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Abstract. Most chemical gas detection algorithms for long-wave infrared
hyperspectral images assume a gas with a perfectly known spectral sig-
nature. In practice, the chemical signature is either imperfectly measured
and/or exhibits spectral variability due to temperature variations and
Beers law. The performance of these detection algorithms degrades fur-
ther as a result of unavoidable contamination of the background covari-
ance by the plume signal. The objective of this work is to explore
robust matched filters that take the uncertainty and/or variability of the tar-
get signatures into account and mitigate performance loss resulting from
different factors. We introduce various techniques that control the selec-
tivity of the matched filter and we evaluate their performance in standoff
LWIR hyperspectral chemical gas detection applications. © 2013 Society of
Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.52.2.026202]

Subject terms: hyperspectral imagery; steering vector mismatch; covariance con-
tamination; diagonal loading; robust matched filter.
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1 Introduction
The remote sensing of gaseous plumes has wide applicability
to such diverse areas as chemical warfare agent threat reduc-
tion, environmental monitoring, disaster relief, and Earth
science. Data adaptive algorithms are generally necessary
to suppress the clutter signal while passing that of the
plume. Imaging hyperspectral sensors are particularly
well-suited to these tasks, as they can simultaneously record
spectra from both plume and background regions. The adap-
tive matched filter (AMF) detector1 plays a major role in
detecting gaseous plumes in hyperspectral imagery.2,3 If
the background statistics are Gaussian, and all inputs to
the AMF are known perfectly, then the AMF is known to
be optimal under a number of criteria. Even when the
non-Gaussian nature of real background data is taken into
account, the AMF still is very nearly equal to the optimal
linear detector.4

In actual use, however, there are a number of challenges
to application of the AMF, deriving from imperfect knowl-
edge of the inputs to the detector. There will always be
mismatch between the gas signature obtained from a library
[see Fig. 1(a)] and that observed, due to the nonlinear rela-
tionship between absorption and radiance [see Fig. 1(b)],
modulation of the signature by the background and atmos-
phere, differences in the laboratory and field measurement
conditions, and imperfections in the sensor itself. The back-
ground mean and covariance statistics are estimates with
finite sample support, and the statistics of observed scenes
are rarely spatially homogeneous. More significantly, the

segmentation into plume and plume-free background pixels
is not known a priori, so any errors in this process will result
in contamination of the background statistics by the plume
signature5–7 (see Fig. 2). All of these effects can combine in
complex ways to cause losses in the detection results. The
combination of steering vector mismatch and target signal
contamination of the plume has been known since the adop-
tion of adaptive processing by the radar community.8,9 The
effect of spatial correlations between the plume and back-
ground for hyperspectral gas sensing was noted in Theiler
et al.,10 to which the effect of steering vector mismatch
caused by Beer’s law was added in Theiler et al.11

In order to mitigate the performance degradation result-
ing from steering vector mismatch and covariance matrix
contamination, a robust algorithm employing the diagonal
loading technique12 was developed in the radar community.
Performance comparisons among variants of diagonal load-
ing were done by Ward et al.13 A general loading scheme
is executed by Besson14 et al. who concludes that there is
no advantage of using general loading instead of conven-
tional diagonal loading. Although diagonal loading has
proved effective for both steering vector mismatch and clut-
ter covariance errors, the selection of diagonal loading level
is generally ad-hoc. The robust capon beamformer (RCB)
provides an algorithm to compute loading level given
knowledge of the uncertainty of the steering vector.15

However, the estimate of steering vector uncertainty is
still not accurate and a conservative strategy is preferred
during estimation.

In this paper, we verify the effectiveness of the diagonal
loading technique to improve the robustness of the AMF on
LWIR hyperspectral chemical gas detection. The rest of the0091-3286/2013/$25.00 © 2013 SPIE
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paper is organized as follows. In Sec. 2, the radiance model
upon which the study is based is presented. We catalog and
verify by experiments the mathematical expressions on per-
formance loss of matched filter due to imperfect estimation
in Sec. 3. A robust matched filter based on the diagonal load-
ing technique is studied and realized in Sec. 4 where a variety
of experiments are also provided to illustrate the effective-
ness of such robust filter. Concluding remarks are given at
the end.

2 Radiance Model
The physical basis for gas detection with passive infrared
sensors can often be explained with a simplified radiative
transfer model,16 which treats the atmosphere as homo-
geneous in temperature and transmittance and assumes the
chemical plume, if present, to be close to the background.
In this model, the at-sensor radiance in the absence of
plume, as a function of wavelength, is given by

LoffðλÞ ¼ ð1 − τaðλÞÞBðλ; TaÞ þ τaðλÞLbðλÞ; (1)

where the two terms on the right side of Eq. (1) represent
atmospheric radiance and background radiance modulated
by the atmosphere, correspondingly. In Eq. (1), τaðλÞ is
defined to be the atmospheric transmittance, Ta is the tem-
perature of the atmosphere, LbðλÞ is the background radi-
ance, and Bðλ; TÞ is the Planck function evaluated at
wavelength λ and temperature T.

The presence of a plume has two effects: it absorbs part
of the background radiation passing through it, and it emits
its own radiation. The resulting radiance is subsequently

attenuated by transmission through the atmosphere, and
is given by

LonðλÞ ¼ ½1 − τaðλÞ�Bðλ; TaÞ þ τaðλÞτpðλÞLbðλÞ
þ τaðλÞ½1 − τpðλÞ�Bðλ; TpÞ; (2)

where τpðλÞ is the plume transmittance and Tp its temper-
ature. In Eq. (2), the three terms represent the at-sensor radi-
ance due to the atmosphere, the background radiance as
modulated by the plume and atmosphere, and the plume
radiance as modulated by the atmosphere.

