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ABSTRACT

Bacterial infections continue to be a significant concern particularly in healthcare settings
and in the developing world. Current challenges include the increasing spread of drug
resistant (DR) organisms, the side effects of antibiotic therapy, the negative consequences
of clearing the commensal bacterial flora, and difficulties in developing prophylactic

vaccines. This thesis was an investigation of the potential of a class of polymeric
nanoparticles (NP) to contribute to the management of bacterial infections. More

specifically, steps were taken towards using these NPs (1) to achieve greater
spatiotemporal control over drug therapy by more targeted antibiotic delivery to bacteria,
and (2) to develop a prophylactic vaccine formulation against the common bacterial
sexually transmitted disease (STD) caused by Chlamydia trachomatis.

In the first part, we synthesized polymeric NPs containing poly(lactic-co-glycolic acid)-

block-poly(L-histidine)-block-poly(ethylene glycol) (PLGA-PLH-PEG). We show that
these NPs are able to bind to bacteria under model acidic infection conditions and are

able to encapsulate and deliver vancomycin to inhibit the growth of Staphylococcus
aureus bacteria in vitro. Further work showed that the PLGA-PLH-PEG-based NPs

demonstrated the potential for competition for binding bacteria at a site of infection from
soluble protein and model phagocytic and tissue-resident cells in a NP composition
dependent manner. The NPs demonstrated low toxicity in vitro, were well tolerated by
mice in vivo, and circulated in the blood on timescales comparable to control PLGA-PEG
NPs.

In the second part, we used PLGA-PLH-PEG-based NPs to design a prophylactic vaccine
against the obligate intracellular bacterium Chlamydia trachomatis, the most common

cause of bacterial STD in the world. Currently, no vaccines against this pathogen are
approved for use in humans. We first formulated NPs encapsulating the TLR7 agonist

R848 conjugated to poly(lactic acid) (R848-PLA) in PLGA-PLH-PEG-based NPs, then
incubated these R848-NPs with UV-inactivated C. trachomatis bacteria in acidity,
forming a construct. Mice immunized with this vaccine via genital or intranasal routes
demonstrated protection from genital infection post immunization in a primarily CD4* T
cell-dependent manner.
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These results may suggest avenues for future work in designing and developing more
targeted drug therapies or vaccine formulations for managing bacterial infections using
polymeric nanoparticles.

Thesis Co-Supervisor: Robert Langer
Title: Institute Professor, MIT

Thesis Co-Supervisor: Omid C. Farokhzad
Title: Associate Professor of Anesthesia, Harvard Medical School
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Chapter 1

Introductory Remarks and Overview

1. 1. Introductory Remarks

Bacterial infections have been a scourge to mankind since the dawn of our species

c.200,000 years ago. Exploring methods to improve treatment and prevention has been a

continuing endeavor, albeit one characterized by a lack of clear vision or targeted

methodology until perhaps the late 1 9 th century, when Robert Koch published a set of

postulates which could be used to precisely determine if a microorganism was causing a

disease. This seminal contribution was a capstone to centuries of observations including

Anton van Leeuwenhoek's first visualization of a bacterium in the 1 7th century to Louis

Pasteur's seminal studies in the 1 9 1h century disproving the theory of spontaneous

generation. These and many other examples together unambiguously made clear that

bacteria can cause illness.1 Alongside these key advances in microbiology were the

seminal contributions by Paul Ehrlich, who in the early 2 0 th century famously conceived

of a "magic bullet" that could seek out and attack agents of disease with minimal

collateral effects.2 The stage had now been set for the fortuitous discovery of penicillin

by Alexander Fleming in 1928, which was later developed into a drug by scaled

production techniques in the 1940s. The use of penicillin in humans was truly landmark

because of its remarkably fast and potent activity combined with few side effects, even

when ingested in gram quantities per day.3 This triggered a revolution known as the

"golden era" of antibiotic discovery, a period of tremendous productivity from c.1940-

1980, in which many of the major classes of antibiotics still in use today were
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discovered.4 Particularly in these years, a host of drugs were developed, bringing

unprecedented success against a wide variety of bacterial infections, leading to important

insights into bacterial physiology, and most importantly, saving the lives of many.

However, the story does not end there. Bacteria are among the oldest living organisms on

planet Earth and in the approximately 2 billion years of their existence, have evolved

tools and strategies that make them highly adaptable to extreme environments or

chemical attacks. Bacteria can be found at extremes of temperature and pressure, have

survived cataclysmic events, withstood variations in atmospheric composition and

surface temperature over the evolution of planet Earth, encountered chemical attacks

from sources like the environment, competing microorganisms, and faced sophisticated

assaults by the immune systems of multicellular organisms. In addition, bacteria have

extremely short generation times - on the order of only a few minutes in some cases -

which allows them to rapidly iterate their genetic material across generations, and can

readily transfer genes to each other using mobile genetic elements.5 These tools acquired

over billions of years of harsh survival positioned them quite favorably to counter

antibiotics. In fact, antibiotics provided a relatively straightforward target because of their

high specificity. Bacteria were able to respond almost immediately, with the phenomenon

of drug resistance (DR) being broadly recognized as a major challenge already in the

1940s. Perhaps even more remarkably, it appears that bacteria had already developed

(cross) resistance to antibiotics - before we even developed them, as suggested by the

discovery of multi drug resistant bacteria in a deep cavern that had been isolated from all

human intervention.6 DR is just one of several strategies used by bacteria. Bacteria are

able to evade therapy by building, inducing, or finding microenvironmental niches, such
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as biofilms, abscesses, or by intracellular localization.' 8 These niches provide a

protective barrier from many elements of humoral immunity and chemical intervention.

Bacteria are also capable of entering into states of hibernation, in which very low

metabolic activity reduces their susceptibility to antibiotics to almost zero, and can form

extremely resilient endospores (for further discussion see Chapter 2).9

We cannot avoid bacteria - they are nearly omnipresent. Bacteria can be found in the air

we breathe, on nearly all types of surfaces, in the food we eat, and perhaps most notably -

in all of us. Bacteria outnumber us in our own bodies approximately 10:1

(bacteria:human cells), living in commensal status on our skin, in our intestinal tracts, and

on our mucosal surfaces.' 0 For the most part this is an indifferent or mutualist interaction.

However, even commensal organisms can cause deadly infections under inauspicious

conditions, such as trauma, interruptions in the normal flora (such as by antibiotic

therapy), or in cases of weakened immune systems due to age or comorbidities. Today we

live in an increasingly interconnected world, where humans may come into contact with a

wider diversity of bacteria more than ever before. This puts us not only at greater risk of

infection, but allows for bacteria from different parts of the world to come together to

"share" genetic information, perhaps leading to bacterial "superbugs" that are resistant to

all known antibiotics.2 A historical perspective suggests that our species will likely be in

a constant battle with bacteria. In fact, some believe that resistance is inevitable.2' " To

remain one step ahead, it will be necessary to continuously develop novel tools and

approaches based on an increasingly deeper understanding not only of bacterial

(patho)physiology, but also how bacteria interact with humans in ways that reduce the

effectiveness of therapeutic strategies. These insights will allow us to create more tailored
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approaches that can not only adapt to bacterial adaptations, but also to anticipate and

perhaps neutralize future moves. Our existing primary tools to treat infections, antibiotics,

can be highly effective, but years of (mis)use are putting them at serious threat for

obsolescence due to DR in many cases. Multi-drug resistance is on the rise, and agents of

last resort are usually less effective, more toxic, and their increasing use is likely to lead

to more widespread resistance (see Chapter 2 for thorough discussion). In addition, drug

therapy of bacterial infections is affected by a variety of other factors, including

microenvironmental conditions, biofilms, and drug pharmacokinetic challenges, all of

which can significantly impact the outcome of therapy. These factors suggest that novel

tools and approaches are needed to improve antibacterial drug therapy. 12

A complementary strategy to seeking new therapeutics is the search for novel methods of

prevention. One part of a prevention strategy is proper sanitation, a concept pioneered by

Ignaz Semmelweis and Joseph Lister in the 1 9 th- 2 0 th centuries among many others, but

major effects can also be obtained by safe and effective prophylactic vaccination.

Vaccines have been credited with the eradication of smallpox (a viral illness) and have

also made significant impacts on a host of bacterial illnesses including those caused by

Bacillus anthracis, Streptococcus pneumoniae, Haemophilus influenzae type B,

Clostridium tetani, and Mycobacterium tuberculosis, among others. These successes,

while modest in some cases (such as for TB), nevertheless have protected many from

infection, saved lives, and reduced healthcare expenditures for decades. Despite these

successes, many bacterial infections remain without a safe and effective prophylactic

vaccine. It appears that traditional tools and approaches are insufficient to yield immunity
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in several important examples, creating a clear and pressing need for the development of

more advanced tools and platforms to yield safe and effective vaccines.

This thesis is a contribution to the ongoing work to improve the treatment and prevention

of bacterial infections. In one succinct phrase, this thesis was motivated primarily by (1) a

need to continue exploring new methods for enhancing the effectiveness of drug therapy,

and (2) the need to identify new platforms for achieving safe and effective vaccination.

1. 2. Thesis Overview

My main interest in this thesis was to make a contribution towards developing

technologies that might improve the management of bacterial infectious disease. Within

this broad goal, I focused on two major activities: (1) treatment of bacterial infections,

and (2) prevention of infection by prophylactic vaccination. To begin taking steps

towards these aims, in collaboration with others I developed and tested a novel polymeric

nanoparticle (NP) platform that could be used to encapsulate and deliver active agents.

The precise method of using the NPs varies depending on the application - this is

discussed at length in the appropriate research chapters.

To begin, I discuss the rationale for NP-based approaches to treatment of bacterial

infections in Chapter 2. This chapter is also a literature review, focusing on the different

NP-based technologies that have been used to deliver drugs, particularly within the

context of antibacterial therapy. I also include a discussion of why a polymeric NP

platform is suitable for the work that follows. From there, I review some of the general

principles that apply across NP platforms, including such concepts as passive targeting to

inflammation by certain types of nanomaterials as well as methods to achieve binding to
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bacteria, often termed "active" targeting. I emphasize the use of charge-charge

interactions as a widely used basis for targeting bacteria with NPs, which also forms the

basis for the work contained herein.

In Chapter 3, 1 delve into the synthesis and characterization of the polymeric NP platform

that is used (albeit with some modification over the years) throughout this thesis. This

chapter also documents the first steps we took to explore the applicability of our NP

system for treating bacterial infections, beginning with the synthesis of the polymer,

continuing with basic characterization, drug loading/release, confocal microscopy of

interactions with bacteria, then culminating with in vitro studies of bacterial growth

inhibition using Staphylococcus aureus as a model pathogen.

Chapter 4 is a continuation of the work done in Chapter 3, focused on complementary

studies that can potentially better predict the outcome of using this NP platform to treat

infections in vivo. We achieve this by first exploring how the NPs interact with model

biological components present at sites of infection (other than bacteria) - namely proteins

and host cells. Based on these studies, we devised and explored a method that might

improve the specificity of NP binding to bacteria in more complex environments, such as

those containing proteins and mammalian cells. The chapter concludes with an in vivo

assessment of relevant NP properties that might inform future studies in this area.

Chapter 5 documents efforts to improve the potency of the antibacterial NP formulation

by co-delivering drugs that work synergistically together. We describe the rationale for

selecting silver(I) and vancomycin, describe the formation and characterization of these

co-delivering NPs, then test them for their ability to inhibit bacterial growth.

17



Chapter 6 describes our efforts in applying our NP platform to yield a prophylactic

vaccine against Chlamydia trachomatis. We begin the chapter with a short review of the

pertinent literature, highlighting examples of how NPs can broadly be used as vaccines as

well as explaining the continuing need for a vaccine against this disease. From there, we

discuss the design and characterization of the vaccine formulation that was tested, leading

to demonstrations of the ability to prevent infections in vaccinated mice.

Chapter 7 summarizes the highlights and conclusions of this thesis, as well as providing

suggestions for future work in this area.

1. 3. References
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4. Overbye, K.; Barrett, J., Antibiotics: where did we go wrong. Drug Discovery

Today 2005, 10, 45-52.
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Chapter 2

Background: Nanoparticles for Treating Bacterial Infectious
Diseases

This chapter acknowledges contributions from: Radovic-Moreno A. F., Lu T. K., Langer
R., Farokhzad 0. C. Review in preparation.

2. 1. Introduction

The clinical impact of drug resistant (DR) bacterial infections is unprecedented and

growing. Currently, the majority of hospital-acquired infections involve microbes with

resistance to at least one antibiotic and multidrug resistance is spreading.] It is estimated

that the economic costs of treating resistant infections are as high as USD $30 billion

annually.2 Drugs used to treat these resistant organisms are generally less effective, more

toxic, can have solubility problems, and are susceptible to resistance. Furthermore, the

pipeline for new drugs is thin. There is a limited number of recently approved or

investigational new drugs in clinical trials, with many of these belonging to existing drug

classes and few providing obvious advantages over existing therapies.3

Complicating matters is the observation that drug resistance is only one of a host of

strategies that bacteria use to evade therapy. Bacteria thrive in niches in host organisms

that reduce the effectiveness of therapeutics and the immune system. Bacteria can

cooperate with each other to form large, difficult to permeate colonies called biofilms that

are extremely difficult to remove and very difficult to penetrate. 4 Inside these colonies

may reside persister cells - bacteria that have such low level metabolic activity as to be

largely unaffected by the presence of antibiotics.5 In addition, bacteria have developed

the ability to escape phagocytosis and can reside intracellularly, using the host cell
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membrane as protection from both the immune system and from chemical attacks.

Infection sites can also have a nefarious combination of conditions that can affect the

outcome of therapy, with abscesses, localized acidity, and hyperviscous mucus barriers

all potentially affecting the efficacy of therapeutics. These conditions can prolong

duration of therapy, increase morbidity and mortality, or increase the likelihood of

treatment failure.

In light of these urgent challenges, there is a pressing need to explore new strategies that

might improve the treatment of infections. Currently, a variety of approaches are being

evaluated including small molecule antibiotics,3, 7 bacteriophages,8 antimicrobial

peptides,9 antivirulence or drug potentiators,"0 " 1 and nanoparticles (NP). Here, we focus

on NP-based approaches. The potential of NPs stem from their small size, unique

chemical, physical, electrical, or magnetic properties, ability to encapsulate and deliver

drugs, and large surface area-to-volume ratio, among others. These properties can

potentially be used to reduce the impact of delivery barriers, achieve improved efficacy,

and reduce toxicity. Furthermore, now that the clinical evaluation of NPs for cancer

therapy is well underway, 12, 13 the relative safety and potential for efficacy of

nanomedicine is becoming increasingly validated.

In this review, we highlight examples where NPs might enable improvements in the

treatment of bacterial infections. We stress a deep understanding of the barriers to drug

efficacy or delivery, showing how NP technology can potentially be engineered to help

overcome these. Most examples will focus on bacterial infections, though applicable

examples in treating fungi, protozoans, and cancer are included. Finally, we highlight a

21



sampling of the taxonomy of materials that have high potential, focusing on systemically

deliverable formulations.

2. 2. Challenges to Effective Bacterial Clearance

2. 2. 1 Drug Resistance

Bacterial drug resistance (DR) to antibiotics is one of the major challenges facing modem

medicine. DR can be defined as the acquisition of gene(s) which act to reduce the

effectiveness of a drug. This reduced drug activity can occur through several mechanisms,

including reduced drug penetration into bacteria, increased drug efflux, drug modification

or degradation, or drug target modification (Figure 1).5 DR can be observed in the

laboratory as an increase in the minimum inhibitory concentration (MIC) of a drug.

Multidrug resistance (MDR), that is, resistance to multiple antibiotics, is also on the rise,

with as many as 16% of healthcare associated infections involving MDR pathogens in

one report.1 5
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Figure 2. 1. Drug Resistance Mechanisms. Common mechanisms of resistance to
antibiotics include reduced drug penetration (not shown), increased drug efflux, antibiotic

alteration by enzymes, antibiotic degradation, or drug target modification (not shown).

Reprinted by permission from Macmillan Publishers Ltd: Nature Medicine Levy and

Marshall,2 copyright 2004.

Traditional antibiotics typically act on a narrow target and have a specific mechanism of

action. While this specificity has obvious advantages, it also creates a selection

environment favoring expansion of DR organisms. It is currently believed that

subtherapeutic drug exposure is a mechanism driving DR.16 Theoretically, reasons why

antibiotics may fall below a therapeutic level in vivo include insufficient dose (caused by

patient non-compliance, incorrect dosing, or dose-limiting toxicity), rapid elimination
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from the site of infection, inactivation or loss of activity, or poor delivery to the infection

site due to high barriers to diffusion or low tissue partition coefficients.

Nanomedicine is potentially well-suited to both improve traditional antibiotic

formulations and contribute to overcoming the DR challenge. NPs have been shown to

improve antibiotic drug efficacy or delivery,17', ' directly kill bacteria,19-21 or enable novel

treatment paradigms such as targeted photothermal-mediated bacterial killing. ' In

addition, NPs can be used to reduce drug toxicity, potentially reduce clearance of

beneficial bacteria, achieve drug concentrations high enough to overwhelm resistance

mechanisms,24, 25 protect various antibiotics from degradative enzymes,2 6 or co-deliver

multiple antibacterial agents. Further, because of the nature of NP-mediated killing or

because of improvements in delivery, it may be intrinsically more difficult for bacteria to

develop resistance to NP therapeutics. The sections below will further explore the

potential of NPs to improve treatment of infections, which is likely to simultaneously

reduce the likelihood of DR emerging.

2. 2. 2. Infection Microenvironment

The microenvironment of an infection presents significant challenges for proper drug

delivery and effective killing of bacteria. Infection sites are complex and dynamic entities,

whose delivery challenges may vary as a function of the causative organism(s), the

immune status of the patient, as well as the anatomic location. Infection sites can have

intra- or extracellular bacteria, neutrophils, macrophages, lymphocytes, dendritic cells,

host tissue cells, inflammatory mediators, bacterial toxins, and plasma proteins, among

many others (Figure 2A). Other obstacles to delivery include aberrant tissue architecture
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from chronic disease, hyperviscous mucus secretions, abscesses, acidity, and biofilms.

Here we will highlight some examples of challenges to proper delivery together with

nanomedicine approaches towards their resolution.

Chronic diseases can result in aberrations of the normal tissue architecture, which can

impact the efficacy of therapy. For example, delivery of drugs to lung infections in

patients with cystic fibrosis (CF), chronic obstructive pulmonary disease, or advanced

asthma is complicated by severe mucus plugging, areas of reduced ventilation, and

significant tissue remodeling and fibrosis. In a step towards improving delivery to these

regions, NPs have been developed which can penetrate mucus barriers. Tang et al

formulated NPs using a diblock copolymer of poly(sebacic acid)-block-poly(ethylene

glycol) (PSA-PEG) designed to penetrate the hyperviscous mucus secretions of patients

with cystic fibrosis. 27 The authors densely coated the surface of the NPs with PEG to

reduce interactions between the NPs and mucins, leading to more rapid and effective

penetration rates. Using 173 nm PSA-PEG NPs, at a time scale of 1 second they

demonstrated a 50-fold greater mean square displacement diffusion distance of the NPs

than control latex NPs in mucus expectorated from CF patients. Further study showed

that NP size is important, with NPs less than 200 nm in diameter moving more rapidly

through low viscosity pores.28

Abscesses are collections of bacteria, white blood cells, and associated cell debris that are

known to prevent effective antibiotic delivery. They are a significant clinical problem,

with skin or subcutaneous abscesses alone accounting for ~2% of emergency room

visits.29 Current clinical practice involves surgical drainage of the abscess with antibiotic

therapy not practiced unless there are signs of systemic infection. Non-surgical methods
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of therapy may help to reduce morbidity and tissue damage, leading to more rapid and

satisfactory resolution. Nitric oxide-releasing NPs made from a hydrogel/glass composite

have demonstrated activity against methicillin-resistant Staphylococcus aureus (MRSA)

subcutaneous abscesses. 30 These NPs were shown to not only inhibit MRSA growth and

reduce abscess area in mice, but to also stimulate healing by promoting fibroblast

migration and inducing collagen deposition.

Another factor that can reduce drug activity is the formation of localized acidity at a site

of infection. Acidity has been documented across a range of different infections involving

single and multiple organisms and at different anatomic locations. The mechanism of

acidity is still incompletely understood but may involve a switch to anaerobic

fermentation by bacteria under settings of low oxygen tension, leading to the production

of organic acids.3 1 In addition, recruitment of acid-producing neutrophils and release of

products of inflammatory processes exacerbate the localized acidity, which can reach as

low as pH -5.5. 3 Superficial skin infections, where the normal tissue pH is already

acidic, can be as low as pH 4.0.34 Localized acidity is significant in that the activity of

several antibiotics is known to be affected by changes in pH. Selman Waksman,

accepting the Nobel prize in 1952 for his discovery of streptomycin, noted the loss in

bactericidal potency of this antibiotic in acidity. Loss of activity has been noted in

amikacin, the fluoroquinolones ciprofloxacin and sparfloxacin,36 and vancomycin.37

Interestingly, certain p-lactams demonstrate increased potency in slight acidity.3 8 These

observations suggest that there is a need to develop systems that may help to optimize

antibiotic activity in different pH environments. In a step in this direction,

Pornpattananangkul et al designed an acid-sensitive drug targeting system.34 The authors
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developed cationic liposomes that remain stable at neutral pH due to surface-bound

anionic gold NPs. As the local pH declines to below 5.0, the gold NPs dissociate,

allowing the cationic liposomes to regain their ability to fuse with bacteria and deliver

high doses of drugs.

0 )0

Figure 2. 2. Infection Microenvironments. The microenvironment of an infection can
have far-reaching implications in achieving proper drug delivery and bacterial killing.
Schematic of a typical infection site. Nanoparticles (NP) circulate in the blood until they
encounter a site of increased vascular permeability (dashed lines). NPs of appropriate size
are able to extravasate and come into contact with the infectious process.

2. 2. 3. Biofilms

Discovering methods for clearing bacteria residing in biofilms is one of the most

demanding challenges in bacterial infectious disease research today. Biofilms are a set of

structurally diverse matrix-enclosed bacterial communities that adhere to surfaces and are

remarkably resistant to antibiotic therapy. They form in a regulated developmental

sequence, beginning with the adhesion of an active bacterium and production of an

extracellular polymeric substance (EPS) matrix, often a polysaccharide, and have

sophisticated architectures, growing flat or mushroom-shaped and with internal aqueous

channels for diffusion of nutrients. The lack of efficacy of antibiotics against biofilms is

believed to occur through three main mechanisms: (1) hindered diffusion rates inside of
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biofilms, (2) existence of bacteria in semi-starved states, leading to slower growth and

subsequent reduced antibiotic susceptibility, and (3) existence of subpopulation of cells

known as "persisters", which do not respond to antibiotics. 5' 40 Biofilms are especially

important in various chronic infections, including device-related infections, CF

pneumonias, wounds, and periodontal disease.4 Nanoparticles have been hypothesized to

be able to contribute to clearing biofilms through several mechanisms, including

improved drug targeting, enhancing drug penetration into the biofilm, and reducing

bacterial adhesion, the first step in biofilm formation.4 1 Efficacy against biofilms formed

by clinically significant pathogens including Pseudomonas aeruginosa and

Staphylococcus aureus have been reported using nitric oxide-releasing silica NPs.42 In

addition, magnetic silver ring-coated NPs ~30-40 nm in diameter have been developed

that can penetrate deep into biofilms after application of an external magnetic field.43

Similarly, carboxyl-grafted superparamagnetic iron oxide NPs (SPIONs) were

magnetically concentrated deep in biofilms, demonstrating ~8-fold higher percentage

bacterial kill than gentamicin in a gentamicin-resistant strain of Staphylococci.4 4

Nanoparticles have also been used to prevent the formation of biofilms. A glycopeptide

dendrimer was used to inhibit the formation of P. aeruginosa biofilms4 5 and silver

bromide NP/polymer composites, when used as a coating, demonstrated the ability to

resist biofilm formation." Despite these promising advances, much more work is needed

to investigate methods of completely eradicating bacteria in these colonies, including

dormant persister cells.

2. 2. 4. Intracellular Organisms
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Microorganisms have evolved the ability to evade the immune system by entering host

cells, where intracellular conditions enable their continued survival. These organisms,

broadly classified as "intracellular" can be very difficult to treat, have high mortality rates,

and generally represent some of the most formidable challenges for designing

therapeutics. Intracellular organisms inhibit the normal cellular digestive process in

phagolysosomal compartments and reside there or escape into the cytoplasm.4 7 By

residing intracellularly, bacteria are protected from attacks by antibodies, complement,

and certain antibiotics.

A variety of intracellular organisms remain without a truly robust therapy, with rampant

drug resistance, complex or lengthy regimens, lack of efficacy, and possible drug

interactions in patients with comorbidities. Perhaps the most notorious is Mycobacterium

tuberculosis, the causative agent of tuberculosis (TB). TB is one of the most common and

dangerous diseases in the world and is highly multidrug resistant, with estimates by the

World Health Organization suggesting that one third of the entire world population has

latent TB. Other clinically significant intracellular pathogens include Listeria

monocytogenes, the causative organism of the highly fatal food-borne illness listeriosis,

Salmonella typhi, the bacterium that causes typhoid fever, Legionella pneumophila, the

etiology of Legionnaires' disease, a dangerous infection of the respiratory tract, and

Chlamydia trachomatis among many others. 8

The extent to which intracellular habitat affects antibiotic therapy depends on the drug

and targeted cell type. Certain antibiotics, such clarithromycin, are actively transported

into eukaryotic cells. Others, such as some p-lactams, vancomycin, or gentamicin, have

relatively poor intracellular-to-extracellular ratios.6 Enhanced delivery precisely to the
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subcellular site of bacterial habitat using NPs could potentially improve drug efficacy.

Macrophages are a common target for intracellular bacteria due to this cell type's role in

clearing pathogens. NPs can be engineered to target subcellular compartments in a wide

variety of eukaryotic cells, including macrophages, using appropriate surface

modifications. Consequently, several different NPs have been explored for their potential

to treat intracellular infections.

Several NPs have been explored to treat TB. Poly(N-butylcyanoacrylate) and

poly(isobutylcyanoacrylate) NPs encapsulating the often-used drugs isoniazid, rifampin,

and streptomycin have been evaluated in terns of their uptake by human blood

monocytes and their activity against TB.49 The NP-encapsulated drugs showed higher

intracellular accumulation than free drugs and more potent antibacterial effect for

isoniazid and streptomycin but not rifampin. In addition, PLGA particles have been used

as an inhalable delivery system for rifampicin, isoniazid, and pyrazinamide, showing

enhanced bioavailability and improved efficacy in a guinea pig model. In this study,

only 5 doses of PLGA-formulated drugs led to complete clearance of bacteria - the

equivalent of 46 daily doses of free drugs. This is particularly remarkable since complex

dosing regimens lead to high patient non-compliance - a major contributing factor to the

widespread multidrug resistant nature of TB.

Polyalkylcyanoacrylate (PACA) NPs are a class of materials that have been explored

extensively for treating intracellular infections. Polyisohexylcyanoacrylate NPs with

bound ampicillin were shown to have significantly improved efficacy as compared to free

drug in a mouse model of listeriosis.5 1 The mechanism behind this improved activity in

vivo was suggested to be improved activity of the NP-bound drug.52
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Polyethylbutylcyanoacrylate NPs were developed which incorporated ciprofloxacin, a

drug with a broader spectrum of action.5 3 Polyacrylate NPs have also been explored as

delivery systems for N-thiolated p-lactams.17 These modified p-lactams are believed to

act via a different mechanism of action than the conventional parent P-lactams,

potentially making them suitable for use against drug resistant organisms. However, their

low water solubility is a challenge for effective clinical translation. Polyacrylate NPs

prepared with modified p-lactam monomers via emulsion polymerization in water

demonstrated good drug encapsulation, small size (~40 nm), good stability, and low

toxicity. Remarkably, the MIC of the NPs were 4-8x lower than the free drug monomer,

suggesting significant enhancement of drug function by the NPs. Given the lack of

antibacterial activity of empty NPs, it is believed that the lower MIC was due to either

enhanced membrane permeability or higher local concentration of drug. Further,

polyacrylate NPs formed containing acrylated penicillin G were evaluated in vivo by

topical or intraperitoneal administration, demonstrating no obvious toxicity and

promising activity, particularly in a model of an infected wound. Nevertheless, the

potential for cytotoxicity of these and any other type of materials should be considered in

further development, noting that PACA NPs may be cytotoxic at high concentrations.55

Notable improvement in efficacy was found by encapsulating azithromycin in PLGA NPs.

The PLGA NP formulation was shown to have an 8-fold lower MIC than free drug in

treating S. typhi. 8 These NPs may potentially be well-suited to target azithromycin to

macrophages in the spleen or liver to treat typhoid fever. PLGA NPs have also been used

to deliver the antibiotic combination of rifampin and azithromycin to Chlamydia-infected
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cells, showing efficient targeting of the inclusion body and better efficacy than free

drug.56

2. 3. Nanoparticles Creating Opportunities for Improved Therapy

2. 3. 1. Potential Advantages of Targeting Pathogenic Bacteria

One of the main advantages of using nanomaterials for treating bacterial infections is the

potential to achieve more targeted effects. Possible advantages of targeting include

improved drug efficacy, reduced side effects, reduced clearance of mutualist bacteria -

which might impact a variety of diseases ranging from antibiotic-associated Clostridium

difficile diarrhea to immune diseases including asthma, eczema, and diabetes 57 - reduced

potential for emergence of drug resistance, and ability to overcome drug resistance with

drug concentrations not achievable using traditional antibiotic formulations due to

toxicity. Nanomaterials have shown the ability to target bacteria through a number of

different mechanisms, which generally fall under passive targeting or active targeting.
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Figure 2. 3. Targeting Bacteria with Nanoparticles. Examples of different methods by
which nanoparticles (NP) can target bacteria to clear infections. A) A combination of
surface moieties (purple triangles) and cationic surface charge disrupting the outer
membrane (in green) of a Gram-negative bacterium. The large quantities of drug (in red)
delivered in this manner can overwhelm drug efflux pumps (in blue). B) An approach
where a targeting ligand (purple triangle) enables NP binding to the surface of a model
protein (in orange), leading to more specific drug delivery and high local drug
concentration. C) NPs targeting intracellular bacteria. A NP binds to a model membrane
protein leading to internalization, where either fusion with bacteria-containing
endosomes/phagolysosomes or endosome escape can lead to bacterial targeting. Note: NP
not drawn to scale.

2. 3. 2 Passive Targeting

"Passive" targeting is the selective accumulation of nanomaterials at a site of disease by

virtue of convection (primarily in the blood) and diffusion. This is contrast to "active"

targeting, which includes specific interactions that occur between the nanomaterial and

components of the targeted site that lead to accumulation, binding, or eukaryotic cell
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internalization. Passive targeting of infections is initiated by the accumulation and release

of bacterial components at the infection site, particularly pathogen-associated molecular

patterns (PAMPs). These components activate immune cells, leading to generation of

bradykinin, nitric oxide, prostaglandins, and other vascular mediators. Bacterial proteases,

lipopolysaccharide, and lipoteichoic acids are also known to trigger production of

bradykinin independent of immune cell action. This process can occur within minutes,

lasting for hours to days following bacterial transmission and is characterized by

vasodilation and increased vascular permeability locally in the vicinity of the infection.

