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Abstract

Recent advancements in sequencing technology have made it possible to study the
mechanisms of gene regulation, such as protein-DNA binding, at greater resolution
and on a greater scale than was previously possible. We present an expectation-
maximization learning algorithm that identifies enriched spatial relationships between
motifs in sets of DNA sequences. For example, the method will identify spatially
constrained motifs colocated in the same regulatory region. We apply our method to
biological sequence data and recover previously known prokaryotic promoter spacing
constraints demonstrating that joint learning of motifs and spacing constraints is
superior to other methods for this task.
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Chapter 1

Introduction

Multicellular organisms develop from the embryonic stage through a series of complex

processes. These processes are dependent on the genes present in the organisms

genome. Genes are expressed differentially, at specific times or locations, giving

rise to hundreds of different cell types, including muscle cells, neurons in the brain,

and insulin producing cells in the pancreas. A key overarching goal in biology is

to understand the mechanism of differential gene regulation. Understanding this in

great detail might reveal how diseases arise and how they can be treated.

1.1 Biological Background

Genes are encoded in deoxyribonucleic acid (DNA), which consists of four bases, or

letter, Adenine (A), Thymine (T), Guanine (G), and Cytosine (C). DNA, abstractly,

is present as a long string in the nucleus of a cell and forms the genome of the cell.

In humans and mouse, this string is roughly 3 billion bases long. In the process

of expression, DNA is first transcribed, or copied, into RNA. This RNA is then

translated by ribosomes into proteins, which are often the functional product of the

gene, which give rise to specific traits of an organism. A copy of the gene that has

been transcribed and, subsequently, translated, is said to have been expressed.

Regulation of gene expression can occur at transcription, RNA processing or trans-

lation. DNA itself can be methylated, modulating transcription. Also, epigenetic



modifications of histone proteins, which is the scaffold DNA wraps around, acquires

chemical modifications, can increase or decrease the rate of transcription depending

on the modification. RNA can be degraded as it is produced reducing the amount that

can be expressed as protein. Specific RNAs can also bind to other RNA molecules,

preventing their expression. There are numerous other examples and, likely, many

have yet to be discovered.

We focus on one particular aspect of gene expression, transcription initiation. For

a DNA to be transcribed into RNA, RNA polymerase must bind to the promoter of the

gene, which is the region immediately before the transcription start site. In order for

polymerase to bind, specific proteins called transcription factors (TFs), which interact

directly with the DNA, must bind to the appropriate regulatory regions. There are

various types of regulatory regions, including the promoter regions mentioned above.

Enhancers are another class of regulatory region, in eukaryotes, which are located

distal to a gene promoter. When TFs bind to enhancers, they are believed to interact

with TFs bound at promoters through looping of the intervening DNA [24]. The set

of specific TFs that bind at enhancer and promoter regions are known to be one of

the key predictors of gene expression [26].

One of the problems in elucidating transcriptional regulation is identifying loca-

tions in the genome where TFs bind. The 3D structure of TFs typically cause them

to bind at characteristic DNA sequence motifs. For example, a TF might be known

to particularly favor ATTA DNA sequences. But, in a genome that is billion bases

long, there are hundreds of thousands of occurrences of each of these motifs. ChIP-

seq experiments have shown that a given TF might only bind to tens of thousands of

these locations. Recently, the ENCODE project estimated that one out of 430 motif

occurrences for a TF were actually bound [27]. Furthermore, only a few hundred

out of the bound motifs may be functional and elicit a change in gene expression.

Identifying and understanding functional TF binding sites, out of the large sets of

non-functional binding sites and motif matches, is thus a key problem in elucidating

gene regulatory networks.

Confounding factors complicate the identification of functional TF binding sites.

CHAPTER 1. INTRODUCTION12



1.2. PROBLEM STATEMENT

One complication is that many TFs bind cooperatively with other proteins to allow

for signal integration and increased sensitivity of transcription [3] [6]. Sometimes a

co-factor will not interact with the DNA directly, but rather through interactions with

other TFs [31]. When cooperating factors do interact directly with the DNA, this

can often be seen by the presence of a co-factor motif present near the motif of the

given primary TF, often with a spatial constraint depending on the configuration of

the interaction between the two transcription factors [25]. Furthermore, TFs located

at the promoter may require a specific set of TFs to be bound at a distal enhancer

region, which then interacts with the promoter. There are also specific requirements

for chromatin opening to allow a TF to bind [11]. All of these interaction events are

integrated at the gene promoter, which then drives expression [15] [22].