By substituting LoffðλÞ into Eq. (2) and with a few simple
manipulations, an equivalent radiance expression is obtained

LonðλÞ¼LoffðλÞþ τaðλÞ½1− τpðλÞ�½Bðλ;TpÞ−LbðλÞ�: (3)

This form is the starting point for most detection algo-
rithms. It expresses the effect of a plume as a contrast
between the on- and off-plume radiance. Also, it highlights
the importance of the thermal contrast between the plume
and the background.

The spectral transmission function, τpðλÞ, of a plume with
M gas species can be modeled using Beer’s law

τpðλÞ ¼ exp

�
−
XM
m¼1

γmαmðλÞ
�
: (4)

The function αmðλÞ, the absorption coefficient spectrum,
is unique for each gaseous chemical and can be used as a
spectral signature. The quantity γm, the concentration path-
length (CL), is the integrated concentration of gas along the
sensor boresight.

The Eqs. (3) and (4) represent the on-plume radiance as
a nonlinear function of the parameters that characterize the
plume, atmosphere, and background. However, there are
many situations in which simplifying assumptions are
both valid and advantageous in terms of algorithmic com-
plexity and intuition. In this paper, we will employ the opti-
cally thin plume approximation in which Beer’s law may be
linearized as

1 − τpðλÞ ≈
XM
m¼1

γmαmðλÞ: (5)
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Fig. 1 (a) Library absorbance spectrum for triethyl phosphate (TEP), downsampled to 68 bands and (b) emissivity induced by different
concentration path-lengths of gas.
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Fig. 2 Mean radiance of the FIRST scene with TEP gas embedded
in the southeast corner.
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Then the signal model Eq. (3) becomes

LonðλÞ ¼ LoffðλÞ þ
XM
m¼1

γmβmðλÞ; (6)

with the definition of

βmðλÞ ¼ τaðλÞ½Bðλ; TpÞ − LbðλÞ�αmðλÞ; (7)

as the “in-scene target signature” for optically thin plumes.
This model Eq. (6) is linear in the gas concentration path-
length γm.

The measured radiance depends on the characteristics of
the sensor, which we model by convolution with the spectral
impulse response function gðλÞ and the addition of Gaussian
noise. If the sensor measures the radiance at K spectral
channels centered at wavelength λk; k ¼ 1; 2; : : : ; K, we can
organize the measurements in vector form as follows

x ¼
XM
m¼1

amsm þ v; (8)

where x is the measured radiance, the am are the gas mean
concentration-path length products, v is the background plus
noise radiance, and sm is the signature associated with gasm.
These are given by

am ¼ γm; (9a)

vk ¼ ðLoff � gÞðλÞjλ¼λk
þ nk; (9b)

sðmÞ
k ¼ ðβm � gÞðλÞjλ¼λk

; (9c)

where nk is the noise in channel k. We shall use the terms
spectral signature, amount, and background for the quantities
sm, am, and v, respectively.

According to Eqs. (7) and (9c), the steering vector
depends on the gas signature, background radiance, atmo-
spheric transmittance, plume temperature, and sensor
response. Incomplete knowledge from any of these sources
will result in a mismatch of steering vector between the
detector and measurement. Within the thin-plume limit,
the steering vector in the AMF is linear in the gas signature,
which is known from lab measurements. These signatures
may not match the observed signal for a variety of reasons,
such as calibration or temperature differences, or variations
in chemical composition. Thicker plumes will incur even
more steering vector mismatch, as the nonlinearity of
Beer’s law will change the signature. When the background
cannot be approximated as flat, the plume contrast signal
will be affected by the background emissivity if it has spec-
tral structure that overlaps that of the gas signature. In this
case, the observed plume signature will depend on the back-
ground radiance. The atmospheric transmittance also
appears in the steering vector. It generally is known only
roughly from environmental data and must be estimated
from the observed spectra over the scene. Estimation errors
in this quantity will propagate through to the detector.
Hence, some amount of steering vector mismatch is
inevitable.

3 SCR Loss Study
The signal-to-clutter ratio (SCR) is a natural performance
measure for the AMF. As a single summary statistic, it
does not capture all of the details of detection performance,
but we argue in Sec. 4.3 that it can provide a reliable guide
for some scenarios. Furthermore, its mathematical simplicity
can provide valuable intuition. In this section, we will catalog
mathematical expressions for the SCR loss in a number of
different situations. These expressions are then verified by
idealized experiments and also compared to more realistic
experiments that incorporate more of the variability that is
seen in measured data.

3.1 Theoretical SCR Loss Expressions

We first rephrase the theoretical SCR loss expressions result-
ing from various situations of knowledge imperfection which
is well treated in radar community.

3.1.1 Signal-to-clutter ratio

Our signal model throughout this section is that of Eq. (8)
with a single gas

x ¼ as0 þ v; (10)

where x is the observed radiance, v is the background radi-
ance plus noise, and s0 is the actual steering vector, or plume
signature. The matched filter detector is defined to be

MFðz; s;Σ; μÞ ¼ sTΣ−1ðz − μÞ; (11)

where z is an observed radiance, s is the assumed steering
vector, Σ is a covariance matrix, and μ is the assumed
mean background radiance. The definition of the SCR is
the squared ratio of the output of the matched filter applied
to μþ as0 and the standard deviation of the matched filter
applied to pure background v

SCR ¼ MFðμþ as0; s;Σ; μÞ2
hMFðv; s;Σ; μÞ2i ¼ a2ðsTΣ−1s0Þ2

sTΣ−1ΣvΣ−1s
: (12)