The vascular mediators trigger a widening of interendothelial gaps, allowing for

extravasation of plasma components into the site of infection.58

Selective NP accumulation due to passive targeting can be modulated by

physicochemical properties, including size, zeta potential, shape, rigidity, roughness,

surface hydrophilicity, density of poly(ethylene glycol) (PEG), and others (for a more

thorough treatment, see reviews 59'60). Significant effort has gone towards understanding

the impact of these parameters on passive targeting. Much of this literature comes from

studies of NP accumulation in tumors, which are similar to infections in that they exhibit

local increases in vascular permeability. Important differences to consider include the

aberrant vascular architecture, impaired lymphatic drainage, and reduced vascular density

in tumors.61 Data that clearly and directly address the impact of NP properties on

residence time at an infection are generally lacking. However, existing results suggest

that NP infection residence time is significantly shorter than in tumors and is on the order

of days vs. weeks. 58 This suggests that a strategy that facilitates NP binding to the

infection site may be preferable to one that relies on passive targeting alone.
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Optimization of passive targeting is achieved by extending NP stability and circulation

time in the blood, since NPs must circulate until they encounter the site of "leaky"

vasculature. NP size is one of the principal factors governing passive targeting, with

nanomaterials as small as 40 kDa and objects as large as bacteria (-1000 nm) being able

to enter or leave the vascular space. 58 However, NPs in the range 10-400 nm are

60generally preferred for achieving extended circulation. Strongly cationic surfaces are a

common feature of several antibacterial NPs. While certain examples have shown

promise both in vitro and in vivo, in general, cationic charge would be expected to have

high levels of non-specific eukaryotic cell uptake, negatively charged protein binding,

and shorter circulation time. A mitigation strategy is to PEGylate the NP surface.

However, even a single terminal cationic charge (primary amine) on PEG was shown to

markedly affect the biodistribution of ~8-11 nm PEG-coated gadolinium oxide NPs, with

the amine terminal group PEG-modified NPs showing much greater accumulation in the

spleen and liver than similar negatively charged or neutral NPs.62 Consequently, efforts to

design NPs with high surface charges should pay special attention to these considerations.

The potential to target infections with nanoparticles is well-established. 63 Technetium-

99m-labeled liposomes of different mean sizes between 90 and 220 nm were shown to

accumulate selectively at sites of S. aureus infection in rats.64 The biodistribution of these

liposomes was shown to be dependent on size, with differences occurring mainly in rates

of splenic uptake. The % injected dose per gram of tissue (% ID/g) at the infection was

not statistically different for liposomes 90, 120, 160, and 220 nm in size, with between

1.37-1.72% ID/g reaching the infection site. The targeting mechanism was believed to be

passive targeting, with minimal contribution from monocyte uptake. Superparamagnetic
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iron oxide nanoparticles (SPIONs) have been shown to rapidly and selectively

accumulate in the lungs of mice infected with S. aureus.65 Accumulation could be

observed as early as 24 hours postinfection - considerably before structural changes or

edema could be appreciated using conventional T2* or T2-weighted imaging. SPIONs

18-30 nm have also been shown to accumulate in macrophages at sites of inflammation,

including arthritic knees66 and soft tissue infections. 67 The mechanism of selective

accumulation in these examples is believed to be a combination of passive targeting

followed by selective phagocyte uptake at the infection site.

2. 3. 3 Active Targeting

Active targeting involves the engineering of the nanomaterial to specifically interact with

an infection site. Three general strategies have been explored to achieve active targeting:

(1) cationic surface charge, which interacts with the negative surface charge of bacteria,

(2) specific binding to the bacterial surface using targeting ligands, such as antimicrobial

peptides or peptidomimetics, lectins, cell wall-targeting antibiotics, inflammation

targeting, antibodies, or aptamers, and (3) targeting internalization inside of phagocytic

cells for reaching intracellular organisms.

2. 3. 3. 1. Cationic Materials

Engineering a cationic surface charge to bind to the negative surface charge of bacteria is

the most widely used mechanism to achieve active targeting. Components of the bacterial

cell wall that contribute to a negative charge include (lipo)teichoic acids, peptidoglycan,

negatively charged phospholipids and the lipid A/acidic phospholipids of the Gram-

negative outer membrane. A wide variety of bacteria are negatively charged under

physiologic conditions, making this approach suitable for different types of infections or
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for infections that are polymicrobial. In addition, multivalent effects and the variety of

chemical structures that can be engineered to produce a cationic charge make this an

attractive method for targeting bacteria. Cationic bacteria-targeting materials generally

fall under two major categories: (1) synthetic antimicrobial polycations and (2) natural

peptide or peptidomimetic structures. The majority of interest in developing these

materials has been to yield surfaces with contact-killing properties. Such surfaces are

particularly well-suited to prevent bacterial colonization and have been explored

principally as coatings for medical devices or other objects one might find in healthcare

settings.

Synthetic antimicrobial polycations include materials such as quaternary ammonium6 or

phosphonium69 compounds, or alkyl pyridiniums.70 Many more synthetic antimicrobial

polymers have been explored for their antimicrobial effects (for review, see Kenawy et

a171). These polymers could potentially be grafted onto the surfaces of nanomaterials and

used for their bacteria-targeting and/or contact-killing properties, or be engineered to self-

assemble into nanoscale structures. In general, accumulated studies have shown that high

charge density, particularly zeta potential above +40 mV, and chain mobility are

important for achieving a bactericidal surface.72 However, a challenge with these types of

materials is their lack of specificity for bacterial membranes. High charge density is

known to correlate with toxicity to human cells, and many of the reported polymers are

not biodegradable. In addition, the antimicrobial efficacy of these materials is typically

reported at concentrations in the mg/mL range, which is too high for systemic application

in many cases. Furthermore, there is risk with the mode of action of some of these

polymers - bacteriolysis can lead to endotoxin release and fatal anaphylactic shock.
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Despite these challenges, there have been notable successes. Cationic amphiphilic

biodegradable polycarbonates that self-assembled into -40-200 nm NPs with low

polydispersity were developed, demonstrating low micromolar MICs against Bacillus

subtilis, MRSA, and Enterococcus faecalis, among others.2 0 These NPs did not show

evidence of damaging red blood cell membranes even at concentrations much greater

than their MIC, and were well tolerated in mice. The selective targeting appears to be a

result of the highly cationic surface charge (+47 to +65 mV) interacting with the more

negative microbial membranes. The biodegradable nature of these NPs, their excellent

efficacy, and their broad spectrum activity make these synthetic structures very promising

antimicrobial NPs.

Synthetic NPs that use cationic charge-based targeting have shown excellent potential in

vivo. A NP composed of a linear structure of TAT peptide (sequence YGRKKRRQRRR),

hexarginine (R6), triglycine (G3), and cholesterol (C) (combined = CG 3R6TAT) was

designed to target drug-resistant infections in the central nervous system." The

hydrophobic cholesterol region triggered self-assembly of NPs 177 nm in diameter with a

zeta potential of +55 mV. In vitro studies demonstrated low MIC across a range of

pathogens, including MRSA and vancomycin resistant Enterococcus. Further, the NPs

were shown to have an MIC six times lower than the soluble G3R 6TAT peptide,

suggesting that the high positive charge density of the NP was important for the high

potency of the antimicrobial effects. The NPs appeared to have selectivity for bacterial

membranes, demonstrating relatively low rates of hemolysis and good tolerability in vivo.

PLGA NPs have been given a cationic surface charge by incorporating Eudragit RL100

into the NP formulation step. 7 3 The cationic NPs were shown to bind avidly to both S.
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aureus and P. aeruginosa, with potential application in the targeted and sustained

delivery of ciprofloxacin to the eye.

2. 3. 3. 2. Antimicrobial Peptides or Peptidomimetics

Antimicrobial peptide (AMP) or peptidomimetic structures can be used to target bacteria.

Currently, more than 1000 AMPs have been described, with a large diversity of structures

and subclassifications. 9 In general, AMPs are peptides of -10-50 residues composed of

both cationic and hydrophobic regions with secondary structures such as a-helices or p-
sheet-like tubes. Above certain critical concentrations, AMPs lead to increases in

membrane permeability, resulting in loss of membrane function and ultimately bacterial

death. It is believed that the cationic regions of AMPs mediate the initial attraction step to

negatively charged regions of the bacterial membrane. Following this initial interaction,

hydrophobic regions adhere to the hydrophobic portion of the lipid membrane, leading to

the formation of pores. 7 4 Advantages of antimicrobial peptides as either targeting

moieties or as drugs to be delivered include a binding mechanism of action that cannot

easily be invalidated by microbial evolution, wide variety of structures and functionalities,

relatively small size, and selectivity for bacterial membranes. However, certain AMPs

only function under a defined set of conditions. Consequently, special care should be

taken to ensure that AMPs will function under local pathologic conditions. In addition,

the orientation of the AMPs on the NP surface may also play a role in their proper

function. Finally, one should note that the site of interaction of many AMPs, the cytosolic

membrane, may lie underneath one or more outer layers, making it difficult for the AMP

to reach cytosolic membrane. Despite this, there is evidence to suggest NP-conjugated
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AMPs may still be able to reach the cytoplasmic membrane, even in Gram-negative

organisms that have an outer membrane. 10 nm gold NPs conjugated to the AMP Sushi 1

(Si) were shown to be able to target the Gram-negative E. coli, with NP penetration

across all layers, though the majority (-77%) associated with the outer membrane.75

Further, the potential to target E. coli with -20 nm quantum dots conjugated to Si was

demonstrated using fluorescence microscopy. These concerns are likely to be less

significant in Gram-positive organisms, where the lack of an outer membrane allows for

easier access to the cytoplasmic membrane. In fact, molecules of molecular weight up to

90 kDa are known to be able to diffuse across the peptidoglycan layer of the Gram-

positive organism S. aureus.71 Potential challenges to AMP use include toxicity at high

concentrations, lack of efficacy, enzymatic degradation, or negative effects on NP

pharmacokinetics, particularly for highly cationic charged AMPs. Some of these

challenges may be mitigated using peptidomimetics.7 6

2. 3. 3. 3. Lectins

The sugars of the bacterial membrane represent a potential binding site for targeted NPs.

A gliadin NP containing acetohydroxamic acid was targeted to Helicobacter pylori using

the lectins Ulex Europeaus Agglutinin I (UEA I) or Conconavalin A (Con A).77 The

lectin-targeted NPs demonstrated greater growth inhibition of H. pylori in vitro than both

untargeted NPs and free drug. The lectin-targeted NPs also reduced the binding of H.

pylori to samples of the human gastric mucosa ex vivo. A potential mechanism for the

enhanced efficacy of the targeted NPs was a higher local concentration of drug in the

vicinity of the bacteria.

2. 3. 3. 4. Antibiotics
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Antibiotics that interact with accessible extracellular targets may be used to target NPs.

The glycopeptide vancomycin binds to the D-alanyl-D-alanine dipeptide in the

peptidoglycan layer of the cell wall of Gram-positive organisms with high affinity (Kd in

the 1-4 uM range). Vancomycin was conjugated to the surface of magnetic beads and

used to capture different types of bacteria from samples, demonstrating that proper

orientation and a long tether both contributed to improved capture efficiency. 78

Vancomycin-modified gold NPs demonstrated improved killing efficacy as compared to

vancomycin alone against vancomycin-resistant Enterococci in vitro.79 This was

attributed to the higher vancomycin density achievable on a NP surface as compared to

soluble form.

2. 3. 3. 5. Inflammation Targeting: E-selectin

E-selectin is a cell adhesion molecule that is expressed on the surface of endothelial cells

adjacent to sites of inflammation. Since infections trigger inflammation in

immunocompetent patients, it may be possible to target infections by targeting this

molecule. Nanomaterials have been designed to target E-selectin using carbohydrate

motifs including Sialyl Lewis A or X (SLEa or SLE) or monoclonal antibodies or their

fragments.80 An advantage of this approach is that by not interacting with bacteria

directly, it may be possible to avoid DR completely. However, success of this approach

would depend on whether the drug can cross the endothelial layer and permeate the

targeted tissue to reach the bacteria at sustained therapeutic levels.

2. 3. 3. 6. Antibodies

A silica NP was modified with a monoclonal antibody against E. coli 0157,

demonstrating the ability to target this bacterium for detection at trace quantities - on the
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order of 1-400 cells in a 1 gram sample of ground beef.8 1 Similarly, polystyrene NPs

were targeted to L. monocytogenes using a monoclonal antibody against N-

acetylmuramidase.8 2 Parenthetically, these NP-bacterium conjugates were applied as a

novel platform for DNA delivery by utilizing the endosome-escaping ability of this

intracellular pathogen. In addition, various antibodies are being evaluated for their

therapeutic potential in treating infections.10 These antibodies generally function by

facilitating phagocytosis or by inactivating bacterial toxins.

2. 3. 3. 7. Aptamers

Aptamers have been used to target bacteria. An aptamer targeting a virulent strain of M.

tuberculosis was identified using whole-bacterium SELEX (Systematic Evolution of

Ligands by Exponential Enrichment), using the non-virulent bacillus Calmette-Gudrin

(BCG) for counter-selection. This aptamer was shown to potentiate CD4+ T cell immune

responses, leading to efficacy in vivo. 83

2. 3. 4. Drug Co-Delivery

The potential advantages of antibiotic combinations are well-documented but several

challenges to their widespread use remain, particularly side effects, toxicity, and lack of

or declining efficacy in some cases. NP formulations offer the potential to more

effectively and safely co-deliver multiple agents. These benefits can be attained by using

NPs to exert greater control over drug ratios and concentrations spatiotemporally, enable

co-delivery of drugs that have synergistic effects but different physicochemical properties

that would normally preclude their effective co-administration, the potential to optimize

synergy ratios, reduce toxicity through targeting, and achieve anti-DR benefits due to

multiple mechanisms of action. These benefits might arise because NPs offer multiple
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possibilities for drug loading and release, which enable combination and release

optimization. In one example of the potential of co-delivery, the combination of chitosan-

silver NPs with molecular iodine was shown to be more effective than just chitosan-silver

NPs or each type of NP in isolation.84 Amoxicillin chelated onto silver NPs showed

synergistic effects against E. coli in vitro.85 Certain infections, such as multiple drug-

resistant TB, require many drugs to be delivered, which could be targeted more

effectively together in a single NP delivery system. In addition, co-delivery can be a

strategy to overcome persister cells' lack of response to antibiotic therapy. Treating these

dormant bacteria with glucose, fructose, or mannitol together with the aminoglycoside

gentamicin was shown to induce rapid killing.8 6 Other potential strategies involve

delivering drug potentiators together with drugs, such as P-lactams with p-lactamase

inhibitors.

2. 4. Nanoparticle Platforms

This section will highlight characteristics of some widely used materials and structures

for treating bacterial infections (Figure 4). For continued discussions and other examples,

the reader is referred to other excellent reviews.1,63,87-90
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Figure 2. 4. Antibacterial Nanoparticle Platforms. A) A polymeric nanoparticle (NP)
with drug encapsulated in the interior (green) protected with a layer of poly(ethylene

glycol) (PEG). At the distal end of the PEG is a targeting ligand (purple) to trigger
bacteria-specific interactions. B) A unilamellar liposome with a hydrophilic drug
encapsulated in the aqueous core and hydrophobic drug (green) intercalated in the lipid

bilayer (blue). C) A dendrimer with drugs adsorbed in the hydrophobic interior (green) or

in the hydrophilic exterior (orange). A near infrared (NIR)-absorbing D) carbon nanotube

or E) gold NP (with or without targeting ligand) producing targeted hyperthermia. F)

Examples of antibacterial silver NPs.

2. 4. 1. Liposomes

Liposome drug delivery systems have been in development since at least the 1960s and

benefit from extensive preclinical and clinical data validating their potential.59 Liposomes

are spherical lipid bilayer vesicles composed primarily of phospholipids and cholesterol.

Liposomes can be uni- or multi-lamellar with the bilayer(s) delimiting a hollow aqueous

core. The outer membrane phospholipids can be modified with PEG to enhance the
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circulation half-life, with targeting ligands to trigger eukaryotic cell internalization, or

with stimuli-responsive elements such as pH-sensitivity to increase eukaryotic cell

uptake.91 PEGylated liposomes have been shown to circulate for long periods in the body,

allowing for passive accumulation at infection sites.64 Loading of drug is possible either

in the aqueous core (hydrophilic drugs) or in the lipid bilayer(s) (hydrophobic drugs).

Drug combinations, including the difficult loading combination of hydrophobic and

hydrophilic drugs, are possible. Several studies have illustrated their potential advantages,

including extended drug pharmacokinetics, reduced toxicity, enhanced targeting, ability

to fuse with the bacterial membrane to deliver high quantities of drug, and increased

therapeutic efficacy.1

Antimicrobial liposome formulations have been evaluated and used clinically for years. A

liposome formulation of amphotericin B (AmBisome) was approved in Europe in 1990

and by the US FDA in 1997 and has seen extensive clinical use not only for treating

fungal infections including Cryptococcal meningitis, general invasive Candidal disease,

and osteoarticular candidiasis but also for treating infections involving Leishmania

protozoans. A randomized, double-blind, multicenter trial involving 687 patients

demonstrated improved efficacy with fewer side effects of liposomal amphotericin B as

compared to conventional formulation in treating occult invasive fungal infections.

Liposomal amphotericin B and conventional formulation had a similar effect on survival

(93% survival vs. 90%, respectively) but liposomal formulation was associated with

fewer breakthrough infections (3.2% vs. 7.8%) and less toxicity (fever 17% vs. 44%;

chills or rigors 18% vs. 54%).
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MiKasome, a unilamellar liposomal formulation of the aminoglycoside antibiotic

amikacin, demonstrated prolonged drug residence time and sustained efficacy in rats,9 3

but this did not appear to be effective in treating patients with pulmonary tuberculosis.94

The authors postulated that this low efficacy was due to liposome targeting of

macrophages and limited drug delivery to bacteria. Devising methods of increasing drug

release from liposomes in the vicinity of bacteria may therefore improve the efficacy of

this delivery approach. Other challenges to liposome use include burst release on

liposome destabilization, difficulty in encapsulating neutral hydrophobic or agents with

intermediate solubility, and problems encapsulating larger hydrophilic agents, such as

proteins.9 5

2. 4. 2. Inorganic Materials and Carbon Nanotubes

A variety of inorganic materials, including metal or metal oxide NPs and carbon

nanotubes have been explored for their antibacterial activity. The most commonly used

metal/metal oxide NPs include silver,96 zinc oxide, 97 and titanium dioxide. 98 Common

mechanisms of action for these types of materials include production of reactive oxygen

species, interactions with the bacterial membrane leading to disrupted energy production,

and inhibition of enzyme activity. 87 In addition, carbon nanotubes99 and gold2 ' have been

used for targeted photothermal therapy due to their ability to absorb near infrared

radiation, killing bacteria by localized hyperthermia. Further, carbon nanotubes have also

been shown to have direct killing ability, due to their ability to disrupt the bacterial

membrane.' 00

Silver compounds are known to have potent and broad spectrum antibacterial activity.

Multiple mechanisms have been elucidated, including destabilization of the bacterial
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membrane and reduction of intracellular ATP levels.' 01 These multiple mechanism of

action makes it more difficult for bacteria to develop resistance, though resistance to

silver compounds has been documented.' 0 2 Size and shape play a role in the efficacy of

silver-containing systems, with truncated triangular NPs demonstrating potent activity

against E. coli.103 Use of silver NPs should continue to be evaluated together with its

potential toxicity and side effects, including argyria and cytotoxicity.10 4

2. 4. 3. Polymeric Nanoparticles

Polymeric NPs are supramolecular structures formed by the self-assembly of previously

made polymers or emulsion polymerization of monomers into NPs. These NPs can have

antibacterial activity either by encapsulating and delivering drugs, directly killing

bacteria, or both. Advantages of polymeric NPs include the ability to optimize their

properties (such as tuning size, zeta potential, targeting ligand density, and drug release

for example), the abilities to encapsulate a wide variety of drugs or drug combinations,

control drug release, and target infections by active or passive means, good shelf life and

stability in vivo, as well as clinical validation of safety in some cases. Drug-loaded

polymeric NPs are typically synthesized through either chemical conjugation of the drug

to the polymer followed by NP formulation, free drug encapsulation using

emulsion/solvent evaporation, nanoprecipitation, salting out, or emulsion polymerization

in the presence of free or polymer-conjugated drug.59 A variety of different types of drugs

can be loaded in polymeric NPs, though higher loading efficiencies are typically reported

using hydrophobic drugs.

The potential for both improved drug targeting and extended drug release achievable

using polymeric NPs aligns well with the delivery needs of an antibiotic. Greater drug
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targeting can lead to higher local drug concentration at the site of infection, which can

improve drug efficacy or reduce the likelihood of subtherapeutic dose. Extended release

of an agent following selective accumulation can lead to sustained drug levels above the

MIC locally, which might not only improve therapy, but also reduce the potential for the

emergence of drug resistance and facilitate dosing. For example, achieving high and

sustained levels of vancomycin with an AUC 2 4/MIC > 400 is recommended for improved

treatment efficacy. 105 Release rates that are too slow will result in subtherapeutic drug

exposure, leading to potential antibiotic drug resistance emerging, as an inverted U-

shaped curve has been reported for the number of resistant mutants as a function of

AUC/MIC.106 In addition, controlling drug release is important for treating biofilms.

Using levofloxacin-loaded PLGA or PCL NPs, it was concluded that a more rapid

antibiotic release initially followed by slower extended release will more successfully

inhibit biofilm growth. 107 Further, polymeric NPs can be used in innovative ways, such as

forming films using PEO-b-PCL triclosan-encapsulating NPs to control drug release from

surfaces, yielding potent bacterial killing efficacy.108

2. 4. 4. Dendrimers

Dendrimers are small (3-7 nm), highly monodisperse macromolecules synthesized via

convergent or divergent methods to yield a core with multiple branches with defined

structures. 109 Dendrimers are typically defined by their generation number. Higher

generations imply larger molecular weights and hydrodynamic diameters and exponential

increases in the number of terminal surface groups, though it is challenging to achieve a

higher generation number than 6 or 7.110 Drugs can be loaded onto dendrimers by
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chemical or physical (charge-based) conjugation to the surface, or by loading in the more

hydrophobic interior. Dendrimers can be used to co-deliver multiple agents.111 Because

of their functionalizability, intrinsic bactericidal activity, and drug loading capabilities,

dendrimers have been explored for treating bacterial infections. In general, these types of

dendrimers primarily fall into a few categories88: glycodendrimers to block bacterial and

bacterial toxin adhesion to human cells,11 2 cationic dendrimers to disrupt bacterial

membranes19 or deliver drugs such as silver,11 3 and peptide-based dendrimers that

incorporate peptide sequences that have antibacterial activity 1 4. These dendrimers

generally show low MICs comparable to traditional antibiotics, which together with their

functionalizability and drug delivery capability, make them attractive for further

development in antibacterial therapy.

Table 2. 1. Methods for Targeting Bacteria

Targeting Target Potential Potential References
Method Advantages

Challenges

Cationic Anionic Broad Lower 20,,21,115116

charge charges on spectrum,
bacterial less DR, specificity,
surface potential for

direct toxicity,
antibacterial
effects shorter NP

PK, DR

Antibody Various High affinity, NP 81 82

possible specificity
manufacturing

complexity,

Denaturation,
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DR

Various
possible, cell
wall targeting
antibiotics
preferred

High affinity,
specificity,
potential for
antibacterial
effects

May be /

ineffective

against

established

DR, Path to

DR

emergence

exists

Aptamer Various High affinity, Degradation, 83

possible specificity,
powerful DR
selection
strategy
(SELEX)

Lectin Surface Broadly Denaturation, 7

polysaccharides applicable
DR

Antimicrobial Cell membrane Broadly Shorter PK (if 7
peptide applicable,

less DR cationic),

toxicity, DR

Sialyl Lewis A E-selectin on Less DR Drug 80

or X inflamed (does not act
endothelium on bacteria) diffusion into

adjacent to
infection infection

necessary

Macrophage- Interior of Targets More limited 12 61 67

assisted macrophages precise
location, applicability,
good for I
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intracellular More
organisms

complex

design

Table 2. 2. Example of Nanoparticles Overcoming Challenges

Challenge Approach References
Drug resistance Enhancing drug function T,

Membrane targeting 20 84

Drug co-delivery 4,50,84

Targeted hyperthermia 22,23

Biofilms Nitric oxide release 42

Magnetic penetration 43
Hyperviscous mucus Enhanced penetration 27
Acidity pH-sensitive increases in 14

activity
Intracellular organisms Intracellular targeting 5152

Abscesses Nitric oxide release with 30

improved wound resolution
rate
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2. 5. Future Perspective

There is an acute need to develop new methods for treating bacterial infections. Drug

resistance has reached unprecedented levels, and existing drugs are inadequately or

suboptimally treating biofilms, intracellular organisms, or infections that have significant

microenvironmental obstacles, leading to continued morbidity and mortality.

Nanomedicine is increasingly showing its potential to yield more effective and less toxic

therapeutics in various fields. Early efforts at applying nanomedicine to develop novel

antibacterials have shown great promise, but still there is much more work to be done.

NPs have the potential to contribute to new therapeutic development as drug delivery

vehicles, intrinsically bactericidal materials, or both. NPs can be engineered to overcome

obstacles and specifically target bacteria. Improved targeting and delivery can

reinvigorate old drugs or facilitate new drug development, especially in the case of toxic

or poorly soluble drugs. Key to improved design is an intimate understanding of the

delivery challenges. In the most generic sense, delivery vehicles are needed that can (1)

encapsulate a drug or drug combination at a precisely optimized quantity or ratio, (2)

protect the drugs while in transit to the bacteria, (3) accumulate specifically at sites where

pathogenic bacteria reside, overcoming delivery challenges like thick mucus, fibrosis,

abscesses, clearance by the immune system or acidity, while simultaneously avoiding

mutualist bacteria or sites susceptible to side effects, (4) release the drugs in a manner

that yields the most effective bactericidal effect, taking care to avoid sustained sublethal

drug levels, (5) be non-toxic and biocompatible, and (6) demonstrate improvement in

efficacy or susceptibility to DR as compared to free drug formulations, particularly in

vivo. In addition to passive delivery vehicles, nanoparticles that are intrinsically
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bactericidal, act synergistically with the drugs they deliver, or potentiate drug function

are needed. Greater diversity in mechanism of action correlates with reduced

susceptibility to drug resistance, so a variety of mechanisms and approaches may need to

be explored in combination to develop highly robust new therapeutics. Some of these

may not be chemically based, such as using targeted hyperthermia.

The remaining challenges in bacterial infectious disease are immense and it is likely that

a combination of drug optimization and delivery vehicle optimization will need to occur

in tandem to yield the most robust therapeutics possible. To achieve this, it will be

necessary to continue exploring molecular mechanisms of drug resistance, microbial drug

susceptibility, biofilm formation, and bacterial persister biology, among others, to

determine the optimal pathways or combinations of pathways that can be targeted with

drugs or NPs. Simultaneously, delivery vehicles that can overcome the challenges of the

physiologic environment to properly present the optimized drugs to bacteria are needed,

particularly if they can also improve drug function or have intrinsic bactericidal activity.

In addition, one must remember that antibiotics are typically delivered at high doses, on

the order of a few grams per dose per day. Consequently, materials used for antibiotic

delivery must be nontoxic, even at very high concentrations.

We believe steps will be taken in each of these directions over the coming years. In

addition, greater interactions between microbiologists, immunologists, clinicians,

material scientists, engineers, and other experts in nanomedicine will yield novel insights

into how the intersection of these fields can enable new therapeutics. In developing new

antibacterial therapies, there is a great need but also great potential. In the next decade,
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we expect to see significant strides taken towards realizing the promise of NP

antibacterials.

2. 6. Summary

Introduction
* There is an urgent need to develop novel therapeutics for treating bacterial

infections because existing drugs are at risk of resistance, because delivery
hurdles and infection microenvironments can impair drug therapy, and because
the pipeline for new antibiotics is thin.

* Among the various investigational new methods for treating infections, NPs have
several potential advantages including the ability to overcome delivery barriers,
improve drug efficacy, achieve targeted effects, reduce toxicity, and be less
susceptible to drug resistance (DR).

Challenges to effective therapy
* DR is one of the major challenges in modem medicine. NPs have the potential to

contribute to overcoming DR by: improving drug potency, delivering drugs at
more optimal rates and concentrations, killing bacteria through mechanisms that
are recalcitrant to DR, or by establishing novel DR-resistant treatment paradigms
such as targeted hyperthermia.

* NPs can be designed to overcome delivery hurdles to potentially kill bacteria in
complex environments such as hyperviscous mucus, abscesses, acidity, and
biofilms.

* NPs have been explored extensively for their ability to target intracellular
infections because they can be engineered to target subcellular compartments such
as phagolysosomes or the cytoplasm in vitro and in vivo.

Nanoparticles creating opportunities for improved therapy
* Targeting NPs to infections can potentially improve drug efficacy, reduce side

effects, reduce clearance of commensal flora, and reduce the risk of DR emerging.
* NPs can be targeted to infection sites through a variety of mechanisms, typically

described as "passive" or "active" targeting.
* "Passive" targeting in this context refers to the selective accumulation of NPs

(~40 kDa-1000 nm in size) at infection sites due to convective and diffusive
transport. It can occur when bacterial components cause the release of vascular
mediators at the infection site. Passive targeting has been observed in various
animal models of infection using various different types of NPs.

* "Active" targeting refers to specific interactions between NPs and the infection
site that lead to selective accumulation. Examples of active targeting include a
cationic NP surface charge designed to interact with the anionic bacterial
membrane, or NP surface modification with targeting ligands. Potential targeting
ligands include antimicrobial peptides or peptidomimetics, lectins, antibiotics,
antibodies, or aptamers.
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Nanoparticle platforms
* Various NP platforms have been used in antibacterial therapy. In general,

mechanisms of action include antibiotic drug delivery, direct bacterial toxicity, or
both.

" Liposomes are spherical lipid bilayer vesicles that can deliver hydrophobic or
hydrophilic drugs. They have led to clinically approved antimicrobial drug
formulations, making them well-suited for continued development. Challenges
that remain to be overcome include drug release that is too slow or too fast and
difficulties encapsulating certain types of drugs.

* Metal or metal oxide NPs and carbon nanotubes have been explored for their
potential to treat DR infections. Generally, these materials utilize mechanisms of
action that target the bacterial membrane, making DR more difficult to emerge. A
major challenge to in vivo use is toxicity.

* Polymeric NPs are capable of improving drug targeting and achieving sustained
drug release - a combination that aligns well with the delivery needs of an
antibiotic. A challenge that remains includes boosting the encapsulation efficiency
and loading of hydrophilic agents.

e Dendrimers are macromolecules (3-7 nm) with a core surrounded by multiple
branches. They have shown promise in antibacterial therapy due to intrinsic
bactericidal activity and ability to deliver multiple types of drugs.
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2. 8. Reference Annotations

Papers of special note have been highlighted as:

* of interest

** of considerable interest

**Nederberg et al., 201120 - Illustrates exciting potential of NP antibacterials. Describes

a NP that selectively disrupts the membranes of Gram-positive bacteria, MRSA, and

fungi with low toxicity.

**Liu et al., 200921 - Remarkable results with a cationic peptide NP that can cross the

blood-brain barrier and suppress S. aureus-induced meningitis in rabbits.

*Huh et al., 201187 - Recent and comprehensive review of the field with many excellent

insights and examples.

*Zhang et al., 20101 - Insightful review of the various NP types used in antimicrobial

drug delivery.

*Schroeder et al., 201063 - Penetrating and thorough review of the potential to target

infections using liposomes.

