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Some exact properties of the effective slip over surfaces
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Shear flows of viscous fluid layers over nonuniformly hydrophobic surfaces are
characterized in the far-field by an effective slip velocity, which relates to the applied
stress through some mobility tensor characterizing the surface. Here, we identify
two methods to determine the mobility tensor for flat surfaces with arbitrary slip-
length variations. A family of “Cross Flow Identities” is then analyzed, which equate
mobility components of different unidirectional patternings. We also calculate an
analytical mobility solution for a family of continuously varying patterns. We validate
the results numerically and discuss implications in various limits. C© 2013 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4790536]

Driven primarily by developing technology in microfluidics, there has been continuing interest
in the potential of using surface texture to influence, direct, or reduce drag on fluid flows. When
the scale of surface fluctuations is small compared to the size of macroscopic lengths, there are
advantages to using “effective boundary conditions,”1–6 which replicate the far-field effects of
a fluctuating boundary surface, but are applied instead on the smooth, mean surface. Effective
boundary conditions are generally tensorial in three-dimensions,7–14 taking the form of a tensorial
Navier slip boundary condition,12 or similarly, as a “surface mobility tensor” relating slip velocity
to applied shear traction.15 In this letter, we provide a sequence of analytical relations for the surface
mobility and related flow features of fluid motion over hydrophobically varying flat surfaces. These
results can be used as an expeditious toolset in the design and optimization of surface textures that
may otherwise require multiple experiments or continuum simulation. One such relation provides a
new take on a recent result independently arrived at in Ref. 16.

Throughout we assume creeping flows so that the Stokes equations apply. The equations can be
non-dimensionalized to absorb the viscosity into the stress units, allowing us to write

∇2u = ∇ p, ∇ · u = 0, (1)

for velocity u = (u, v, w) and pressure p. We focus on a geometry appropriate for the study of
effective boundary conditions. Suppose an infinite, rigid, flat surface (at z = 0) with spatially varying
hydrophobicity that is governed by some Navier slip-length distribution λ(x, y). Fluid flow along
such a surface obeys

u(x, y, 0) = λ(x, y)(1 − ẑẑ) · ∂u
∂z

∣∣∣∣
z=0

. (2)

Let λ(x, y) be periodic in x and y with periods �x and �y, respectively. Suppose a tall fluid layer sits
atop this surface and is set into motion by a lateral shear stress τ = (τx , τy, 0) applied far above the
surface. We define the effective slip us = (us, vs, 0) as the vector by which the flow field differs from
simple shearing far above the surface; i.e.,

u(x, y, z � 1) = τ z + us. (3)

It is useful to consider a surface mobility tensor M to characterize the effective slip.15 Specifi-
cally, it has been demonstrated14 that for each λ(x, y) a symmetric mobility tensor M can be found
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that relates us to the shear traction τ such that

us = M · τ . (4)

We represent the mapping from a surface pattern λ(x, y) to the corresponding mobility tensor M by
a functional M = M̃[λ(x, y)]. We abuse convention slightly by neglecting the trivial z components
of M such that the M matrix is 2 × 2.

The results discussed in this letter all pertain to analytical solutions or solution methods to
calculate mobility and other behaviors in this family of geometries. We can divide the results
into four categories, which are presented in a more-or-less chronological sequence: (i) Relations
to determine the mobility tensor and surface-level flow over any hydrophobic surface λ(x, y)
[Eqs. (5) and (16)]; (ii) an infinite set of “Cross Flow Identities” relating surface flows and mo-
bility components within the family of unidirectional surfaces λ(x) [Eqs. (11) and (12)]; (iii) an exact
solution for the mobility tensor of sinusoidally varying surfaces, a paradigm case [Eq. (23)]; and (iv)
asymptotics on the exact solution to reveal generic behaviors of small vs large amplitude surface
fluctuations. Numerical validations are discussed throughout. Topics (i) and (ii) are presented two
different ways, first using Fourier analysis, and then using Green’s functions. We recently discov-
ered that one of our notable results, a corollary to Eq. (12), was independently obtained in a very
recent paper16 utilizing an analogous Fourier argument. The Green function approach, which we
also provide, gives perhaps a more straightforward way to see this and other results.