We will now evaluate Eq. (12) for a number of cases.
The results are most conveniently written in terms of the
Mahalanobis trigonometric functions

cos2Σðx; yÞ ¼
ðxTΣ−1yÞ2

ðxTΣ−1xÞðyTΣ−1yÞ ; (13a)

sin2Σðx; yÞ ¼ 1 − cos2Σðx; yÞ: (13b)

We also define the corruption of the covariance matrix by
the plume signal as

Σx ¼ hðx − x̄Þðx − x̄ÞTi ¼ Σv þ σ2as0sT0 þ σaζsT0 þ σas0ζT;

(14)

where the operation h⋅i computes the spatial mean value
across all pixels, and the plume amplitude variation σ2a
and correlation between plume amplitude and background
ζ are, respectively,
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σ2a ¼ hða − āÞ2i; (15)

and

ζ ¼
�ða − āÞ

σa
ðv − v̄Þ

�
: (16)

Next we summarize the SCR loss expressions for differ-
ent situations. We note that, throughout the paper, the con-
tamination of the background radiance covariance matrix by
the plume signal will be considered, but not contamination of
the mean vector. We do not consider the latter because our
primary concern is in effects that fundamentally influence
the separability of the plume from the background, while
corruption of the mean vector causes only a uniform shift
in the scores generated by the linear AMF. Such a shift is
consequential in the context of a full detection signal
processing chain, but this larger issue will be considered
elsewhere.

3.1.2 Optimal case

First is the optimal case when there is no signature mismatch
and perfect background estimation. By plugging the s ¼ s0
and Σ ¼ Σv into Eq. (12), we may use a result of Reed9 to
derive the expression of theoretically best performance as a
quadratic function of gas strength

SCR ¼ a2sT0Σ−1
v s0: (17)

3.1.3 Signature mismatch

When the steering vector s used in the matched filter does not
match that of the plume s0, while the covariance estimate
remains perfect, Σ ¼ Σv, a loss is incurred that depends
on the amount of mismatch. The mismatch loss expression
is given by Cox8 as

SCRb ¼ SCRocos
2
Σv
ðs; s0Þ: (18)

3.1.4 Covariance corruption

The next case we consider is that of no steering vector mis-
match, s ¼ s0, but with the covariance matrix corrupted by
the plume signal,

Σ ¼ Σv þ σ2as0sT0 þ σaζsT0 þ σas0ζT: (19)

The resulting SCR loss is given by

SCRc ¼
SCRo

1þ σ2a
a2 SCRoðζTΣ−1

v ζÞ sin2Σv
ðs0; ζÞ

: (20)

This expression is also addressed by Theiler in a slightly
different form.11 We observe a saturation effect in Eq. (22)
for large values of SCR. If the values of σ2a∕a2 and ζ remain
constant, then the value of SCRc approaches an asymptote
with increasing SCR.

3.1.5 Signature mismatch and covariance corruption

Next we allow both steering vector mismatch and covariance
contamination by the plume; however, we first consider the
case of no plume-background correlation, so ζ ¼ 0 and

Σ ¼ Σv þ σ2as0sT0 : (21)

The expression for SCR in this case is still analytically
tractable, with the result8

SCRd ¼
SCRo cos

2
Σv
ðs; s0Þ

1þ
�
2þ σ2a

a2 SCRo

��
σ2a
a2 SCRo

�
sin2Σv

ðs; s0Þ
: (22)

Since the numerator of Eq. (22) is first order in SCRo
while the denominator is second order, SCRd first increases
to a peak and then decreases as SCRo increases.

When the steering vector mismatch vanishes in Eq. (24),
the well known result11 is that the SCR attains its optimal
value. In other words, contamination by the plume vector
does not incur loss when the steering vector is known
exactly, as long as there is no plume-background correlation.

3.1.6 Most general case

When the restriction of zero correlation vector ζ is relaxed,
when both steering vector mismatch and covariance contami-
nation by the plume are present, a succinct expression for
SCR loss is no longer available. However, this is the case
most often obtained in practice, so numerical results will
be presented in the following experiments.

3.2 Experimental Validation Setup

Our experiments are based on simulated plumes algorithmi-
cally embedded in a measured background image. This
approach allows us to avoid the problemof limited and inexact
ground truth resulting from the observations of real plumes
and also allows us vastly more flexibility in the placement
and properties of the plumes. Figure 3 shows the mean
image of the background scene which is a 128 × 320
first data16,17 cube with 68 usable spectral bands. The absorp-
tion spectrum of the gas spetcies employed in embedding,
triethyl phosphate (TEP),18 is illustrated in Fig. 1(a).

A variety of plume shapes will be employed to probe vari-
ous effects, as discussed below. These plume profiles are
shown in Figs. 4 and 5. Those in Fig. 4 are of constant ampli-
tude, with all pixels under the mask embedded with the same
amount of gas. We will use the constant mask to verify our
derivation of SCR expressions derived in the precious sec-
tion. As shown in Fig. 4, three different mask profiles are
employed. The first one is a fixed size, horizontally oriented,
rectangular mask covering land pixels. The second is similar
to the first, but the horizontal size is allowed to vary. The
third is again of fixed size, but the orientation is allowed
to rotate, which allows the mask to sweep over different
background materials. These three profiles are used in
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Fig. 3 Mean radiance of the FIRST scene.
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different experiments to enable us to analysis the perfor-
mance degradation due to various factors. Figure 5 consists
of three Gaussian distributed amplitude counterparts to
Fig. 4. These masks with the highest amounts of gas in
the center are used to model a more realistic situation.