*Kaim et al., 200267 - MR imaging of superparamagnetic iron oxide NPs accumulating in

acute soft-tissue infections in rats.

*Gu et al., 200379 - Illustrates potential of NPs to reinvigorate old drugs. Vancomycin-

capped gold NPs show enhanced activity against vancomycin-resistant Enterococci and

Gram-negative bacteria.
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Chapter 3

Bacteria-Targeting Nanoparticles for Antibiotic Delivery

This chapter has been reproduced in part from: Radovic-Moreno A. F., Lu T. K., Puscasu
V. A., Yoon C. J., Langer R., Farokhzad 0. C. A CS Nano 2012, 6, 4279-4287.

3. 1. Introduction

In recent years, advances in the design of nanoparticles (NPs) for drug delivery

applications have enabled potential strategies for improving the treatment of a variety of

diseases. So far, success has been linked to the ability to precisely engineer interactions

between NPs and the biologic milieu in ways that may lead to gains in drug potency or

properties in vivo. Promising methods include: molecular targeting, 4' 5 environmental

sensing leading to NP property switching or drug release,6-8 optimizing NP

physicochemical properties,9' 10 and sustained drug release."' 2 Despite these advances,

NPs have only really begun to demonstrate their potential in treating infections. Recent

reports have demonstrated advances in selective targeting of bacterial membranes for

lysis,13 improved drug delivery, 14 ' " enhanced drug function,16 ~18 and the potential for

selective accumulation at sites of infection due to increased vascular permeability. 19 In

particular, designing methods for improving antibiotic targeting and activity in vivo, such

as through NP drug carrier design, are important efforts that may: 1) improve treatment

outcomes with fewer side effects, 2) reduce the likelihood of drug resistance emerging

given that ineffective drug dosing or targeting can lead to the rapid development of drug

resistance under inauspicious conditions, 2 0 and 3) overwhelm drug resistance

3,21,22mechanisms with high sustained local drug concentrations. ' However, a significant

challenge has been designing antibacterial NPs that may be suitable for systemic
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administration. A common feature of antibacterial NPs developed to date is a strong,

relatively pH-insensitive cationic surface charge which, while demonstrating potent

bactericidal activity in vitro,2324 is not specific for bacteria and is known in some cases to

adversely affect the blood circulation and biodistribution properties of NPs2 5 and

potentially demonstrating toxicity.2 6 The ability to systemically administer antibacterial

NP formulations may enable their use in a variety of applications, including examples

where infections are disseminated, where local delivery would be overly complicated or

impossible, or where other delivery routes or methods are either compromised by disease

pathology or ineffective.

Bacteria are highly adaptive organisms that have evolved the ability to thrive in various

types of environments. Of these environments, low pH is particularly significant both

because of its association with serious infections and its implications for treatment.

Certain antibiotics are known to demonstrate significant loss of activity in acidity, 2 7 and

even more troubling, a reduction in localized pH is usually a sequela of worsening

disease severity and prognosis - precisely when maximal efficacy is most needed. 2 8

Bacteria may habitat acidic environments in the body either because acidity is the

naturally prevailing condition, such as the stomach (pH 1.0-2.0), intestines (pH 5.0-8.0),

vagina (pH 4.0-5.0), bladder (pH 4.5-8.0), and skin (pH 4.0-5.5)29, 30 or through a

combination of bacterial activity and the resulting immune response. Acidity associated

with infections occurs through a combination of low oxygen tension triggering anaerobic

fermentation in certain bacteria, the products of which are organic acids including lactic,

and acetic acids31 and through inflammation, which is known to exacerbate acidity due to

increased levels of acidic products through mechanisms including production of lactic
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acid during phagocytosis.3'3 Together, these factors are associated with reducing the pH

of a site of infection as far as pH 5.5.34, 35 Examples of clinical indications where pH-

dependent loss of drug activity may be relevant include pneumonias, especially in cystic

fibrosis (CF) patients, 3 6, 37 abscesses, 34 and H. pylori infections, the major cause of peptic

ulcers. 38 Developing systemically available NP drug carriers that can target and improve

antibiotic properties in the setting of localized acidity may therefore be a method to

improve treatment of these and potentially other infections.

In the present work, we sought to develop a polymeric NP antibiotic carrier that could

target the cell walls of bacteria in acidity in order to potentially improve bacterial

targeting and antibiotic properties at sites of infections. We chose to target the cell wall

because its integrity is vital to bacterial survival, it is the outermost and therefore most

accessible layer, and is the site of action of many antibiotics. Important design criteria to

achieve effective cell wall targeting NPs are the following. First, a targeting strategy that

applies across a range of bacterial classifications is important, since many serious

infections are polymicrobial and acidity is not isolated to one particular type of bacterium.

For example, 67% of CF patients test positive for S. aureus (Gram-positive), and 51%

with P. aeruginosa (Gram-negative) in their sputum, with co-infection having an additive

effect on disease pathology. 39 To achieve this broad NP bacterial targeting, we chose to

exploit electrostatic attractions, since many different types of bacteria are known to be

negatively charged due to the composition of their cell walls, 4 0 and this approach has

been validated extensively on surfaces, 4 1 using cationic Eudragit/PLGA42 or chitosan2

NPs, as well as by noting that electrostatics, at least partially, underlie the binding

mechanism of scores of antimicrobial peptides and cationic peptide-based NPs. 43 , 44
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Second, selecting an encapsulation strategy that can be used with a diversity of agents is

key, as bacterial drug susceptibility is constantly evolving and new agents are

continuously being developed. We selected PLGA as the basis for an encapsulation

matrix because it offers the advantages of low toxicity, flexibility in terms of drug

payload, ease of synthesis, and the ability to fine tune surface properties through NP

engineering.3 In addition, PLGA has been validated as an effective antibiotic-laden

implant or microparticle formulation for antibiotics, and, when formulated into NPs, has

demonstrated extended4 5, 4 6 and optimized" release kinetics or improved efficacy.18 Third,

the potential to achieve infection-specific targeting through a combination of extended

circulation time and low non-specific binding in the blood but avid bacterial binding

when located in acidity-associated infections was desirable to improve systemic

administration potential. NPs have the potential to target areas of infection due to

localized increases in vascular permeability mediated by both the cell-mediated

inflammatory response as well as by direct activation of the kinin-kallikrein system by

bacterial proteases, though this mechanism has not been deeply investigated in this

context. 19 Nevertheless, it is clear that plain PLGA NPs would have a limited ability to

exploit this potential targeting mechanism due to their rapid clearance (in seconds to

minutes) by the mononuclear phagocytic system.47 Surface modifying PLGA NPs with

PEG is widely known to reduce non-specific interactions, leading to prolonged

circulation, but PLGA-PEG NPs alone lack significant bacterial binding ability and

therefore would be expected to drain through the (intact) lymphatics at infection sites. We

sought to maximize the potential for infection-specific targeting by minimizing nontarget

interactions at physiologic pH 7.4 and by using acidity as a trigger to selectively produce

72



a cationic NP surface for binding. To impart this pH functionality, we incorporated poly-

L-histidine, a peptide containing imidazole groups that gain protons under acidic

conditions (pKa ~6.0-6.5) into a triblock copolymer structure consisting of poly(D, L-

lactic-co-glycolic acid)-b-poly(L-histidine)-b-poly(ethylene glycol) (PLGA-PLH-PEG),

which could be formulated into NPs using emulsion/solvent evaporation techniques.

Under acidic conditions, the PLH segment would become positively charged, yielding an

overall positive zeta potential on the NP surface, facilitating interactions with the

negatively charged elements of bacterial cell wall and producing strong multivalent

electrostatic-mediated binding. Finally, it was important to be able to demonstrate

efficacy with a clinically significant antibiotic. We chose the glycopeptide antibiotic

vancomycin because of its established role in treating serious and life threatening

infections, because it loses activity at low pH, because it has a low minimum inhibitory

concentration (MIC), and because its targets are components of the cell wall. The results

of our studies demonstrate that pH-sensitive, surface charge-switching PLGA-PLH-PEG

NPs can be used to bind to bacteria under conditions of acidity. Further, when NPs are

used to encapsulate vancomycin, vancomycin demonstrates a higher MIC than free drug

but a partial reduction in its loss of activity in acidity as compared to free drug and non-

pH sensitive PLGA-PEG delivery systems. This work is a first step towards developing

systemically-delivered bacteria-targeting NP drug delivery systems and may have

implications for designing improved treatment strategies for various acidity-associated

infections.
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3. 2. Results and Discussion

3. 2. 1. Design of Surface Charge-Switching PLGA-PLH-PEG NPs. A linear PLGA-

PLH-PEG architecture was selected to provide NP characteristics compatible with

extended circulation, charge-mediated targeting, and controlled drug release (Figure 3.1).

PLGA was used to form the hydrophobic core and drug depot. To decide how to

incorporate the PLH in the NPs, we reasoned that by placing the PLH between the PLGA

and PEG blocks to yield the linear structure PLGA-PLH-PEG we could achieve the

following: 1) the PLGA segment could form a solid core matrix without having the

destabilizing force of PLII at acidic pH, since PLLA-PEG / PLH-PEG mixed micelles

have been demonstrated to be effective pH-sensitive triggered-release systems. 4 8' 49 We

wanted to retain the slow release characteristics of intact NPs in order to reduce

complexity in processing and use, potentially achieve a larger area-under-the-curve

(AUC) at the site of infection, and be able tailor drug-bacterium interactions using NPs.

2) PLH would be preferentially placed near the NP surface as the polymer self-assembled,

due to its intrinsic hydrophilicity under typical formulation conditions as well as its close

association with the PEG, which would preferentially rise to the surface due to its relative

hydrophilicity. This is significant in that it would increase the magnitude of the surface

charge switching capability, as the cationic charge of the PLH at acidic pH would be

closer to the NP surface. 3) Having the PEG portion at the distal end of the polymer

would facilitate NP colloidal stability and circulation time at physiologic pH, as has been

reported in the literature. 4 7 The polymer was synthesized using an block end-grafting

strategy (see Materials and Methods).
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Figure 3. 1. Schematic representation of the designed nanoparticle (NP)-mediated
drug targeting to bacterial cell walls. Drugs are encapsulated into NPs using a double

emulsion/solvent evaporation process. The NPs avoid uptake or binding to nontarget cells

or blood components at physiologic pH 7.4 due to a slight negative charge and surface
PEGylation. Inflammation at a site of infection causes increased local vascular

permeability, promoting NP extravasation. The weakly acidic conditions at sites of

certain infections activate the surface charge-switching mechanism, resulting in NP

binding to negatively charged bacteria. Finally, controlled release of the encapsulated

drug leads to antibacterial effect.

3. 2. 2. NP Formulation and pH-Dependent Characterization. Understanding the

physicochemical properties of PLGA-PLH-PEG NPs as a function of pH was key to

tailoring NP-bacterium interactions. To evaluate these properties, we formulated PLGA-

PLH-PEG and PLGA-PEG polymers into nanoparticles using a modified double

emulsion/solvent evaporation method.50 The NPs were purified by triple ultrafiltration,

resuspended in appropriate pH-buffered PBS solutions ranging from pH 5.5 to pH 7.4,

and characterized in terms of their physicochemical properties by quasi-elastic laser light

scattering. The results show that the PLGA-PLH-PEG NPs switched their surface charge
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from a negative zeta potential at pH 7.4 (( = -3.9±0.4 mV, N=3) to a positive one with

reduction in pH, with the transition occurring as early as pH 7.0 (( = 2.3±1.0, N=3)

(Figure 3.2A) and a linear slope of -8.6 mV/pH unit (R2 = 0.951). In contrast, PLGA-

PEG diblock copolymer had a negative zeta potential at every pH tested (At pH 7.4,

PLGA-PEG ( = -36.5 0.5 mV, N=3) and demonstrated little pH sensitivity, with a slope

of -2.9 mV/pH unit (R2 = 0.447). The lower R 2 reflects the observation that subtle

changes only occurred at a very low pH of 5.5. The negative charge of both polymers at

pH 7.4 is likely a result of residual negative charge from acid groups in the PLGA-COOH

precursor, partially hydrolyzed PLGA chains, and from carbonyl groups in the PLGA

block. The more positive zeta potential of the PLGA-PLH-PEG relative to PLGA-PEG is

likely due to the presence of the neutrally charged PLH block near the surface. The gain

in charge with reduction in pH is due to the exponentially increasing presence of positive

charges from the imidazole group of the PLH with reductions in pH, as described by the

Henderson-Hasselbalch equation. Both PLGA-PLH-PEG (mean size = 196.0±7.8 nm,

N=3) and PLGA-PEG (mean size = 222.1±1.8 nm, N=3) NPs did not demonstrate large

differences in size with decreasing pH (Figure 3.2B). In addition, transmission electron

microscopy (TEM) suggests that the PLGA-PLH-PEG NPs retained their integrity at

acidic pH values (Figure 3.2C), in contrast to reports of PLLA-PEG / PLH-PEG mixed

micelles.4 9
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Figure 3. 2. Physicochemical characterization of NPs. (A) NP zeta potential vs. pH
demonstrates notable switching from anionic to cationic with decreases in pH in PLGA-
PLH-PEG but not PLGA-PEG NPs. (B) NP size vs. pH. (C) Transmission electron
micrograph (TEM) of PLGA-PLH-PEG NPs. Scale bar 20 nm. N=3 for all observations.

3. 2. 3. pH-Dependent Binding of NPs to Bacteria. We then evaluated whether the

observed changes in NP physicochemical properties with pH would enable binding to

bacteria under acidic conditions. As model organisms of two major subtypes of bacteria,

we selected the Gram-negative Escherichia coli (E. coli) and Gram-positive

Staphylococcus aureus (S. aureus). We initially evaluated to what extent PLGA-PLH-
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PEG NPs could bind to these bacteria as a function of pH by labeling NPs using Alexa-

488 to form green fluorescent NP-488 (modified with Alexa-488 PLGA, see Materials

and Methods section) and incubating them with the different bacteria for 30 min in pH-

adjusted PBS solutions from pH 5.5 to 7.4 at 370C. PLGA-PEG NP-488 were used as a

non-pH-sensitive control. Following binding, the NP-488-bacteria aggregates and/or

bacteria were centrifuged and washed, resuspended in PBS pH 7.4, and run on a flow

cytometer to evaluate their fluorescence levels. In the case of both bacteria, a large and

significant (p < 0.05) increase in binding was observed as pH was decreased < pH 6.5

(Figure 3.3A, 3.3B). The increase in binding to both S. aureus and E. coli became very

pronounced at pH 6.0 (S. aureus PLGA-PLH-PEG 3.5±0.2; E. coli 5.8±0.1, all N=3) as

compared to PLGA-PEG (S. aureus 1.0±0.1; E. coli 1.1±0.1, all N=3) and peaked at pH

5.5. Given that NP residence time at a site of infection may be limited, we wished to

determine how quickly NPs bound to bacteria under acidic conditions. We performed a

kinetic study of PLGA-PLH-PEG NPs to both types of bacteria at pH 6.0, selecting

incubation time points between 10 min and 4 hours and measuring bacteria-associated

fluorescence using flow cytometry. We observed rapid saturation of fluorescence, with

~80% of maximal binding occurring within 10 minutes for both E. coli (Figure 3.3 C) and

S. aureus (Figure 3.3D). This binding kinetics data suggests that even a relatively short

residence time at an acidic site of infection might be sufficient to enable binding to

bacteria using PLGA-PLH-PEG NPs. To provide visual confirmation of PLGA-PLH-

PEG NP binding to bacteria, we used fluorescence confocal microscopy. PLGA-PLH-

PEG NP-488 were freshly prepared, purified, and resuspended in pH 6.0 or pH 7.4 PBS

solutions. S. aureus bacteria were prepared as before and inoculated into the PLGA-PLH-

78



PEG NP-488-containing solutions. We selected S. aureus as a model bacterium for the

confocal studies due to our observation of the slightly more positive but still anionic

charge of these bacteria as compared to E. co/i, which would therefore yield a more

conservative confirmation of our flow cytometry-based results. The NP-488/bacteria

suspension was placed in an incubated shaker at 37'C for 30 min to allow NP-488

binding to bacteria. After washing unbound NP-488s by centrifugation with repeated PBS

pH 7.4 buffer washes, bacteria were stained using BacLight m Red, a commercially

available small molecule that binds to bacteria, according to manufacturer instructions.

Confocal microscopy visually confirmed the pH-sensitive nature of PLGA-PLH-PEG

NP-488 binding to bacteria (Figure 3.4). Close inspection (Figure 3.4E, 3.4F)

demonstrates that strong fluorescence can be seen at the bacterial cell wall in the pH 6.0

NP-488 treated but not pH 7.4 NP-488 treated group. No NP-488 fluorescence can be

observed in the interior of the bacteria, suggesting that PLGA-PLH-PEG NPs are unable

to penetrate the cell wall, which was expected given the formidable diffusion barriers

presented. In addition, after pH 6.0 NP-488 treatment, one can observe that the NP-488s

have triggered agglutination of bacteria into larger aggregates as compared to what is

observed with pH 7.4 NP-488 bacteria. This may be due to the positively charged NP-

488s bridging two negatively charged bacteria together in the pH 6.0 NP-488 but not pH

7.4 NP-488 group.
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Figure 3. 4. Fluorescent confocal microscopy of pH-dependent binding. S. aureus
bacteria labeled with BacLight TM Red were treated with Alexa-488 labeled PLGA-PLH-
PEG NP-488 at pH 6.0 (panels A, C, E) or pH 7.4 (panels B, D, F). (A, B) BacLightT"
Red (C, D) NP-488 (E, F) Merge of BacLight m Red and NP-488, with yellow indicating
co-localization. The white box in E, F demonstrates a detail of the merged image,
showing the bacterial cell wall-associated NP-488 at pH 6.0 but not pH 7.4.

3. 2. 4. Antimicrobial Studies. Finally, we were interested in seeing whether PLGA-

PLH-PEG NP binding to the bacterial surface had an impact on antibiotic efficacy, and

how this compared to PLGA-PEG NP and free drug formulations. As a proof-of-concept,

we chose to examine S. aureus susceptibility to formulations of vancomycin, a

glycopeptide antibiotic used clinically to treat infections involving S. aureus, particularly

drug resistant strains. Vancomycin was encapsulated in NPs, washed, and resuspended in

pH 6.0 or pH 7.4 PBS. Encapsulation efficiency PLGA-PLH-PEG (42.2±8.1%, N=3),

PLGA-PEG (39.2±1.4%, N=3) and drug loading PLGA-PLH-PEG (7.8±1.6%, N=3),

PLGA-PEG (7.3±0.3%, N=3) were evaluated. The minimum inhibitory concentration

(MIC) of PLGA-PLH-PEG NP formulated vancomycin (PLGA-PLH-PEG[Vanco]),

PLGA-PEG NP formulated vancomycin (PLGA-PEG[Vanco]), and free vancomycin

were determined using the microplate dilution method at pH 6.0 or pH 7.4 (Figure 3.5).

The minimum bactericidal concentrations were determined semi-quantitatively by
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subculturing to antibiotic-free TSB agar plates. For the NP formulations of vancomycin,

the vancomycin concentration is reported as the total concentration of vancomycin in the

NP at the beginning of treatment. Vancomycin is released from the NP at a steady rate

over a 50 hour period (Figure 3.5), which is consistent with many studies of drug release

from NPs. We reasoned that the initial vancomycin concentration inside the NPs was

both the most conservative and useful measure of NP antibiotic formulation efficacy. The

results show (Figure 3.6, Table 3.1) that at pH 7.4, free vancomycin is the most potent

formulation of the drug (MIC 1.2±0.6 ug/mL, MBC 3.1 ug/mL, N=3), but that this is

strongly pH sensitive. At pH 6.0, free vancomycin loses potency by a factor of 2.0,

consistent with other observations2 7 (Figure 3.6). PLGA-PEG NP vancomycin

formulations required higher initial vancomycin concentration than free drug to achieve

antibacterial effects at physiologic pH 7.4 (MIC 6.0±0.7 ug/mL, MBC 20. ug/mL, N=4),

and similarly demonstrated significant pH sensitive loss in activity by a factor of 2.3

(MIC 14.2±1.9 ug/mL, MBC 40. ug/mL, N=4). As expected, PLGA-PLH-PEG NP

formulations of vancomycin behaved similar to PLGA-PEG NP formulations at pH 7.4

(MIC 6.8±2.1 ug/mL, MBC 20. ug/mL, N=4, p=0.54) but had significantly improved

activity at pH 6.0, demonstrating less loss in activity with pH, by a factor of 1.3 (MIC

8.6±0.5 ug/mL, MBC 20. ug/mL, N=4, p < 0.05) (Figure 3.6). Further, this suggests that

promoting NP-bacterium interactions under acidic conditions, such as was demonstrated,

can partially mitigate the loss of activity with pH, further highlighting the potential of this

delivery system for treating infections associated with localized acidity.
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Table 3. 1. Minimum bactericidal concentration (MBC) at pH 6.0 and pH 7.4 in S.
aureus.

Minimum Bactericidal Concentration (MBC)
Treatment pH INPI (ug/mL) [Vancol (ug/mL)
PLGA-PLH-PEG [Vanco] 6.0 250 20

PLGA-PLH-PEG [Vanco] 7.4 250 20

PLGA-PEG [Vanco] 6.0 500 40
PLGA-PEG [Vanco] 7.4 250 20
Free Vanco 6.0 N/A 6
Free Vanco 7.4 N/A 3
PLGA-PLH-PEG 6.0 > 500 N/A
PLGA-PLH-PEG 7.4 > 500 N/A
PLGA-PEG 6.0 > 500 N/A
PLGA-PEG 7.4 > 500 N/A

3. 2. 5. Binding inhibition study. To further explore the potential mechanism of binding

to bacteria, we performed an inhibition study where we prepared the PLGA-PLH-PEG

NPs as before, but incubated them in an excess of sodium polystyrene sulfonate solution

(PSS) for ~30 min. This negatively charged polymer rendered the NPs anionic. We then

incubated the PLGA-PLH-PEG NPs or the PLGA-PLH-PEG NPs + PSS with S. aureus

bacteria for 30 min, washed, then ran on a flow cytometer. The data show that the PSS

inhibited the binding of the PLGA-PLH-PEG NPs, suggesting that elimination of the

charge using this anionic polymer blocks binding to bacteria (Figure 3.7).
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Figure 3. 7. Competition Study using Sodium Polystyrene Sulfonate (PSS). PLGA-
PLH-PEG NPs were assayed for their binding to S. aureus bacteria either as is (red) or
following a brief incubation with PSS polymer. The data suggest inhibition of binding to
bacteria by preincubation with the PSS polymer. NPs were labeled with Alexa-647 and
measured in the FL3-H channel (x-axis), with data in the FL1-H channel (y-axis) as a
control for autofluorescence.

3. 2. 6. Summary. We have developed a pH-responsive, surface charge-switching

polymeric nanoparticle drug delivery system for targeting bacterial cell walls at sites of

acidic infections. We demonstrate that pH-sensitive PLGA-PLH-PEG NPs rapidly (~80%

of maximum within 10 min) bind to both Gram-positive (S. aureus) and Gram-negative

(E. coli) organisms under acidic conditions and that increased binding can be correlated

to sharp increases in NP zeta potential with reductions in pH. Further, we demonstrate

that vancomycin encapsulated in PLGA-PLH-PEG NPs demonstrates a 1.3-fold pH-

dependent increase in MIC against S. aureus, an improvement over free vancomycin and

PLGA-PEG vancomycin, which demonstrate 2.0 and 2.3 fold increase at pH 6.0,

respectively. The proof-of-concept in vitro studies described in this work may - pending

the results of further extensive in vitro and in vivo evaluation - be applied to an array of
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clinical conditions in which systemic delivery approaches are desirable, where localized

acidity occurs, and where antibiotic efficacy is affected by acidity, potentially suggesting

methods of improving drug targeting and efficacy in these infections. Future work in this

area should first explore to what extent bacterial cell wall targeting using a surface

charge-switching mechanism can lead to both prolonged circulation and effective

targeting as compared to untargeted NPs and free drugs in vivo. The pH-sensitive,

surface-charge switching PLGA-PLH-PEG NPs, while potentially improving the binding

specificity for bacterial cell walls as compared to pH-insensitive cationic NPs delivered

systemically, still use non-specific charge-charge interactions to mediate binding locally

at the site of infection. Therefore, exploring to what extent competition between bacteria,

negatively charged proteins, phagocytic and non-phagocytic tissue cells at a site of

infection for the charged NPs affects bacterial targeting will be important. Future studies

should also: 1) compare the efficacy of antibiotics delivered using these groups in vivo, 2)

investigate methods of improving the potency of NP-vancomycin formulations, and 3)

explore the growth inhibition potential in Gram-negative infections.

3. 2. 7. Henderson-Hasselbalch Equation

We can continue understanding the underpinnings of charge-mediated targeting based on

a simplified pH-sensitivity analysis using the Henderson-Hasselbalch equation (Equation

3.1).

HA( Equation 3.1) p H = pKa + Ao

This equation is derived from acid-base chemical equilibria; its principles are covered in

most basic chemistry textbooks. As a brief reminder, its main assumptions include

constant ratio of activity coefficients of the different species, attainment of chemical
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equilibrium, and constant concentration of water, all of which are reasonable

approximations in this case. The fraction of poly-L-histidine (PLH) that is charged is

given by rearranging Equation 3.1:

HA 1 0 pKa-pH

(Equation 3.2) HA+A 10 pKa-pH+1

In this case, "HA" is the protonated species and "A" is the unprotonated imidazole.

estimating the pKa with high precision is quite complex, as the protonable imidazole

group is surrounded by a highly complex environment with PLGA, PLH, and PEG chains

in a supramolecular NP structure. The pKa of the imidazole side chain of L-histidine is

widely cited in textbooks to be ~6.0. Using this as a starting point in Equation 3.2, one

can plot Equation 2 and perform a sensitivity analysis with different assumed pKa values

in the range of 5.8-6.2 (Figure 3.8).
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Figure 3.8. Henderson-Hasselbalch Analysis. (A) The fraction of sites on a model
species of pKa 5.8, 6.0, 6.2 that are charged as a function of the pH, plotted using
Equation 3.2 in the specified range. (B) Plotting the fold increase in charged sites relative
to pH 7.4 on the basis of Equation 3.2.

The plot yields a notable increase in the amount of charged species as the pH is declined

from 7.4. For example, at a pKa of 6.0, as the pH declines from pH 7.4 to 6.0, the fraction

of the charged species increases from 3.8% to 50% (or equivalently, an increase in the

ratio of charged:uncharged from 1:25 to 1:1). These exponential changes in the fraction

of charged sites correlate well with the observed changes in the NP zeta potential (Figure

3.2A), which show a change in the zeta potential from -3.9±0.4 at pH 7.4 to 8.2±0.4 at

pH 6.0, and also with the increase in binding to bacteria (Figure 3.3, 3.4). A pH titration

of the NP binding (Figure 3.3) shows that there is little bacteria-associated fluorescence

until pH 6.0, which suggests that there is a charge threshold that is reached between pH

6.0 and pH 6.5. Assuming a pKa of 6.0, there is roughly a doubling of the amount of

charge as the pH is declined from pH 6.5 to 6.0 (0.24 to 0.50). While this may appear

modest given the increase in binding that is observed in this region, the data suggest that

this doubling had the measurable effect of increasing the NP zeta potential to past a

threshold value (greater than 2.8 mV, based on the relatively low binding at pH 6.5),

enabling more efficient binding to bacteria. The pH-sensitivity observed by the PLH-

containing NPs in this thesis is bounded by previous reports involving PLH-containing

materials. For example, a pH-sensitive micelle for tumor extracellular pH targeting using

a blend of poly(L-lactic acid)-block-poly(ethylene glycol)-block-poly(L-histidine)-TAT

and poly(L-histidine)-block-poly(ethylene glycol) demonstrated remarkable pH

sensitivity, with a 30-fold increase in uptake at pH 7.0 relative to pH 7.4, likely mediated

by an increase in presentation of the cell-penetrating TAT peptide.5 1 Further, by dropping
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the pH to 6.8, the authors found an increase of 70-fold was achieved. This dramatic pH

sensitivity occurred even with the majority of the protonable groups on the poly(L-

histidine) uncharged. Other pH-sensitive systems employing PLH have shown notable

changes in properties with declining pH. pH-sensitive polymeric mixed micelles of

poly(L-histidine) and poly(L-lactic acid) block copolymers with poly(ethylene glycol)

with or without folate are another example.48 These systems demonstrated accelerated

release of adriamycin as the pH declined from 8.0 to 6.8, and lost their structural stability

in the region 7.2 to 6.6. Similarly, a system using poly(L-lactic acid)-block-poly(ethylene

glycol)-block-poly(L-histidine) was reported to be useful as a triggered drug release

52
system in the range pH 7.2-6.5. It appears that the changes in the properties of the

poly(L-histidine) material as a function of pH can lead to a wide variety of different

behaviors with changes occurring in the range of 6.0-7.2.

3. 3. Materials and Methods

3. 3. 1. Polymer Synthesis and Characterization. We synthesized the triblock

copolymer poly(D, L-lactic-co-glycolic acid)-b-poly(L-histidine)-b-poly(ethylene glycol)

(PLGA-PLH-PEG) using a polymer end grafting strategy. In brief, PLH was custom

synthesized to contain 20 or 30 repeats of L-histidine with an N-terminal lysine and a C-

terminal cysteine to facilitate conjugation reactions. First, PLH-SH and orthopyridyl

disulfide (OPSS) modified PEG blocks were reacted to form a diblock copolymer using

thiol-to-orthopyridyldisulfide chemistry and purified by dialysis and lyophilization. The

PLGA was conjugated to the NH 2-PLH-PEG diblock copolymer using EDC/NHS
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carbodiimide chemistry and purified by precipitation. The reaction products and

intermediates were characterized by MALDI-TOF, GPC, and 'H-NMR.

More specifically, Poly(D, L-lactide-co-glycolide)-b-poly(L-histidine)-b-poly(ethylene

glycol) (PLGA-PLH-PEG) was synthesized using a sequential end-grafting process. First,

the poly(L-histidine)-b-poly(ethylene glycol) (PLH-PEG) diblock copolymer was formed

as demonstrated in "Rxn A" of Scheme Sl. PLH is a 22 or 32-mer peptide synthesized

and purified by HPLC by GenScript (Piscataway, NJ) with the following sequence, from

N- to C-terminus: Lys-(His) 20-Cys or Lys-(His) 3o-Cys. 0.0128 mmol of this reactant was

dissolved in 1 mL water and pH adjusted to pH 6.5 using 0.5 M NaOH dropwise. 0.0282

mmol of mPEG-OPSS polymer obtained from Laysan Bio (MW 5000, Arab, AL) was

dissolved in 3 mL DMSO. The two reactants were mixed together at room temperature

for 24 hours to yield a yellowish white solution of the PLH-PEG diblock copolymer

(product 1, Scheme S1). The product was purified by dialyzing against pure water using

2,000 MWCO Slide-A-Lyzer G2 dialysis membranes (Thermo Scientific, Billerica, MA)

followed by lyophilization for 48 hours. 0.0222 mmol of PLGA-COOH (inherent

viscosity 0.67, LACTEL, Cupertino, CA) was dissolved in 2 mL dichloromethane and

reacted with 0.9160 mmol 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and

1.1025 mmol of N-hydroxysuccinimide (NHS) for 4 hours at room temperature while

stirring (Rxn B, Scheme Sl). The resulting activated PLGA-NHS ester was precipitated

twice in ~ -20'C anhydrous methanol. The PLGA-NHS ester was dried in vacuo for 2

hours then dissolved in 3 mL of DMSO. 10 umol of PLGA-NHS in DMSO were reacted

with 14.6 umol of PLH-PEG dissolved in 1 mL of DMSO. To this reaction mixture, 115

umol of N,N-diisopropylethylamine (DIEA) were added and the reaction was allowed to
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proceed overnight at room temperature. The resulting crude triblock copolymer product

was precipitated in a ~ -20'C 50/50 v/v mixture of methanol/diethyl ether, redissolved in

DMSO, then precipitated again to produce a white polymer product. This product was

dried in vacuo for at least 4 hours. The final purified product 2 was collected as a

yellowish white brittle solid at a mass yield varying between 50-99%. The reaction

products and intermediates were characterized using MALDI-TOF, 'H-NMR, and gel

permeation chromatography (GPC). PLGA-PEG was synthesized similarly using the

same starting materials and excess reactants, with the key difference being that the

PLGA-NHS was reacted with mPEG-NH 2 (MW 5,000, Laysan Bio, Arab, AL) in

dichloromethane.