1.2 Problem Statement

We will learn combinations of motifs with particular spacing constraints that regulate

gene expression. We term our representation of motif combinations, which we specifi-

cally define later, a spaced dyad. Most current computational methods for identifying

TF binding sites do not take into account co-occurring motifs. We demonstrate that

our method performs better than competing approaches.

1.3 Related Work

First, we briefly discuss some of the available motif finding methods and methods

that aim to incorporate cofactors in motif searches.

Most current algorithms for finding motifs in a set of biological sequences learn a

probabilistic model of the motif for an individual TF. A motif is usually modeled as

a product of L multinomial distributions over {A, C, G, T}, where L is the length of

the motif. More complex models of motifs have also been proposed, specifically those

that break the independence assumption between the positions of a motif. However,

independent product multinomials have been shown to be sufficiently accurate in

13



CHAPTER 1. INTRODUCTION

most applications and, as a result, we choose to use them, as well.

Many such probabilistic learning algorithms for motifs have been developed, but

the most popular use expectation-maximization, as in MEME[2], or Gibbs sampling[23]

to learn an enriched motif over a background model. These have been shown to do

quite well and, even though many of these methods are quite dated, they still show

accurate performance on recent large sequencing datasets [18]. There are several vari-

ants of these motif finders - one occurrence per sequence (OOPS) and zero or one

occurrence per sequence (ZOOPS) models find at most one occurrence of the motif

in a given sequence, while two-component mixture models treat all subsequences of

a given length independently and are able to find multiple occurrences of a motif in

a sequence.

Non-probabilistic motif finding methods have also been developed, such as those

that learn consensus sequences with mismatches or do simpler enrichment statistics

[9]. A somewhat different class of motif finders use evolutionary conservation between

species [20]. Since TFs play an important functional role, mutations in TF binding

sites would be thought to have a deleterious effect on an organism. As a result, we

would see these mutations selected against, resulting in conservation of these sites

between species. We do not cover these methods here.

More recently, methods have been published that take TF cofactor motifs into

account. Early methods included many cis-regulatory module finders [19] [32] [16]

[13] [5] [12], which would find groups of motifs based on conservation and enrichment.

Recent similar methods, such as co-Motif [10], learn two related motifs independently

using an EM algorithm in a fashion similar to MEME. Some approaches to learning

motif relationships typically learn the motifs independently and attempt to build

pairwise relationships out of them by counting co-occurrences.

SpaMo [14], which we shall see again later, takes into account the spacing between

the motifs. SpaMo uses previously discovered motifs and performs motif scans using a

log-likelihood ratio test statistic to identify primary and secondary motif sites. Using

these scanned locations, SpaMo performs a statistical test, under the null hypothesis

of no spatial relationship between the motifs (assumed uniform distribution), to de-

14



termine the significance of identified spacings. SpaMo's requirement of prespecified

motifs, however, could limit performance.

Sequencing data is becoming more widespread, especially because of projects such

as ENCODE [27] [8], and accurate technologies like the ones described above are

generating data that will make analysis of multiple motifs together more common.

Already, many transcription factors have been shown to bind together in a constrained

fashion, playing an important role in processes like development. As a result, there is

a need to develop methods that can perform these analyses to delve deeper into the

complexity of gene regulation.

1.4 Thesis Overview

In Chapter 2, we cover some preliminaries about the representation of motifs and

grammars as spaced dyads, describe the motivation for our approach, and present

our main algorithm. In Chapter 3, we apply the method to a synthetic and a real

biological dataset. In Chapter 4, we conclude our discussion with a summary of the

thesis and discuss extensions and other related ideas for future work.

1.4. THESIS OVERVIEW 15
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Chapter 2

Identifying grammars in DNA

sequences

In this chapter, we introduce background required for the algorithms we present later.

We then motivate some of the decisions made in this formulation and, finally, present

the algorithm itself.

2.1 Preliminaries

2.1.1 Motif Representation

Here, we describe position weight matrix representation of a motif. Each position of a

motif is a multinomial distribution over the alphabet A, C, G, T that is independent

of the other positions in the motif. An example of a PWM matrix for a 5bp long

motif [Table 2.2], along with a pictorial representation of the information content of

the same motif [Figure 2-11, is given. Information content is determined by how far

a PWM position is from a uniform distribution.