Once the desired plume profile is fixed, two methods are
employed to embed a simulated plume over the background
image: an approximate, linearized technique, and a more
accurate, nonlinear method. Since the former is based on
the latter, we will describe the latter first. We begin with
the assumption that the plume is in thermal equilibrium
with the atmosphere. This assumption leads to a simplifica-
tion of the on-plume radiance Eq. (2), resulting in the form

LonðλÞ ¼ LoffðλÞτpðλÞ þ ½1 − τpðλÞ�Bðλ; TaÞ: (23)

We observe that the on-plume radiance can be obtained
from the off-plume radiance with only knowledge of the
atmospheric temperature Ta and the plume transmittance
τp. In particular, the atmospheric transmittance is not
required, though its influence is still present in Loff . The
value of Ta may be estimated from bands in which the
atmosphere is largely opaque due to water vapor, and that
of τp from Beer’s law Eq. (4) with knowledge of the absorb-
ance spectrum αðλÞ and the mean concentration-path length
product γ.

An idealized linear plume embedding is also helpful for
comparison, in order to assess the impact of the nonlinear
behavior on the results. For this type of embedding, we
begin by the full embedding of Eq. (25) over a plume
mask with a constant value of the concentration-path length

γ. The background variation due to the nonlinearities is
removed by taking a spatial mean, and a steering vector is
formed with normalizing by γ, with the result

s0 ¼
1

γ
hLon − Loffi: (24)

The resulting approximate radiance expression is

Lon ≃ Loff þ γs0; (25)

which is exactly of the form Eq. (10). In the limit of small γ
and with a spatially constant background radiance Lb, the
exact radiance Eq. (3) reduces to the linear form Eq. (25),
which justifies the latter. We note that referring to this
embedding method as “linear” is a misnomer for larger val-
ues of CL, as s0 has a dependence on CL in the nonlinear
Beer’s law regime. However, the justification for the term
is that nonlinear dependence on the background has been
removed, as exactly the same signal vectors are present in
every pixel of the plume.

3.3 Experimental Validation Results

In this section, we provide our experiment results and
explanations. There are in total four sets of three experiments
each, with each set comprised of constant mask linear
embedding, constant mask nonlinear embedding, and
Gaussian mask nonlinear embedding. Throughout all the
experiments, since the steering vector is pixel dependent
except the ideal linear embedding, we use the mean vector
of all pixel-wise steering vectors as the true one we feed to
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(a) Constant Plume Mask Profile I (b) Constant Plume Mask Profile II

(c) Constant Plume Mask Profile III

Fig. 4 Constant-amplitude plume mask profiles: (a) fixed size horizontally oriented rectangular mask deployed over lower (land) region of image;
(b) variable sized horizontally oriented rectangular mask, again covering land pixels and; (c) fixed size rotating mask that sweeps over different
background materials. The correlation between plume and background is smalled for vertical orientations.
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our optimal matched filter. This setup will bring obvious
deviation between theoretical and experimental results when
the variance within pixel-wise steering vectors is large, as
a Gaussian profile mask embedding applies.

The purpose of the first set of experiments is to study the
performance loss due to steering vector mismatch alone dis-
cussed in Sec. 3.1.3. We use the masks in Figs. 4(a) and 5(a).
The mismatch is introduced by rotating the true steering vec-
tor s0 along an arbitrary, randomly chosen direction by
amounts that result in Mahalanobis cosine values in the
set cos2Σðs; s0Þ ¼ 0.2;0.3;: : : ;1. The gas CL across the con-
stant mask is 10 ppm-m and that of the Gaussian mask is set
so its mean is 10 ppm-m. Figure 6 shows the SCR loss plots.
As shown in Fig. 6(a), with the signature mismatch increas-
ing, the SCR loss is exactly the product of the optimal SCR
and Mahalanobis cosine squared; the experimental plot over-
laps the theoretical one nearly everywhere, verifying the
SCR expressions of Eqs. (17) and (18). In Fig. 6(b), the
empirical plot also fits the theoretical one quite well because
there is very little variation in the pixel radiances included in
the embedding mask. In Fig. 6(c), there is an explicit
deviation between the theoretical (using the mean steering
vector) and empirical plots because the gas amplitude is
Gaussian distributed, which results in pixel dependent steer-
ing vectors due to Beer’s law. For all three plots, we can see
that the performance degrades strictly linearly with respect to
the signature mismatch. Because of this dependence, the
deviation between the estimated and true steering vector
must be quite large in order to cause a large SCR loss.

The second experiment involves the combination of two
effects, steering vector mismatch and covariance contamina-
tion by the plume discussed in Sec. 3.1.5. However, the

plume-background correlation ζ, defined in Eq. (16), is
taken to be identically zero, the case that is covered by
the analytic expression in Eq. (22). Although this expression
covers an idealized limiting case, the results are instructive as
to the importance of the correlation parameter. The depend-
ence on ζ will be further explored below.

We guarantee zero correlation by duplicating the image
and embedding gas in one half of the resulting image, a
method due to Theiler.11 After gas releasing imagery
scene and embedding mask are shown in Fig. 7(a) and
7(b), respectively. This setup pairs each pixel with another
with identical background radiance and magnitude gas
strength deviation from the mean, but of different sign.
Hence, the terms in Eq. (16) pairwise sum to zero and cor-
respondingly result in zero correlation. We next compute
SCR as a function of CL. The gas amplitude is varied
from 1 ppm-m to 10 ppm-m, which includes both the linear
and nonlinear regimes. When using the linear embedding
method, we always use the exact value of the steering vector
given by Eq. (25), even as it is modulated by Beer’s law,
despite the fact that knowledge of the plume strength is dif-
ficult to obtain in practice. This choice is made because our
interest is in finding fundamental limits of SCR.