Rtx A Sil- Hii-N] +, .2 (IPEG-PSS ---- mPEG SS-iNIN[ -+S

46 EDC N

Rxnt B PLGA-COH -- PGANH

Rxn C ILGA-NIS+ -t mPEG-SS-PL i]2 -- iA-PLilEG

Figure 3. 9. Synthesis procedure for forming the PLGA-PLH-PEG copolymer. A
three step, end-grafting strategy was employed to form the desired PLGA-PLH-PEG 2
copolymer. (Rxn A) Reacting the C-terminal Cys of the PLH block with the
orthopyridyldisulfide-modified end group of PEG to form the PLH-PEG I diblock
copolymer. (Rxn B) Activating the PLGA-COOH using 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). (Rxn C)
Conjugating the PLGA-NHS and PEG-PLH polymers using the N-terminal Lys to form
the final product 2.

MALDI-TOF (Voyager-DE STR, JBI Scientific, Huntsville, TX) was used to confirm the

conjugation of the PLH and PEG blocks using sinapinic acid to form the matrix and using
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a 1-15 kDa acquisition mass range. A typical MALDI-TOF spectrum included PEG Mz =

5,315; PLH Mz 2,867; PEG-PLH Mz = 8,169. 1H-NMR (400 MHz, Bruker, Billerica,

MA) was used to detect the presence of the different polymer blocks at the various

reaction steps. The 1H-NMR spectrum of the final triblock copolymer product PLGA-

PLH-PEG demonstrates peaks corresponding to the three different copolymer blocks.

Proton shifts in DMSO-d (ppm): 7.6 b (imidazole ring H, PLH), 6.8 b (imidazole ring H,

PLH), 5.2 b (-CH- LA unit, PLGA), 4.9 b (-CH 2-, GA unit, PLGA), 4.4 b (a-carbon -CH-,

PLH), 3.5 s (OCH 2 CH 2, PEG), 3.0 b (-CH 2- PLH), 1.5 b (-CH 3 of LA unit, PLGA). GPC

was used to measure the molecular weight of the triblock PLGA-PLH-PEG (DMF mobile

phase), Mz ~ 88,000 relative to PMMA standards for all PLGA-PLH-PEG polymers.

3. 3. 2. NP Formulation. NPs were formulated (PLGA-PLH-PEG or PLGA-PEG in the

same manner) using modified emulsion/solvent evaporation techniques (see SI for

details). In brief, a typical vancomycin-containing NP formulation was prepared by

sonicating 50 uL of a 4 g/L solution of vancomycin hydrochloride (Sigma Aldrich, St.

Louis, MO) into 500 uL ethyl acetate containing 2 g/L polymer. This primary emulsion

was sonicated into 2 mL 10% w/v NaCl solution to form the W/O/W double emulsion,

diluted into 8 mL 5% w/v NaCl, and solvent allowed to evaporate for 4 hours prior to

purification using ultrafiltration. To form green fluorescent NPs, Alexa-488-modified

PLGA was blended into the organic phase at 15% w/w total polymer and no salt or

vancomycin were used in the emulsion process.

More specifically, to form vancomycin-encapsulated NPs, 1 mg of polymer (PLGA-PLH-

PEG or PLGA-PEG) dissolved in 15/85 v/v DMSO/ethyl acetate solution was diluted

into a final volume of 500 uL of ethyl acetate (with trace DMSO) to form the organic
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phase. The drug-containing aqueous phase would typically consist of 50 uL of a 4 g/L

solution of vancomycin hydrochloride (Sigma Aldrich, St. Louis, MO) dissolved in pure

water. The aqueous phase was sonicated into the polymer-containing organic phase for

15 sec at 40% amplitude using a probe tip sonicator (Misonix Sonicator S-4000,

Farmingdale, NY). This primary emulsion was then emulsified into 2 mL of a 10% w/v

NaCl solution at 40% amplitude for 30 sec. This concentrated double emulsion was

diluted into 8 mL of a 5% w/v NaCl solution under magnetic stirring. The NPs were

allowed to harden by allowing slow organic solvent evaporation for 4 hours in the hood.

NPs were purified by triple filtration using Amicon Ultra-4 100,000 NMWL centrifugal

filter units (Millipore, Billerica, MA) using sterile water. To form green fluorescent NP-

488s, PLGA-COOH (inherent viscosity 0.67, LACTEL, Cupertino, CA) was coupled to

amine-modified Alexa-488 (Life Technologies, Carlsbad, CA) using EDC/NHS

chemistry and purified by precipitation and drying in vacuo. The resulting Alexa-488-

PLGA product was (15% w/w of the total polymer mass) was co-dissolved in the organic

phase with the PLGA-PLH-PEG or PLGA-PEG polymer in a final volume of 500 uL.

The 500 uL were then sonicated into 2 mL of sterile water at a 40% amplitude setting for

30 seconds. This emulsion was diluted into an additional 8 mL of water, solvent

evaporation, then NP-488 purification as described for vancomycin-containing NPs.

Fluorescence per mg of NP-488 was not significantly different between triblock and

diblock NPs or at different pH, as measured using a plate reader.

3. 3. 3. Drug Encapsulation and Release Studies. 2.0 mg of PLGA-PEG or PLGA-

PLH30-PEG NPs were formulated with 0.4 mg initial vancomycin. Drug encapsulation
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was determined by quantifying the amount of unencapsulated drug relative to the initial

amount of drug by UV absorbance at 220 nm relative to a standard curve. Drug release

was conducted by suspending NPs in 4 mL of pH-adjusted PBS (6.0 or 7.4), separating

NPs and free drug by ultrafiltration, and quantifying free drug at each time point in

triplicate.

3. 3. 4. pH-Dependent Physicochemical Property Characterization. ZetaPALS

analysis. NPs made with different PLH lengths were prepared without vancomycin,

purified, and resuspended in pH-adjusted solution in triplicate. Similarly, bacteria were

centrifuged, washed, and resuspended in pH-adjusted solutions. Size and zeta potential

were measured for each solution by quasi-elastic laser light scattering using a ZetaPALS

dynamic light scattering detector (15 mW laser, incident beam 676 nm, Brookhaven

Instrument Corporation).

Transmission Electron Microscopy. PLGA-PLH20-PEG NPs were prepared, washed to

remove residual organic solvent, resuspended at 5 mg/mL in a 1% w/v uranyl acetate

solution (pH ~5.5), deposited onto carbon supported copper TEM grids for 5 min, dried,

then imaged on a JEOL 200 CX TEM (MIT CMSE) at an accelerating voltage of 200 kV.

3. 3. 5. Nanoparticle-Bacterium Binding Studies. Bacterial Culture. Escherichia coli

(ATCC# 11229) were cultured in LB broth (BD# 244620). Colonies were streaked on an

LB-agar plate, selected, inoculated into 5 mL of growth medium and allowed to grow

overnight in an incubated shaker at 37'C. Staphylococcus aureus (ATCC# 25923) were

cultured in similar fashion using Tryptic Soy Broth (TSB, BD#211825).

Flow Cytometry NP-488 Binding Assays. PLGA-PLH20-PEG and PLGA-PEG NP-488s

were prepared, purified, and concentrated into 100 uL of pure water. Bacteria were
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overgrown overnight in 5 mL of growth medium, spun down, washed in saline solution,

then resuspended in salt solution previously pH-adjusted to 5.5, 6.0, 6.5, 7.0, or 7.4 using

a dilute aqueous HCl solution. NP-488 were added to the bacteria and incubated for 30

minutes. For binding kinetic studies, time points ranged from 10 minutes to 4 hours. For

the inhibition study, NPs were preincubated in an excess sodium polystyrene sulfonate

(PSS) solution for ~30 minutes prior to incubation with bacteria. After incubation was

complete, bacteria were spun down, unbound NP-488 in the supernatant were removed,

bacteria were resuspended in PBS pH 7.4, and run on a flow cytometer (FACSCalibur,

BD Biosciences, Koch Institute Flow Cytometry Core). Forward scatter (FSC), side

scatter (SSC), green fluorescence (ex: 488, filter: 530/30), and red fluorescence (ex: 488,

filter: 650 LP) data were collected on a minimum of 10,000 events per sample. Bacteria

were gated for live using FSC vs. SSC plots using an untreated negative control for

reference.

Fluorescence Confocal Imaging. Overnight overgrown cultures of S. aureus were spun

down at 3,000 RCF for 5 min. A 1:10 dilution of the bacteria in solution was washed in

saline solution then resuspended in 500 uL solution pH-adjusted to pH 6.0 or pH 7.4

using dilute HCl solution. Freshly prepared PLGA-PLH 20-PEG NP-488 were prepared,

purified, resuspended in a small volume of sterile water, then diluted into the bacterial

pH-buffered suspension. The bacteria and NP-488 were placed in an incubated shaker for

30 min at 37*C to allow NP-488 binding to occur. At the 30 minute time point, the

suspension was centrifuged at 3,000 RCF for 5 min to pellet bacteria and bacteria-NP-

488 aggregates. The pellet was washed 3x in PBS pH 7.4 and resuspended in 100 uL of

PBS pH 7.4. Bacteria were stained using BacLightTM Red (Life Technologies #B-35001,
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Carlsbad, CA) for 30 min following the manufacturer's protocol, placed on a glass slide,

coverslipped, then taken immediately for fluorescent laser scanning confocal imaging

(Zeiss LSM 510 meta, W. M. Keck Microscopy Facility, Whitehead Institute at MIT).

Excitation lasers used: 488 nm for green channel, 543 nm for red channel.

3. 3. 6. Antibacterial Studies. Minimum Inhibitory Concentration (MIC). The MIC of

the different vancomycin formulations against S. aureus were determined using the

microplate broth dilution method. Briefly, S. aureus from overnight cultures were

inoculated into 5 mL TSB and allowed to enter log phase (OD600 -0.3) after

approximately 2 hours of incubation. NPs (PLGA-PLH30-PEG or PLGA-PEG)

encapsulating vancomycin were freshly prepared, purified, and serially diluted into a

final volume of 100 uL of sterile water in triplicate at a 2x concentration in clear, flat

bottom 96 well plates. Bacteria in log phase were diluted to a theoretical OD600 of 0.001

in either TSB pH adjusted to pH 7.4 or pH 6.0 using a dilute sterile HCl solution and

seeded onto the microplates to produce a final volume per well of 200 uL. The OD600 was

measured immediately before placing into an incubated shaker at 370C, 18 hours later.

The drug concentration is the total drug concentration present inside the nanoparticles, as

determined by encapsulation efficiency and drug release studies. The MIC was

determined as suggested by Lambert and Pearson53 by fitting Gompertz functions to

bacterial growth data using least squares regression techniques. No change in pH with

time was detected.

Minimum Bactericidal Concentration (MBC). The MBC was determined by plating

bacterial inoculum from the MIC studies onto antibiotic-free TSB agar plates. The MBC
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was reported as the smallest concentration that results in no visible bacterial growth

within 24 hours.

3. 3. 7. Statistics All data are expressed as mean ± SD. Differences between groups were

assessed using one-way ANOVA (comparisons of vancomycin formulation efficacy were

performed on MIC data only). Post hoc group comparisons were done using Fisher's

LSD method. Least squares regressions were used to fit Gompertz functions to bacterial

growth inhibition data. A significance level of p < 0.05 was used for all comparisons.
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Chapter 4

Mammalian Cell and Protein Interactions In Vitro and Preliminary
Evaluation In Vivo

This chapter has been reproduced in part from: Radovic-Moreno A. F., Lu T. K., Puscasu
V. A., Yoon C. J., Langer R., Farokhzad 0. C. A CS Nano 2012, 6, 4279-4287.

4. 1. Introduction

Resistance to antibiotics remains one of the major challenges in modem medicine despite

almost 80 years of widespread clinical experience with this phenomenon. For decades

following the introduction of the first antibiotics to the clinic, such as the penicillins

(penicillin, 1928) and aminoglycosides (streptomycin, 1943) resistance was controlled

through a combination of containment and new antibiotic discovery. These approaches

were largely successful due to the remarkable productivity of the "golden era" of

antibiotic discovery (~1940-1970). This period introduced many new antibiotic classes

including the macrolides (erythromycin, 1949), tetracyclines (tetracycline, 1952),

glycopeptides (vancomycin, 1958), and quinolones (naldixic acid, 1962), among several

others. This was followed by decades of successes in modifying antibiotics to

compensate for bacterial resistance. Over this period, resistance to one type of antibiotic

could be handled by turning to another drug class or by using a newer drug within the

same class, such as using methicillin when p-lactamase became widespread.' 5

However, new antibiotic development has stalled in the last several decades. The

lipopeptide daptomycin (1980s) and the oxazolidinone linezolid (1990s) are among the

newest antibiotic drug classes to be developed, but relatively little new development has

occurred since then and resistance has been documented against both of these drugs.
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Given the rising threat of multi-drug resistant organisms, it is imperative to explore new

paradigms in antibacterial drug development.6 '7

Various alternatives to small molecule antibiotics are in development, including

bacteriophages, drug potentiators, antivirulence factors, antimicrobial peptide or

peptidomimetics and nanoparticles (NPs).8-10 Of these alternatives, NPs are potentially

well-suited to contribute to new antibacterial drug design due to their small size, unique

properties, and high surface area-to-volume ratio.''' NPs have been shown to improve

drug function, drug delivery, overcome resistance, and introduce novel mechanisms of

action. Particularly significant is the ability to use NPs to target drugs to a site of

infection. 1 Improved drug targeting can increase drug effectiveness, reduce toxicity,

optimize exposure, and potentially reduce the likelihood of drug resistance emerging

(Chapter 2). This strategy might be able to extend the useful lifetime of a drug, widen the

types of clinical indications, and potentially improve patient outcomes.

Previously, our group had reported a biodegradable and nontoxic polymeric NP for

targeting vancomycin to bacterial cell walls.15 These NPs were designed to switch their

surface charge from near neutral to cationic under conditions of slight acidity (pH < 6.5),

a state reported to occur locally at the site of certain infections. This surface charge-

switching capability was important since positively charged NPs, when in the

bloodstream, tend to interact non-specifically with a wide variety of cells and proteins,

greatly reducing the potential circulating half-life and thereby the NP's systemic

applicability. Our results showed that the cationic surface charge produced under low pH

conditions enabled binding to the cell walls of both Gram-positive and Gram-negative
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bacteria using both flow cytometry and confocal fluorescent microscopy techniques,

highlighting the potential of this targeting system.

Nevertheless, a common challenge to using electrostatic interactions as the basis for

targeting in vivo is lack of specificity. An infection site is a rich tapestry of eukaryotic

cells, bacteria, small molecules, and proteins, many of which are negatively charged and

may interfere with NP-bacterial specificity (Chapter 2, Figure 2.2). The goal of our

present work was to further explore the interactions between NPs based on poly(D,L-

lactic-co-glycolic acid)-block-poly(L-histidine)-block-poly(ethylene glycol) (PLGA-

PLH-PEG) and model eukaryotic cells, as well as NPs and bacteria in the presence of a

model negatively charged protein. These studies can inform the design of cationically-

charged NP-bacteria targeting mechanisms in vivo, one of the most widely used strategies

to target bacteria.

Our results show that mixing poly(D,L-lactic-co-glycolic acid)-block-poly(L-histidine)-

block-poly(ethylene glycol) (PLGA-PLH-PEG) and PLGA-PEG to form mixed NPs

yields improved bacterial binding sensitivity and specificity in high protein concentration

as well as the circulation half-life compared to controls. NPs with a PLGA-PLH-PEG

content between 40-60% (w/w) showed greater binding to Staphylococcus aureus as

measured by flow cytometry in the presence of serum levels of bovine serum albumin

(BSA, 4 g/dL) than NPs of other composition and controls, though this was significantly

less than what was observed in the absence of BSA. Mixed NPs also demonstrated less

binding/uptake to model eukaryotic cells in a composition-dependent manner in vitro. Of

the preferred 40-60% NP composition range, a longer circulation half-life was obtained

with ~40% (w/w) PLGA-PLH-PEG than -60% PLGA-PLH-PEG. The circulation half-
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life of ~40% PLGA-PLH-PEG was comparable to PLGA-PEG NP controls. These

studies may inform future studies aimed at optimizing cationic charge-mediated targeting

of bacteria in complex environments.

4. 2. Results and Discussion

4. 2. 1. NP design, formulation, and characterization. Previously, we designed a

triblock copolymer with a PLGA-PLH-PEG structure, which we formulated into NPs

using a modified double emulsion/solvent evaporation technique. We were interested in

further exploring the bacterial targeting potential of NPs containing PLGA-PLH-PEG. To

do so, we formed mixed NPs with PLGA-PEG by blending PLGA-PLH-PEG and PLGA-

PEG together in the organic phase prior to NP formulation. We hypothesized that

blending these two polymers together might yield NPs with improved bacterial targeting

specificity by increasing the density of PEG on the NP surface, which might reduce

nonspecific protein binding while potentially still retaining bacterial binding ability. This

was based on previous studies showing that relatively small changes in PEG density can

result in large changes in protein adsorption.16' 17 Forming mixed NPs was also motivated

by initial studies, which showed significant attenuation of PLGA-PLH-PEG NP binding

to bacteria at 4 g/dL BSA (17.343.5% of binding at 0 g/dL), as well as quantification of

the surface composition of PLGA-PLH-PEG NPs using XPS (Table 4.1). The XPS data

showed elevated levels of nitrogen and reduced levels of oxygen in the top ~10 nm of the

NPs, consistent with reduced PEG density on the NP surface.

Table 4. 1. XPS Analysis of PLGA-PLH-PEG and PLGA-PEG NPs

XPS Analysis Mol %, Top -10 nm of NP surface (electron)
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Nanoparticle C (C Is) 0 (0 1s) N (N Is)

PLGA-PLH-PEG 61.4 36.3 2.2

PLGA-PEG 59.1 40.9 0.0

Reduced PEG density in the PLGA-PLH-PEG NPs compared to PLGA-PEG is likely due

to a combination of incomplete PEGylation of the PLGA-PLH-PEG polymer and PEG

"burying" inside the NP during the NP self-assembly. The latter can be understood by

considering that the polymers self-assemble into NPs based on hydrophilic/hydrophobic

forces, which tend to orient the more hydrophobic PLGA portion towards the NP core.

Under typical NP formulation conditions (pH ~5-6) the PLH segment is cationically

charged (pKa of histidine imidazole ~6.0-6.5), making this polymer more hydrophilic and

capable of competing with PEG for the limited NP surface, which is in contact with water.

In contrast, PLGA-PEG polymers are more likely to orient themselves with PEG on the

NP surface due to the greater difference in hydrophobicity between the PLGA and PEG

blocks.

To form mixed PLGA-PLH-PEG / PLGA-PEG NPs, we blended the different polymers

in varying weight ratios together in the organic phase of the emulsion. The resulting NPs

demonstrated zeta potential in acidic conditions (pH ~6.0) that was between the two pure

species, suggesting formation of mixed NPs (Figure 4.1). Of note, a minimal level of

-30% PLGA-PLH-PEG is needed to yield positively charged NPs at acidic pH and a

plateau is reached at ~80% PLGA-PLH-PEG, where greater PLGA-PLH-PEG levels do

not appear to increase the amount of cationic charge. Otherwise, the relationship between
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zeta potential and PLGA-PLH-PEG content is relatively linear in the range -20-80%

PLGA-PLH-PEG (Figure 4.1).
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Figure 4. 1. Mixed PLGA-PLH-PEG / PLGA-PEG NP Size and Zeta Potential
Characterization. (A) NP size. (B) NPs formed containing mixtures of PLGA-PLH-
PEG and PLGA-PEG demonstrate mixed zeta potential, consistent with formation of
mixed PLGA-PLH-PEG / PLGA-PEG NPs.

4. 2. 2. NP binding to bacteria in the presence of bovine serum albumin. Next, we

wanted to examine the effect of mixed NP binding to bacteria in the presence of a model

negatively charged protein. We selected BSA because it is one of the major proteins in

the body, with a concentration of -4 g/dL in serum and on the order of g/dL at typical

infection sites. As a model bacterium, we selected Staphylococcus aureus, a major

4, 19, 20
clinically relevant pathogen that has high incidence of drug resistance. We

examined NP binding to S. aureus by incubating -150 ug/mL of Alexa-488-PLGA-

labeled PLGA-PLH-PEG NPs with bacteria (OD600 -0.3) at 37'C with different
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concentrations of BSA (Figure 4.3), collecting the bacteria, then running on a flow

cytometer to assess bacteria-associated fluorescence. The results show a logarithmic

dependence of bacteria-associated fluorescence with BSA concentration, with a

significant attenuation of NP binding to bacteria at 4 g/dL (17.3±3.5% of binding at 0

g/dL).
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Figure 4. 2. PLGA-PLH-PEG NP Uptake in the Presence of Bovine Serum Albumin
(BSA). Alexa-488 labeled NPs were incubated with S. aureus and BSA at the indicated
concentration for 30 min, washed, and then evaluated in terms of their cell-associated

fluorescence using flow cytometry. (A) Representative histogram of cell-associated
fluorescence (FLI-H indicates fluorescence obtained in the green fluorescent channel).
(B) The data expressed as binding relative to no BSA, with additional repeated
experiments included (N=3). The data suggests binding to S. aureus is inhibited in the
presence of BSA in a logarithmic manner.
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Next, we formed mixed NPs of PLGA-PLH-PEG / PLGA-PEG with 0-80% (w/w)

PLGA-PLH-PEG content and similarly evaluated bacteria-associated fluorescence

following incubation in the presence of varying BSA levels (reserving 20% of each for

fluorescently modified PLGA polymer). We found that the amount of bacteria-associated

fluorescence, similar to pure PLGA-PLH-PEG NPs, had a logarithmic dependence with

BSA concentration (Figure 4.3A), but that this strongly depended on the composition of

the NPs. At 20-40% PLGA-PLH-PEG, there was an overall reduction in the amount of

bacteria-binding but that the quantity of binding at 0 g/dL was retained better than the

other formulations, suggesting relatively lower dependence of binding on BSA level at

this composition. This is consistent with a higher PEG density in this composition range,

which would prevent adsorption of BSA. The 60-80% PLGA-PLH-PEG NPs

demonstrate higher binding to bacteria at low BSA levels, but bacterial binding is

affected more prominently at high BSA levels. Interestingly, 80% PLGA-PLH-PEG NPs

demonstrated less binding at 4 g/dL BSA than 60% (Figure 4.3B), suggesting BSA

adsorption that was so high as to inhibit most NP bacterial binding.
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Figure 4. 3. Mixed PLGA-PLH-PEG / PLGA-PEG NP Binding to S. aureus. (A)
Mean bacteria-associated fluorescence obtained via flow cytometry for different mixtures
at the indicated BSA concentration, showing a general decline in bacterial binding at
higher protein concentrations. (B) Bacteria-associated uptake at 4 g/dL BSA,
demonstrating a reduction in uptake at 80% PLGA-PLH-PEG NPs. (C) Zeta potential of
NPs with or without 4 g/dL BSA, demonstrating high BSA adsorption in 80% PLGA-
PLH-PEG NPs leading to surface charge reversal, which correlates with reduced binding
to bacteria.

To gain greater understanding of NP bacterial binding, particularly the reversal that

occurs in binding at higher PLGA-PLH-PEG content, we evaluated the zeta potential of

the NPs as a function of the BSA concentration. At 40% PLGA-PLH-PEG, there is a

mild cationic charge on the NP surface (3.4±5.9 mV at 0 g/dL; 2.6±0.5 mV at 4 g/dL)

that is independent of BSA concentration (Figure 4.3C). This correlates well with

bacterial binding at this composition, which similarly appeared largely independent of

BSA concentration (27.3±1.1 at 0 g/dL; 22.4±0.5 at 4 g/dL, arbitrary fluorescence units).

At 60% PLGA-PLH-PEG, the increased PLGA-PLH-PEG content leads to an increase in

the zeta potential of the NPs in the absence of BSA, but this demonstrates a more

noticeable decline at 4 g/dL (8.9±2.3 mV at 0 g/dL; 2.3±0.1 mV at 4 g/dL) but the NPs
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remain cationic. In contrast, 80% PLGA-PLH-PEG NPs demonstrate the highest zeta

potential at 0 g/dL (16.5±2.8 mV) but demonstrate a large reduction in zeta at 4 g/dL, so

much so that the NPs become anionic (-1.8±1.2 mV). These data correlate well with the

amount of bacteria binding as a function of BSA concentration, where the 80% PLGA-

PLH-PEG NPs demonstrate binding that is equivalent to 20% PLGA-PLH-PEG at 4 g/dL

despite much higher binding at 0 g/dL.

Taken together, these results suggest that the optimal range for continued evaluation of

these NPs is 40-60% PLGA-PLH-PEG, which show a balance being achieved between

inhibiting BSA binding but retaining enough cationic charge to yield NP binding to

bacteria, even in the presence of serum BSA levels.

4. 2. 3. NP interactions with model mammalian cells - in vitro studies. In addition to

bacteria and protein, a site of infection will be populated by various different eukaryotic

(host) cells. Greater insight into the potential of a charge-based bacterial targeting

strategy could be obtained by evaluating the extent and kinetics of binding of PLGA-

PLH-PEG NPs to infection-resident host cells. As model cells, we selected two cell lines:

a model phagocytic cell line, RAW 264.7 murine macrophages, and a model tissue

epithelial cell line, LNCaP prostate adenocarcinoma cells. Positively charged NPs have

been shown to bind to and be internalized by various eukaryotic cells previously. 2 1 -23 In

general, this is believed to occur due to the negative surface charge imparted by the

phosphate-rich glycocalyx and negatively charged cell membrane proteins, among others.

To evaluate the binding/uptake properties of PLGA-PLH-PEG NPs to these cell lines, we

incubated Alexa-488-PLGA-labeled PLGA-PLH-PEG NPs with cells grown to ~70%
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confluence at either pH 5.5 or pH 7.4. The NPs were removed, washed, then run on a

flow cytometer to evaluate cell-associated fluorescence. The results demonstrate a pH-

dependent increase in the amount of binding/uptake to both cell lines, though the effect is

significantly more prominent in the LNCaP cell line (Figure 4.4A, C). To determine the

kinetics of uptake, the NPs were incubated with the cells in similar fashion but collected

at different time points (Figure 4.4B, D). The RAW 264.7 macrophages demonstrated a

significant initial lag in uptake, with less than 20% of maximum observed within the first

hour of incubation. The NPs showed near half saturation after 2 hours of incubation.

LNCaP cells showed a gradual saturation of uptake that began immediately, with full

saturation being observed after 2 hours of incubation. Both cell lines showed

approximately the same zeta potential (Figure 4.4E), suggesting that the observed

differences may be due to differences in NP internalization rates. To gain further degree

of discrimination of the pH-dependent uptake properties in LNCaP cells, we incubated

the NPs with ~70% confluent LNCaP cells and measured the NP uptake at different pH

levels (Figure 4.5). The greatest increase in NP uptake occurred as the pH declined from

6.5 to 6.0 (1.3±0.1 fold increase relative to pH 7.4 at pH 6.5, 2.3+0.1 fold increase at pH

6.0), which correlates well with the NP changes in zeta potential (Chapter 3). Maximal

increases in binding/uptake are observed at pH 5.5 (3.3+0.2 fold increase). In contrast,

PLGA-PEG NPs demonstrated relatively little changes in uptake, particularly for the

RAW 264.7 cell line (Figure 4.6). This suggests that PLGA-PLH-PEG NPs are

associated with cells in a pH-dependent manner.
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Figure 4. 4. Nanoparticle-Mammalian Cell Uptake. Alexa-488 labeled PLGA-PLH-
PEG or PLGA-PEG NPs were incubated with a model phagocytic cell line, RAW 264.7
(A, B) or a model tissue resident cell line, LNCaP (C, D) to study NP uptake
characteristics. Mean cell-associated fluorescence after NP incubation at pH 5.5 or 7.4 as
determined using flow cytometry in RAW 264.7 (A) or LNCaP (C) cell lines. Binding
kinetics of (B) RAW 264.7 and (D) LNCaP cells at low pH. (E) Zeta potential of cell
lines with changes in pH.
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Figure 4. 5. pH-Titration of NP Uptake in LNCaP Cells. To obtain greater
understanding of the pH-dependent uptake properties, the indicated NPs were incubated
with LNCaP cells, uptake was assessed by flow cytometry, and expressed as fold
fluorescence over that observed at pH 7.4. The data suggests that pH-sensitive PLGA-
PLH-PEG NPs demonstrate increased uptake as pH < 6.5 whereas PLGA-PEG NPs do
not. (* indicates p < 0.05 by ANOVA).
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Figure 4. 6. pH-dependent Uptake of PLGA-PEG NPs. (A) Uptake in a model
phagocytic cell line, RAW 264.7 appears to be pH-independent. (B) Uptake in a model
tissue cell, LNCaP, demonstrates some pH-sensitivity, but this is considerably smaller
than what is observed in PLGA-PLH-PEG NPs (Figure 4. 4C).

To confirm the pH-dependent uptake properties in the LNCaP cells and grossly evaluate

their subcellular localization, we turned to fluorescent confocal microscopy. Alexa-488-

PLGA-labeled PLGA-PLH-PEG or PLGA-PEG NPs were incubated with LNCaP cells at
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time points of 30 min or 2 hr at pH 5.5, washed, fixed, then imaged (Figure 4.7). The

PLGA-PLH-PEG NPs demonstrated an increase in uptake that was not observed with

PLGA-PEG NPs. Further, the amount of uptake appeared to be time-dependent, with

much more noticeable uptake at the 2 hr time point. Interestingly, at 2 hr, the NPs

appeared to be distributed both on the cell membrane as well as the inside of cells, with a

punctate pattern of fluorescence consistent with localization inside of endolysosomes. To

further explore the mechanism of internalization, PLGA-PLH-PEG NPs were incubated

with LNCaP cells at pH 5.5 in the presence (or absence) of inhibitors of clathrin-

dependent endocytosis (CME) (monodansylcadaverine, MDC) or macropinocytosis

(rottlerin) (Figure 4.8). Both of the inhibitor-treated cells demonstrated a reduction in the

amount of NP uptake (MDC 66±13% of no inhibitor, rottlerin 69±3%), suggesting that

both CME and macropinocytosis play a role in PLGA-PLH-PEG NP internalization.

