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Abstract

Gravity-induced sagging can amplify variations in goniometric measurements of

the contact angles of sessile drops on super liquid-repellent surfaces. The very large

value of the effective contact angle leads to increased optical noise in the drop pro-

file near the solid-liquid free surface, and the progressive failure of simple geometric

approximations. We demonstrate a systematic approach to determining the effective

contact angle of drops on super-repellent surfaces. We use a perturbation solution of

the Bashforth-Adams equation to estimate the contact angles of sessile drops of water,

ethylene glycol and diiodomethane on an omniphobic surface using direct measure-

ments of the maximum drop width and height. The results and analysis can be rep-

resented in terms of a dimensionless Bond number, that depends on the maximum
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drop width and the capillary length of the liquid, to quantify the extent of gravity-

induced sagging. Finally, we illustrate the inherent sensitivity of goniometric contact

angle measurement techniques to drop dimensions as the apparent contact angle ap-

proaches 180◦.

Introduction

The fabrication of low-energy, highly-textured surfaces possessing a re-entrant morphol-

ogy enables liquid droplets with a range of surface tensions to exist in a non-wetting

or ’Cassie-Baxter’ state.1,2 The characterization of the wetting properties of such sur-

faces is often carried out via the measurement of apparent contact angles at the triple

phase contact line using small sessile drops placed on the surface. Experimental mea-

surements of the contact angle of a liquid drop deposited on a textured substrate can

exhibit a range of values bounded by the apparent advancing (θ∗adv) and receding (θ∗rec)

contact angles.3,4 There are a number of techniques to measure the contact angle of a

liquid on a substrate, including optical reflectometry, contrast interferometry, the capil-

lary rise technique, Wilhelmy plate tensiometry and various goniometric methods. The

most commonly-employed technique for measuring the contact angle of drops on liquid-

repellent surfaces is the sessile-drop method coupled with digital image analysis. In the

sessile drop technique, a liquid drop of a known volume is gently deposited on the sub-

strate from above and the profile of the drop is captured digitally by a high-resolution

camera. A number of image analysis algorithms can be subsequently employed to es-

timate the contact angle from the drop profile such as polynomial fitting, spherical cap

approximations5–7 or direct fitting to numerical solutions of the Young-Laplace equa-

tion.8–11 However, in these analysis techniques, the region in the vicinity of the triple-

phase contact line can appear distorted or blurred due to optical noise caused by diffrac-

tion and scattering12,13 leading to systematic errors in the evaluation of the tangent line.
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In addition, the axial location of the base line and its contact points with the projected

drop shape can be difficult to establish unambiguously, especially for highly textured

surfaces,14–17 which can lead to inconsistent determination of the apparent contact angle.

The ambiguity in the measurement of contact angles due to a combination of gravity-

induced drop sagging and distortion near the tangent line has recently been highlighted

by Dorrer et al.,14 who comment that values obtained by various Young-Laplace fitting

techniques should be treated with caution, particularly for large apparent contact angles

θ∗ ≈ 180◦. Extrand et al.17 demonstrate the deficiency of indirect geometrical measure-

ment techniques using a hypothetical perfectly non-wetting surface and show that sag-

ging of the contact line can lead to systematic underestimation of the true contact angles,

even for relatively small drops of a few microliters in volume. Alternative capillary force

measurement techniques,18 including the Wilhemly Plate Technique,19 are prone to po-

tential errors arising from asymmetric coating, inaccurate determination of the periphery

and irregularities in the coated substrate.16 While there have been a number of reports

on the fabrication and characterization of extreme non-wetting surfaces with an apparent

contact angle θ∗ ≈ 180◦,20–24 there have been fewer studies addressing the reproducibil-

ity and sensitivity of the goniometric measurements. Zhang et al.25 report variations be-

tween 156◦ and 173◦ in the contact angle of a water drop on a superhydrophobic surface

fabricated by electrochemical deposition of gold clusters on a polyelectrolyte multilayer

and demonstrate how different image fitting techniques can result in the aforementioned

differences.26 Variations in the contact angles of water drops on structurally-similar litho-

graphically patterned surfaces modified by fluoropolymer treatment have been reported

by different groups,15,27 and the significant discrepancies observed have been attributed

in part to differences in measurement software.15

In this article we quantitatively explore the inherent sensitivity of contact angle mea-

surements to the dimensions of the sessile drop as θ∗ → 180◦ in terms of a dimensionless

