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Abstract

Forecasting technological progress is of great interest to engineers, policy makers, and private investors. Several models
have been proposed for predicting technological improvement, but how well do these models perform? An early
hypothesis made by Theodore Wright in 1936 is that cost decreases as a power law of cumulative production. An alternative
hypothesis is Moore’s law, which can be generalized to say that technologies improve exponentially with time. Other
alternatives were proposed by Goddard, Sinclair et al., and Nordhaus. These hypotheses have not previously been
rigorously tested. Using a new database on the cost and production of 62 different technologies, which is the most
expansive of its kind, we test the ability of six different postulated laws to predict future costs. Our approach involves
hindcasting and developing a statistical model to rank the performance of the postulated laws. Wright’s law produces the
best forecasts, but Moore’s law is not far behind. We discover a previously unobserved regularity that production tends to
increase exponentially. A combination of an exponential decrease in cost and an exponential increase in production would
make Moore’s law and Wright’s law indistinguishable, as originally pointed out by Sahal. We show for the first time that
these regularities are observed in data to such a degree that the performance of these two laws is nearly the same. Our
results show that technological progress is forecastable, with the square root of the logarithmic error growing linearly with
the forecasting horizon at a typical rate of 2.5% per year. These results have implications for theories of technological
change, and assessments of candidate technologies and policies for climate change mitigation.
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Introduction

Innovation is by definition new and unexpected, and might

therefore seem inherently unpredictable. But if there is a degree of

predictability in technological innovation, understanding it could

have profound implications. Such knowledge could result in better

theories of economic growth, and enable more effective strategies

for engineering design, public policy design, and private invest-

ment. In the area of climate change mitigation, the estimated cost

of achieving a given greenhouse gas concentration stabilization

target is highly sensitive to assumptions about future technological

progress [1].

There are many hypotheses about technological progress, but

are they any good? Which, if any, hypothesis provides good

forecasts? In this paper, we present the first statistically rigorous

comparison of competing proposals.

When we think about progress in technologies, the first product

that comes to mind for many is a computer, or more generally, an

information technology. The following quote by Bill Gates

captures a commonly held view: ‘‘Exponential improvement –

that is rare – we’ve all been spoiled and deeply confused by the IT

model’’ [2]. But as we demonstrate here, information technologies

are not special in terms of the functional form that describes their

improvement over time. Information technologies show rapid

rates of improvement, but many technologies show exponential

improvement. In fact, all the technologies we study here behave

roughly similarly: Information technologies closely follow patterns

of improvement originally postulated by Wright for airplanes [3–

8], and technologies such as beer production or offshore gas

pipelines follow Moore’s law [9,10], but with a slower rate of

improvement [8,11–15].

It is not possible to quantify the performance of a technology

with a single number [16]. A computer, for example, is

characterized by speed, storage capacity, size and cost, as well

as other intangible characteristics such as aesthetics. One

automobile may be faster, while another is less expensive. For

this study, we focus on one common measure of performance:

the inflation-adjusted cost of one ‘‘unit’’. This metric is suitable

in that it can be used to describe many different technologies.

However, the nature of a unit may change over time. For

example, a transistor in a modern integrated circuit today may

have quite different performance characteristics than its discrete

counterpart in the past. Furthermore, the degree to which cost

is emphasized over other performance measures may change

with time [17]. We nonetheless use the changes in the unit cost

as our measure of progress, in order to compare competing

models using a sizable dataset. The crudeness of this approach

only increases the difficulty of forecasting and makes it

particularly surprising that we nonetheless observe common

trends.
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Analysis

We test six different hypotheses that have appeared in the

literature [3,9,18–20], corresponding to the following six func-

tional forms:

Moore log yt~atzbzn(t)

Wright log yt~a log xtzbzn(t)

lagged Wright log yt~a log (xt{qt)zbzn(t)

Goddard log yt~a log qtzbzn(t)

SKC log yt~a log qtzc log (xt{qt)zbzn(t)

Nordhaus log yt~atzc log xtzbzn(t):

ð1Þ

The dependent variable yt is the unit cost of the technology

measured in inflation-adjusted dollars. The independent variables

are the time t (measured in years), the annual production qt, and

the cumulative production xt~
Pt

i~1 qi. The noise term n(t), the

constants a, b and c, and the predictor variables differ for each

hypothesis.

