that the OLM policy may achieve the full stability region while providing a

better delay performance as compared to the FBDC policy.

The k-Lookahead Myopic Policy is the same as before except that the following weight func-

tions are used for scheduling decisions: Assuming that the system is currently employing schedule

i at time slot t,

Wy (t) =Zg(C'e(t) + Ek_1 E[C 1 (t + T)IC1(t)])Qe(t) and

Wi(t) = i E1( Q C(t + r)|C Q(t) ]) Q (t), Vi 7 j.

These policies have low complexity and they are simpler to implement as compared to the FBDC

policy.

6.4.4 Simulation Results - Channels with Memory

We performed simulation experiments that determine average queue occupancy values for the FBDC,

One-Lookahead Myopic (OLM), and the Max-Weight (MW) policies. We consider the same system
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Figure 6-5: Total average queue size vs the sum-throughput under the FBDC policy with frame length 10, the

OLM, and the MW policies, for pio = poi = 0.25 (upper figure), and for plo = poi = 0.10 (lower figure).

and the simulation model as in Section 6.3.3, except that we use the Gilbert-Elliot channel model in

Fig. 6-3 and that the switching delay T is taken to be 1 slot.

We utilized three sets of transition probabilities, for p = plo = p0i; p = 0.10, 0.25, and

0.30. As for the case of i.i.d. channels considered in Section 6.3.3, the steady state probability

of ON channel state for each queue is 0.5 in each of these cases. By numerically solving the

LP in (6.10), the maximum sum-throughput can be calculated to be 1.11 for p = 0.30, 1.14 for

p = 0.25, and 1.29 for p = 0.10 as we show in Table 6.1. While these values are significantly

larger than the maximum sum-throughput of 1 for the case of i.i.d. channels, they are less than the

sum-throughput of 1.44 for the corresponding system with zero reconfiguration delays, as expected.

The enlargement in the stability region with channel memory is in sharp contrast to systems with

zero reconfiguration delays for which the stability region only depends on the steady state behavior

of the channel processes [50].

Fig. 6-5(upper figure) presents delay as a function of sum-throughput along the line between

the origin and the maximum sum-throughput point for the FBDC policy with frame length 10 and

the MW policy for pio = poi = 0.25. This figure shows that the system becomes unstable around
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Table 6.1: Maximum sum-throughput under different values of channel memory and re-

configuration delay.

p Tr max. sum-throughput

0.50 0 1.44
0.50 1 1.00
0.30 1 1.11
0.25 1 1.14
0.10 1 1.29

0 0.2 0.5 0.75 1 1.25

Figure 6-6: Total average queue size vs the sum-throughput under the FBDC policy implemented without

frames, the OLM, and the MW policies for pio = poi = 0.30.

the sum-throughput value of 0.9 under the MW policy. Moreover, the FBDC policy with frame

length 10, and the OLM policy have large queue lengths only for sum-throughputs greater than the

maximum sum-throughput value of 1.14 and the throughput loss due to the fixed frame length of

10 appears to be negligible. Furthermore, the OLM policy provides a similar delay performance to

the FBDC policy in Fig. 6-5. Fig. 6-5(lower figure) shows delay as a function of sum-throughput

for the FBDC policy with frame length 10, the OLM, and the MW policies for plo = poi = 0.10.

While confirming similar results to Fig. 6-5(upper), Fig. 6-5(lower) also shows that the stability

region becomes larger with increasing channel memory.

Fig. 6-6 presents total average queue length as a function of sum-throughput along the line

between the origin and the maximum sum-throughput point for the FBDC policy implemented

without frames, the OLM, and the MW policies for plo = poi = 0.30. This figure shows that the

system becomes unstable around the sum-throughput value of 0.84 under the MW policy. Moreover,

the FBDC and the OLM policies have large queue lengths only for sum-throughputs greater than the

value of 1.11. This figures suggests that the no-frame implementations of the FBDC and the OLM
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policies provide a good throughput-delay performance. Furthermore, we observe that the difference

in delay between the FBDC and the Max-Weight policies is wider for the no-frame implementation

of the FBDC policy in Fig. 6-6, as compared to Fig. 6-5. This suggests that as the frame length is

decreased, the delay performance of the FBDC policy improves.