Bond number (Bo) defined using the maximum drop width and the capillary length of
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the liquid. We first outline the singular nature of the perturbation solution, originally

developed by O’Brien,28,29 that describes the profile of an axisymmetric sessile drop. We

then demonstrate the experimental utility of this solution which enables simple measure-

ments of the drop width and height to be used to determine, over a wide range of Bo, the

apparent contact angles of water, ethylene glycol and diiodomethane drops on a spray-

fabricated superoleophobic surface. The values obtained compare favorably with the val-

ues of contact angles determined from several other commonly-employed techniques. We

then explore the sensitivity of the contact angle to the physical dimensions of the drop to

illustrate the increasing uncertainty in the apparent contact angle θ∗ as determined from

the sessile drop technique as θ∗ → 180◦.

Perturbation Approach

Figure 1: Schematic of an axisymmetric drop on a non-wetting substrate. For a point
A(x,z) on the projected drop profile, x is the lateral coordinate, z is the vertical coordinate,
φ is the angle subtended by the normal at point A to the axis of revolution, ℓ denotes the
maximum drop half-width, r is the radius of the contact line, h is the height of the drop
and θ∗ = max(φ) is the contact angle of the liquid drop at the three phase contact line.

The profile of an axisymmetric sessile drop sitting on a surface is described by the

classical equation derived by Bashforth and Adams.30
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In this dimensional Cartesian formulation of the Young-Laplace equation applied to a

point A(x,z) on the projected drop profile, x is the lateral coordinate at A, z is the vertical

coordinate at A, z′ and z′′ are the first and second derivatives of z with respect to x at A, ρ

is the density of the liquid, g is the acceleration due to gravity, γlv is the surface tension of

the liquid, and b ≡ 1/z′′(0) corresponds to the radii of curvature at the origin O which is

located at the apex of the drop as seen in Figure 1. Eq. (1) is typically non-dimensionalized

using a characteristic physical length scale. In the traditional formulation, Bashforth and

Adams select b, the radius of curvature at the apex, as the characteristic length scale.

However, the capillary length of the liquid a =
√

γlv/ρg, has also been used to non-

dimensionalize the spatial coordinates.31,32 In both these cases, a non-dimensional Bond

number can then be defined using the radius of curvature as β = (ρgb2)/γlv = b2/a2, and

is commonly used as a dimensionless measure of the extent of gravitational forces relative

to capillary forces acting on the drop. The lateral coordinate x of the point A is not a

single valued function of z and it is therefore convenient to express the coordinates in a

parametric form33 using the parameter φ = tan−1(z′(x)), where φ is the angle between

the surface normal at A and the axis of revolution (Figure 1). Upon non-dimensionalizing

with the capillary length a =
√

γlv/ρg, the Bashforth-Adams equation (Eq. (1)) can be

re-written as a pair of coupled first-order differential equations:

dX

dφ
=

Xcos φ

(XZ + XP − sin φ)
,

dZ

dφ
=

Xsin φ

(XZ + XP − sinφ)
(2)

where the non-dimensional lateral coordinate is X ≡ x/a, the non-dimensional verti-

cal coordinate is Z ≡ z/a and the constant non-dimensional pressure at the apex of the

drop is P ≡ 2a/b. The maximum value of the parametric angle φ is identified as the

contact angle between the sessile drop and the substrate, i.e. max(φ) = θ∗. The shape

of the sessile drop is therefore specified by the locus of all points A{x(φ),z(φ)} satisfy-

ing Eq. (2), along with the apparent contact angle θ∗ between the sessile drop and the

substrate. The non-dimensional volume of the liquid drop can be expressed exactly as
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V ≡ v/a3 =
∫ H

0 πX2dZ = πR (RH + RP − 2sinθ∗), where R ≡ r/a = X(φ)|φ=θ∗ is the di-

mensionless radius of the drop at the three phase contact line and H ≡ h/a = Z(φ)|φ=θ∗

is the dimensionless height of the drop.30

While the Bashforth-Adams equation (Eq. (2)) does not have a closed-form analyti-

cal solution, there have been a number of attempts to determine approximate solutions

through perturbation analyses34–37 and these have been reviewed by Hometcovschi et

al.38 In an alternate formulation of the Bashforth-Adams equation O’Brien,28,29 following

the suggestion of Padday,39 identifies the maximum dimensionless half-width of the drop

ǫ ≡ ℓ/a = X(π/2) as the relevant ratio of physical length scales to parametrize the effects

of gravity, where ǫ can be accurately determined from imaging of the drop width 2ℓ on a

liquid-repellent surface and a priori knowledge of the capillary length of the liquid drop.

