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Abstract

Almost twelve years ago, in 2000, Eric Brewer introduced the idea that there is a fundamental trade-off between
consistency, availability, and partition tolerance. This trade-off, which has become known as the CAP Theorem, has
been widely discussed ever since. In this paper, we review the CAP Theorem and situate it within the broader context
of distributed computing theory. We then discuss the practical implications of the CAP Theorem, and explore some
general techniques for coping with the inherent trade-offs that it implies.

1 Introduction
Almost twelve years ago, in 2000, Eric Brewer introduced the idea that there is a fundamental trade-off between
consistency, availability, and partition tolerance. This trade-off, which has become known as the CAP Theorem, has
been widely discussed ever since.

Theoretical context. Our first goal in this paper is to situate the CAP Theorem in the broader context of distributed
computing theory. Some of the interest in the CAP Theorem, perhaps, derives from the fact that it illustrates a more
general trade-off that appears everywhere (e.g., [4,7,15,17,23]) in the study of distributed computing: the impossibility
of guaranteeing both safety and liveness in an unreliable distributed system:
Safety: Informally, an algorithm is safe if nothing bad ever happens. A quiet, uneventful room is perfectly safe.
Consistency (as defined in the CAP Theorem) is a classic safety property: every response sent to a client is correct.
Liveness: By contrast, an algorithm is live if eventually something good happens. In a busy pub, there may be some
good things happening, and there may be some bad things happening—but overall, it is quite lively. Availability is a
classic liveness property: eventually, every request receives a response.
Unreliable: There are many different ways in which a system can be unreliable. There may be partitions, as is dis-
cussed in the CAP Theorem. Alternatively, there may be crash failures, message loss, malicious attacks (or Byzantine
failures), etc.
The CAP Theorem, in this light, is simply one example of the fundamental fact that you cannot achieve both safety
and liveness in an unreliable distributed system.

Practical implications. Our second goal in this paper is to discuss some of the practical implications of the CAP
Theorem. Since it is impossible to achieve both consistency and availability in an unreliable system, it is necessary
in practice to sacrifice one of these two desired properties. On the one hand, there are systems that guarantee strong
consistency and provide best effort availability. On the other hand, there are systems that guarantee availability,
and provide best effort consistency. Perhaps surprisingly, there is a third option: some systems may sacrifice both
consistency and availability! In doing so they may achieve a trade-off better suited for the application at hand.

Roadmap. We begin in Section 2 by reviewing the CAP Theorem, as it was formalized in [16]. We then examine in
Section 3 how the CAP Theorem fits into the general framework of a trade-off between safety and liveness. Finally,
in Section 4, we discuss the implications of this trade-off, and various strategies for coping with it. We conclude in
Section 5 with a short discussion of some new directions to consider in the context of the CAP Theorem.
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2 The CAP Theorem
We begin, in this section, by reviewing Brewer’s original conjecture (or, more specifically, one interpretation of the
original conjecture). We discuss how the conjecture can be proved, closely following the presentation in [16].

Brewer first presented the CAP Theorem in the context of a web service. A web service is implemented by a
set of servers, perhaps distributed over a set of geographically distant data centers. Clients make requests of the
service. When a server receives a request from the service, it sends a response. Notice that such a generic notion of a
web service can capture a wide variety of applications, such as search engines, e-commerce, on-line music services,
or cloud-based data storage. For the purpose of this discussion, we will imagine the service to consist of servers
p1, p2, . . . , pn, along with an arbitrary set of clients.

The CAP Theorem was introduced as a trade-off between consistency, availability, and partition tolerance. We
now discuss each of these terms.