Moore’s law here refers to the generalized statement that the cost

y of a given technology decreases exponentially with time:

yt~B exp ({mt), ð2Þ

where mw0 and Bw0 are constants [9,12]. (We assume

throughout that tw0, and we have renamed a~{m and

b~ log B in Eq. (1)). Moore’s law postulates that technological

progress is inexorable, i.e. it depends on time rather than

controllable factors such as research and development.

Wright’s law, in contrast, postulates that cost decreases at a rate

that depends on cumulative production:

yt~Bx{w
t , ð3Þ

where ww0 and Bw0 are constants, and we have renamed

a~{w and b~ log B in Eq. (1). Wright’s law is often interpreted

to imply ‘‘learning by doing’’ [5,21]. The basic idea is that

cumulative production is a proxy for the level of effort invested, so

that the more we make the more we learn, and knowledge

accumulates without loss.

Another hypothesis is due to Goddard [18], who argues that

progress is driven purely by economies of scale, and postulates

that:

yt~Bq{s
t , ð4Þ

where sw0 and Bw0 are constants, and we have renamed a~{s
and b~ log B in Eq. (1).

We also consider the three multi-variable hypotheses in Eq. (1):

Nordhaus [20] combines Wright’s law and Moore’s law, and

Sinclair, Klepper, and Cohen (SKC) [19] combine Wright’s law

and Goddard’s law. For completeness, we also test Wright’s law

lagged by one year. Note that these methods forecast different

things: Moore’s law forecasts the cost at a given time, Wright’s law

at a given cumulative production, and Goddard’s law at a given

annual production.

We test these hypotheses on historical data consisting of 62

different technologies that can be broadly grouped into four

categories: Chemical, Hardware, Energy, and Other. All data can

be found in the online Performance Curve Database at

pcdb.santafe.edu. The data are sampled at annual intervals with

timespans ranging from 10 to 39 years. The choice of these

particular technologies was driven by availability – we included all

available data, with minimal constraints applied, to assemble the

largest database of its kind.

The data was collected from research articles, government

reports, market research publications, and other published

sources. Data on technological improvement was used in the

analysis if it satisfied the following constraints: it retained a

functional unit over the time period sampled, and it included both

performance metric (price or cost per unit of production) and

Figure 1. An illustration of the growth of errors with time using
the Wright model. The mean value of the logarithmic hindcasting
error for each dataset is plotted against the hindcasting horizon j{i, in
years. An error of 100:5&3, for example, indicates that the predicted
value is three times as big as the actual value. The longest data-sets are:
PrimaryAluminum (green), PrimaryMagnesium (dark blue), DRAM (grey),
and Transistor (red).
doi:10.1371/journal.pone.0052669.g001

Figure 2. An illustration of the growth of errors of each
hypothesized law vs. time. The plot shows the predicted root
absolute log error rfij vs. forecasting horizon (j{i) using each of the
functional forms (see Eq. (6)). The performance of the five hypotheses
shown is fairly similar, though Goddard is worse at short horizons and
SKC and Moore are worse at long horizons.
doi:10.1371/journal.pone.0052669.g002
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production data for a period of at least 10 years, with no missing

years in between. This inclusive approach to data gathering was

required to construct a large dataset, which was necessary to

obtain statistically significant results. The resulting 62 datasets are

described in detail in File S1.

These datasets almost certainly contain significant measurement

and estimation errors, which cannot be directly quantified and are

likely to increase the error in forecasts. Including many

independent data sets helps to ensure that any biases in the

database as a whole are random rather than systematic,

minimizing their effects on the results of our analysis of the

pooled data.

To compare the performance of each hypothesis we use

hindcasting, which is a form of cross-validation. We pretend to

be at time i and make a forecast ŷy
(f ,d,i)
j for time j using hypothesis

(functional form) f and data set d, where jwi. The parameters for

each functional form are fitted using ordinary least squares based

on all data prior to time i, and forecasts are made based on the

resulting regression. We score the quality of forecasts based on the

logarithmic forecasting error:

efdij~ log y
(d)
j { log ŷy

(f ,d,i)
j : ð5Þ

The quality of forecasts is examined for all datasets and all

hypotheses (and visualized as a three-dimensional error mountain,

as shown in File S1). For Wright’s law, an illustration of the growth

of forecasting errors as a function of the forecasting horizon is

given in Fig. 1.