Notably, the majority of fluorescence was retained despite the presence of these

inhibitors, suggesting that a substantial fraction of NPs are present on the surface. This is

consistent with what is observed in the fluorescent confocal images (Figure 4.7).
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Figure 4. 7. Fluorescence Image of NP Uptake in LNCaP Cells. Alexa-488 modified
NPs were incubated with a model tissue cell, LNCaP, at low pH for the indicated period
of time and imaged using fluorescence microscopy. Greater uptake is observed in pH-
sensitive PLGA-PLH-PEG NPs. In addition, considerable NP fluorescence appears to be
associated with the cell surface, especially after 2 hours of incubation.
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Figure 4. 8. Inhibitor Study of Uptake of PLGA-PLH-PEG NPs in LNCaP cells at
low pH. NPs were incubated with LNCaP cells in the presence of inhibitors of clathrin-
mediated endocytosis (monodansylcadaverine, MDC, macropinocytosis (rottlerin), or no
inhibitor, collected, and their cell-associated flonscece luated using flow cytometry.
The data suggests that both pathways are involved in NP uptake, but that significant
fluorescence remains, consistent with NP surface association.
Next, we sought to evaluate the impact that mixed PLGA-PLH-PEG / PLGA-PEG NPs

have on eukaryotic cell binding/uptake properties. We incubated mixed NPs with either
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RAW 264.7 or LNCaP cells at pH 5.5 or 7.4, washed, collected the cells, then ran on a

flow cytometer to evaluate cell-associated fluorescence (Figure 4.9). Both cell lines

demonstrated an increase in binding/uptake at pH 5.5 relative to pH 7.4, but this was

dependent on the PLGA-PLH-PEG content. In general, a linear reduction in the PLGA-

PLH-PEG content resulted in a corresponding reduction in NP binding/uptake at pH 5.5,

but not pH 7.4. This suggests that the mixed NPs demonstrate a reduction in

binding/uptake to eukaryotic cells as the PLGA-PLH-PEG content is reduced.
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Figure 4. 9. Mixed PLGA-PLH-PEG / PLGA-PEG NP Uptake in Mammalian Cells.
Mean cell-associated fluorescence obtained via flow cytometry for different PLGA-PLH-
PEG / PLGA-PEG mixtures, showing an increase in pH-dependent binding at higher %
PLGA-PLH-PEG for both (A) RAW 264.7 and (B) LNCaP cell lines. N=3 or more for
observations.

We then sought to determine whether NP binding to S. aureus could occur in the

presence of protein and eukaryotic cells. Given the more prominent uptake in the LNCaP

cell line, NPs were incubated with bacteria and LNCaP cells to explore the degree of
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uptake competition (Figure 4. 1A, B). The results show that at the given conditions, the

PLGA-PLH-PEG NPs were able to bind to bacteria, but that some competition was

observed (62.8+7.3% of fluor in the LNCaP group). This is consistent with the

observation that LNCaP cells are able to capture NPs. The bacterial binding, even in the

presence of LNCaP cells, may be mediated by more rapid binding kinetics to bacteria

than LNCaP cells (Figure 4.1 OC).
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Figure 4. 10. Impact of LNCaP Cell Monolayer on Bacteria Targeting Ability.
Alexa-488 modified NPs were incubated with S. aureus in the presence of a monolayer of
LNCaP cells to evaluate the ability to target bacteria in the presence of mammalian cell

competition. (A) Representative histogram of bacteria-associated fluorescence (FL1-H
indicates fluorescence obtained in the green channel). (B) Bacteria-associated
fluorescence in the presence and absence of LNCaP cells indicating reduced bacterial
targeting ability. (C) Uptake or binding kinetic study, showing rapid binding to bacteria
and relatively slower uptake saturation in LNCaP cells. N=3 or more for observations.
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4. 2. 4. In vivo evaluation of NPs - pharmacokinetics. To further explore the in vivo

applicability of PLGA-PLH-PEG NP-based targeting, we wanted to explore the impact of

NP composition on the circulation pharmacokinetics (PK). Two NP formulations in the

range of 40-60% PLGA-PLH-PEG (43% and 57%) and control PLGA-PEG NPs were

fluorescently labeled by incorporation of Alexa-674-PLGA into the NPs. The NPs were

delivered i.v. at 2 mg/mouse (~80 mg/kg NP) in 200 uL of PBS. At the given time point,

a sample of blood was collected and measured for its NP fluorescence using an IVIS

imaging system. The PLGA-PEG NPs demonstrated the longest circulation time,

followed by the 43% then 57% PLGA-PLH-PEG (Figure 4.11). To model the NP PK, a

two-compartment model was assumed and the data fit using a non-linear least squares

regression technique (Table 4.2).
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Figure 4. 11. Mixed PLGA-PLH-PEG / PLGA-PEG NP Pharmacokinetics. Alexa-

647 modified NPs were injected intravenously into the tail vein of male Balb/c mice,

blood was collected at the indicated time point, and the amount of fluorescence quantified.

(A) Average radiant efficiency of a drop of blood over time. (B) Data in (A) expressed as

a fraction of the amount of fluorescence observed at t=5 min. N=4 for all observations.

Table 4. 2. Pharmacokinetic parameters - Two Compartmental Fit

Distribution t1 /2 (h) Elimination t1/ 2 (h)

PLGA-PEG 2.8 ±0.7 8.0+1.1

43% PLGA-PLH-PEG 2.0 ±0.4 11.1 ± 1.9

57% PLGA-PLH-PEG 1.8 ± 0.1 16.4 ± 3.4

The PK properties of the NPs suggest that a higher PLGA-PEG content leads to more

extended NP circulation time in the blood. This may be due to a number of factors.

Increased PEG density in NPs with greater PLGA-PEG content is a likely mechanism,

which is corroborated by the XPS data (Table 4.1) and the observation of reduced

changes in zeta potential in the presence of BSA (Figure 4.4C). In addition, greater PEG

chain flexibility when attached to PLGA, which would improve the steric barrier function

of the PEG, may be contributing. We also cannot rule out the possibility of more specific

interactions between the PLH and BSA (and not electrostatic only), though to the best of

our knowledge this has not been reported previously. It should be noted that all NP

fonnulations demonstrated extended circulation times, with a distribution half-life of at

least 1.8 hr or more. In addition, there did not appear to be a significant difference in the

distribution half-life of the 43% PLGA-PLH-PEG and PLGA-PEG NPs. These extended
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circulation times are significantly longer than the reported circulation time of PLGA or of

typical cationic NPs, both of which are significantly shorter.17 21

4. 2. 5. In vivo evaluation of NPs - biodistribution. Next, we sought to evaluate the

biodistribution properties of the NPs following an i.v. injection. We selected an

intermediate PLGA-PLH-PEG composition, 53%, formed Alexa-647-labeled NPs as

previously, and delivered 2 mg/mouse via the tail vein as a bolus together with PLGA-

PEG as a control. On the basis of the PK studies, the NPs were given enough time to

completely leave the circulation, at which point the mice were necropsied to collect their

organs. Organs were weighed then assessed for their NP-associated fluorescence using an

IVIS system. The data demonstrate that no significant difference in the biodistribution of

the 53% PLGA-PLH-PEG NPs as compared to PLGA-PEG could be observed, with the

majority of accumulation occurring in the spleen and liver, consistent with various

reports with similar NPs (Figure 4.12).4 To confirm the quantitative data and evaluate

the organ-level distribution of the NPs, frozen sections of the organs were imaged using

fluorescent confocal microscopy (Figure 4.13). The images demonstrate NP

accumulation primarily in the spleen and liver, with a distribution pattern consistent with

phagocytic cell clearance. Further, we were interested in whether PLGA-PLH-PEG-

containing NPs would accumulate in organs that have a local acidic environment. Most

notably, this can occur in two regions: the lumen of the stomach (pH 1-2) and the

medulla of the kidney (pH -4-8). 2 6 The 53% PLGA-PLH-PEG NPs did not appear to

accumulate in either of these regions (Figure 4.13). In the case of the lumen of the

stomach, it is likely that the NPs were never in contact with acidic regions, instead

remaining in the pH ~7.4 vasculature during their transit through this organ. The situation
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in the renal medulla is a bit more complex, as some have reported a lower intravascular

pH in this region.2 6 Our data suggest that the 53% PLGA-PLH-PEG NPs do not appear to

accumulate in this region under the given experimental conditions. However, it should be

noted that medullary pH is well-known to depend on the acid-base balance of the animal,

which can be strongly affected by diet. Consequently, we cannot yet rule out the

possibility of accumulation in this region in cases where the urine pH is more acidic.
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Figure 4. 12. Mixed PLGA-PLH-PEG / PLGA-PEG NP Biodistribution. Alexa-647
modified NPs were injected intravenously into the tail vein of male Balb/c mice, allowed
to leave the circulation (no fluorescence was detected in the blood), then organs were
harvested and assayed in terms of their fluorescence. (A) Organ-associated fluorescence
per gram of tissue. (B) Data in (A) expressed as total fluorescence. N=3 for all
observations. No significant differences were observed between mixed PLGA-PLH-PEG
and PLGA-PEG NPs.
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Figure 4. 13. Mixed PLGA-PLH-PEG / tPLGA-PEG NP Biodistribution - Confocal
Images. Alexa-647 modified 53.3% PLGA-PLH-PEG or PLGA-PEG NPs were injected

intravenously into the tail vein of male Balb/c mice, allowed to leave the circulation (no

fluorescence was detected in the blood), then organs were harvested and assayed in terms

of their fluorescence by confocal imaging. Spleen (A, 647 Fluor; E, Bright field), Liver

(B, 647 Fluor; F, Bright field), Kidney (C, 647 Fluor; G, Bright field).

4. 2. 6. Summary. In summary, we have continued to explore the potential of PLGA-

PLH-PEG NPs to target Staphylococcus aureus infections by seeking a greater

understanding of NP bacterial targeting in high protein concentration (up to 4 g/dL BSA),

evaluating NP binding/uptake to model phagocytic cells and tissue cells, as well as

evaluating NP pharmacokinetics and biodistribution. in vivo. We determined that blending
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PLGA-PLH-PEG with PLGA-PEG to form mixed NPs, particularly with a composition

of 40-60% PLGA-PLH-PEG, has the potential to improve bacterial targeting specificity

in high background levels of the negatively charged protein BSA, though this occurs at

the expense of binding sensitivity. Further, the mixed NPs demonstrated pH-dependent

binding/uptake to model host phagocytic cells and tissue cells, though saturation occurred

more slowly than with bacteria and the majority of binding to bacteria was retained in the

presence of a monolayer of eukaryotic cells. When injected i.v., mixed NPs demonstrated

extended circulation time with a half-life of at least 1.8 hr, and had a biodistribution

similar to that of PLGA-PEG, suggesting that these two NPs behaved similarly at

physiologic pH in vivo. These data suggest that mixed NPs may have the potential to

target acidic sites of bacterial infections, though more evaluation in animal models of

infection is needed. More specifically, future work should focus on methods of increasing

the sensitivity of binding to bacteria of mixed NPs in high protein, while retaining the

long circulating ability in the circulation.

4. 3. Materials and Methods

4. 3. 1. Chemicals

All chemicals were obtained from Sigma-Aldrich and used as received unless otherwise

specified.

4. 3. 2. Animals

All procedures were performed in accordance with principles as set forth by the MIT

Committee on Animal Care as quickly as possible with the intent to minimize pain and
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distress. Procedures were approved by the MIT Committee on Animal Care under Langer

protocol #0710-055-13.

4. 3. 3. Polymer Synthesis and NP Formulation. The triblock copolymer poly(D, L-

lactic-co-glycolic acid)-b-poly(L-histidine)-b-poly(ethylene glycol) (PLGA-PLH-PEG)

was synthesized using a polymer end grafting strategy, as detailed in Chapter 3. NPs were

formulated (PLGA-PLH-PEG or PLGA-PEG in the same manner) using modified

emulsion/solvent evaporation techniques. In brief, a typical NP formulation was prepared

by sonicating 500 uL ethyl acetate containing 2 g/L polymer into 2 mL aqueous solution

to form an O/W emulsion, diluted into 8 mL water, and solvent allowed to evaporate for

4 hours prior to purification using ultrafiltration. The reported composition of the NPs

includes the percent by weight of PLGA-PLH-PEG that went into the formulation, with

the remaining mass being accounted for by PLGA-PEG and either fluorescently labeled

PLGA (Alexa-488- or Alexa-647-PLGA) or plain PLGA at 20% by mass.

4. 3. 4. Physicochemical Characterization. ZetaPALS analysis. NPs were prepared,

purified, and resuspended in pH-adjusted aqueous solution at -1 mg/mL. Similarly, cells

were centrifuged, washed, and resuspended in pH-adjusted salt solutions at ~350k/mL.

To measure the zeta potential in BSA, -1 mg/mL NPs were resuspended in pH ~6.0

solution with or without 4 g/dL BSA and allowed to equilibrate for 30 min prior to

analysis. Size and zeta potential were measured by quasi-elastic laser light scattering

using a ZetaPALS dynamic light scattering detector (15 mW laser, incident beam 676 nm,

Brookhaven Instrument Corporation), collecting data from 3 or more runs per sample.

X-ray Photoelectron Spectroscopy (XPS). NPs were prepared, purified, then lyophilized

to yield 1-3 mg of powder per sample. The NP powder was then analyzed on a PHI
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VersaProbe II XPS (MIT Center for Materials Science and Engineering) with the expert

technical help of Elisabeth Shaw using 3 sweeps with PE 187.85, 50W, and 200 um.

4. 3. 5. Nanoparticle-Bacterium Binding Studies. Bacterial Culture. Staphylococcus

aureus (ATCC# 25923) were cultured in tryptic soy broth (BD# 211825). Initially,

colonies were streaked on a TSB-agar plate, selected, inoculated into 5 mL of growth

medium and allowed to grow overnight in an incubated shaker at 37 0 C. The resulting

suspension was diluted into 80% sterile glycerol solution and frozen at -80'C. For

experimentation, a small amount of frozen bacteria were collected using a sterile

inoculating loop and transferred to 5 mL of TSB media. This suspension was then

allowed to grow overnight prior to experimental manipulation.

Flow Cytometry NP-488-Bacteria Binding Assays. PLGA-PLH-PEG, PLGA-PEG, or

mixed PLGA-PLH-PEG / PLGA-PEG NP-488s were prepared, purified, and

concentrated into 100 uL of pure water. S. aureus bacteria were overgrown overnight in 5

mL of growth medium, spun down, washed in saline solution, then resuspended in pH-

adjusted solutions using a dilute aqueous HCl solution to an OD 600 -0.3. NP-488 were

added to the bacteria at 150 ug/mL with or without bovine serum albumin (BSA) at the

desired concentration and incubated for -30 minutes. After incubation was complete,

bacteria were spun down, unbound NP-488 in the supernatant were removed, bacteria

were resuspended in PBS pH 7.4, and run on a flow cytometer (FACSCalibur, BD

Biosciences, Koch Institute Flow Cytometry Core). Forward scatter (FSC), side scatter

(SSC), green fluorescence (ex: 488, filter: 530/30), and red fluorescence (ex: 488, filter:

650 LP) data were collected on a minimum of 10,000 events per sample. Bacteria were

gated for live using FSC vs. SSC plots using an untreated negative control for reference.
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The mean fluorescence of the distributions in the green fluorescence channel were

calculated using FlowJo v9.5 or higher software and recorded in at least triplicate.

Binding relative to no BSA was calculated as the percentage of bacteria-associated

fluorescence divided by the mean fluorescence of NP and bacteria treated incubated

without any BSA present.

4. 3. 6. Nanoparticle-Mammalian Cell Binding Studies. Cell Culture. RAW 264.7

murine macrophages (ATCC# TIB-71) were cultured in Dulbecco's Modified Eagle's

Medium (DMEM) with 10% fetal bovine serum (FBS) at 370C and 5% CO2. Cells were

subcultured by scraping and passaging in 1:3 to 1:6 ratios up to and including passage -9.

LNCaP prostate adenocarcinoma cells (ATCC# CRL-1740) were cultured in phenol red-

free RPMI- 1640 medium supplemented with 10% FBS and 1% penicillin/streptomycin at

370 C and 5% CO2. LNCaPs were subcultured by using 0.05-0.25% trypsin/EDTA-based

methods at a passage ratio of 1:3 with no more than ~15 passages.

Flow Cytometry NP-488 Binding Assays. The day before conducting the experiment,

RAW 264.7 cells or LNCaP cells were collected and plated onto 6-well plates to yield a

70%+ confluent monolayer within 24 hours. On the day of experiments, PLGA-PLH-

PEG, PLGA-PEG, or mixed PLGA-PLH-PEG / PLGA-PEG NP-488s were prepared,

purified, and concentrated into 100 uL of pure water. NP-488 were added to the cells in a

pH-adjusted salt solution (pH 5.5, 7.4, or the indicated pH, as appropriate) and incubated

for -2 hr, or for the indicated period of time in the case of kinetic studies. After

incubation was complete, unbound NP-488 in the supernatant were removed, cells were

washed at least 3x using PBS pH 7.4, then run on a flow cytometer (FACSCalibur, BD

Biosciences, Koch Institute Flow Cytometry Core). Forward scatter (FSC), side scatter
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(SSC), green fluorescence (ex: 488, filter: 530/30), and red fluorescence (ex: 488, filter:

650 LP) data were collected on a minimum of 10,000 events per sample. Cells were gated

for live using FSC vs. SSC plots using an untreated negative control for reference. The

mean fluorescence was calculated using FlowJo v9.5 or higher software.

Bacteria-LNCaP Cell Competition Assay. To evaluate bacteria-associated fluorescence

in the presence of a LNCaP monolayer, S. aureus bacteria were cultured as before and

added to a -70% confluent layer of LNCaP cells in 6-well plates in a pre-warmed pH 6.0

PBS solution to yield an OD600 -0.3. NP-488 (150 ug/mL) were added to the suspension

containing bacteria and a LNCaP cell monolayer and incubated for -30 minutes. After

this period, the bacteria solution was collected, spun down, resuspended in pH 7.4 PBS,

then run on a flow cytometer to assess bacteria-associated green fluorescence, as

described previously. The mean fluorescence of the distribution was analyzed using

FlowJo v9.5 or higher software and expressed as fold fluorescence relative to untreated

control.

Mechanism of Uptake Studies. The NP mechanism of uptake was evaluated using

specific inhibitors of uptake pathways. LNCaP cells were plated onto 6-well plates at

-70% confluence (approximately 40,000 cells per cm2) in phenol red-free complete

growth medium. To perform the experiments, the specific inhibitors were incubated with

the cells in PBS pH-adjusted to pH 5.5 using a dilute HCl solution. Clathrin-mediated

endocytosis (CME) was blocked by pre-incubation with monodansylcadaverine (MDC)

at 200 uM for 10 min. Macropinocytosis was blocked by pre-incubation with 2 uM

rottlerin for 30 min. Following the preincubation, the NPs were added to the mixture and
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incubated for -2 hr at 370C and 5% CO2 in the dark. Following incubation, the cells were

washed with PBS pH 7.4, collected, and analyzed on a flow cytometer as before.

Fluorescence Imaging. On the day before experiments, cells were plated onto Lab-Tek II

CC2 chamber slides (Thermo Scientific #154917) to achieve approximately 70%

confluence within 24 hours. On the day of experiments NP-488 were prepared, purified,

resuspended in a small volume of sterile water, then added to the cells in pH-adjusted

PBS media at pH 5.5. The chamber slides were placed in an incubated shaker for either

30 min or 2 hours at 37'C to allow NP-488 binding/uptake to occur. Following

incubation, the cells were washed with PBS pH 7.4, fixed in 4% formalin solution,

washed again with PBS, covered with a drop of VECTASHIELD mounting medium with

DAPI (Vector Laboratories) per well, coverslipped, then taken immediately for

fluorescent laser scanning confocal imaging (Zeiss LSM 510 meta, W. M. Keck

Microscopy Facility, Whitehead Institute at MIT). Excitation lasers used: 405 nm for blue

channel and 488 nm for green channel.

4. 3. 7. Pharmacokinetics. Data Collection. Male Balb/c mice that were at least 4 weeks

old (Charles River Laboratories) were allowed food and water ad libitum. On the day of

experiments, the mice (N=4 per group) were gently restrained and dosed with 2 mg of

Alexa-647-PLGA-modified NPs per mouse (~80 mg/kg) in a total volume of 400 uL per

mouse, delivered as a bolus push into the tail vein. At the desired time point, a drop of

blood (~100 uL) was collected by performing a small incision across the tail vein. The

NP-associated fluorescence was measuring using an IVIS Spectrum-bioluminescent and

fluorescent imaging system (Xenogen Corporation), excitation 640 nm, emission 800 nm,
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3 sec exposure time. The drop of blood was circled as a region of interest (ROI) and the

average radiant efficiency calculated.

Pharmacokinetic Modeling. To evaluate the pharmacokinetic parameters, a two

compartment model was assumed:

(Equation 4.1) F = Ae-at + Bef-t

Here, a and p are related to the distribution and elimination half-lives, respectively,

according to the following:

(Equation 4.2) tlastribution ~

(Equation 4.3) temination (2)
2P

To fit the data to this model (Equation 4.1), the average radiant efficiency at the t = 5 min

time point was assumed to be equal to 100% of the dose and background was subtracted

to yield data ranging from 0 to 1. The parameters were determined by minimizing the

sum of the residuals using the nonlinear optimization algorithm "GRG nonlinear"

available through Microsoft Excel's "Solver" toolkit and confirmed independently using

MatLab's NLINFIT program.

4. 3. 8. Biodistribution. Quantitative analysis. Alexa-647-PLGA-modified NPs (53%

PLGA-PLH-PEG or PLGA-PEG) were prepared and purified. 4 week old or greater male

Balb/c mice were injected with 2 mg NP/mouse as a single bolus suspended in 200 uL

PBS solution via the tail vein. Six hours later, the mice were euthanized via CO2

inhalation and necropsied, collecting the liver, lungs, kidneys, spleen, heart, and stomach

with N=3. Each organ was weighed individually and the fluorescence per organ evaluated

using an IVIS system (Xenogen Corporation), excitation = 640 nm, emission = 800 nm,

exposure time = 3 sec. The average radiant efficiency from each organ was evaluated by
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circling each organ as a region of interest, and the background was subtracted from an

untreated mouse (N=2).

Confocal microscopy. The organ-level distribution of NPs was evaluated by collecting

organs where the NPs were likely to have accumulated - the spleen, liver, kidney, and

stomach. These organs were collected, embedded in O.C.T., then slowly frozen on dry

ice for approximately 2 hours. The frozen tissue blocks were then transferred to a -80*C

freezer until ready for sectioning. Sectioning was performed by the MIT Koch Institute

Histology Core Facility with the expert technical assistance of Michael Brown, mounted

onto glass slides, then stored at -80'C until microscopy. The slides were then imaged

using a PerkinElmer Ultraview Spinning Disk Confocal microscope (W. M. Keck

Microscopy Facility, Whitehead Institute, MIT), excitation 640 nm.

4. 3. 9. Statistics All data are expressed as mean ± SD. Differences between groups were

assessed using one-way ANOVA. Post hoc group comparisons were done using Fisher's

LSD method. A significance level of p < 0.05 was used for all comparisons.

4. 4. Acknowledgments. The in vivo PK and biodistribution studies were designed,

executed, and analyzed with the expert assistance or advice of Eric Pridgen, Pedro

Valencia, and Nicolas Bertrand. Confocal imaging was performed with expert assistance

of Wendy Salmon.
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Chapter 5

Polymeric Nanoparticles for Co-Delivery of Silver(I) and
Vancomycin

5. 1. Introduction

Drug resistance (DR) to antibiotics is one of the most significant challenges in modem

medicine.1 Every major drug class introduced into clinical practice thus far has been

susceptible to DR.2 '3 Even more troubling, the speed with which DR emerges is

remarkable. Resistance can emerge in the laboratory on the order of hours, 4 and despite

extensive best practices training and implementation by physicians, DR typically emerges

in the clinic within 3-5 years of use.5 Clearly, there is a need to explore methods that

might boost the effectiveness of therapy and reduce the potential for DR emerging.

Various strategies are being explored to reduce the risk and mitigate the impact of DR. In

addition to new small molecule-based screening approaches, alternative agents such as

antimicrobial peptides,6 bacteriophages,7 antivirulence strategies or drug potentiators,8

nanoparticles (NP), 9-l' and drug combinations have been major areas of interest (see

Chapter 2 for further discussion). In particular, drug combinations offer several potential

advantages, including more than one mechanism of action and the potential for

synergistic effects. These advantages may translate into reduced hospital stays, lower

mortality, and potentially reduced risk of DR. Drug combinations can also be used to

increase the spectrum of coverage, particularly during empiric treatment of an infection.

Several drug combinations are already successfully used in the clinic. For example, p-

lactamase inhibitors such as clavulanate, sulbactam, or tazobactam are routinely
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combined with p-lactams such as ampicillin, amoxicillin, or piperacillin to broaden their

spectrum of activity and improve their effectiveness. 2 Trimethoprim-sulfamethoxazole

(TMP-SMX) is a widely used combination that potentiates the effect of each drug in

isolation by sequentially inhibiting bacterial enzymes that lead to synthesis of

tetrahydrofolic acid.'3 Other notable antibiotic combinations are listed in Table 5.1.

Table 5.1. Selected drug combinations and their advantages

Combination Mechanisms Spectrum Advantages of
combination

Trimethoprim (TMP) The combination Gram-positive, Synergy13

Sulfamethoxazole (SMX) inhibit synthesis Gram-negative
of
tetrahydrofolic
acid sequentially

Daptomycin (DAP) DAP inserts into Gram-positive, Synergy
Rifampicin (RIF) bacterial especially

membrane, Enterococci
causing leakage;
RIF inhibits
RNA synthesis

Metronidazole (MET) MET produces Gram-positive, Greater efficacy14

Amoxicillin (AMX) toxic free Anaerobes,
radicals inside especially
bacteria; AMX Helicobacter pylori
targets the cell
wall

Quinupristin The combination Gram-positive (drug Synergy"
Dalfopristin inhibits bacterial resistant)
(a.k.a. Synercid) protein synthesis

The full potential of drug combination therapy is often difficult to realize in vivo. Drugs

tend to demonstrate synergy within a narrow range of drug concentrations and ratios.

This "window of synergy" can be complex to achieve in patients, particularly if the

pharmacokinetics of the single agents are significantly different from one another.

Another challenge of drug combination therapy is toxicity, especially in patients with
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comorbidities or on other medications. Consequently, there is a need to develop strategies

that can achieve synergistic combination ratios more readily while simultaneously

reducing drug toxicity. A method to achieve these aims might be to encapsulate the two

drugs to be combined inside of a single NP carrier, then targeting the carrier to the

infection site. By combining the two drugs inside of a single NP, synergistic drug ratios

can be controlled more tightly in a spatiotemporal manner. By targeting the NP to the

infection, less drug can be released systemically and more can reach the site, which might

be able to reduce drug toxicity while boosting the effectiveness of therapy. In a step

towards improving antibiotic drug targeting and therapy, we previously developed a NP

drug delivery system based on the triblock copolymer poly(lactic-co-glycolic acid)-block-

poly(L-histidine)-block-poly(ethylene glycol) (PLGA-PLH-PEG). 16 These NPs were

demonstrated to encapsulate and deliver vancomycin, a glycopeptide commonly used to

treat drug-resistant Gram-positive infections.

The goal of the present work was to develop a method of co-delivering two agents in a

single NP to take a step towards potentially improving the efficacy of drug therapy,

broaden the spectrum of activity, and reduce the risk of DR emerging. Of the various

agents that could be co-delivered with vancomycin, silver has potential because it: (1)

demonstrates synergistic effects with vancomycin in vitro (private communication,

Timothy Lu),17 (2) has multiple mechanisms of action, making it intrinsically more

resistant to DR,18 (3) has a separate mechanism of action from vancomycin, which

reduces the risk of cross DR emerging, and (4) has broad spectrum activity. Silver has

been used as an antimicrobial since antiquity, though the rise of the antibiotic era in the

1940s saw its use and development decline significantly. However, the spread of
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antibiotic resistant organisms has led to a renaissance both in its use and development as

an antimicrobial. Currently, two silver products are used with some degree of regularity

in the clinic. Silver sulfadiazine, a combination of silver(I) and the sulfonamide antibiotic

sulfadiazine, is used as a topical antibiotic to treat or prevent second or third degree

burns.19 Applied topically as a thick 1% cream, it is favored for its wide spectrum of

activity against both Gram-positive and Gram-negative bacteria as well as certain fungi.

Silver nitrate (0.5%) is used as an antimicrobial solution, typically to clear topical

infections or remove warts. In addition, several experimental approaches are in

development that might broaden the clinical utility of this antimicrobial. Recent work has

shown its advantages when incorporated into wound dressings or implant materials,

where it is favored for its broad spectrum activity.2 02

A significant obstacle to using silver as antimicrobial for treating systemic infections has

been challenges in devising methods to increase its stability in the body, since silver ions

tend to interact with many biological components (particularly proteins and chloride ions).

Other broad challenges include toxicity and off-target effects. Various types of NPs have

been explored to address these issues, particularly silver(O) NPs, which are usually

formed by the controlled reduction of silver nitrate.26 These NPs demonstrate several

desirable properties including controlled release of silver(I) and efficient microbial

growth control. 2 7 -2 9 However, the systemic delivery potential of silver(O) NPs is still

complicated by potential for non-specific interactions, challenges in targeting infection

sites, and toxicity. 2,30-32 Alternative approaches for silver delivery have been explored,

involving a wide variety of nanoscale structures. In particular, dendrimers have been

favored due to their well-defined structure, intrinsic toxicity to bacteria, and potential for
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systemic application. 3 Silver(I) is typically coordinated to the dendrimer structure by

incubation with silver nitrate followed by reduction step to yield a defined nano-scale

structure.3436 There has been broad interest in designing polymer/silver composite

nanomaterials. For example, a composite of small (~10 nm) silver NPs encapsulated in

poly(divinylbenzene) NP (-100 nm) was formed.3 7 In another interesting example, the

controlled polymerization of benzylthiocyanate on silver NPs led to a core-shell structure,

with a 40 nm silver NP being encased in an 8 nm thick polymeric shell.3 8 While these and

many other polymer/silver composites are very interesting, use of known biocompatible

and biodegradable polymers is preferred for biomedical applications due to the

difficulties in predicting toxicity in humans. Accordingly, several biocompatible

materials have been used to create polymer/silver nanocomposites, including nanofibers

420-590 nm in diameter made of PLGA with silver NP dispersed, which were shown to

have antibacterial effects against S. aureus and Klebsiella pneumoniae.39 In a striking

example, PGA-capped silver NPs encapsulated in PLGA were shown to have both

extended release of silver over 85 days and remarkable in vitro potency. 4 0 Further

demonstrating the broad potential of silver nanomaterials, silver-coated magnetic

nanoparticles were designed to penetrate biofilms and kill bacteria. 3 0 Despite these

promising advances, there is still a need to explore methods for the targeted, systemic

delivery of silver, including methods that might enable co-delivery of silver with an

antibiotic. Of the various structures that could be used to achieve these aims,

biodegradable polymeric NPs, as a class of nanomaterials, have generally shown

excellent potential in drug delivery with demonstrated examples of disease targeting,

drug encapsulation, and low toxicity or immunogenicity.4 1 43 However, encapsulation of
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silver ions in polymeric NP is a challenge due to their intrinsic hydrophilicity and size.

Therefore, a method for achieving a reasonable loading of silver (greater than ~1% w/w)

in a polymeric NP capable of encapsulating another drug would be beneficial.

Herein, we describe a method for loading silver onto drug-encapsulated polymeric NPs,

demonstrating the potential of this system to inhibit the growth of the clinically relevant

pathogens Staphylococcus aureus and vancomycin-resistant Enterococcusfaecalis (VRE).