Table of Notation

Symbol Description

W Set of all observed subsequences

W, Nt" observed subsequence

Wk[i] Set of substrings corresponding to motif i for kth dyad for all observed subsequences

Wk [i] Substrings corresponding to motif i for kth dyad for the ntit sequence

y[BC] P(Bn= 1| W,; 0) - Responsibility of background for producing subsequence W,

y[Za] P(Z = k I W, B, # 1; 0 ) - Responsibility of background for producing subsequence W,

7T Vector of prior probabilities [nBG, 71G) for background and grammar, where 71G = 1 - 7TBG

A Vector of prior probabilities [A ... A ] for k spaced dyads

0 Vector of parameters [OBG, 01 ... k] for background and k spaced dyads

nT BG P(Bn = 1) - Prior probability of subsequence W, being from background

Ak P(Zh = k) - Prior probability of subsequence being from spaced dyad k

W Parameters of spaced dyad k - consists of motif parameters ([k, k] and spacing parameter g bp

k Parameters of independent product multinomials for motif i in kth dyad

OBG Parameters of background (assumed to be uniform)

Zn Z, E {1..k} indicator of grammar that generated W,

Bn Bn E {0, 1} indicates whether background generated Wn

K Number of dyads

N Number of subsequences generated from original data

L Length of each subsequence W,

Table 2.1: Table of Notation used in this chapter

00
'-I



2.2. IDENTIFYING SPACED DYADS

A 0.75 .1 .1 .5 .85
C 0.1 .6 .1 .2 .05
G 0.1 .2 .1 .1 .05
T 0.05 .1 .7 .2 .05

Figure 2-1: Example motif logo corre- Table 2.2: PWM table
sponding to the given example PWM ta-
ble

Given a PWM matrix, we can calculate the likelihood of a sequence having been

generated by that PWM by simply evaluating the likelihood of generating the ob-

served base at each position from each multinomial.

2.1.2 Grammar Representation

A spaced dyad is a pair of motifs and single number, g, indicating the spatial preference

between the two motifs in base pairs. We call this representation a spaced dyad. To

improve the performance of our method, we trim weakly informative bases off the

end of each motif. Other methods, such as SpaMo have adopted similar conventions

for grammars. For example, an example of a grammar that has previously been

supported is a Stat3 motif located 1 base pair (bp) upstream of a YY1 motif. More

complex grammars can be assembled out of these simple ones. For example, Stat3 has

also been shown to be preferentially present 7bp upstream of a Hdx motif. Combining

these two simple dyads, we can construct a complex grammar involving Stat3 and

both YY1 and Hdx.

Formally, a spaced dyad model is two motif models whose motif parameters are

01 and 02, respectively, and a spacing parameter in base pairs, g, between them.

2.2 Identifying spaced dyads

In a two-component mixture model for motif finding, a dataset of DNA sequences

is split such that all subsequences in the dataset of a given length L are treated

independently. Then, for each subsequence, the model assigns responsibilities for

this subsequence having been generated from a background or a motif model by

19



CHAPTER 2. IDENTIFYING GRAMMARS IN DNA SEQUENCES

performing maximum likelihood estimation by an expectation maximization (EM)

algorithm. The advantage this has over the other motif finding models described

earlier (such as OOPS and ZOOPS) is that it allows us to find multiple occurrences

of a motif in the original sequences in the dataset.

Considering the advantages of the two-component mixture (TCM) model above,

we adopt a similar framework for spaced dyads, since each sequence in the original

dataset could have multiple occurrences of the spaced dyads we described earlier.

Finding multiple spaced dyads in each sequence could also allow us to construct more

complex grammars.

Like TCM, we first split the input sequences into subsequences of a given length.