In Fig. 8(a), the SCR of the case of covariance corruption
with mismatch is shown to overplot the theoretical one, veri-
fying Eq. (22). Furthermore, it coincides with the optimal
SCR performance, verifying the prediction that the inclusion
of a rank one perturbation from the plume signal does not
affect detection, if there is no steering vector mismatch.
The deviation of the experimental curve from that predicted
by theory in Fig. 8(b) is due to the variations in the true steer-
ing vector induced by Beer’s law. Another insight from this
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from the center. The fixed and variable size and orientation masks (a) though (c) are otherwise as in Fig. 4.

Optical Engineering 026202-6 February 2013/Vol. 52(2)

Niu et al.: Implications and mitigation of model mismatch and covariance contamination. . .

Downloaded From: http://opticalengineering.spiedigitallibrary.org/ on 03/28/2013 Terms of Use: http://spiedl.org/terms



0.2 0.4 0.6 0.8 1
200

400

600

800

1000

1200

1400

1600

1800

2000

SC
R

 

 

Theoretical θ
Experimental θ
Theoretical Optimal

0.2 0.4 0.6 0.8 1
200

400

600

800

1000

1200

1400

1600

1800

2000

SC
R

 

 

Theoretical θ
Experimental θ
Theoretical Optimal

0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

SC
R

 

 
Theoretical θ
Experimental θ
Theoretical Optimal

(b)(a)

(c)

Fig. 6 SCR loss study due to steering vector mismatch alone, with the gas CL set to a ¼ 10 ppm-m. The performance loss is linear with respect to
the Mahalanobis cosine squared in Eq. (18). Abbreviation “θ” implies mismatch in steering vector. (a) Constant mask linear embedding case with
the empirical plot (blue dash line with × marker) overlapping theoretical one (red dash line) perfectly; (b) constant mask nonlinear embedding and;
(c) Gaussian mask nonlinear embedding.
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Fig. 7 (a) Matched image pair embedded plume mask and; (b) matched image embedding mask.
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experiment we want to emphasize is that, because it is con-
structed so that ζ ¼ 0, it corresponds to the only case that a
tractable analytical expression is available for both corrup-
tion and mismatch.

The third set of experiments again explores the variation
of SCR with CL, but this time with a non-zero plume-back-
ground correlation, discussed in Sec. 3.1.4, due to the masks
in Figs. 4(a) and 5(a). When the concentration path-length a
increases, the standard deviation σa also increases, but the
ratio σ2a∕a2 remains constant. The optimal SCR under
ideal conditions Eq. (17) is predicted to increase quadrati-
cally with CL, but when the covariance is corrupted by
the plume signal and plume-background correlation is
present, the increase saturates to an asymptotic value, though
it is still monotonic Eq. (20). The effect is accentuated by the
large value of the Mahalanobis sine term in Eq. (20), which is
close to unity. We will see below that this term is generally
expected to be large. The optimal and saturated behaviors are
demonstrated in Fig. 9, both for the linear embedding (a), as
well as the nonlinear case with constant CL profile (b) and
Gaussian (c). In all cases a close agreement with theory is
seen, with small deviations in (c) due to the steering vector
variation due to Beer’s law. The performance degradation
due the combination of covariance corruption and plume-
background correlation, even with a perfect steering vector
match, is dramatic. The inclusion of even a small amount of
steering vector mismatch causes even further SCR loss dis-
cussed in Sec. 3.1.6. This last case is demonstrated in Fig. 9
with a mismatch value of cos2Σðs; s0Þ ¼ 0.95. For the purpose
of clear illustration, two scales are employed in each subplot
where left y-axis corresponds to optimal performance (red
and blue lines) while right y-axis corresponds to degraded
performance (green, magenta, and cyan lines).

The fourth set of experiments probes the effects of vary-
ing the plume size, using the set of embedding masks from
Figs. 4(b) and 5(b), discussed in Secs. 3.1.4 and 3.1.6. The
gas CL is held constant as 2 ppm-m, so increasing the plume
size results in σa increasing monotonically, while kζk may
either increase or decrease depending on the details of the
background. The theory Eq. (22) for the case of covariance
corruption without steering vector mismatch predicts that

SCR will decrease with increasing σa and increasing kζk,
which is borne out by the results in Fig. 10. A small steering
vector mismatch is also introduced, with cos2Σðs; s0Þ ¼ 0.95.
The difference between the theoretical and empirical plots in
Fig. 10(c) is, as before, due to the Beer’s law, variation along
with the spatial variation of the background pixels under
the plume.

The final set of experiments, also to verify conclusions in
Secs. 3.1.4 and 3.1.6, quantify the effects of varying plume-
background correlation, with the plume spatial variance σa
held constant at σa ¼ 0.9976 ppm-m during the rotation of
constant mask and σa ¼ 1.2625 ppm-m during the rotation
of Gaussian mask. These conditions are achieved by the use
of the masks in Figs. 4(c) and 5(c). Because of the structure
of background scene used, the plume-background correla-
tion kζk is large when a horizontal rectangular mask is
employed. This correlation vector decreases in magnitude
when the mask is oriented vertically. During the rotation
of the mask, the number of pixels in the mask remains
the same, so and σa remains constant. However, as shown
in Fig. 11, ζTΣ−1

v ζ decreases and the performance goes
up. The Mahalanobis trigonometric sin 2

Σv
ðs0; ζÞ almost

equal to 1 during all experiments due to the large dimension-
ality and its contribution to the overall SCR is minor. As with
the previous experiments, the case of steering vector mis-
match is included, with a mismatch of cos2Σðs; s0Þ ¼ 0.95.

4 Robust Matched Filter
In this section, we will describe the design of a robust
matched filter employing the diagonal loading technique12

to mitigate the performance loss seen in the previous section
and verify the resulting performance improvement through
experiments.

