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Abstract

The interpretation of echoes collected by active remote-sensing systems, such as sonar

and radar, is often ambiguous due to the complexities in the scattering processes in-

volving the scatterers, the environment, and the sensing system. This thesis addresses

this challenge using a combination of laboratory and field experiments, theoretical

modeling, and numerical simulations in the context of acoustic scattering by marine

organisms. The unifying themes of the thesis are 1) quantitative characterization of

the spectral, temporal, and statistical features derived from echoes collected using

both broadband and narrowband signals, and 2) the interpretation of echoes by es-

tablishing explicit links between echo features and the sources of scattering through

physics principles. This physics-based approach is distinct from the subjective de-

scriptions and empirical methods employed in most conventional fisheries acoustic

studies. The first part focuses on understanding the dominant backscattering mecha-

nisms of live squid as a function of orientation. The study provides the first broadband

backscattering laboratory data set from live squid at all angles of orientation, and con-

clusively confirms the fluidlike, weakly-scattering material properties of squid through

a series of detailed comparisons between data and predictions given by models de-

rived based on the distorted-wave Born approximation. In the second part, an exact

analytical narrowband model and a numerical broadband model are developed based

on physics principles to describe the probability density function of the amplitudes

of echo envelopes (echo pdf) of arbitrary aggregations of scatterers. The narrowband
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echo pdf model significantly outperforms the conventional mixture models in ana-

lyzing simulated mixed assemblages. When applied to analyze fish echoes collected

in the ocean, the numerical density of fish estimated using the broadband echo pdf

model is comparable to the density estimated using echo integration methods. These

results demonstrate the power of the physics-based approach and give a first-order

assessment of the performance of echo statistics methods in echo interpretation. The

new data, models, and approaches provided here are important for advancing the

field of active acoustic observation of the ocean.
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Chapter 1

Introduction

1.1 Motivation

Active remote-sensing systems acquire information by transmitting signals and re-

ceiving echoes from the subject(s) of interest. One major advantage of such systems

over direct on-site measurements is the ability to provide synoptic data over a large

spatial scale across temporal spans relevant to the goal(s) of the study. For research

fields such as oceanography and atmospheric science, such information is often de-

sirable so that comprehensive understanding of the interaction among various com-

ponents involved in the system can be developed (Le Chevalier, 2002; Medwin and

Clay, 1998). In essence, if direct measurements of a particular quantity is considered

"point samples" from its distribution, remote-sensing systems provide information

that "connects the dots" through the interpretation of echoes. Another primary ad-

vantage of remote-sensing systems is the ability to provide data from study sites that

are difficult to access or under harsh conditions. For example, in oceanography, in-

formation is often needed from locations that are remote or at great depth, and the

instruments are often damaged by wind, waves, currents, corrosion, bio-fouling, pres-

sure, etc. To overcome these challenges, acoustic signals, which suffer significantly

less attenuation in sea water than electromagnetic signals, have been widely used to

probe and characterize both the ocean interior and its boundaries (Medwin and Clay,

1998; Urick, 1983). Through evolution, similar remote-sensing techniques have also
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been adopted by echolocating animals, such as bats and dolphins, for foraging and

navigation (Au, 1993; Griffin, 1958).

The study of biological oceanography is vital in understanding marine ecosystems

and carries social and economic consequences as human utilization of ocean resources

for food and energy have increased steadily over the past few decades (Mann and

Lazier, 2005; Roberts, 2002). Basic features of biological aggregations, including

taxonomic composition, patchiness of their spatial distribution, and the transient

nature of their occurrence, are of fundamental importance in constructing a complete

picture of biological oceanography. Such information can be collected using a variety

of techniques involving the use of nets, optics, and acoustics (Harris et al., 2000).

Net-based methods have been traditionally used to allow precise identification of the

organisms and collection of genetic samples as well as life history data including

animal length, weight, growth of gonad, etc. However, these methods suffer from

problems such as net-avoidance, damage to animals, and their inherent temporal and

spatial sparsity. Optical methods are capable of providing information efficiently for

animal identification and behavior observation, but are limited in range and the small

sampling volume due to the strong attenuation of electromagnetic wave in sea water.

Contrary to the above two methods that primarily deliver point samples with sparse

temporal and spatial coverage, active acoustic methods, which can provide synoptic

data in high resolution across relevant temporal and spatial scales, have therefore

been used extensively as a complementary survey tool in biological oceanographic

and fisheries studies (Klemas, 2012; Medwin and Clay, 1998).

However, the interpretation of acoustic echoes from marine organisms can be

highly ambiguous, due to the complexity involved in the sound scattering processes.

For example, the echoes are determined jointly by the properties of the transmitted

signals, the propagation of sound to and from the scatterer(s), characteristics of the

transmitting and receiving sensors (transducers), as well as the acoustic scattering

features of the scatterer(s) (Medwin and Clay, 1998; Urick, 1983). Unique determina-

tion of the sources of scattering is often difficult, and requires detailed understanding

of the influences of each of the above contributing components. This research is aimed
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at providing new data, models, and approaches that can serve as the basis of future

development of accurate and reliable techniques for the interpretation of echoes. A

brief review of the studies of acoustic scattering from marine organisms is given in

the sections below, followed by an overview of the research conducted in this thesis.

1.2 Acoustic scattering from individual marine or-

ganisms

1.2.1 Principles of acoustic scattering

The acoustic scattering properties of any given object can be fully described by its

complex scattering amplitude, f, which has both spectral and directional dependen-

cies determined by the target's shape, size, angle of orientation, and material proper-

ties, such as the mass density, p, and sound speed, c (Medwin and Clay, 1998). In cases

where the echoes are measured in the backscattering direction, as the dynamic range of

the scattered signals is typically very large, a logarithmic measure of the backscatter-

ing amplitude is commonly used, defined as target strength (TS), expressed in units of

decibels (dB) relative to 1 in 2 , and given by TS = 10 logio Ifbs| 2 = 10 log10 Ubs, where

9bs fbs 2 is the differential backscattering cross section, and fb,, or backscattering

amplitude, is the scattering amplitude evaluated in the backscattering direction.

The scattering of a given object generally varies strongly as a function of frequency

depending on the size of the object relative to the wavelength (Medwin and Clay,

1998). This functional dependency can be understood by comparing the acoustic

wavelength (A) to the characteristic dimension of the object (a, such as the radius for

spherical object or the length of elongated objects) through the dimensionless quanti-

ties ka, where k is the acoustic wavenumber, defined by k = 27r/A. The ka < 1 case is

usually referred to as the "Rayleigh scattering region", where the wavelength is much

larger than the object and the backscattering cross section is generally proportional

to (ka)" for objects without gas inclusion. When ka >> 1, the acoustic waves can be

approximated as "rays" in this "geometrical region", and the scattering occurs at the
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discontinuities within and at the boundaries of the object (Medwin and Clay, 1998).

In the intermediate region, however, the scattering characteristics are complex and

contain prominent structures, such as resonances, depending on the detailed physical

properties of the target (Ainslie and Leighton, 2011).

For objects with simple geometry and internal structure, such as spheres and

spherical shells, the exact scattering functions can be derived analytically and used for

benchmark assessment for the scattering from more complex objects or verification of

other approximate solutions. The scattering functions can be obtained by solving the

Helmholtz-Kirchhoff integral over the object boundary, or by expanding the solutions

to the wave equations in convenient coordinate systems, and matching the boundary

conditions at the interface of the scatterer and the medium. In the latter case,

the scattering function can be understood as a series of "modes" supported by the

particular geometry and material properties of the object. For example, the dominant

resonance of a gaseous body in the ka < 1 region is trackable through the lowest mode

in the modal-series solution, while the inclusion of higher modes gives a complete

description for the scattering across all ranges of ka.

Although marine organisms are generally of much more complex outer shapes and

internal composition, studies of the acoustic scattering properties of simple objects

bring important insights that can be applied to understand the scattering from marine

organisms, as will be seen in the next section.

1.2.2 Scattering models

Quantitative interpretation of echoes for biologically-relevant information requires de-

tailed knowledge on the acoustic scattering characteristics of different types of marine

organisms. Better understanding and modeling capabilities for the scattering from

individual animals form the basis for accurate interpretation of echoes collected in

the field (Medwin and Clay, 1998). Despite the often complex shape and internal

structure of animal bodies, the acoustic scattering properties of marine organisms

can generally be determined according to their gross anatomical features and mate-

rial properties of important organs, with additional modification due to individual-
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or behavior-related characteristics. Such information is usually obtained using labo-

ratory experiments with individual animal fixed on the main axis of the transducer

and insonified at a designated set of angles of orientation in the far-fields of both the

transducer(s) and the animal (Stanton, 2012). This setup allows direct observation

of the scattering features from the animal, which are are useful for the development

and verification of scattering models of individual animals. The following sections

discuss the modeling of the acoustic scattering of three representative groups of ma-

rine organisms categorized according to their gross anatomical features: fluidlike,

elastic-shelled, and gas-bearing (Stanton et al., 1998a,b). These three categories were

established from studies on the scattering from fish and zooplankton, and can be

extended to include other animals with similar anatomical features.

The fluidlike animals are represented by euphausiids, copepods, and decapod

shrimps, whose bodies are composed primarily of weakly-scattering materials with

sound speed and density very close to those of the sea water. The boundary of the an-

imal behaves acoustically as a fluid-fluid interface and does not support shear waves.

These properties prompt the use of a series of models incorporating the weakly-

scattering material properties with increasingly complicated representation of the

shape of the animal, including a modal-series-based line integral or a ray summation

using a deformed cylinder formulation (Stanton, 1989; Stanton et al., 1993b), and a

distorted-wave Born approximation (DWBA) formulation in which the scattering is

evaluated by a volume integral (Chu et al., 1993; Morse and Ingard, 1987; Stanton

et al., 1998a, 1993a). For fluidlike scatterers with elongated shapes, such as that of

euphausiids, the scattering can be qualitatively described by two rays from the front

and back interfaces between the animal body and the medium at normal incidence,

and the scattering across all angles of orientation can be predicted using more sophis-

ticated model that includes roughness and inhomogeneity within the body (Lavery

et al., 2002; Stanton et al., 1998a). These dependencies have been verified by various

experiments conducted both in the laboratory and in the field (Lawson et al., 2006;

Stanton et al., 1998b).

The elastic-shelled animals, represented by gastropods in the ocean, are char-
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acterized by their possession of a hard elastic shell (Stanton et al., 1998a,b). The

scattering is dominated by the dense elastic shell which gives rise to a series of highly

complicated echoes from the specular reflection of the front interface, internal refrac-

tion and reflections within the the shell and the body, and a class of circumferential

waves propagating on the shell and the immediate surrounding fluid (Stanton et al.,

1998a). Although such decomposition of different scattering components can provide

physical insights to the scattering mechanisms of these animals, the complexity of the

boundary and shape of the elastic shell is challenging, and numerical evaluation of

the wave equation or generalized ray theory is usually necessary for exact modeling

of their scattering functions (e.g., Jansson, 1993; Kargl and Marston, 1989; Marston

et al., 1990; Rebinsky and Norris, 1995).

The third category of animals is characterized by the inclusion of gas in their

body (gas-bearing), such as fish with swimbladders and siphonophores possessing

pneumatophores. Due to the large contrast between the air and seawater, the gas in-

clusion dominates the scattering from this type of animal, and features in the echoes

can be explained by identifying the contributions from the gas bubble and the re-

maining fluidlike body or bony structure, if present (Foote, 1985; Reeder et al., 2004;

Stanton et al., 1998a,b; Sun et al., 1985). Due the complexity involved, the scatter-

ing from gas-bearing animals is generally predicted using hybrid models consisting of

separate models for different scattering regimes (Chu et al., 2006; Clay and Horne,

1994; Jech and Horne, 2002; Stanton et al., 2010).

For the scattering from the gas-bearing organ, when ka < 1, the breathing mode

dominates the scattering with an omnidirectional scattering pattern and a resonance

behavior determined by the volume and associated damping parameters (reradia-

tion, thermal, and viscous damping (Ainslie and Leighton, 2011; Medwin and Clay,

1998). Models are usually derived by solving for the scattering pressure from the

wave equation using simple geometries, such as spheres or prolate spheroids (Feuil-

lade and Nero, 1998; Love, 1978; Ye, 1997; Ye and Hoskinson, 1998), with appropriate

boundary conditions and volumes equivalent to those of the gas-bearing organs. In

the ka > 1 region, on the other hand, the scattering becomes highly directional and
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is determined by the exact shape and orientation of the gas inclusion with respect

to the incidence waves. The scattering in this region has been modeled by the co-

herent summation of a series of objects with simple geometries that jointly capture

the shape of the gas-bearing organ. Examples include the Kirchhoff ray-mode model

which approximates the swimbladder morphology by a series of finite-length cylinders

(Clay and Horne, 1994; Jech and Horne, 2002), and the modal-series-based deformed

cylinder model which evaluates the scattering through a line integral over circular

slices with variable radius along an arbitrary center line (Stanton, 1989; Stanton

et al., 2010). Another class of models often incorporates the complex outer shape

of the swimbladder and uses sophisticated numerical methods such as the boundary-

element method to predict its scattering features (Foote and Francis, 2002; Francis

and Foote, 2003). The scattering from the soft body is generally predicted using mod-

els consistent with the fluidlike material properties of the tissues, such the DWBA

model, or modal-series-based deformed cylinder model and the Kirchhoff-ray model

solved with fluidlike boundary conditions.

Although the scattering contributions from the gas-bearing organ and the body

tissues add coherently to form the scattering from the whole animal, in practice these

two components are usually summed incoherently to model the scattering from the

whole animal. This operation is justified by the relatively weak contribution from the

soft tissue and the smearing of the exact phase information due to the complicated

morphology of the animals (Gorska and Ona, 2003b).