First, we utilize Fourier analysis to discuss general relationships for surfaces with arbitrary
slip-length distributions. The supplementary material17 displays a general solution of Eqs. (1) under
the given boundary conditions, expressed as a Fourier series of the form

u(x, y, z) = τ z + us +
∑

m,n �=0

ei(km x+kn y)F(km, kn, z) · c(m, n), (5)

where km = mπ /�x, kn = nπ /�y, and the 3 × 2 matrix-valued function F(km, kn, z) is known. The
unknown constants, which are used to match the patterned lower boundary condition, are the two
coefficient sets within c(m, n) = (B(m, n), C(m, n)) for all non-zero pairs (m, n), and the two non-
trivial scalar components of the effective slip us . Hence, by fitting the above to obey Eq. (2) for
some given periodic λ(x, y)—requiring solving an infinite linear system—we obtain us as a (small)
part of the full flow solution, and from this can determine M. One can truncate the system at large
enough values of |m| and |n| to obtain approximate numerical solutions. Due to the nature of Fourier
methods, functions λ lacking certain smoothness properties may require more terms to achieve the
desired accuracy.

Let us simplify the problem by only considering unidirectional patterns of the form λ = λ(x).
Due to geometric symmetry, this constraint ensures the mobility matrix is diagonal in the {x̂, ŷ} basis
since an x-directed shear stress induces no flow in the y-direction, and vice versa for a y-directed
shear stress. Choosing τ = (1, 0, 0), a unit shear stress oriented across the striping, the u component
of the general flow solution reduces to

u(x, y, z) = z + us + 2

3

∑
m �=0

eikmx−zk|m|(1 − zk|m|)B(m, 0), (6)

for k = π /�x. Substituting the above into Eq. (2), u(x, y, z) can be obtained from the solution to the
following infinite matrix equation for the unknown coefficients:

( . . . λ̂(m) . . . λ̂(0) . . . λ̂(−m) . . . )T = (I + 2kQ)

× (
. . . 2B(m,0)

3 . . . us . . . 2B(−m,0)
3 . . .

)T
. (7)

In the above λ(x) = ∑
λ̂(m)eikmx is the Fourier series of the pattern. I is the infinite identity matrix,

and the matrix Q is defined component-wise by Qαβ ≡ |β|λ̂(α − β), for all integer indices α, β.
The mobility component Mxx = M̃xx [λ(x)] is equal to us above.

Suppose we now consider a flow over the same surface, but shearing with a unit stress in the
y-direction, along the pattern (Fig. 1). Here, the general solution gives the following expression for
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FIG. 1. Basic Cross Flow Identity: The effective slips ua
s and vb

s above are always equal. The function λ describing the
surface patterns can be arbitrary.

the y-directed flow component:

v(x, y, z) = z + vs +
∑
m �=0

eikmx−zk|m|C(m, 0). (8)

Proceeding as before, we substitute this result into Eq. (2) and we obtain the following matrix relation
for the flow coefficients,

( . . . λ̂(m) . . . λ̂(0) . . . λ̂(−m) . . . )T = (I + kQ)

× ( . . . C(m, 0) . . . vs . . . C(−m, 0) . . . )T . (9)

Solving for vs gives the other component of M; i.e., vs = Myy = M̃yy[λ(x)]. Altogether, by solving
the two linear systems described above, we determine the entire mobility matrix for λ(x).

However, without having to solve anything directly, we can make the following major obser-
vation in view of Eqs. (7) and (9). Suppose we consider two surfaces that relate to our arbitrary
λ(x). Let λa(x) = λ(x) and λb(x) = λ(2x), respectively. Hence, b’s surface pattern is the same as
a’s except compressed to a twice smaller period. Likewise, we can write λa(x) = ∑

λ̂(m)eikamx

and λb(x) = ∑
λ̂(m)eikbmx where kb = 2ka = 2k. Consider the flow ua(x, y, z) induced by τ = x̂

applied over surface a and the flow ub(x, y, z) over surface b that is induced by τ = ŷ. Applying
Eq. (7) to surface a and Eq. (9) to surface b, we obtain now the same infinite matrix in both cases,
I + 2kQ, and the same vectors on the left-side. Consequently, the solution for the unknown vector
of coefficients in these two problems is the same, and thus ua

s = vb
s . We call this fact the Cross Flow

Identity (CFI). Written explicitly:

Theorem: For any periodic function λ(x), it holds that M̃xx [λ(x)] = M̃yy[λ(2x)]. In words, the
mobility of flow across any arbitrary, unidirectional pattern is always equal to the mobility along
the same pattern compressed by a factor of 2.

