
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s  i n s t i t u t e  o f  t e c h n o l o g y,  c a m b r i d g e ,  m a  0 213 9  u s a  —  w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-011 June 4, 2013

A Publish-Subscribe Implementation of 
Network Management
Jorge D. Simosa



A Publish-Subscribe Implementation of
Network Management

by

Jorge D. Simosa

B.Sc. Electrical Engineering and Computer Science
Massachusetts Institute of Technology, 2012

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF ENGINEERING IN
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2013

c©2013 Jorge D. Simosa. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part and in any

medium now known or hereafter created.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Jorge D. Simosa

Department of Electrical Engineering and Computer Science
May 28, 2013

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dr. Karen R. Sollins

Principal Research Scientist
Computer Science and Artificial Intelligence Laboratory

Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Prof. Dennis M. Freeman

Chairman, Master of Engineering Thesis Committee

1



2



A Publish-Subscribe Implementation of Network Management

by

Jorge Simosa

Submitted to the Department of Electrical Engineering and Computer Science on
May 28, 2013

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As modern networks become highly integrated, heterogeneous, and experience exponential
growth, the task of network management becomes increasingly unmanageable for network
administrators and designers.

The Knowledge Plane (KP) is designed to support a self-managing network, given the
organizational constraints of network management, as well as to create synergy and exploit
commonality among network applications. In this thesis, to build an Information Plane
that is suitable to the requirements of the KP, we propose a publish/subscribe system that
provides a clear and systematic framework for resolving tussles in the network.

To evaluate the effectiveness of this design, we configured a network of PlanetLab nodes
and conducted experiments involving a variety of file sizes and source-destination pairs.
The results suggest that the system’s performance is not only comparable to existing file
transfer services, but that the system also introduces several performance gains that are
unattainable with current network architectures.
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Chapter 1

Introduction

1.1 Background

The architecture of today’s networks, such as the Internet, is primarily focused on commu-

nication between machines, not necessarily considering them to be two users of information.

Protocol suites such as TCP/IP aim to provide a reliable channel between two endpoints

that wish to share streams of bytes, regardless of the requirements set by various types of

traffic. The rapid and widespread growth of the Internet can be strongly attributed to this

machine-to-machine communication principle as it allowed any machine to easily attach to

the network and be able to reach any other machine. However, as the demands of applica-

tions, such as video streaming and content distribution, increase along with the ever-rising

population of users, the capacity of point-to-point based networks becomes insufficient.

Trends in today’s network traffic suggest a possible paradigm shift from a focus on who is

exchanging information to a focus on what is the information being exchanged. Thus, it is

worthwhile to explore the potential of information-centric network (ICN) architectures in

meeting the demands of tomorrow’s applications and users.

One major challenge for the TCP/IP network model of today is the performance of the

network under emergency conditions or in a disaster situation. Suppose, for example, that

a major wildfire has occurred that encompasses an area that crosses multiple state lines.

A vast array of national, state, and local emergency response teams have been assembled

in order to contain and eliminate the wildfire before it causes further damages. Each level
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of emergency response teams has developed and deployed its own infrastructure to collect

critical information and determine the best possible response to the situation. Many of

these resources may be invisible to other teams due to the lack of coordination before the

events actually occur, resulting in duplicated efforts. Instead of focusing coordination efforts

on figuring out who has a specific piece of information, these teams should instead focus

on discovering what information is already available in order to make quick and informed

decisions. From a network perspective, traditional IP architectures would require end-users

to know the correct IP address for the host that has the desired information, whereas an

ICN-based architecture would allow a user to request information that the network can

quickly locate.

Another major challenge for today’s TCP/IP stack is the network efficiency for mobile

nodes, particularly nodes that can use multiple technologies to attach to the network. An

interesting case is that of a smartphone user, who is moving across a campus while using

data-intensive applications, such as video streaming from sites like YouTube, Hulu, and

other video broadcast sites. Many of these sites have developed their own ad-hoc network

protocols in the hopes of serving their users better; however, these protocols are usually

limited to using a single stack of network technologies such as 3G, 4G, GSM, Wi-Fi for the

duration of the session. This constraint is an artifact of the WHO-to-WHO communications

paradigm that serves as the founding principle for the TCP/IP suite, which requires the

user to specify the IP address and port number pair that identifies the destination address

of all packets associated with that particular flow of information. Alternatively, the ICN

architecture provides a higher-level abstraction, namely the focus on WHAT is being trans-

mitted, which can allow the network to make use of multiple technologies simultaneously

in order to provide an improved experience for the user.

Our primary goal for this project is to develop a network architecture for network man-

agement, one which provides an automated approach to inferring the state of the network.

Currently, network administrators must manually install tools and run scripts to collect

various characteristics of the network they are inspecting in order to perform proper tuning

and configuration. These inspections require browsing through endless logs of network traf-

fic in an attempt to find common patterns among various error-prone transactions. Instead,
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the network architecture can be enhanced to automatically aggregate network statistics, use

machine learning to diagnose network failures, and assist network administrators in resolv-

ing these inefficiencies. We hope that by placing information at the core of future network

architectures, the system will be able to autonomously address these types of issues and

enable future applications that can make more efficient use of the underlying network.

Contrary to IP-based networking, information-centric networking relies on the impor-

tance of what is being transmitted versus where it is being transmitted. As stated by

Jacobson et al., “People value the Internet for what it contains, but communication is still

in terms of where,” [9] thus it is critical to shift the focus of network architectures towards

content. In a typical scenario, nodes participating in an ICN must express interest in infor-

mation that may be available over the network in order to receive the corresponding data

from the publishers. Therefore, both the content providers and the consumers will need

to agree on a content identifier system that allows the network to establish matches and

create the appropriate communication channels based on the specific information they wish

to transfer. We argue that this approach is much more efficient for most, if not all, of the

traffic that traverses the Internet and provides enough flexibility to address many of the

socio-economic challenges that exist today, such as IP rights, access control, privacy, and

other tussles that occur in the networking world [26].

1.2 Overview

This thesis is centered on an implementation of an information-centric network architecture

using a publish/subscribe model. The publish/subscribe model focuses on the importance

of the distribution of information rather than on the point-to-point connections. In this

model, publishers can announce the presence of information that they wish to distribute

and make available to the network, while subscribers will request access to that information

and receive it for future use. The network will use a hybrid approach to establish matches

between publishers and subscribers through a distributed file directory service and a cen-

tralized routing service. We do not claim that this is a final solution to meeting tomorrow’s

network demands; however, we would like to broaden our perspective on the usefulness and
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practicality of information-centric networks. In particular, our research will focus on the

impact that ICN can have on the performance of network management.

Our system is designed to provide a reliable file transfer service, using the mechanisms

provided by the publish/subscribe model, to establish a shared information database that

can be used as input into various network management tools. The system includes a scope

hierarchy, which mimicks the file hierarchy of the underlying file system in each of the

participating nodes, that uses a common naming scheme for files that will be shared in the

information-centric network. By agreeing upon the naming scheme, nodes can generate a

unique identifier that references a particular piece of data, regardless of who created the file

and how it was collected. For example, a node that is interested in receiving the network

log of a particular node over the past 24 hours may use an identifier which contains some

type of concatenation of the source node identifier, the time period, and the type of data

that is stored in the file. As long as the source node uses the same algorithm to create

the file name for the data it has collected, these two nodes will be able to share the file

asynchronously. Thus, the system will be able to establish a match between the publisher

node and the subscriber node based on the file’s identifier.

In order to provide the reliable file transfer service, we must introduce additional mech-

anisms into the publish/subscribe model, due to its asynchronous nature. First, we need

to provide a segmentation functionality that allows the publisher to break the file up into

chunks that fit within a normal IP packet, while re-using the already established match

between the publisher and set of subscribers. We can use a dissemination strategy that

performs a longest-prefix match of the identifier, which allows us to simply append a frag-

ment sequence number to the file’s existing identifier. Next, we will need to establish a

bi-directional channel between the publisher and subscriber for retransmissions requests

and responses. We can build a bi-directional channel through the establishment of two

uni-directional channels, using a pair of algorithmically generated scopes, that are created

when the file is first published to the network. Lastly, we will need to keep track of the

file’s publication status, which determines the set of tasks that the publisher is expected

to do during a given point in time. For example, late-arriving subscribers may or may not

result in a start publish event at the publisher, which normally indicates that the publisher
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should start publishing all of the fragments for that file. Thus, for files that have an ex-

isting match between a publisher and a set of subscribers, the publisher should publish a

periodic heartbeat to make sure that all of the subscribers have an opportunity to establish

a bi-directional channel as needed.

We can then evaluate the performance of our publish/subscribe system relative to ex-

isting file transfer services such as FTP and SCP, by varying the size of the input file.

Since FTP and SCP are both designed to serve only a single source node and a single

destination node, our experiments for the publish/subscribe system will also include only

a single publisher and a single subscriber. We must note, however, that the design of our

system supports any number of publishers and subscribers for a given information item, a

functionality that is almost non-existant with traditional IP-based approaches. In order to

reduce the possible bias in the results, we have selected two networks of 10 nodes each, one

for smaller file sizes (100MB and below) and one for larger sizes (100MB and above), where

one of the nodes is the designated RV/TM node while the other nodes switch between the

roles of publisher and subscriber for different trials.

This thesis makes two major contributions:

• Demonstrates the feasibility of providing a publish/subscribe-based file exchange sys-

tem that, even without congestion control, is close in performance to existing file

transfer protocols.

• Highlights a list of significant hidden benefits to our approach that provide a more

suitable file transfer service for an Information Plane that is complementary to the

Knowledge Plane.

1.3 Organization of the Thesis

Chapter 2 includes an overview of the challenges in network management as well as a re-

view of related works which have influenced our approach. Chapter 3 describes the primary

intellectual contribution of this thesis: the design and implementation of the Information

Plane, which provides a simple, yet useful file transfer service that can be used to share
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and collect information for the Knowledge Plane. Examples of network management tools

that can be incorporated into the Knowledge Plane are presented in Chapter 4 in addition

to descriptions of previous work in the Knowledge Plane. In Chapter 5, a detailed perfor-

mance analysis is provided, which compares the performance of the publish-subscribe file

transfer design with common file IP-based file transfer services such as ftp or scp. Chapter

6 concludes this thesis with a summary of our findings, in addition to some key insights and

questions that may lead to future work.
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Chapter 2

Setting the Stage

In Chapter 1, we have introduced the idea of using an information-centric network archictec-

ture in order to support services such as network management, as opposed to using today’s

IP-based approaches. We believe that an information-centric network architecture can ad-

dress some of today’s major challenges and support high-performance applications in the

future. Section 2.1 will further illustrate challenges in network management that may be

resolved through the publish-subscribe model. Section 2.2 provides a conceptual overview

of the proposed network architecture, which is implemented and evaluated using an existing

network testbed environment. Section 2.3 includes a summary of related works that have

provided insight during the design of our approach to future network architectures.

2.1 Key Challenges

At its core, network management is concerned with the performance and behavior of the

networks used for transporting pieces of information, which includes backbone, enterprise,

wireless, ad-hoc, and other network environments. This type of management requires a wide

variety of functions and activities such as disruption diagnosis and repair, prediction, and

performance improvements, which usually fall under the responsibility of a single network

administrator. The reason that we are proposing a framework for network management is

two-fold. The first is that network management problems transcend many local network

management domains that have little control or information about each other. The second

17



is that there are opportunities for complementary activities that are otherwise unavailable

or unnecessarily duplicated across several domains.