Consistency. Consistency, informally, simply means that each server returns the right response to each request, i.e.,
a response that is correct according to the desired service specification. (There may, of course, be multiple possible
correct responses.) The meaning of consistency depends on the service.
Trivial services: Some services are trivial in the sense that they do not require any coordination among the servers.
For example, if the service is supposed to return the value of the constant π to 100 decimal places, then a correct
response is exactly that. Since no coordination among the servers is required, trivial services do not fall within the
scope of the CAP Theorem.
Weakly consistent services: In response to the inherent trade-offs implied by the CAP Theorem, there has been
much work attempting to develop weaker consistency requirements that still provide useful services and yet avoid
sacrificing availability. A distributed web cache is an example of one such system. We will discuss such systems later
in Section 4.2.
Simple services: For the purposes of discussing the CAP Theorem, we focus on simple services that have straightfor-
ward correctness requirements: the semantics of the service are specified by a sequential specification, and operations
are atomic. A sequential specification defines a service in terms of its execution on a single, centralized server: the
centralized server maintains some state, and each request is processed in order, updating the state and generating a
response. A web service is atomic if, for every operation, there is a single instant in between the request and the
response at which the operation appears to occur. (Alternatively, this is equivalent to saying that, from the perspective
of the clients, it is as if all the operations were executed by a single centralized server.) While there are several weaker
consistency conditions used in practice (e.g., sequential consistency, causal consistency, etc.), we focus on atomicity
due to its simplicity.
Complicated services: Many real services have more complicated semantics. Some services cannot be specified by
sequential specifications. Others simply require more complicated coordination, transactional semantics, etc. The
same CAP trade-offs typically apply, but for simplicity we do not focus on these cases.
For the purpose of this section, we focus on a service that implements a read/write atomic shared memory: the service
provides its clients with a single (emulated) register, and each client can read or write from that register.

Availability. The second requirement of the CAP Theorem is that the service guarantee availability. Availability
simply means that each request eventually receive a response. Obviously, a fast response is better than a slow response,
but for the purpose of CAP, it turns out that even requiring an eventual response is sufficient to create problems. (In
most real systems, of course, a response that is sufficiently late is just as bad as a response that never occurs.)

Partition-tolerance. The third requirement of the CAP theorem is that the service be partition tolerant. Unlike
the other two requirements, this property can be seen as a statement regarding the underlying system: communication
among the servers is not reliable, and the servers may be partitioned into multiple groups that cannot communicate with
each other. For our purposes, we simply treat communication as faulty: messages may be delayed and, sometimes, lost
forever. (Again, it is worth pointing out that a message that is delayed for sufficiently long may as well be considered
lost, at least in the context of practical systems.)
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The CAP Theorem. Thus, for the purpose of this section, the CAP Theorem can be stated as follows: In a network
subject to communication failures, it is impossible for any web service to implement an atomic read/write shared
memory that guarantees a response to every request.

Proof sketch. Having stated the CAP Theorem, it is relatively straightforward to prove it correct. (See [16] for more
details.) Consider an execution in which the servers are partitioned into two disjoint sets: {p1} and {p2, . . . , pn}.
Some client sends a read request to server p2. Since p1 is in a different component of the partition from p2, every
message from p1 to p2 is lost. Thus, it is impossible for p2 to distinguish the following two cases:

• There has been a previous write of value v1 requested of p1, and p1 has sent an ok response.

• There has been a previous write of value v2 requested of p1, and p1 has sent an ok response.

No matter how long p2 waits, it cannot distinguish these two cases, and hence it cannot determine whether to return
response v1 or response v2. It has the choice to either eventually return a response (and risk returning the wrong
response) or to never return a response.

In fact, if communication is asynchronous (i.e., processes have no a priori bound on how long it takes for a message
to be delivered), it is possible for the same situation to occur even in executions in which there are no messages lost,
i.e., no actual partition! Notably, in the scenario describe above, server p2 eventually must return a response, even
if the system is partitioned; if the message delay from p1 to p2 is sufficiently large that p2 believes the system to
be partitioned, then it may return an incorrect response, despite the lack of partitions. Thus it is even impossible to
guarantee consistency when there are no partitions, and return a bad (inconsistent) answer only when partitions occur.

3 Theoretical Context
The trade-off between consistency and availability in a partition-prone system is a particular example of the more
general trade-off between safety and liveness in an unreliable system. This impossibility has played a key role in the
study of distributed computing, and perhaps provides some insight into both the CAP Theorem and the manner in
which algorithm designers and software engineers have circumvented it.

3.1 Consistent, Availability, and Partition-Tolerance
We first review what it means for a property to be a “safety property” or a “liveness property,” indicating their connec-
tion to the CAP Theorem.