This result relating flow in different directions on different but related surface patterns is met
with a certain level of physical intuition. Pushing across a pattern is more resistive than pushing
along, and smaller periods impede flow more than wider periods. The CFI says, in effect, that these
two influences cancel exactly when the period is shrunk by a factor of 2. The emergence of “2” in
relating behaviors in orthogonal directions in Stokesian dynamics is not uncommon; it occurs, for
example, in studies of flows through striped pipes18 as well as the classical sedimentation work of
Batchelor for rods of arbitrary cross-section.19 Unlike other general theorems regarding the mobility
tensor,14 we have not been able to prove the CFI “quickly” using global identities such as Lorentz
reciprocity. That said, shortly, we shall provide what we feel is a more straightforward derivation
of our results using Green’s functions. We also note it might be possible to derive the CFI from a
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conformal mapping method specialized to handle Navier-slip conditions, in the spirit of recent work
on perfect-slip stripings.20 The Fourier series approach used above will be called on again later in
deriving exact mobility over sinusoidal surfaces.

Note that the CFI is only one consequence of the invariance apparent in the matrix equations
corresponding to our a and b cases. In fact, the entire B(m, 0) series for flow across surface a implies
the entire C(m, 0) series for flow along surface b. Consequently, the two flow fields are actually
identical in the z = 0 plane, modulo the compressed period. That is,

ua(2x, y, 0) = vb(x, y, 0). (10)

This result is made more interesting by noting it does not arise from any standard scaling argument—
due to the differing z dependences in Eqs. (6) and (8) and the fact that flow across surface a also has
a non-trivial w component (which we have not yet needed to consider) the full flow fields for z > 0
are in fact very different from each other.

The CFI can be merged with more obvious identities to form a family of equivalences implied
by a single mobility measurement. If u(x, y, z) solves the Stokes equations, u(βx, βy, βz) does as
well, which yields the basic scaling relation βM̃[λ(x)] = M̃[βλ(x/β)] for any scalar β. Combined
with CFI, we obtain the generalized identity,

β M̃xx [λ(x)] = M̃yy[βλ(2x/β)], (11)

for all scalars β. Similarly, the generalization of Eq. (10) is

λb(x) = βλa(2x/β) → vb(x, y, 0) = βua(2x/β, y, 0). (12)

An interesting case is β = 2, for which 2M̃xx [λ(x)] = M̃yy[2λ(x)] , vb(x, y, 0) = 2ua(x, y, 0).
This result was independently obtained in Ref. 16. It agrees with past mobility approximations for
small perturbations to a no-slip surface.13 Furthermore, if λ is a piecewise function that takes on values
of 0 or ∞ only, as in superhydrophic surfaces, then 2λ(x) = λ(x) and thus 2M̃xx [λ(x)] = M̃yy[λ(x)],
a result obtained through other means in Ref. 20.

To check these identities further, we conducted a series of tests where the Stokes equations
were solved numerically using a finite-difference method in the geometry at hand, using various
λ(x). The geometry was box-shaped (for one period cell) with periodic boundary conditions at side
walls. A variety of functions for λ(x) were used on the bottom surface, chosen to represent a broad
range of smoothness properties, namely a sine wave, sawtooth wave, triangular wave, and square
wave. A unit shear stress boundary condition was applied along the top surface, which is chosen
high enough that a strong linear flow profile appears in the top half of the flow domain. For each
λ(x), by refining the finite-difference grid, we observed convergence to the CFI—the effective slip
due to an x-directed shear stress (using Eq. (3) in the high-z flow), approached that obtained when
the same surface was compressed by a factor of 2 and flow was driven by a y-directed shear stress.
We stopped refining when 0.1% relative error between the effective slips for each surface pair was
observed.

While our above solution approach as well as that of Ref. 19 used a Fourier series argument, it
begs the broader question of whether a more straightforward derivation exists to explain these very
“simple looking” results. Here we shall provide another approach for the CFI and its related results
using a more direct argument involving the fundamental stokeslet solution to the Stokes equations. In
a sense, what we do is to build the solution from stokeslets distributed along the surface rather than an
ad hoc Fourier set for this particular geometry. We point out that the stokeslet is also responsible for
the factor of 2 arising in slender-body sedimentation,19 so the ensuing derivation serves to connect
these two problems to the same core principle.

Let us return to the basic setup, with λ = λ(x, y) and arbitrary horizontal τ . Define the disturbance
flow field u∗ = u − τ z − us , which vanishes at z = ∞. Since the disturbance flow also solves the
Stokes equations, the flow at any surface point x = (x, y, 0) must satisfy the fundamental boundary
integral equation for Stokes flow,21 which for our geometry takes the form

u∗(x) = 1

4π

∫
A

[
u∗(x − x′) · T(x′) − G(x′) · σ ∗(x − x′)

] · ẑ d S′, (13)
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where A is the entire xy-plane and

G(x) = 1
(x2 + y2)1/2

+ xx
(x2 + y2)3/2

(14)

is the stokeslet (i.e., Oseen tensor) giving the free-space Green’s function for a point-force, and
T(x) = −6 xxx