Network management today rests on the shoulders of only a handful of specialized net-

work administrators, which seems hardly scalable to the ever-increasing size of the Internet.

These network administrators are forced to work on an ad-hoc basis and within a narrow

localized domain with minimal collaboration across domains. Furthermore, the role of the

Internet, as a network of networks, allows for the introduction and growth of unmanaged

domains that can severely affect the performance of well-managed domains. Thus, network

administrators face an increasing number of problems and constraints, with an overwhelm-

ing amount of complexity, that may soon render their actions and efforts useless. We hope

to provide a network management framework that is largely autonomous and intelligent to

support the expertise of the network administrators as they adapt today’s networks to meet

the needs of both today’s and tomorrow’s users.

There a few assumptions we must make when considering the challenges of network

management, namely: (1) the extent of network managers’ control is limited to their own

local network; (2) those administrative domains also reflect proprietary and other policy

boundaries; (3) need for network management crossing and extending beyond individual

administrative domains; and (4) efficiency and performance, both because responses are

often required quickly and because any activities should have minimal impact on the core

transport service of the networks involved [21].

The two principal aspects of network management are the convergence of information

and the reasoning over that information, as depicted in the following two lists.

Information:

• Storage - collection of information either locally or remotely

• Discovery - determine whether the information required is available

• Find information - enable access to desired information

• Share information - minimizing the amount of duplication and subdividing the total

work
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• Reason over information - rational reasoning over information outside its original

context

• Extensible life and location - information maintains value over an extensive lifetime

• Policy formation/composition - formalizing the control of access, composite policies

Reasoning and computation:

• Nature of information - expect incomplete information, but assume it is statistically

representative

• Efficiency/performance - minimize impact on performance while providing adequate

functionality, accuracy, and detail

• Decomposition - distribute the computation required over a set of nodes

• Composition - compose tools and computations into more sophisticated ones

• Extensibility - incorporate newer and more effective supporting tools

• Organizing framework - organize functions under differing conditions of physical or-

ganization, behavior criteria, and policy constraints

We believe that current network principles and architectures are not flexible and re-

sourceful enough to address many of these issues, thus we hope to evaluate the performance

gains achievable through an information-centric architecture that supports network man-

agement.

2.2 Elements of the Architecture

We can separate the structure of the network management framework into two parts: the

Information Plane and the Knowledge Plane. This abstraction mirrors the two primary

goals of network management, namely the collection of information and the analysis of that

information. For this thesis, we recognize that some of the major aspects of the Knowledge

Plane have already been explored and developed as a result of the efforts of previous student
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researchers, thus our focus is to implement a simple information access scheme that allows

us to evaluate the performance and efficiency of network management under our proposed

framework.

The Information Plane encompasses the collection and distribution of information items,

such as measurements and other types of observations, which will be useful for analysis in the

Knowledge Plane. An information item has an identifier that is unique within the scopes it

is published under. Items can also contain, as part of their data, identifiers pointing to other

information items in order to compose complex items. Information items will usually be

accompanied by meta-data that describe important characteristics such as size, ownership,

access control, and other performance factors. In orderto maintain scalability, we will also

need to introduce the concept of regions, which provide a way to partition the information

universe by functional or policy boundaries in order to decrease the resource requirements

at each individual node of the network. These regions will hold the responsibility of sharing

advertisements of information items they know about in order to expand the horizon of the

content.

The approach we took to build this Information Plane is based on a publish-subscribe

model that allows for information to be made public through an advertising function and

for subscriptions to the information to be made through an interest function. This approach

allows us to separate the concepts of time, identity, and security in order to build a highly

modular network architecture that provides greater functionality than current designs. For

example, the sender and receiver no longer have to be in communication simultaneously

since the network will automatically keep track of pending requests. In particular, we have

built our system on top of the PURSUIT system [24], which already provides features such

as identification, publication, subscription and transport of information items, but with no

current reference to ontology or higher level functionality, such as reliable fragmentation.

We will need to adapt their model to our environment in PlanetLab in order to enable future

extensions that will lead to the establishment of a robust network management framework.

The publish-subscribe model featured in the PURSUIT project requires that nodes in

the network fulfill the roles of Node, Rendezvous Node, and Topology Manager. A single

node can be assigned any combination of these three roles if they wish to participate in
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the network. A Node represents the common user that wishes to publish and subscribe to

information in the network. The Rendezvous Node takes the responsibility of maintaining

a directory of information items available under its scope or its neighbors’ scopes as well as

keeping track of pending requests from Nodes that fall under its authority. The Topology

Manager is in charge of creating paths between publishers and subscribers based on the

network’s state in addition to directing other management functions. In our prototype

implementation, the Rendezvous node and the Topology Manager will be running on a

single node for reasons that are described in Section 3.4.

The Knowledge Plane lies above the Information Plane and provides the capability of

reasoning over information in order to understand, hypothesize, infer, and act on knowl-

edge. The overall goal is to build a network that is self-knowledgeable, self-analyzing,

self-diagnosing, and self-managing. With a focus on network management, we hope to

provide more intelligent and effective tools for network administrators as they adapt the

network configuration to provide a better experience for its users. One of the major design

considerations for this project is to enable the provision and rendezvous with pervasively

available and reusable knowledge, which we hope to meet through the interactions between

the Information and Knowledge plane [20].

Figure 2.1 illustrates the proposed layered architecture for network management, in

which the Knowledge Plane lies above the Information Plane. The Knowledge Plane will

provide higher-level tools such as error diagnostics and network monitoring, while the In-

formation Plane will provide functionality such as policy formation and file discovery, in

addition to supporting the publish-subscribe mechanism. The underlying network will be

composed of Topology Managers (TM), Rendezvous Nodes (RV), and regular Nodes (N).

In the case of network management, each node mightl publish the statistics from its per-

spective of the network while specially designated nodes aggregate the information gathered

through subscriptions and present it to the Knowledge plane.

In Figure 2.2, we can observe a possible scenario where a node (Node N) is attempting

to investigate the cause of congestion in nodes N1 and N2. The steps in this procedure,

represented by the numbered boxes, are outlined as follows:
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Figure 2.1: Layered Design of Network Manangement

1. Node N talks to its corresponding Rendezvous Node (RV1), who will find the location

of network information about nodes N1 and N2.

2. RV1 communicates with its neighboring Rendezvous Nodes who may know about N1

and N2.

3. RV2 responds to the subscription request since it maintains the publications from

nodes N1-N5.
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Figure 2.2: Network Congestion Example in Publish/Subscribe System

4. RV1 communicates with the Topology Manager (TM) to find the best path through

the network

5. TM informs RV1 and RV2 that the best path goes through RV2 and relay node (RN).

6. RV2 requests and receives the relevant information items from N1 and N2.

7. RV2 forwards the information to RN from both N1 and N2.

8. RN transmits the congestion information to node N.

With our architectural approach to network management, we can raise a few key areas
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of study: a) How to effectively manage and organize the distribution of information given

the many organizational constraints such as physical topology, legal, social, and economic

policy boundaries. b) How to model and evaluate the impact of our architectural proposal

in terms of performance and efficiency, considering that network management is secondary

to the transmission of user information. c) How to systematically manage information given

the constraints on storage, caching, and potential lifetime of information items. d) How to

anticipate tussles, i.e. differences of opinions and concerns, when using the network and

being able to accommodate them in the network architecture. We believe that by building

a prototype of our information-centric approach to network management, we can begin to

understand how these challenges play out in the real-world systems.

2.3 Related Works

In this section, we will review a few of the related works that have inspired our approach

to building a network architecture that can meet the complex challenges in network man-

agement.

2.3.1 Testbed Facility

To start off, we should first gain some understanding of our target testbed system, Plan-

etLab. PlanetLab is designed as an overlay network that facilitates the design of service-

oriented network architectures by allowing both designers and users to interact and validate

new networking technologies. The PlanetLab nodes are primarily hosted at research insti-

tutions all across the world in order to provide an avenue through which researchers can

test their ideas on a distributed system that is representative of the Internet. The sys-

tem is divided up into slices that are available to researchers, which allow experiments to

run simultaneously on a global scale with minimal interference. We chose PlanetLab as our

testbed not only due to its flexibility in terms of management and programmability, but also

because of its role as a network substrate that experiences congestion, failures, and diverse

link behaviors [17], which we can use to evaluate the performance of our architecture.
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2.3.2 Information-Centric Networking

As suggested by Ghodsi et al. [7], we can find various proposals for data-oriented or

content-centric network architectures, which can be all categorized into the research area of

information-centric networking. Despite the varying terminologies among these proposals,

there are a few key points that all of the major proposals share, indicating a convergence

of ideas as to designing a network archictecture for the future.

First, the publish/subscribe paradigm that provides the foundation for many of these

systems, has been around for over 25 years, thus it is not a new concept. The proposals may

vary the names of their primitives, however, one of the primitives usually corresponds to

publish, which enables information providers to advertise the availability of their content,

while another primitive corresponds to subscribe, which enables consumers to request con-

tent. Second, in ICN designs, when a network element receives a request for content, it does

one of two actions: (i) if it has the data cached, it can respond with the content directly,

or (ii) if it does not have the content cached, it can request the content from its peers and

then cache the content when this request is filled. Last, since the ICN approach results

in content arriving from network elements other than the originating server, the security

model cannot be based on where the packet came from; instead, ICN designs must secure

the content rather than the path. All ICN designs thus adopt a content-oriented security

model in which content is signed by the original content provider, so that network elements

and consumers can verify the validity of the content merely by verifying the signature.

Content-Centric Networking [9] (CCN), which was developed at the Palo Alto Research

Center, pursues the broader goal of promoting a communications architecture built on

named data rather than remaining within the confines of the current network architecture

that focuses on where information is being sent. They introduce the CCN network layer,

along with the strategy and security layers, as an architecture that not only secures content

itself, but also takes maximum advantage of multiple simultaneous connectivities, such as

3G, Bluetooth, and Ethernet. Their architecture is based on two CCN packet types: Interest

and Data, which allows consumers to ask for content that the network can provide either

on a cached or dynamic basis. In order to encourage incremental integration, many of their
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design choices are based on common features of the TCP/IP architecture, which seems

very constraining for our goal of a generalized framework. Instead of limiting ourselves to

end-to-end routing based on a human-interpretable identifying name, our approach, which

is based on the PURSUIT project, will use the rendezvous function as a network primitive

to allow the network to have more flexibility in terms of routing, access control, and other

network functions.

The PURSUIT architecture [25], which is based on work from the PSIRP project, serves

as the foundation for our architectural approach to network management. Its design goals

have a broader scope of expressing the notions of who, what, and why within the network

and removing that burden from application developers. The authors believe that by em-

bedding the needs and concerns of application developers and users in the network, network

architects and managers will be able to adapt the system more dynamically and efficiently

than the point solutions of today. By using the publish-subscribe function as the centerpiece

of their architecture, they claim that the network will be able to better serve its users by

closely matching functionality with expectations. We believe that their approach may be a

viable option towards building the Knowledge plane, given the similarities in motives, e.g.

being able to express the socio-economic tussles that degrade the performance of today’s

networks. We hope to adapt a smaller subset of their system to fit the characteristics of the

PlanetLab environment in order to evaluate the performance gain of network management

from an IP-based system to an ICN-based system.