More specifically, the results show the formation of silver-containing, vancomycin-

encapsulated PLGA-PLH-PEG NPs. We characterize the NPs using light scattering, TEM,

XPS, FT-IR, TGA, DSC, and UV-Vis. Further, we show through in vitro studies that NPs

containing both silver and vancomycin are more effective at inhibiting the growth of S.

aureus than NPs containing either agent alone. We also show that in S. aureus bacteria,

for a given level of NP-delivered vancomycin, greater activity was obtained by increasing

the amount of silver loaded. Against VRE, we show that silver-containing NPs

demonstrate enhanced activity as compared to free silver. We also show that vancomycin

either in free, NP-encapsulated, or NP-silver-co-encapsulated form did not demonstrate

any significant activity, suggesting that silver incorporation was crucial to antibacterial

efficacy against VRE. All NPs had low cytotoxicity to cultured human cells in vitro at a

concentration above the minimum inhibitory concentration (MIC). In all, these results

may inform future work aimed at achieving improved drug combination therapy against

bacterial infectious diseases, particularly drug combinations seeking to co-deliver an

agent with silver(I).
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5. 2. Results and Discussion

5. 2. 1. NP Formulation and Drug Loading. Given our previous studies demonstrating

the ability to encapsulate vancomycin in PLGA-PLH-PEG NPs using a modified double

emulsion protocol,16 our primary focus was to devise a method to incorporate silver onto

the PLGA-PLH-PEG NPs. Poly-L-histidine (PLH) is known to provide sites for binding

of silver ions,44 and block copolymers containing PLH have been shown to be able to

successfully bind silver(I) following incubation in a silver nitrate solution.45

Consequently, we reasoned that silver- and vancomycin-containing NPs could be

formulated using a two step procedure, whereby a double emulsion process could

encapsulate the vancomycin (as described previously, see Chapter 3), followed by

washing steps to remove unencapsulated vancomycin and excess salts, then an incubation

in silver nitrate solution to incorporate the silver (Figure 5.lA). The binding of silver onto

histidine-containing materials is known to be relatively rapid, with optimal reaction time

being reported as approximately 90 minutes at room temperature.4 6 This relatively short

reaction time under mild conditions is important, since drug-loaded NPs begin to release

their payload immediately in aqueous solution, so a reaction time on the order of several

hours or at high temperature might greatly reduce the encapsulated drug (vancomycin)

payload.
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Figure 5. 1. Silver/Vanco Co-Delivery Nanoparticle Formulation and
Characterization. (A) Schematic of nanoparticle (NP) formulation strategy. PLGA-
PLH-PEG polymer was formulated into NPs using a double emulsion protocol to

encapsulate vancomycin. This was followed by incubation of the NP suspension in a

silver nitrate solution to lead to silver incorporation. (B) Effect of silver addition on NP
size and (C) zeta potential. (D) Transmission electron micrograph (TEM) of NPs

following reduction of silver at 68,000x, (E) NP formulation prior to (left) and after

(right) addition of reduced silver.

5. 2. 2. NP Characterization. Physicochemical properties. NPs were formulated using a

modified double emulsion process and purified. A silver nitrate solution was added to

NPs, and they were incubated for ~90 minutes in the dark at room temperature. Free

silver was removed by repeated washing using Amicon Ultra-4 100,000 NMWL filters,

then the NPs were characterized in terms of their size and zeta potential by quasi-elastic

laser light scattering and transmission electron microscopy (TEM) (Figure 5.1B, C, D).

Similar to previous reports,16 the PLGA-PLH-PEG NPs demonstrated nano-size

(195.2±6.7 nm) and slightly anionic zeta potential (-11.9±1.6 mV) at pH 7.4. The

addition of silver to the NPs increased the zeta potential, consistent with the adsorption of
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the cationic silver(I) on the surface, and increased the NP size. To observe the NP

morphology and structure, the NPs were analyzed by TEM, without the addition of any

contrast material. The bound silver ions on the NPs were reduced by a short incubation in

sodium borohydride, washed, concentrated, and then loaded onto carbon film-supported

copper grids. If the silver was not reduced, no contrast could be observed (data not

shown). The images (Figure 5. lD) show that the silver is reduced onto the NPs, giving

enough contrast for imaging. In addition, a suspension of the reduced silver NPs gave the

solution a brownish tint at high concentration (-10 mg/mL NP) (Figure 5. 1E).

X-ray Photoelectron Spectroscopy (XPS). To quantify the amount of silver on the

PLGA-PLH-PEG NPs, we evaluated their surface composition using XPS. PLGA-PLH-

PEG and PLGA-PLH-PEG-Ag NPs were prepared, purified, and lyophilized without a

cryoprotectant and taken for XPS analysis (MIT CMSE). PLGA-PEG NPs were prepared

in similar fashion to provide an additional control for NP composition. The silver-loaded

PLGA-PLH-PEG NPs had 0.6 mol% elemental silver (Table 5.1) in the top ~10 nm,

corresponding to approximately -4.6% (w/w) loading in this region. In contrast, no silver

could be detected in the PLGA-PLH-PEG or PLGA-PEG NPs. This is in good agreement

with the expected loading from theoretical arguments, which suggest a loading -4-5%

(w/w) throughout the entire NP structure, if one assumes a 1:1 binding of silver(I) per

histidine monomer. Since the PLH is relatively enriched on the surface due to its

hydrophilicity, this suggests that the silver loading is more towards the NP surface and

that less silver is likely to be found towards the NP core. This is consistent with the

relatively short incubation time under which silver could be loaded onto the NPs (-90

min), which is only enough time for silver ion diffusion to occur through the top layers. It
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is interesting to note also that these data suggest that significant PLH is present in the top

layers, as evidenced by the increase in nitrogen (0.0 to 2.2 mol%) and reduction in

oxygen (40.9 to 36.3 mol%) content. It may be that during the NP formulation procedure,

the cationic PLH polymer competes for the NP surface with the hydrophilic PEG

polymer. This is consistent with observations of protein binding and zeta potential

explored in greater detail in Chapter 4. These numbers for silver loading are also

consistent with quantification using a selective silver ion electrode, which showed an

approximate loading of silver of 2.6t0.7% (w/w).

Table 5.2. X-ray Photoelectron Spectroscopy Analysis of Nanoparticles (some data taken

from Table 4.1)

Mol % (Top ~10 nm of NP surface)
Nanoparticle C (C Is) 0 (0 1s) N (N 1s) Ag (Ag 3d)

PLGA-PLH-PEG + Ag 57.9 40.4 1.1 0.6
PLGA-PLH-PEG 61.4 36.3 2.2 0.0
PLGA-PEG 59.1 40.9 0.0 0.0

Fourier Transform Infrared Spectroscopy (FT-IR). We used FT-IR to investigate the

potential interaction site of silver with the PLGA-PLH-PEG. Relative to pure PLGA-

PLH-PEG, we observed a marked enhancement of transmittance (reduction in

absorbance) in the region corresponding to the ring CN stretch, imidazole ring bend, and

ring CH bend (peak at 1374 cm'), as well as a general blueshift of 9-14 cm-' in that

region (1385 to 1394; 1360 to 1374) (Table 5.2). Consistent with previous observations, 4 7

this suggests that a potential interaction site with silver may be through imidazole group.

However, it should be noted that establishing this with great precision is very difficult in

a mixed species as is the case with the PLGA-PLH-PEG polymer, where interactions
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between the PLH chains, with the PLGA or PEG regions, the polydispersity of the NPs or

interference from salts during preparation may make interpretation of the highly

convoluted FT-IR spectra difficult.

Table 5.3. Fourier Transform Infrared Spectroscopy Analysis of Nanoparticles

PLGA-PLH-PEG PLGA-PLH-PEG + Ag
1751s 1750s
1455 w
1422 w 1418 w
1385 w 1394 w
1360 w 1374s
1342 w
1273 w 1274 w
1163 m 1170 m
1089s 1090s
957 w 957 w
843 w 835 w

Thermogravimetric Analysis (TGA). The thermal properties of the silver-containing and

untreated PLGA-PLH-PEG NPs were compared to assess the impact of silver loading

(Table 5.3). The incorporation of silver into the NPs leads to a 9'C increase in the

decomposition temperature and 15 C increase in the first derivative peak. These are

indicative of greater thermal stability of the silver-containing NPs. It may be that the

addition of inter-chain bonding or due to the formation of more endothermic bonds

mediated by the silver ion mediate the higher decomposition temperature.

Table 5.4. Differential Scanning Calorimetry Analysis of Nanoparticles

Nanoparticle Onset T (*C) First Derivative Peak (*C)
PLGA-PLH-PEG + Ag 338 365
PLGA-PLH-PEG 329 350

Differential Scanning Calorimetry (DSC). To obtain greater insight into the properties

of the silver-incorporated PLGA-PLH-PEG NPs, we performed DSC to determine the
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glass transition temperature (Table 5.4). It appears that the incorporation of silver has a

plasticizing effect on the PLGA-PLH-PEG NPs. It may be that the silver ions, while

increasing the number of bonds leading to an increase in the decomposition temperature

per gram, actually increase the free volume of the polymer chains. This is consistent with

the observation of increased NP size on addition of silver ions (Figure 5.1B). These

observations could potentially be explained by noting that the addition of a hydrophilic

ion on the surface might increase the overall hydrophilicity of the NP, leading to greater

water incorporation. These changes may therefore lead to an easier transition from a melt

to a glass, slightly reducing the glass transition temperature.

Table 5.5. Glass Transition Temperature Determined by Differential Scanning

Calorimetry

Nanoparticle Glass Transition Temperature (*C)
PLGA-PLH-PEG + Ag 37
PLGA-PLH-PEG 44

UV-Vis Absorption. PLGA-PLH-PEG NPs were formulated and incubated with or

without silver reduced then analyzed by a UV-vis spectrophotometer (Figure 5.2). The

data show that the silver-containing PLGA-PLH-PEG NPs demonstrate significantly

greater UV-vis absorption in the range 200-450 nm than plain PLGA-PLH-PEG. In

addition, notable features include a shoulder region at 250-300 nm and a broad peak

centered at -380 nm. Both of these features are consistent with a previous report of

46histidine-silver complex formation.
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Figure 5. 2. UV-Vis Analysis of PLGA-PLH-PEG and silver-containing PLGA-
PLH-PEG NPs. PLGA-PLH-PEG NPs with or without silver were suspended in water
and their UV-vis absorption in the range 200-450 nm determined. Most notably, addition
of silver results in a shoulder region in the -250-300 nm range and a peak ~380 nm,
similar to previous reports of histidine-silver complexes.4 6

5. 2. 3. Antibacterial Studies. Next, we sought to evaluate the antibacterial properties of

silver and vancomycin as free drugs against Staphylococcus aureus. After establishing

the minimum inhibitory concentration (MIC) of free silver (4 ug/mL) and vancomycin

(1.6 ug/mL), we performed a checkerboard analysis to evaluate the combination drug

properties (Figure 5.3A). We observed synergistic inhibition of bacterial growth of the

two drugs (Figure 5.3B).
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Figure 5. 3. Free silver and vancomycin are synergistic against Staphylococcus

aureus. (A) Heat map demonstrating the growth inhibitory effects using the checkerboard
method. Numbers represent the average growth compared to untreated bacteria. Colors
correspond to ranges of growth inhibition, with high inhibition corresponding to green,
intermediate corresponding to yellow, and low corresponding to red. (B) Isobologram
demonstrating synergy between free vancomycin and silver. FIC is the fractional
inhibitory concentration of the indicated drug, defined as FICx = Cx/MICx where Cx is the

lowest concentration where no visible growth occurs.

To evaluate the antibacterial properties of silver and vancomycin loaded NPs, we

performed growth inhibition studies using the broth microplate dilution method. The NPs

containing both silver and vancomycin, T(Vanco, Silver), were found to have the most

potent growth inhibitory effects (Figure 5.4). The greatest impact was seen in terms of the

vancomycin content, where T(Vanco, Silver) NPs had significantly improved growth

inhibition than T(Vanco) and were more potent than free vancomycin, though they had

the same MIC (1.56 ug/mL vancomycin for both T(Vanco, Silver) and free vanco)
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(Figure 5.4A). Interestingly, the shape of the inhibitory curves is approximately the same

in the case of the T(Vanco) and the free vanco, but exhibited a lower slope with the

T(Vanco, Silver) NPs. In terms of the silver content, the addition of vancomycin led to a

more subtle effect on growth inhibition (Figure 5.4B). The MIC for T(Vanco, Silver),

T(Silver) and free silver were not significantly different (4 ug/mL silver), though the

slope of the inhibition curve was the smallest with the T(Vanco, Silver), indicating

slightly more potent antibacterial activity of this formulation. Similar to our previous

work (see Chapter 3), we sought to determine the pH-dependence of the activity of the

co-delivered agents. However, the NPs demonstrated a lack of stability at pH ~6.0 in the

presence of proteins and bacteria (data not shown). It may be that the cationic charge

produced by the histidine region at this pH leads to destabilization.
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Figure 5. 4. Bacterial Growth Inhibition of Silver- and/or Vancomycin-containing
Nanoparticles. PLGA-PLH-PEG NPs containing vancomycin only (T(Vanco)), silver
only (T(Silver)), or both (T(Vanco, Silver)) were assessed for their ability to inhibit the
growth of Staphylococcus aureus using the broth microplate dilution method. Growth
inhibition based on the (A) vancomycin, (B) silver, or (C) NP concentration.

To explore the impact of increasing the total drug loaded onto the NPs, we prepared NPs

containing various vancomycin-to-silver (V:S) ratios (Figure 5.5). At a given

concentration of vancomycin, incorporation of an increasing amount of silver led to
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greater growth inhibition of S. aureus, meaning that a lower V: S ratio led to greater

amount of activity in terms of the total vancomycin level. This can be understood by

noting that a greater amount of total drug was incorporated into the NPs as the V:S ratio

decreased. This suggests that maximizing the amount of total drug that is loaded onto the

NPs yields the most potent effect against S. aureus bacteria.

1.4 -4-T(V:S=0.5)

1.2 -4m-T(V:S=2.0)

w 1 ~ T(V:S=4.3)

08 T(Vanco)
w 0.6 Free Vanco

0.4

0.2

Q%)§25 0.25 1 4 16 64

[Vancomycin] (ug/mL)

Figure 5. 5. Effect of Vancomycin-to-Silver Drug Loading Ratio on Bacterial
Growth Inhibition. PLGA-PLH-PEG NPs were loaded at different ratios of
vancomycin-to-silver (V:S) ranging from 0.5-4.3. Increasing the silver content inside of
the PLGA-PLH-PEG NPs increases the growth inhibitory effect of the NPs. This can be
explained by the greater potency of silver than vancomycin.

We were also interested in understanding the impact of drug co-delivery on bacteria that

had developed resistance to vancomycin. This is important since the spontaneous

formation of DR during treatment with vancomycin is known to occur. Having the ability

to inhibit the growth of the spontaneously-generated vancomycin-resistant mutants with

silver would be a significant advantage of a vancomycin and silver co-delivering system.

For this purpose, we selected a strain of vancomycin-resistant Enterococcus faecalis

(VRE) as a model organism to study this phenomenon due to its increasing clinical

relevance as well as the increasing concern for its potential to pass vancomycin resistance

to other pathogens.48 We explored the potential of T(Vanco, Silver), T(Vanco), T(Silver),

D(Vanco), and free drug formulations to inhibit the growth of VRE using the broth
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microplate dilution method. The data show that vancomycin, in any form, did not appear

to have any growth inhibitory activity against VRE (Figure 5.6A). Interestingly, the

PLGA-PLH-PEG NP formulations of silver demonstrated slightly improved activity

against VRE as compared to free silver, though this was quite modest (MICs: T(Vanco,

Silver) ~1.6 ug/mL, T(Silver) -1.6 ug/mL, free silver ~3.1 ug/mL) (Figure 5.6B). In

terms of the total mass, there did not appear to be any difference in activity between the

T(Vanco, Silver) and the T(Silver) (MICs -32 ug/mL NP for both) (Figure 5.6C). These

data suggest that for treating vancomycin-resistant bacteria, the incorporation of

vancomycin is unnecessary. Further, they show that silver-containing NPs are capable of

inhibiting the growth of vancomycin-resistant bacteria, which is an attractive property

due to the known risk of emergence of vancomycin resistance.
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Figure 5. 6. Growth Inhibition Study against Vancomycin-Resistant Enterococcus
faecalis (VRE). PLGA-PLH-PEG NPs containing silver (T(Silver)), vancomycin
(T(Vanco)), or both T(Vanco, Silver) were measured for their growth inhibitory activity
against VRE. PLGA-PEG containing vancomycin (D(Vanco)) were used as a control.
Data expressed as increase in optical density at 600 nm relative to untreated control.

5. 2. 4. Cytotoxicity. Finally, we sought to examine the cytotoxicity of the different NP

formulations, given that low toxicity is a crucial prerequisite for systemic delivery. We

incubated -150 ug/mL NPs (or the corresponding quantity of free silver or vancomycin,

in the case of the free drugs) with a model human cell line, LNCaP prostate
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adenocarcinoma cells, for 30 min, washed, added complete growth medium, then

assessed cell viability using the AlamarBlue assay. We did not observe any significant

cytotoxicity from any of the formulations tested (Figure 5.7). We also explored the

cytotoxicity of NPs after the silver had been reduced onto the NPs after a short incubation

in sodium borohydride. The rationale was to enhance the stability of the silver on the NP

surface by forming a silver(0) shell. However, we observed high cytotoxicity of silver

reduced NPs, with obvious cell death occurring rapidly on addition to the cells (data not

30shown), consistent with previous reports of the cytotoxicity of reduced silver NPs.

These data suggest that for silver(l)-bound NPs have potential for systemic delivery,

methods to reduce the cytotoxicity of reduced silver-PLGA-PLH-PEG NPs are needed.

1.2

41

0.8

0.6

~0.4

0.2

0

Figure 5. 7. Nanoparticle Cytotoxicity Study. PLGA-PLH-PEG NPs containing
vancomycin only, T(Vanco), silver only, T(Silver), both vancomycin and silver, T(Vanco,
Silver), and free vancomycin (Vanco) or silver (Silver) were incubated at -150 ug/mL
NP, ~10 ug/mL vancomycin, or 7.5 ug/mL silver with a model human cell line (LNCaP
prostate adenocarcinoma) for 30 min, washed, replaced with complete growth medium,
then relative viability assayed by AlamarBlue (Invitrogen). At these concentrations, the
NP did not demonstrate any significant cytotoxicity.
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5. 2. 5. Summary. In summary, we have developed a method for co-delivering silver(l)

and vancomycin together using a polymeric PLGA-PLH-PEG NP and explored its

potential applicability through in vitro bacterial growth inhibition studies as well as

model human cell line cytotoxicity studies. We explored the effect of silver loading on

NP properties using a variety of analytical techniques, including light scattering, TEM,

XPS, FT-IR, TGA, DSC, and UV-Vis. We achieved reasonably good loading of both

silver (~2-5 wt%) and vancomycin (~7-8 wt%) by silver/histidine interactions and

encapsulation, respectively. In growth inhibition studies against Staphylococcus aureus,

the NPs containing both vancomycin and silver, T(Vanco, Silver), had improved activity

over NPs containing only one or the other drug (T(Vanco) and T(Silver)). Against

vancomycin-resistant Enterococcus faecalis, T(Vanco, Silver) performed equal to

T(Silver), whereas T(Vanco) and free vancomycin had no discernible growth inhibitory

effect, suggesting no benefit from delivering vancomycin against this strain of VRE. In

cytotoxicity studies, the NPs were non-toxic to human LNCaP cells at concentrations

above the MIC, though NPs with reduced silver demonstrated significant toxicity. Taken

together, these results suggest that the PLGA-PLH-PEG NPs described herein may have

potential for co-delivering silver(I) and vancomycin to treat vancomycin- and silver-

sensitive infections. However, more work is needed to continue developing these NPs. In

particular, the longer-term stability of silver on the NP surface in complex media needs to

be evaluated to ensure that silver remains present on the NP surface. Methods to improve

the stability of the NPs under low pH conditions are also needed. In addition, the ability

of these NPs to circulate for extended periods of time in the body needs to be evaluated.

Finally, the efficacy of these NPs in treating vancomycin- and silver-sensitive infections
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needs to be evaluated in a mouse model of infection to confirm the systemic delivery

potential of this system.

5. 3. Materials and Methods

5. 3. 1. Chemicals. All chemicals were obtained from Sigma Aldrich and used as

received unless otherwise specified.

5. 3. 2. Polymer Synthesis and Characterization. We synthesized the triblock

copolymer poly(D, L-lactic-co-glycolic acid)-b-poly(L-histidine)-b-poly(ethylene glycol)

(PLGA-PLH-PEG) using a polymer end grafting strategy as detailed in Chapter 2.

PLGA-PEG was synthesized in a similar manner and both polymers were characterized

as detailed in Chapter 3.

5. 3. 3. NP Formulation. To form vancomycin-encapsulated NPs, 1 mg of polymer

(PLGA-PLH-PEG or PLGA-PEG) dissolved in 15/85 v/v DMSO/ethyl acetate solution

was diluted into a final volume of 500 uL of ethyl acetate (with trace DMSO) to form the

organic phase. The drug-containing aqueous phase would typically consist of 50 uL of a

4 g/L solution of vancomycin (Sigma Aldrich, St. Louis, MO) dissolved in pure water.

The aqueous phase was sonicated into the polymer-containing organic phase for 15 sec at

40% amplitude using a probe tip sonicator (Misonix Sonicator S-4000, Farmingdale, NY).

This primary emulsion was then emulsified into 2 mL of a 10% w/v NaCl solution at

40% amplitude for 30 sec. This concentrated double emulsion was diluted into 8 mL of a

5% w/v NaCl solution under magnetic stirring. The NPs were allowed to harden by

allowing slow organic solvent evaporation for 4 hours in the hood. NPs were purified by

triple filtration using Amicon Ultra-4 100,000 NMWL centrifugal filter units (Millipore,
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Billerica, MA) using sterile water to remove unencapsulated drug and residual salts from

the emulsion process. NPs without vancomycin were prepared in the same manner, only

50 uL of pure water were used instead of the vancomycin solution, as mentioned above.

To load silver, the freshly prepared and purified NPs were resuspended at ~10 mg/mL in

pure water, at which point 100-500 ug of silver nitrate were added. The NPs were

incubated in the dark at room temperature for approximately 90 minutes, then washed in

Amicon Ultra-4 100,000 NMWL centrifugal filter units to remove any excess silver

nitrate salts.

5. 3. 4. Quantification of Drug Encapsulation. 2.0 mg of PLGA-PEG or PLGA-PLH-

PEG NPs were formulated with 0.4 mg initial vancomycin. Vancomycin encapsulation

was determined by quantifying the amount of unencapsulated vancomycin relative to the

initial amount of drug by UV absorbance at 220 nm relative to a standard curve. The

amount of silver encapsulated was estimated by quantifying the amount of free silver in

solution following incubation relative to the initial amount of silver. Free silver

quantification was performed using a selective silver ion electrode (Cole-Parmer

Silver/Sulfide Electrode, Vernon Hills, IL) relative to a free silver standard curve, as

recommended by the manufacturer.

5. 3. 5. Nanoparticle Characterization. ZetaPALS Analysis. PLGA-PLH-PEG NPs

were freshly prepared with or without silver, purified, and resuspended in pH 7.4 salt

solution at approximately 0.1 mg/mL. Size and zeta potential were measured for each

solution by quasi-elastic laser light scattering using a ZetaPALS dynamic light scattering

detector (15 mW laser, incident beam 676 nm, Brookhaven Instrument Corporation).
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Transmission Electron Microscopy. PLGA-PLH-PEG NPs were prepared containing

silver, washed to remove unbound silver, silver was reduced following a brief (< 5 min)

incubation in an excess sodium borohydride solution, washed again, resuspended at ~5

mg/mL in a pure water solution, deposited onto carbon supported copper TEM grids for 5

min, dried, then imaged on a JEOL 200 CX TEM (MIT CMSE) at an accelerating voltage

of 200 kV.

X-ray Photoelectron Spectroscopy (XPS). NPs were prepared, purified, then lyophilized

to yield 1-3 mg of powder per sample. The NP powder was then analyzed on a PH1

VersaProbe II XPS (MIT CMSE) with the expert technical help of Elisabeth Shaw using

3 sweeps with PE 187.85, 50W, and 200 um.

Fourier Transform Infrared Spectroscopy (FT-IR). 2 mg of NPs without vancomycin

were prepared and purified, and split into two 1 mg samples. One sample was treated

with 1 mg of silver nitrate in water (PLGA-PLH-EG-Ag), the other was diluted in an

equal volume of water with no silver nitrate (PLGA-PLH-PEG). Both were purified by

triple filtration, snap frozen in liquid nitrogen, then lyophilized for 4 days without any

cryoprotectants. The solid NP powder was analyzed by FT-IR using a Bruker Alpha-E

FT-IR Spectrometer (Billerica, MA).

Thermogravimetric Analysis (TGA). 4 mg of NPs without vancomycin were prepared,

loaded with 500 ug of silver (if appropriate), washed, then lyophilized without any

cryoprotectants. The resulting powders were then loaded onto the TGA analyzer

(PerkinElmer Thermogravimetric Analyzer Pyris I TGA (Waltham, MA)) and analyzed

as directed by the manufacturer.
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Differential Scanning Calorimetry (DSC). 4 mg of NP without vancomycin were

prepared, loaded with 500 ug of silver (if appropriate), washed, then lyophilized without

any cryoprotectants. The resulting powders were analyzed on a Perkin Elmer Pyris 1

Differential Scanning Calorimeter with the expert assistance of Tim McClure (MIT

CMSE).

UV-Vis Absorption. 2 mg of NP were prepared and split into two batches. One was

treated with 100 ug of silver, the other was left as an untreated control. The two NP

batches were washed using Amicon Ultra-4 100,000 NMWL filters, then resuspended at

approximately 5 mg/mL in pure water. The UV absorption in the range 250-500 nm was

then recorded using a plate reader.

5. 3. 6. Antibacterial Studies. Bacterial culture. Staphylococcus aureus (ATCC#

25923) were cultured in tryptic soy broth (BD# 211825). Initially, colonies were streaked

on a TSB-agar plate, selected, inoculated into 5 mL of growth medium and allowed to

grow overnight in an incubated shaker at 370 C. The resulting suspension was diluted into

80% sterile glycerol solution and frozen at -80'C. For experimentation, a small amount of

frozen bacteria were collected using a sterile inoculating loop and transferred to 5 mL of

TSB media. This suspension was then allowed to grow overnight prior to experimental

manipulation. Vancomycin-resistant (genotype: vanB ant(6)-I aac(6') aph(2""))

Enterococcus faecalis (ATCC#5299) were cultured in the same manner except using

brain heart infusion (ATCC# 2174) supplemented with 4 ug/mL vancomycin.

Antibacterial assays. Bacteria from overnight cultures were inoculated into 5 mL media

and allowed to enter log phase (OD6 00 ~0.3) after approximately 2 hours of incubation.

NPs (PLGA-PLH-PEG or PLGA-PEG) encapsulating vancomycin with or without silver
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as appropriate were freshly prepared, purified, and serially diluted into a final volume of

100 uL of sterile water in triplicate at a 2x concentration in clear, flat bottom 96 well

plates. Bacteria in log phase were diluted to a theoretical OD 600 of 0.001 in media and

seeded onto the microplates to produce a final volume per well of 200 uL. The OD600 was

measured immediately before placing into an incubated shaker at 370 C, then ~18-24

hours later. The drug concentration is the total drug concentration present inside the

nanoparticles, as determined by loading studies. The MIC was reported as the lowest

concentration yielding no obvious bacterial growth.

5. 3. 7. Cytotoxicity Studies. Cell culture. LNCaP prostate adenocarcinoma cells

(ATCC# CRL- 1740) were cultured in phenol red-free RPMI- 1640 medium supplemented

with 10% FBS and 1% penicillin/streptomycin at 370 C and 5% CO 2. LNCaPs were

subcultured by using 0.05-0.25% trypsin/EDTA-based methods at a passage ratio of 1:3

with no more than ~15 passages.

Cytotoxicity assay. The toxicity of the NPs was determined using the AlamarBlue assay

(Invitrogen Corporation). In brief, the day before experiments, LNCaP cells were seeded

onto 24-well plates at a density yielding 70% confluence (~40,000 cm2). NPs containing

vancomycin + silver, vancomycin only, or silver only were prepared, purified,

resuspended, then diluted into a PBS solution to yield ~150 ug/mL NP, incubated for 30

minutes, washed, then complete growth medium was added to the cells. The cells were

allowed to recover for 48 hours, at which point the AlamarBlue cytotoxicity assay was

performed according to the manufacturer's instructions. The data was expressed as

viability relative to untreated control on the basis of the colorimetric assay. No significant

difference in the trend was observed when the fluorescent data was used for comparison.
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5. 3. 8. Statistics. All data are expressed as mean + SD. Differences between groups were

assessed using one-way ANOVA. Post hoc group comparisons were done using Fisher's

LSD method. A significance level of p < 0.05 was used for all comparisons.
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Chapter 6

Nanoparticles for Vaccination Against Chlamydia Trachomatis

Work contained in this chapter was done as a collaboration led by Prof. Ulrich von
Andrian, MD, PhD and Dr. Georg Stary, MD of the Department of Microbiology and

Immunobiology at Harvard Medical School.

6. 1. Introduction

Chlamydia trachomatis, a small (0.3-1 um), Gram-negative, obligate intracellular

pathogen, is the most common cause of bacterial sexually transmitted disease (STD) in

the world.' It is responsible for approximately 90 million of all 500 million new cases of

STD each year globally. In the US, 4 million new cases a year lead to healthcare

expenditures of approximately $3 billion.2 Treatment with azithromycin or doxycycline

results in clearance of genital infections in 97-98% of cases, but identifying infected

individuals is difficult.3 Over 60% of infections in women are asymptomatic, leading to

continued disease transmission and delaying appropriate therapy. If left untreated, as high

as 40% of genital infections lead to severe or irreversible complications including pelvic

inflammatory disease, ectopic pregnancy, and infertility.4 With prevalence rates as high

as 3-4% in young adults aged 18-26, periodic screening of at-risk individuals and

antibiotic therapy add a significant burden to already strained healthcare systems.5 These

effects are still significant, despite extensive disease control and public education

programs.1, 6 A highly desirable alternative is the development of a safe and effective

prophylactic vaccine.

Despite decades of development, no vaccine is currently available for preventing

Chlamydia infections in humans. Early attempts at vaccination used whole inactivated
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pathogens, but these did not lead to safe and effective protection in humans.7 Many

subunit vaccine strategies have been explored as alternatives, mostly focusing on the

major outer membrane protein (MOMP) as the antigen. 2 ,7,8 However, safely boosting the

immunogenicity of these preparations has been hampered by unacceptable side effects,

suboptimal immune responses, or both. For example, aluminum salt adjuvants, which

have a proven track record of safety in the clinic, are biased towards producing Th2-

weighted and primarily humoral responses9 that do not yield optimal protective immunity

against intracellular Chlamydia infections. Several other adjuvants exist, but these have

generally been complicated by excessive toxicity and side effects when administered in

free form.' 0 A method to reduce the toxicity of these formulations while retaining the

immune-potentiating effects is to more precisely deliver the required signals to the subset

of cells responsible for immune activation. Highly specific delivery of adjuvant and

antigen to antigen presenting cells (APCs) can also reduce the dose delivered to off-target

cells and to the rest of the body, thereby limiting the potential for toxicity."