6.5 Concluding Remarks

We investigated the optimal scheduling problem for systems with reconfiguration delays, time-

varying channels, and interference constraints. We characterized the stability region of the system

in closed form for the case of i.i.d. channel processes and proved that the Variable Frame Max-

Weight algorithm that makes scheduling decisions based on the queue lengths and the average

channel gains is throughput-optimal. For the case of Markovian channels with memory, we char-

acterized the system stability region using state-action frequencies which are stationary solutions

to an MDP formulation. We developed the FBDC policy based on the state-action frequencies and

proved that it is throughput-optimal asymptotically in the frame length. Finally, we investigated

the performance of low-complexity Myopic algorithms that appear to have a similar throughput-

delay performance to that of the FBDC policy in simulations. The state-action frequency approach

provides a new framework for stability region characterization and throughput-optimal policy devel-

opment for general network control systems, with or without reconfiguration delays. Possible future

directions include developing joint scheduling, routing and power control algorithms in multihop

networks with time-varying channels and reconfiguration delays.

Appendix A - Proof of Theorem 16 - Necessity

Let A' denote the set at the right hand side of the equality in (6.3). The set A' can be rewritten as

A' = {AC"A e Conv{I}}, (6.13)

227



where C is a diagonal matrix with the (th diagonal element equal to C5 , E E L, and Conv{I}

denotes the convex hull of the set of all activations given by

Conv{I} aj {aI I for all c > 0 such that Eo1 = 1}.

We show that A C A' by proving that for a fixed A ( A', we have A 0 A. Since A 0 A', and A'

is closed, using the convex set separation theorem [14], there exist a hyperplane, namely a vector

h > 0 and a constant b > 0, such that

A - h > b > (CyA) - h, Vt E Conv{E}. (6.14)

We prove the result by contradiction: Suppose that there exists a stabilizing policy 7r and consider

the following queue evolution equation under 7r for a link with At > 0, which follows from (6.2):

t-1 t-1
Qt(t) > Qe(0) + At(T) - ZIt(T)CQ(r), VE E L. (6.15)

r=O r=o

Let p5(t) E' j. ' It(T)C(r). The inequality in (6.15) is due to the fact that tyt (t) denotes the

total service opportunities given to queue f until time slot t, which may be larger than the actual

number of departures due to the fact that queue f may be empty. Let i(t) be the activation vector

that is ready to be activated at the beginning of time slot t. Note that the vectors.I(t) and I(t) are the

same whenever i(t) gets activated at time slot t, and they are different whenever t is the first time slot

of a reconfiguration interval. Let the counting process Mt(t) be the number of time slots between

times 0 and t for which an activation vector i that activates link f is ready to be activated under

policy 7r, and let to, £i, ... , tM,(t) be these time slots. By definition we have M(t) I(t)

If limtc Mt(t) < B for some constant B, then the time-average service rate of link f under policy
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-7r is 0 and queue E is unstable, which establishes the contradiction. Therefore, consider Mt(t) -+ oo

as t -+ oo. We have

11 tMt(t)

pI(t) = I 7()C(r) = E i3 r)C(r),
r-=O r=to

M C(r). (6.16)
t Mt (t) 3

T=tO

Since Mt(t) -+ oo in the infinite time horizon, the sequence C(T), -r E {to, ti, t2 , ... }, observed at

the time slots for which an activation vector I that activates link F is ready to be activated, forms an

i.i.d. sequence. Therefore, we have from SLLN [47] that limto M) Ce(r) = t =.