Then, the generative process for each subsequence is as follows:

For each subsequence

1. Choose whether the sequence was generated by background or a dyad

2. If generated by a dyad,

* Choose a dyad, out of a user specified set (which vary by either motif or

spacing), which generated the sequence

3. Generate the sequence from background or the appropriate dyad

We further justify splitting our dataset of sequences into subsequences of a given

length. If we take a subsequence that is known to be generated from a particular

dyad and shift one base in the original sequence to get a new subsequence, it is likely

that we have significantly reduced the likelihood of this subsequence being generated

from the same dyad. Also, since we are dealing with all possible subsequences of a

given length, we assume that if a subsequence is generated by a dyad, it starts at the

first position of the subsequence. In other words, the first motif in the dyad is lined

up with the beginning of the subsequence. As a result, this has the effect of simply

changing responsibilities in a way that, intuitively, "slide" the second motif in the

dyad to the appropriate spot, such that the dyad is most likely to have generated the

given subsequence.

20



It is still necessary to include a background model, which will prevent probability

mass from those sequences which are dissimilar to any of the spaced dyads from

diluting the motif models or the spacings. For now, we use a fixed background,

assuming bases are generated according to a uniform distribution.

Here, we describe our formulation and optimization, with more details presented

in Appendix A. Given a dyad model, we can evaluate the likelihood of a sequence

according to the model, P(W, | Z, = k; Ok, Ak), where Z, = k specifies the latent

dyad model, Ok = [0, O', g], out of K different models. If we are given an observed

subsequence Wn, we test for an occurrence of the first motif, Ok, at the beginning

of W, and an independently test an occurrence of the second motif, 0', g bp after

the end of the first motif. The remaining portion of the sequence is assumed to be

background. The log-likelihood of a particular sequence is given by:

K

P(W, Z,; 7, A, 0) = 7BG P(W IBn = 1; OBG) + (1 - 7BG) yP(Wn IZn = k; Ok, Ak)
k=1

(2.1)

Here, B, is a latent binary variable indicating whether the sequence does not cor-

respond to any grammar (ie. the sequence is generated by the uniform background).

To find the parameters of the dyads we would like to optimize the observed data

log-likelihood. Optimization of this function is difficult. So, as is usually done in

mixture model settings with latent variables, we will, instead, optimize the complete-

data log-likelihood [Eq. 2.2] using an EM algorithm [1].

P(W, Z; r, A, 0) = LogP(W,Z,; 7r, A, ) (2.2)

Note that if we fix the motif parameters and do not update them as part of the

optimization, the only difference between dyads will be the spacing. As a result, we

can learn a distribution over motif spacings. However, in the algorithm presented

below, we do update the motif parameters.

2.2. IDENTIFYING SPACED DYADS 21



2.2.1 EM algorithm

We present an EM algorithm to iteratively update the log-likelihood and learn the

desired parameters of the spaced dyads. The EM algorithm consists of two steps [4].

The E-step computes the responsibility of each component for producing the data,

using the parameters given in initialization or computed in the immediately prior

M-step. Bayes' theorem is used to compute the conditional probability of the latent

variable, in this case the assignment to a particular dyad, given the data.

Now, given the responsibilities computed from the E-step, we reestimate the pa-

rameters of the model, through optimization of the complete data log-likelihood.

EM only converges to a local optimum and typically requires around 30 iterations

in this particular application. A detailed derivation of EM is provided in Appendix

A.

2.2.2 Significance Testing

We apply a parametric statistical test to evaluate the significance of the recovered

spacings. Briefly, we test whether the number of occurrences of a secondary motif

at a particular distance from the primary motif is greater than would be expected

by a uniform distribution. We apply a binomial test at each spacing distance with

a Bonferroni correction for the number of spacing distances tested. This significance

test is similar to the one presented in the SpaMo paper.

CHAPTER 2. IDENTIFYING GRAMMARS IN DNA SEQUENCES22



2.2. IDENTIFYING SPACED DYADS 23

Algorithm 1: EM performs an iterative update of the dyad models

Input: DNA subsequences of length L extracted from the original dataset and
initial dyad parameter settings

Output: Parameters for dyads and responsibilities
1 while Not converged or termination condition not reached do
2 // E-step - iteratively estimate responsibilities for each subsequence

for i +- 1 to N do
3 // Responsibility of background for producing W,

y[Ba] = 7BGP(WnIBn=l; OBG)
K

7nBGP(WlIB.=l; OBG)±(1-7BG) k AkP(WIZn=k; 0)
k= 1

4 // Relative responsibility of each dyad for producing W,

_[AP(W lz K=k; 
0)

F AkP(Wlz,=k; 0)
k=1

5 // M-step - iteratively update parameters of each dyad model
for k <- 1 to K do