Nanoparticles (NPs) have seen increasing use as delivery systems for vaccines due to

their ability to load proteins, polysaccharides, or small molecules by surface adsorption or

encapsulation, leading to greater antigen stability and targeted delivery to APCs. 2 Within

the context of anti-Chlamydia immunity, a number of promising submicron structures

have been explored (reviewed by Igietseme et a12, 8). Examples include vault NPs -40-70

nm in diameter, which were loaded with MOMP from Chlamydia muridaruin in their

internal cavity and surface-modified with IgG for targeting the FC-y receptor on dendritic

cells (DCs).13 Intranasal immunization of the NPs was shown to elicit anti-Chlamydia

Th I cell responses, leading to secretion of interferon-gamma (IFN-y), production of anti-
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Chlamydia antibodies, and reductions in bacterial burden following intravaginal

challenge. Protection against bacterial challenge was also observed in a cationic liposome

formulation encapsulating C. muridarum MOMP with synthetic mycobacterial cord

factor as an adjuvant.14 These liposomes were administered subcutaneously, leading to

high levels of IFN-y, systemic IgG2b, and protection against vaginal challenge. One of

the most potent vaccines reporting protective immunity to Chlamydia is an IL-10

deficient DC pulsed with Chlamydia ex vivo then delivered to mice. 15 This report

suggested that targeting vaccines to DCs is a highly effective strategy for eliciting anti-

Chlamydia immunity. While many of these early results are promising, a major pitfall

historically has been translating results from animal models to humans. Consequently,

there is a continuing need to develop alternative methods that have high potential for

clinical translation. For a vaccine formulation to be clinically viable, the formulation

must induce potent immunity with a limited number of immunizations and yield side

effects only in very rare numbers. Consequently, seeking to use biocompatible,

biodegradable, and non-toxic materials is highly desirable.

Herein, we report the design of a novel nontoxic, nanoparticle (NP)-based prophylactic

vaccine formulation to immunize against Chlamydia trachomatis. It consists of R848-

poly(lactic acid) conjugate encapsulated in a cationic PLGA-based NP administered

together with UV-inactivated C. trachomatis. The NPs are rendered cationic via

incorporation of poly-L-histidine (PLH) into the formulation. The R848-encapsulated

NP-Chlamydia vaccine formulation is shown to induce proliferation of Chlamydia-

specific TCR transgenic T cells at a level comparable to immunization with live

pathogenic C. trachomatis 6 days post-vaccination. One month post-vaccination, the
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cationic NP-Chlamydia formulation demonstrates protection from infection with

contagious C. trachomatis delivered directly into the uterus, mimicking a natural route of

infection. Further, we show that the cationic NPs elicit more effective immunity than

control anionic NPs lacking PLH, and that NP formulation of R848 adjuvant results in

more potent responses than free adjuvant co-administered with the UV-inactivated

bacteria. The results contained herein may inform the future development of vaccines for

C. trachomatis.

6. 2. Results and Discussion

6. 2. 1. Vaccine Design. Current understanding of the basic immunobiology and design

of anti-Chlamydia vaccines has begun to define the key elements in the proper

stimulation of immunity (for review, see Brunham and Rey-Ladino' and Igietseme et al,

16). Several effectors are believed to play a role, including CD4+ and CD8+ T cells,

dendritic cells, macrophages, B cells, NK cells, as well as several cytokines and

chemokines. The most prominent effector is the CD4+ T cell which, when activated,

homes to the site of infection and releases Thl cytokines including IFN-y, TNF-U, and

IL-2.8 IFN-y plays a highly prominent role, as IFN-y-R knockout mice (IFN-y-R-/-) were

unable to control C. trachomatis infections as compared to control mice. 7 It appears that

IFN-y functions at least in part by activating the expression of indoleamine-2,3-

dioxygenase (IDO) in cells, an enzyme that degrades tryptophan leading to tryptophan

starvation and cell death.' In addition, ICAM-1 has been shown to play a major role in

the rapid activation, early recruitment, and proper response of T cells to Chlamydia

infections. 18 Dendritic cells and macrophages play an essential role as APCs, sources of
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cytokines (such as IL- 12 and IL-1), costimulation (B7, CD40), phagocytosis, and

antibody-dependent cellular cytotoxicity (ADCC). Other parts of the immune system play

a less significant and ancillary role. B cells can be activated to secrete IgG or IgA, which

can help neutralize Chlamydia or facilitate ADCC.1 5 In addition, NK cells are believed to

secrete Th1 cytokines (particularly IFN-y) and participate in ADCC to aid in bacterial

clearance. Finally, CD8+ T cells are believed to play a role, though it is currently

suggested to be primarily via secretion of Thl cytokines and not through direct cytotoxic

activity as is more canonical for this cell type.8

Key elements of a successful vaccine include: (1) antigenic stimulus, which defines the

immunologic specificity, (2) adjuvant, which can both boost and guide the type of

immune response, and (3) a delivery vehicle, which can be used to protect and control

presentation of the vaccine components to the immune system. All of these components

must work in concert to elicit the most potent and safe immunity possible.

The first signal required for an immune response comes from the antigen and drives the

exquisite specificity of the immune system. Given the requirement of robust cell-

mediated immunity (CMI) for effective anti-Chlamydia responses, at least part of the

formulation must contain a peptide antigen. This arises since T cells can only recognize

antigen in the context of MHC-I (CD8+) or MHC-II (CD4+)-peptide complexes, which

are designed to load and present short peptides. Selection of the proper antigenic stimulus

is not straightforward, and significant effort has gone towards identifying antigens or

combinations of antigens that can lead to protective anti-Chlamydia immunity. If a

suitable antigen can be identified, subunit vaccines offer several potential advantages,

including reduced risk of toxicity, a more focused immune response, avoidance of
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"distracting" immunodominant epitopes that do not lead to protective immunity if this is

a problem for the pathogen of interest, and potentially greater ease in manufacturing and

purification, particularly if only a few components are needed. However, recombinant

proteins tend to have much lower immunogenicity and can be susceptible to degradation,

particularly in inhospitable environments like the acidic genital mucosa. An alternative is

to use the entire pathogen in attenuated or inactivated form. Whole organisms are often

favored due to the fact that they present antigens in a form more closely mimicking the

infectious body and because of the long history of clinical success in eliciting protective

immunity to a range of organisms. In addition, whole organisms contain many candidate

antigens. These might lead to combined or synergistic immunologic responses. Because

of these advantages, we selected a whole pathogen approach to deliver the antigenic

stimulus in our vaccine. To reduce the potential for toxicity of a live pathogen, we chose

to utilize a UV-inactivated version. UV inactivation is a common method to reduce

bacterial infectivity and can be considered a four logio reduction in bacterial viability on

treatment with UV light. 9

Selection of a proper adjuvant is critical to formation of a robust immune response.

Adjuvants facilitate the maturation of APCs and induce upregulation of costimulatory

signals including CD80 and/or CD86, which are needed for proper immune activation.

Whole pathogens typically contain or produce elements such as peptidoglycan (PG),

unmethylated cytosine-guanine dinucleotides (CpG), lipopolysaccharides (LPS), N-acetyl

muramyl-L-alanyl-D-isoglutamine (MDP) or other components that can boost immunity.

However, these do not provide sufficient adjuvanticity in Chlamydia. The commonly

used aluminum salt adjuvants (alum) tend to favor secretion of Th2 over Th 1 cytokines, 9'
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0 leading to relatively weak induction of cell-mediated immunity. In the case of

Chlamydia infection, this is highly important, as preskewing cells toward Th2 was shown

to cause disease exacerbation in mice.20 Today, there are literally hundreds of alternatives

to alum, though remarkably few have potential for use in humans due to unacceptable

toxicities. A short list of these alternatives include tensoactive agents such as Quil A,2 1

purified bacteria-derived adjuvants such as PG,2 CpG, -2s LPS,26 or MDP,27 oil-based

emulsions such as Montanide or Lipovant, 28 liposomes, 29 polymeric microspheres, 30

inulin-derived compounds,3 1 DNA vaccines,3 2 and NPs. 10 3-

Commonly used adjuvants include agonists of toll-like receptors (TLR), such as triacyl

lipopeptides (TLR1), lipoteichoic acid (TLR2), dsRNA (TLR3), LPS (TLR4), flagellin

(TLR5), diacyl lipopeptides (TLR6), guanosine analogs (TLR7), ssRNA (TLR8), and

unmethylated CpG (TLR9), among others, though alternatives involving retinoic acid-

inducible gene (RIG)-like receptors, nucleotide oligomerization domain (NOD) receptors

and others exist. 36 Notably, FDA approved vaccines against HPV (Cervarix@,

GlaxoSmithKline) and hepatitis B (Fendrix@, GlaxoSmithKline) include in their

formulation monophosphoryl lipid A, a potent agonist of TLR4.37 Of the various TLR

agonists, there has been an interest in using resiquimod (also known as R848) due to its

ability to stimulate both TLR7 and TLR8 in humans. R848 has been shown to activate

APCs, stimulate Th1 cytokines, and elicit both humoral and CMI effectively across a

range of animal disease models, including non-human primates.38 However, challenges to

effective use include its relatively low molecular weight and high aqueous solubility,

which lead to a short half-life and rapid distribution throughout the body's tissues. The

combination of these factors leads to lower quantities of R848 per mg injected being
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delivered to APCs as well as higher systemic cytokine levels, which translate into lower

potency and higher side effects. To reverse these, it is necessary to create a depot of R848

then target it more effectively to APCs. Targeting has the potential to reduce the total

dose administered while simultaneously increasing the dose delivered precisely to APCs.

NPs offer excellent potential as delivery vehicles for R848 as well as other adjuvants due

to their ability to encapsulate or adsorb a wide variety of materials including proteins,

small molecules, carbohydrates, or lipids, as well as their ability to be engulfed by

phagocytic cells. Of the various types of structures that can be used, NPs based on

poly(lactic-co-glycolic acid) (PLGA) are attractive because of high biocompatibility and

history of safety in humans. However, encapsulating and delivering unmodified R848 in

a PLGA matrix is challenging due to the high aqueous solubility and low molecular

weight of R848. In fact, when we performed pilot studies evaluating the encapsulation of

R848 in poly(lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-PEG)

copolymer, we observed little encapsulation (data not shown). In addition, release of

R848 encapsulated in this manner is expected to be rather rapid, due to most

encapsulation occurring at or near the NP surface. A strategy that has previously been

used to increase encapsulation of active agents and reduce their release rate is

conjugation to a polyester polymer, followed by blending of the drug-polymer conjugate

together with other PLGA-containing polymers to yield mixed NPs. 3 9-41 This method

leads to high encapsulation efficiencies and can release the active agent in unmodified

form as the polymer degrades by hydrolysis. Consequently, we sought to incorporate the

TLR7/8 agonist R848 by forming poly(lactic acid) (PLA)-R848 conjugates and blending

them to yield mixed R848-encapsulated NPs.
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The final core element of a vaccine is the delivery system. The delivery system must

incorporate both the antigen(s) and the adjuvant, as well as effectively deliver them

together to APCs in the necessary quantity and with the correct timing to prime immunity.

Given our use of a whole pathogen as the source of antigen(s), it was necessary to devise

a method to deliver adjuvant together with the inactivated bacterium. We reasoned that

one method to achieve this was to use cationic NPs. Cationic NPs tend to promote

interactions with biological surfaces, which are typically negatively charged. To achieve

this, we turned to a widely used method to target bacterial surfaces using NPs, which

involves targeting the negative charges on the surface of bacteria using cationic charges

(see discussion in Chapter 1). We used poly-L-histidine (PLH), a cationic polymer to

yield a positive surface charge on PLGA-based NPs. Use of a PLGA-based polymer was

important, since this could facilitate incorporation of PLA-R848 conjugates into NPs

using established protocols. 39 These R848-encapsulated NP-UV inactivated Chlamydia

constructs might then be able to deliver the needed combination of signals in a delivery

system to enable induction of protective anti-Chlamydia immunity (Figure 6.1).

UV-inactivated + +
Encapsulation + .Chamydia

PLGA-PLH-PEG +

PLGA-PEG 0
PLA-R848 +

0 pH 6.0 
+

Figure 6. 1. Schematic representation of the Chlamydia vaccine design. A
combination of PLGA-PLH-PEG and PLGA-PEG (optimized for cationic charge
generation and stability, see text) are used to encapsulate the TLR7/8 agonist R848
conjugated to PLA (PLA-R848). In slightly acidic conditions, the PLH becomes
cationically charged, enabling interactions with the UV-inactivated Chlamydia.

175



To confirm the applicability of this approach to Chlamydia bacteria, we measured the

zeta potential of Chlamydia trachomatis over a range of pH values and found them to be

anionic (zeta potential -12.7±1.2 mV at pH 5.5 to -25.8±1.7 mV at pH 7.4) over

physiologically meaningful range (Figure 6.2).

0 - - , - - r - - , PH
50 5.5 6.0 6.5 7.0 7.5 8.0

E
10 -

-15 -. -

0~--20
N-25 1

-30

Figure 6. 2. Zeta potential of Chlamydia trachomatis at different pH. 1.5 uL of a 1.5e7
IFU/mL solution was diluted in 1.5 mL pH-adjusted buffer and measured using quasi-
elastic laser light scattering. The bacteria are negatively charged over the entire measured
pH range.

6. 2. 2. NP and Vaccine Formulation and Characterization. We formulated R848-

encapsulated NPs using a modified single emulsion/solvent evaporation procedure. A

combination of PLA-R848 polymer, PLH-containing polymer (PLGA-PLH-PEG), and

PLGA-PEG were co-dissolved in the organic phase, emulsified into water using a probe

tip sonicator, allowed to harden by solvent evaporation, then purified by ultrafiltration. In

order to maximize the potency of the adjuvant-containing NPs while retaining sufficient

cationic charge to potentially enable interactions with Chlamydia, we first sought to

understand how different ratios of polymers would affect the mixed NP properties. Using

unmodified PLGA as a proxy for PLA-R848, we varied the composition of NPs and

studied the impact on the size, zeta potential, and NP stability (Figure 6.3). The data

show that increasing the content of PLH-containing polymer mixture in the NPs led to
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increases in the cationic charge in slight acidity (pH 6.0), and that there is a significant

leap in charge as the weight fraction of PLH-containing polymer mixture reaches 0.4

(zeta potential from +2-7 to +23-25 mV) (Figure 6.3B). We reasoned that this higher

cationic charge density would be preferred in the vaccine design, as this would lead to a

greater driving force for interacting with the anionic Chlamydia. We then sought to

identify conditions that would incorporate higher quantities of PLGA while also

demonstrating acceptable NP size and stability. NPs that contained a weight fraction of

PLGA of 0.4 demonstrated a good trade-off between higher incorporation of PLGA and

good NP stability post processing and purification (Figure 6.3C).
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Figure 6. 3. Effect of Polymer Blending on Nanoparticle Size, Zeta Potential, and
Stability. PLGA-PLH-PEG NPs were blended with PLGA-PEG and the model polymer
PLGA to assess the impact of polymer blending on NP properties. A composition
containing 40% PLGA-PLH-PEG (w/w) was selected due to the balance of colloidal
stability following processing with generation of sufficient cationic charge to enable
binding to Chlamydia trachomatis. (A) NP size, (B) zeta potential at pH 6.0, (C) fraction
increase in size following NP purification.

We then sought to explore the ability of these NPs to bind to C. trachomatis. NPs were

formulated (40% w/w PLH-containing polymer, 40% w/w PLA-R848, 20% PLGA-PEG),

purified, and then incubated with 107 inclusion forming units (IFU) per milligram of NPs

in a pH 6.0 solution, incubated for ~2 hr at 37'C, added to high grade mica to allow for

adhesion, washed, then taken for AFM imaging. The images show formation of aggregate
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structures containing both Chlamydia bacteria and NPs (Figure 6.4A, B), indicative of

interactions occurring between the bacteria and the NPs.
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Figure 6. 4. Nanoparticle-Chlamydia Vaccine Characterization. PLH-containing
nanoparticles (NP) were incubated with Chlamydia trachomatis, adsorbed onto prepared
mica slides, washed, then imaged using atomic force microscopy (AFM). (A) AFM

micrograph of C. trachomatis bacteria alone. Width of image corresponds to 1.7 um. (B)

C. trachomatis bacteria following incubation with NPs, demonstrating attractive forces

between the two. Width of image corresponds to 2 um . Size distributions by volume (C)
and intensity (D) of NPs alone and C. trachomatis + NP mixed together by dynamic light

scattering, showing a shift in the size distribution towards larger sizes of the mixed

species relative to the pure species after incubation in pH 6.0.

To further investigate the properties of NP solutions incubated with Chlamydia, we

evaluated the size distribution by dynamic light scattering (Figure 6.4C, D). We observed

a shift to the right in the size distribution by volume of the NP-Chlamydia mixture

solution as compared to the NPs or Chlamydia alone, suggesting the possible formation
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of aggregates in at least a subset of species in the mixture. We note that neutralization of

the pH following an incubation of the NPs with the Chlamydia leads to a reduction in the

size of the formulation, perhaps suggesting that an acidic buffer solution is required to

achieve formation and rotation of the construct. We additionally performed some pilot

studies to see if it might be possible to view the formation of NP-Chlamydia constructs

using fluorescently labeled NPs and Chlamydia by flow cytometry. We prepared and

purified NPs modified with Alexa-488-modified PLGA (NP-488) and labeled Chlamydia

using BacLight Red, incubated them together in slight acidity then ran on a flow

cytometer. We observed an increase in the fluorescence in both the green (FL1-H) and

red (FL3-H) channel in samples where both the NPs and bacteria were labeled, which

also scaled based on the amount of NPs added (Figure 6.5, 6.6). However, we also

observed that the BacLight Red dye appeared to bind nonspecifically to the NPs as well

(data not shown), confounding the interpretation of whether this shift in fluorescence in

both channels can be attributed to the formation of a NP-Chlamydia construct.
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Figure 6. 5. Flow Cytometry Analysis of NP-Chlamydia Vaccine. Alexa-488 modified-
PLGA incorporated into PLGA-PLH-PEG NPs were incubated with (or without)
BacLight Red@ (BLR)-labeled Chlamydia trachomatis then run on a flow cytometer. The
data suggests formation of double-labeled constructs (Chlamydia + BLR + 50 ug NPs).
FL 1-H fluorescence corresponds to Alexa-488, FL3-H corresponds to BLR fluorescence
(see also Figure 6.6).
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Figure 6. 6. Flow Cytometry Analysis of NP-Chlamydia Vaccine (1I). The data from
Figure 5.5 shown on different axes to suggest the possible formation of double-positive,

that is, Alexa-488-PLGA and BacLight Red (BLR)-labeled constructs (see also Figure
6.5).

6. 2. 3. Chlamydia-Specific T Cell Expansion In Vivo. Next, we sought to determine

whether the cationic NP-Chlamydia vaccine formulation could induce expansion of

Chlamydia-specific, T cell receptor (TCR)-transgenic T cells adoptively transferred into

mice. Mice were inoculated transcervically with a vaccine formulation containing 0.67

mg R848-encapsulated NP/mouse and 1.3x1 07 IFU UV-inactivated Chlanydia vaccine,

together with controls including live pathogenic Chlamydia, UV-inactivated Chlamydia

alone, and anionic NPs mixed with Chlamydia. This latter group was formed by creating

a NP formulation containing 60% (w/w) PLGA-PEG and 40% PLA-R848. Since no

PLH-containing polymer mixture is incorporated, the NP do not elicit a cationic charge at

the incubation conditions and consequently no interactions with Chlamydia could be

observed by AFM, despite repeated attempts. On day 5 post vaccination, Chlamydia-

specific, TCR-transgenic, CFSE-labeled T cells were adoptively transferred into mice and

given approximately 24 hours to traffic to lymphoid organs and expand if they encounter

properly activated APCs. T cells were then collected and analyzed by FACS for

expansion of Chlamydia-specific T cells (Figure 6.7).
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Figure 6. 7. Induction of Chlamydia-specific T cells. Chlamydia-specific, CFSE-
labeled, TCR transgenic T cells were transferred to mice the day prior to immunization.
On day 0, mice were immunized transcervically with either infectious Chlamydia
trachomatis (C.t., positive control), R848 encapsulated in PLGA-PLH-PEG nanoparticles
(NP) that were treated with UV-inactivated Chlamydia (R848-UV-C.t. attached), UV-
inactivated Chlamydia (UV-C.t., negative control), R848 encapsulated in PLGA-PEG
NPs that were treated with UV-inactivated Chlamydia (R848-UV-C.t. mixed), or
untreated control (no infection). On day 6, the T cell response was measured by
collecting cells from the draining lymph node and analyzing by FACS. Top row: gating
on total leukocytes. One can appreciate expansion of the Chlamydia-specific T cells
particularly in the C.t. and R848-UV-C.t. attached groups. Bottom row: CFSE cell
proliferation assay, showing enhanced CFSE dilution (indicative of cell proliferation)
particularly in the C.t. and R848-UV-C.t. attached groups, noting that it is greater than
the UV-inactivated pathogen alone or mixed NPs groups.
The data show that vaccination with R848-encapsulated cationic NP-Chlamydia

formulation leads to expansion of Chlamydia-specific T cells at levels comparable to live

pathogenic Chlamydia. This can be observed by the increased quantity of specific T cells

(Figure 6.7, top row) as well as the greater amount of CFSE dilution (Figure 6.7, bottom

row). NPs that were mixed with the Chlamydia demonstrate an attenuated response that

appeared similar to inoculation with UV-inactivated Chlamydia alone. This suggests that

R848-encapsulated PLH-containing NPs appear to more effectively expand Chlamydia-

specific T cells in vivo as compared to controls.
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6. 2. 4. Protection Against Chlamydia Challenge. We then sought to determine whether

the expansion of specific T cells that was observed could translate into protection from

infection. Immunologically naYve mice were vaccinated transcervically with R848-

encapsulated NP-Chlanydia formulation or with controls which included the live

infectious pathogen, UV-inactivated Chlamydia, UV-inactivated Chlamydia co-

administered with free R848, and UV-inactivated Chlamydia treated with NP-Chlamydia

that did not contain any R848 (Figure 6.8). The mice were then given 4 weeks to mount a

Chlamydia-specific immune response, at which point they were inoculated

transcervically with live and infectious C. trachomatis, mimicking the typical mode of

sexual transmission. Six days later, the bacterial loads in the uterus were evaluated by

quantitative PCR (qPCR) and by counting the number of IFU. The results show that

immunization with the R848-encapsulated cationic NP-Chlamydia constructs led to

significantly lower levels of Chlamydia-specific 16S DNA relative to total host DNA

extracted as compared to negative controls containing only the UV-inactivated bacteria or

UV-inactivated bacteria attached to non-R848-containing NPs and at levels equivalent to

that in the group immunized with the infectious organism (Figure 6.8). In addition, the

UV-inactivated bacteria co-administered with free R848 demonstrated only a partial

effect. It is likely that the free R848 was not present at sufficiently high concentration,

perhaps due to rapid diffusion throughout the tissue and more rapid elimination from the

uterus than the R848-encapsulated NP treated group.
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Figure 6. 8. Quantitative PCR Analysis of Chlamydia trachomatis burden in the
uterus following transcervical immunization. Mice were immunized transcervically
with infectious Chlamydia trachomatis (Infectious C.t., positive control), UV-inactivated
C.t. (Inact. C.t., negative control), UV-inactivated C.t. treated with R848-encapsulated
PLH-containing NPs (Inact. C.t. + nano-R848), UV-inactivated C.t. + free R848, and
UV-inactivated C.t. with PLH-containing NPs that did not contain any R848 (inactivated
C.t. + nano). Four weeks later, all mice were challenged with live C. trachomatis
transcervically. Six days later, the amount of Chlamydia in the uterus was quantified by
measuring the quantity of Chlamydia-specific 16S DNA and normalizing by the quantity
of host DNA collected using quantitative PCR. The data show that the R848-
encapsulated NP-Chlamydia constructs protect mice from bacterial challenge similar to
pre-exposure with infectious C. trachomatis, and that the response is superior to free
R848. No significant protection was observed with empty NP conjugated to Chlamydia,
indicating that the effect depends on incorporation of R848.
To gain greater understanding of the methods by which the vaccine constructs can be

administered, we explored intranasal (a mucosal surface) and subcutaneous (a non-

mucosal surface) routes using the same experimental design. The data show that the

R848-encapsulated NP-Chlamydia formulation led to reduced levels of Chlamydia-

specific 16S DNA relative to host DNA as compared to negative controls via intranasal

but not subcutaneous vaccination (Figure 6.9, 6.10). It is possible that when the vaccine is

injected into non-mucosal tissue, the resulting T cells lack the appropriate chemokine
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receptors needed for entry into the inflamed uterus. The resulting lower level of T cells in

the uterus would then result in an inability to protect the host from infection. In fact, the

importance of expressing the appropriate chemokine receptors was recently elucidated in

a study that showed that both CXCR3 and CCR5 are required for T cell-mediated

protection against Chlamydia infection.4 2
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Figure 6. 9. Quantitative PCR Analysis of Chlamydia trachomatis burden in the
uterus following intranasal or subcutaneous immunization. Mice were immunized
with infectious C. trachomatis (infectious C.t.), UV-inactivated C.t., UV-inactivated C.t.
with R848-encapsulated PLGA-PLH-PEG NPs (inactivated C.t. + nano-R848), UV-
inactivated C.t. with free R848, and UV-inactivated C.t. with PLGA-PLH-PEG NPs that
did not contain R848 (inactivated C.t. + nano) either intranasally (green dots) or
subcutaneously (blue dots). Four weeks later, all mice were challenged with infectious C.
trachomatis transcervically. Six days later, the quantity of Chlamydia-specific 16S DNA
relative to host DNA was quantified using quantitative PCR. The data show that the
R848-encapsulated NP-Chlamydia constructs protect mice from challenge with infectious
Chlamydia when the constructs are delivered into mucosal (in this case nasal, and in
Figure 5.8, uterine) tissue but not when injected subcutaneously.
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Figure 6. 10. Inclusion Forming Unit (IFU) Analysis of Chlamydia trachomatis
burden in the uterus following immunization. Mice were immunized with live C.
trachomatis (Live), UV-inactivated C. trachomatis (UV), R848-encapsulated PLGA-
PLH-PEG NPs with UV-inactivated C. trachomatis (R848-a), or R848-encapsulated
PLGA-PEG NPs with UV-inactivated C. trachomatis (R848-m) using either a
transcervical, intranasal, or subcutaneous route. Four weeks later, all mice were

challenged with 107 IFU of C. trachomatis transcervically. Six days later, the quantity of

C. trachomatis in the uterus were determined by counting the IFUs. The data show that

mucosal immunization is necessary to elicit a protective immune response and that use of

PLH-containing NP appears to be an important precondition for protective immunization.

Next, we sought to study how Chlamydia-specific T cells distribute themselves in

immunized mice four weeks after immunization. The data show that the number and

anatomical distribution of T cells depended on the type of immunization (Figure 6.11).
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Figure 6. 11. Analysis of Chlamydia-specific T cell levels in the uterus and lymphoid
organs following immunization. Mice were immunized with infectious Chlamydia

trachomatis (C.t.), UV-inactivated C.t. (UV-C.t.), R848-encapsulated PLGA-PLH-PEG
NPs with UV-inactivated C.t. (R848a), R848-encapsulated PLGA-PEG NPs with UV-
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inactivated C.t. (R848m), UV-inactivated C.t. with empty PLGA-PLH-PEG NPs (UV-C.t.
+ nano) and uninfected control (no inf.) transcervically. Four weeks later, mice were

sacked and the draining lymph node (LN), spleen, and uterus were collected. The organs

were then analyzed for counts of total and Chlamydia-specific T cells by flow cytometry.

The data show that immunization with R848-encapsulated UV-inactivated Chlamydia-

specific T cells leads to greater trafficking of Chlamydia-specific T cells to the uterus,
correlating with the protective immunity of this and the C.t. control. Other groups did not

demonstrate significant levels of Chlamydia-specific T cells in the uterus.

Mice immunized with the live pathogen or the R848-encapsulated NP-Chlamydia

formulation showed a higher frequency of Chlamydia-specific T cells, particularly in the

uterus. This higher T cell frequency in the uterus correlated well with the observation of

protection against challenge with infectious Chlamydia in these but not any of the other

groups. This is consistent with many findings demonstrating a prominent role played by

CD4+ T cells in anti-Chlamydia immunity and also suggests that these cells are playing a

significant role in controlling the infection in the vaccinated groups. To further explore

the mechanism behind the observed protection, we immunized a variety of

immunodeficient mice transcervically with R848-encapsulated NP-Chlamydia

formulations as well as controls, waited 4 weeks for immunity to develop, then, as before,

challenged mice with infectious Chlamydia (Figure 6.12). To explore whether antibodies

were playing a prominent role, we used DHLMP2A mice. These mice are genetically

engineered to have B cells that do not express the B cell receptor but retain other B cell

functions. 43 ' 44 DHLMP2A mice immunized with R848-encapsulated NP-Chlamydia

constructs demonstrated very low levels of Chlamydia-specific 16S RNA relative to host

DNA as compared to controls, suggesting that the mechanism of protection did not

depend highly on antibodies, though it is unclear whether there is an antibody-

independent protective effect by B cells. To clarify this point, we performed the same
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experiment on B cell-deficient (uMT) mice, finding that the R848-encapsulated NP-

Chlamydia formulation, similar to live pathogen, are leading to protection in a manner

that appears to be B cell-independent and driven mostly by T cells though other cell types,

particularly NK cells, may also be playing an ancillary role.
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Figure 6. 12. Quantitative PCR analysis of Chlamydia trachomatis burden in the
uterus following transcervical immunization in various immunodeficient mice. Three
different mouse strains were immunized to explore the mechanism behind the protective
immunity. Antibody deficient mice (DHLMP2a, orange dots), B cell deficient mice
(uMT), and Balb/C mice were immunized transcervically with infectious C. trachomatis
(C.t.), UV-inactivated C.t. (inactivated C.t.), UV-inactivated C.t. treated with R848-
encapsulated PLGA-PLH-PEG NPs (inactivated C.t. + nano-R848), with additional
controls including untreated Black-6 mice (B6, no), untreated uMT mice (no), UV-
inactivated C.t. with free R848, or UV-inactivated C.t. with empty PLGA-PLH-PEG NPs
(inactivated C.t. + nano). Four weeks later, all mice were challenged with live,
pathogenic C. trachomatis transcervically. Six days later, the bacterial load in the uterus
was assessed by quantitative PCR. The data suggest that the protective effect of
immunization with either live pathogen or UV-inactivated Chlamydia-R848-encapsulated
NPs does not depend on functional B cells or antibodies.

To further explore the potential immunologic mechanism, we sought to confirm that

activation of the immune system requires the presence of intact MHC-II complexes.

MHC-II complexes are present on APCs and are involved in presenting antigen to CD4+
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T cells via the T cell receptor. We inoculated MHC-II knockout (KO) mice as described

previously and found that no protective effect could be observed either with infectious

Chlamydia or R848 encapsulated NP-Chlamydia formulations, consistent with the

mechanism involving activation of CD4+ T cells (Figure 6.13).
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Figure 6. 13. Protection is MHC-II Dependent. MHC-II knockout (KO) mice were
immunized as described and challenged with infectious Chlamydia trachomatis, showing
no protection. This indicates that MHC-II complexes are required for proper induction of
immunity.