An alternative to our approach is to adjust the intercepts to

match the last point. For example, for Moore’s law this

corresponds to using a log random walk of the form

Figure 3. Three examples showing the logarithm of price as a function of time in the left column and the logarithm of production as
a function of time in the right column, based on industry-wide data. We have chosen these examples to be representative: The top row
contains an example with one of the worst fits, the second row an example with an intermediate goodness of fit, and the third row one of the best
examples. The fourth row of the figure shows histograms of R2 values for fitting g and m for the 62 datasets.
doi:10.1371/journal.pone.0052669.g003

Predicting Technological Progress
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log ytz1~ log yt{mzn(t), where n(t) is an IID noise term (see

File S1). We have not done this here to be consistent with the way

these hypotheses have been presented historically. The method we

have used also results in more stable errors.

Developing a statistical model to compare the competing

hypotheses is complicated by the fact that errors observed at

longer horizons tend to be larger than those at shorter horizons,

and errors are correlated across time and across functional forms.

After comparing many different possibilities (as discussed in detail

in File S1), we settled on the following approach. Based on a

search of the family of power transformations, which is known for

its ability to accommodate a range of variance structures, we take

as a response the square root transformation of the logarithmic

error. This response was chosen to maximize likelihood when

modeled as a linear function of the hindcasting horizon ~ target

{ origin ~j{i, using a linear mixed effects model.

Specifically, we use the following functional form to model the

response:

rfdij:Defdij D0:5~af zadz(bf zbd )(j{i)zEfdij , ð6Þ

where rfdij is the expected root error. The parameters af and bf

depend on the functional form and are called fixed effects because

they are the same for all datasets. af is the intercept and bf is the

slope parameter.

The parameters ad and bd depend on the dataset, and are called

random effects because they are not fitted independently but are

instead treated as dataset-specific random fluctuations from the

pooled data. The quantities ad and bd are additive adjustments to

the average intercept and slope parameters af and bf , respectively,

to take into account the peculiarities of each dataset d.

In order to avoid adding 62 ad parameters plus 62 bd

parameters, we treated the
ad

bd

� �
pair as a two-dimensional

random vector having a bivariate normal distribution with mean

0

0

� �
and variance-covariance matrix

y2
a yab

yab y2
b

� �
. This

approach dramatically reduces the number of parameters. We

parameterize the dataset-specific adjustments as random devia-

tions from the average
af

bf

� �
at a cost of only 3 additional

parameters instead of 2 | 62 ~ 124. This parsimonious approach

makes maximum likelihood estimation possible by keeping the

number of parameters in check.

Finally, we add an Efdij random field term to take into account

the deviations from the trend. This is assumed to be a Gaussian

stochastic process independent of the
ad

bd

� �
random vector,

having mean 0, and given ad and bd , having variance equal to a

positive s2 times the fitted values:

Figure 4. An illustration that the combination of exponentially increasing production and exponentially decreasing cost are
equivalent to Wright’s law. The value of the Wright parameter w is plotted against the prediction m=g based on the Sahal formula, where m is the
exponent of cost reduction and g the exponent of the increase in cumulative production.
doi:10.1371/journal.pone.0052669.g004
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Var Efdij Dad ,bd

� �
~ s2 E rfdij Dad ,bd

� �
: ð7Þ

We also define an exponential correlation structure within each

error mountain (corresponding to each combination of dataset and

hypothesis, see File S1), as a function of the differences of the two

time coordinates with a positive range parameter r and another

small positive nugget parameter g quantifying the extent of these

correlations:

Corr(Efdij , Ef ’d ’i’j’) ~ dff ’ddd ’(1{g) exp {(Di{i’DzDj{j’D)=rf g, ð8Þ

where the two Kronecker d functions ensure that each error

mountain is treated as a separate entity.

Equations (7) and (8) were chosen to deal with the observed

heteroscedasticity (increasing variance with increasing logarithmic

forecasting error) and the serial correlations along the time

coordinates i (hindcasting origin) and j (hindcasting target). Based

on the likelihood, an exponential correlation function provided the

best fit. Note that instead of a Euclidean distance (root sum of the

squares of differences), the Manhattan measure was used (the sum

of the absolute differences), because it provided a better fit in terms

of the likelihood.