6 // Update first motif in dyad k

01= LEARN-MOTIF(Wk[1])
7 // Update second motif in dyad k

0'= LEARN-MOTIF(Wk[2])
8 // Update mixture weights

N

Ak = y[ZnO] / N
n=1

N

9 7BG y[B] / N
n=1

2.2. IDENTIFYING SPACED DYADS 23



24 CHAPTER 2. IDENTIFYING GRAMMARS IN DNA SEQUENCES

Algorithm 2: LEARN-MOTIF Learns a PWM model from a set of sequences

and associated weights

Input: N DNA subsequences each of length J (the length of the motif) and

responsibilities of kth dyad (the one currently being updated) and

background for those sequences

Output: PWM table with elements pck
1 A ={A,C,G,T}

// Over each position in the motif

for j <- 1 to J do
2 for c E A do

N

F 1[ajg=c]Ty[Z.k](1--y[B,,])
Pcj Nn=1

3 pc5 = N

F- -C'EA 1[an5=c']y[Znk](1-y[B.])
nM=1

// a, is the character at position j in subsequence N; 1 [anj c] = 1 iff

that character is c
// The gamma variables indicate responsibilities - more details in Table

of Notation and Appendix A

4 return p

CHAPTER 2. IDENTIFYING GRAMMARS IN DNA SEQUENCES24



Chapter 3

Application

In this chapter, we test the hypothesis that joint learning of motifs and spacing

constraints performs better than a naive motif scanning approach and SpaMo at

identifying biologically significant grammars by applying these methods to prokaryotic

promoter sequences.

3.1 Synthetic Data

We begin with a small toy example to demonstrate how our method should work.

We plant artificial dyads of ATGCA and TGCA with a spacing of 3bp at random

positions in 100 sequences of length 50 on the same DNA strand. We first initialize

the algorithm and limit ourselves to the interval of -5 to +10bp to search for spacings

enrichment. The output we get is a histogram showing the enrichment of particular

spacings. As we can see, the 3bp spacing we expect to see is enriched (p ~ 10-10)

[Figure 3-1]. But, we see that over half of the probability mass has been allotted to

other spacings. This is due to subsequences which are not instances of the grammar

being assigned limited probability mass to background. This dilutes the quality of

the grammars we hope to recover.



26 CHAPTER 3. APPLICATION

50
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Figure 3-1: Distance distribution between motifs for toy example

We also varied the number of sequences which contained the dyad to estimate how

robust the method is to noisy data. We see a drop in the recovery of dyads as the

presence of the dyad in the dataset drops [Figure 3-2]. When only half the dataset

contains the dyad, we see recovery of under 1/5 of the sequences containing the dyad.

3.2 Prokaryotic promoters have motif spacing con-

straints

Promoter regions have long been known to contain specific sets of binding motifs

with spacers in between them. These spacers are a signature of the transcriptional

machinery, comprised of general TFs and RNA polymerase, that forms when a gene

is expressed. Prokaryotic promoters have been particularly well studied, as they

seem to exhibit greater sequence conservation when compared to eukaryotes. Since

prokaryotic organisms have smaller genomes and lack enhancers, most transcriptional

regulation occurs at these gene proximal regions. Several databases of prokaryotic

promoter sequences have been published and here we apply the method to data from

-5 -4 -3 -2 -1

'4-

E

tu

9 10
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3.2. PROKARYOTIC PROMOTERS HAVE MOTIF SPACING CONSTRAINTS

WQ00%
4500%

2QL00%1W00%

1200%

15.00%
F5 10.00%

e 0.00%
9500% 85.00% 75.00% 65.00% 5500%

100.00% 9M00% 80.00% 70.00% 60.00% 5.00%

%of sequences with planbd d)d (w\3bp spacing)

Figure 3-2: Performance of dyad discovery drops as prevalence of dyad in synthetic

dataset drops (averaged over multiple runs)

the PromEC database of E. coli c--70 promoters [29]. These promoters have been

shown to have a consensus TTGATC motif at -35, a conserved 15-19bp spacer, and

a TATAAA -10 motif near the transcription start site [17] . In particular, we apply

our method to find the distribution over the distances between the two motifs, with

motif parameters fixed, as a proof of concept. We apply what we know about the

motifs present in these promoter regions and limit our search to spacings upto 30bp

long. For all graphs, we only show results corresponding to the strand with greatest

enrichment at a particular position.