This implies that for any e > 0, there exist a time slot T such that for all t > T we have

t(t) C (T) (1 +,e) C, f E L. Therefore, we have that pj (t) 5 (1+ e)UQMt(t)/t, f E L

for t > T. Using this in (6.15), we have for t > T

t-1

Qf(t) > >3A(T) - (1 + e)-CeM(t), Vf E L. (6.17)
-r=0

Taking expectation of (6.17) with respect to the randomness in arrivals and possibly in policy -r, we

have for the vector of queue lengths Q (t) for t > T that

E [Q (t)] '> tA - t(1 + e)C E - i(-r) ,(6.18)
-r=O.
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where we used the fact that ) = .E-' it(r) and C is the diagonal matrix of entries Ce, f E L.

Letting ft(t) = E [ , i(r)1 we have for t > T

E [Q(t) -h] > t (A - (1+ c)(Cft(t))) - h, (6.19)

where h is the nonnegative valued vector introduced in (6.14). Now for A ( A', using (6.14) together

with the fact that ft(t) E Conv{I} for all t [50], there exists 6 > 0 such that (A - (1 + E)(CA(t))) -

h > 6 for all t for some small c (which can be chosen as a function of J in (6.17)). Therefore, we

have

lim inf E[Q (t)] = oo. (6.20)

Using (6.20), it is easy to show that the system is unstable with respect to the stability Definition in

(1), establishing the desired contradiction. To see this, let V(T) inft;> EZeTE Qi(t) and notice

that V(r) 5 V(r +1) for all r, and as T -- 00, V(r) -+ lim inftoo EEC Qt(t) - 0c. Therefore,

for all B > 0, there exists a large time slot T such that V(r) > B for all T > T. This implies that

E EC Qt(t) > B for all t > T. Therefore,

t-1T-1 t-1
IZ Q(T) 4Z Q(T)± +Q(T)

r=OtEL Tr=oEC r=TEL

t-T--
> Qe(T)>t - B> k - B,

r=Te& 6L

for all t > kT. Therefore, for all B > 0, there exists a time slot T' such that Q (T) >

B for all t > T', which shows that ~_ZeLE Qe(T) diverges to infinity.
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Appendix B - Proof of Theorem 17

Consider the following Xk-step queue evolution expression, similar to the 1-step queue evolution in

(6.2). where Xk is the length of the kh frame length, fixed given Q(tk).

Qe(tk +Xk) max{ Qf(tk)-ZCt(tk + T)It (tk+

Xkk-1

+ ( At(t + Tr). (6.21)
r=0

To see this, note that if E = Ie(tk + T)Ce(tk+T), the total service opportunity given to link f

during the k frame, is smaller than Qe(tk), then we have an equality. Otherwise, the first term is

0 and we have an inequality. This is because some of the arrivals during the frame might depart

before the end of the frame. Note that Ct(t)It(t) is not the actual number of departures from queue

f, but it is the service opportunity given to queue e at time slot t under activation I(t). We first prove

stability at the frame boundaries. Squaring both sides, using max(0, x) 2 <X2, Vx E N U {0}, and

It(t)C(t) pmax, Vt we have

Xk-1

Qf(tk + Xk) (tk 2  x yma + ( A,(tk+ T))

-r=0

k~1 kk-1

- 2Q(tk) (Z +(tk + TCEt + )0 - tk + T)) (6.22)
r=O r=O

Define the quadratic Lyapunov function

L
L(Q(t)) = Q2(t),

2=1
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which represents a quadratic measure of the total load in the system at time slot t. Define the xyk-step

conditional drift

AXk(tk) A E [L(Q(tk +Xk)) - L(Q(tk))IQ(tk),

where the conditional expectation is over the randomness in arrivals, channel processes, and pos-

sibly the scheduling decisions. For the VFMW algorithm, scheduling decisions are determin-

istic given the queue lengths at the beginning of the frames. Summing (6.22) over the links,

taking conditional expectation, using the assumption E[A,(t)2] Amax, Vt (which also implies

E[A,(ti)A(t 2 )] 5 v/E[At(t 1)]2 E[At(t 2 )]2 < max for all t1 and t 2 ), we have