2.3.3 Network Management

CoMon [16], a monitoring system for PlanetLab, provides us with an example of a system

that gathers observations from a distributed set of nodes and provides some post-aggregation

analysis of the system performance. Some of the primary usages of CoMon include: “Suf-

ficient” monitoring, Community-aided problem identification, Login troubleshooting, and

Node Selection, which are all specifically built for the PlanetLab community. One of the

major concerns that established the need for a monitoring system was the fact that re-

source allocation was not very reliable at the time, where well-behaved experiments often

suffered from poorly-implemented ones, which is very similar to the networking dilemma
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that application performance is heavily dependent on the reliability of the underlying net-

work resources. In fact, in order to support their Node Selection features, they opted to

include a script-like interface that allowed users to find statistics on a per-node basis that

satisfied their specific query, which mirrors our design principle of structuring knowledge

through an XML-based ontology language. We hope to provide a more generalized approach

to network management that can be applied to any network, not limited to PlanetLab.

One of the examples that closely resembles our vision of a self-managing network is

the iPlane project. The designers of iPlane describe it as a scalable service providing

accurate predictions of Internet path performance for emerging overlay services [13]. It

adopts a systematic approach to predicting end-to-end performance based on the compo-

sition of statistics from each segment of the path. This method has shown to be very

effective for overlay applications, such as BitTorrent and VoIP, which have required the use

of application-specific approaches to estimating the state of the network. However, their

approach relies heavily on the probing of an IP-based architecture, which keeps the informa-

tion and knowledge layers tightly dependent. Moreover, their system concentrates all of the

computation and analysis required to build the annotated Internet map at a central agent,

which limits the performance of the system to the amount of available resources at the

central node. We hope to pursue a more event-driven, distributed, and modular approach

to building the Information and Knowledge planes for network management.

Our survey of related works would not be complete without a reference to the pioneering

idea of embedding a Knowledge Plane in the network architecture, described by Clark et al

[4]. They believe that rather than producing a wide variety of point solutions to overcome

today’s challenges, we should instead build a completely new layer in the network that makes

it self-knowledgeable, self-managing, and resourceful for users, application developers, and

network administrators alike. The paradigm of treating the underlying communications

technologies as best-effort services has reached the limits of its potential as we see more

and more users and network managers become frustrated with their inability to understand

how the network is behaving. By introducing intelligence to the network, the system may

eventually be able to make defensible decisions about how to resolve network failures and

avoid inefficient network configurations. We hope to contribute towards this goal of a
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self-managing network by building and evaluating a systematic approach towards network

management that can certainly extract value from a shared network knowledge base.
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Chapter 3

Designing an Information Plane

This chaper presents the main focus of this thesis: the design of the Information Plane

that is centered on a publish/subscribe model of the network. Much of the underlying

infrastructure is based on the publish/subscribe model presented in the PURSUIT project,

thus several of the design concepts and function calls stem from their architecture [24] [25].

Section 3.1 lists some key definitions that will be useful to understand the dynamics of

our information plane. Sections 3.2 and 3.3 describe the role and functions of the publisher

and subscriber, which are located at the edge of the ICN and serve the primary interface

with the real-world. These sections will outline the steps that each node takes in order to

share information across the network and contain a discussion about current assumptions

and their implications for future designs. Section 3.4 describes the role of the Rendezvous

node (RV) and the Topology Manager (TM) which, in this current design, are both located

on a single node in order to minimize failures and latency in the network. Section 3.5

explains how this publish/subscribe model of the network is useful for file distribution and

how that can lead us to the design of a robust Information Plane.

3.1 Definitions

Our design of the Information Plane deals with two main objects: information items and

scopes. An information item represents an object that contains some piece of data or an

entire file, which in our case might be a log of network traffic, packet traces, and other
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types of statistics about the network. Scopes, on the other hand, are similar in nature to

the concept of directories, which allow you to build a hierarchy of items by grouping related

items and scopes together.

An information item can be any form of data that is relevant for a particular user or

application, such as dynamically generated content, a policy rule for other data, or simply

pointers to other user-created data. Each information item is identified with a statistically

unique identifier, which is referred to as a Rendezvous Identifier (RId), that is self-generated

and follows the naming convention used by the publisher of the data. Scopes define a set

of information that are related for a given problem space and, since they are treated as

information items themselves, can form a hierarchy of scopes. Each information item in the

network must be placed in at least one scope and must have an Rid that is unique to the

scope they are assigned to. Scopes are identified through a Scope Identifier (SId) that is

statistically unique within the scope in which it is placed. Figure 3.1 shows an example of

an information graph that contains multiple root scopes, a hierarchy of scopes, and several

information items.

Figure 3.1: Information Scoping in PURSUIT Architecture

With the current version of the underlying ICN architecture, based on the PURSUIT

project, the identifiers for either an item or scope must have a length equal to PUR-

SUIT ID LEN, set to eight bytes in our current implementation. In order to support

variable-sized naming, our design prepends empty spaces to the identifier as necessary in

order to fit the 8-byte identifier chunk. Furthermore, we can support the idea of replicating
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a file hierarchy by breaking up the full file path into eight byte chunks and recursively

issuing commands based on each portion of the identifier from the start to the end of the

path, which is useful for our file distribution example presented in Section 3.5.

Similar to the idea of links in a file system, our network model allows the same piece

of information to be published under different scopes as long as the RId remains unique

under both scopes. Alternatively, the user can generate two different RIds representing the

same file in the local storage, in which case the system would treat them as two different

information items even though they contain the same data.

In addition to the SId, scopes are also characterized by their associated dissemination

strategy, which defines parameters such as the governance structure for identifier creation,

data representation formats, and the required implementation instance of the network func-

tions: rendezvous, topology formation, and forwarding. The Rendezvous function is con-

cerned with the matching of publishers’ availability of information and subscribers’ interest

in it, allowing for the asynchronous arrival of publish and subscribe events. The topology

formation and management function involves using the rendezvous information in order to

create a suitable delivery graph for the transfer of content. The forwarding function can

then use the topology information to deliver the packets that are generated by both the

publisher and subscriber. Together, these functions provide the underlying infrastructure

that supports our publish-subscribe model of the network, while allowing for flexibility in

determining the policies for a given scope or information item.

As will be shown in the later sections, a node can choose to either publish or subscribe

items and scopes by issuing commands that include the object’s identifier as well as the

identifier of the parent scope, which is processed by the Rendezvous Node and Topology

Manager (defined in Section 3.4). In our network model, the only information we store about

an information item or scope is the identifier itself, the list of publishers and subcribers for

that object, and the associated dissemination strategy. All of the meta-data and data must

be provided by the nodes themselves whenever they receive an event that instructs them to

do so.

All of the nodes in the network, including Publishers, Subscribers, Rendezvous nodes,

and Topology Managers, make use of forwarding identifiers in order to communicate with
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each other and participate in the network. A forwarding identifier depicts the path that

should be used in order to reach some subset of the nodes in the network. During the

initialization of the network, pre-defined forwarding identifiers are created to establish links

between each node and its neighbors, each of which has an associated, semantics-free node

identifier that is unique within the local domain. Whenever a publish or subscribe event

is received at a Rendezvous node, it may need to ask the Topology Manager to create or

update a forwarding identifier that matches the publisher with the current set of subscribers.

3.2 Publisher Node

The overall goal of our proposed network architecture is to be able to detect and diagnose

network failures, in addition to taking steps to resolving the issues. In order to perform

diagnosis, for example, the system would need to collect information about the network

traffic in the area of the network failure from neighboring nodes. Information such as packet

traces and logs of network statistics, which are usually collected on a per-node basis, are

some examples of the information that can be useful for detecting network failures. We can

assume that each node has enough processing capability to record both the incoming and

outgoing traffic, in order to collect performance metrics of the network independently from

other nodes. However, many network management tools require information from several

nodes, not just a single node, to perform accurate analysis of the state of the network.

Thus, each node should not assume that the information it collects is only useful for its own

analysis, but rather it can contribute to a larger database of network information that can

be used be higher-level nodes to monitor and adjust the network in an efficient manner.

The publisher node of our system serves as the entry point of real-world information

into the ICN, where files are made available to other nodes in the networks through ad-

vertisements, i.e. a publish event. The publisher starts by publishing a scope using the

publish scope(string ID, string prefixID, Strategy st) function, which creates a new scope

in the information graph. If the prefixID is empty, the scope is published as a root scope.

Otherwise, the prefixID can hold a variable number of SIds that together form a scope path

from the root to the parent scope. Publishing and re-publishing a scope triggers a notifica-
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tion towards existing subscribers of the parent scope specified by prefixID. The published

scope will serve as an identifier for a set of related information items and child scopes within

a possibly large scope hierarchy, both in terms of spread and depth.

A publisher can then advertise the availability of an information item through the pub-

lish info(string ID, string prefixID, Strategy st) function, which creates a new information

item with the specified ID under the scope identified by prefixID. According to the dissemi-

nation strategy st, the piece of information will be published under a scope in the respective

RV node, provided that the scope already exists and the item’s dissemination strategy is

compatible with the parent scope’s strategy.

Figure 3.2: Simple Publish Graph

In Figure 3.2, we can see an example of an information graph that is created by a single

publisher P1 that includes three scopes and a single information item. To create the root

scopes SId1 and SId2, the publisher must issue two commands: publish scope(string SId1,

string(), Strategy st) and publish scope(string SId2, string(), Strategy st). The scope SId3

is also published in a similar manner: publish scope(string SId3, string SId2, Strategy st).

Since the information item will be published under two scopes, we will need to issue two

commands: publish scope(string RId1, string SId1, Strategy st) and publish scope(string

RId1, string(SId2+SId3), Strategy st) where the + operator represents the concatenation

of two strings.
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The actual transfer of data happens after the RV node notifies the publisher of matching

subscribers, thus the end-user applications are responsible for storing all of the published

information items until one or more subscribers for these items appear, given the expected

lifetime of the data. After learning about existing subscribers, the publisher can begin to

publish data for a specific information item by using publish data(string ID, string prefixID,

Strategy st, char *data), which forwards data according to the delivery graph created by

the Topology Manager. In some cases, however, a dissemination strategy may foresee the

existence of subscribers and call for the publication of data without prior explicit notifica-

tion, which is useful for applications such as video streaming. Section 3.5 will describe the

steps required in order to perform reliable file transfer with these publish function calls.

The publisher may also decide that it is no longer wants to publish a particular scope

or information item and issue a UNPUBLISH SCOPE or UNPUBLISH INFO event that

informs the Rendezvous node to update the object’s entry in the Rendezvous table accord-

ingly.

3.3 Subscriber Node

The primary role of the subscriber node in our proposed design is to collect various infor-

mation items that are adverstised through the network, which can be later passed on as

input files to the Knowledge Plane. The Knowledge Plane, which would include various

network management tools, can then analyze the files according to its strategies and goals.

Therefore, the subscriber can be viewed as an intermediary between the Information Plane

and the Knowledge Plane since it will need to subscribe and receive information items from

the network, which are later converted into input files for the analysis tools.