A safety property is one that states nothing bad ever happens. That is, it requires that at every point in every
execution, the property holds. Consistency requirements are almost always safety properties. For example, when we
say that an algorithm guarantees atomic consistency, we are claiming that in every execution, every response is correct
(with respect to the other “prior” operations).

A liveness property is one that states that eventually something good happens. A liveness property says nothing
about the state at any instant in time; it requires only that if an execution continues for long enough, then something
desirable happens. Availability is a classic liveness property: it states that eventually, every request receives a response.

Thus, from this perspective, the CAP Theorem states that it is impossible for any protocol implementing an atomic
read/write register to guarantee both safety and liveness in a system prone to partitions.

3.2 Agreement is Impossible
Understanding the relationship between safety and liveness properties has been a long-standing question in distributed
computing. It achieved widespread prominence when, in 1985, Fischer, Lynch, and Paterson [15] showed that fault-
tolerant agreement is impossible in an asynchronous system.

They focused on the problem of consensus, in which each process pi begins with an initial value vi, and the
processes all have to agree on one of those values. There are three requirements: (i) agreement: every process must
output the same value; (ii) validity: every value output must have been provided as the input for some process; and
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(iii) termination: eventually, every process must output a value. It should be immediately clear that agreement and
validity are safety properties, while termination is a liveness property, and hence the impossibility of consensus is an
important example of the inherent trade-off between safety and liveness.

The problem of consensus has attracted significant interest, as it is at the heart of the replicated state machine
approach [8,19–21], one of the most common techniques for building reliable distributed systems. In order to improve
availability, a service may be replicated at a set of servers. In order to maintain consistency, the servers agree on every
update to the service—and notably, on the order of the updates1.

The safety requirements of consensus are strictly harder than those we have considered with respect to the CAP
Theorem: achieving agreement is (provably) harder than simply implementing an atomic read/write register. This
means that the CAP Theorem also implies that you cannot achieve consensus in a system subject to partitions.

In [15], Fischer et al. considered a system with no partitions2. Instead, the focus on an even more benign failure
model: crash failures. Specifically, they assume that one (unknown) process in the system may fail by crashing, i.e.,
it may cease operation. No partitions are possible, and almost all of the processes in the system can continue to
communicate reliably.

The surprising conclusion of [15] is that in such a system, consensus is impossible. In fact, for every purported
consensus protocol that guarantees agreement and validity, there is some execution in which there are no failures
where the algorithm never terminates! In the case of consensus, safety and liveness are impossible if the system is
even potentially slightly faulty.

3.3 Coping with the Safety/Liveness Trade-off for Consensus
Almost immediately after the publication of [15], researchers in distributed computing began examining this inherent
trade-off between safety and liveness in more depth. While the results discussed in this section focus on the problem
of consensus, they provide context for the analogous questions raised by the CAP Theorem.

Given that safety and liveness are impossible in systems that are sufficiently unreliable, the first natural question
was under what conditions it is possible to achieve both. Much research has focused on the issue of network synchrony:
what level of synchrony is necessary to avoid the inherent trade-off? How many failures can be tolerated? In the
language of the CAP Theorem: what level of network reliability is needed to achieve both consistency and availability?
In Section 3.3.1, we briefly review the connection between network synchrony and the (im)possibility of achieving
consensus.

A second natural question focuses on the question of consistency: given that the network is unreliable, what is the
maximum level of consistency that can be achieved? In Section 3.3.2 we briefly review one answer to this question.

3.3.1 Synchrony

In an attempt to answer the question of how much reliability is needed to solve consensus (i.e., to satisfy both the
safety and liveness properties), researchers have focused on the issue of network synchrony.

A network is synchronous if it satisfies the following properties: (i) every process has a clock, and all the clocks are
synchronized; (ii) every message is delivered within a fixed and known amount of time; and (iii) every process takes
steps at a fixed and known rate. We can think of such systems as progressing in rounds, where within each round, each
process: sends some messages, receives all the messages that were sent to it in that round, and performs some local
computation.

Time complexity. If a system is wholly synchronous, consensus can be solved, i.e., the trade-off between safety and
liveness can be avoided. Notably, consensus requires f + 1 rounds, if up to f servers may crash (see [18, 22]). Since
consensus is impossible in an asynchronous system if there is even one crash failure, this motivates the question: how
much synchrony is needed to solve consensus? And do real systems provide that necessary level of synchrony?