AXk (tk): LBx2 + 2 Xk Z Qf(tk)At

xk-1

-2Z Qf(t)E EZdtk + Tr)Ce(tk + T)IQ(tk)1, (6.23)

where B - Amax + ymax and we used the fact that the arrival processes are i.i.d. over time,

independent of the queue lengths. The VFMW policy makes scheduling decisions once per frame

based on the queue sizes at the beginning of the frame. Therefore, given Q(tk), the scheduling

variables If(t) = It are deterministic and same for all t E {tk + Tr, ..., tk+1 - 1}, and independent

of Ce(t), the value of the i.i.d. channel process at time t, for all time slots t. Using this and

the fact that the system is idle for the first Tr slots of the frame due to reconfiguration, namely,

Ie(t) = 0, t E {t, ... , Itk+Tr - 1},Vf E L, we have,

AX (tk) LBx2 + 2 XkZQ(tk)Af

x1-1

- 2EQj (tk) ItE E Ct Nk + r||IQ (tk ).
f .r=Tr
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We have E [Zr=T, Ce(tk + T) IQ(tk) = (Xk - Tr)_C, because the channel processes are i.i.d.

independent of the queue lengths for all times slots. Therefore, we have

Axk(tk) LBx + 2XkE Qe(tk)At

- 2 (Xk - Tr) ZQt(k )tIt.

Now, we have Et Qt(tk)CeIt =E Qt(tk)eI*e (tk) by definition of the VFMW policy in Algo-

rithm 13. From Theorem 16, we have that for any arrival rate vector A strictly inside A, C-1A

(A1 /C 1 , ---, AL /CL) is dominated by some rate vector in the convex hull of the activation vectors

I, where C is a diagonal matrix with elements C1 , ... , CL. Therefore, for any arrival rate vector

A that is strictly inside A, there exist real numbers #1 ,#...,1 i such that #3) > 0, Vj E 1, ..., I|I,

I3 = 1 - for some c > 0 and C-'A - #ilIi,V E ( L [26]. Therefore, we have,

AXk(tk) LBx +2XkQ(tk). ( #/3 Iz'Ot

j=1 t

=LBxk+2xk >,#O(Qt(tk)U~j

- 2 (Xk - Tr) Qt(tk)CeI*i(tk)

LBx2x ( #5 Qt(tk)UC *(tk)

j=1 t

~ 2 (Xk - Tr) Q Q(tk)CeI*t(tk)
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where we used the fact that Et Qe(tk)eI*e(tk) Et Q(tk)CIe, VI E [I by definition of the

VFMW policy in Algorithm 13. Changing the order of the summation in the second term on the

right hand side and using E 1 # = 1 - e we have

Axk (tk) Xk (LBXk - 2 r- Qe(tk) U*t(tk))

If Xk = Tr + (Et Qf(tk))0 < Tr then AXk(tk) Co where Co is a constant. Otherwise, there

exists a small 61 > 0 such that e - > 61. Hence, for Et Qe(tk) > r , we have
Xk

Axk(tk) X2 LB - 2 Xk6 1 C7n Qt (t4),

where we also used the fact that Et Qe(tk)CI*t(tk) > 2 E Qf(tk) with 0 min = riinf{1, ...

Therefore, there exists a constant B1 such that

)1+aAxk (tk) ! B1 - j(ZQt (tk)) (6.24)

where 6 6 imin/L. Taking expectations with respect to Q(tk), writing a similar expression over

the frame boundaries tk, k E {0, 1, 2, ..., M}, summing them and telescoping these expressions

leads to

M-1 1+a]

L(Q(tM)) - L(Q(0)) :5 MB1 - JjE 1: QE(tk) .
k=O -
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Using L(Q(tM)) ;> 0 and L(Q(O)) = 0 we have

M-1

E F

This implies that

M-1

limsup 1 E E
M-+o Mk=

(EQf(tk) )
1+aj

< < 00.
- 6

This establishes stability (as defined in Definition 1) at the frame boundaries tk, k E {0, 1, 2, ...}.

Now, we have for all frames k E {0, 1, 2, ...},

Yk 1

ZZ Qi(tk + T)
r=O i

Xk-1(

(:1 ( Qi(tk)
,r=0 i

Xk-1

+ (Ai(tk+1
9).