4.1 Robust Matched Filter Derivation

We recall our signal model with a single gas, first defined in
Eq. (10):

x ¼ as0 þ v.
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Fig. 8 SCR loss study when the plume background correlation vector ζ equals zero. Left y -axis corresponds to optimal cases when SCR is
extremely large and right y -axis is metric for lower SCR when mismatch and contamination happen. Abbreviation “θ” implies mismatch in steering
vector while “Cov” means the detector suffers from covariance corruption. (a) Linear embedding and (b) nonlinear embedding.
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A linear filter detector is defined as

y ¼ hTx. (26)

The optimal matched filter is defined to maximize the
SCR, defined in Eq. (12), which can be rewritten as

SCR ¼ SignalPower

ClutterPower
¼ a2ðhTs0Þ2

hTΣvh
. (27)

Since the above definition is a ratio and its value is invari-
ant to scaling of h, another constraint is applied to the norm
of h in order to guarantee the uniqueness of optimal h,

hTs0 ¼ 1: (28)

Hence the maximization of the ratio SCR is equivalent to
minimization of its denominator hTΣvh with constraint in
Eq. (28), and the resulting optimal matched filter is

hopt ¼
Σ−1
v s0

sT0Σ−1
v s0

. (29)

As explained in the previous section, in real world appli-
cations, our knowledge of the steering vector is always

imperfect which results in deviation between the supposed
steering vector s and the true one s0. Additionally, the esti-
mate of background covariance Σ converges to Σv theoreti-
cally only with the availability of an infinite number of
plume-free background samples. In practice, only a limited
number of samples are available, with many of them
corrupted because of the presence of the plume.

In order to overcome the sensitivity to steering vector mis-
match and covariance contamination of the matched filter,
the development of a robust algorithm is highly desirable.
This problem has been traditionally dealt with using a diago-
nal loading approach or an eigenspace-based approach.12

Furthermore, the RCB15 has been formulated as a diagonal
loading problem.

Suppose that we have the knowledge about the steering vec-
tor s that it belongs to an uncertainty ellipsoid centered at s0

ðs − s0ÞTC−1ðs − s0Þ ≤ 1; (30)

whereC is a positive definite matrix. Since it is difficult to reli-
ably estimate the full matrix C in most cases, we usually set
C ¼ εI, so that Eq. (30) becomes

ks − s0k2 ≤ ε; (31)
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Fig. 9 SCR loss due to covariance contamination and plume-background correlation, with and without steering vector mismatch, as a function
of gas concentration path-length. Abbreviation “θ” implies mismatch in steering vector while “Cov” means the detector suffers from covariance
corruption. (a) Constant mask linear embedding; (b) constant mask nonlinear embedding and; (c) Gaussian mask nonlinear embedding.
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where ε is a positive number. It has been shown that the robust
matched filter (RMF) can be obtained as the solution to the fol-
lowing optimization problem15

min
s

sTΣ−1s subject to ks − s0k2 ≤ ε: (32)

It turns out that the solution of Eq. (32) occurs on the
boundary of the constraint set; therefore, we can reformulate
Eq. (32) as a quadratic optimization problem with a quadratic
equality constraint

min
s

sTΣ−1s subject to ks − s0k2 ¼ ε: (33)

This problem can be efficiently solved using the method
of Lagrange multipliers. The solution involves an estimated
steering vector

ŝ ¼ βðΣ−1 þ βIÞ−1s0; (34)

which is subsequently used to determine the RMF by

hβ ¼
Σ−1ŝ
ŝTΣ−1ŝ

: (35)

The Lagrange multiplier β ≥ 0 can be obtained by solving
the nonlinear equation

sT0 ðI þ βΣÞ−2s0 ¼
XL
k¼1

js̃kj2
ð1þ βλkÞ2

¼ ε; (36)

where λk and ~sk are obtained from the eigen-decomposition

Σ ¼ QΛQT ¼
XL
k¼1

λkqkqTk (37)

and the orthogonal transformation

s̃ ¼ QTs. (38)

The solution of Eq. (36) can be easily found using a non-
linear optimization algorithm, for example, Newton’s
method.
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Fig. 10 SCR loss due to covariance contamination and plume-background correlation, with and without steering vector mismatch, as a function of
plume size. Right y -axis corresponds to the plume-background correlation norm. Abbreviation “θ” implies mismatch in steering vector while “Cov”
means the detector suffers from covariance corruption. (a) constant mask linear embedding; (b) Constant mask nonlinear embedding and;
(c) Gaussian mask nonlinear embedding.
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Finally, the robust matched filter can be expressed in
diagonal loading form as follows

hβ ¼
ðΣþ β−1IÞ−1s0

sT0 ðΣþ β−1IÞ−1ΣðΣþ β−1IÞ−1s0
; (39)

where β−1 is the loading factor computed from Eq. (36).

4.2 Simulation Experiments Setup

A variety of experiments were designed to examine the
diagonal loading effects on different performance loss fac-
tors including steering vector mismatch, contamination
level of covariance matrix and fill factor of the plume com-
pared to the whole image. Figure 12(a) shows a Gaussian
profile plume mask employed for testing the various detec-
tors. RMF of various loading levels were applied to this
image from whose outputs the detection performance is
evaluated and compared. There are two classes of perfor-
mance evaluation metrics dominant in the literature, those
derived from SCR and those from the receiver operation
characteristic (ROC). In our work, we will use a related

metric, area under curve (AUC). The reason will be
explained in Sec. 4.3.

The steering vector and background covariance were
estimated as follows. Figure 13 exhibits 10 steering vector
candidates, ½s1; : : : ; s10�, we used throughout the experi-
ments. These signatures were computed by embedding
the center pixel of the testing plume by different amounts
of gas and dividing the radiance difference by the concen-
tration pathlength (CL). The disagreement level in
Euclidean and Mahalanobis degrees were computed with
reference to the first signature s1. Strictly speaking, the
“in-scene” signature is dependent on the individual pixel
off-plume radiance, however, since the pixel radiance
covered by the testing mask is quite homogeneous, we
can expect the mismatch of signature to be dominated by
the concentration difference. The estimation of the covari-
ance matrix requires a separate embedding by the corrup-
tion masks given in Figs. 12(b), 14, and 15.