Soon after [15], Dwork et al. [14] attempted to answer this question, exploring a variety of models of partial
synchrony. Most notably, they introduced the idea of eventual synchrony: a system may experience some periods

1Many distributed applications deployed today actually have more similarity to consensus than they do to atomic registers.
2Notice that as a result, the CAP Theorem does not imply the results in [15]. Conversely, [15] does not immediately imply the CAP Theorem.
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of synchrony and some periods of asynchrony, but as long as it eventually stabilizes and maintains synchrony for a
sufficiently long period of time, we can solve consensus.

How long a “window of synchrony” is necessary to solve consensus? Dutta and Guerraoui [13] showed that at least
f + 2 rounds are necessary. Alistarh et al. [3] recently resolved the question, showing that f + 2 rounds of synchrony
are also sufficient.

There is also a connection between the synchrony of a system and the crash-tolerance. In a synchronous system,
we can solve consensus for any number of failures. In an asynchronous system, consensus is impossible for even
one failure. In an eventually synchronous system, however, we can solve consensus only if there are < n/2 crash
failures, where n is the number of servers. If there are ≥ n/2 crash failures, consensus is again impossible. (In this
case, a partitioning argument, much as in the CAP Theorem, leads to the impossibility.) Most practical consensus
implementations today are designed (either explicitly or implicitly) for eventually synchronous systems [6, 8, 20].

Failure detectors. Another line of research has pursued a different approach to answering the question of how much
synchrony is needed to solve consensus. Chandra et al. [7] introduced the idea of a failure detector, an oracle that
provides sufficient information for processes to solve consensus in an asynchronous crash-prone system. In many
ways, a failure detector exactly encapsulates the synchrony requirements for consensus. They showed [9] that a
particular failure detector Ω is the weakest failure detector for solving consensus. The failure detector Ω essentially
encapsulates a leader election service, and in fact, most practical consensus protocols today use such a service as an
important component of their system—the leader is often referred to as the “master” or the “primary.”

Explicit assumptions. Finally, Aguilera et al. [1, 2] have explored a specific minimal set of link reliability and
synchrony assumptions sufficient for solving consensus. The protocols developed in these papers establish quite
minimal conditions for solving consensus.

3.3.2 Consistency

Another response to the impossibility of agreement has been an attempt to answer the question: what is the strongest
form of consistency we can guarantee in a system with f crash failures?

In an attempt to answer this question, Chaudhuri [10] introduced the problem of set agreement. Much like in con-
sensus, each process begins with some value and eventually chooses an output. (That is, the validity and termination
conditions are identical.) Unlike consensus, however, some disagreement in the output is allowed. Specifically, for the
problem of k-set agreement, there may be up to k-different output values.

This weaker consistency guarantee leads to a sequence of problems: 1-set agreement, 2-set agreement, 3-set
agreement, . . ., n-set agreement. Notice that 1-set agreement is identical to consensus, and n-set agreement is trivial
(i.e., each process simply outputs its own initial value). Thus we know that 1-set agreement is impossible if there is
even one crash failure, and n-set agreement can tolerate an arbitrary number of crash failures.

In a seminal sequence of papers (a subset of which were awarded the Gödel Prize in 2004) Borowski, Gafni,
Herlihy, Saks, Shavit, and Zaharoglou [4, 17, 23] showed that k-set agreement can be solved if and only if there are
at most k − 1 crash failures. (At the same time, they revealed a deep connection between distributed computing and
algebraic topology). Thus, in a sense, k-set agreement is the “most” agreement you can get in a system with k − 1
failures, if you want to ensure availability.

Chaudhuri et al. [11] further developed the techniques of [17], relating the degree of consistency to the running
time of k-set agreement: in a synchronous system with t failures, at least bt/kc+1 rounds are necessary and sufficient.

From a theoretical perspective, these results for k-set agreement relate the strength of the consistency requirement
to the availability of the system.