-ri=0

Taking conditional expectation we have,

Xk-1

E
r=0 i

where we used the fact that arrival processes are i.i.d. and independent of the queue lengths. Re-

calling Xk = T + (Ei Qi(tk))' with 0 < a < 1 we have

Xk-1

EE E [Qi(tk + _)|Q(tk)I
r=O i

1+a

E Q(tk) ) +TrEQ(tk )

+ Tr+(E
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Qf(tk) )
B 

o

T- <00

(6.25)

E [Qi(tk + T)IQ(tk)] Xk Qi (tk) + X2 Ai,

2

Qi(tk))' J:Aj.
) i



Now, for any given large T, let KT be the number of frames up to and including T. We have

T-1 Kr-1 1+a

E{Qi(t)] <E E Qi(t) +Tr Qi(tk)
t=O i k=O / i

KT-1 2

k=0

Dividing both sides by T, using T > KT for any T, taking the lim supT of both sides, using (6.25)

and 0 < a < 1, we have

T -1 N

lim sup 7 E[Q(0) < o. (6.26)
-4 -t=O i=1

Therefore, the system is stable.

Appendix C - Proof of Theorem 18

Let tk be the first slot of the kth frame where tk+1 = tk + T. The following T-step queue evolution

similar to (6.21) holds.

Qe(tk + T) max Q(tk) ->ZC±(t +)Ie(tk + T), 0

T-1

+ ZAf(t-+ T). (6.27)
r=0

Let D(t) - Cj(t)L(t), where ET_-' Df(tk + T) is the total service opportunity given to link f

during the k frame, similar to (6.21). Note that E -O DS(tk+r) denotes the link i departures that

would happen in the corresponding saturated system if we were to apply the same reconfiguration

decisions over T time slots in the corresponding saturated system. We first prove stability at the
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frame boundaries. Define the quadratic Lyapunov function

L

L(Q (t)) =
t=1

which represents a quadratic measure of the total load in the system at time slot t. Define the T-step

conditional drift

AT(tk) L E [L(Q(tk +T)) - L(Q(tk))|Q(tk).

The following T-step drift expression follows similar to (6.23) in Appendix A:

AT(t)<LBT 2 + 2TZ Qi(tk) A

'T-1

-2Z Qe(tk)JE [Z Dt(tk+T1Q(tk), (6.28)
i .r=0

where B e Am + y .. Recall the definition of the reward functions ft(st, at) in (6.4) and let

Tj(st, at) be the reward function associated with applying policy 7r* given in the definition of the

FBDC policy in Algorithm 15 to the saturated system. Let Tt(t) denote Tf(st, at) for notational

simplicity, e E L. Note that rt(t) is equal to De(t), since Dj(t) is the service opportunity given

to link e at time slot t. Now let r* = (r) be the infinite horizon average rate associated with

policy 7r*. Let x* be the optimal vector of state-action frequencies corresponding to 7r*. Define the

time-average empirical reward from queue e in the saturated system, T,f(tk), f E L by

T-1

Tf(4) T r= (tk + T)

-r=O
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Similarly, define the time average empirical state-action frequency vector iT(tk; s, a).

tk+T-1

xT(tk; s, a) = I{s-r=s,ar=a}, (6.29)
T=tk

where IE is the indicator function of an event E, i.e., IE = 1 if E occurs and IE = 0 otherwise.

Using the definition of the reward functions in (6.4), we have that

rT,t (tk) = (s, a)iT (tk; s, a), f E ,
sES aET

and frT (tk) = (?T,1(tk))e. Similarly, we have

r = ZZ t(s, a)x*(s, a), f E L.

sES aET

Now we utilize the following key MDP theory result in Lemma 4.1 [79], which states that as T

increases, iT(tk) = (RT(tk; s, a))s,a converges to x*.

Lemma 22 For every choice of initial state distribution, there exists constants cl and c2 such that

P(IIT(tx)X*II 2 60) cle-c25T VT > 1, V60 > 0.