There remain unanswered questions in our understanding of the acoustic scat-

tering from the above organisms. For example, as important as the swimbladder is

in determining the scattering from fish, the depth-dependency of its geometry with

respect to the behavior and life history stage of fish remains unclear (Diachok, 2005;

Fissler et al., 2009b; Gorska and Ona, 2003b; Horne et al., 2009; Ona, 1990). This

question is further complicated by the diversity in the anatomical features of fish

swimbladders, among them the differences between physostomes (fish with a swim-

bladder connected to the stomach through a pneumatic duct) and physoclits (fish

with a closed swimbladder) (as reviewed in Diachok, 2005). Furthermore, although
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key factors influencing the scattering of individual organisms, such as the distribution

of the length, angle of orientation, depth, etc., have been identified in the models, the

relative importance of each factor on the scattering, as well as the variability of these

parameters needs to be quantified systematically in a biologically-meaningful context

(Hazen and Horne, 2003; Lawson et al., 2006).

Although the models introduced above were derived based on the physical proper-

ties of zooplankton and fish, their application may be extended to predict the scatter-

ing from other animals with similar anatomical features and material properties. For

example, the class of models developed for fluidlike zooplankton have been applied

to predict the scattering from a variety of animals with fluidlike, weakly-scattering

material properties, such as squid, fish without swimbladders, and other gelatinous

zooplankton (Brierley et al., 2004; Jones et al., 2009; Kang et al., 2006; Warren and

Smith, 2007; Wiebe et al., 2010; Yasuma et al., 2010, 2006). However, direct appli-

cation of existing models should be treated with caution, since the scattering from

any given animal may be strongly influenced by taxon-specific organs or structures.

Therefore, it is important that dominant scattering mechanisms of different animals

be identified through experiments, and detailed data-model comparison be conducted

to assess the performance of existing models and guide further model development.

1.3 Measurement and analysis of in-situ echo

1.3.1 Echo measurements in field experiments

Active acoustic survey techniques infer biologically-relevant information through fea-

tures in the scattered signals. Depending on the experimental scenario, acoustic

scattering measurements can be categorized into three groups: monostatic, bistatic,

and multistatic, according to the geometry among the transmitter, receiver, and

scatterers (Medwin and Clay, 1998). The transmitters and receivers are spatially col-

located for monostatic systems and are separated for the other two types of systems.

Bistatic measurements refer to the scenarios in which there is one pair of spatially
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separated transmitter and receiver, while multistatic systems often involve multiple

sets of spatially diverse monostatic or bistatic sensors. Most acoustic scattering stud-

ies of marine organisms are conducted using monostatic systems, and therefore the

modeling and analysis generally focus on echoes received in the backscattering direc-

tion. Notable exceptions are theoretical studies and experimental works on forward

scattering from the swimbladders of fish (Diachok, 1999; Ding, 1997; Ye and Farmer,

1996).

To the contrary of the scenarios in laboratory experiments, acoustic scattering

measurements of marine organisms in the field usually involve one or multiple un-

controlled scatterers in the sampling volume (Foote, 1991; Medwin and Clay, 1998).

In this case, characteristics of the sensing system and transducer beampattern, the

locations of the organisms in the beam, and the scattering properties of each individ-

ual organism jointly determine the echo signals received on the sensing system and

have to be taken into account for accurate interpretation of echoes. "Echograms", or

compilations of echo time-series from multiple insonifications of the same scatterer or

sets of scatterers, reveal volumes with high-amplitude echo returns and are usually

used to guide the focus of echo analysis. Conventional acoustic scattering researches,

especially the studies of fish aggregations, rely heavily on subjective description of

morphological characteristics of aggregations on the echograms, but more quantitative

and objective echo analysis methods have been adopted in recent studies to make use

of acoustic information embedded in the echoes (Jech and Michaels, 2006; Simmonds

and MacLennan, 2006).

Sensing systems used in field experiments can also be categorized according to

the directions in which the signals are transmitted and received. Downward-looking

echosounders are standard systems used in fisheries applications and usually involve

higher frequency signals at 10's to 100's kHz for the observation of individuals or

aggregations of organisms located directly below the echosounders (Simmonds and

MacLennan, 2006). Horizontally-looking systems are generally developed for research

purposes and use signals at the range of 100's Hz to 10's kHz for collecting synoptic

data of biological aggregations across a large area (Farmer et al., 1999; Gauss et al.,
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2009; Jones and Jackson, 2009; Makris et al., 2006; Revie et al., 1990; Rusby et al.,

1973; Trevorrow and Pedersen, 2000). These two types of system differ primarily

in the propagation paths of the transmitted and scattered signals, where direct-path

propagation between the transducers and scatterers are expected for most downward-

looking echosounders, and waveguide modulation results from ocean boundaries, such

as the sea surface and seafloor, is important for horizontally-looking echosounders.

Stanton (2012) provides a brief discussion on the pros and cons of each of these

systems.

The sections below review common techniques used for the analysis of in-situ

echoes collected using downward-looking, monostatic systems that are typical for

acoustic scattering studies of marine organisms.

1.3.2 Echoes from individual marine organisms

When the numerical density of organisms is low and the number of organisms in each

sonar resolution cell is less than one, direct measurement of the backscattering from

individual animals is possible by properly thresholding of the echo time-series [often

referred to as "echo counting", (Medwin and Clay, 1998)]. Different from the situation

in controlled laboratory experiment in which the experimental animal is located on

the main axis of the transducer, the amplitudes of echoes from organisms in the

field are modified depending on its location in the sonar beam. This beampattern

modulation has to be removed to recover the actual echoes from the organisms. The

beampattern effects can be eliminated through direct methods in which the target

location in the beam is inferred by comparing the amplitudes and phases of signals

received on separate sector of dual-beam or split-beam transducers, so that the scaling

factor can be calculated and corrected (Ehrenberg, 1989). In cases where single-

beam transducers are used, the distribution of the actual echoes from the targets can

be obtained by indirect methods that utilize deconvolution, inversion, or iterative

procedures to eliminate the influence of the beam pattern (Ehrenberg, 1989; Fissler

et al., 2009a; Stepnowski and Moszynski, 2000).

Analysis of echoes from individual organisms also needs to account for fluctuations
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in the echoes resulting from factors such as variations of the angle of orientation of

the scatterer with respect to the incident field, behavior of the animal, movement of

the transducer, etc. For echoes collected in the field, since the angles of orientation of

the insonified targets is generally unknown, all data are usually pooled for a regres-

sion analysis to derive empirical models for TS prediction in conventional fisheries

acoustic studies. A common form of empirical models assume a linear relationship

between the size of the scatterers and the TS (e.g., Greene et al., 1991; Love, 1971,

1977; MacLennan and Menz, 1996; McClatchie et al., 1996; Wiebe et al., 1990), and a

depth dependency in cases where gas-bearing organs are present in the animals body

and depth-related compression is expected (e.g., Ona, 2003). For laboratory experi-

ments where the angle of orientation of the organisms can be controlled or observed,

attempts have also been made to incorporate the dependence of orientation in the

regression model (e.g., Kang et al., 2005).

Different from the physics-based models introduced in Sec. 1.2.2, these regres-

sion models are derived based on empirical measurements with minimum reference to

physics principles, and have been applied extensively in conventional fisheries acous-

tics studies owing to their relatively simple formulation (Simmonds and MacLennan,

2006). The effectiveness of these models is justified by the assumption that impor-

tant acoustic scattering parameters, such as the distribution of angle of orientation

and animal size, do not vary significantly in the survey area during relevant seasons,

so that echo features revealed by empirical measurements are representative in the

pertinent context. However, due to the same reason, the limitation of these empirical

models should be recognized and cautions should be taken when model parameters

are extrapolated (Fdssler et al., 2008). Nevertheless, empirical measurements from

these studies and the resulting prediction intervals in the regression models provide

important quantitative measures for the natural variability of echoes that ought to be

appreciated in the modeling and analysis of in-situ echoes from live animals (Gorska

and Ona, 2003a,b; Stanton et al., 1993a) (also see Sec. 1.5).
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1.3.3 Echoes from an aggregation of marine organisms

For most biological aggregations encountered in the ocean, the numerical density of

the organisms is usually high enough that the echoes from each animal overlap with

one another. In this case, the scattering is from an ensemble of scatterers of different

types, sizes and angles of orientation, insonified at different locations in the beam.

Conventional analysis typically involves averaging the time-integral-pressure-squared

(TIPS) of echoes from multiple insonification of the same aggregation in an gated

volume, a technique coined "echo integration" in the fisheries acoustics literature

(Medwin and Clay, 1998; Simmonds and MacLennan, 2006). The total scattered

pressure field resulting from N scatterers in a gated volume between time ti and t2

can be written as
N-1

pF (t) = pi,scat(t), (1.1)
i=O

where Pi,scat (t) is the scattered pressure from the ith scatterer. Therefore,

TIPS | p(t)1 2 dt

12 t2 (1.2)
lpi,scat(t)1 2dt + pi,scat )pjscat (t)dt

i$Aj i ti

Across multiple insonifications of the same set of scatterers, the cross terms fluctuate

as a result of random scatterer locations in the sampling volume. Therefore, when

averaged over multiple insonifications, the contribution from the first term (sum of

squares) in (1.2) remain constant while the second term (sum of cross terms) vanishes

with increasing number of insonifications. By relating the squares of the scattered

pressure to the backscattering cross section for each scatterer, approximating the

ranges from all scatterers to the transducer by their mean range, and integrating over

the solid angle subtended by the transducer beampattern, the volume backscattering

coefficient, sv, which represents the total scattering energy from all scatterers included

in the processing gate, can be written as

sv = n(Obs) (1.3)
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where n. is the number of organisms per unit volume, and (ob,) is the averaged

backscattering cross section of a particular type of organism (Foote, 1983; Medwin

and Clay, 1998), which is obtained through use of theoretical models or empirical mea-

surements for individual scatterers as discussed in Sec. 1.2.2 and Sec. 1.3.2. When

there is more than one type of scatterer in the gate, sv is the weighted sum of the

averaged backscattering cross sections of all scatterers. In practice, an equivalent

logarithmic volume backscattering strength, Sv = 10 log 0 sv, is usually used.

The requirement for (1.2) to hold is that the ping-by-ping change in the phase

of each scatterer is large enough that the relative phases among the scatterers can

be approximated by a uniform distribution between [0,27r]. This change is generally

induced by changes in the spatial locations or orientations of the scatterers with

respect with sensing system. This assumption is generally satisfied for the frequencies

commonly used in acoustic scattering studies of aggregations of marine organisms.

The validity of (1.1) and (1.3) have been established in a study of the linearity and

addition theorems for fisheries acoustics by Foote (1983).

The above analysis also assumes that the transmitted signals are not attenuated

by the scattering and absorption of other scatterers [characterized by the "extinction

cross section" (Medwin and Clay, 1998)], and that higher-order scattering among the

scatterers is negligible. These assumptions may be violated in cases where the insoni-

fied aggregation is dense enough that there is excess attenuation of the transmitted

signals due to extinction and that the second- or higher-order scattering becomes

important due to the small spacing among scatterers. These effects can result in

important consequences in the estimation of organism abundance (Foote, 1990, 1999;

Foote et al., 1992; Stanton, 1983) and, in cases where coherent interference among

closely- and regularly-spaced fish are important, affect the resonance characteristics

of fish schools (Feuillade et al., 1996; Nero et al., 2007).
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1.3.4 Analysis of narrowband echoes from aggregations of

marine organisms

Although the form of (1.3) is simple and can be directly applied to estimate the nu-

merical density of monospecific aggregations, the model ensemble average of backscat-

tering cross section, (bs), depends fundamentally on the choice of key model param-

eters, which can significantly impact the results of echo interpretation. Examples

of such parameters include the distribution of animal size and angle of orientation

with respect to the incident wave. In other words, the same parametrization problem

discussed in Sec. 1.2.2 persists in the analysis of echoes from aggregations of scatter-

ers (Hazen and Horne, 2003; Jech, 2011; Lawson et al., 2006). More sophisticated

application of (1.3) is also necessary for inferring the taxonomic composition of more

complex aggregations.

For example, when independent echo measurements are available at multiple fre-

quencies using narrowband signals (hereafter referred to as "multifrequency" mea-

surements), it is possible to use linear inversion techniques to infer the distribution of

the above key parameters from data. The problem can be set up by arranging mul-

tifrequency observations and model predictions in a matrix form, and solving for the

distribution of unknown model parameters through linear inversion (Greenlaw, 1979;

Holliday, 1977; Holliday et al., 1989; Tarantola, 2005). The accuracy of the results

from such inversion methods depends highly on the spectral features available in the

data and models, as well as the choice of the classes of model parameters incorporated

into the formulation. When the organisms are of significantly different sizes or possess

substantially different anatomical features, such as the differences between small and

large zooplankton, or between fluidlike zooplankton and swimbladder-bearing fish,

the strong frequency-dependent Rayleigh-to-geometric variation in the backscatter-

ing cross section contains valuable information that can be exploited by the inversion

methods. However, although the inclusion of more model classes in the formulation

may improve the resolution of inversion solutions, with only limited number of in-

dependent observations at different frequencies, such an inverse problem can easily
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become underdetermined without unique solutions. In practice, it is also important

that model classes included in the inversion formulation are properly constrained us-

ing groundtruth information obtained through net catches or optical images (Lawson

et al., 2006) and that the sensitivities of inversion results to model class choices are

rigorously quantified (Jech et al., 1995).

Another class of methods seeks to partition echograms into separate areas of inter-

est according to features in the difference between multifrequency volume backscatter-

ing strengths that are consistent with target organisms (Benoit-Bird, 2009b; De Rober-

tis et al., 2010; Jech and Michaels, 2006). For example, the difference between the

volume backscattering strengths at 38 and 120 kHz for a zooplankton-dominated

aggregation will be much larger than that for a fish-dominated aggregation. Such dif-

ferences can be used as a threshold for the partition of the echogram (Higginbottom

et al., 2000; Jech and Michaels, 2006; Madureira et al., 1993). Building on the results

of threshold-based methods where categorical classification is made, recent studies

emphasize the variation in echo measurements and uncertainty in model parameters

by adopting soft classification rules, in which the conditional probability of the ob-

servations under each class is estimated before classification results are determined

(Anderson et al., 2007; De Robertis et al., 2010; Woillez et al., 2012). The utilities

and effectiveness of these methods varies significantly depending on the species com-

position, relative abundance and spatial overlap among species, as well as frequencies

used in the analysis (De Robertis et al., 2010).