4.3 Performance Evaluation Metric

The ROC is the preferred metric for evaluating detectors, as it
directly relates the probability of detection and false alarm
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Fig. 11 SCR loss due to covariance contamination and plume-background correlation, with and without steering vector mismatch, as a function of
correlation magnitude kζk. Right y -axis corresponds to the value sin 2

Σðζ; s0Þ. Abbreviation “θ” implies mismatch in steering vector while “Cov”
means the detector suffers from covariance corruption. (a) Constant mask linear embedding; (b) constant mask nonlinear embedding and;
(c) Gaussian mask nonlinear embedding.
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rate. However, the SCR is acceptable, as long as it is con-
sistent with the ROC, and can be easier to work with due
to its mathematical tractability and availability of perfor-
mance degradation expressions. Figure 16 compares the
corresponding AUC scores and SCR scores shown in
Fig. 9(a). From the plots, we can draw the conclusion
that, although there is no one-to-one relationship between
the two scores, in general, higher SCR values correspond

to higher AUC values. Part of the difference in the shapes
of the SCR and AUC plots is due to the AUC saturating
at 1 while the SCR does not saturate. This conclusion val-
idates our use of the SCR metric in Sec. 3.

While conducting diagonal loading experiments, we
observed scenarios when higher SCR values do not guaran-
tee better ROC curves. Such scenarios can be clearly illus-
trated by the pair of detector output score histograms due to

testing plume: mean(CL) = 50, std(CL) = 36
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Fig. 12 (a) Mask employed to generate the plume used to test the proposed detectors and (b) a constant size plume mask used for computing
contaminated covariance matrix.
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Fig. 14 Set of masks with increasing size, with average gas concentration at each pixel remaining constant.
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different diagonal loading levels in Fig. 17. The blue histo-
gram corresponds to background pixel scores and the red
histogram to plume pixels. AUC and SCR metrics are dis-
played for comparison. It can be clearly seen that Fig. 17(a)
exhibits higher AUC and lower SCR than Fig. 17(b). The
explanation for this phenomenon is that the absolute value
of target score is not meaningful as long as it exceeds the
predefined detector threshold in ROC based metrics.
However, large target scores will contribute even more

significantly to, or sometimes dominate SCR values because
of the quadratic relationship as defined in Eq. (27).
Therefore, we will use the AUC metric in this section.

4.4 Performance Improvement

In order to compensate for the various sources of perfor-
mance loss, we investigate the performance improvement
potential resulting from diagonal loading technique. In the
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Fig. 15 Set of masks with increasing size, with the amount of gas within each the mask held constant.
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Fig. 16 AUC plots (green curves) for constant mask linear embedding in Fig. 9(a). Corresponding SCR plots are in the same color as in Fig. 9(a).
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Fig. 17 Detector output score histograms of background pixels (blue) and plume pixels (red) with two diagonal loading levels (a) and (b).
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first set of experiments, a wide range of diagonal loading
levels from 0 to 104 is examined to see how the detection
performance varies. We choose steering vector s1 and a con-
stant corruption mask [Fig. 12(b)] with CL ¼ 50 ppm-m.
The detector output image of each loading level is shown
in Fig. 18. In the first row where the loading level is zero
or very small, center pixels within the plume are missed
by the detector because the supposed steering vector s1 is
far away from the actual signature of the thick plume
area. By inspecting the last row where loading factors are
highest, the structure of the background is visible, which
means the suppression on these pixels is not sufficient.
The optimal loading level is on the order of 10−5, and the
corresponding ROC curves and AUCs due to different load-
ing levels can be seen in Fig. 19. From Fig. 19(b), we can
also find that a wide range of loading levels can improve the
detection performance compared with the matched filter.

We now expand our previous experiment to four sets of
experiments by embedding the image using the first steering
vector s1 in Fig. 13 and selecting other steering vectors
within the generated library, ½s2; : : : ; s10�, with different

degrees of mismatch and covariance of different contamina-
tion levels as parameters in the filter design. In each case, the
optimal performance improvement is determined by select-
ing the proper diagonal loading level as a function of the
different factors.

The first set of experiments involves investigation of the
dependence of RMF robustness on the steering vector. We
still choose the constant corruption mask and vary the steer-
ing vector index from 1 to 10. Figure 20(a) shows that RMF
(blue line), is universally robust for appropriate selection of
loading level [Fig. 20(b)] while matched filter performance
(red line) degrades severely when steering vector index is
greater than 7. The reason for such degradation is that
most contaminated pixels within the Gaussian profile testing
plume correspond to actual steering vector index 3 to 7. The
curvature of loading levels is opposite to the one of matched
filer performance (red line) because severe degradation
requires heavier loading.

The second set of experiments illustrates loading effects
for various degrees of covariance contamination. We choose
the steering vector index number 1 and vary the average CL
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Fig. 18 Detector output image corresponding to a wide range of diagonal loading levels from 0 to 104.
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Fig. 19 (a) ROC curves with respect to different loading levelsand (b) AUCs corresponding to different loading levels.
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of the constant corruption mask from 10 to 100 ppm-m. As
seen from Fig. 21(a), the performance of RMF remains supe-
rior despite heavier plume contamination. The performance
drop of matched filter (red line) around CL ¼ 20 ppm-m is
because most pixels under the testing plume are of similar
concentration, that is 20 ppm-m. The monotonic increase
of the loading level in Fig. 21(b) is a direct result of increas-
ing plume thickness; that is, the sample covariance is less
trustworthy and the weight of identity matrix is consequently
increasing.