(x2+y2)3 . Since the surface is at z = 0, we have T · ẑ = 0, which cancels the first term in
brackets in Eq. (13). Regarding the surface stress, note that on the surface∫

A
σ ∗(x − x′) · ẑ d S′ =

∫
A

[
u(x − x′)
λ(x − x′)

− τ − p(x − x′)ẑ
]

d S′ = 0 (15)

to satisfy global force balance on the fluid body. By Lorentz reciprocation of u∗(x) and τ z, we find
us = 〈u(x)〉, where 〈 · 〉 is the average over A. Applying all these results, we can rewrite Eq. (13) as
a completely self-contained integral equation uniquely defining the surface flow:

〈u(x)〉 − u(x) = 1

4π

∫
A

G(x′) ·
(

u(x − x′)
λ(x − x′)

− τ

)
d S′. (16)

Note the pressure term vanishes in the above, because G · ẑ ∝ ẑ on the surface and the surface flow
has no z component.

Equation (16) can be thought of as the most general surface relationship underlying our study,
and its solution determines the surface flow for any λ(x, y). It is worth noting that never in the
derivation do we compute the flow in the bulk; the Navier-slip condition permits us to reduce
immediately to a self-contained surface flow equation because it expresses the surface traction
directly in terms of the surface flow. This is interesting especially since the flow is generated from
a stress far above the surface. Also note that no periodicity constraints need to be assumed at any
point.

Let us consider, as before, two unidirectional patterns λa(x) and λb(x) and suppose over surface
a that τ = x̂ induces a flow with surface velocity ua(x, y, 0) = Ua(x), and τ = ŷ drives a surface
flow vb(x, y, 0) = V b(x) over b. We can apply Eq. (16) to obtain

〈U a(x)〉 − U a(x) = 1

4π

∫
A

2x ′2 + y′2

(x ′2 + y′2)3/2

(
U a(x − x ′)
λa(x − x ′)

− 1

)
dx ′dy′ , (17)

〈V b(x)〉 − V b(x) = 1

4π

∫
A

x ′2 + 2y′2

(x ′2 + y′2)3/2

(
V b(x − x ′)
λb(x − x ′)

− 1

)
dx ′dy′. (18)

Observe the direction-dependent factor of 2 arising above, which is brought on by the factor of
2 strength difference within the stokeslet in the direction of force vs orthogonal to the force. We can
reduce the integrals above by noting that

∫ ∞
−∞

x ′2 dy′
(x ′2+y′2)3/2 = 2, which, when combined with Eq. (15),

annihilates the x′2 terms in the numerators of each of the integrals above, leaving

〈U a(x)〉 − U a(x) = 1

4π

∫
A

y′2

(x ′2 + y′2)3/2

(
U a(x − x ′)
λa(x − x ′)

− 1

)
dx ′dy′ , (19)

〈V b(x)〉 − V b(x) = 1

4π

∫
A

2y′2

(x ′2 + y′2)3/2

(
V b(x − x ′)
λb(x − x ′)

− 1

)
dx ′dy′. (20)

The lingering factor of 2 in Eq. (20) is the root of our cross-flow results. By direct substitution,
we see that if Ua(x) is the solution of Eq. (19) over some λa(x) = λ(x), then V b(x) = βU a(2x/β)
identically solves Eq. (20) for λb(x) = βλ(2x/β). This provides another proof of Eq. (12). And
combining this result with us = 〈u(x)〉 from before implies the generalized CFI, Eq. (11).

This derivation provides qualitative intuition for why the CFI arises. For some λ(x), consider
the disturbance flow field when τ = x̂. The surface shear tractions that emerge can be visualized as
an array of point forces along the surface, and the flow can be seen as a superposition of the stokeslet
fields about each point force. Suppose we produce a new flow by rotating each of these point-forces
in place 90◦ so that they now are all parallel to ŷ. Due to the direction-sensitivity of the stokeslet,
the influence of each force is now precisely two times larger in the y direction than previously. Upon
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superposing the stokeslet fields, subtle cancellation occurs in the x-superposition (due to global
equilibrium), so that the doubling effect in y causes the entire surface flow field to double. However,
the surface traction distribution is the same (only rotated), implying that the boundary condition
the new flow satisfies is 2λ(x), and that τ = ŷ. Thus we see that by switching to pushing along the
pattern, and doubling the Navier slip everywhere, the surface flow field (and hence the effective slip)
doubles, in accord with Eq. (12), β = 2.