There remain many outstanding challenges in the interpretation of echoes collected

using multifrequency narrowband signals. First of all, despite the patchy nature of

marine biological aggregations (Benoit-Bird and Au, 2003; Folt and Burns, 1999),

organisms across multiple trophic levels are collocated in important ecological pro-

cesses such as foraging (Benoit-Bird, 2009a; De Robertis, 2002). This scenario will

make multifrequency echogram partition inadequate in delivering correct information

regarding the dynamics and spatial distribution of the animals. The use of proba-

bilistic, rather than categorical, descriptions in combination with inversion methods

may be more appropriate in these circumstances, but better parametrization and new
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analysis methods for echoes from mixed assemblages are clearly in demand. Further-

more, despite the success of discrimination of echoes from animals of broadly different

size classes, the capability of species identification based on multifrequency measure-

ments in the high ka region is fundamentally limited by the lack of robust features

in the echoes, due to the averaging, and thus smearing, of spectral features of the

scattering from each individual scatterer in an aggregation (Stanton et al., 1993a).

High resolution observations of the temporal evolution of the behavior and spatial dis-

tribution of organisms in the observed aggregations enabled by recent development

of multibeam and broadband echosounders may provide important complementary

information toward better classification results.

1.4 Application of broadband signals in acoustic

scattering studies

The strong frequency dependency in the scattering of different types of marine organ-

isms, such as the Rayleigh-to-geometric scattering transition, is one of the most robust

features for the characterization and identification of scatterers (Medwin and Clay,

1998). Conventional acoustic scattering studies explore these spectral features in the

echoes through use of multifrequency narrowband signals, but ambiguity remains in

the interpretation of echo data, as have been discussed in Sec. 1.3.4.

The use of broadband signals in active acoustic sensing may reduce these ambi-

guities by providing continuous scattering spectra across a wide range of frequencies,

and can increase the probability of capturing important spectral features that may

not have been observed otherwise, such as the swimbladder resonance of fish (Stan-

ton et al., 2010). Through pulse compression processing (Chu and Stanton, 1998;

Turin, 1960), substantially-improved temporal resolution, which is approximately the

inverse of the bandwidth, can be achieved. This improvement is particularly useful

for resolving individual scatterers in an aggregation or identifying sources of scatter-

ing within an animal body. These advantageous properties of broadband signals have
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been used routinely in the operation and research of radar systems (Le Chevalier,

2002; Van Trees, 2001), whereas their common use in the context of acoustic scat-

tering studies of marine organisms is relatively recent (Foote et al., 2005; Stanton,

2009), except for many early at-sea observation of fish swimbladder resonance using

explosives (Chapman et al., 1974; Chapman and Marshall, 1966; Hall, 1981; Hall and

Quill, 1983; Hersey et al., 1961; Holliday, 1972; Thompson and Love, 1996).

Recent progress in the use of broadband signals to study the acoustic scattering

from marine organisms has largely been enabled by the advancements in the manufac-

turing of broadband transducers for both laboratory and field uses (Imaizumi et al.,

2008; Lavery et al., 2010a; Stanton et al., 2010, 1998b). Compared to dangerous

explosives, these instruments allow reproducible signals for reliable calibration and

data interpretation (Stanton and Chu, 2008), as well as continuous sampling over a

large region in field experiments (Lavery et al., 2012; Lawson et al., 2012; Stanton

and Chu, 2010; Stanton et al., 2010). Broadband transducers have also been used

in controlled laboratory experiments and have enabled the identification of dominant

scattering mechanisms for a variety of marine organisms (Foote et al., 2005; Reeder

et al., 2004; Stanton et al., 1998b). Insights from these experiments have formed the

basis for significant developments of theoretical acoustic scattering models (discussed

in Sec. 1.2.2). The application of broadband echosounders at sea also allows high-

resolution imaging of many biological and physical oceanographic processes, with the

additional capability of systematic characterization and discrimination of the scatter-

ing sources (Lavery et al., 2010a,b; Stanton et al., 2012).

New echo features revealed through the broad spectral coverage and significantly-

improved temporal resolution offered by broadband signals has motivated the de-

velopment of sophisticated data-driven and model-based echo analysis methods that

were previously unachievable using narrowband signals. Several different feature ex-

traction schemes have been applied to the broadband backscattering spectra from

live zooplankton and fish measured in the laboratory and the field, and modern

machine-learning algorithms have been applied to the classification of these animals

and estimation of their angles of orientation with respect to the incident wave (Jaffe
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and Roberts, 2011; Martin et al., 1996; Martin-Traykovski et al., 1998a,b; Roberts

and Jaffe, 2007, 2008). The fine temporal structures from fish echoes resolved using

broadband signals have also been explored for their potential of species identification

(Ito et al., 2011; Matsuo et al., 2009, 2012).

On the other hand, the analysis of broadband data also poses new challenges.

For example, in order to avoid problems associated with the uncertainties of the ex-

act locations of spectral resonances in the scattering of spherical standard targets,

sophisticated calibration schemes have been developed by concatenating the usable

band of multiple optimized standard targets (Foote, 2006; Foote et al., 1999a), or by

utilizing only the relatively stable scattering response of the front interface of the stan-

dard target [the "partial-wave" analysis, (Dragonette et al., 1981; Stanton and Chu,

2008)]. However, the potential depth dependency of a transducer's response man-

dates in-situ calibration at operational depth, where stable and on-axis insonification

of standard targets can be difficult, especially for higher frequency transducers with

narrower beamwidths. Recent availability of split-beam broadband transducers could

simplify the problem, but more research is needed to establish a standardized calibra-

tion protocol. Furthermore, different from the case of narrowband echosounders, the

frequency-dependent beampattern of broadband systems has to be taken into account

in the calculation of volume backscattering strength (Stanton et al., 2010). The in-

terpretation of such echoes can be challenging, especially for mixed assemblages with

potentially complex spatial structures. The high ping-to-ping variability observed in

broadband echoes collected in the field also calls for more quantitative description of

the fluctuation of echoes.

1.5 Statistical analysis of echo fluctuations

While conventional studies of acoustic scattering from marine organisms focus on the

analysis of mean echo energy and eliminate fluctuations through averaging, fluctua-

tions in the echoes contain important discriminative features for the characterization

of scattering sources (Olshevskii, 1967). In fact, statistical analysis of echo fluctua-
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tions has been an integral part of routine analysis procedures for many remote-sensing

systems, and is an active research area for those applications. For example, the statis-

tics of electromagnetic scattering from the sea surface is critical for maritime radar

applications and rapid assessment of complicated surface wave profiles (Ward et al.,

2006; Watts and Wards, 2010), and the statistics of acoustic scattering from the sea

floor provide realistic representation of background for target detection purposes in

reverberant underwater environments.

The analysis of echo fluctuations is generally aimed at using various statistical

quantities as features for the interpretation of echo data. These include the probability

density function and summary statistics of the magnitude of backscattering amplitude

(or its envelope, when broadband signals are considered) or echo intensity calculated

by the square of the scattering sound pressure. The relationship between echo fluctu-

ations and the mean backscattering cross section, (obs), can be understood by treating

|fs| as a random variable and using the relationship Var(Ifb3 I) -- Kfb 2 ) _ ( 2fb5D2

and (ubs) - (Ifbs| 2 ) to obtain

(KUs) = Var (I fbs I) + (|fbs j). (1.4)

The degree to which the probability density function of |fsI| (hereafter referred to as

"echo pdf") deviates from the Rayleigh distribution is an important feature in such

analysis. Specifically, when the echoes are from a large number of random compo-

nents, the echo pdf approaches the Rayleigh distribution as a result of the central

limit theorem (Goodman, 1985). The presence of strong coherent component(s) in

the echoes or inhomogeneities in the scatterer ensemble, on the other hand, will cause

the echo pdf to possess heavy tails with strong non-Rayleigh characteristics (Jakeman

and Pusey, 1976).

Motivated by the need to infer biological information through echoes, statistical

analysis of echo fluctuations from marine organisms generally seeks to relate statis-

tical properties of the echoes to the scattering properties of the animal or animal

aggregations. When the scattering from individual animals is considered, echo fluc-
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tuations are associated with the scattering mechanisms of the insonified animal with

respect to its angle of orientation and relative movements of different body parts. For

example, at high frequencies (ka > 1) where the scattering contribution from the

facets and various parts of the fish body are important, the shape of the echo pdf

measured from a single fish varies from non-Rayleigh (can be described by a Rician

distribution) to Rayleigh-like as the activity level of the fish increases (Clay and Heist,

1984). The dependency of the shape of the echo pdf on the dominant scattering mech-

anisms for individual animals at different angles of orientation has also been observed

and discussed with implications on its use for classification purposes (Stanton et al.,

2004; Wiebe et al., 1990). These observations also motivated a recent theoretical

investigation on the statistics of echoes from a randomly-rough, randomly-oriented

prolate spheroid, whose shape is a first-order approximation of many elongated ma-

rine organisms (Bhatia et al., submitted). Although these echoes fluctuations have

been recognized in TS or backscattering cross section measurements in conventional

fisheries acoustic studies (see Sec 1.2.2), their influence on the empirical regression

models through the evaluation of prediction intervals was generally ignored in practice

until recently when probabilistic analysis of echoes became more common (Anderson

et al., 2007; Brierley et al., 2004; De Robertis et al., 2010; Woillez et al., 2012).

In scenarios where echoes are measured through a directional sonar beam, the

uneven weighting factor imposed by the transducer beampattern according to the lo-

cations of scatterers in the beam dramatically changes the shape of the echo pdf's and

must be rigorously accounted for in the analysis (Chu and Stanton, 2010; Ehrenberg,

1972; Moszynski, 2002; Moszynski and Hedgepeth, 2000; Stepnowski and Moszynski,

2000). This random modulation, commonly referred to as the "beampattern effects",

is particularly important for echoes from marine organisms measured in the field since

the scatterer locations in the beam are random, instead of being controlled as in most

laboratory experiments. The beampattern modulation is an important driving factor

for echoes to possess strong non-Rayleigh characteristics and therefore carries signif-

icance in the characeterization of the statistics of echoes (Chu and Stanton, 2010;

Ehrenberg, 1972; Moszynski, 2002; Moszynski and Hedgepeth, 2000).
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The numerical density of marine organisms, given its fundamental importance in

biological oceanography, has been the most common goal of inference in statistical

analysis of echoes from aggregations. Two primary approaches have been taken to

takcle this problem. The first one uses summary statistics, such as the moments and

ratio of moments of the echo pdf, to calculate numerical density of scatterers based

on assumptions of the statistical characteristics of single scatterers and their spatial

distribution (Denbigh and Smith, 1991; Wilhelmij and Denbigh, 1984). The other ap-

proach uses theoretical analysis or numerical simulation to construct parameterized

echo pdf models, and estimate the numerical density of scatterers by fitting exper-

imental or simulated data to the models (Ehrenberg, 1974; Jobst and Smits, 1974;

Peterson et al., 1976; Stanton, 1985a,b). Results of these studies have shown that

echo statistics can deliver information with reasonable agreement with the estimations

given by echo-integration techniques, but the discriminative power of these models

decreases with increasing numerical density of scatterers as a result of the echo pdf's

asymptotic variation toward the Rayleigh distribution (Denbigh and Smith, 1991).

The primary advantage of echo statistics is that, by focusing on the fluctuation,

rather than the mean energy in the echoes, no explicit knowledge of the backscattering

cross section or TS for individual animals or calibration of system is required (Stan-

ton, 1985a; Wilhelmij and Denbigh, 1984). The influence of the variation of various

key parameters associated with the scattering from individual organisms (Sec. 1.2.2)

is absorbed into model assumptions for the statistics of echoes from individual scat-

terers. This therefore provides an avenue for the reduction of dimensionality that can

be advantageous. However, previous studies have not addressed scenarios in which

more than one type of organism is present in an aggregation, a ubiquitous and impor-

tant condition in biological oceanography that motivated the use of multifrequency

narrowband signals and broadband signals in acoustic scattering studies (1.4 and

1.3.4). The problem of lack of discriminative power for dense aggregations is also ex-

acerbated by the rapid increase of sampling volume and decrease of spatial resolution

with increasing range away from the transducer. The fine temporal resolution achiev-

able using the combination of broadband signals and pulse compression processing
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may mitigate this problem and improve the range of applicability for such methods.

Further research is clearly needed to explore the potential advantage of broadband

signals and to clarify the influence of mixed assemblages on the statistical properties

of echoes.

1.6 Thesis overview and specific topics

Accurate interpretation of echoes relies on detailed understanding of the acoustic

scattering properties of different types of marine organisms, influence of the sensors

(transducers), and proper choice of signals and analysis methods capable of reveal-

ing discriminative features that vary as a function of the above and the composition

of scatterers in the insonified volume (Fig. 1-1). This thesis addresses several out-

standing challenges associated with each of these factors through a combination of

laboratory and field experiments, theoretical modeling, and numerical simulation. A

physics-based approach is taken in model development and echo interpretation, using

echo features in the spectral and temporal domains as well as the statistics of echo

fluctuations, with knowledge drawn from signal and probability theory and the biol-

ogy of marine organisms, including anatomy and behavior. The works presented in

this thesis provide new data, models, and approaches that can serve as the basis for

accurate interpretation of echoes from biological scatterers in the ocean.

