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Abstract
Sulforhodamine B (SRB), a common fluorescent dye, is often considered to be a purely
hydrophilic molecule, having no impact on bulk or interfacial properties of aqueous solutions.
This assumption is due to the high water solubility of SRB relative to most fluorescent probes.
However, in the present study, we demonstrate that SRB is in fact an amphiphile, with the ability
to adsorb at an air/water interface and to incorporate into sodium dodecyl sulfate (SDS) micelles.
In fact, SRB reduces the surface tension of water by up to 23 mN/m, and the addition of SRB to an
aqueous SDS solution induces a significant decrease in the cmc of SDS. Molecular dynamics
simulations were conducted to gain a deeper understanding of these findings. The simulations
revealed that SRB has defined polar “head” and non-polar “tail” regions when adsorbed at the air/
water interface as a monomer. In contrast, when incorporated into SDS micelles, only the
sulfonate groups were found to be highly hydrated, suggesting that the majority of the SRB
molecule penetrates into the micelle. To illustrate the implications of the amphiphilic nature of
SRB, an interesting case study involving the effect of SRB on ultrasound-mediated transdermal
drug delivery is presented.
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Introduction
Rhodamine dyes are a class of xanthene-derived molecules that are commonly used as laser
dyes and fluorescent probes. Although most rhodamine dyes are cationic or have a net
neutral charge (zwitterionic), there are forms of these dyes that have been imparted added
water solubility, and a net negative charge, by aromatic sulfonation of the phenyl pendant
group. One such molecule, sulforhodamine B (SRB, see Figure 1), has been used
extensively during the last few decades as: (i) a fluid-phase tracer,1-3 (ii) a principal
component in an assay for cytotoxocity,4,5 and (iii) a model hydrophilic probe,6-19 among
others.
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In spite of the widespread use of SRB, investigations into its chemical nature, especially
with respect to its surface activity and interactions with surfactants, have been limited in
scope in comparison to research done on other dyes, including several other rhodamines. For
example, dyes such as rhodamine B20-24 and rhodamine 6G22,25-27 have been studied
extensively with regards to: (i) their adsorption at oil/water or air/water interfaces, (ii) their
aggregation in aqueous solution as either dimers or higher-order aggregates, and (iii) their
interactions with surfactant monomers and micelles. Many other fluorescent dyes, such as
rose bengal28,29 and various porphyrins,30,31 have also been studied with regards to their
interactions with surfactants and their solubilization within, or association with, micelles.
This is because dye-surfactant interactions can lead to the break-up of dye dimers or to the
solubilization of dyes in the palisade layer or non-polar core of micelles, both of which can
have dramatic consequences on the dye absorption and fluorescence wavelength and
intensity.32,33 For example, an amplification of fluorescence has even been observed for
certain fluorophores when they associate with surfactants.34-36

Like many dyes, SRB is known to dimerize in solution,20 and belongs to a family of dyes
that have been shown to include amphiphiles (such as the aforementioned rhodamine B24

and rhodamine 6G25). However, in contrast to other rhodamine dyes, SRB adsorption has
only been studied with respect to charged surfaces (such as cationic octadecylamine
Langmuir-Blodgett films and anionic silica glass37-39), with minimal investigation into its
activity at polar/non-polar interfaces or its potential interaction with surfactants in aqueous
solutions. The likely reason for this lack of investigation is due to the relatively high water
solubility of SRB compared to other rhodamine dyes, which has led some to designate SRB
as a “model hydrophilic” fluorescent probe.6-19 However, as will be demonstrated
experimentally in this paper, SRB does not behave as a simple salt, and has the ability to: (i)
adsorb at an air-water interface, causing a decrease in surface tension, and (ii) interact
strongly with surfactants in aqueous media, inducing significant changes in the driving force
for micellization, as evidenced by a significant decrease in the critical micelle concentration
(cmc) of sodium dodecyl sulfate (SDS) upon mixing with SRB.