4 Practical Implications
Despite the negative implications of the CAP Theorem, practitioners building distributed services must still do the
impossible. And in fact, they have continued to successfully build and deploy systems, addressing and overcoming the
challenges posed by the CAP Theorem in various ways.
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When dealing with unreliable networks, there are seemingly only two reasonable approaches: sacrifice availability
or sacrifice consistency. This is the implication of the CAP Theorem: we cannot achieve consistency and availability
in a partition-prone network. However, there is also another interesting approach that shows up frequently in practice:
a larger system is segmented into different subsystems, each of which may choose a different trade-off. Moreover,
this segmentation may take place along several different dimensions. From the perspective of the entire system, it
may seem as if the software architects have sacrificed both consistency and availability! Yet the resulting design often
yields a system that both responds well to most user requests, even under bad network conditions, and also provides
high levels of consistency where consistency is required.

In this section, we will give some examples of designs that weaken availability (Section 4.1) and consistency
(Section 4.2), and then discuss several approaches that guarantee neither consistency nor availability (Sections 4.3
and 4.4).

4.1 Best Effort Availability
Perhaps the most common approach to dealing with unreliable networks is to design a service that guarantees consis-
tency, i.e., correct operation, regardless of the network behavior. The service is then optimized to provide best effort
availability, i.e., to be as responsive as is possible given the current network conditions.

This design makes sense when operating in a network in which communication is typically reliable and timely, and
it is only on rare occasions that partitions or other network anomalies occur. When all the servers running a service
are located in the same data center, this approach is a good one.

A recent popular example of this approach is the Chubby Lock Service [5, 8], which was built by Google and is
used extensively in the Google infrastructure (e.g., it supports the Google File System, BigTable, etc.). The Chubby
Service, essentially, provides a simple file system optimized for small files. It is used, primarily, to share metadata and
to provide a centralized point to manage coarse-grained locks in a distrusted manner. (Google has reported that one of
its primary uses, today, is as a naming service that replaces DNS.)

Chubby provides strong consistency: at its heart is a distributed database, based on a primary-backup design.
Consistency among the servers is ensured by using a replicated state machine protocol (specifically, Paxos [20]) to
maintain synchronized logs. Chubby continues to operate as long as no more than half the servers fail, and it is
guaranteed to make progress whenever the network is reliable. If the Chubby servers were to be partitioned, the
service would become unavailable.

On the other hand, Chubby is optimized for the case where there is a stable primary and there are no partitions.
In this case, it delivers a very high degree of availability. Significant design and engineering efforts have gone into
ensuring that under such circumstances, Chubby can respond to requests very quickly. (For example, “read-only”
requests are prioritized, and the replicated state machine protocol is modified so that such requests do not need to
incur any additional network traffic.)

This design works well for Chubby, as each Chubby “cell” is deployed in a single data center3. Communication
within a Chubby cell is typically fast and reliable, and the failure of a primary is not too frequent. (Users of the Chubby
service are still encouraged to expect, and not treat as an error, occasional delays due to changes in the primary.) Thus
Chubby provides guaranteed consistency, and a very high level of availability in the common case.

4.2 Best Effort Consistency
For some applications, sacrificing availability is not an option: users require that it be responsive in all situations.
Moreover, when the application is deployed over a wide area (rather than within a data center), the level of availability
that can be achieved by a strongly consistent service may degrade rapidly. In such situations, designers sacrifice
consistency: a response (and preferably a fast response) is guaranteed at all times. As a result, the response may not
always be correct. Consistency is provided only in a best effort sense.

The classic example of this is web caching, as pioneered by Akamai (and others). Web content (e.g., images and
video) is cached on servers that are placed in data centers throughout the world. Whenever a user requests a given

3There is, in fact, a global Chubby cell with servers deployed around the world. It would be interesting to know more about the availability and
performance of this cell.
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web page, the content can be delivered from a nearby web cache. Such a system guarantees a very high level of
availability: the proximity of the cache servers to the end users ensure both that the responses are rapid, and also that
network connectivity issues rarely prevent a response.

On the other hand, the consistency guarantees are (potentially) quite minimal. When a web page is updated, it may
take some time for the new content to propagate to all the cache servers. There is no guarantee that all users accessing
a web page at any given time receive the exact same content. The caching service does its best to provide up-to-date
content.