In Chapter 2, the orientation-dependent backscattering properties from individual

live squid were studied through a combination of a controlled laboratory experiment

and a series of data-model comparisons using DWBA models evaluated with different

shape representations of squid. This study is motivated by the need for accurate

and reliable information on the abundance, distribution, and population dynamics of

squid in the ocean, which are critical for comprehensive ecological studies and fisheries

management. Net-based methods that have been used conventionally to collect such

information for fish species are inadequate for squid, primarily due to the effective

net-avoidance capability of these rapid-moving animals (Starr et al., 1998). Active

acoustic methods can provide a solution to this problem, but the applicability has been
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Figure 1-1: Conceptual diagram of the problems studied in this thesis and the ap-
proaches taken for the analysis of the echoes.

impaired by the long-standing issues concerning the dominant scattering mechanisms

of squid. Furthermore, although several models have been proposed to predict the

scattering from squid based on the hypothesized weakly-scattering material properties

of squid (Arnaya and Sano, 1990; Jones et al., 2009; Kang et al., 2006; Mukai et al.,

2000), a thorough verification of these models over different angles of orientation using

broadband data has not been conducted.

Following similar strategies used in a series of previous studies on the backscatter-

ing of individual zooplankton, fish, and shelled animals (Reeder et al., 2004; Stanton

and Chu, 2004; Stanton et al., 2000, 1998b), broadband signals and pulse compression

processing were used to identify the observed dominant scattering mechanisms at all

angles of orientation of squid. The sources of scattering at different angles of orien-

tation were successfully explained using model predictions in both the temporal and

spectral domains, and recommendations were given for modeling the scattering from

squid in potential field conditions. Variation of the shape of the echo pdf formed by

echoes collected from different ranges of angle of orientation was also examined, and
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the observations were explained based on the identified backscattering mechanisms

with reference to the features of the statistics of echoes from a randomly-rough prolate

spheroid (Bhatia et al., submitted). The majority of material in Chapter 2, excluding

the statistical analysis of squid echoes, has been published in Lee et al. (2012), but

additional figures are included to demonstrate consistent results from more than one

experimental animal.

Chapter 3 and Chapter 4 focus on the development and application of narrowband

and broadband echo pdf models for arbitrary aggregations of scatterers observed using

a directional single-beam transducer in a direct-path geometry without interference

from boundaries. This is the typical scenario encountered in field experiments where

marine organisms are observed from downward-looking echosounders. The models are

constructed based on physics principles and rigorously account for the influences of the

system, signals, and scatterers, as well as the beampattern modulation of the receiver.

These studies are motivated by the desire to establish echo statistics features, such

as the degree to which the echo pdf deviates from the Rayleigh distribution and the

shape of the high-amplitude tail, as new dimensions of information complementary

to the spectral and temporal echo features that can be used for the interpretation

of echoes. It is worth noting here that although these studies are inspired by the

study of biological aggregations in the ocean, the echo statistics models developed

in Chapter 3 and Chapter 4 are generally applicable to scattering signals measured

from different targets in different environments using different systems, such as in the

analysis of vegetation backscattering measured using radar signals.

Chapter 3 specifically addresses the use of narrowband echo pdf models in the

analysis of mixed assemblages, which are defined here for cases in which more than

one type of scatterer are spatially-interspersed and uniformly-distributed within the

volume enclosed by the analysis window. Important examples of mixed assemblages in

nature include collocated fish and zooplankton in foraging processes, forests composed

of mixed vegetation, bubble plumes under sea surface, rocks overlaid on sand ripples

on the seafloor, etc. (Greig-Smith, 1984; Heezen and Hollister, 1971; Onsrud et al.,

2004; Woolf, 1997). The study in this chapter explores the application of discrim-
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inative echo statistics features to facilitate the interpretation of echoes from mixed

assemblages that is often ambiguous using echo integration techniques (Sec. 1.3.4).

An exact, physics-based narrowband model for describing the echo pdf of arbitrary as-

semblages was derived, implemented, and numerically validated in this chapter. This

model was applied to predict echo statistics features from mixed assemblages, which

were found to possess strong non-Rayleigh characteristics that can be related to the

number of dominant scatterers in the aggregations. When used as an inference tool to

estimated the composition of simulated mixed assemblages, this model achieved su-

perior performance than the commonly-used mixture models (weighted sum of pdf's),

sometimes by an order of magnitude. Chapter 3 repeats mostly verbatim the material

in a manuscript submitted for consideration of publication in a peer-review journal

(Lee and Stanton, submitted), with several additional figures included to demonstrate

detailed results of model implementation.

However, the study in Chapter 3 is conducted based on the assumption of narrow-

band signals and is therefore incompatible to the broadband echo data collected by

the recently-developed broadband echosounder systems (e.g., Lavery et al., 2010a,b;

Matsuo et al., 2009; Roberts and Jaffe, 2008; Stanton et al., 2010, 2012). As the

rich spectral information and substantially-improved temporal resolution provided

by broadband signals have been shown to deliver invaluable information for echo

analysis, the statistics of broadband echoes are likely to reveal additional useful in-

formation for the interpretation of echoes. For example, the analysis in Chapter 3

exposed the problem of degrading discriminative power of echo pdf models for dense

aggregations due to the Rayleigh-like echo statistics features resulting from a large

number of overlapping echoes. This problem may be mitigated by the fine temporal

resolution of broadband signals achieved through pulse compression processing.

In view of the above, a numerical Monte-Carlo modeling framework was developed

in Chapter 4 to predict the statistics of broadband echoes from arbitrary aggregations

of scatterers. This model is capable of incorporating arbitrary frequency-dependent

responses of the system, transducer beampattern, and scatterers, and thereby allows

the examination of variation of echo statistics features in a variety of contexts. This
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new model was applied to analyze echoes from fish aggregations collected using a

broadband echosounder in a series of acoustic backscattering experiments conducted

on Georges Bank in the Gulf of Maine during 2005 - 2011 (Stanton and Chu, 2010;

Stanton et al., 2010, 2012). By constraining model parameters using information

derived from net catches and broadband echo spectra, the numerical density of fish

estimated using the broadband echo pdf model was comparable to the density esti-

mated using echo integration methods. This result provides a first-order evaluation

of the utility and performance of echo statistics methods in analyzing in-situ echo

data.

Chapter 5 provides a synoptic summary of the contributions and significance of

the studies in this thesis. Recommendations of future research directions are also

given, followed by a discussion on the impacts of these studies in a broader context of

the application and research of active remote-sensing using human-made sonar and

radar systems, and its implications in the studies of animal echolocation.
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Chapter 2

Orientation dependence of

broadband acoustic backscattering

from squid

2.1 Introduction

Squids are ecologically and commercially important marine organisms. They support

many near-shore and pelagic fisheries and transfer energy across different trophic

levels through their roles as both predator and prey (Payne et al., 2006; Rodhouse,

2001; Santos et al., 2001). However, conventional net-based survey methods are in-

herently sparse in both space and time, and suffer from the problem of avoidance

and damage to the animals. These problems are exacerbated for squid due to their

highly variable abundance, rapid speed, and effective avoidance capabilities (Boyle

and Rodhouse, 2005; Starr et al., 1998). Acoustic scattering techniques, on the other

hand, can provide synoptic data over relevant temporal and spatial scales with high

resolution (Medwin and Clay, 1998), and do not suffer from the problem of avoidance

or net-induced damage to the animals, though accurate interpretation of acoustic

data remains a key challenge. The combination of conventional net-tow and acoustic

scattering data has the potential to provide more accurate squid stock assessment
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and distribution.

The scattering of sound from any given target is highly complex, varying strongly

with the size, shape, angle of orientation relative to the incident acoustic wave, ma-

terial properties of the target, and the acoustic frequency. Successful interpretation

of acoustic scattering data usually requires a combination of physics-based target

strength (TS) modeling, either analytical or numerical, and comprehensive labora-

tory measurements for verification of the model predictions (Medwin and Clay, 1998).

The frequency response of a particular target provides one avenue for remote dis-

crimination and characterization. However, many acoustic surveys continue to rely

on narrowband techniques, which do not systematically provide sufficient informa-

tion for accurate discrimination, classification, and characterization of the insonified

scatterers. Recent advances in broadband acoustic scattering instrumentation and

techniques, resulting in greater spectral coverage of the scattered frequency response,

provide a new opportunity to develop more effective target discrimination and clas-

sification algorithms (Foote et al., 2005, 2000, 1999b; Lavery et al., 2010a; Stanton,

2009; Stanton et al., 2010).

Acoustic backscattering from squid has been the focus of laboratory studies for

decades. Early on, it was concluded that the TS of live squid is significantly different

from dead specimens, dominated by the fluid-like body, and varies strongly with

the orientation of the squid relative to the incident sound wave (Arnaya and Sano,

1990; Arnaya et al., 1989; Kajiwara et al., 1990; Starr et al., 1998). Based on these

findings, live squid have been used in most recent experiments, and the target strength

variation with angle of orientation has been one of the primary goals of a number of

studies (Benoit-Bird et al., 2008; Kang et al., 2005; Kawabata, 1999, 2001, 2005).

In addition to the above narrowband measurements, a limited number of broadband

measurements of scattering from squid using artificial toothed-whale echolocation

signals have also been conducted on either live or dead squid (Au and Benoit-Bird,

2008; Madsen et al., 2007). However, detailed spectral analyses were not available for

these studies, and data were collected only at normal and end-on incidences.

Several acoustic scattering models have been proposed for squid based on their
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fluid-like, weakly scattering properties. These models include the exact modal-series

solution for a liquid prolate spheroid (Arnaya and Sano, 1990; Mukai et al., 2000), the

Kirchhoff ray-mode model (Kang et al., 2006), and the distorted-wave Born approx-

imation (DWBA) formulation applied analytically using a simple prolate spheroid

shape (Mukai et al., 2000) or numerically with a realistic three-dimensional geom-

etry (Jones et al., 2009; Lavery et al., 2002). The development and assessment of

these models are particularly important for the study of squid, since direct controlled

acoustic experiments are not practical for many commercially important species of

squid due to the difficulties in specimen handling. Although all of the above models

have been compared with narrowband experimental data, the models have not been

tested over a broad range of frequencies and angles of orientation due to the lack of

experimental data.

To allow the study of both the frequency and angular dependence of the acoustic

scattering from squid, a controlled laboratory backscattering experiment has been

conducted on live squid (Loligo pealeii) using broadband signals (60 - 103 kHz) with

data collected over the full 360' of orientation in the lateral plane, in < 1 increments.

Data collected in this study have been compared to model predictions given by the

analytical DWBA prolate spheroid model and the three-dimensional DWBA numer-

ical model which takes into account inhomogeneous, fluid-like material properties,

and realistic squid shape, obtained using computed tomography (CT) scans (Jones

et al., 2009). The prolate spheroid model provides an assessment of the performance

of this models which involves an approximation to the shape of the squid, while the

flexibility of the three-dimensional model also allows digital manipulation of the squid

shape to investigate the influence of the shape of different body parts, such as the

arms and the fins, on the scattering.

It is generally understood that the scattering of squid is dominated by its fluid-like

body construction (the muscles) with material properties very close to sea water (Iida

et al., 2006; Kang et al., 2006). However, there remain questions over the scattering

contribution from other body parts, including the chitinous beak and pen (gladius),

eyes, internal organs such as the liver and gonads, skulls, and even the thickened
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suckers on the arms (Benoit-Bird et al., 2008; Goss et al., 2001; Madsen et al., 2007).

Taking advantage of the broadband signals used in this study, pulse compression

processing (Chu and Stanton, 1998) has been used to identify the dominant scattering

mechanism of squid at different angles of orientation. This time-domain technique

has been applied successfully in previous studies of scattering from zooplankton, fish,

squid, and shells (Au and Benoit-Bird, 2008; Reeder et al., 2004; Stanton and Chu,

2004; Stanton et al., 2000, 1998b).

The above spectral, temporal, and angular characterization of squid scattering is

complemented by an investigation of the statistical properties of the echoes. In con-

trast to the other methods that base the analysis on mean echo energy, echo statistics

methods make use of the echo fluctuations as an avenue for echo interpretation (01-

shevskii, 1967). Echo statistics analysis has been extensively used in a variety of

aerial and underwater applications performed by radar and sonar systems (Abraham

and Lyons, 2010; Ward et al., 2006; Watts and Wards, 2010). The analysis generally

relies on the degree to which the distribution of echo amplitudes (echo pdf) deviates

from the Rayleigh distribution as a proxy for the discrimination and classification of

the sources of scattering (Sec. 1.5).

In the geometric scattering region (ka > 1) where the backscattering from squid

was measured in this study, the scattered acoustic waves can be approximated as

acoustic "rays" originating from specific physical features within or at the boundaries

of the organism (Stanton et al., 2004, 1998a). Since the Rayleigh distribution is the

asymptotic limit of the sum of a large number of random phasors (a result of the

central limit theorem, see Goodman, 1985), a small number of rays will result in a

non-Rayleigh echo pdf, with the shape of the echo pdf increasingly resembling the

Rayleigh distribution as the number of rays increases. Therefore, statistical features

in the echoes can be used to gain insights for understanding the dominant scattering

mechanisms of individual organisms (Stanton et al., 2004, 1998a).

Based on data collected in laboratory experiments, an early study showed that the

features of the probability distribution of echo amplitudes (echo pdf) from individual

live fish is closely related to its behavioral state, and can be described by the Rice
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distribution with the variation from Gaussian-like to Rayleigh-like for a calm fish to

an active fish (Clay and Heist, 1984). Similar Gaussian-to-Rayleigh-like transition in

the echo pdf was also observed for the scattering from small zooplankton to larger

zooplankton observed in the field through a dual-beam echosounder, and this tran-

sition was explained as a result of the degree of variation in the phase of the echoes

(Wiebe et al., 1990). A more recent study further related the observed features in

the echo pdfs at different angles of orientation to the dominant backscattering mech-

anisms for different types of marine organisms, including both fish and zooplankton

(Stanton et al., 2004). In this study, the statistics of echoes from squid have been

investigated across different ranges of angles of orientation, and the results have been

interpreted jointly with other temporal and spectral echo features for understanding

the scattering mechanisms of squid.