Upon rescaling the lengths with ǫ, a new Bond number, Bo ≡ ρgℓ2/γlv = ǫ2 can be defined

which incorporates the physical size of the drop along with the material properties of the

liquid. In Figure 2, we show the profiles of two liquid drops evaluated by numerically

solving Eq. (2) with a fixed volume of v = 5 µL and a capillary length of a = 1.25 mm

(typical of diiodomethane) on substrates characterized by an apparent contact angle of

θ∗ = 150◦ (Figure 2(a)) and θ∗ = 180◦ (Figure 2(b)) at Bo = 0 (dashed line) and Bo = 0.075

(filled line). At Bo = 0 (i.e. in the absence of gravity) the profile of the liquid drop is de-

scribed by a spherical cap. The difference between the height of the spherical cap and the

height of the liquid droplet incorporating gravitational sagging is denoted by δH and the

difference between the contact line radii by δR. Both δH and δR progressively increase

with the apparent contact angle θ∗, leading to a systematic failure of the spherical cap

approximation as the Bond number increases.14

An immediate consequence of scaling Eq. (2) with ǫ is the ability to seek a perturbation

solution in powers of the Bond number (Bo) as the small parameter.28,29 This formulation

is readily suited to contact angle evaluation due to the ease of measuring the maximum

drop width ℓ, compared to the traditional formulation of Eq. (1) which requires determi-
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(a) θ∗ = 150◦ (b) θ∗ = 180◦

Figure 2: Numerically evaluated profiles of liquid drops of volume v = 5 µL and capil-
lary length a = 1.25 mm (Bo = 0.075, filled line), where δR denotes the extent of gravity-
induced sagging of the contact line from the spherical profile (Bo = 0, dashed line), and
δH denotes displacement of the apex of the drop on substrates with an apparent contact
angle of (a) θ∗ = 150◦ and (b) θ∗ = 180◦.

nation of the radius of curvature of the apex b. The singular nature of the perturbation

solution can be observed qualitatively in Figure 2(b), where dX/dZ → ∞ in the vicinity of

the contact line as the parametric angle φ → π radians, resulting in a mathematical bound-

ary layer which necessitates a rescaling of variables in this region. O’Brien constructed a

uniformly-valid perturbation solution for 0 ≤ φ ≤ π by the method of matched asymp-

totic expansions which incorporates the presence of the boundary layer and the extent of

sagging on the change in the radius of the contact line δR. The resulting expression can

therefore even describe sessile drops sitting on non-wetting surfaces for which θ∗ ≈ 180◦.

The solution of Eq. (2) and determination of the unknown constant P (setting the capil-

lary pressure near the apex of the drop) requires three boundary conditions, which are

expressed as X(0) = 0, Z(0) = 0 and X(π/2) = 1. For completeness we provide O’Brien’s

composite solution below, accurate to O(ǫ3), which we employ in this work.40

X =ǫ

{

sin φ −
1
2
(π − φ) +

1
2
(π − φ)

√

1 +
8ǫ2

3(π − φ)2

}

+ǫ3
{

1
3

cos2 φ tan
φ

2
+

2
3(π − φ)

}

+ O(ǫ4)

(3)

7



Z =ǫ
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(4)

For very small values of the scaled drop width ǫ (for which the gravitational sag-

ging is negligible), the O(ǫ) solution as ǫ → 0 corresponds to the spherical cap given

by X(1) ≈ ǫsin φ and Z(1) ≈ ǫ(1 − cos φ), where X(n) and Z(n) correspond to the O(ǫn)

solution as ǫ → 0. The approximate solutions expressed in Eqs. (3) and (4) are com-

pared to the exact numerically-integrated solutions of the Bashforth-Adams equation