In the present study, the amphiphilic nature of SRB is investigated both experimentally and
using molecular dynamics simulations. Experimentally, surface tension measurements are
used to study SRB adsorption at air/water interfaces, including its ability to affect the cmc of
the commonly-used anionic surfactant, SDS. The extent of SRB incorporation into SDS
micelles is also investigated experimentally. To elucidate the experimental findings, bulk
and interfacial molecular dynamics (MD) simulations of SRB in aqueous solution were
conducted, both in the absence and in the presence of SDS. Such simulations provide a
useful means for elucidating dye-surfactant interactions, and may be applied more broadly to
other dyes, thus minimizing the need for rigorous spectroscopic experimental measurements.

Finally, to illustrate the implications of the amphiphilic nature of SRB, an interesting case
study on the effect of SRB on transdermal drug delivery using low-frequency ultrasound is
presented. Amphiphilic molecules are known to act synergistically with low-frequency
ultrasound in inducing skin permeability enhancement, which motivated the case study to
further test the amphiphilicity of SRB.40,41 The results obtained with SRB are compared to
those obtained with the non-amphiphilic dye allura red (red food coloring).

Experimental Section
Materials

Sulforhodamine B (SRB), sodium dodecyl sulfate (SDS), and phosphate buffered saline
(PBS) were obtained from Sigma-Aldrich Company (St. Louis, MO). Allura red was
obtained from TCI America (Portland, OR). All chemicals were used as received. Milli-Q
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(Millipore Corporation, Billerica, MA) water was used for the preparation of all aqueous
solutions.

Surface Tension Measurements
The surface tensions of aqueous solutions of SDS, SRB, and SDS in 9 mM SRB were
measured as a function of concentration using a Krüss K11 tensiometer (Hamburg,
Germany). The plate method was utilized with a titanium Wilhelmy plate (Krüss, wetting
length of 42 mm). For each measurement, twenty surface tension readings were obtained,
three seconds apart, and the final ten readings were averaged to yield the surface tension for
that measurement (with the first ten measurements serving as an equilibration period).
Surface tension measurements of each solution considered were repeated until consistent
values were obtained for three consecutive measurements (<0.1 mN/m variation at 25±1°C).
These three measurements were then averaged to yield the surface tension of the solution
reported here.

Determination of the Amount of SRB Unbound to SDS Micelles
In order to determine the amount of SRB incorporated into SDS micelles, aqueous solutions
of 9 mM SRB were prepared, with varying concentrations of SDS (0 – 64 mM). 5 mL of
each solution was then added to 10,000 molecular weight (MW) filter centrifugation tubes
(Sartorius Stedim Biotech, Goettingen, Germany) and subsequently centrifuged at 900 g for
2 minutes. Since the aggregation number of an SDS micelle is ∼50 and SDS has a MW of
288.4 g/mol,42-44 the MW of an SDS micelle is greater than the MW threshold for the
selected filter membrane. Assuming that any formed SRB/SDS micelles have an aggregation
number comparable to, or larger than, that of an SDS micelle, SRB is expected to be present
in the filtrate in only its unbound form (i.e., in monomeric or dimeric form). Note that the
rotational speed and duration of centrifugation were chosen such that less than 10% of the
solution would pass through the filter (0.2 – 0.4 mL). This limits the extent of micelle
disassociation in the retentate, which is similar to previously reported protocols used to
separate monomers from self-assembled aggregates.45 20 μL of the permeate was then
diluted to 20 mL (1000-fold dilution), to ensure that the SRB molecules being assayed were
in monomeric form. The concentration of SRB was then quantified using a UV/VIS
spectrophotometer (DU800, Beckman Coulter Inc., Brea, CA) at a wavelength of 560 nm
(the observed peak absorbance of SRB). For each SDS concentration considered, the amount
of unbound SRB was then reported as the ratio of the concentration of SRB in the filtrate
divided by the initial amount of SRB in solution (9 mM).