This study (1) provides the first set of broadband acoustic scattering data from

live squid with full coverage of angle of orientation in the lateral plane, (2) assesses

the performance of two DWBA-based models, (3) identifies the observed dominant

scattering mechanisms of live squid for important orientations, (4) investigates the

importance of squid arm posture and fin shape in determining the scattering, and

(5) reveals the strong non-Rayleigh statistical features in the echoes from randomly-

oriented individual live squid. This study also gives insight into the application of

the TS models under possible field conditions.

This chapter is organized as follows. In Sec. 2.2, detail of the backscattering ex-

periment is presented. Sec. 2.3 addresses the theory and modeling of squid scattering,

and results of the data-model comparison are discussed in Sec. 2.4. The statistics of

squid echoes are analyzed in Sec. 2.5. A comprehensive discussion on the broadband

backscattering from squid is given in Sec. 2.6, followed by a summary in Sec. 2.7.
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Animal # Mantle Mantle Total Range of Angle of Calculated
Length Width Length Orientation Measured Weight

(cm) (cm) (cm) (0) (g)
0807a 12.2 3.3 16.2 803/742 55.8
0812a 7.7 2.1 12.5 722 20.7
0814a 6.8 2.3 15.0 759.5/768.5 15.9
0819c 10.8 2.8 17.0 733 43.0
0822a 11.4 3.0 18.0 751.5 48.3
0825a 11.4 3.0 17.5 412.5 48.3
0826b 9.6 2.8 16.6 285 33.3

Table 2.1: Dimensions and ranges of angle of orientation for the squid used in
the acoustic backscattering measurements. All dimensional measurements were con-
ducted when the animal was dead after the acoustic experiment was completed. The
Total Length is the length from the tip of the mantle to the tip of the arms when
the squid is placed flat on a surface. The Mantle Width is the width of the widest
portion of the mantle on the dorsal side. The Mantle Length is the length between
the two ends of the mantle on the dorsal side. Two numbers in the Range of Angle of
Orientation Measured indicate that acoustic measurements were conducted twice on
the same individual. The Calculated Weight was calculated based on the published
length-weight relationship for L. pealeii (Lange and Johnson, 1981).

2.2 Experimental methods

2.2.1 Squid used in the experiment

Longfin inshore squid, Loligo pealeii, collected by the Marine Resource Center at the

Marine Biological Laboratory, Woods Hole, MA were used in the experiment. This

coastal epipelagic species has a long, slender body and large fins in proportion to its

mantle length (Roper et al., 1984). The animals were freshly-caught (< 1 day) by

trawl nets and kept in a tank filled with flowing chilled seawater. Healthy individuals

were selected by visual inspection with the requirement that the body length has to

satisfy the far-field criteria in the geometry of the experimental setup. A total of

seven individuals (Table 2.1) were used and nine successful acoustic measurements

were made.

Spiral computed tomography (SCT) images obtained by Jones et al. (2009) were

used in this study to produce realistic digital representations of the three-dimensional

shape of the squid. The SCT images were obtained for a single, live, anesthetized

58



squid and a single, dead, previously frozen squid, both of the same species as those

used in the experiment. These scanned images were subsequently reconstructed and

interpolated onto a 0.5 x 0.5 x 0.5 mm grid for modeling operations. To investigate

the scattering contributions of different body parts and construct appropriate squid

shapes to facilitate data-model comparison, the shape of the fins and arms of the

squid in the SCT images were further modified (Sec. 2.3.2 and Sec. 2.3.3). The

volume representations used for the modeling were also scaled anisometrically and

interpolated onto the same 0.5 x 0.5 x 0.5 mm grid to match the morphometric

dimensions of each of the individuals measured in the experiment.

2.2.2 Tank and instrument setup

The acoustic backscattering experiment was conducted in an indoor flume tank at

the Woods Hole Oceanographic Institution. The tank was 23 m long and 1.2 m wide

on a side. The tank was filled to a depth of 1 m with seawater at 21'C [Fig. 2-1(a)].

The seawater was filtered by a 5-pm filter. The experimental setup, the tank, and the

transducers, were identical to those used in Stanton and Chu (2004). Most of other

instruments were the same as those used in Lavery and Ross (2007). The pulse-echo

system consists of a power amplifier (custom-made at the Woods Hole Oceanographic

Institution), a pair of identical transducers (Reson, Goleta, CA, TC2116), an inte-

grated preamplifier and bandpass filter (RITEC Inc., Warwick, RI, Model BR-640A),

and a National Instruments (NI, Austin, TX) data acquisition system (NI Model

PXI-1000B) with an embedded computer controller (NI Model PXI-8175 running

Windows 2000).

The pulse-echo system was controlled by custom-written LabVIEW software mod-

ified from the one used in Lavery and Ross (2007) to display the envelope of the

compressed pulse output with background reverberation subtracted (see Sec. 2.2.5)

in real-time and to control the angle of orientation of the squid through the stepper

motor and the associated controller (Pontech, Rancho Cucamonga, CA, STP101).

An amplitude-shaded linear chirp signal (see Sec. 2.2.4) was loaded, sent through the

power amplifier, and transmitted by the transmit transducer. The raw received signal
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was pre-amplified before being recorded. The transmit signal, as measured both at

the input of the power amplifier and through a -40-dB signal sampler (RITEC Inc.,

Model SS-40) at the output of the power amplifier, and the raw received signals (in-

cluding the echoes from the squid and reverberation from the tank) were all sampled

at 2 MHz throughout the experiment. The center-to-center separation between the

transmit and receive transducers was 0.34 m and the target-to-transducer distance

was 2.71 m, resulting in a 7.20 deviation from true backscattering. This deviation

was not accounted for in the modeling.

2.2.3 Experimental procedure

Each squid was anesthetized by soaking the animal in a 0.1% MgCl solution (Mooney

et al., 2010). The time required for anesthesia and whether or not the individual

would survive the following tethering procedure depended on the health condition of

each squid. Approximately one in every three animals was anesthetized and tethered

successfully before the acoustic backscattering experiment can be conducted. The

degree to which the squid is anesthetized can be discerned by the decreasing rate

of respiration and the change of the color of the animal. The animal appears pale,

instead of having the usual reddish tone with flashing chromatophore, when it is

anesthetized.

The anesthetized animal was pierced and suspended by a Y-shaped harness made

with three 4-lb monofilament lines [Fig. 2-1(b)]. This was done by piecing the squid

mantle using needles attached to hollow wires, running monofilament lines through

the wires, and removing the wires so that only the monofilaments remained attached

to the squid mantle. The animal was then transferred into the tank where the harness

is fixed onto a tetrahedron-shaped rotation frame, consisting of three 10-lb monofil-

ament lines, a T-shaped frame above water, and a pivot on the bottom of the tank

[Fig. 2-1(a)]. This tethering system allowed free movement of the squid mantle and

arms without losing control over the designated angle of orientation. All of the

monofilament lines were thoroughly wetted and rubbed with soapy water before each

measurement. Care was taken in the animal handling and tethering process to main-
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tain the animal underwater at all times to ensure that no air bubbles formed on the

body surface or in the mantle cavity. The definition of squid orientation shown in

Fig. 2-1(b) is followed throughout this paper.

The rotation frame was attached to the stepper motor controlled by the central

LabVIEW program and rotated with < 1' increments. The increment of rotation in

each experiment varied due to expansion of the o-ring connecting the stepper motor

and the tethering system. The slack of the o-ring can be partly reduced by rotating

the frame for a few rounds before the acoustic measurements, but the stepping incre-

ment still varied for each experiment. The stepping increment for each experiment

was obtained by dividing the total rotated angle by the total number of rotations

during each set of the experiment. For each experimental animal, 15 - 17 acoustic

pings were collected at each angle of orientation through two full rotations (7200). It

is observed that the rotation frame and the harness required approximately two sec-

onds to settle into the new position. Therefore, in all subsequent analysis the echoes

resulted from the first two pings at each angle of orientation are discarded. The exper-

imental animals were out of anesthesia and alive during the acoustic measurements.

In some cases the animal died before a full rotation was completed (Table 2.1) and

the experiment was aborted.

2.2.4 Acoustic signal analysis and calibration

A chirp signal with a frequency span of 45 - 105 kHz was used as the transmit

signal. The amplitude of the transmit signal was shaded so that the overall system

response was more uniform in the spectral domain (Fig. 2-2). The amplitude shading

was created by modifying the inverse of the envelope of received signals when an

unshaded linear chirp signal was transmitted between the transducers when they

were set up in the calibration mode (see below). The best amplitude shading was

selected by trial and error with the following criteria: 1) a flatter spectrum is achieved

in the received calibration signal, and 2) the autocorrelation function of the received

calibration signal has moderate mainlobe width and low sidelobe levels. The first

criterion was chosen in order to minimize the occurrence of frequency regions where
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Figure 2-1: (a) The pulse-echo system and experimental setup for the laboratory

measurements of scattering from squid as a function of angle of orientation. The

shaded box represents the NI (National Instruments, Inc.) system containing the

central LabVIEW control program. (b) Tethering system used in the experiment

and the definition of angle of orientation relative to incident acoustic signal. Solid

lines represent monofilament lines outside of the squid body. Dashed lines represent

monofilament lines running through the mantle cavity.
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the frequency response changes rapidly, which tend to cause errors in the calibration.

The second criterion was chosen to facilitate the interpretation of echo features in the

time domain (see Sec. 2.6.4). Combined with the frequency-dependent noise levels,

the selected transmit signal resulted in a usable band of 60 - 103 kHz.

The system was calibrated using the procedure described in Stanton et al. (1998b).

This method involves separating the transducers, aiming them toward each other and

measuring the signals as a result of the acoustic pulse traveling along the direct path

between the two. Note that the amplitude of the transmit signal was significantly

reduced during calibration to avoid saturation of the electronics. The optimal level

of the transmit signal during calibration was also selected by trial and error, since

distortion of the transmit signal can be significant when the amplitude was too low.

The calibration was performed both before and after the squid measurements.

Taking advantage of the broad signal bandwidth, pulse compression techniques

were used to identify the dominant scattering mechanisms of live squid (Chu and Stan-

ton, 1998). The deviation in the compressed pulse output (CPO) envelope from the

idealized matched-filter output contains information regarding the scattering proper-

ties of the target. Pulse compression processing of broadband signals has the advan-

tage of increasing the time-domain resolution and signal-to-noise ratio (SNR). This

is of particular importance for identifying the dominant scattering mechanisms for

weak scatterers, such as squid.

In this experiment, the received echo signal was compressed in time by cross-

correlating the echo with the received calibration signal. The mainlobe width of

the envelope of the autocorrelation function [Fig. 2-2(d)] limits the finest spatial

resolution achievable by the system. The normalized height of the first sidelobe is

0.321. Sidelobes can introduce spurious artificial echoes in the analysis and must be

considered carefully when interpreting scattering features.
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Figure 2-2: (a) Transmit signal measured at the output of the power amplifier. (b)

Received calibration signal. (c) Spectrum of the received calibration signal. (d)
Envelope of the autocorrelation function of the received calibration signal, normalized

to the peak maximum at 0 pts.
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2.2.5 Subtraction of background reverberation and control

of data quality

Because the experiment was conducted in a long, narrow tank, background reverber-

ation had to be subtracted off to identify and isolate the echoes from the squid. Two

sets of 200 pings of background reverberation (with no squid in the tethering system)

were collected immediately prior to the acoustic measurements. Another 200 pings of

background reverberation were collected immediately after the acoustic measurement,

when the situation permitted.

One set of the pre-experiment background reverberation signals were coherently

averaged and stored as the background reverberation reference. During the backscat-

tering experiment, unmodified raw signals consisting of both the squid echoes and

background reverberation were collected. The echoes from the squid were isolated by

subtracting the background reverberation reference from the raw receiving signals. It

was also observed that the background noise reverberation drifted with time during

each measurement, likely due to the leaking of the flume tank that caused small vari-

ation in the water depth, which could result in small deviation in the reverberation

in the tank.

Reverberation signals other than those used to form the background reverbera-

tion reference were used to establish a background noise threshold for controlling the

data quality of acoustic measurements. This frequency-dependent background noise

threshold was obtained by taking the median value of the 200 pings of background re-

verberation on a frequency-by-frequency basis, after subtracting out the background

reverberation reference. A signal-to-noise ratio of 6 dB was imposed to control the

data quality: all TS measurements smaller than 6 dB above the threshold was consid-

ered unacceptably noisy and discarded. TS measurements within the frequency range

of 71.5 -82 kHz were also discarded, because this frequency band was observed to be

constantly noisy throughout the experiments. The SNR in this band was especially

low at off-normal angles of orientation.
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2.3 Acoustic backscattering theory and modeling

2.3.1 Basic definitions of acoustic backscattering quantities

Acoustic scattering from an object in the far-field can be expressed as

eikr

Pscat PO f, (2.1)
r

where Po is the pressure amplitude of the incident wave, r is the distance from the

object to the receiver, and f is the scattering amplitude. The scattering amplitude

fully describes the acoustic scattering characteristics of a target and is a measure of

the efficiency with which a target scatters sound. It is a function of the acoustic

wavenumber k (= 27r/A, where A is the acoustic wavelength), and the target's shape,

size, angle of orientation, and material properties, such as the mass density p, and

sound speed c.

As the dynamic range of the scattered signals is typically very large, a logarithmic

measure of the backscattering amplitude is used, defined as target strength (TS), ex-

pressed in units of decibels (dB) relative to 1 m2 , and given by TS = 10 logio Ifb, 2

10 log10 abs, where Os, - Ifb, 2 is the differential backscattering cross-section, and fbo,

or backscattering amplitude, is the scattering amplitude evaluated in the backscat-

tering direction.