(Eq. (2)) in Figure 3. The perturbation solutions compare well with the numerical solu-

tion for small Bo at all angles, but deviate increasingly as the Bond number increases. At

φ = 0, the deviation in the lateral coordinate given by the composite (matched) solution at

O(ǫ3) scales as Xφ=0 − X(3) = ∆X ≈ 4ǫ5/9π3, and the deviation in vertical coordinate as

Zφ=0 − Z(3) = ∆Z ≈ −2ǫ5/3π2. For sessile drops on liquid-repellent surfaces (θ∗ ≥ 90◦),

experimental measurements of the scaled drop half-width ǫ and drop height H allows

the determination of the contact angle θ∗ by numerically solving Eq. (4), while for drops

with acute contact angles (θ∗ ≤ 90◦) when the maximum half-width ǫ is unknown, mea-

surements of the radius of the three phase contact line R and drop height H can be used

to simultaneously solve Eqs. (3) and (4) to determine θ∗.28,29 While knowledge of the

drop volume v along with ǫ can also be used to determine the contact angle θ∗, precise

measurement and control of deposited drop volumes is harder to achieve in practice.

In the following sections, we first demonstrate quantitatively the application of this

technique in determining the contact angles of drops of water, diiodomethane and ethy-

lene glycol on spray-coated liquid repellent surfaces through measurements of the drop
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Figure 3: (a, b) The deviation of the approximate singular perturbation solution obtained
from Eqs. (3) and (4) compared to the exact solution obtained from a numerical solver
scaled by the capillary length for various Bond numbers (Bo = ǫ2 = ρgℓ2/γlv). (c) The
hypothetical effective contact angles θ∗ determined using the perturbation solution (de-
noted max (φ)) and the spherical cap approximation (denoted θcircle) as a function of Bo
when compared to the true contact angle (θ∗sessile from the Bashforth Adams solution).
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half-width and height alone, and generate an operating diagram illustrating the sensitiv-

ity of the reported contact angles and an a priori error estimate as a function of the Bond

number.

Methods and Materials

Poly(methyl methacrylate) (PMMA, Sigma Aldrich, Mw = 102,000 g/mol, PDI = 1.56)

was mixed with the low surface energy molecule 1H,1H,2H,2H-heptadecafluorodecyl

polyhedral oligomeric silsesquioxane (fluorodecyl POSS, γsv ≈ 10 mN/m) to prepare a

50 wt% blend using the commercially-available solvent Asahiklin AK-225. A 50 mg/mL

solution of the PMMA/POSS blend was sprayed with an air-brush (McMaster-Carr) on

a clean flat silicon substrate at a distance of 25 cm using a pressurized nitrogen stream

(170 kPa). The presence of the low surface-energy POSS molecules at the surface com-

bined with the micro-textured corpuscular morphology produced during the spraying

process confers super-liquid repellent properties to the coated substrate, which we have

characterized in prior work.41

Contact angle measurements were performed using a ramé-hart Model 590 goniome-

ter, after vertically dispensing droplets of deionized water, diiodomethane (Sigma-Aldrich,

99%) and ethylene glycol (Sigma-Aldrich, ≥ 99%) of different volumes on the spray-

coated silicon substrate from above. Grayscale images were digitally captured and con-

verted to binary ’thresholded’ images, and an edge-detection operation was carried out

using the freely-available ImageJ software package,42 which implements a Sobel edge-

detection algorithm to determine the drop profile from which the height h and the maxi-

mum half-width ℓ of the drop is obtained. An estimate of the contact angle θ∗ = max(φ)

can obtained from the measurement of ℓ and h by solving Eq. (4) using the ’fsolve’ func-

tion from the MATLAB optimization toolbox with a trust-region algorithm (Supporting

Information). We compare this estimated value of the contact angle to other commonly-
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used techniques involving geometric extrapolation and curve fitting respectively. The

height-width technique involves the assumption of a spherical cap, which corresponds to

retaining only the O(ǫ) terms in Eq. (2) of x ≈ ℓsin φ and z ≈ ℓ(1 − cos φ) in order to de-

termine an estimate of the contact angle through the relation θ∗circ = 2tan−1(H/R).5 The

commercial DropImage software provided by the goniometer manufacturer analyzes the

entire drop profile and implements a curve fit of the numerical solution of the Bashforth-

Adams equation to the drop profile, yielding an estimated contact angle which we denote

by θ∗sessile.