While a publisher node is considered to be the entry point of real-world data into the

network, a subscriber can be thought of as an exit point for information items, moving

them from back into the real-world. The subscriber can start by subscribing to a scope

using the subscribe scope(string ID, string prefixID, Strategy st) function, which indicates

an interest in receiving notifications about scopes and information items contained within

the scope. The prefixID represents a scope path from the root to the parent scope and the
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ID is the identifier of the requested scope. Subscribing to a scope does not result in any

received data at the subscriber other than notifications about published items or scopes,

thus the node would need to subscribe to each information item or scope individually if it

is interested in receiving that data. In a later design, we may decide to provide a listing of

the information items and scopes currently published underneath the specified scope when

a node subscribes to it, perhaps through a special meta-data file that is maintained by

the scope’s publisher, but for simplicity we chose to omit this functionality in our current

design.

In order to receive data, i.e. files, from the network, the subscribe will need to generate a

SUBSCRIBE INFO event that indicates its interest in receiving the data for that particular

information item, despite the fact that the file may not yet be published. The subscriber

can use the subscribe info(string ID, string prefixID, Strategy st) function, after finding

the proper identifier and parent scope for the item it is requesting. This implies that

the subscriber should know, a priori, the naming convention and scope hierarchy that the

publisher will be using. In future designs, we may also want to provide some type of search

capability within the Information Plane, which takes a query and finds the matching files.

However, since IP-based network management tools also require pre-defined identifiers and

known locations of these items, we find the current version of our system to be sufficient

in providing an equivalent functionality. A clear advantage of the publish/subscribe model

is that the network will record all of the subscription requests, even if the item is not

currently published. After the item is published, the network can automatically match up

the publisher with the set of already existing subscribers.

In Figure 3.3, we can observe that Subscriber S1 has subscribed to two different infor-

mation items by issuing the following commands: subscribe info(string RId1, string SId1,

Strategy st) and subscribe info(string RId2, string(SId2+SId3), Strategy st). Even though

the information item RId1 has no exisiting publishers, the system records the set of sub-

scribers who anticipate the publication of that information item. On the other hand, since

the information item RId2 does have an existing publisher P1, the Rendezvous node will

match the publisher and subscriber by sending a notification to Publisher P1 to begin

publishing the data fragments for the information item.
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Figure 3.3: Simple Subscribe Graph

The subscriber may also decide that it is no longer interested in a particular scope or

information item and issue a UNSUBSCRIBE SCOPE or UNSUBSCRIBE INFO event that

informs the Rendezvous node to update the set of subscribers for the object accordingly.

For our file distribution scheme, described in Section 3.5, the subscriber node will always

unsubscribe from an information item after it correctly receives all of the file’s fragments,

which assumes that files do not change after being published to the network. This feature

will prove to be essential in determining when to activate our heartbeat mechanism that

accounts for late-arriving subscribers.

3.4 Rendezvous Node and Topology Manager

In our system, the Rendezvous Node in conjuction with the Topology Manager provide the

underlying functionalities of an information item directory service as well as a centralized

routing service. As mentioned previously, our current design uses a single Rendezvous Node

and a single Topology Manager, which are both located within a single node. The advantage

of this approach is that we can decrease the latency of interactions between the Rendezvous

Node and Topology Manager, thus allowing us to provide faster service for publisher and

subscriber nodes. Unfortunately, it also brings a few disadvantages, namely it introduces

a single point of failure for the network and would not be scalable for a larger network
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of nodes. Our group is currently working on enabling multiple Rendezvous nodes within a

single network, which can coordinate to distribute the responsibility of tracking publications

and subscriptions, for a later revision of our system. In the future, we would also want to

enable multiple Topology Managers, in order to distribute the workload across multiple

nodes, but unfortunately we have not gained enough experience with the architecture to

provide this in the current system.

The Rendezvous node is primarily in charge of maintaining the table of publications

and their respective subscribers. Whenever it receives a publish event, it can refer to the

table to see if the publication exists and identify the set of subscribers, if they already

exist, who should receive a notification about the publish event. If it determines that the

publication is not part of its current table, it can create a new entry by recording the

item’s identifier, the parent scope’s identifier, and the identifier of the node who generated

the publish event. Additionally, the Rendezvous node can process subscription requests by

looking for the desired information item or scope within its current table. If it does not find

the appropriate entry, it can choose to either store the subscription request by creating a

new entry that does not have a current publisher or, if it finds that another Rendezvous node

holds responsbility for the item, asks the Topology Manager to update the delivery graph

between the publisher and the set of subscribers by updating the forwarding identifier.

Table 3.1: Rendezvous Table Example

Table 3.1 illustrates an example of the Rendezvous Node’s table of publications, based on

the information graph presented in Figue 3.3. One thing to point out is the existence of the

last two entries of the table, representing the same information item RId2, which suggests
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two different information items in the network even though Publisher P1 knows that they

are referencing the same piece of data. This allows the Publisher P1 to unpublish one of

the items without affecting the other, which may result from policy and security concerns.

A subscriber would need to provide the prefix ID when subscribing to an information item

in order to be added to the correct entry in the Rendezvous Node’s table.

The Topology Manager holds the responsibility of providing a routing service both

during the initialization of the network and during its use, particularly by establishing for-

warding identifiers that represent a channel between a publisher and a set of subscribers. It

is designed to find the optimal forwarding paths from publishers towards subscribers, taking

into account dissemination policies and current network conditions. Information about the

state of the network is provided by helper functions, which continously collect the relevant

network statistics. The initialization of network connectivity will entail the instantaneous

dissemination and gathering of network knowledge, in which case each node could announce

its existence by broadcasting a scope whose scope ID is equivalent to the node’s ID. In sim-

ilar fashion, it could continue to learn about the network connectivity if nodes correctly

infer their neighbors through the broadcasts and recursively broadcast new scopes using

the scope ID of the received broadcast as the parent ID. The details of this mechanism are

described in the PURSUIT deliverable [25], however, for our purposes, we can assume that

the Topology Manager will have a broad enough view of the network topology, thus it will

be able to create a delivery graph that may include the use of relay nodes, which are not

specifically subscribed to the item but can help reach all of the subscribers in an efficient

manner.

3.5 File Distribution

This section describes the steps required in order to support reliable file transfers between

a publisher and a set of subscribers in our publish/subscribe model of the network. In

short, the publisher will advertise files that it currently holds in storage and wishes to make

available to other nodes in the network through a publish event, while the subscribers will

indicate their interest in a particular file by generating a subscription event that the Ren-
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dezvous Node will process. The Rendezvous Node and Topology Manager will work together

to establish a delivery graph between a publisher and the matched set of subscribers.

In order to provide a reliable file transfer service, we must complete several steps:

• Recursively publish/subscribe both information items and scopes based on their com-

plete identifiers

• Provide segmentation functionality for large files that allows both publishers and

subscribers to identify the location of a fragment within the file

• Establish a bi-directional channel between the publisher and subscriber for retrans-

mission requests and replies

• Determine the state of the file transfer based on publish events

• Account for late-arriving subscribers by publishing periodic heartbeats

One must note that with our current design, the publisher and subscriber must pre-

determine and agree upon the process by which the scope hierarchy is generated, in addition

to knowing the naming convention used to generate the full identifier of the information

item. They may choose to overload the information item’s identifier in order to display

certain characteristics, or tags, of the file it represents. Similarly, we can potentially provide

a search feature through an appropriate hierarchy of scopes, where the scopes themselves

also provide clues about the characteristics of information items and scopes beneath it.

We can first simplify the expected structure of the scope hierarchy by imitating the

underlying file system through a hierarchy of scopes that represent the full path of any

given file. For example, a file whose full path on the local disk may look like /root-

dir/dir1/dir2/exampleitem.bin should have an equivalent path in our network’s Rendezvous

tables that looks like /rootscope/scope1/scope2/exampleitem.bin.

Since the identifiers in our architecture must have a fixed length, we support variable

length file paths by prepending additional spaces as necessary. In particular, we begin by

splitting the file path (excluding the filename itself) by using the ”/” character as a token.

For each intermediate directory in the path, we prepend the spaces in order to make the

component’s name have a length that is a multiple of PURSUIT ID LEN. We can then
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recursively publish scopes starting from the first directory in the path until to the parent

directory of the file itself, while publishing intermediate scopes as necessary. In a similar

manner, we can parse the filename itself by prepending spaces to the beginning of the

filename and recursively publishing scopes until we reach the last PURSUIT ID LEN-sized

chunk, which is used as the information item’s identifier in our information graph.

In Figure 3.4, we can trace through the steps involved in converting a file path, defined

by the local storage, into an appropriate hierarchy of scopes that is compatible with the

underlying PURSUIT architecture. The instructions listed on the left side of the figure

outline the main steps of our algorithm, which supports variable-sized components of the

file path by appending the necessary amount of empty spaces to generate 8-byte scope

identifiers. The algorithm can then specify the parent scope of a given file path component

by using the modified file path up to that point. Note that for simplicity, our algorithm

ignores components that are either ”.” or ”..”, which is used in Linux to represent a link

to the current directory and the parent directory respectively, since in some cases we may

not have access to the referenced directory’s name. Thus, one could say that our scope

hierarchy scheme flattens the hierarchy of the file path to only contain the properly named

directories. Nonetheless, the scope hiearchy that is generated through our algorithm for the

example file path is depicted on the right side of the figure.

The subscriber can then take a similar approach, assuming that it already knows the

expected path of the file it is interested in. However, it will only need to subscribe to the

direct parent scope of the information item and the information item itself. As mentioned

previously, our publish/subscribe model also naturally supports the concept of links, where

an item can ”reside” within multiple directories, by allowing a publisher to publish the

same information item under two different scopes. Our system, however, currently does not

support file system-defined links, such as soft links in Linux, we expect the publisher to

have a full copy of the file residing within the parent directory. In a later revision of our

design, we may decide to allow a publisher to specify whether it is publishing a file or a

shortcut to an already existing file.

Our design also provides a segmentation feature that allows publishers and subscribers to

share large files across the network by breaking up files into fixed-size chunks that can fit into
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Figure 3.4: Conversion from File System Hierarchy to PURSUIT Scope Hierarchy

a transmissible packet. Since our Information plane currently resides above the standard IP

layer, we must design a packet structure that fits within an encapsulated IP packet, whose

size is usually on the order of 1,500 bytes. Therefore, the Publisher node will generate

fragments that contain 1,024 bytes of data and generate an appropriate fragment identifier

which includes both the identifier of the information item and the packet’s sequence number.

Moreover, our design also includes the total number of fragments for a given information

item within the identifier of the published fragments, allowing the subscriber to deduce the

expected number of fragments and build a bitmap that tracks the set of already received

fragments.

The segmentation feature of our design is portrayed in Figure 3.5, where the file item.bin

is split into chunks of 1,024 bytes as shown in the top right corner of the figure. If we assume

that the information graph is the one shown in the left side of the figure, we can then build

a fragment identifier that includes the original item’s identifier as well as two other values:

the total number of fragments n and the fragment number Fj of the current chunk. The

fragments are then published using the publish data command as illustrated in the bottom
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Figure 3.5: Fragmentation Scheme

of the figure. The DOMAIN LOCAL value is used for the strategy field, since it instructs the

Rendezvous node to use longest-prefix matching to identify an already existing forwarding

identifier created for that particular information item ”filerootitem.bin”, which is provided

as the prefix ID, in order to correctly delivery the data fragments of the file to the set of

subscribers.