2.3.2 Distorted-wave Born approximation for acoustic backscat-

tering: Application to squid

The backscattering amplitude for any weakly scattering object can be modeled in the

far-field using the distorted-wave Born approximation (DWBA) in which the total

pressure field within the scatterer is approximated by the unperturbed incident wave

field, with the wavenumber replaced by the wavenumber inside the scatterer (Chu

et al., 1993; Morse and Ingard, 1987; Stanton et al., 1993a). With this approximation
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the backscattering amplitude can be written as

f J (= - ,) e 2 ik. r, dv. (2.2)

In the above formulation, the subscript "1" indicates parameters of the surrounding

medium, while the subscript "v" indicates parameters of the scattering body. The

term kv is the wavenumber vector within the scattering volume, and rv is the position

vector of any volume element. The terms -y, and 7, are defined in terms of the

compressibility K and density p, and can be written in terms of the density contrast

gv (= Pv/Pi) and sound speed contrast hv (= cv/ci) between the medium and the

scattering object, i.e.,
_Kv - Kl_ gyh 2

__ = , - gh2 (2.3)

and

P, P= = 9v (2.4)
Pv gy

The integral in (2.2) can be solved analytically for simple objects, such as spheres

and cylinders (Stanton et al., 1998a), and is particularly useful for numerically mod-

eling the scattering from bodies with arbitrary shapes (Lavery et al., 2002) and ma-

terial properties (Jones et al., 2009). In this study, two DWBA-based models are

compared: (1) an analytical model with a simple geometry (smooth prolate spheroid)

and homogeneous material properties, and (2) a numerical model which involves

three-dimensional digitization of the squid and inhomogeneous material properties.

Analytical DWBA prolate spheroid model

The prolate spheroid geometry is a first-order approximation to the elongated shape

of the squid (Arnaya and Sano, 1990; Mukai et al., 2000). The analytical DWBA

solution for a prolate spheroid geometry [derived by D. Chu and given in Johnson
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(1993)] is reproduced here for reference:

k a 5L 5 (2, - 7P) ji (k, 4a2s sin 2 0 + L28 cos 2 g)fAS = S ,S(YSP (2.5)
2 kv 4a2 sin 2 0 + L2 2 0

PS PSCo

where ap, is the semi-minor axis (equatorial radius), Lp, is the major axis (twice the

polar radius), 0 is the polar angle from the major axis, and ji is a spherical Bessel

function of the first kind of order one.

In this study, the width (2ap,) of the prolate spheroid was set to match the mea-

sured maximum width of each squid used in the experiment. The length of the prolate

spheroid, LP., was determined by matching the total volume of the homogeneous (no

sea-water-filled cavities in the mantle cavity) squid digital representation to the vol-

ume of the prolate spheroid. Detail of the inhomogeneities in the squid body and the

scaling issues can be found in Jones et al. (2009). Note that to allow direct compari-

son of results to Jones et al. (2009), the digital volume representation of squid used

for equivalent volume calculation was the arms-folded hybrid squid shape without

modifications to the fins (see below).

Three-dimensional DWBA numerical model

The three-dimensional DWBA numerical model calculates the scattering response

of an arbitrarily-shaped inhomogeneous object by numerically integrating the phase

change contributed by local material property variation over a digital volume repre-

sentation (Jones et al., 2009; Lavery et al., 2002). This is of particular interest in

modeling the acoustic scattering from squid, since the outer shape is complex, par-

ticularly in the vicinity of the arms, and the body contains sea-water-filled cavities.

The SCT images obtained by Jones et al. (2009) were used as the baseline digi-

tal representations of squid in this study. The arms-splayed squid shape was taken

directly from the actual scan of the anesthetized specimen [Fig. 2-3(a)], while the

arms-folded squid shape was constructed by hybridizing the arms of the dead spec-

imen with the mantle of the anesthetized specimen [Fig. 2-3(b)]. The orientation
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(b)

(C) (e)

Original asymmetrical fins Symmetrical fins No fins

Figure 2-3: Various squid shapes used in this study: (a) the arms-splayed and (b)
arms-folded squid shape without modification of the fins or randomization of the

arms. (c-e) examples of hybrid randomized squid shapes with three different shapes

of the fins (see Sec. 2.3.3 for detail of the fins).

of the squid in the digital representation was such that the center line of the man-

tle was parallel to the z-axis of the digital volume, with the x-y plane representing

cross-sectional slices along the squid's longitudinal axis.

In addition to the above manipulations, the shape of the arms and the fins were

further modified for modeling purposes in this study. Unless otherwise specified,

the mantle volume used in the following three-dimensional DWBA numerical mod-

eling was the mantle of the anesthetized specimen with the fins digitally removed

(see Sec. 2.3.3), beause the modeling results using this mantle shape gave the best

agreement with the experimental data (see Sec. 2.4.2). To facilitate data-model com-

parison, the mantle width and total length of the digital squid volume were scaled to

match the maximum mantle width and total length, respectively, of the experimental

animal.

Modeling parameters

In modeling the scattering of weak scatterers such as squid, it is known that small

variations of g (density contrast) and h (sound speed contrast) can give rise to TS

variation as large as 20 dB (Chu et al., 2000). However, there are no measurements

available for the material properties of L. pealeii. Therefore, the tissue material

properties of the Japanese flying squid (Todarodes pacificus) (g = 1.043, h = 1.053,
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Iida et al., 2006; Jones et al., 2009) were used instead for both the analytical DWBA

prolate spheroid model and the three-dimensional DWBA numerical model in this

study.

Another important modeling consideration is the digitization resolution of the

modeled scatterer volume (characterized by the maximum dimension of the digitiza-

tion voxel, lv) compared to the acoustic wavelength. A value of 20 for the ratio A/lv

is generally required for properly estimating the acoustic scattering of fluid-like elon-

gated zooplankton (Stanton and Chu, 2000). Based on this principle, the numerical

model output was constrained below 150 kHz, corresponding to a A/lv ratio of 20

with the digital volume resolution of 1v = 0.5 mm. The highest frequency of the chirp

signal used in the experiment was 105 kHz, which resulted in A/lv = 28.57.

2.3.3 Model predictions

The comparison of the model predictions given by the analytical DWBA prolate

spheroid model and the three-dimensional DWBA numerical model using realistic

squid shapes illustrates the baseline difference between models with simple versus

complicated geometries. In addition, the three-dimensional DWBA numerical model

has made it possible to investigate the contribution from individual body parts by

digitally modifying the shape of the squid volume. Of particular importance are the

shapes of the fins and the arms, which were modified or randomized to obtain the

best agreement with the data (Figs. 2-4 to 2-11).

Comparison of model predictions for the analytical DWBA prolate spheroid

model and the three-dimensional DWBA numerical model

The TS predictions given by the analytical DWBA prolate spheroid model and the

three-dimensional DWBA numerical model are compared for both the angular depen-

dence (Fig. 2-4) and the frequency response (Fig. 2-5). At normal incidence, the TS

predictions for both models reach the maximum with comparable values. When the

incident angle deviates from normal incidence, the analytical DWBA prolate spheroid

70



-900 00 90* 1800 2700-900 00 90* 1800 2700

Angle from normal incidence (0)
Numerical model (with fins) Analytical prolate spheroid model

- Numerical model (no fins)

Figure 2-4: TS prediction versus angle of orientation at four frequencies (60, 70, 85,
100 kHz) for the three-dimensional DWBA numerical model using arms-folded squid
shapes with and without the fins, and the analytical DWBA prolate spheroid model.
The arrow indicates the scattering contribution from the fins.

model predictions drop much more rapidly than the three-dimensional DWBA nu-

merical model predictions.

The analytical DWBA prolate spheroid model predictions also contain structured

nulls in both the TS versus frequency and TS versus angle responses (Figs. 2-4 and

Fig. 2-5), produced by constructive and destructive interference accentuated by the

smoothness and symmetrical shape of the prolate spheroid. In addition, the ana-

lytical DWBA prolate spheroid TS predictions are slightly higher than those of the

three-dimensional DWBA numerical model in the Rayleigh scattering region at all

angles of orientation (Fig. 2-5). This is due to the fact that the prolate spheroid

was scaled by matching the spheroid volume to the volume of homogeneous digital

squid representation with the fins. This volume is larger than the volume of the

inhomogeneous, no-fin squid shape used in the three-dimensional DWBA numerical

model.
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Figure 2-5: TS predictions versus frequency for the three-dimensional DWBA numer-
ical model using arms-folded squid shape and the analytical DWBA prolate spheroid
model at four angles of orientation (00, 450, 900, 1350 from normal incidence). The
usable band (gray area) in the experiment lies entirely in the geometric scattering
region.
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Contribution of individual body parts

The flexibility of the three-dimensional DWBA numerical model in incorporating

complicated geometries facilitates the investigation of the scattering contributions

from individual squid body parts, such as the fins and the arms. To understand

the impact of the fins on the backscattering, numerical model predictions were made

using the same folded arms but with the original asymmetric fins and with the fins

digitally removed (Fig. 2-4). The scattering contribution of the fins is most prominent

at the "shoulders" of the curve around 200 - 40' from normal incidence for higher

frequencies (indicated by the arrow in Fig. 2-4), and is less important at angles far

from normal incidence. The asymmetric scattering pattern on either side of normal

incidence is the result of the asymmetric shape of the original fins on either side of

the squid.

The posture of the arms also has a significant effect on the scattering prediction

across all angles of orientation (Fig. 2-6). In this figure, the model compressed pulse

output (CPO) envelope was produced by cross-correlating the model impulse response

with the autocorrelation function of the transmit signal (Chu and Stanton, 1998). The

model impulse response was obtained by applying an inverse Fourier transform on

the model spectra from 100 Hz to 150 kHz, in 100 Hz increments. In the case of the

analytical DWBA prolate spheroid model, the backscattering contributions from the

front and back interfaces of the prolate spheroid with respect to the incidence field

are clearly shown [Fig. 2-6(a)]. For the three-dimensional DWBA numerical model, a

strong sinusoidal pattern corresponding to the squid arms is observed in the modeled

CPO envelopes in both plots. The scattering from the arms is stronger in the arms-

splayed case [Fig. 2-6(b-c)]. Since the two shapes only differ in the arm postures and

have the same mantle shape, this result shows the importance of the arm posture on

the acoustic scattering. A very faint secondary sinusoidal pattern was also observed

resulting from scattering originating at the tail region of the squid, which is analogous

to the scattering contribution from the back interface of the prolate spheroid.
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Figure 2-6: Compressed pulse output envelope of (a) the analytical DWBA prolate

spheroid model, and the three-dimensional DWBA numerical model using two fixed

squid shapes through two full rotations (720'): (b) the arms-folded configuration,
and (c) the arms-splayed configuration. The compressed pulse output envelopes are

normalized to the maximum envelope value in each of the plots. The symmetric

sinusoidal pattern in (a) corresponds to the front and back interface of the prolate

spheroid with respect to the incidence field, and the strong sinusoidal pattern in (b)
and (c) corresponds to the location of the squid arms during the rotation.
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Randomized squid shape

Based on the above observation that the numerical model predictions are highly

sensitive to the exact shape of the arms and the fins, these were digitally modified

to produce a set of squid shape representations which are reasonably close to the

squid shape during the experiment. Fifteen realizations of arms were generated to

resemble the "loosely-folded" arm posture of the squid resting in the harness [Fig. 2-

3(b)]. Three fin shapes were used in combination with these randomly generated

arms to produce a set of hybrid randomized squid shapes to facilitate the data-model

comparison.

The shape of each randomized arm was determined by three points: the initial,

middle, and end points in the three-dimensional space. The space was defined such

that the z-axis is parallel to the longitudinal axis of the squid body, with z=O being

the surface joining the arms and the mantle [Fig. 2-3(c-e)]. The (x, y) positions

were used to describe the transverse position on a given height of z. Eight initial

(x, y) arm positions were manually chosen on the z=O plane to keep the initial arm

positions biologically realistic. The positions of the middle and end points were

randomly generated within a pre-defined area on the x-y plane. These areas were

defined according to the initial position of each arm to keep the arm shape natural.

A spline function was then fitted for the three points of each arm. The arm length was

also generated randomly within a biologically reasonable range. Consecutive (x, y, z)

points on each arm were then generated according to the spline along the height of

the arm. These arm curves were then filled by individual "discs" with decreasing

radius toward the tips of the arms. The rim of the discs was randomly roughened to

create roughness on the arm surface. The total volume of the arms generated by this

procedure was approximately 11-14% of the total squid volume, which is comparable

to the arm/body volume ratio for the two original sets of SCT squid images described

in Sec. 2.2.1.

Three fin shapes were used: (I) the original asymmetric fins, (II) artificially gen-

erated symmetric fins, and (III) no fins [Fig. 2-3(b)]. Fin volume (I) was directly
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obtained from the mantle portion of the SCT images of the anesthetized squid. Fin

volume (III) was obtained by digitally removing the fins from volume (I). Fin vol-

ume (II) was a hybrid volume consisting of a pair of artificially edited symmetric

fins and volume (III). The symmetric fins were created by producing a pair of mirror

images of a scaled version of a fin retrieved from the SCT images of the dead, frozen

squid. These three shapes will be referred to as "original-fins", "symmetric-fins", and

"no-fins" mantles throughout the remainder of this paper.

Addition of noise to model predictions

In addition to the variations of the arms and the fins, to make valid comparisons

with the experimental data, frequency-dependent noise was added to the scattering

amplitude predictions for all of the randomized models to achieve valid data-model

comparison (Fig. 2-7). The amount of noise added for a given frequency was cal-

culated based on the background noise level measured during the acoustic measure-

ment (Sec. 2.2.5). The mean and standard deviation of the the real and imaginary

part of the scattering amplitude for the background reverberations were calculated.

Normally-distributed random numbers using these mean and standard deviation val-

ues were then generated independently to construct the real and imaginary parts

of the noise. The final noise-added model predictions were produced by coherently

adding the noise-free model predictions and the complex noise:

fbs,mn - fbs,m + fbs,n, (2.6)

where fbs,mn and fbs,m are the model backscattering amplitude with and without

noise added, respectively, and fbs,, is the random complex noise. The effect of noise

addition is more prominent at angles away from normal incidence with lower predicted

TS [indicated by the brackets in Fig. 2-7(b)].
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Figure 2-7: Noise addition procedure for model predictions. (a) The frequency depen-
dent background noise profile (including reverberation) across the usable band of the

experiment. (b) TS predictions with noise added (top row) and without noise added

(bottom row) based on the three-dimensional DWBA numerical model. The solid

line is the mean of the measured or added noise. The gray or white area between the

two dashed lines indicates the range between t1 standard deviation from the mean.