Results and Discussion

In Figure 3(c), we compare the contact angle evaluated using the perturbation solution to

that estimated from the circular approximation using various theoretical profiles which

are obtained by numerically integrating the Bashforth-Adams equation for X(φ) and

Z(φ) in Eq. (2) until φ = θ∗sessile (the true contact angle), which corresponds to different

hypothetical non-wetting surfaces. In the absence of any gravitational sagging (Bo = 0),

both techniques converge to θ∗sessile. The perturbation solution, while systematically over-

estimating the contact angle for large Bo due to deviations from the numerical solution,

nevertheless agrees much more accurately with θ∗sessile over the range of Bo shown than

the commonly-used circular fit, which severely under-predicts the contact angle. It is

worth noting that for a drop of a given size (or Bond number) the magnitude of the de-

viation becomes progressively larger as θ∗ → 180◦; i.e. the sensitivity of the goniometric

measurement to drop volume increases on superhydrophobic surfaces.

In Figure 4, we show the digitized profiles of sessile drops of water (Figure 4(a))

and diiodomethane (Figure 4(b)) deposited on a silicon substrate spray-coated with a

50 mg/mL solution of a 50 wt% PMMA/FluoroPOSS blend.41 The heights of the water

and diiodomethane drops are h = 1.44 mm and h = 1.12 mm, and the measured half-
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widths are ℓ = 0.79 mm and ℓ = 0.75 mm, respectively. The appropriate Bond numbers

can then be evaluated from the dimensionless maximum half-widths (ǫ) (assuming the

surface tension γLV and density ρ are known) as Bo = ǫ2 = ℓ2/a2. For the drops in Figure 4

we calculate Bo = 0.08 and Bo = 0.36 respectively. The contact angles of the liquid drops

are obtained by solving Eq. (4) for φ numerically using the experimentally-measured val-

ues of the drop height (h) and drop width (2ℓ). The contact angle calculated for the liquid

drops in Figure 4 are θ∗ = 162◦ for water, and θ∗ = 149◦ for diiodomethane. The analyt-

ical profiles of the drops as estimated from Eqs. (3) and (4) are overlaid on each of the

images, and compare very well with the measured drop profile. The error in the drop

height associated with deviation from the exact (numerical) Bashforth-Adams solution

for the corresponding contact angle (φ) for each liquid is 0.4% for Bo = 0.08 (water) and

3.7% for Bo = 0.36 (diiodomethane).

(a) Water

Analytical Profile from 

Eq. (3) and Eq. (4)

(b) Diiodomethane

Figure 4: Liquid drops of (a) Water (ρ = 998 kg/m3,γlv = 72.8 mN/m) with v ≈ 2 µL and
θ∗ = 162◦, and (b) Diiodomethane (ρ = 3325 kg/m3,γlv = 50.8 mN/m) with v ≈ 1.5 µL and
θ∗ = 149◦. The drops were deposited on a silicon substrate spray-coated with a 50 mg/mL
solution of 50 wt% PMMA/FluoroPOSS. The corresponding perturbation solutions (red
lines) are overlaid on each of the images for Bond numbers, evaluated from the maximum
drop width, of Bo = 0.08 and Bo = 0.36 respectively.

In Table 1, we list the dimensions of drops of water (γLV = 72.8 mN/m ; ρ = 998

kg/m3), ethylene glycol (γLV = 47.7 mN/m ; ρ = 1113 kg/m3) and diiodomethane (γLV =

50.8 mN/m ; ρ = 3325 kg/m3) deposited on a flat silicon substrate that was spray-coated

with a 50 mg/mL solution of 50 wt% PMMA/FluoroPOSS. The chosen liquids span a

range of capillary lengths, with the high surface tension of water contributing to its large
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capillary length of a = 2.73 mm and the high density of diiodomethane to its much smaller

capillary length of 1.25 mm. Ethylene glycol, with a capillary length of 2.10 mm, is repre-

sentative of other probe liquids commonly used to characterize surface wettability, whose

capillary lengths typically lie between those of water and diiodomethane. The contact an-

gle θ∗ = max(φ) estimated by implementing O’Brien’s perturbation technique compares