Testing the Ability of SRB to Enhance Skin Permeability
Previously published protocols46,47 were utilized for the storage and preparation of skin
samples. Skin samples utilized in the study were harvested from the back and flank of
Yorkshire pigs in accordance with the MIT Committee on Animal Care. Skin electrical
resistivity, R, is known to scale directly with skin permeability, and provides an accurate,
instantaneous measure of the structural state of the skin.48 Previously published
methods46-49 were followed to measure R of each skin sample. Pre-treatment of skin
samples by low-frequency ultrasound was also carried out according to previously published
methods,46,47 at an intensity of 7.5 W/cm2, duty cycle of 50% (5 s on, 5 s off), and tip
displacement of 3 mm for 10 minutes of ON time (replacing the coupling medium every two
minutes to minimize thermal effects). Interested readers should refer to Refs. 46-49 for
complete experimental details.
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Molecular Dynamics Simulations
To simulate the adsorption of a single SRB molecule at the air/water interface, an SRB
molecule was initially positioned at the center of a water box. The size of the water box was
chosen to be sufficiently large (4 × 4 × 10 nm3) such that the concentration of SRB in water
(10.4 mM) corresponds to less than one-half of its experimental solubility. The water box
was sandwiched between two large layers of vacuum (4 × 4 × 5 nm3 each) in order to mimic
the air/water interfaces. Note that in all the simulations reported here, sodium counterions
were added by replacing the corresponding number of water molecules to maintain
electroneutrality of the simulated systems. As the simulation proceeded, the SRB molecule
gradually diffused and eventually adsorbed at the air/water interface after 25 ns. The
simulation was run for an additional 15 ns for data collection. For simulations testing the
adsorption of SRB dimers at the air/water interface, SRB molecules were initially placed
randomly at the interface. Simulations were then run in an identical fashion to the single
SRB monomer case described above. After equilibration, both SRB monomers and dimers
were observed in the bulk solution and adsorbed at the interface. To determine the dimer
hydration data, the longest adsorbed stable SRB dimer was selected and tracked for 4 ns for
the data analysis.

Following the procedure introduced by Stephenson et al., the relative hydration of each
atomic group in SRB was defined as the ratio between the number of water contacts around
each atomic group computed in the SRB adsorption simulation, relative to the number of
water contacts computed in the SRB monomer simulation.50 Note that the SRB monomer
simulation was carried out by solvating and equilibrating a single SRB molecule in a water
box for 5 ns.

To simulate the aggregation of SRB molecules in the bulk water phase, the SRB molecules
were positioned randomly in the simulation box, followed by solvating them with
randomized water molecules. Five different SRB concentrations were considered,
corresponding to 6 to 49 SRB molecules in the simulation box. Each simulation was
equilibrated for 30 ns with the last 10 ns used for data analysis. During the bulk simulations,
the formation of SRB dimers was observed and dominated the population of SRB aggregates
(with few monomers and trimers observed). In order to better understand the orientation
between SRB molecules that form dimers, the angular distribution function of the angle
between the pendant groups of SRB molecules in the dimeric state were computed for the
lowest SRB concentration case.

To simulate the interactions between the SRB and SDS molecules, 10 SRB and 40 SDS
molecules were positioned randomly in the simulation box, followed by solvating them with
randomized water molecules. Note that the total number of SRB and SDS molecules was
selected to be similar to the aggregation number of an SDS micelle (∼50). A second
simulation was also conducted, keeping the concentration of SDS and SRB constant, but
with 30 SRB and 120 SDS molecules in the simulation box. The larger simulation was
conducted to check our hydration calculations, because it is known that the amount of free
monomer present can effect the micelle aggregation number due to the long times scales
associated with micellar fission.51 The simulations were equilibrated for 60 ns, with the last
30 ns used for data analysis. Two SRB-SDS micelles were formed during the 50 molecule
simulation and eventually stabilized, with ∼6 micelles forming in the larger simulation.
Relative hydration calculations for both simulations were carried out and the values obtained
were found to be nearly identical. The relative hydration diagram reported in the text
corresponds to that of the larger micelle in the 50 molecule simulation. Note that the relative
hydrations of the SRB and SDS molecules in this case were defined as the number of water
contacts around each atomic group in the micellar state relative to the hydration of that
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atomic group in a bulk aqueous monomer simulation.50 The SDS monomer simulation was
conducted as discussed earlier for the SRB case.