We next sought to determine if protection could be observed in mice with no mature T

cells, using RAG-2 knockout (KO) mice. As expected, the RAG-2 KO mice did not have

any protection from re-challenge with Chlamydia bacteria (Figure 6.14).
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Figure 6. 14. Protection requires functional RAG-2. RAG-2 knockout (KO) mice
were immunized as described and challenged with infectious Chlamydia trachomatis,
showing no protection. This indicates that RAG-2 (and mature T cells) are required for
proper induction of immunity.

Given the previous data, it appears likely that CD4+ T cells are the major cell type

involved in eliciting protective immunity against rechallenge with Chlamydia

trachomatis delivered into the uterus. To further confirm this, we adoptively transferred

CD4+ and CD8+ T cells isolated from immunized mice to uninfected mice then

challenged these mice with Chlamydia as before. We found that transfer of CD4+ T cells

into naYve mice led to protective immunity (Figure 6.15), and interestingly, that some

small but statistically significant effect could be observed by adoptively transferring

CD8+ T cells. However, it is clear that the CD4+ T cell subset are the major cell type

involved in inducing protective immunity.
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Figure 6. 15. Adoptive transfer of CD4+ T cells induces protection. Mice were
immunized with the given condition and then allowed one month to develop immunity.

CD4 and CD8+ T cells were isolated from the immunized mice then adoptively

transferred into naYve mice. The naYve mice were then infected with Chiamydia
trachomatcis bacteria and their Chiamydia loads evaluated. The data show that CD4± T

cells play the most significant role in controlling the Chiamydia infection. There is also
evidence for CD8± T cells playing a very minor role.

6. 2. 5. Summary. In summary, we have taken steps towards developing a novel

prophylactic vaccine formulation for immunizing against genital infections involving

Chiamydia trachomatis, a common bacterial sexually transmitted disease. The vaccine

consists of a combination of (1) PLH-containing NPs that encapsulate the TLR7/8 agonist

R848 and (2) UV-inactivated C. trachomatis. Encapsulation of the highly water soluble

R848 was achieved by using R848-PLA polymer conjugates and blending them into the

oil-in-water emulsion during the NP preparation step. The R848-encapsulated NP-

Chlamydia formulation was achieved by incubating the R848-encapsulated NPs with C.

trachomatis under conditions in which the NPs would have a positive surface charge,

which might enable binding to the negatively charged C. trachomatis. Evidence for
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binding to Chlamydia was observed by AFM and dynamic light scattering. The

constructs were shown to induce the proliferation of adoptively transferred Chlanydia-

specific TCR transgenic T cells on day 6 post vaccination, whereas controls including

R848-encapsulated anionic NPs did not. Further study showed that vaccination with

PLH-containing NPs demonstrated protection against challenge with live pathogenic

Chlamydia 4 weeks post vaccination, as measured 6 days following infection. This

protection correlated with high levels of Chlamydia-specific CD4+ T cells present in the

uterus and did not depend on antibodies or on B cells, based on retained protection in

genetically engineered mice lacking these (DHLMP2A and uMT mice, respectively).

Further, we show using knockout mouse studies that protective immunity required MHC-

II complexes and functional RAG-2, suggesting the need for intact elements of adaptive

immunity. Finally, we show that adoptive transfer of CD4+ T cells from immunized mice

into immunologically naive mice leads to protection in the naYve mouse. Taken together,

these results suggest the induction of protective immunity using a novel vaccine

formulation and may have implications in the further development of NP-based vaccines

against Chlamnydia trachomatis.

6. 3. Materials and Methods

6. 3. 1. Polymer Synthesis. Poly(L-histidine) (PLH) was custom synthesized by

GenScript (Piscataway, NJ) to contain an N-terminal lysine and C-terminal cysteine with

20 histidine residues in between (N- to C-terminus sequence: KH20C). This PLH peptide

(0.01 mmol) was mixed with orthopyridyl-modified methoxy PEG, (mPEG-OPSS, 0.01

mmol, Laysan Bio, Arab, AL) in water, followed by purification by dialysis using Slide-
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A-Lyzer 2,000 MWCO dialysis cassettes (Thermo Scientific) and lyophilization to dry

the product. Separately, PLGA-COOH (5 umol) (inherent viscosity 0.67, LACTEL

Absorbables) was activated using EDC (0.246 mmol) and NHS (0.295 mmol) in 2 mL

dichloromethane, precipitated in -20'C methanol, then dried in vacuo at 50'C. 104.9 mg

of PLGA-NHS was then coupled to 24.8 mg PLH-PEG copolymer and stored in DMSO

until use. PLGA-PEG copolymer was purchased from Boehringer Ingelheim GmbH.

R848-PLA synthesized by ring opening polymerization was a generous gift by Ms.

Pamela Basto.

6. 3. 2. NP Formulation. All NPs were formulated using a modified emulsion/solvent

evaporation technique. In a typical formulation, NPs designed to attach to Chlamydia

were prepared by mixing 5.33 mg of PLH-containing polymer with 2.66 mg of PLGA-

PEG and 5.33 mg of R848-PLA conjugate together in 400 uL of a 15/85 DMSO/ethyl

acetate solution. Control NPs that were not positively charged were formulated in a

similar manner, only using 8.0 mg of PLGA-PEG and 5.33 mg of R848-PLA. For NPs

that did not contain R848-PLA, an equal amount of PLGA was used (inherent viscosity

0.67, LACTEL absorbables). The polymer-containing organic solution was sonicated into

2 mL of pure water using a probe tip sonicator (Misonix Sonicator S-4000, Farmingdale,

NY) for 30 sec in continuous mode at 40% amplitude then diluted into 8 mL of pure

water under magnetic stirring in a fume hood. The solvent was allowed to evaporate for

at least 2 hours, at which point the NPs were collected and purified by repeated

ultrafiltration using Amicon Ultra-4 100,000 NMWL cutoff filters (Millipore, Billerica,

MA).
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6. 3. 3. Physicochemical Property Characterization. NPs were prepared, purified, then

resuspended at ~100 ug/mL. Chlamydia trachomatis were diluted to ~107 IFU/mL. The

size and zeta potential were measured for each solution by quasi-elastic laser light

scattering using a ZetaPALS dynamic light scattering detector (15 mW laser, incident

beam 676 nm, Brookhaven Instrument Corporation).

6. 3. 4. Nanoparticle-Chlamydia Vaccine Formation. In a typical formulation designed

to yield sufficient material for 20 mice, 13.3 mg of cationic or anionic NPs were prepared,

purified, then resuspended in a dilute pH 6.0 solution. To this was added 2.8x10 8

Chlamydia trachomatis and solution added to yield a total volume of 400 uL, taking care

to ensure that the pH of the resulting solution remained at pH 6.0. This mixture was then

incubated at 37'C for at least 30 minutes in the dark under gentle shaking. Controls were

prepared in the same manner, only with an appropriate buffer solution in place of a NP

suspension.

6. 3. 5. Nanoparticle-Chlamydia Vaccine Characterization. Atomic Force Microscopy.

AFM samples were prepared as described, with slight modifications. Cells with or

without nanoparticles were deposited on a freshly cleaved mica surface. Samples were

air-dried 4-8 h before imaging with a Dimension V 3100 atomic force microscope

(Veeco Instruments Inc., Plainview, NY). The instrument has a 100-Im multi-purpose

large scanner and was operated in tapping mode with speeds ranging from 0.5 to 1.0 Hz

and 512 pixels per line scan. A Veeco MLCT-E cantilever with a nominal spring constant

of 0.5 N m- and a resonant frequency ranging from 26 to 50 kHz was used for imaging.

For all samples, first-order flattened topography and deflection scans were acquired with

sizes ranging from 1 to 75 pm.
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Dynamic Light Scattering. NP-Chlamydia vaccines were formed as described and

measured on a Zetasizer Nano ZS (Malvern, UK) using a He-Ne laser at 633 nm with a

max 5mW of power.

Flow cytometry. 2 mg of NPs were prepared and purified. Cationic NP-Chlamydia

formulations were formed as described in section 5. 3. 4, with the following

modifications: 108 IFU/mL Chlamydia were preincubated with 5 uL of a working

solution of BacLight Red (Invitrogen) for 15 minutes before adding to the Alexa-488

modified NPs in the indicated quantities in a total volume of -600 uL. These were

incubated for 1 hr then run on a flow cytometer (FACSCalibur, BD Biosciences, Koch

Institute Flow Cytometry Core). Forward scatter (FSC), side scatter (SSC), green

fluorescence (ex: 488, filter: 530/30), and red fluorescence (ex: 488, filter: 650 LP) data

were collected on a minimum of 1,000 events per sample. Bacteria were gated for live

using FSC vs. SSC plots using an untreated negative control for reference.

6. 3. 6. Vaccination. The indicated vaccine formulations and controls were administered

on day 0 via various routes of infection. Each mouse received 0.67 mg of NP and 1.3x10 7

IFU. Transcervical inoculation was performed using the Non-Surgical Embryo Transfer

Device (NSET). Essentially, the mice were briefly restrained while a single small plastic

speculum was inserted into the vagina. This allowed a special micropipet tip (on a regular

pipetter) to be positioned for precise delivery of 10-20 ul of the vaccine formulation

across the cervix. For intranasal challenge, mice were anesthetized and a drop of the

vaccine formulation was placed on its nostril until it was inhaled. For subcutaneous

inoculation, the conjugate was be administered under the skin at the base of the tail or

flank.
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Chapter 7

Summary, Conclusions, and Suggestions for Future Work

7. 1. Summary and Conclusions

This thesis sought to contribute towards the development of technologies that might

improve the management of bacterial infections and is organized into two major thrust

areas: (1) treatment: using NPs for antibacterial drug delivery, and (2) prevention:

developing a vaccine formulation for the model bacterial pathogen Chlamydia

trachomatis. Work in the first part was motivated by observing that currently, there is a

significant need for new technologies that can be applied for the treatment of bacterial

infections. Existing drugs are slowly succumbing to drug resistance and may lose potency

in vivo due to biofilms, abscesses, or acidity in some cases. Compounding this concern is

the observation that the pipeline for new antibiotics is thin. In addition to strategies aimed

at developing new drugs, there is a need to explore new methods that might make

existing drugs more effective. More effective delivery is one method to improve the

effectiveness of a drug by increasing the local concentration while reducing the systemic

dose, which also has the benefit of reducing toxicity, a prevalent feature of drugs

designed to treat drug resistant organisms. The second part was motivated by the

observation that there is currently no prophylactic vaccine available for Chlamydia

trachomatis in humans, despite it being the most common bacterial sexually transmitted

disease in the world.

This work involved the use of polymers containing poly-L-histidine, a polymer that

demonstrates pH sensitivity particularly in the range 5.5-8.0."- In the first part, we used a
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triblock copolymer poly(D, L-lactic-co-glycolic acid)-block-poly(L-histidine)-block-

poly(ethylene glycol) (PLGA-PLH-PEG). Each segment within this polymer structure

was designed to serve a particular function. The PLGA block is the most hydrophobic

and forms an anchor point and core for the NP self-assembly process. PLGA is known to

precipitate into a matrix-like structure that can encapsulate active agents, such as drugs or

polymer-drug conjugates.4 PLGA is also attractive for biomaterial development because

it has been used for years in the clinic in controlled release microparticle formulations

and resorbable sutures, providing some validation of its safety. The PLH segment is a

polymer of the amino acid L-histidine, characterized by its imidazole group with a side

chain pKa ~6.0-6.5. At pH values <~6.0-6.5, the polymer will have a net positive charge.

This net positive charge may be used to bind to negatively charged biological

components, such as bacteria, protein, or human cells. It should be noted that under

conditions where there is a change in environmental pH from above to below pH ~6.0,

these NPs will demonstrate an increase in the cationic charge density. Increased cationic

charge density can be used to bind to target biological components, such as bacteria,

which tend to be negatively charged. The PEG segment was incorporated to improve the

circulation time of the NPs in the blood at physiologic pH 7.4, as has been widely

reported.5

The basis for our work focused on treating established infections is documented in

Chapters 3-5. Here we begin developing PLH-containing NPs, with the goal of taking a

step towards improving drug targeting to infections. Improved drug targeting might allow

for higher local but lower systemic concentration, a combination that can potentially

make therapeutics more effective and less toxic. This is worthwhile for two reasons: (1)
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methods of improving drug therapy are needed to reduce the impact of drug resistance

(DR), even if the effect is only to delay the onset of DR thanks to improved properties

like delivery, and (2) drugs used to treat DR infections tend to be more toxic, particularly

in patient populations that have significant comorbidities. Given the potential

demonstrated by NPs in bacterial infectious disease, cancer, and cardiovascular disease in

previous work,6-" we used a NP delivery system as a starting point. We pursued an

infection-targeting strategy relying first on the phenomenon of "passive" accumulation of

NPs at sites of infection, since bacteria can trigger an inflammatory response with release

of vascular mediators.1 Second, we explored the potential of further increasing

targeting potential by adding an element of "active" targeting to bacteria, in the form of

acid-sensitive cationic surface charge generation. Inflammation has been associated with

acidity since at least the 1950s.15 The precise mechanism is not completely understood,

but likely involves production of acids during phagocytosis and release of acidic

mediators of inflammation. Further, aggressive growth or expansion tends to bring with it

high oxygen consumption (if applicable for the bacterium), and if this occurs in an

environment where there is low oxygen tension at baseline, an acidic microenvironment

can be created by the liberation of acidic metabolic products. This decreased acidity can

sometimes impact the efficacy of therapy, as some antibiotics may lose potency under

these conditions (while some gain potency). Of interest to us in this application, acidity

acts as an indicator of the presence inflammation, which may be more pronounced in

patients with an aggressive bacterial infection, as well as a potential marker of places

where a boost in drug potency is needed.
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Our initial efforts to design and test antibiotic NPs are documented in Chapter 3. We

began by evaluating the physicochemical properties of the NPs, finding that there is a

pH-dependent change in the zeta potential from slightly anionic to cationic as the pH

declines from pH 7.4 to 5.5. This correlated well with an increase in binding to both

Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria at

the lower pH range (pH < 6.5). We demonstrated the ability to encapsulate the model

antibiotic vancomycin, which is used to treat Gram-positive infections, using a double

emulsion / solvent evaporation strategy, then showed the ability to deliver it via NP form

to inhibit the growth of S. aureus with a release kinetic on the order of ~50 hours. The

major conclusion from the studies in Chapter 3 that the NP formulations explored may be

better than free drug only if they are able to achieve high sustained local drug

concentrations at the infection site, since the free drug formulations are nearly 4x more

effective at the same total concentration of vancomycin. It is likely that this difference is

because much of the vancomycin loaded in the NPs is unable to interact with the bacteria,

and that the impact of the PLH-containing NPs interacting with the bacteria was quite

modest. Given this observation, work continued in two major directions: (1) further

evaluation of the NP's ability to target bacteria under more complex biological conditions

(Chapter 4), and (2) exploration of methods to enhance activity (Chapter 5).

In Chapter 4, we sought to continue exploring the potential of this system for antibiotic

delivery by gaining a greater understanding of the interactions of PLH-containing NPs

with selected biological components. These biological components were selected based

on ones one might expect to impact the ability to target bacteria, particularly under

conditions found at a site of infection: (1) mammalian cells, and (2) soluble protein.
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Mammalian cells are particularly significant, since they are present in high numbers at a

typical infection site, and are widely known to internalize NPs, particularly if they are

cationically charged.''17 We began by evaluating the binding of PLH-containing NPs to

two model mammalian cells: RAW 264.7 murine macrophages, a model phagocytic cell,

and LNCaP prostate adenocarcinomas, a model tissue resident cell. We found that the

NPs demonstrated binding/internalization to both of these cell types, particularly at low

pH using a combination of flow cytometry and fluorescent microscopy techniques. To

further understand NP-mammalian cell interactions, we explored the kinetics of binding

and compared it to that of binding to bacteria. We observed that binding saturation in

mammalian cells was slower than the saturation in binding to bacteria, suggesting the

possibility of differential targeting based on kinetic arguments under a narrow set of

conditions. Of course, this observation needed to be explored further. To do so, we used a

simple model, in which NPs would be co-incubated with bacteria and a monolayer of

mammalian cells (LNCaP). We found that there was retained binding to bacteria, but that

this was attenuated by the presence of the monolayer. However, this simple model was

not a complete picture, since there are negatively charged proteins at a site of infection

which might compete with the NPs for binding to the bacteria. Therefore, we sought to

explore the effect of a model negatively charged protein, albumin (from bovine serum,

BSA), and studied the NP binding properties at different concentrations of this protein.

Albumin has been shown to passively extravasate from the vasculature at sites of

inflammation and is present in abundant quantities, making it a good model protein for

our purposes. The results show that there is a logarithmic reduction in the amount of

binding to bacteria in the presence of BSA. This reduction in binding is significant, with
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a -83% reduction in the fluorescence associated with bacteria at 4 g/dL, a conservative

estimate of the albumin concentration one might observe at a site of infection. We

hypothesized that this reduction was due to reduced PEG density on the NP surface, since

we observed evidence of significant PLH presence on the surface by virtue of cationic

charge by quasi-elastic laser light scattering as well as XPS measurements. We therefore

sought to explore the effect of adding an increasing quantity of PLGA-PEG to the

formulation. We hypothesized that this might impact the binding properties In various

ways, including potentially increasing the PEG density on the NP surface. We expected

this on the basis that PEG is preferentially exposed on the NP surface during NP

formulation and would compete with PLH for sites on the surface, thereby reducing the

PEG density. Given the extensive previous work on reducing non-specific protein

binding by PEG, we hypothesized that this might reduce some of the non-specific protein

binding while potentially still enabling binding to the bacteria. The mixed PLGA-PLH-

PEG / PLGA-PEG NPs (20-60%; 80% represents PLGA-PLH-PEG with Alexa-488-

PLGA) tend to demonstrate a reduction in the amount of binding to bacteria as compared

to what was observed for the 80% PLGA-PLH-PEG at 0 g/dL when there is BSA present.

As the BSA level is increased, the mixed NPs demonstrate comparable or improved

binding relative to the 80% PLGA-PLH-PEG, except for 20% PLGA-PLH-PEG, which

demonstrated low bacteria-associated fluorescence at all BSA concentrations.

Importantly, we also noted that the mixed NPs demonstrated improved stability both over

time and during the stresses of NP purification and processing. Consequently, we chose

40-60% PLGA-PLH-PEG mixed NPs for further evaluation. Next, we sought to evaluate

whether these NPs could demonstrate extended circulation time in vivo. Following a tail
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vein injection into healthy mice, we determined distribution half-lives of these NPs to be

between 1.8-2.0 hours, consistent with an extended circulation time and comparable to a

PLGA-PEG control. The NPs distribute primarily to the spleen and liver, suggesting

clearance by the mononuclear phagocytic system. We conclude from the results in

Chapter 4 that targeting bacteria based on cationic charge using PLH-containing NPs is

likely to be complicated, at the very least, by the presence of both infection-resident

mammalian cells and proteins. We expect that in vivo, the NPs will be taken up by

mammalian cells and covered by protein, though the precise impact of this on the overall

targeting strategy is likely to be different based on the specific microenvironmental

factors of each infection, which are also going to vary with time within a given infection.

These results have significant implications for the use and design of these NPs for

delivery of antibacterials. In particular, these results suggest that one should select drugs

to load inside of the NPs that are able to diffuse through the mammalian cell membrane,

since it is likely that mammalian cells will endocytose these NPs and sequester them in

subcellular compartments, in addition to being covered, at least in part, by protein. In

addition, these results suggest new avenues to pursue should seek to either take advantage

of the subcellular targeting potential of this delivery system, such as for treating

tuberculosis (TB), or other intracellular bacterial pathogens.

Chapter 5 documents our efforts to improve the potency of the NP formulation by co-

delivering a synergistic drug combination. Initial studies allowed us to confirm previous

reports (Timothy K. Lu, personal communication) that vancomycin works synergistically

with silver, as determined using the fractional inhibitory concentration (FIC) and

checkerboard methods. Extensive previous work has shown that silver(I) can form
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complexes with various histidine-containing materials. We therefore sought to

incorporate silver(l) into our NP structure. Following an established protocol for silver(I)

incorporation onto histidine, we show using a variety of techniques such as zeta potential,

TEM, XPS, FT-IR, TGA, DSC, and UV-Vis the loading of -2-5 wt% silver. Growth

inhibition studies against Staphylococcus aureus show that the NPs containing both

silver(I) and vancomycin are more potent than NPs containing only vancomycin or only

silver(I). We also tested the growth inhibitory potential in a vancomycin-resistant strain

of Enterococcusfaecalis (VRE), finding that the presence of vancomycin in the NPs had

a negligible effect on growth inhibition, but that co-delivery still had an improved effect

on growth inhibition in this DR strain. We conclude that co-delivery of silver(I) and

vancomycin improves the potency of PLH-containing NPs in strains where the bacteria

are sensitive to both drugs, but that there is future work needed to continue developing

this system. In particular, methods are needed to establish greater stability of silver(I) on

the NP surface. Initial efforts were made in this regard by exploring the potential to

reduce the silver(I) to silver(O) using sodium borohydride, but we found that the reduced

silver NPs demonstrated unacceptable acute toxicity to a model human cell line (LNCaP).

Chapter 6 documents our efforts to use PLH-containing polymeric NPs to formulate a

vaccine against Chlamydia trachomatis, the most common bacterial sexually transmitted

disease in the world. Currently, there is no effective prophylactic vaccine against

Chlamydia for in-human use despite decades of development, in part due to the poor

immunogenicity of inactivated Chlamydia but also due to how challenging it has been to

develop suitable adjuvants or delivery systems for use with this pathogen. This is often

attributed to toxicity, something that can be tolerated only in very rare cases in a
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prophylactic vaccine due to the target patient population being healthy young adults. The

most commonly used adjuvant, the FDA-approved adjuvant alum, tends to promote Th2-

weighted cytokine responses and humoral immunity, which are not optimal in Chlamydia

vaccines. Chlamydia is an intracellular pathogen that is cleared primarily by action of

IFN-y secreting CD4+ T cells, though other components of the immune system are

believed to play an ancillary role, including NK cells and antibody-secreting B cells.

Consequently, we sought to develop a prophylactic vaccine formulation against

Chlamydia trachomatis designed to contain the necessary components to elicit protective

immunity via CD4+ T cell and Thl-weighted immune responses. The necessary

components include (1) the antigenic stimulus, for which we chose whole UV-inactivated

Chlamydia due to the more native presentation of epitopes as well as potential for

synergistic effects between multiple epitopes, (2) the adjuvant, for which we chose the

TLR7/8 (in humans) agonist R848, which is known to induce Thl-weighted immunity,

and (3) the delivery system for the vaccine, for which we used cationic polymeric NPs.

These NPs were formulated by encapsulating an R848-poly(lactic acid) (R848-PLA)

conjugate in a poly-L-histidine (PLH)-containing PLGA-based NP, then co-administering

them with the UV-inactivated C. trachomatis. Following studies to define conditions

under which the NPs will yield a balance of positive charge with sufficient input of

R848-PLA, we show that this cationic NP-Chlamydia formulation is able to induce the

expansion of Chlamydia-specific, TCR-transgenic, CFSE-labeled, adoptively transferred

CD4+ T cells on day 6 post-vaccination. Further, we show the ability to induce protective

immunity against C. trachomatis at 1 month post-vaccination, which we show to be a

CD4+ T cell dependent process and independent of antibodies and B cells. We conclude
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from these studies that R848-encapsulated PLH-containing NP-UV-inactivated

Chlamydia formulation shows promise as a prophylactic vaccine formulation, though

more work is needed to optimize the precise molecular structure of the polymer and

macromolecular structure of the vaccine to yield maximal anti-Chlamydia immunity.

7. 2. Summary of Suggestions for Future Work

This thesis was concerned with the development of technologies for improving the

management of bacterial infections and was divided into efforts aimed at: (1) treatment

of established infections, and (2) prevention of infections through prophylactic

vaccination.

Further work in treatment of established infections can be summarized as follows:

1) Increasing the specificity of targeting bacteria. Our efforts here have shown that

selective production of cationic charge at a site of infection, while potentially

improving specificity as compared to perpetually cationic NPs, still faces

significant non-specific binding at a site of infection as a major challenge. Work

is needed that might lead to greater specificity for bacteria from a systemic

injection if the concept of improved targeting is to be achieved. If one is to

continue the idea of selectively producing a cationic charge in the vicinity of

bacteria triggered by acidity, it will be necessary to precisely define conditions

under which NPs will achieve selective targeting of bacteria in the presence of

high protein concentration and mammalian cells. Because of the complexity and

time dependence of these conditions in an actual infection, any in vitro studies

will likely need to be confirmed in a predictive in vivo model. Exploring the

impact of charge magnitude on targeting ability is likely to be a very important
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factor. Previously, it has been shown that a very high cationic charge (+47 to +65

mV) is capable of achieving this.18 To yield this magnitude of charge, it might be

necessary to identify a pH-sensitive material with a larger density of protonable

groups, since the linear PLH polymers explored in this thesis do not achieve such

high zeta potentials. In addition, greater pH-sensitivity leading to a shorter

dynamic range might broaden the applicability of the targeting strategy presented

here, especially if sufficient cationic charge can be generated by pH ~6.8. Another

potential strategy to achieve improved bacterial targeting specificity is to use

targeting ligands conjugated to the surface of NPs. These might enable binding to

bacteria independent of the presence of factors such as high protein

concentrations. A wide variety of targeting ligands have been explored in the

literature already for this purpose (for a detailed discussion, see Chapter 2),

though more work is needed to evaluate their potential to improve the activity of

NPs. A potential pitfall of this strategy is that bacteria may develop resistance to

highly specific targeting ligands. Therefore, it will be necessary to select a

targeting ligand that targets bacterial components that are more essential to

survival, such as is the case with some antimicrobial peptides.

2) Increasing potency. Another major hurdle to using NPs for antibiotic delivery is

that it will be necessary to significantly improve efficacy. This can best be

appreciated by noting how much drug needs to be delivered to achieve an effect.

A typical dose of an antibiotic is on the order of grams per day on a daily basis for

a week to two weeks in some cases, sometimes even longer. Given the drug

loading and potency achieved in this thesis, this suggests that there will be
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hundreds of grams of polymer delivered a day, which is very high. By increasing

the potency of a drug via NP formulation, the quantity of polymer delivered can

be reduced, particularly if the NP can also effectively target the antibiotic to the

infection site. Strategies to improve drug potency often involve a synergistic

effect between the NP and the drug, such as using a NP to enhance membrane

permeability or produce hyper local drug concentrations. 19 Cationic NPs have

successfully been shown to achieve toxicity independent of any antibiotic

delivery," 10 it might be interesting to identify drugs that might interact

synergistically with these NPs and explore methods to achieve high drug loading.

In Chapter 5, we explored the potential to co-deliver the synergistic combination

of silver(I) and vancomycin. This method was shown to improve the potency of

the NP formulation, but further work was needed to make this a more clinically

viable drug delivery method. In particular, increasing the stability of the silver(I)

loaded onto the NPs was needed. We tried a method involving reducing the

silver(I) onto the NP using sodium borohydride, but we observed unacceptable

acute toxicity in model human cells. Further work might involve understanding

the mechanism of this toxicity. Following an understanding of the mechanism of

toxicity, it may be possible to design a strategy that may overcome this particular

hurdle. In addition, it will be necessary to understand whether these reduced silver

NPs may continue to demonstrate extended circulation in vivo as well as bacteria

targeting potential.

3) Establishment of predictive in vivo models of infection. The work contained in this

thesis focused on treatment of established infections used acidity as a method to
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identify sites of infection in the body. Acidity has been documented in human

patients under various conditions, but requires further exploration to find a

suitable in vivo model that mimics the formation of acidity as observed in humans.

To continue exploring the pH-sensitive targeting mechanism as developed in this

thesis, it will be necessary to characterize the formation of acidity both in terms of

the anatomical spread of the acidity as well as the magnitude of the pH depression

in candidate animal models. Potential examples include pneumonia models,

subcutaneous abscess models or models of bacterial vaginosis.

4) Evaluation of infection targeting potential by NPs and efficacy in predictive in

vivo infection models. Once an appropriate in vivo model of infection is

established and characterized, it will be possible to evaluate the potential to target

sites of infection from a systemic injection on the basis of a selective cationic

charge-based targeting strategy. This can be achieved, for example, by using

Alexa-647-labeled 40-60 wt% mixed PLGA-PLH-PEG / PLGA-PEG NPs,

injecting them intravenously by the tail vein, and then using an in vivo imaging

technique to explore the co-localization of fluorescence over time with

fluorescently tagged bacteria. Following confirmation of targeting potential, one

can envision testing the comparative efficacy of the delivery systems.

Further work in development of prophylactic anti-Chlamydia vaccines is summarized as

follows:

1) Further exploration of the precise mechanism of action. The results contained in

this thesis begin to offer an explanation for the mechanism of action, but more
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work is needed to explore this in greater depth. We have shown here that the

formulation containing PLH (which yield a cationic NP surface charge), leads to a

robust immune response. However, greater detail in the precise molecular

structure of the vaccine formulation is needed. Questions to be resolved include:

what are the structures formed by the mixture of cationic NPs and UV-inactivated

Chlamydia, and which of these lead to productive activation of the immune

system? How exactly do the different substructures formed contribute to the

induction of immunity, if more than one is involved? Which cell types are

involved in activating the immune response in vivo, and how are these being

targeted by these key structures? Many of these questions can begin to be

resolved using a suite of imaging techniques, such as scanning or transmission

electron microscopy, further AFM imaging, confocal fluorescent imaging, and in

vivo imaging methods. Another interesting question is whether the effect observed

here can be broadened to include other cationic NPs. To perform this, one could

test the efficacy of other cationic NP formulations. In particular, one could try

creating a cationic charge by changing the cationic polymer used, such as trying

poly(L-lysine), poly(ethyleneimine), poly(L-arginine), or chitosan, using cationic

surfactants, such as dimethyldioctadecylammonium (DDAB), Eudragit, or amine-

modified poly(ethyleneglycol), among many others. It is important to select

agents that will reduce the likelihood of toxicity, since there is very low tolerance

for toxicity in the target population for the vaccine.

2) Increase loading of R848 adjuvant. A consistently observed challenge in the

development of Chlamydia vaccines has been toxicity. This is often due to high
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systemic adjuvant exposure, the result of ineffective targeting of the adjuvant

precisely to the key antigen presenting cells involved in inducing the immune

response. The NPs that we have developed here use R848-poly(lactic acid)

(R848-PLA) to load adjuvant, but this approach nevertheless leads to ug of R848

per mg of PLA. Recently applied polymer synthesis techniques have

demonstrated the ability to produce polymers with side chains that allow an active

agent to be loaded at higher levels than traditional approaches, which often yield

only one drug molecule per polymer chain or less. If proper NP targeting to the

immune system can be achieved, one can expect that by loading a larger quantity

of adjuvant per mg of NP, a potentially lower total dose of adjuvant could be

delivered systemically. This lower systemic adjuvant dose, if the same degree of

protection could be shown, might reduce the risk for toxicity observed in further

studies. In addition, it might be interesting to explore the impact of different R848

release rates on the vaccine efficacy.

3) Test efficacy of vaccine formulation in higher animal models. The studies

performed here have only explored the ability to protect mice from infection with

Chlamydia. However, the immune systems of mice and humans are quite different,

and further evaluation of the potential needs to be performed in higher animal

models as this work begins to be translated towards the clinic.

4) Explore potential to vaccinate against other bacterial infections. The technique

described here has only been explored for vaccination against Chlamydia. It may

be worthwhile to explore whether cationic NPs can be used to vaccinate against
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other bacterial infections, such as tuberculosis, which has so far evaded effective

vaccination.
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