well with the commonly used sessile drop fitting technique (θ∗sessile) and performs better

than the circular segment approximation (θ∗circ) for all three liquids. The slightly larger

value of θ∗ = max(φ) obtained from the perturbation solution is consistent with the di-

rection of the deviation from the numerical solution seen in Figure 3(c). The observed

average contact angles of water (θ∗ = 160◦ ± 3◦) and diiodomethane (θ∗ = 147◦ ± 4◦) on

the spray-coated silicon substrate are consistent with previous work on characterizing

its surface wettability by applying the framework of the Cassie-Baxter model.41 Ethy-

lene glycol, a bipolar liquid, exhibits consistently higher apparent contact angles than

diiodomethane, a non-polar liquid, due to polar cohesive interactions within the liquid

drop on the non-polar surface.43

The influence of drop volume in obtaining accurate and reproducible goniometric es-

timates of the contact angle has recently been discussed by Extrand and Moon.17,44 From

a theoretical perspective, the contact angle of a liquid drop contacting a substrate is a

local property which is influenced by the interactions of the liquid and the surrounding

vapor with the surface in the vicinity of the triple phase contact line,4,45 and should thus

be independent of the drop volume. However, during experimental measurement, larger

drops are more prone to errors due to gravity-induced sagging near the contact line and

deviations from a spherical shape, while smaller drops are increasingly sensitive to opti-

cal metrology errors associated with scattering, diffraction, evaporation and uncertainty

in precisely locating the contact line. Direct comparison of experimental measurements

with numerical solutions of the Bashforth-Adams equation does not provide a systematic

insight into these uncertainties. In O’Brien’s perturbation technique, the accuracy of the

13



Table 1: Numerical values of the drop height h, maximum half-width ℓ, dimensionless
maximum half-width ǫ, Bond number Bo, drop volume v, and contact angles determined
by the the three methods: the circular-segment approximation method (θ∗circ), sessile drop-
fitting method (θ∗sessile), the perturbation method (θ∗ = max(φ)). Also given is the dimen-
sionless sensitivity of the apparent contact angle to variations in the drop height ∂θ∗/∂H
(in radians) as calculated from Eq. (5) for liquid drops on a fluorodecyl POSS spray-coated
silicon substrate. The uncertainties in individual measurements of θ∗ = max(φ) corre-
spond to the resolution limit of the imaging camera (∆h = 10 µm), and are determined
from Eq. (5) as discussed in the text.

Liquids ǫ Bo h (mm) ℓ (mm) r (mm) v (µL) θ∗circ θ∗sessile θ∗ ∂θ∗

∂H (rad)

Water
(a = 2.73 mm) 0.21 0.05 1.06 0.58 0.31 0.7 147◦ 150◦ 153◦ ± 3◦ 12.1

0.29 0.08 1.44 0.79 0.38 1.9 150◦ 160◦ 162◦ ± 3◦ 16.1
0.36 0.13 1.74 0.99 0.54 3.4 146◦ 155◦ 161◦ ± 3◦ 13.3
0.37 0.14 1.76 1.00 0.52 3.5 147◦ 160◦ 162◦ ± 3◦ 14.9

Ethylene Glycol
(a = 2.10 mm) 0.24 0.06 0.93 0.50 0.25 0.5 150◦ 156◦ 162◦ ± 5◦ 17.9

0.28 0.08 1.03 0.58 0.35 0.7 142◦ 152◦ 151◦ ± 3◦ 9.4
0.31 0.10 1.17 0.66 0.37 1.1 145◦ 155◦ 155◦ ± 3◦ 10.4
0.34 0.12 1.28 0.72 0.42 1.5 144◦ 154◦ 162◦ ± 4◦ 14.5