Water molecules were modeled using the standard SPC/E model,52 with bond lengths
constrained using the SETTLE algorithm.53 SRB and SDS molecules were modeled using
the OPLS-AA force field.54 Previously published force-field parameters were utilized for
SDS and rhodamine dyes.55,56 The +1 charge on the xanthene structure was delocalized
symmetrically over the xanthene rings, as in previously published studies55 (note that the
depiction of a localized +1 charge in Figure 1 is for illustrative purposes only). Bond lengths
in the SRB and SDS molecules were constrained using the parallel version of the LINCS
algorithm.57,58 van der Waals (vdW) attractions and hard-core steric repulsions were treated
with a cutoff distance of 0.9 nm, which falls within the typical range of cutoff values used in
other studies.59,60 The vdW attractions and the hard-core steric repulsions between different
atoms were calculated from the Lennard-Jones potential using the standard geometric
averaging rule which is implemented in the OPLS-AA force field.54 Long-range
electrostatic interactions were treated using the particle mesh Ewald (PME) summation
method.61,62 The equations of motion were integrated with a time step of 2 fs using the
Verlet (Leap-Frog) algorithm.63,64 SRB adsorption at the air/water interface was simulated
under the NVT ensemble (constant number of atoms, constant volume, and constant
temperature of 298.15 K), while all the other simulations were conducted under the NPT
ensemble (constant pressure of 1 bar instead of constant volume) in order to best mimic the
experimental conditions. The velocity-rescaled Berendsen thermostat was implemented to
maintain a constant temperature in the simulated system.65 The pressure was coupled to an
isotropic Berendsen barostat.66 Periodic boundary conditions were applied in all three
directions. The trajectories corresponding to all the atoms in the system were saved every
10,000 steps (20 ps) to satisfy the ergodicity criterion for data analysis.67 All the simulations
presented here were carried out using the GROMACS 4.0 software package.68

Results and Discussion
Adsorption of SRB at the Air/Water Interface

The surface tension measurements revealed that SRB adsorbs at the air/water interface, as
reflected in the observed concentration-dependent reduction in the surface tension of
aqueous SRB solutions (see Figure 2, open circles). This behavior is in stark contrast with
the effect of allura red (red food coloring), where no decrease in surface tension is observed
as a function of concentration with this non-amphiphilic dye (see Figure 2, black diamonds).
At the highest SRB concentration considered (22 mM), the surface tension reduction was
found to be ∼23 mN/m, which is quite significant considering that SDS was found to
decrease the surface tension of water by ∼33 mN/m above its cmc. The surface excess of
SRB was calculated from the Gibbs Adsorption Equation,69 assuming complete dissociation
of sodium ions from the sulfonate groups, in the linear region of the data (2-22 mM) and
found to be 1.18·10-6 mol/m2, which corresponds to 140 Å2/molecule. As a point of
comparison, the surface excess of SDS was found to be 3.56·10-6 mol/m2, in the linear
region below the cmc (3-7 mM, Figure 2, open squares), which corresponds to 46.6 Å2/
molecule, a value that is consistent with previously reported values (for example, 46 Å2/
molecule at 4 mM70). The higher surface excess of SDS, relative to that of SRB, reflects the
fact that more SDS molecules can adsorb at the interface, per unit area, than SRB molecules.
In view of the chemical structures of SRB and SDS shown in Figure 1, this result is
expected because SRB is generally bulkier than SDS.