Due to the nature of our publish/subscribe model of the network, we must take ad-

ditional steps in order to create a bi-directional channel between the publisher and each

subscriber, which will be used in order to transmit retransmission requests and replies. We

can seperate the bi-directional channel into two single uni-directional channels, one in which

the original publisher will publish retransmitted fragments to the subscriber and the other

in which the subscriber will publish retransmission requests to the publisher. Our current

design establishes the scope for both channels on a per-item basis whenever the information

item is initially advertised to the network by calculating the SHA-1 hash of the item’s full

identifier, which is used as the identifier for the scope where retransmission requests will be

published, and the SHA-1 hash of the output from the previous hash function, which serves

as the identifier of the scope where retransmitted fragments will be sent to the subscriber.

Figure 3.6 depicts two main stages of our reliability scheme, which involves creating

scopes with algorithmically generated identifiers for retransmission requests/replies. Recall
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(a) Information Graph with Algorithmically Generated Scopes after Item Publication

(b) Information Graph after new Subscribers

Figure 3.6: Reliability Scheme for the Publish-Subscribe Model

that we can solve the problem of establishing a bi-directional channel between the publisher

and a subscriber by initializing two uni-directional channels. Whenever a publisher,such

as N1 in this example, decides to publish an information item, in addition to publishing

the item under the parent scope, it also publishes two additional scopes. The first scope,

denoted by ALGID1 in Figure 3.6(a), represents the scope for retransmission requests,

which the publisher automatically subscribes to. The second scope displayed in Figure

3.6(a), denoted by ALGID2, is used by the publisher to reply to retransmission requests,

thus it automatically publishes this scope during the first stage. Figure 3.6(b) illustrates the

second stage of our reliability scheme, which is triggered after the first matching subscription

request. In this example, there are two nodes who issue subscription requests for the

information item, namely nodes N2 and N3. Each of the subscribers will generate a random

ID that will be used as the identifier for both uni-directional channels within their respective
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scopes, represented in Figure 3.6(b) as S2 randomID and S3 randomID. Since the publisher

is already subscribed to ALGID1, it will receive notification of any published retransmission

requests and reply with the missing fragments accordingly.

To determine the set of packets that should be included as part of the next retransmission

request, the subscriber does two things: a) maintain a bitmap, whose length is equal to the

total number of fragments, tracking the received packets by setting its corresponding bit

value in the bitmap to 1, b) initiate a timeout loop that decrements a timeout counter for

each fragment such that when the counter reaches zero, the corresponding packet is deemed

to be lost and its sequence number is included in the next retransmission request. In

order to reduce the number of retransmission requests that the publisher might receive, the

subscriber attempts to request only consecutive sets of fragments by providing the sequence

number of the first lost fragment and the total number of consecutive lost packets behind

it. Since the subscriber linearly scans the bitmap before generating the next retransmission

request, this design choice seems to be a natural choice.

An information item may be in one of three primary states: published with no sub-

scribers, published with subscribers, or subscribed with no publishers. Whenever a publisher

advertises an information item through a PUBLISH event, the item enters the published

with no subscribers state, in which the item’s identifier and the identifier of the publisher

node are stored within the directory table of a Rendezvous node. The publisher should not

publish any pieces of data to the network since none of the other nodes have expressed an

interest in that information. However, when another node does subscribe to that partic-

ular information item, the item enters the published with subscribers state, in which the

subscriber expects to receive all notifications and data that pertain to that particular item.

The publisher will receive a START PUBLISH event, which indicates the presence of a first

subscriber, as a signal to begin publishing all of the data that is referenced by the published

information item. The current system, however, does not generate START PUBLISH events

after each new subscriber, therefore, as will be described below, our design must include a

mechanism that accounts for late-arriving subscribers.

After all of the subscribers decide to remove their interest in the information item by

generating UNSUBSCRIBE INFO events, the information will return back to the published
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Figure 3.7: Publication State Diagram

with no subscribers state. The subscribed with no publishers state is particularly interesting

since it allows subscribers to express their interest in an information item that is currently

not published, suggesting that even though the item does not currently exist, the subscribers

expect that it will be published in the future. Therefore, when the information is finally

published to the network, the Rendezvous node can automatically create a match between

the publisher and the set of subscribers, which will lead the publisher to immediately begin

publishing the available data. Figure 3.7 illustrates the various states of an information

item and includes a description of the transitions between them and the main tasks for the

nodes within each state.

In order to account for late-arriving subscribers, who may or may not result in a

START PUBLISH event, our design of the publisher includes a heartbeat mechanism, which

periodically publishes a packet for each information item that is currently in the published

with subscribers state. In particular, our design chooses to publish the first fragment of the

file as the periodic heartbeat, although alternatively one could publish meta-data about the

information item. Upon reception of the heartbeat, late-arriving subscribers will initialize

their timeout loops and begin to generate retransmission requests for the rest of the frag-

ments, which results in the eventual reception of all fragments at each subscriber without

overloading previous subscribers.
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Chapter 4

Integrating the Knowledge Plane

This chapter presents a brief overview of the Knowledge Plane as well as some examples

of tools that may be useful for network management systems. Section 4.1 provides further

insight into the concept of the Knowledge Plane, including examples of previous work within

our group. Section 4.2 contains a description of tcpdump, a popular command-line packet

analyzer, that could be used by nodes to generate data that will be shared in the Information

Plane. Similarly, Wireshark, a more comprehensive network protocol analyzer, is commonly

used as both a data collection and data analysis tool, as outlined in Section 4.3. A simpler

data analysis tool, namely TCP Trace, can be used to generate rates of traffic and track

sessions based on packet capture files from other tools, as explained in Section 4.4. Section

4.5 describes CAIDA, an organization that not only provides access to anonymized network

logs but also provides links to tools that perform various kinds of analysis on these files,

e.g. CoralReef (Section 4.5.1) and iatmon (Section 4.5.2).

4.1 Overview and Previous Work

The Knowledge Plane, as described by Clark et al. [4], involves a control plane that manages

the underlying Information Plane in an effort to enable a self-managing network. At a

high level, the Knowledge Plane gathers observations and constraints, to which it applies

reasoning in order to generate responses to any queries about the state of the system. It

requires the cooperation of many hosts and servers in sharing information, regardless of
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whether or not it was the original source of the data. By embedding concepts of knowledge

representation and dissemination, incorporating machine learning techniques, supporting

policies on trust and security, in addition to numerous other mechanisms, the Knowledge

Plane represents a network archictecture that is fully capable of addressing new challenges

in network management and the increasing requirements of network applications. The rest

of this section will review a few key contributions made by previous researchers in our group

in building a Knowledge Plane, thus motivating the need to evaluate the applicability of a

publish/subscribe model for the Information Plane.

Li [11] presents the concept of agents, which is a participant that works together with

others to perform a task such as collecting packet traces or running sophisticated intrusion

detection techniques. More interestingly, these agents may also issue requests to other agents

in the form of a message that looks for an answer to a particular problem or delegates tasks

to achieve a common goal. For example, intrusion detection becomes very difficult when the

attacker spreads the malicious traffic workload over multiple paths in the network, however,

an agent can send requests to numerous local detectors in order to perform a more powerful

aggregate analysis. From a higher-level perspective, the Knowledge Plane can be separated

into two parts: 1) network knowledge plane (NetKP): which is an application-independent

mechanism that collects general characteristics about the network, 2) specialized KPs (Spec-

KPs): which are application-specific, specializing in different areas in order to achieve a

certain level of functionality under a given set of constraints. In this manner, the agents can

collaborate together within the network knowledge plane or, perhaps for security reasons,

focus on a particular region or problem that is traditionally handled within a local domain.

In a similar train of thought, Lee [10] introduces an approach to fault diagnosis based

on a Common Architecture for Probabilistic Reasoning in the Internet (CAPRI) in which

distributed, heterogeneous agents with different capabilities and goals conduct diagnostic

tests based on shared observations, beliefs, and knowledge to probabilistically infer the

causes of failures in the Internet. Since diagnosis usually requires the communication of

diagnostic information among multiple diagnostic agents, CAPRI provides a common lan-

guage for the representation and communication of network diagnostic information through

an extensible, distributed component ontology. Additionally, CAPRI provides a common
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service description language that enables agents to describe diagnostic capabilities simply in

terms of their inputs and outputs. In this manner, agents can advertise their own diagnostic

capabilities in order to enable the aggregation of multiple specialized services. This idea of

advertising diagnostic capabilities mirrors the concept of advertisement in the Information

Plane, where a publisher indicates the presence of a file that is available through a publish

event.

Beverly’s dissertation [2] addresses network management from a machine-learning per-

spective, suggesting that network architects should find ways to embed intelligence into

the network, both at the core and at the end-nodes. Adding intelligence to end nodes is

not an entirely new concept, given that they already contain a variety of intelligent func-

tionalities, however, there is still room for nodes to gather and use data in non-traditional

ways to their advantage. On the other hand, adding intelligence to the network core is a

very contentious idea among network architects but, given the ever increasing demands of

network applications, is an idea that should be explored, as exemplified by the concept of

the Knowledge Plane. Beverly identifies three major areas that can benefit from learning

including: optimizing network performance, mitigating security threats, and learning as a

fundamental element in network architecture. We believe that embedding intelligence into

the network architecture, through a substrate such as the Knowledge Plane, is the key to

meeting the demands of future network applications and thus hope to contribute to the

cause through the development of the Information Plane.

The remaining sections of this chapter include several examples of network analysis

tools, whose functionalities mirror those we would expect to see in the Knowledge Plane.

An interesting thing to note is that these tools tend to produce similar outputs given the

same dataset, thus we believe it would sensible to allow applications to share data, through

our publish/subscribe-based system, rather than having them independently produce the

same results. This would both increase the efficiency of computations and network traffic

as well as enable the aggregation of results as input into tools that perform higher-level

analysis.
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4.2 tcpdump

tcpdump [8] is commonly referred to as a packet sniffer, since it can intercept all of the

incoming and outgoing packets through a particular network interface and record various

kinds of information, such as the packets themselves, packet headers, or some other aggre-

gated form of network traffic information. The program allows the user to specify whether

its output should show up directly in the terminal, since it is designed as a command-line

library, or send the captured information to an output file that can be saved for later use. In

order to read already existing capture files, the user can include the ’-r’ option that instructs

tcpdump to read from a file rather than perform live recording of a network interface. For

most of the network management scenarios that we consider, it is very likely that the output

of a tool like tcpdump would be recorded on the local disk storage and published to the

Information Plane.

You are allowed not only to specify the network interface you wish to capture packets

from, but also to define a particular expression that is used by tcpdump as a filter to retrieve

information only from matching packets. For example, one could specify a particular output

port or destination to only capture packets from traffic streams that correspond to a specific

applications. Since tcpdump is familiar with many of the popular network protocols, one can

specifically capture network protocol packets such as SYN and FIN packets from TCP traffic

streams. tcpdump can also be configured to capture only a specified number of packets, in

addition to the default mode of collecting all packets until it is issued an interrupt signal

by the user.