We now switch gears, and turn attention to finding an exact solution to Eqs. (7) and (9) for
some fluctuating surface λ(x) in order to determine an analytical, non-pertubative solution for
the mobility matrix for a non-trivial smoothly varying surface pattern. Since physical slip-lengths
are necessarily non-negative, the simplest surface to consider is λ(x) = 2s(1 + cos(kx)), where s
determines the amplitude of slip-length variation. The behavior for this surface could serve as a model
for characterizing general “striped” surfaces that oscillate between no-slip and a finite slip-length.
The only non-zero Fourier coefficients of the surface are λ̂(0) = 2s, λ̂(1) = s, and λ̂(−1) = s. We
first consider Eq. (7), which must be solved to determine Mxx. Define x0 = 3us/2 and for m �= 0, xm

= B(m, 0). Then the system represented by Eq. (7) can be written algebraically as

x0 + 4skx1 − 3s = 0, (1 + 4sk)x1 + 4skx2 − 3s/2 = 0,

2(m − 1)skxm−1 + (1 + 4msk)xm + 2(m + 1)skxm+1 = 0 for m ≥ 2. (21)

To aid in solving the above, we define a generating function f (t) = ∑∞
m=0 xmtm . Observe that the

above algebraic system emerges in the coefficients of the powers of t when the following differential
equation is expanded, 2sk(1 + t)2 f ′(t) + f (t) − 3

2 st − 3
4 (a + 2s) = 0. Hence, our set {xm} arises

by solving for f, where, by definition, f(0) = 3us/2 provides the initial condition. The analytical
solution is

f (t) = 3

4
us + 3

4
e

1
2sk(1+t)

(
use− 1

2sk − E1( 1
2sk )

k

)
+ 3

4k
e

1
2sk(1+t) E1

( 1

2sk(1 + t)

)
, (22)

where E1(x) = ∫ ∞
x

e−t

t dt is the exponential integral for positive real numbers x. However, the
problem is not finished because the solution still depends on the unknown us. We have yet to use
the information that because the xm are coefficients of a convergent Fourier series for the surface
flow u(x, y, 0), then xm→∞ → 0. Upon Taylor expanding f(t) above, the only way to prevent
xm = f(m)(0)/m! from diverging as m → ∞ is to ensure the second term above vanishes. This

requirement necessitates that us = e
1

2sk

k E1

(
1

2sk

)
giving us our solution for Mxx. We may follow a

completely analogous procedure to solve Eq. (9) for vs , and once done arrive at the analytical solution
for the mobility matrix of our surface:

M̃[2s(1 + cos(kx))] =
⎛
⎝ e

1
2sk

k E1

(
1

2sk

)
0

0 2e
1
sk

k E1

(
1
sk

)
⎞
⎠. (23)

It is interesting to observe that the analytical solution clearly satisfies the generalized CFI, Eq. (11).
Figure 2 evidences the correctness of this result by comparing it to numerical solutions of the Stokes
equations, obtained using a finite-difference method.

Now that we have an exact formula for the mobility tensor for a family of surfaces, we can
study directly the influence of the two coefficients s and k on the mobility tensor. It is a well-
known asymptotic result that ezE1(z) ∼ 1/z when z � 1, and ezE1(z) ∼ −log (z) when z � 1. We
deduce that when sk � 1, i.e., small-amplitude slip fluctuations and/or wide period, the mobility
tensor approaches that of a uniform surface of the same mean slip-length, M ∼ 2sI. Using the other
asymptotic relation we arrive at the behavior for large-variation surfaces, characterized by a large
value of sk we obtain Mxx ∼ − log(sk)/k and Myy ∼ −2 log(sk)/k. Since s is proportional to the
mean slip of a surface, this result indicates there are diminishing returns when attempting to increase
the mobility of a fluctuating surface by increasing the amplitude alone. The mobility increases only
logarithmically in s, which can be attributed to the fact that the surface returns to no-slip once per
period, which constricts the flow rather globally making it difficult to achieve large effective slips.
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FIG. 2. Analytical results for Mxx (- -) and Myy (—) using Eq. (23) for the pattern λ(x) = 2s(1 + cos (2πx)). Symbols show
the same mobility components measured from finite-difference solutions of the Stokes equations.

In this work we have exploited general solutions for shear flow over flat, hydrophobically
varying surfaces, Eq. (5) and Eq. (16), to produce several simple analytical rules governing the
mobility of flows over such surfaces. We point out that many of the analytical deductions made
herein were possible because the surface shape was flat, which simplified the application of the
lower boundary condition in the general solution. Based on analytical results discussed in Ref. 22 it
is unclear whether similar identities hold in the presence of surfaces with height fluctuations.
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