MD simulations of SRB molecules near the air/water interface were carried out to elucidate
the adsorption behavior of SRB. The final state of the simulation, with a single SRB
molecule adsorbed at a clean air/water interface, is shown in Figure 3B. Figure 3A shows
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the relative hydration of different atomic groups in the SRB molecule when adsorbed at the
air/water interface, relative to the fully-hydrated state in bulk aqueous solution (note that the
atomic groups in Figure 3A correspond to the SRB structure shown in Figure 1). In addition,
note that in the simulations, the pendant group and the three-ringed xanthene structure
actually lie out of plane from each other, contrary to the two-dimensional representation
used in the figures for clarity. As expected, the simulation revealed that the pendant group of
SRB, which contains the two charged sulfonate atomic groups, resides within the bulk
aqueous phase. Conversely, a clear division is observed in the xanthene structure, with the
carbon groups located closest to the pendant group remaining significantly hydrated (as
reflected in the relative hydration of these groups being greater than 0.6), with the rest of the
SRB molecule in various states of dehydration (relative hydrations less than 0.6), indicating
that these groups are located, on average, in the air phase. It has been previously shown, in
similar investigations regarding the relative hydration of amphiphilic molecules in micelles,
that relative hydration values greater than 0.6 correspond to the hydrophilic domain of the
surfactant molecule (the “head”), while hydration values below 0.6 correspond to the
hydrophobic region of the surfactant molecule (the “tail”).71 Therefore, extending this
criterion to a molecule adsorbed at an interface, a clear division between head and tail
regions of SRB can be made by laterally bisecting the xanthene structure, with the section of
SRB containing the pendant group comprising the head of the surfactant. The combined
experimental and simulation data conclusively demonstrates that SRB is indeed an
amphiphile and preferentially adsorbs at the air/water interface.

Note that no cmc is observed for SRB in aqueous solution (the open circles in Figure 2),
because a solubility limit is reached before reaching a plateau in the surface tension versus
concentration curve. This should be contrasted with the behavior of SDS in aqueous
solution, which exhibits a clear plateau in surface tension at its cmc (7.67 mM, see the open
squares in Figure 2). MD simulations were carried out at various SRB concentrations in bulk
aqueous solution to elucidate this finding. The simulations revealed primarily dimer
formation at all SRB concentrations tested, with very few trimers, and no higher-order SRB
aggregates observed, thus confirming the inability of SRB to form conventional micelles by
itself. The ability of SRB to form dimers in aqueous solution has previously been shown
experimentally.20 At the higher SRB concentrations simulated, most of the SRB molecules
formed dimers, with few SRB monomers observed. The dimers (see Figure 4A) were found
to lie approximately parallel to each other in the plane of the xanthene rings, where the most
likely angle between the plane of the pendant groups of each SRB molecule was found to be
75° (for a definition of α, see Figure 4A). The angular distribution function of the angle
between the pendant groups, α, of the two SRB molecules forming the dimer is shown in
Figure 4B.

In MD simulations carried out at higher SRB surface concentrations, dimers were observed
to form at the air/water interface, as shown in Figure 5B, along with adsorbed SRB
monomers. SRB molecules were found to interchange between monomeric and dimeric
states in the time scales of the simulation, although some stable adsorbed dimers were
observed to exist for large durations of the simulation (> 4 ns). The relative hydration of
SRB in a stable adsorbed dimer (see Figure 5A) was distinctly different than that in the
adsorbed monomer state (see Figure 3A). Specifically, it was observed that one of the SRB
molecules in the adsorbed dimer was oriented approximately parallel to the air/water
interface (see Figure 5B), as in the case of an adsorbed monomer, while the other molecule
was offset by approximately 75°, as expected from the angular distribution function in
Figure 4B. However, due to the fact that the offset SRB molecule in the dimer extends
upward into the air phase, the SRB molecule parallel to the surface of the air/water interface
was forced slightly deeper into the water phase than in the case of an adsorbed SRB
monomer. When averaged over both SRB molecules in the dimer (each SRB molecule may
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alternatively be found parallel to the air/water interface during the simulation, as the dimer
rotates), greater hydration of the SRB molecule was observed in the adsorbed dimer state
than in the adsorbed monomer state, which is clearly seen by comparing Figure 5A and
Figure 3A. In spite of the difference in hydration states, the same qualitative relative
hydration profile trends are seen between adsorbed SRB monomers and dimers, with much
greater hydration of the sulfonate-containing pendant group and decreased hydration in
groups further away from the pendant group. However, because the adsorbed SRB monomer
can extend further into the air phase, compared to the average configuration of an SRB
molecule adsorbed at the interface as a dimer, there is greater dehydration of the groups
furthest from the pendant group for the monomer case relative to the dimer case.