Figure 4.1: tcpdump Example Output
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Figure 4.1 illustrates a simple use case for tcpdump, we configure the program to read

from an already existing file and apply a particular filter that selects packets of interest.

The ’-c’ option indicates the number of matching packets to find before exiting, while the

’-r’ option allows us to specify an input file to read from, which in this case is a pcap file

generated from another packet capture tool. Alternatively, we could have also captured live

data from our network interface by omitting the ’-r’ option and instead providing the name

of the network interface that we wish to observe. More importantly, tcpdump accepts an

expression field that identifies the characteristics that the packets of interest must have. In

this case, we wanted to focus solely on the first 25 IP packets that have a length greater

than 64 bytes.

4.3 Wireshark

Similar to tcpdump, Wireshark [5] can also perform live captures of packets traversing a

local network interface, in addition to offering many other features such as a GUI and

promiscuous mode capturing. The GUI provides a very user-friendly view of the captured

packets and allows you to display/hide certain characteristics of the packet, such as packet

length, payload, checksums, etc. The program can also be configured to install TShark, a

text-based command-line library, which is nearly identical to tcpdump. Wireshark accepts

a variety of input file types including pcap, Cisco Secure IDS iplog, and Microsoft Network

monitor, and supports various types of offline analysis. It even allows the user to modify

existing input files and create new ones, a feature which was used for our experiments that

involved varying file sizes.

Wireshark is also able to perform deep packet inspection of packets from hundreds

of protocols, a number that continues growing as developers contribute their work. This

enables the application to display human-interpretable information, within the GUI, about

each packet it has captured and, in some cases, color codes packets from different streams

for increased readability. Additionally, it provides the opportunity to generate various

types of visualizations representing different characteristics of the set of captured packets.

All together, Wireshark supports a wide variety of application scenarios, such as: network
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administrators troubleshooting network problems, network security engineers examining

security problems, developers debugging protocol implementations, and users learning the

internals of network protocols.

(a) Wireshark’s Summary Feature

(b) Wireshark Filtering and List Display

Figure 4.2: Wireshark Example Outputs

Figure 4.2 displays a couple of partial screenshots of the Wireshark GUI, which allows

you to perform a variety of analysis techniques and present the results in a user-friendly

manner. As mentioned previously, Wireshark is designed to accept a variety of input files

that contain traces of network traffic, including the pcap files that we are using for the

experiments. Figure 4.2(a) contains a bird’s eye-view of some of the common network

statistics we can easily measure for a stream of packets, such as total number of bytes

51



and the amount of time between the first and last recorded packet. Similar to tcpdump,

Wireshark supports the use of expressions to find packets of interest, as shown in Figure

4.2(b). In this example, we are focusing on captured packets that are part of TCP streams

and ordered them according to the total number of packets transmitted from a particular

endpoint.

4.4 TCP Trace

Developed by Shawn Ostermann, TCP Trace [15] is a network analysis tool that specifically

targets TCP dump files, i.e. files with captured packets from TCP sessions. The TCP dump

files, captured by programs such as tcpdump, snoop, and etherpeek, are processed in order to

calculate various statistics such as elapsed time, bytes and segments sent and received, etc.

In particular, the three types of text outputs are: a) detailed statistics, which includes list of

common network metrics such as average segment size and throughput, b) RTT statistics,

which estimates the RTT between a TCP sender and receiver using the timestamps, and

c) CWND statistics, which estimates the size of the congestion window during the TCP

session.

TCP Trace also includes graphing tools that provide a visualization of the behaviors of

the TCP sessions that are being analyzed. For example, a time sequence graph that shows

the general activity and events that happened over the duration of the TCP session, such

as congestion window updates and retransmission requests. The throughput graph displays

the estimated throughput value over each time interval of the TCP session, while the RTT

graph is an analogous illustration of the RTT estimate during each time interval. There

are a number of other supported graphs which together help form a better picture of the

characteristics of the TCP session that is being analyzed. One can imagine using a tool like

TCP Trace to diagnose particular instances of network failures as well as to evaluate the

efficiency of TCP variants.

The TCP Trace program can interpret most types of network dump files and produce

an output that aggregates packets according to the TCP flow they are a part of, as depicted

in the example output in Figure 4.3. By grouping packets together according to their traffic
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Figure 4.3: TCP Trace Example Output

stream, i.e. between a single source-destination pair, TCP Trace simplifies the task of

identifying the packets that correspond to a particular TCP session, a task that is usually

performed manually by the network administrator but is unscalable for large dump files.

TCP trace also provides an option to display the output on a graph, e.g. a time sequence

or an RTT estimate graph, however, since our example file is anonymized and primarily

contains unidirectional traffic, we could not produce an interesting example to include here.

4.5 CAIDA

The Cooperative Association for Internet Data Analysis (CAIDA) [22] is a collaborative un-

dertaking among organizations in the commercial, government, and research sectors aimed

at promoting greater cooperation in the engineering and maintenance of a robust, scalable

global Internet infrastructure. CAIDA’s mission statement is to investigate practical and
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theoretical aspects of the Internet in order to: a) provide macroscopic insights into Inter-

net infrastructure, behavior, usage, and evolution, b) foster a collaborative environment in

which data can be acquired, analyzed, and (as appropriate) shared, c) improve the integrity

of the field of Internet science, d) inform science, technology, and communications public

policies. It aims to achieve these goals through three main program areas: a) Research and

Analysis, 2) Measurements, Data Procurement, and Curation, c) Data and Tools.

For the purposes of this thesis, we primarily focus on the Data and Tools component,

since it provides us with anonymized packet trace files that can serve as input into our

Information Plane and references examples of network analysis tools. The files used in the

experiments presented in the Results section of this thesis (Chapter 5), were derived from

existing trace files provided by CAIDA. Additionally, as will be presented in Sections 4.5.1

and 4.5.2, we found various tools, supported by CAIDA, that are examples of the tools and

features that we expect the Knowledge Plane to incorporate in the future.

4.5.1 CoralReef

CoralReef [23] is a comprehensive software suite developed by CAIDA to collect and analyze

data from passive Internet traffic monitors, either from live captures or already existing

trace files. The package includes support for standard network interfaces and specialized

high performance monitoring devices, as well as applications for capture, analysis, and web

report generation. The CoralReef 3.0 release introduced the libcoral library, which provides

an API that developers can use to create new Internet traffic analysis tools. Additionally,

it includes a suite of software solutions for monitoring and analysis of network traffic data.

The software suite is designed in layers, such that the drivers for network interfaces are

located at the lower layer and HTML reports that can present output from various analysis

programs are located at the higher layer.

Figure 4.4 includes sample output from CoralReef’s crl stats program, which analyzes

a network traffic capture file and calculates various statistics about the underlying traffic

streams. For example, we can easily determine the total number of unique IPv4 addresses

as well as the balance between unique sources and unique destinations, which might be

particularly interesting for a network user who is designing a client-server application. The
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Figure 4.4: CoralReef Example Output

online documentation for CoralReef includes the description of an example toolchain that

results in a live HTML graph displaying certain features of the network traffic that the

program is capturing. As mentioned earlier in this section, CoralReef also includes the lib-

coral library which allows designers to utilize already existing CoralReef tools to create new

network analysis tools, an idea that resonates well with the extensibility of the Knowledge

Plane to target specific network management requirements.

4.5.2 iatmon

A common practice to study malicious activity on the Internet is to employ network tele-

scopes which record unsolicited one-way Internet traffic. However, since traffic levels con-

tinue to increase at an unimaginable rate, it has become more difficult to aggregate sets

of one-way traffic, thus leading Nevil Brownlee to develop iatmon [3] (Inter-Arrival Time

Monitor), a freely available measurement and analysis tool that allows you to separate one-

way traffic into clearly-defined subsets. It can be described as a monitor that reads network

trace data from a file or live interface, builds a hash table of source addresses for one-way

traffic, and writes summary files describing the one-way sources.

Figure 4.5, replicated from Brownlee’s paper, provides an interesting story about the

nature of traffic workloads from January 1st to July 1st of 2011 as observed from his ma-

chine. We can observe that some of the common traffic types include uTorrent, TCP and

UDP, UDP probes, among others. While some traffic types vary greatly over time, such as
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Figure 4.5: iatmon Example Output [3]

the UDP other traffic, other traffic types, such as uTorrent, seem to stay relatively stable

over time. Even tools that provide a simple feature, like separating one-way traffic into

clearly-defined subsets, can be of incredible help to network administrators who wish to

better comprehend the network behaviors they are diagnosing. One could also imagine

that distributed network management tools would benefit from sharing this type of aggre-

gated data rather than having to execute the same operation at each node, which is easily

supported by our publish/subscribe model of the network.
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Chapter 5

Results

This chapter provides a detailed performance analysis that compares our system to current

IP-based protocols that are used to share files among various nodes across the network.

The experiments involve varying file sizes across different publisher-subscriber pairs. Since

we intend to analyze the performance of general file transfer using our system, we decided

to use two current protocols that are commonly used for file transfers, namely File Transfer

Protocol (FTP) and Secure Copy (SCP).

Section 5.1 presents the results of using ftp, scp, and publish-subscribe as a file trans-

fer service, including a comparsion analysis that provides insight into the efficiency of our

system. Section 5.2 provides a detailed explanation of key improvements that the publish/-

subscribe model provides, which may not be apparent in the results recorded in Section

5.1.5. Ideas for future improvements, based on the insights gained from the performance

analysis, are presented in Section 5.3.

5.1 File Distribution Example

In this section, we describe the results of our performance analysis of various tools that

provide a file transfer service, including our design based on the publish-subscribe model.

We begin by describing the use of PlanetLab as a test environment in Section 5.1.1. Section

5.1.2 provides an overview of the File Transfer Protocol (FTP), which utilizes a client-server

architecture to allow file sharing across network nodes. On the other hand, Section 5.1.3
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describes the Secure Copy (SCP) program, which allows a node to transfer a file securely

to another node in the network over an Secure Shell (SSH) connection. More importantly,

Section 5.1.4 presents our publish/subscribe-based system that supports reliable file trans-

fers between a publisher and a set of subscribers. A comparative analysis of these various

file transfer services is provided in Section 5.1.5.

Our test plan for obtaining a performance analysis of these three programs involves

varying the file size of the information item that will transferred from a source node to

destination node, i.e. publisher to subscriber. The set of file sizes we chose to experiment

with are: 1MB, 10MB, 50MB, 100MB, and 500MB. Varying the file size is straightforward

to perform with each of the programs, since that simply requires varying the size of the input

file and measuring the corresponding network statistics, e.g. throughput and time for the

file transfer. We could have also experimented with varying the number of publishers and

subscribers for a single information item, as well as changing the topology of the network,

however these parameters are slightly more complex to configure with FTP and SCP since

they assume a single publisher and a single subscriber in addition to implicitly using the

already existing underlying network topology, i.e. the Internet. For future iterations of our

design, we should consider evaluating the performance of our system compared to FTP and

SCP using a wider variety of parameters and configurations.

5.1.1 PlanetLab test environment

PlanetLab represents a world-wide network of nodes, hosted both at public and private

institutions, that is available for researchers who wish to perform experiments and devel-

opment related to the field of computer networking. As suggested in Section 2.3.1, we

chose to use PlanetLab for our experiments due to its role as a network substrate that is

very representative of a public network, such as the Internet. After completing registration

with PlanetLab, the system will automatically distribute your public key to a subset of the

available nodes, i.e. nodes that are assigned to your slice of the network, thus allowing you

execute a remote login session, such as SSH, in order to configure and deploy the network

application.