We see that the most significant spacings found are 15-18bp (p ~ 10-6 at 17bp)

[Figure 3-3]. Also, if we allow the motif parameters to update, we obtain PWMs

that are similar to the consensus sequences [Figure 3-4].

We compared our method to a naive scanning approach. Using published -35 and

-10 motif PWMs [7], we scanned the PromEC sequences for motif occurrences and

constructed a histogram of the displacements between the motifs [Figure 3-5]. The

histogram reveals very little about the structure of the underlying grammar. This

27



28 CHAPTER 3. APPLICATION

0

E

LU

-5-4-3-2-1 0 1 2 3 4 5 6 7 8 91011112131415161718192021222324252627282930

SpB.*nbp)

Figure 3-3: Distance distribution, calculated using our method, between the -10 and
-35 motifs for a class of prokaryotic promoters

(a) Motif at -35 position

(b) Motif at -10 position

Figure 3-4: PWMs for prokaryotic promoter sequences
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3.2. PROKARYOTIC PROMOTERS HAVE MOTIF SPACING CONSTRAINTS

20-

18-

-20 -18 -16 -14.-12 -10 - -6 4 -2 0 2 4 6 8 10 12 14 16 18 20

spanig p)

Figure 3-5: Distance distribution, calculated by motif scanning, between the -10 motif
and -35 motifs for a class of prokaryotic promoters

may be caused by some weakly informative bases in the input motif, which may lead

to falsely calling motif occurrences.

Finally, we applied SpaMo to the PromEC database using the same published

PWM matrices as above [Figure 3-6]. SpaMo locates the -35 motif at a displacement

of -17bp from the -10 motif, as we would expect (p ~ 10--10). However, the signal is

considerably weaker, with only 35 occurrences of the most significant spacing found

by SpaMo, compared to 61 occurrences found by our method. It also picks up a few

more weakly significant spacings at -3bp and 7bp, which do not reflect any known

biology.

This application to prokaryotic promoter data shows that learning motifs and

spacing constraints simultaneously avoids the problems we see in the naive approach

and SpaMo. By allowing the motifs to inform the learned spacing preferences and vice

versa and not requiring prespecified, potentially weak, motifs, we are able to observe

biologically relevant spacing constraints and fewer false positives in our learning task.
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Figure 3-6: Distance distribution, calculated by SpaMo, between the -10 motif (at

displacement Obp) and -35 motifs (at displacement -17) for a class of prokaryotic

promoters
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Chapter 4

Conclusion

In this thesis, we considered the tasking of learning more complex sequence repre-

sentations of DNA, rather than simple motifs. We discussed the importance of these

representations and outlined a method that can recover previously known spacings

between motifs in prokaryotic promoter datasets and perform better than other meth-

ods at this task.

4.1 Future Work

There are several avenues for future work

o First, we adopted a simple representation of a grammar as two spaced motifs.

More complex representations would likely allow for fewer matches in a set of

DNA sequences, resulting in greater specificity of discovered grammars.

o Second, the current framework allows for a sequence to be generated from back-

ground or one out of a set of grammars. This could be augmented to allow

classes of grammars. For example, we might expect that the binding context of

a factor might differ when it is bound in an enhancer region versus a promoter

region. A model that added an extra level to capture these biological notions

would allow for greater interpretability and also limit weak assignments of a

sequence to a grammar.



" Adding additional informative priors could aid in discovery. Priors have been

used with other motif finders and shown to improve motif discovery results and

similar priors over the subsequences could aid in our problem setting [30].

" A different formulation may also improve performance. One limitation of the

current model is that if the number of dyads grows too large there is a cor-

responding increase in the number of mixture components, which, in general,

reduces the performance of mixture models, due to overfitting.

" This algorithm is reminiscent of the MEME two component mixture algorithm,

which has been applied to proteins. With minor extension, this algorithm could

also be applied to proteins, which have also been shown to have domains with

specific spacing constraints.
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Appendix A

Derivation of EM algorithm

In this section, we provide some intuition and a derivation for the algorithm in Chapter

2. Refer to Table 2.1 for notation. For the model presented, the likelihood of a

particular sequence is given by:

P(W.,Za; , A, ) = 7TBGP(Wn I Bn = 1; OBG) + (1 - 7BG) P(Wfl|Z =k; O, A)
k

(A.1)

Therefore, for the entire dataset, the complete-data log-likelihood is

P(W, Z; r, A, 0) = LogP(W,, ZT; 7r, A, ) (A.2)
n

where we have introduced a latent variable Z, for each subsequence to indicate the

hidden component that is responsible for generating the sequence and Bn which is a

binary variable that indicates whether the sequence was generated by the background

model.