Diiodomethane
(a = 1.25 mm) 0.22 0.05 0.49 0.28 0.20 0.1 136◦ 143◦ 144◦ ± 4◦ 8.6

0.29 0.08 0.63 0.36 0.26 0.2 135◦ 142◦ 149◦ ± 4◦ 8.3
0.48 0.23 0.96 0.60 0.41 0.7 134◦ 146◦ 148◦ ± 3◦ 6.8
0.60 0.36 1.12 0.75 0.55 1.4 128◦ 145◦ 149◦ ± 3◦ 7.6
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solution is parametrized by the magnitude of Bond number Bo, which determines the

extent of the deviation from the exact solution as shown in Figure 3, and sets an upper

bound on the volume that should be used for a given liquid. As seen in Table 1, a volume

of v ≈ 1.9 µL for water and v ≈ 0.2 µL for diiodomethane corresponds to a Bond number

of Bo = 0.08 and a resulting error of < 2% in the drop height and width for a contact an-

gle of θ∗ = 160◦. Because the capillary length of diiodomethane is smaller than water, it

is more prone to sagging due to gravity and requires a correspondingly smaller volume

in order to minimize deviation from the exact solution.

While the improved accuracy of the composite perturbation solution at smaller Bond

numbers might initially suggest that progressively smaller drops are preferred to accu-

rately estimate contact angles as recommended by Extrand and Moon,17 the explicit an-

alytical form of the composite perturbation solution allows for a quantitative estimation

of the sensitivity of the experimentally determined contact angle to uncertainties in drop

dimensions. In Figure 5, we have plotted contours of Eq. (4) for different Bo, which corre-

spond to the profiles of hypothetical liquid drops of various sizes on different substrates.

For a point on a given contour, the ordinate (θ∗ = max(φ)) corresponds to the contact an-

gle of the liquid drop on that particular substrate, the abscissa (H ≡ h/a) corresponds to

the non-dimensional height of the drop from the contact line, and the contour line itself is

associated with a specific value of the Bond number, which fixes the volume of the liquid

drop.

The slope of the curve ∂θ∗/∂H describing the variation in the estimated contact angle

with changes in the measured drop height then determines the uncertainty in the mea-

sured contact angle ∆θ∗ with respect to the scaled drop height ∆H via the expression

∆θ∗ ≈ (∂θ∗/∂H)∆H. The derivative of Eq. (4)(with θ∗ in radians) is given by Eq. (5):
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 Bo=0.003
 Bo=0.01
 Bo=0.02
 Bo=0.04
 Bo=0.06
 Bo=0.12

Figure 5: Contours of the contact angle θ∗ evaluated from the perturbation solution as
a function of the dimensionless drop height H ≡ h/a for various values of the dimen-
sionless Bond number Bo. The dashed line represents an isocline of slope ∂θ∗/∂H = 25
radians (corresponding to an uncertainty of ∆θ∗ = ±5◦ for a water drop (a = 2.73 mm)
at an imaging resolution of ∆h = 10 µm). Measurements of θ∗ for sessile drops in the
shaded region suffer from variations larger than ∆θ∗ due to an increased sensitivity to
uncertainties in imaging and establishing the base line.
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∂θ∗

∂H
=

{

2ǫ3

3(π − θ∗)
+

4ǫ3(π − θ∗)

8ǫ2 +
[

3(π − θ∗)−
√

24ǫ2 + 9(π − θ∗)2
]

(π − θ∗)

− ǫ(π − θ∗) + ǫsin θ∗ −
ǫ3

3

[

sinθ∗ − sin2θ∗ + tan
θ∗

2

]

}−1
(5)

The numerical values of ∂θ∗/∂H for liquid drops deposited on the spray coated sub-

strate in this study are also presented in Table 1. These values are used to evaluate the

uncertainty of the contact angles measured using the perturbation technique that result

from the resolution limit of the imaging camera (∆h = 10 µm) for the various liquid drops

deposited on the spray-coated substrate. For example, from the first entry in Table 1, a

water drop with Bo = 0.05 and an apparent contact angle θ∗ = max(φ) = 153◦, has a di-

mensionless sensitivity evaluated from Eq. (5) of ∂θ∗/∂H = 12.1 radians. The uncertainty

in the drop height scaled by the capillary length of the water drop (∆H ≡ ∆h/a = 0.0037)

results in an uncertainty in the apparent contact angle of ∆θ∗ ≈ (∂θ∗/∂H)∆H ≈ 3◦. Ad-

ditional ambiguities in establishing the position of the baseline will serve to amplify this

value, by increasing the uncertainty in the drop height ∆H. Eq. (5) provides a systematic

framework which relates the sensitivity of the apparent contact angle to uncertainties in

individual measurements of drop dimensions, and allows the determination of the ap-

propriate drop sizes (or Bond numbers) required to accurately evaluate apparent contact

angles θ∗ on liquid repellent surfaces.