In order to perform our experiments on PlanetLab, we needed to complete the following
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steps. First, we chose ten nodes at random that seemed to have fairly reliable connections

to the Internet and installed the required libraries for our application, e.g. the Blackadder

library (the foundation of the PURSUIT architecture) and openssl. We also needed to define

a configuration file for Click (the modular router that is used by Blackadder) that included

the set of nodes we chose and specified the connections between them from an overlay net-

work perspective. Once all of the necessary libraries and configurations are installed at each

node, we can then begin running experiments where publishers advertise information items

that are later transferred to subscribers who are interested in a particular file. However, in

order to protect against users who attempt to use an unfair share of the PlanetLab nodes,

most of the nodes have an established daily bandwidth limit, usually around 10GB. There-

fore, we decided to configure a second network of nodes, which are Internet2 nodes that do

not have a daily bandwidth limit, in order to perform the experiments that involve large

files sizes (100MB and above).

5.1.2 FTP

File Transfer Protocol (FTP), as presented in RFC 959 [18], is a network protocol that

enables file transfers from one host to another over a TCP-based network, such as the

Internet. The protocol has four main objectives: 1) promote sharing of files, 2) encourage

implicit use of remote computers, 3) shield a user from varying file systems, and 4) transfer

data reliably and efficiently. It is designed as a client-server architecture, where the user

initiates a connection with the server host and, provided that they have valid credentials,

can interact with the file system at the server. The credentials primarily consist of a valid

login name and password pair, which then authorize the user to execute common file system

commands, such as ls (list contents of a directory) and cd (change the working directory),

on the remote file storage device.

FTP is composed of two primary channels between the client and server, namely an

FTP request-reply channel and a Data Connection channel as depicted in Figure 5.1. The

FTP commands, which specify the parameters for the data conncetion (e.g. data port and

transfer model) and the nature of file system operation (e.g. store, retrieve, append, and

delete). After receiving an appropriate sequence of FTP commands, the server will initiate
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Figure 5.1: FTP Client-Server Model [18]

the data connection and data transfer in accordance to the specified parameters. The client

can then receive the data by listening on the specified data port and process it in order

to store the data on the local file system. The manual page for the ftp command, which

includes the various parameters and options, is defined in [12].

For our test environment, we must take a few steps in order to create a configuration

that will be comparable to the configuration of our publish/subscribe system. We must first

establish a FTP server at each publisher node in order to allow subscriber nodes to initiate

FTP connections with them and request files from the server’s storage. In particular, we

chose to use the vsftpd (Very Secure FTP daemon) program, described in [6], to instantiate

an ftp server at the publisher node since it is compatible with the Fedora distribution in

the PlanetLab nodes and supports both secure and unsecure FTP. Each subscriber node

can then establish their own FTP session, using a program such as wget [14], with the

publisher to locate and download files that they are interested in. We configured the vsftpd

program such that a client can simply provide the login name and password pair used for

the PlanetLab account, in order to receive authorization to access the file system on the

remote server.
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5.1.3 SCP

The Secure Copy (SCP) program provides a method of securely transferring files between

two hosts over an unreliable network. It uses Secure Shell (SSH), defined in a number of

RFCs including [27], for data transfer and uses the same mechanisms for authentication,

which ensures the authenticity and confidentiality of the data. SSH is a protocol for secure

remote login, in addition to other secure remote services, over an insecure network. It con-

sists of three major components: Transport Layer protocol, User Authentication Protocol,

and Connection protocol. Similar to FTP, SSH establishes multiple channels between the

local host and the remote host in order to agree upon connection parameters and share

data. SCP defines a specific application environment, where SSH is used to simply share

files between the two nodes instead of more general remote services. The manual page for

SCP, provided in [19], lists the options and parameters for performing a secure file transfer.

SCP provides a functionality that is very similar to FTP, however, since these programs

were developed independently, we have decided to include SCP as an alternate benchmark

to evaluate our publish/subscribe system. It involves generating public-private key pairs to

encrypt the network connection and then using password authentication to log in. In this

case, SCP also supports the use of the already existing PlanetLab account, i.e. login name

and password pair, in order to authorize the transfer of files from one node to another.

The program accepts two filenames, the first representing the source file and the second

representing the destination file, each of which can either be local or remote files. Therefore,

for our test environment, the subscriber will need to know a priori the files that are available

at the publisher. However, we believe that this is stil an acceptable program to compare

to, since our current version of the publish/subscribe system involves the assumption that

the subscriber knows a priori the naming convention of the files it is interested in. Thus,

an equivalent assumption can be used to validate the workflow of SCP.

5.1.4 Publish/Subscribe System

Section 3.5 explained, in great detail, our scheme for providing a reliable file transfer service

through our publish/subscribe model of the network. Here, we will review some of the main
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steps that allow us to support the sharing of information between a publisher and a set of

subscribers.

Recall that our file distribution scheme is composed of two main stages: one where the

publisher establishes the algorithmically generated scopes after publishing a particular in-

formation item, the other where the subscriber calculates a random ID that is used as an

identifier of the unique retransmission channel between the publisher and the subscriber.

After publishing the information item, the publisher will also publish two scopes, the first

which is used by the subscribers to publish their retransmission requests, while the second

is used by the publisher to reply to individual retransmission requests that may be arriving

from different subscribers. Each subscriber, upon receiving a fragment corresponding to an

information item they have subscribed to, will generate a random ID and publish an infor-

mation item under the first algorithmic scope for retransmission requests, while subscribing

to an information item under the second algorithmic scope for replies from the publisher.

As long as both the publisher and subscriber nodes can agree upon a hierarchy and

naming convention for files they that intend to share, our system will automatically pro-

duce the appropriate scope hierarchy that ensures a unique identifier for each file. Since

our design mimicks the hierarchy of the underlying file system, the publisher and subscriber

only need to provide the full path of the file they wish to publish or subscribe to. Con-

trary to the assumptions of FTP and SCP, where the file is assumed to already exist, our

publish/subscribe system allows subscribers to indicate their interest in a file regardless of

whether the information item has been published or not. The asynchronous nature of our

publish/subscribe system is difficult to quantify and include in our performance analysis,

thus we will further explain its benefits in Section 5.3.

5.1.5 File Distribution Comparison

In this section, we present some preliminary results that showcase the performance of our

publish/subscribe system versus traditional file transfer services, in particular FTP and

SCP. We will begin by describing the commands we ran in order to perform the file transfers

themselves. We will then review the results of our experiments and provide some insight

into the implications on the direction of our future work.
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Table 5.1: Number of Experiments Executed

Table 5.1 provides a summary of the number of experiments we performed for each file

size, in terms of the number of different publisher-subscriber pairs we tested and the number

of trials for each pair. Recall that our test network was composed of one RV/TM node and

9 other regular nodes, which played the roles of publisher and subscriber during different

trials. We ran the same number of experiments for the three designs we were testing, namely

FTP, SCP, and our publish/subscribe system, in order to reduce the possible bias of our

results.

The FTP command we used for the trials is similar to the following example:

wget -x -nH -P ~ ftp://host/full\_file\_path

The options we included are: ’-x’ (creates necessary directories at the destination), ’-nH’

(disables generation of host-prefixed directories), ’-P ’ (sets the prefix at the destination

to the home directory). The host field holds the IP address of the source node while the

full file path specifies the file path of the information item of interest.

In a similar manner, the SCP command we specified for the experiments is analogous

to the following example:

scp -c arcfour mit_psirp@host:full_file_path file_parent_directory

Here we only needed to include the ’-c’ option, which allows us to specify the type of cypher

algorithm we wish to use to secure the data transfer. In particular, we chose to use the

arcfour variant, which is shown to be the fastest one, albeit the least secure one as well.

We also need to specify the file’s parent directory in order to replicate the behavior of our

publish/subscribe system which uses the user-specified file path to determine where to save

the transferred file.
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Since our system currently does not support optional command-line arguments, the

approach to executing a trial starts with a very simple command:

manual_file_publisher

or

manual_file_subscriber

By running the executable binary in the shell, a command prompt, which is generated by

the application, will ask the user to specify the name of the file they wish to either publish

or subscribe to, i.e. provide the full file path. At the publisher node, the application will

simply acknowledge the input if the file is found on the local disk and then initiate a new

prompt for another possible publication. On the other hand, after the subscriber receives

the first fragment of a file, the application will display information in three parts: 1) shows

a summary of details about the Rendezvous match, including the identifiers for the bi-

directional channel, 2) displays a progress meter indicating the amount of the file transfer

that has been completed so far, 3) presents the time it took for the file transfer to complete

after all of the fragments are received and written to disk.

Figure 5.2 presents a comparison of the three different file transfer services in the form

of a line graph. The x-axis contains the various file sizes we used for our experiments on a

logarithmic scale, while the y-axis records the total time it takes for the transfer of a given

file. Since we ran the experiments multiple times across different pairs of nodes, we only

show the average latency value for each file size category. The plots for each of the file

transfer services are distinguished through a different line style, as specified in the graph’s

legend.

At first glance, one may notice an exponential behavior between the file size and the

download time, however this is simply an artifact of using a logarithmic scale on the x axis.

If the graph used a linear scale for the x-axis, the plots would have a more linear shape,

but we believe this graph provides more clarity for identifying the data points of interest.

For small file sizes, the download times between the different systems are nearly equivalent,

with the SCP command taking slightly more time due to its encryption feature. With a
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file size of 50 MB, we begin to note a larger difference between the FTP command and the

other two systems (SCP and Publish/Subscribe), which is expected since FTP avoids the

overhead of encapsulation and encryption as opposed to the Publish/Subscribe system and

the SCP service respectively.

We begin observing the decreased performance of our publish/subscribe system, relative

to FTP, at the larger file sizes (100MB and above). There are a few reasons that can explain

this trend, which includes the overhead of encapsulation, inefficient payload sizes, and a lack

of congestion control. First, since our system works as an overlay network on top of IP, we

must incur the performance cost of encapsulation, meaning that our packets not only have

to include our own headers and payload but also headers from other protocols such as the IP

packet header. Similarly, the constraint of encapsulation emphasizes the need to maximize

the usefulness of the space we have within an IP packet. In our current version, we simply

assume a conservatively low payload size (1,024 bytes) in order to include the forwarding

identifiers within the encapsulated packet. Essentially this means that the throughput of

our system is lower since we need to transmit more packets, on average, to transfer the

same amount of data.

Most of all, the declining performance of the publish/subscribe service at the higher file

sizes suggests that the system is experiencing dropped packets more frequently, most likely

as a result of buffer overflows at intermediate nodes or even at the end nodes themselves. Our

current approach towards mitigating this problem is to artificially slow down the publisher

by inserting a small delay after the publication of each fragment in addition to inreasing

the timeout interval at the subscriber. However, future iterations of our design should

include an efficient congestion control mechanism that allows us to match the publisher’s

transmission rate to the capacity of the path similar to FTP and SCP. Section 5.3 will

provide further details about improvements we can make to the design of the system in

order to avoid these inefficiences as well as others that might be uncovered in the future.
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Figure 5.2: File Transfer Comparison Graph
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5.2 Hidden Benefits

We believe that the publish/subscribe paradigm provides additional benefits that may not

appear at first glance in our performance analysis. The three main benefits that we will

discuss in this section are: the separation of data and control plane, node cooperation to

achieve higher goals, and an asynchronous, on-demand service that avoids issues such as

network implosion.