Interaction of SRB with SDS in Aqueous Solution
The absorption and emission of fluorescent dyes can be strongly affected by their
interactions with surfactants. Figure 6A clearly shows how the visible color and opacity of a
9 mM SRB aqueous solution changes when the concentration of SDS is varied between 0 –
64 mM. Furthermore, the addition of SRB to aqueous solutions containing SDS was found
to decrease the cmc of SDS from a value of 7.67 mM (without SRB), to a value of 2.00 mM
(with 9 mM SRB, see Figure 2). As a point of comparison, the cmc of SDS in allura red
(which has been shown to be non-amphiphilic, see black diamonds in Figure 2), was tested
and found to remain equal to the cmc of SDS (cmc = 7.62 mM) at low allura red
concentrations (0.5 mM). Note that at higher concentrations of allura red, or any salt, there
will be a decrease in the cmc due to electrostatic screening and counter-ion binding effects.
At 9 mM allura red, the cmc of SDS was found to be 4.50 mM, which is still higher than that
found for SDS in 9 mM SRB, despite allura red being a 1:2 electrolyte (2 additional sodium
ions per mole of allura red) and SRB being a 1:1 electrolyte (1 additional sodium ion per
mole of SRB). Clearly, this shows that the inclusion of the amphiphilic SRB increases the
thermodynamic driving force for micellization compared to the non-amphiphilic allura red,
as ionic effects alone cannot explain the observed decrease in the cmc. In addition, Figure
6B shows that SRB is incorporated within SDS micelles, as reflected by a decrease in the
fraction of unbound SRB monomers with increasing SDS concentration (the total SRB
concentration in each solution is constant at 9 mM). At an SDS concentration which is twice
the cmc of SDS in the presence of 9 mM SRB (4 mM SDS), approximately 10% of the SRB
molecules are incorporated into SDS micelles. Furthermore, at 16 times the cmc of SDS in
the presence of 9 mM SRB (32 mM), nearly 90% of the SRB molecules are incorporated
into SDS micelles (see the fraction of unbound SRB in Figure 6B at the specified SDS
concentrations). At intermediate SDS concentrations (between 4-16 mM SDS), the molar
ratio between SDS and SRB in the micelles is about 3:1, with the molar ratio increasing as
the concentration of SDS increases thereafter (5:1 at 32 mM and 10:1 at 64 mM). Note that
we have used the term “incorporated into SDS micelles” rather than “co-micellized”,
because the solubility limit of SRB precludes single-component SRB micelle formation in
aqueous solution, in spite of the clear amphiphilicity exhibited by SRB.

In order to gain a molecular-level understanding of the experimental observations made,
including the incorporation of SRB molecules into SDS micelles, MD simulations were
carried out on systems comprising SDS and SRB. In the initial configuration of these
simulations, the SRB and SDS molecules were randomly placed and oriented in the
simulation box. Self-assembly was observed to occur as the simulation proceeded. An
equilibrium snapshot of the final configuration of one of the micelles that formed is shown
in Figure 7B. The molar ratio of SDS to SRB in the simulated micelles is approximately 6:1,
which is in general agreement with our experimental data at high concentrations of SDS,
reported in the previous paragraph. The SRB molecules were found to be incorporated in the
palisade layer (head region) of the SRB/SDS micelles. An examination of the average
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relative hydration of SRB molecules incorporated in SDS micelles (see Figure 7A), reveals
that the majority of the atomic groups of the SRB molecule are incorporated in the micelle,
with only the sulfonate groups, and adjacent atomic groups, remaining hydrated to a
significant extent (relative hydrations of 0.74 – 0.95). This is in contrast with the adsorption
of SRB at the air/water interface (see Figure 3A), where the entire pendant group and a
portion of the xanthene structure exhibit high levels of hydration (0.60 – 0.97). Comparing
the hydration levels of SDS and SRB in the micelle state (Figure 7A, where the atomic
groups correspond to the structure shown in Figure 1), it is clear that the sulfonate groups of
SRB (relative hydration equal to 0.80 – 0.95) and the sulfate group of SDS (relative
hydration equal to 0.80) are located within approximately the same radial shell of the
micelle (forming the outer shell of the micelle). Meanwhile, the remainder of the SRB
molecule extends into the micelle core (relative hydrations equal to 0.36 – 0.57), in the same
radial shell where carbons 1 – 3 of the SDS molecules reside (relative hydrations equal to
0.33 – 0.55, see Figure 1 for the carbon labeling of SDS). In our simulations, the xanthene
structure of the SRB molecule was not found to extend deeply into the micelle core. This is
due to: (i) packing considerations, which include the large, rigid planar configuration of the
xanthene structure relative to the more flexible configuration of the SDS tail, and (ii)
electrostatic considerations, which involves the net +1 charge partially distributed across the
xanthene structure. Moreover, no SRB dimers were observed in the simulations when SDS
micelles were present. SRB absorbance is known to red-shift in the monomeric state,
compared to the dimer state (spectral data for SRB in the monomer and dimer states can be
found in Chambers et al.).20 Therefore, this finding can explain the observed color shift in
the aqueous SRB solutions with increasing SDS concentration (see Figure 6A).