The third and fourth sets of experiments probe the effects
of fill factor by varying the corruption plume size, using the

set of embedding masks from Figs. 14 and 15. The gas CL is
held constant at 50 ppm-m in Fig. 14, so increasing the
plume size results in a monotone increase in the covariance
corruption. By contrast, Fig. 15 keeps the amount of gas
unchanged during the increase of corruption mask size, so
the average CL is monotonically decreasing. We choose
steering vector index 5 and 10 in these two sets of experi-
ments, respectively. Figure 22(a) illustrates that diagonal
loading prevents the performance degradation, and when a
majority of pixels are corrupted the diagonal loading
term will dominate the sample covariance [Fig. 22(b)].
Figure 23(a) shows that the detection performance is well
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Fig. 20 (a) AUCs for different selections of steering vectors from index 1 to 10; (b) the appropriate diagonal loading levels resulting in optimal
detection performance.
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Fig. 21 (a) AUC improvements of diagonal loading with respect to different thickness of corruption plume and (b) corresponding optimal diagonal
loading levels.
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Fig. 22 (a) Performance improvements on AUC when the fill factor is increasing and average CL remains constant and (b) corresponding optimal
loading levels.
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preserved by properly selecting loading level (blue line)
while the matched filter performance (red line) decreases
monotonically as the fill factor increases.

We have illustrated the potential detection performance
improvement by diagonal loading. However, the question
of choosing the correct loading factor remains to be
addressed. A full analysis of this latter problem is out of
the scope of this paper. However, we will now demonstrate
a heuristic technique for choosing the loading factor that per-
forms well empirically. These results suggest that diagonal
loading may be used profitably even with approximate sol-
utions to the loading factor optimization problem.

There are three major causes of detection degradation for
which we need to compensate, including signature mis-
match, contaminated gas strength, and contaminated gas
fill factor. In Figs. 20–23, experiments have shown that
the stronger (heavier) signature mismatch (covariance cor-
ruption) is, the larger a diagonal loading level is required.
Although a theoretical relationship between the optimal
loading level and uncertainties in both steering vector and
estimated covariance is not available, we can still solve
for a loading level that works well in practice from the non-
linear Eq. (36). The effectiveness of this method relies on
our previous observation in Fig. 24(b), that a wide selec-
tion of diagonal loading levels can improve the detection

performance greatly. In other words, our robust detector
also exhibits its robustness in diagonal loading level β−1.

In Fig. 24, we solve for the “optimal” diagonal loading
levels according to the relationship of Eq. (36) for different
degrees of steering vector disagreement. As in the other
experiments, the true steering vector is chosen as the
first one s1 of our steering vector bank in Fig. 13, and
other steering vectors within the bank are consecutively
selected to incorporate larger uncertainty in steering vec-
tor. Instead of using the unobservable true covariance Σv,
we feed Eq. (38) with a contaminated covariance Σ
obtained in the first set of our experiments. The resulting
loading levels are plotted in Fig. 24(b). As shown, the
value range of β−1 is from 10−5 to 3 × 10−2. If we choose
a diagonal loading level artificially, say 5 × 10−4, which is
near to the median of the β−1 value range, the resulting
detector can be applied to all the four experiments, with
results shown in Fig. 25. The green line with asterisk
marker represents the performance of this detector with
β−1 ¼ 5 × 10−4. Its improvement in detection performance
is very close to the one from the optimal loading level
indicated by the blue line square marker and can be a dra-
matic improvement over the matched filter performance
represented by the red line cross marker. If a different
β−1 is chosen, a similar result is shown in Fig. 26 for
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Fig. 23 (a) Performance improvements on AUC when the fill factor is increasing and total amount of gas remains constant and (b) corresponding
optimal loading levels.
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Fig. 24 Estimated diagonal loading levels from Eq. (36) for different amount of steering vector disagreement introduced in Fig. 13 using (a) uncon-
taminated covariance Σv (for comparison purpose only) and (b) signal contaminated covariance Σ (which is used in subsequent experiments).
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Fig. 25 Performance comparison when a constant diagonal loading level is β−1 ¼ 5 × 10−4 is used for all four experiments: (a) experiment I;
(b) experiment II; (c) experiment III; and (d) experiment IV.
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Fig. 26 Performance comparison when a constant diagonal loading level is β−1 ¼ 1 × 10−4 is used for all four experiments: (a) experiment I;
(b) experiment II; (c) experiment III; and (d) experiment IV.
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β−1 ¼ 1 × 10−4 and in Fig. 27 for β−1 ¼ 1 × 10−3. As a
consequence of this observation, it is not necessary to
solve for the exact value of the optimal loading factor.
An empirical loading factor would be enough to improve
the detection performance to a similar level and can be
easily calculated by numerically solving a nonlinear
Eq. (36), given that an estimate of uncertainty in steering
vector ϵ is available.

5 Conclusions
Vapor phase chemical hyperspectral detection algorithms
can be severely degraded by a mismatch between the
observed chemical spectral signatures and those from a
library, and contamination of estimates of the background
statistics by the gaseous plume. Both of these effects occur
routinely in practice. In this paper, a radiative transfer
model was used to simulate the presence of a chemical
plume over a measured background scene. The perfor-
mance loss of the AMF due to various factors was studied,
including steering vector mismatch, covariance matrix con-
tamination, and plume-background correlation, both indi-
vidually and in combination. In order to mitigate this
degradation, a robust matched filter employing diagonal
loading was applied. The resulting detection improvements
show that a wide range of diagonal loading levels can be
effective in reversing the performance losses due to the
factors considered.
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