As suggested by Clark et al. [4], most discussions of network architecture recognize

two architectural divisions, or planes: a data plane, over which content is forwarded, and

a control/management plane, which is used to directly measure and repair the data plane.

Existing control systems are designed to cut across the layering of the data plane in order

to give visibility and access to all the aspects of the network, however it is hardly scal-

able in a large network. Instead, the Knowledge Plane is designed to involve the edge

nodes themselves, given that they already hold significant intelligence, in addition to pro-

viding a compositional, cognitive, and unified framework that accounts for the challenges

in managing an inter-domain network. An effective way to disseminate information that

might be incomplete but gives an edge a broad perspective of the network is through a

publish/subscribe model that focuses on the content itself rather than the data path.

Similar to the idea of agent cooperation in Li and Lee’s theses, nodes who join the

Information Plane are also expected to collaborate in order to deliver information across the

network. Our system allows multiple nodes to become publishers of the same information

item, which enables the Topology Manager to create the most effective delivery graph

given all of the possible paths between the set of publishers and the set of subscribers.

Additionally, nodes are designed to automatically cache content that they receive from the

network, which can be used to fulfill later subscription requests for the same information

item. Thus, we can see that the publish/subscribe model provides various avenues through

which nodes collaborate, mechanisms that are not readily accessible in traditional IP-based

approaches to data delivery.

The asynchronous nature of the publish/subscribe model also brings a few advantages

that are particularly useful for network management, and content distribution in general.
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First, we no longer have to hold the assumption that the source and destination nodes

must agree upon a time to begin the file transfers. On the one hand, our system supports

the publication of information items that do not yet have any subscribers, while on the

other hand, our system also supports the subscription of information items that are not

currently published. We can think of this approach as an on-demand service that initiates

file transfers only when an explicit match between at least a single publisher and a single

subscriber is made. It not only avoids generating unnecessary probing of the network, which

increases congestion, but also avoids issues such as the implosion problem, when a group of

nodes trying to get the same information overload the source of that information. Instead,

the Rendezvous node and Topology Manager can work together to create a suitable delivery

graph that balances the workload over various reliable paths. It is the focus on the content

itself, rather than the focus on the path, which allows us maximize the network efficiency

in distributing knowledge.

Furthermore, the publish/subscribe model naturally supports a ”multicast-like” delivery

service that works in two ways: a) subscription requests can be merged when they are a

part of the same information item, b) responses can be merged when paths overlap. If we

were to embed an SQL-based functionality into the system, as proposed in Section 5.3, the

system could accept a set of tags provided by the subscription request and process them

in order to identify the matching information items. Similarly, responses to subscription

requests can be merged by finding a suitable delivery graph that reaches multiple subscribers

simultaneously, a task that the current version of the Topology Manager already performs.

Lastly, PURSUIT supports not only policies on the individual information items them-

selves but also on a scope, which is simply a construct that groups similar items together.

Whenever the Topology Manager computes the path for a given delivery graph, it also in-

cludes the policy constraints on the path based on the policy for the item itself or its parent

scope. This is contrary to the approach in the Internet, where policies are applied in an

ad-hoc manner based on location.
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5.3 Future Improvements

After running many trials and observing the behaviors of the publish/subscribe system,

we have captured a few key ideas that can serve as improvements for later versions of

the publish/subscribe system. The list of possible enhancements to our system includes: an

improved timeout mechanism, batching up multiple writes to a file, and efficient balancing of

RIds and payload when generating new packets to be sent over the network. We will review

some of the major ones, here in this section, that would not only improve the performance of

our system but also provide additional functionalities that may be useful for an information-

centric network, particularly for the goal of automated network management.

First, we must note that the current design of our system does not perform any con-

gestion control to account for either slow end-nodes or a weak path between publisher and

subscriber. This problem is not apparent when transferring small files, but is exacerbated

when sending large files. In our design, the publisher does not take into consideration the

capacity or round-trip time of the path to the subscriber due to the system’s asynchronous

nature. After receiving a notification to start publishing, the publisher simply queues up

all of the fragments of the file and sends them to the network interface in quick succession,

which may result in a large number of dropped packets due to buffer overflows in the net-

work. Packet drops may also result from a slow subscriber, who cannot process the received

packets fast enough, since file writes are generally slower than file reads. We have, however,

mitigated the potential bottleneck at the subscriber by utilizing a memory-mapped file that

is saved to the local disk only at the completion of the file transfer. But, in order to avoid

and respond to network congestion, the publisher and subscriber must work together to

estimate the capacity of the path and relay congestion information in a manner similar to

TCP. One may consider using the already existing retransmission channels to share beliefs

about the current state of the network.

We can also consider improving the throughput of our system through a careful balance

between the forwarding identifiers and the data payload that must fit within a single IP

packet. In our experiments, we already incur a performance cost in needing to include the IP

header, since PlanetLab runs on top of the IP layer. Thus, it is important to maximize the
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utility of leftover space in the IP packet, which contains information from Blackadder such

as the dissemination strategy, forwarding identifier size, and possibly multiple forwarding

identifiers. Our current design assumes a fixed data payload size of 1,024 bytes to avoid

possible IP fragmentation, given that we need to reserve enough space for the other meta-

data. However, if the nodes could precisely determine how much space is needed to contain

the meta-data, then we could consider using variable-sized payloads. Since the subscriber

also needs to know the payload size in order to allocate the appropriate amount of memory,

we can include a designated fragment, perhaps the first fragment, that contains the payload

size of the file fragments as well as other characteristics of the file.

The publisher can also include some functionality that allows it to publish an entire

directory of the local file system, rather than having to publish the files one-by-one. For

simplicity, our current design allows the user to specify the full file path of the information

item they are interested in either publishing or subscribing to. In a future version of our

system, we should consider supporting file paths that point to directories, which implies

publishing all of the files directly underneath the directory as well as recursively publishing

any child directories. This should not require significant changes to the application since

it automatically generates the scope hierarchy based on the full file path. On a similar

note, the current version of the subscriber makes the assumption that the file subscriptions

occur sequentially and only one-at-a-time, i.e. we must wait for the current file transfer to

complete in order to begin a new one. Unfortunately, supporting simultaneous subscriptions

would require additional functionalities that would increase the complexity of the subscriber,

thus we leave this goal for a future design.

Another researcher in our group is also investigating various caching schemes that may

be useful to incorporate into the PURSUIT architecture, such as a time-based or content-

based cache [1]. The current version of the PURSUIT architecture, which can be split into

three main functions: handling communications (Rendezvous), the graph structure of the

network (Topology Management), and data storage (Caching), uses a caching function that

remains underdeveloped. Using a more sophisticated caching system would increase the

availability of data, improve network performance, and provide reliability and resistance to

failures. From our data delivery perspective, we would be greatly interested in seeing the
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benefits on network performance, in terms of being able to handle subscriptions faster and

in a more reliable manner in case of network failures.

Finally, we should consider embedding more intelligence into the network in order to

support an SQL-like interface where the system can automatically identify files that match a

set of characteristics that the subscriber node is interested in. Our current design makes the

assumption that both publishers and subscribers will know a priori the naming convention

for files that will be shared across the network. Ideally, we would want to allow subscribers to

simply provide a set of characteristics, or tags, that represent information it wishes to receive

from the network. The RV nodes can then collaborate to identify the files that correspond

to that particular set of characteristics and create matches between the publishers and

subscribers.
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Chapter 6

Conclusion

The immediate contributions of the work presented in this thesis report are two-fold.

First, we designed and demonstrated the feasibility of providing a publish/subscribe-

based file exchange system that, even without congestion management, is close in perfor-

mance to traditional file transfer protocols. For smaller file sizes, our publish/subscribe

system had nearly identical performance compared to both FTP and SCP. For larger file

sizes, the system incurred a larger performance loss for a few reasons such as lack of conges-

tion control and inefficient payload sizes. However, we believe that the gap can be closed

through futher improvements to the publish/subscribe system, such that the performance

cost is no longer an issue.

Second, we highlighted a number of ways in which there are significant hidden benefits to

our approach that provide a more suitable file transfer service for an Information Plane that

is complementary to the Knowledge Plane. The benefits include: the separation of data and

control plane, node cooperation to achieve higher goals, and an asynchronous, on-demand

service that avoids issues such as network implosion. Additionally, the publish/subscribe

model provides a clear and systematic way of organizing and disseminating information

across socially-constructed boundaries in the network. It naturally leads to concepts, such

as knowledge agent cooperation and a scalable network management system, that increase

the value of adding intelligence to the network.
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6.1 Future Work

As mentioned in Chapter 2, our architectural approach to network management leads to a

few key areas of study that should be further explored.

First, we should find an effective way to manage and organize the distribution of in-

formation given the many organizational constraints, particular social and economic policy

boundaries that are not considered in today’s network architectures. This is analogous to

the routing scheme for inter-domain communications, where the policies of an intra-domain

network are exposed, only up to a certain level of detail, at the edge nodes that commu-

nicate with other domains or autonomous systems. We believe that the use of scopes in

the publish/subscribe model simplifies the problem of embedding the concept of bound-

aries into the system. By grouping related data together in a scope and allowing access to

the scope only through the Rendezvous function, the system can create a suitable delivery

graph whenever a match between publishers and subscribers is established, provided that

the match follows the policy constraints for that information space.

We should also model and evaluate the impact of our architectural proposal in terms

of performance and efficiency, considering that network management is secondary to the

transmission of user information. The performance analysis of the publish/subscribe system

in this thesis report is only a small part of the evaluation process that we must undertake

in order to more fully evaluate the usefulness of our approach. For example, performance

analyses of other aspects of the architecture, such as features in the Knowledge Plane, would

further elucidate the achievable performance gains of our system.

An important topic to explore is how to systematically manage information given the

constraints on storage, caching, and potential lifetime of information items. This is very

similar to the first topic area of information distribution under organizational constraints,

however it focuses on the characteristics of the content itself. Some data might be designed

to be short-lived, e.g. a live webcast, while other information items are expected to be

available over a longer period of time, e.g. a monthly/yearly activity log, both of which

should be supported by the system. However, there are many other complex scenarios, such

as replicated state machines in data centers, that require further research to find a suitable
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support structure that we can embed into the network.

Finally, we will need to discover how to more effecitvely anticipate tussles, i.e. differences

of opinions and concerns, when using the network and be able to accommodate them in

the network architecture. As opposed to traditional network architectures where tussles

are too complex to identify and resolve systematically, the publish/subscribe model clearly

exposes tussles whenever a transfer of content is requested from one node in the network

to another. In other words, a subscription request can only be fulfilled if the Rendezvous

node determines that the subscriber has authorized access according to the policies defined

in the item’s meta-data or the meta-data of the parent scope.

In summary, a scope publish/subscribe information model can provide a rich set of

enhanced capabilities that, in turn, may provide more generalized functionality, increased

flexibility, and more reasoned approaches to the support of an Information Plane underpin-

ning the Knowledge Plane.
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