The brackets indicate regions where the effect of noise addition is more prominent.

Model predictions below the noise threshold were omitted.
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2.4 Data-model comparison

This section discusses the results of data-model comparison for the angular variation

of the CPO, TS, and TS averaged over a wide range of angles of orientation. As noted

earlier, unless otherwise specified, the fins were digitally removed from all the squid

shapes used in the three-dimensional DWBA numerical model. The discussion of

data-model comparison is based primarily on the measurements from one representa-

tive individual (0822a), but results are also shown for the other two individuals (0814a

and 0819c) to emphasize the consistency in the observed backscattering features.

2.4.1 Time domain compressed pulse output (CPO) charac-

teristics

CPO at normal incidence

The temporal scattering pattern for both the experimental data and model predictions

at normal incidence are compared (Fig. 2-8). Two distinct peaks were observed in

the CPO envelopes of all experimental data and model predictions. For individual

0822a, the separations between the two peaks in the model predictions appear to be

greater than those in the experimental data. For the experimental data, the separation

translates into a spatial distance ranging between 1.74 cm and 2.45 cm. For the model

predictions, the corresponding distance ranges from 2.92 cm for the analytical DWBA

prolate spheroid model, to 2.96 cm and 3.04 cm for the three-dimensional DWBA

numerical model using the arms-folded and arms-splayed squid shapes, respectively.

The assumed fluid-like scattering property of squid is consistent with the presence of

these two dominant peaks in both the experimental data and model outputs. The

separation differences between the experimental data and model predictions may be

explained by the errors in modeling the actual width of the squid using dimensional

measurements performed on dead specimens. The separation differences among the

model predictions, on the other hand, are likely induced by the interaction of sidelobes

and internal inhomogeneities in the squid body (see Sec. 2.6.4).
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Figure 2-8: Temporal characteristics of the scattering at normal incidence. (a) Model

predictions given by the three-dimensional DWBA numerical model with arms-folded

and arms-splayed squid shapes and the analytical DWBA prolate spheroid model. (b-
d) Experimental data from three individuals, each with 15 individual pings overlaid

at normal incidence. All compressed pulse output envelopes (model prediction and

data) were normalized to the maximum value in each model prediction or each ping.
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Angular dependence of the CPO

There is reasonably good qualitative agreement in the general scattering pattern

across all angles of orientation for the experimental data and model predictions given

by the three-dimensional DWBA numerical model using an arbitrarily-chosen real-

ization of the hybrid randomized squid shapes (Fig. 2-9). In this figure, the last of

the 15 pings collected at each angle of orientation was arbitrarily chosen from the

experimental data of each individual, although the results based on the other pings

do not change the general pattern. The hybrid randomized squid shape was used

here to model the shape of the squid during the experiment. The model shown in

this figure used the hybrid randomized squid shape, which resembles the shape of the

squid during the experiment, and the volume representation was scaled to match the

dimension of the individual 0822a.

The sinusoidal pattern predicted in Fig. 2-6, corresponding to the location of the

squid arms in the rotation, is also observed in the CPO envelopes in Fig. 2-9 for both

the experimental data and the three-dimensional DWBA numerical model predictions.

The model predictions also successfully capture the relative scattering strength at off-

normal incidence with respect to the maximum level at normal incidence. This result,

combined with the scattering characteristics at normal incidence, suggests that the

DWBA-based model, which only takes into account the muscular part of the squid

body, is capable of explaining a major portion of the backscattering across all angles

of orientation.

2.4.2 Angular variation of target strength (TS) at fixed fre-

quencies

The experimental data are compared to predictions given by both the analytical

DWBA prolate spheroid model and the three-dimensional DWBA model using hybrid

randomized squid shapes across all angles of orientation at four discrete frequencies:

60, 70, 85, 100 kHz (Fig. 2-10, Fig. 2-11, and Fig. 2-12). These four frequencies are

chosen because they are evenly spaced across the usable band and are not in the
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Figure 2-9: Compressed pulse output envelope of (a) the experimental data from three
individuals and (b) the three-dimensional DWBA numerical model using a hybrid
squid shape with randomized arms over two full rotations (720'). The compressed

pulse output envelopes are normalized to the maximum envelope value in each of the
plot. Faint vertical lines in the experimental data are due to noise not effectively
eliminated by the background reverberation subtraction.
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Figure 2-10: Data-model comparison of TS versus angle of orientation at four fre-

quencies (60, 70, 85, 100 kHz) for the individual 0822a. Hybrid randomized squid
shapes with three fin shapes were used in the three-dimensional DWBA numerical

model: (a) original asymmetric fins, (b) artificial symmetric fins, (c) no fins. The

experimental data are represented by dots. The gray area indicates the range of t1

standard deviation from the mean of the model predictions. The arrow indicates the

scattering contribution of the fins. The cut-off pattern near the bottom of each plot is
resulted from omitting experimental data and model predictions lower than the noise

threshold.
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Figure 2-11: Data-model comparison of TS versus angle of orientation at four frequen-
cies (60, 70, 85, 100 kHz) for three representative individuals (0822a, 0814a, 0819c).
The hybrid randomized squid shapes with no fins were used in the three-dimensional
DWBA numerical model, with the size of the squid shape scaled to match that of
each individual. The arrows indicate the potential deviation of angles of orientation
during the experiment. Other details on the figure is given in the caption of Fig. 2-10.
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high-noise band around 75 kHz in the middle of the spectrum. Frequency-dependent

noise was added to the model predictions as mentioned in Sec. 2.3.3.

In general, the predictions given by the three-dimensional DWBA numerical model

agree well with the experimental data across all angles of orientation with the best

correspondence at 70 kHz and 85 kHz (Fig. 2-10). Among the three types of mantle

shapes used, the no-fins mantle (right column) shows the best agreement with the

experimental data. This may be associated with the resting posture of the squid

during the experiment, in which the fins hung downward and wrapped against the

mantle and resulted in a shape that is similar to the no-fins mantle. The shape of the

fins has a pronounced effect on the scattering pattern at the "shoulders" near normal

incidence (around 20 -40' from normal incidence, as indicated by the arrow in Fig. 2-

10). This effect is the most prominent on one side of normal incidence in the model

predictions using the asymmetric-fin mantle, and less prominent and more symmetric

for the model predictions using the symmetric-fin mantle. No prominent shoulders

are observed in the experimental data at any frequencies for all three individuals.

The analytical DWBA prolate spheroid model, on the other hand, significantly

underestimate the TS at angles roughly > 30' on both sides of normal incidence,

even with the same amount of noise added into the model as in the case of the three-

dimensional DWBA numerical model (Fig. 2-12). This result is consistent with the

rcsults in Jones et al. (2009).

2.4.3 Frequency dependence of TS at near normal incidence

The spectra of experimental data are compared to predictions given by both the

analytical DWBA prolate spheroid model and the three-dimensional DWBA model

using several squid shapes at near normal incidence (Fig. 2-13). Both the experimental

data and model predictions were averaged between t2' from normal incidence. The

experimental data were summarized by the mean and standard deviation of the TS

measurement. Due to the observed potential deviation from normal incidence in the

cases of individual 0814a and 0819c (indicated by the arrows in Fig. 2-11), averages

were also performed for data with their angles of orientation adjusted by 0 dj. Results
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Figure 2-12: Comparison of the performance of the three-dimensional DWBA nu-

merical model and the analytical DWBA prolate spheroid model at two frequencies
Frequency-dependent noise was added to both models to enable valid comparison

with the data. Dots represent the ping-by-ping experimental data for the individual

0822a. The gray area indicates the range of t1 standard deviation from the mean of

the models. Note that the experimental data and model predictions lower than the

background noise threshold (black lines) were not omitted in here to illustrate the

difference clearly.
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Figure 2-13: Data-model comparison of TS spectra averaged between t2'. The angle
of orientation of experimental data were adjusted by 0 ,dj in cases where potential
deviation in the angles of orientation were observed (see Fig. 2-11).

are shown for TS averages produced both with and without such adjustment. The

dimension of the prolate spheroid and the squid shapes used in the three-dimensional

DWBA numerical model were scaled according to the dimension of each individual

squid.

In all cases, the measured TS varies significantly across frequency with a standard

deviation between 5 to 20 dB. Although the measured TS was broadly consistent

with TS predictions given by the models, the prominent spectral structure resulting

from the interference of the backscattering from the front and back interface of the

model shapes are not observed in the experimental data. These results suggest that

the although the contribution from the weakly-scattering muscles can account for

the majority of backscattering energy (Fig. 2-8 and Fig. 2-9), influence from other

potential scattering sources within the squid body may be responsible for the complex

spectral characteristics of TS measurements, since the exact structure of the TS

spectra is sensitive to the interaction of all contributing sources of scattering (Stanton

et al., 1998a).
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2.4.4 TS averaged over angle-of-orientation distribution

To assess the model performance under possible field conditions, averaged TS pre-

dictions in both the dorsal-ventral and lateral planes given by the analytical DWBA

prolate spheroid model and the three-dimensional DWBA numerical models are com-

pared in Fig. 2-14. Experimental data, which are only available in the lateral plane,

were also averaged and compared to the model predictions [Fig. 2-14(b) and Fig. 2-

15]. At each angle, experimental data from all pings were used in the average. The

averages were obtained assuming the angles of orientation are normally-distributed

with a mean angle y and a standard deviation o. The calculations were limited to

within +2 standard deviations from the mean. Averages were performed on the dif-

ferential backscattering cross sections ob, and converted to TS. Fig. 2-14 shows TS, in

contrast to the reduced TS (RTS) shown in Fig. 10 in Jones et al. (2009). Since the

choice of the normalizing length factor (mantle length or total length of the squid)

affects the RTS values, all comparisons here were done based on TS.

The dorsal-ventral plane TS averages are relevant to data collected by downward-

looking sonars for fisheries applications. A previously reported angle-of-orientation

distribution for free-swimming squid ([p, a] = [-40, 11.1 0]) was used (Arnaya et al.,

1989). TS predictions were also averaged over three other angle-of-orientation distri-

butions with off-normal mean angles (p = -20', -40', -60') and identical standard

deviation (a = 10'). The angle of orientation was defined as a negative value when

the arms were placed under the horizontal axis [see examples in Kang et al. (2005)].

In the dorsal-ventral plane, the averaged TS predictions given by the three-

dimensional DWBA numerical model are generally higher than the predictions given

by the analytical DWBA prolate spheroid model for most of the frequencies [Fig. 2-

14(a)]. The differences between these two models are larger when the angle-of-

orientation distributions are dominated by off-normal angles. Although no experi-

mental data were available to assess the model performance, the analytical DWBA

prolate spheroid model is likely to under-predict the actual TS averages, as suggested

by the results of the data-model comparison in the lateral plane (see below) and the
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Figure 2-14: Averaged TS versus frequency for the experimental data, the analyt-

ical DWBA prolate spheroid model, and the three-dimensional DWBA numerical

model using both fixed and hybrid randomized squid shapes in two planes (data only

available in the lateral plane). All averages were done in the linear domain over ±2
standard deviations (o) from the mean angle (pt) and converted to TS. (a) Averages

in the dorsal-ventral plane. (b) Averages in the lateral plane.
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Figure 2-15: Averaged TS versus frequency for the experimental data, the analytical

DWBA prolate spheroid model, and the three-dimensional DWBA numerical model

using both fixed and hybrid randomized squid shapes in the lateral plane. Results
from three individual squid are shown. Only a subset of models from those used
in Fig. 2-14 are plotted in this figure for clarity and to facilitate inter-individual
comparison.
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conclusions in Jones et al. (2009). The three-dimensional DWBA numerical model

predictions using different squid shapes remain close to one another across the fre-

quencies, except for in the > 75 kHz region when the symmetric-fins mantle is used.

This elevation in the TS is likely due to the constructive interference produced by the

horizontally-extended symmetrical fins that are perpendicular to the incident wave

in this geometry.

The TS averages in the lateral plane are relevant to data collected by sonars

looking near horizontally such as the outer beams of multibeam sonar systems. TS

predictions were averaged over several angle-of-orientation distributions with different

mean values (p = 0', ±20', ±40', ±60') and the same standard deviation (o- = 10').

The angle of orientation follows the definition in Fig. 2-1(b).

In the lateral plane, when the angle-of-orientation distribution is dominated by

near-normal angles (p = 00), all model predictions gave similar spectral structures

and averaged TS values, and their performance cannot be distinguished by the exper-

imental data (Fig. 2-14(b) and Fig. 2-15). The differences among the model predic-

tions become larger as the mean angle deviates from normal. The three-dimensional

DWBA numerical model using hybrid squid shapes with splayed or randomized arms

generally generates higher TS averages compared to the predictions made using other

squid shapes with folded arms. TS averages predicted using the three arms-folded

squid shapes are similar, except for the elevated values in the > 80 kHz region of

P = 40' and y = 200 cases when the squid shape with the original asymmetrical fins

was used [Fig. 2-14(b)]. These elevated values are likely produced by the specific fin

orientation with respect to the sonar, as discussed in Sec. 2.3.3 and Sec. 2.4.2.

Although the three-dimensional DWBA numerical model predictions were not

able to fully reproduce the experimental data across the usable frequency band for all

angle-of-orientation distributions, the predictions given by different squid shapes ap-

pear to collectively bound the experimental data, except for a subset of the data near

the end-on incidence (p = ±60') for individual 0822a, p- = -20' case for individual

0814a, and P = 00 for individual 0819c. This observation reflects the importance of

knowing the squid shape accurately when predicting the TS, as well as the complexity
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of the scattering process, especially for off-normal angles of orientation.