Furthermore, convergence of kT(tk) to x* is with probability (w.p.) 1.

This result applies in our system because every extreme point x* of X can be attained by a station-

ary and deterministic policy that has a single irreducible recurrent class in its underlying Markov

chain [79], [94]4. Due to the linear mapping from the state-action frequencies to the rewards, by

Schwartz inequality, each component of f-T(tk) also converges to the corresponding component of

4Note that in general multiple stationary-deterministic policies can yield the same optimal reward vector

r*. Among these, we choose the one that forms a Markov chain with a single recurrent class.
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r*. Therefore, we have that for every choice of initial state distribution, there exists constants ci and

c2 such that

P(||(tk) - r*|| I 61) 5cie-c2 1T, VT > 1, V61 > 0. (6.30)

Furthermore, convergence of fT(tk) to r* is w.p. 1. Now let RT(tk) =Ei Qf(tk)iT,(tk) and

R*(tk) =E Q(tk)r*. We rewrite the drift expression:

ATk) <
LBT + Qf (tk)Ai - E [RT(tk)|Q(tk)]

2

= LBT
-2 +ZQ(tk)Ai-ZQf(t

+ E [R*(tk) -RT(tk)IQ(tk)] 

Now we bound the last term. For all 62 > 0 we have

E [R* (tk) - RT (tk)IQ(tk)] =

=E (R*(tk)-RT(tk)|Q(tk), R*(tk)-RT(tk) : 62||Q(tk)|||

- P (R (tk) - RT(tk) 21 Q(tk)II IQ(tk))

+E[(R*(t k)- RT(tk pQ(tky), R*(tky)- RTyt)<J2||Q(t k|||]

. P (R*(tk) - RT(tk) < 62||Q(tk)|| |Q(tk))

< imax ( Qt(tk))P (IR*(tk) -RT(tk) I 6 21|Q(tk)|I| Q(tk))

+ 62 11Q (tk)||,

(6.31)

(6.32)
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where we bound the first expectation by Et Qt(tk) by using Ir* II < pmax, the second expectation

by 52 IQ (tk) II and the second probability by 1. By Schwartz inequality we have

P (IR*(tk) - RT(tk)I 62110Q(t)1 IQ(tk))

P (IIr* - irT (tk)I > 62 Q(tk)).

Using (6.30) and (6.33) in (6.32), we have

E[R* (tk) - R(tk) Q(tk)] (ZQ(tk)) ce-c2 TA2 || Q(tk)l .

Hence, using IIQ(tk)|| E Qe(tk), we bound (6.31) as

AT(tk) < LBT tk)t- (tk)r2T 2 +5et)S5et
f

(6.33)

f

+ (ZQ(tk)) (cJecaT+62 ) -

Therefore, calling 6 cie -c3T + 62, we have

k LBT Q (tk) A- Qe(tk)rE*-o5 Qt (tk)-
2T 2

Now for A strictly inside the 6-stripped stability region A6, there exist a small ( > 0 such that

A + (.1 = r - 61, for some r E A.. Utilizing this and the fact that f Q(t)(rj - rE) 0 by

definition of the FBDC policy in Algorithm 15, we have,

2T - 2 k
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Therefore, the queue sizes have negative drift when Et Qe(tk) is larger than LBT. Following an

argument similar to that for (5.64) in Appendix E of Chapter 5 (in the stability proof of the FBDC

algorithm for the single server system), (6.34) establishes stability of the system for A within the

6-stripped stability region A. Furthermore, similar to the analysis in Appendix E of Chapter 5, for

any 5 > 0, we can find T such that the hypothesis of the theorem holds.
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Chapter 7

Conclusion and Future Work

We studied the impacts of reconfiguration delays on the control of stochastic networks in this the-

sis. We showed that reconfiguration delays impact network performance significantly in several

ways. In particular, throughput-optimal policies take a very different structure from previously pro-

posed network scheduling algorithms such as the celebrated Max-Weight or Exhaustive policies.