Case Study: Implications of the Amphiphilic Nature of SRB on Ultrasound-Mediated
Transdermal Drug Delivery

Many chemical skin penetration enhancers, particularly amphiphiles, are known to induce
synergistic enhancement in skin permeability when combined with low-frequency
ultrasound.40,41 Since SRB exhibits amphiphilic character, as demonstrated above, and has
been used extensively in transdermal research under the assumption that it behaves as an
inert fluorescent probe,6,8,12,14,16-19,41,49,72-76 the possibility that SRB could act alone as a
skin penetration enhancer was investigated. An SRB concentration of 9 mM was utilized,
which is a commonly used concentration of SRB in transdermal research.8,41,49,73-75 To
quantify skin permeability enhancement, an enhancement ratio (ER) was calculated, where
ER is defined as the ratio of the post-treatment skin resistivity at steady state (18 hours post-
ultrasound treatment), and the initial skin resistivity of that sample (prior to ultrasound
treatment). Skin resistivity is known to scale directly with skin permeability.48,77 The results
of these experiments are summarized in Table 1.

Table 1 shows that skin samples treated with water/ultrasound (control) had a statistically
similar enhancement ratio (ER=1.71±0.67) as those treated with an aqueous solution of 9
mM mM allura red/ultrasound (ER=1.87±0.62, two-sample t-test at 95% confidence).
However, the ER corresponding to skin samples treated with an aqueous solution of 9 mM
SRB/ultrasound was found to be 30-fold greater than the controls (54.0±19.6), which is a
statistically significant difference (p-value = 0.004, p-value must be below 0.05 for there to
be a statistically significant difference at 95% confidence). This clearly shows the ability of
SRB to act as a skin permeability enhancer when combined with low-frequency ultrasound,
thus further demonstrating its amphiphilic nature. For comparison, the ER for 9 mM SDS (a
known surfactant and skin penetration enhancer) is also shown in Table 1 (79.6±27.1).
Interestingly, the ERs of SRB and SDS are not statistically significantly different, owing to
the generally large variance associated with each sample (p-value = 0.15), but also
confirming that SRB is a statistically significant skin penetration enhancer.
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Conclusions
We have demonstrated that SRB is an amphiphilic molecule that preferentially adsorbs at an
air/water interface, bringing about a considerable decrease in the surface tension of pure
water (23 mN/m reduction). MD simulations revealed that SRB is thermodynamically stable
in its adsorbed state, both as monomers and dimers, with clearly defined head and tail
regions as quantified by the hydration of its atomic groups, similar to conventional
surfactants.

Furthermore, SRB was shown to be able to incorporate into SDS micelles, which results in a
dramatic decrease in the cmc of SDS. Because of its incorporation into SDS micelles, SRB
was observed to have a significant shift in color and opacity in aqueous solution with
increasing SDS concentration. MD simulations revealed that the SRB molecules reside
mainly in the palisade layer of the SDS micelles. A case study on skin permeability
enhancement by ultrasound and SRB showed that SRB acts as a synergistic skin penetration
enhancer, much like many traditional surfactants.