Optimization [??] of the observed-data log-likelihood is not tractable and as a

result, we instead introduce latent variables and iteratively optimize the complete-

data log-likelihood [A.2], since we do not know which latent component generated

each observed subsequence. This EM algorithm is used to estimate the parameters of

the model by fitting the data with the model using maximum likelihood estimation.



The derivation below follows some of the conventions presented in derivations of

probabilistic latent semantic analysis [28] [21].

A.1 M-step

We first derive the maximization step of EM, which assumes that we have computed

responsibilities, or expectations of the latent variables, in the B-step and can now

perform optimization of the complete data log-likelihood. Here, we focus on deriving

the motif updates, as the mixing parameter updates follow the procedure that is

typical of mixture models.

We update parameters for each dyad component independently. We further de-

compose this function into learning two individual motifs based on the profile of the

current dyad we are learning. Specifically, we know the lengths of the two motifs

and the spacing parameter composing the dyad, which allows us to learn the motifs

independently. As a result, in the following steps, we consider updates for only one

motif of dyad k. The updates for the other motif are analogous.

Let Wk[i] denote the substrings corresponding to motif i for the kth dyad. There

are N substrings in this set. Let anj be the character at the jth of the nt' substring

from this set. We can evaluate the log-likelihood of the set of sequences, Wk [],

according to the kth dyad model: (where c E {A, C, G, T}, Pcj is the probability of

character c in position j according to motif i for the kth dyad, and 1 is the indicator

function which returns 1 only if c matches anj)

TT1[an = c1[B = 1] log[nBG anj I BGC)

n j c

Y Y Y1[anj = c]1[B. #4 1]1([Zn = k] 1og[( - 7rBG )Pej] (A.3)
nL j c

We then take expectations of the latent variables and simplify to get:
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YI Yj Yj 1[aj = c]E[1[B = 1]] log[7rBGP(anj I OBG)]±
n j C

1[a.5 = c]E[1[B. $ 1]1[Zn = k]] 1og[(1 - 7BG)Pcj] (A.4)
n j C

Our goal is to determine the parameters pcj. Therefore, we include Lagrange

multiplier constraints and differentiate with respect to pcj for a particular c and j.

cI [anj = c]E[1[B $ 1]1[Zn = k]] + C (A.5)
Pcj

where C is a constant that results from differentiating the Lagrange terms.

Setting the derivative equal to zero and solving for pcj gives:

Pci oc Y3 1[a = c]E[1[B, # 1]1[Zn = k]] (A.6)
C

After normalizing and recognizing that the expectations in the expressions corre-

spond to the expectations computed in the E-step, we get the expression for pcj as

presented in Algorithm 2.

N

1 I[anj = cl-y[Zak] (1 - -y[B,])

Pcj N n=1 (A.7)

c'EA 1[antj = c']y[Znk](1 - y[Bn])

A.2 E-step

Using the initialized parameters of the model or the parameters estimated in the

preceding M-step, we update our expectations for the latent variables using Bayes'

Rule.

We first compute the responsibility of a sequence having been generated by back-

ground:
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P(W I BI = 1; O)P(B, =1)
P(Bn=1W; 0)=(W)

P(W I = 1; OBG)7TBG

7BG P(Wn IBn = 1; OBG) + (1 7BG) Zk AkP(Wf I Zh = k; 0)

= Y[B,] = E[1[Bn = 1]] (A.8)

The result we get can be interpreted as the parameter of a binomial distribution

over assignment of a sequence to background or non-background.

We then compute relative responsibilities for each of the dyad models:

P(Wn I Z. = k)P(Z, = k)
P(Z =k|IZ#B,Wm) = P(Wn)

_ P(Wn |Zn k)Ak

ZkP(WaI Z =k; 0, A)

=-y[Zk] = E[1[Z, = k]] (A.9)

The results we get for all k models can be interpreted as the parameters of a

multinomial distribution over the dyads.
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