For Akamai (and other content delivery networks), this trade-off makes sense. Users viewing content on the web
do not necessarily require strong consistency (i.e., two different users in different locations may view two slightly
different versions of a web page). If the content viewed by a user is slightly out-of-date, there is usually little harm.
On the other hand, users loading a web page have little patience: a fast response is critical. (The problem of fast
response time is even more problematic on mobile wireless devices.) In addition, users are geographically located
around the world. (This can be contrasted with Chubby, which is primarily used within a single data center.) The
geographic dispersal implies that to achieve sufficient availability (and performance), consistency must be sacrificed.

4.3 Trading Consistency for Availability
There has also been some effort to more precisely tune the trade-off between consistency and availability. For example,
it may be acceptable for some content to be one hour out of date, but not one day out of date. As long as the network
connectivity has been good recently (i.e., in the last hour), we should be able to provide this level of consistency with
good availability. On the other hand, if there are long-lasting partitions (e.g., more than one day), than it will be
impossible to remain available. By setting the threshold for how out of date the data can be, the system designer can
precisely specify the CAP trade-off.

This idea was explored in some detail by Yu and Vahdat [24, 25]. They developed a theory of “continuous con-
sistency” and implemented the TACT toolkit, which enables replicated applications to specify exactly the desired
consistency (in terms of conits, a unit of continuous consistency).

An interesting component of the TACT toolkit is that the desired level of consistency can be updated dynamically,
as the application executes. An airline reservation system is one example (discussed in [24]) of why this might be
useful. When most of the seats on the airplane are available, it is usually safe for the reservation system to rely
on somewhat out-of-date data—even if a few additional seats have been reserved, the new reservation can likely be
accommodated. As the plane is filled, however, the reservation system requires increasingly accurate data to ensure
that the plane is not overbooked. Using TACT, the reservation system could request increasing levels of consistency
as the number of available seats diminishes.

Notice that such a system provides neither strong consistency nor guaranteed availability: data can be out of date
(i.e,. inconsistent), and yet if there is a significant network partition, the service may still be unavailable. Even so, this
type of trade-off often makes sense as it may significantly increase the level of network disruption that the service can
tolerate before it must compromise consistency or availability.

4.4 Segmenting Consistency and Availability
Many systems do not have a single uniform requirement. Some aspects of the system require strong consistency, and
some require high availability. A quite natural approach to the limitations of the CAP Theorem is to redesign the
system, segmenting it into components that provide different types of guarantees. In doing so, we again may end up
with a service that, as a whole, guarantees neither consistency nor availability. Yet in the end, each part of the service
provides exactly what is needed.

In this section, we discuss some of the dimensions along which a system might be partitioned. It is not always
clear the precise guarantees that such segmentation provides, as it tends to be specific to the given application and the
particular partitioning. It remains an open question to better understand these types of partitioning schemes.

Data partitioning. Different types of data may require different levels of consistency and availability. For ex-
ample, an on-line shopping cart may be highly available, responding rapidly to user requests; yet it may be occa-
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sionally inconsistent, losing a recent update in anomalous circumstances. The on-line product information for an
e-commerce site may be somewhat inconsistent: users will tolerate somewhat out-of-date inventory information. The
check-out/billing/shipping records, however, have to be strongly consistent: a user will be very unhappy if a finalized
order does not reflect her intended purchase. When designing a system, different data may require different trade-offs.

Operation partitioning. A second line along which an application can be partitioned is the operational dimension.
Different operations may require different levels of consistency and availability. As a simple example, consider a
system that guarantees high availability for read-only operations, while operations that modify the database may not
respond during network partitions4. Moreover, different types of updates might provide different levels of consistency:
a “purchase” operation should guarantee consistency, while a “query” operation might return out of date data. The
PNUTS system [12], implemented by Yahoo, provides exactly this style of guarantee with differing trade-offs for
different types of read and write operations. In order to achieve a good user experience, different operations may
require different trade-offs.

Functional partitioning. Many services can be divided into different subservices which have different requirements.
For example, an application might use a service such as Chubby (discussed in Section 4.1) for coarse-grained locks
and distributed coordination (i.e., strong consistency). It might at the same time use a service such as DNS to handle
naming: DNS is a classic example of caching, providing relatively weak consistency but high availability. The same
service might use yet a third subservice, with a different consistency/availability trade-off for content distribution.