The study presented here demonstrates that even highly water soluble fluorescent dyes can
behave as amphiphiles. In many previous studies, SRB has been assumed to be an inert dye
and, therefore, was utilized as a simple colorimetric dye or model hydrophilic permeant.
However, the present study shows that one must pay careful attention when selecting an
appropriate dye, or fluorescent probe, in a given system. SRB can interact strongly with
other surfactants, inducing significant changes in bulk and interfacial properties of aqueous
solutions. We therefore recommend that if a fluorescent probe is not needed, it is best to
choose the simplest possible dye, such as allura red (red food coloring). If, however, a
fluorescent dye is required, special care should be taken to ensure that the dye does not
interact with other components of the system. The present study also demonstrates that
molecular dynamics simulations can be utilized effectively to study the organization and
hydration of dyes in bulk solution, at interfaces, and in micellar environments. These types
of studies have previously been carried out using more tedious, experimentally-intensive
spectroscopic methods. However, using the approach presented here, it may be possible to
more easily investigate multiple fluorescent dyes in order to aid in the selection of an
appropriate dye for a given system.
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Figure 1.
Chemical structures of sulforhodamine B (top) and sodium dodecyl sulfate (bottom), where
the sodium counterion corresponding to both molecules is not shown for clarity.
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Figure 2.
Surface tension versus concentration data for aqueous solutions of Allura Red (◆), SRB
(○), SDS(■), and SDS with 9 mM SRB (△). The vertical dashed lines denote the cmc's of
the specified solutions. The horizontal gray bar represents the measured surface tension of
pure water.
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Figure 3.
A: Relative hydration of an SRB molecule adsorbed at the air/water interface. The blue color
corresponds to a group with hydration similar to that in bulk aqueous solution, while the
transition to yellow corresponds to groups in less hydrated states. The number adjacent to
each atomic group denotes the relative hydration. B: Equilibrium MD simulation snapshot
showing an SRB molecule adsorbed at the air/water interface. Color legend: yellow – sulfur,
red – oxygen, white – hydrogen, blue/green – carbon, and dark blue – nitrogen.
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Figure 4.
A: MD simulation snapshot of the orientation of an SRB dimer in bulk aqueous solution,
where α is the angle between the planes of the pendant groups of each SRB molecule in the
dimer (each SRB molecule is shown in a different color for clarity). B: Angular distribution
function of α.
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Figure 5.
A: Relative hydration of an SRB molecule adsorbed at the air/water interface in the dimer
state. The blue color corresponds to groups with hydration similar to that in bulk aqueous
solution, while the transition to yellow color corresponds to groups in less hydrated states.
The number adjacent to each atomic group denotes the relative hydration. B: Equilibrium
MD simulation snapshot of SRB adsorbed at the air/water interface in the dimer state. The
two SRB molecules of the adsorbed dimer are shown in different colors for clarity.
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Figure 6.
A: Color change in 9 mM aqueous solutions of SRB with increasing SDS concentration. B:
Fraction of SRB molecules that are not incorporated into SDS micelles, relative to the total
concentration of SRB in solution, as a function of SDS concentration. The vertical dashed
line corresponds to the cmc of SDS in a 9 mM SRB solution (2.0 mM), and the error bars
correspond to a 95% confidence interval on the data.
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Figure 7.
A: Relative hydration of an SRB molecule solubilized in an SDS micelle. The blue color
corresponds to groups with hydration similar to that in bulk aqueous solution, while the
transition to yellow color corresponds to groups in less hydrated states. The number adjacent
to each atomic group denotes the relative hydration. B: Equilibrium MD simulation snapshot
of SRB incorporated into an SDS micelle. Blue corresponds to SDS molecules, while purple
corresponds to SRB molecules.
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Table 1

Steady-state enhancement ratio of skin samples treated with the specified coupling medium and low-frequency
ultrasound (20 kHz, 7.5 W/cm2, 10 minutes).

Coupling Mediumb n Enhancement Ratioa

Water 10 1.71 ± 0.67

9 mM Allura Red 10 1.87 ± 0.62

9 mM SRB 11 54.0 ± 19.6

9 mM SDS 11 79.6 ± 27.1

a
Error bars correspond to a 95% confidence interval on the data.

b
All solutions are aqueous, containing only the specified components.
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