For a specified tolerance in the contact angle (∆θ∗) and a given level of uncertainty

in the dimensionless drop height (∆H), an isocline with a constant slope (∂θ∗/∂H ≈

∆θ∗/∆H) demarcates the the boundary of the regime within which accurate and repro-

ducible values of the contact angle can be measured, as illustrated in Figure 5. For the

shaded region above the isocline, even a small uncertainty in measuring the drop di-

mensions, or the drop volume, or in specifying the base line required for curve-fitting
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algorithms, can result in significant variations of the measured contact angle. The sen-

sitivity of the apparent contact angle θ∗ progressively increases with decreasing Bond

number (or drop volume), which sets a lower bound on the size of the liquid drop which

can be used to obtain accurate measurements of θ∗. The expression in Eq. (5) and the

resulting uncertainty in the contact angle due to the uncertainty in drop height diverges

in all cases as θ∗ → 180◦, even for small Bond numbers where the perturbation solution is

very accurate (as shown in Figure 3). The singular nature of the solution to the Bashforth-

Adams equation is increasingly apparent in the case of extreme non-wetting surfaces. On

a hypothetical non-wetting surface with a true contact angle of 179◦, an uncertainty of

as small as ∆h = 1 µm in the measurement of the height or location of the base line for

a water drop of volume v = 1.4 µL and surface tension γLV = 72.8 mN/m (Bo = 0.06)

can result in an uncertainty in the contact angle of as large as ∆θ∗ ≈ 10◦. The agreement

between the perturbation solution and the exact numerical solution employed by various

sessile-drop fitting techniques suggest that a similar concern with contact angle sensi-

tivity is expected as θ∗ → 180◦ even when software that fits the digitized profile to the

full Bashforth-Adams solution is employed, contributing to the large variation in contact

angles observed on highly textured surfaces.14,15,25,26 This inherent sensitivity of contact

angle measurements on super-repellent substrates with apparent contact angles near 180◦

necessitates careful and accurate measurements of drop dimensions in this regime and the

development of new, robust fitting techniques.11,16,46

Conclusion

The utility of O’Brien’s singular perturbation solution to the Bashforth-Adams equation in

determining the apparent contact angle of sessile liquid drops on super-repellent surfaces

has been experimentally demonstrated. The contact angle θ∗ is systematically obtained

in this technique using the following algorithm:
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(i) Deposit the drop on the surface vertically from above,

(ii) Precisely measure the maximum width 2ℓ and the height h of the drop,

(iii) Evaluate the dimensionless Bond number Bo = ǫ2 = ρgℓ2/γLV using known values

of ρ and γLV ,

(iv) Numerically solve Eq. (4) to determine the apparent contact angle θ∗ which satisfies

Z(φ)|φ=θ∗ = H,

(v) Calculate (∂φ/∂H) |φ=θ∗ using Eq. (5) to get a measure of the solution sensitivity and

an a priori estimate of ∆θ∗ for a known measurement uncertainty in the dimension-

less height ∆H = ∆h/a.

The contact angles θ∗ evaluated using measured values of the drop width and height

are consistent (to within the known uncertainties) with those obtained by fitting the full

profile using numerical solutions to the Bashforth-Adams equation and are more accu-

rate than the circular-segment approximation which consistently under-predicts the true

contact angle. The dimensionless Bond number (Bo = ǫ2 = ρgℓ2/γLV), defined in terms

of the (readily measured) maximum drop width and the capillary length of the liquid,

was introduced as the relevant perturbation parameter to describe the extent of gravity-

induced sagging. The magnitude of Bo establishes an upper bound on the volumes of

sessile droplets of different liquids to ensure contact angles can be accurately determined

using this technique. The sensitivity of contact angle measurements associated with the

difficulties in precisely establishing the base line and in determining the drop dimensions

can also be quantified using this approach through the expression in Eq. (5). The singular

nature of the perturbation solution as θ∗ → 180◦ and the high sensitivity of the solution

associated with small changes in drop height, even for very small Bo, was shown to result

in a practical lower limit on the volume of drops which can be used to determine apparent

contact angles on highly non-wetting surfaces.
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