Using this statistical model, we compared five different

hypotheses. (We removed the Nordhaus model from the sample

because of poor forecasting performance [20]. This model gave

good in-sample fits but generated large and inconsistent errors

Figure 5. An illustration of how individual datasets deviate from the pooled data. The data-specific contribution to the slope, bd , is plotted
against the data specific contribution to the intercept, ad , and compared to the ellipse of two standard deviation errors. The best forecasts are
obtained for those found in the lower left quadrant, such as Beer, Sodium, RefinedCaneSugar, and Aluminum.
doi:10.1371/journal.pone.0052669.g005

Figure 6. A projection of future PV electricity costs from the
Photovoltaics2 historical data set (1977–2009) using Moore’s
exponential functional form. The solid line is the expected forecast
and the dashed line is the expected error.
doi:10.1371/journal.pone.0052669.g006
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when predicting out-of-sample, a signature of over-fitting. This

points to the difficulty in separating learning from exogenous

sources of change [20].) Rather than the 62|5|2~620
parameters needed to fit each of the 62 datasets separately for

each of the five functional forms, there are only 16 free

parameters: 5|2 = 10 parameters af and bf , three parameters

for the covariance matrix of the bivariate random vector (ad ,bd ),
and three parameters for the variance and autocorrelation of the

residuals Efdij .

Results and Discussion

We fit the error model to the 37,745 different rfdij data points

using the method of maximum likelihood. In Fig. 2 we plot the

expected root error rfij~af zbf (j{i) for the five hypotheses as a

function of the hindcasting horizon. While there are differences in

the performance of these five hypotheses, they are not dramatic.

The intercept is tightly clustered in a range 0:16vaf v0:19 and

the slope 0:024vbf v0:028. Thus all the hypotheses show a large

initial error, followed by a growth in the root error of roughly

2:5% per year. This is a central tendency for the pooled data.

The error model allows us to compare each hypothesis pairwise

to determine whether it is possible to reject one in favor of another

at statistically significant levels. The comparisons are based on the

intercept and slope of the error model of Eq. (6). The parameter

estimates are listed in Tables S1 and S3 in File S1 and the

corresponding p-values in Tables S2 and S4 in File S1. For

example, at the 5% level, the intercept of Goddard is significantly

higher than any of the others and the slope of SKC is significantly

greater than that of Wright, lagged Wright and Goddard. With

respect to slope, Moore is at the boundary of being rejected in

favor of Wright. Fig. 2 makes the basic pattern clear: Goddard

does a poorer job of forecasting at short times, whereas SKC, and

to a lesser extent Moore, do a poorer job at long times.

We thus have the surprising result that most of the methods are

quite similar in their performance. Although the difference is not

large, the fact that we can eliminate Goddard for short term

forecasts indicates that there is information in the cumulative

production not contained in the annual production, and suggests

that there is a learning effect in addition to economies of scale. But

the fact that Goddard is not that much worse indicates that much

of the predictability comes from annual production, suggesting

that economies of scale are important. (In our database,

technologies rarely decrease significantly in annual production;

examples of this would provide a better test of Goddard’s theory.)

We believe the SKC model performs worse at long times because

it has an extra parameter, making it prone to overfitting.

Although Moore performs slightly worse than Wright, given the

clear difference in their economic interpretation, it is surprising

that their performance is so similar. A simple explanation for

Wright’s law in terms of Moore’s law was originally put forward by

Sahal [22]. He noted that if cumulative production grows

exponentially:

xt~A exp (gt), ð9Þ

then eliminating t between Eqs. (2) and (9) results in Wright’s law,

Eq. (3), with w~m=g. Indeed, when we look at production vs.

time we find that in almost every case the cumulative production

increases roughly exponentially with time. (Note that if production

grows exponentially, cumulative production also grows exponen-

tially with the same exponent.) This is illustrated in Fig. 3, where

we show three representative examples for production and cost

plotted as a function of time. Fig. 3 also shows histograms of R2

values for fitting g and m for the 62 datasets. The agreement with

exponential behavior ranges from very good to rather poor, but of

course these are short time series and some of them are very noisy.

We test this in Fig. 4 by plotting the measured value of wd

against the derived value ŵwd~m=g for each data set d. The values

cluster tightly along the identity line, indicating that Sahal’s

conjecture is correct.