We studied networks with time-varying channels and reconfiguration delays, and showed that the

simultaneous presence of time varying channels and reconfiguration delays reduces the network sta-

bility region significantly, and in contrast to the previous work in the literature, the stability region

is improved with increasing memory in the channel processes. We proposed new techniques based

on the state-action frequency approach for solving Markov Decision Processes (MDPs) in order to

characterize the stability regions of a large class of complex networks and to design throughput-

optimal algorithms for such systems.

In the first chapter, we considered the use of controlled mobility and wireless transmission in

order to improve the throughput and delay performance of a DTN model, where messages arriving

randomly in time and space are gathered by mobile collectors via wireless communications. We

developed lower bounds on expected delay as well as matching upper bounds. For interference free

DTNs, we showed that the delay scales as E(1) with the system load p. This is in sharp contrast

to the E)( _8-2) delay scaling in the corresponding system without wireless transmission. For
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DTNs subject to interference of simultaneous transmissions, we simplified the collectors' mobility

to a grid to formulate a scheduling problem and characterized the stability region of the system as

well as a frame-based algorithm that stabilizes this system.

In the next chapter, we investigated the scheduling problem for networks subject to arbitrary

interference constraints and reconfiguration delays. We developed sufficient conditions on the ex-

pected interswitching time that leads to stability. We discussed the Variable Frame Max-Weight

(VFMW) and the Switching Curve Based (SCB) algorithms that satisfy these conditions and pro-

vide throughput-optimality without requiring the knowledge of the arrival rates. These algorithms

persist with the Max-Weight schedule during an interval of duration dependent on the queue sizes,

which dynamically adapts the interval duration to stochastic arrivals and provides a reasonable delay

performance in addition to stability.

In the final two chapters, we considered the optimal scheduling problem for networks subject to

time-varying channels and reconfiguration delays, which has not been considered previously in the

literature. We first considered the dynamic server allocation problem over parallel queues with time-

varying channels and server switching delays. We analytically characterized the stability region of

the system for both i.i.d. and Markovian channel processes and explicitly derived the throughput

loss due to switching delays. For the case of Markovian channels, in order to characterize the system

stability region and the throughput-optimal FBDC policy, we developed the state-action frequency

framework using an MDP formulation for the corresponding saturated system. We also developed

simple Myopic Policies that achieve a large fraction of the stability region and provide a better delay

performance as compared to the FBDC policy.

Next, we investigated the optimal scheduling problem for networks with arbitrary time-varying

channels, reconfiguration delays, and interference constraints. For the case of i.i.d. channel pro-

cesses, we characterized the stability region of the system in closed form and proved that a Variable

Frame Max-Weight algorithm that makes scheduling decisions based on average channel gains is

throughput-optimal. For the case of Markovian channels with memory, we generalized the state-

action frequency framework to arbitrary single-hop networks, and characterized the system stability
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region and the throughput-optimal FBDC policy. The state-action frequency approach provides a

new framework for stability region characterization and throughput-optimal policy development for

general network control systems, with or without reconfiguration delays.

7.1 Future Directions

We utilized a simple wireless communication model based on a communication range in Chapter 3

and assumed that each collector can receive a single transmission at a time in this chapter. A possible

future direction for this work is to consider random access models for transmissions together with

more sophisticated communication models that take into account the signal to interference and noise

ratio (SINR). Another possible future direction is to relax the grid assumption for the movements

of collectors and analyze the resulting joint routing and scheduling problem on the continuous 2-

dimensional plane.

We considered centralized algorithms for scheduling in networks subject to reconfiguration

delays and interference constraints in Chapter 4. A possible future direction is to develop low-

complexity distributed joint scheduling and routing algorithms for multihop networks with interfer-

ence constraints and nonzero reconfiguration delays.

Finally, developing Myopic policies with low computation complexity and large throughput

guarantees can be attractive alternatives to the state-action frequency approach developed in chap-

ters 5 and 6, and developing joint scheduling and routing policies for multihop networks with time-

varying channels, reconfiguration delays, and interference constraints is an open future direction.
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