User partitioning. Network partitions, and poor network performance in general, typically correlate with real geo-
graphic distance: users that are far away are more likely to see poor performance. Thus a service like Craigslist might
elect to divide its servers among two different data centers—one on the east coast of the US and one on the west coast
of the US. Craigslist users from cities in California rely on the west coast data center, and hence get high availability.
Moreover, since the California data is stored and maintained within a single west coast data center, consistency among
the west coast servers can be readily achieved. The same holds true for east coast users that rely on the east coast data
center. (On the other hand, users from New York inquiring about Craigslist ads in San Francisco may see less good
performance, under this design.) Similarly, one could imagine that a social networking site might try to partition its
users, ensuring high availability among groups of friends. (Again, the geographic correlation of friendships makes this
more feasible.)

Hierarchical partitioning. Some applications are organized hierarchically, partitioning along these different dimen-
sions multiple times. At the top level, an application encompasses the entire world or the entire database; subsequent
levels of the hierarchy partition the world into geographically smaller pieces, or the database into smaller parts. At each
level of the hierarchy, the system may provide a different level of performance: better availability toward the leaves,
or less consistency toward the root. For example, as you descend a geographically-organized hierarchy, the limitations
of the CAP Theorem becomes less and less onerous as the relevant servers become better and better connected.

5 The CAP Theorem in Future Systems
As we have discussed in this paper, the CAP Theorem is one example of a fundamental trade-off between safety
and liveness in fault-prone systems. Examining this inherent trade-off yields some insights into how systems can
be designed to meet an application’s needs, despite unreliable networks: software architects have explored strongly
consistent solutions, with best-effort availability; they have explored weakly consistent solutions with high availability;
and they have explored systems that mix both weaker availability and weaker consistency in varying ways.

At the same time, the networked world has changed significantly in the last ten years, creating new challenges for
system designers, and new areas in which these same inherent trade-offs can be explored. We need new theoretical
insights to address these challenges, and new techniques for coping with the problem in real-world systems.

4Note that if every read operation returns a response, and every write operation is consistent, then in the presence of a crashed server, such a
system would necessarily become unresponsive for all write operations.
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Scalability: Increasingly, we require that our systems be scalable, designed not just for today’s customers but also for
growth tomorrow. Intuitively, we think of a system as scalable if it can grow efficiently, using new resources efficiently
to handle more load. There appear to be inherent trade-offs between scalability and consistency. For example, in order
to efficiently use new resources, there must be coordination among those resources; the consistency required for this
coordination appears subject to the CAP Theorem trade-offs. Studying this question may help to explain why even
within a data center, where there are rarely partitions, it seems difficult to efficiently scale strongly consistent protocols
(like Paxos [20]).

Tolerating attacks: The CAP Theorem focuses on network partitions: sometimes, some servers cannot communi-
cate reliably. Increasingly, however, we are seeing more severe attacks on networks. For example, denial-of-service
attacks are becoming a near continuous threat to everyday network operations. A denial-of-service attack, however,
cannot simply be modeled as a network partition. Similarly, we are seeing problems with malicious users hacking
servers and otherwise disrupting major internet services. Tolerating these more problematic forms of disruption re-
quires a somewhat different understanding of the fundamental consistency/availability trade-offs.

Mobile wireless networks: The CAP Theorem initially focused on wide-area internet services. Today, however, a
significant (and increasing) percentage of internet traffic is initiated by mobile devices. Many of the same trade-offs
explored in the context of the CAP Theorem also hold in mobile networks—and many of the problems are even harder
to resolve.

Notably, wireless communication is notoriously unreliable. The key problem that motivated the CAP Theorem
was the frequency of semi-stable partitions that change every few minutes. In a wireless networks, partitions are less
common. However, unpredictable message loss is very common, and message latencies can vary significantly.

In addition, the types of applications being deployed in wireless networks may be somewhat different. The CAP
Theorem was motivated by internet search engines and e-commerce web sites. There is a new generation of wireless
applications, however, that tend to focus on different priorities: geography and proximity are critical; social inter-
actions are primary; and privacy has a somewhat more immediate meaning. For example, consider foursquare, an
application in which users check-in to locations, and initiate comments and discussion based on where they are.

By re-examining the CAP Theorem in the context of wireless networks, we may hope to better understand the
unique trade-offs that occur in these types of scenarios.
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