The differences in the data sets can be visualized by plotting ad

and bd as shown in Fig. 5. All but one data set is inside the 95%

confidence ellipsoid, indicating that the estimated distribution of

(ad ,bd ) is consistent with the bivariate normal assumption. The

intercepts vary in a range roughly {0:10vadv0:17 and the

slopes {0:018vbdv0:015. Thus the variation in the corre-

sponding logarithmic forecasting error for the different datasets is

comparable to the average error for all datasets (Fig. 5) and about

an order of magnitude larger than the difference between the

hypothesized laws (Fig. 2).

To illustrate the practical usefulness of our approach we make a

forecast of the cost of electricity for residential scale photovoltaic

solar systems (PV). Fig. 6 shows the best forecast (solid line) as well

as the expected error (dashed lines). These are not confidence

limits, but rather projected absolute log deviations from the best

forecast, calculated from Eq. (6) using aMoore, bMoore, aPhotovoltaics2,

and bPhotovoltaics2. The sharp drop in the one year forecast relative

to the last observed data point comes from the fact that forecasts

are based on the average trend line, and because this data series is

particularly long. PV costs rose in recent years due to increased

material costs and other effects, but industry experts expect this to

be a short-lived aberration from the long-term cost trend.

The expected PV cost in 2020, shown in Fig. 6, is 6 cents/kWh

with a range (3, 12). In 2030 the cost is 2 cents/kWh, with a range

(0.4, 11). This does not include the additional cost of energy

storage technologies. The current cost of the cheapest alternative,

coal-fired electricity, is roughly 5 cents/kWh. This is the wholesale

cost at the plant (busbar), which may be most directly comparable

to industrial scale PV (rather than the residential scale shown in

Fig. 6). Industrial scale PV is typically about two-thirds the cost of

electricity from the residential scale systems. In contrast to PV,

coal-fired electricity is not expected to decrease in cost, and will

likely increase if there are future penalties for CO2 emissions [23].

The costs of other technologies can be forecasted in a similar

way, using historical data on the cost evolution to project future

performance. The expected error in this forecast is calculated

using our error model (Eq. (6)). The error is determined for each

future year j from the present year i based on parameters specific

to the technology of interest, as well as insight gained from

examining data on many technologies. This approach allows us to

forecast both the expected error and the expected cost. The

method outlined is suited to Moore’s functional form. Forecasting

future performance based on production levels requires an

additional step of forecasting future production over time.

Our primary goal in this paper is to compare the performance

of proposed models in the literature for describing the cost

evolution of technologies. Our objective is not to construct the best

possible forecasting model. Nonetheless we outline above the steps

one would take in making a forecast in order to demonstrate the

utility of the general approach we develop, which centers on

analyzing a large, pooled database, and estimating the expected,

time horizon-dependent error associated with a given forecasting

model. This approach can be applied to other forecasting models

in the future.

The key postulate that we have made in this paper is that the

processes generating the costs of technologies through time are

Predicting Technological Progress
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generic except for technology-specific differences in parameters.

This hypothesis is powerful in allowing us to view any given

technology as being drawn from an ensemble. This means that we

can pool data from different technologies to make better forecasts,

and most importantly, make error estimates. This is particularly

useful for studying technology trends, where available data is

limited. Of course we must add the usual caveats about making

forecasts – as Niels Bohr reputedly said, prediction is very difficult,

especially of the future. Our analysis reveals that decreasing costs

and increasing production are closely related, and that the

hypotheses of Wright and Moore are more similar than they

might appear. We should stress, though, that they are not the

same. For example, consider a scenario in which the exponential

rate of growth of PV production suddenly increased, which would

decrease the current production doubling time of roughly 3 years.

In this case, Wright predicts that the rate at which costs fall would

increase, whereas Moore predicts that it would be unaffected.

Distinguishing between the two hypotheses requires a sufficient

number of examples where production does not increase

exponentially, which our current database does not contain. The

historical data shows a strong tendency, across different types of

technologies, toward constant exponential growth rates. Recent

work, however, has demonstrated super-exponential improvement

for information technologies over long time spans [24], suggesting

that Moore’s law is a reasonable approximation only over short

time spans. This evidence from information technologies [24], and

the results presented here, suggest that Moore may perform

significantly worse than Wright over longer time horizons.

Supporting Information
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(PDF)
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