In the lateral plane, the analytical DWBA prolate spheroid model predictions

drop much more rapidly compared to the predictions of the numerical model when

the angle of orientation deviates from normal incidence [Fig. 2-14(b) and Fig. 2-15)].

This rapid drop leads to the generally lower averaged TS when the angle-of-orientation

distributions are dominated by off-normal angles. The analytical DWBA prolate

spheroid model underestimated the TS averages in the p = 40' and y = ±60'

cases. In the y = 20' case of individual 0822a, this model appears to correspond well

with the experimental data. However, the distribution of the predicted TS values of

the prolate spheroid model in these cases were not consistent with the distribution of

the experimental data, and the correspondence was merely a coincidence.

2.5 Statistics of echoes from individual squid

The statistics of echoes from squid were examined at four different frequencies (60, 70,

85, and 100 kHz) for squid individuals 0814a, 0819c, and 0822a (Fig. 2-16 to Fig. 2-

24). These frequencies were chosen for consistency with the investigation of echo

features in the temporal and spectral domains discussed earlier in Sec. 2.4. Since all of

these frequencies are in the geometric scattering region, broadly similar echo statistics

features are expected. This prediction has been confirmed in the experimental results

(see the sections below).

The echo pdfs were obtained using kernel density estimation (KDE, Scott, 1992)

on the log-transformed echo amplitude samples collected within the designated range

of angles of orientation. The samples were normalized with respect to the root-

mean-square (rms) echo amplitude of all pooled samples as described in Appendix A.

The samples were log-transformed prior to KDE to avoid violating the boundary

condition that all echo amplitudes are positive and to produce smooth estimation in

the high-amplitude tail where the number of samples are small. An inverse logarithmic

transformation was used to obtain the final echo pdf in the linear domain. The KDE

algorithm proposed by Botev et al. (2010) is used here for its efficiency and adaptive
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kernel bandwidth selection capability.

Note that all echo amplitude samples, including those with insufficient SNR (below

the noise threshold which is defined at 6 dB above the background reverberation

reference, see Sec. 2.2.5), were pooled for the estimation of the echo pdf. This was

done in order to avoid problems in normalization caused by omitting data below a

certain threshold. Furthermore, only data from the first full rotation were used due

to the increased noise level during the second rotation (vertical stripes on Fig. 2-9).

The angle of normal incidence in this section is defined at 1800, instead of 0' (Fig. 2-

1). Since all echoes were collected starting at -10 , this adjustment is necessary so

that data from either side of normal incidence can be included for ranges of angles of

orientation wider than [-100, 1001.

The echo pdfs in this section are plotted in both linear and logarithmic scales

in some cases, and only in logarithmic scales in others. This is done to facilitate

the interpretation of echo pdfs, since histograms plotted in linear scales often convey

more intuitive information regarding the distribution of the data, whereas echo pdfs

plotted in logarithmic scales emphasize the tails of the pdfs.

2.5.1 Statistics of echoes from near or at normal incidence

Squid echoes collected within the range of [750, 105'] (within ±150 from normal inci-

dence) were pooled to form the echo pdf at near normal angles of orientation (Fig. 2-

16). The resultant echo pdfs contain strong Rayleigh-like features for all individuals,

except for several cases at 70 and 100 kHz where there are small deviations from the

Rayleigh distribution. This result is not consistent with the expectation of highly

non-Rayleigh echo pdf features result from the coherent summation of two random

phasors of similar amplitudes, as suggested by the observation of the dominant echoes

from the front and back interfaces between the squid and the sea water at normal

incidence (Fig. 2-8).

One possible explanation to this strong Rayleigh-like features is the potential

"smearing" effect produced by the contamination of echoes collected at angles fur-

ther away from the normal incidence. For example, at angles > 11001 from normal
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Figure 2-16: Echo pdf of data collected within the range [75 0, 105] (within ±15 from
normal incidence). The background noise thresholds are plotted for reference since all
data were pooled to avoid problems in the normalization of echo pdf (see text). The
figures in the left-most column contain identical information as those in the second
column (data from individual 0822a) and are included to facilitate the comparison
between results plotted in linear-linear and log-log axes.
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incidence, the temporal domain CPO structures are generally more complicated than

the double-peak structure at normal incidence, which indicate the presence of other

scattering sources at these angles (Fig. 2-8 and Fig. 2-9). Another possible cause of

the strong Rayleigh-like features is the potential scattering contribution from other

structures in the squid body even at normal incidence. This possibility has also been

suggested based on the observed complex TS spectra at near normal incidence (Fig. 2-

13). Examples of potential scattering sources include the roughness on the complex

outer shape of the squid and other internal organs.

In order to clarify this question, additional analysis was conducted on a separate

set of data collected immediately prior or after the measurements described in Sec. 2.2

for individual 0822a and 0814a. The experimental procedure and signals used were

identical, except that echoes from 100's of consecutive acoustic pings were collected

at only few angles of orientation. The temporal and spectral features of the echoes

collected at normal incidence were investigated (Fig. 2-17 and Fig. 2-18), and the

results are consistent with the observations presented earlier in this chapter (Sec. 2.4).

However, different from what has been observed for the echo pdfs from data collected

within a range of orientations near normal incidence (Fig. 2-16), echo pdfs derived

from data collected only at normal incidence show strong non-Rayleigh features for

all investigated frequencies except for at 85 kHz for both individuals (Fig. 2-19).

The shapes of the echo pdfs also show a variation from highly non-Rayleigh to more

Rayleigh-like with increasing frequency.

These echo pdfs are compared with the echo pdfs from euphausiids and decapod

shrimps previously reported (Stanton et al., 2004, 1998a). This comparison is based

on the weakly-scattering material properties of these zooplankton animals, which

are similar to the material properties of squid (Stanton et al., 1998a,b). For both

zooplankton animals, the scattering contributions from the front and back interfaces

have been observed in the temporal domain through the double-peak structures in

the CPO envelopes [similar to those shown in Fig. 2-8; also see Fig. 7 in Stanton

et al. (1998b)] and in the spectral domain as strong interference patterns (see Fig. 2

and Fig. 7 in Stanton et al., 1998a).
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Figure 2-17: Compressed pulse output envelopes at normal incidence for individuals

0822a and 0814a. The raw compressed output envelopes on the left show the temporal

variation of the magnitude of the scattering response across pings, and the normalized

compressed pulse output envelopes on the right show more detail of the temporal

characteristics for each ping. The compressed pulse output envelopes on the right are

normalized to the maximum value in the envelope time series of each ping.
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Figure 2-18: TS spectra averaged over all pings shown in Fig. 2-17. The same set of

models as those used in Fig. 2-13 are shown here for reference.

The non-Rayleigh echo pdfs with narrowly-distributed echo amplitude (indicated

by arrows in Fig. 2-19) suggest that the echoes contain strong coherent components,

presumably from the front and back interfaces as suggested by the dominant scat-

tering mechanisms observed at normal incidence in the temporal domain (Fig. 2-8

and Fig. 2-17). In fact, the shapes of these non-Rayleigh echo pdfs qualitatively

resemble the shape of the echo pdf model results from coherent summation of two

random phase sinusoids (Fig. 2 in Stanton et al., 2004), with the modes located

between normalized echo amplitude values of 1 and 1.5 and the lower probability

densities toward low normalized echo amplitude portions. The model assumption of

random phase sinusoids is justified by the fact that the separation between the front

and back interfaces of the squid body varies due to the breathing motion (contrac-

tion/expansion) of the squid mantle, which creates significant phase change across

consecutive acoustic pings that can be reasonably modeled by a uniform distribution

over [0, 27r). However, the echo pdf features observed here are drastically different

from the more uniformly-distributed echo amplitudes shown for a euphausiid in Fig.

4 of Stanton et al. (2004).

The variation from highly non-Rayleigh to Rayleigh-like echo pdfs with increasing

frequency observed here may be intuitively explained by potential scattering processes

involved at different frequencies. Specifically, the scattering from other body parts in

addition to the front and back interfaces, such as the roughness on the outer shape of
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Figure 2-19: Echo pdf of data collected at normal incidence only for individuals 0822a

and 0814a. Arrows indicate the narrowly-distributed echo amplitude near the mode.

Details on the figures are given in the caption to Fig. 2-16. Note that noise thresholds

are not plotted in some cases when all echoes are above the threshold.

97

0814a



the squid, is likely to contribute more significantly at higher frequencies with shorter

wavelengths, which would result in more "rays", and thus more Rayleigh-like echo

pdfs. This concept is identical to the explanation offered in Stanton et al. (1998a)

for the Rayleigh-like echo pdf at end-on incidence, instead of normal incidence, for a

euphausiid.

However, despite the general non-Rayleigh-to-Rayleigh variation with increasing

frequency, strong Rayleigh-like echo pdfs are observed at 85 kHz for both individuals

(Fig. 2-19, third row). This may be explained by the observation of a potential

spectral null near this frequency for both individuals (Fig. 2-18). Specifically, slight

variations in the separation between the front and back interfaces of the squid would

cause shifts in the locations of the nulls and result in significant changes in the echo

amplitudes, which would likely give rise to a Rayleigh-like echo pdf. This explanation

is opposite to what has been proposed for the more non-Rayleigh echo pdf observed

at a frequency near a null in the TS spectrum for a decapod shrimp in Stanton et al.

(2004).

The echo pdf features from individual squid at normal incidence discussed above

differ in a number of aspects from the observations of similar weakly-scattering marine

organisms, including euphausiids and decapod shrimps, measured at normal incidence

(Stanton et al., 2004, 1998a). Further investigation is clearly needed to clarify the

cause of the discrepancy and the questions raised here.

Statistics of echoes from other ranges of angles of orientation

Echo pdfs were also derived from data collected in the ranges of [600, 120'] (within

±30' from normal incidence) and [30', 150'] (within ±60' from normal incidence)

(Fig. 2-20 and Fig. 2-21). The shapes of the echo pdfs from different ranges of

angles of orientation are compared, and the transition from strong Rayleigh-like

([750, 1050] and [60', 120']) to highly non-Rayleigh ([30', 150']) was found for data

from all individuals (Fig. 2-22). The echo pdf from data collected at angles in the

range [00, 600) U (1200, 1800] is also derived and compared with the echo pdf from

[600, 120'], in order to understand the cause of the transition in the shape of the echo
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Figure 2-20: Echo pdf of data collected within the range [600, 1200] (within ±30' from
normal incidence). Details on the figures are given in the caption to Fig. 2-16.

pdfs. Note that the comparison of the shapes of the echo pdfs is only possible when

each echo pdf is normalized to its respective rms echo amplitude as discussed earlier

in this section.

The transition from strong Rayleigh-like to non-Rayleigh echo pdfs can be ex-

plained by the sources of echoes associated with the beampattern of the scattering

from squid. Specifically, with reference to the angular dependence of squid TS re-

vealed in Fig. 2-10 and Fig. 2-11, echoes collected between [600, 120'] are primarily

from the mainlobe of the squid scattering beampattern, whereas echoes collected from

its complementary set of angles of orientation ([00, 600) U (1200, 1800]) are from the

sidelobes. Since strong Rayleigh-like features are observed in each of these two cases

(Fig. 2-20 and Fig. 2-23), non-Rayleigh features in the echoes from [300, 1200] (Fig. 2-

99



1.5

0.5 

L

1.5 1

E

0.5
z

0 1 -

0.5

0 -

0 1 2 3 4

Normalized echo amplitude

0822a

XX
10'

10
x Data

10 - Rayleigh X
- - Noise threshold

0819c

x

x 60 kHz

x

X

YXX

SC 70 kHz

Xx

85kHz

x

100kHz

x

10 2 10 10" 10

Normalized echo amplitude

Figure 2-21: Echo pdf of data collected within the range [300, 1500] (within ±60' from
normal incidence). Details on the figures are given in the caption to Fig. 2-16.
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to Fig. 2-16.
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21) can be viewed as a mixture of two Rayleigh-like echo pdfs with different mean

values corresponding to the contributions from the mainlobe and the sidelobes. This

is analogous to the "beampattern effects" discussed in Sec. 1.3.2 and Sec. 1.5, which

describe the uneven modulation of the receiving echoes imposed by the transducer

depending on the locations of the scatterers in the beam (Ehrenberg, 1972).

2.5.2 Statistics of echoes from all angles of orientation

Similar to the echo pdf from the range [300, 1500], the echo pdf from data collected

from all angles of orientation ([00, 3600]) possesses highly non-Rayleigh features for all

individuals (Fig. 2-24). Based on the spheroidal shape of the squid and the findings

in previous sections that the smooth prolate spheroid underestimated the TS of squid

at off-normal incident angles (Fig. 2-12), a Kirchhoff approximation-based theoretical

model for the echo pdf from a randomly-rough prolate spheroid is used to analyze the

observed echo pdf from all angles of orientation (Bhatia et al., submitted). This is

done under the intuitive assumption that the roughness of the prolate spheroid can

account for the observed elevated scattering from the arms and other structures of

squid at off-normal incidence.

This model involves a prolate spheroid randomly-oriented in the two-dimensional

plane that contains its maximum response axis, with the roughness incorporated

heuristically by modulating the echo amplitude from a smooth prolate spheroid by

the Rayleigh distribution in a noise-free condition (Bhatia et al., submitted). The

modeling results showed that the degree to which the echo pdf deviates from the

Rayleigh distribution increases with increasing degree of elongation, which can be

characterized by the aspect ratio (c), defined as the ratio of the length of the major

axis to the length of the minor axis for a given prolate spheroid. This functional

dependency of the shape of the echo pdf provides a tool for inferring the aspect ratios

of volume-equivalent prolate spheroids (see Sec. 2.3.2) for squid of different sizes and

shapes.

In this study, since the SNR is generally low (the mean amplitude of noise is ap-

proximately only one order of magnitude lower than the squid echoes), a numerical
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approach was taken to add noise into the prolate spheroid echo pdf model through

simulation. The numerical simulation follows the problem setup in Bhatia et al.

(submitted) as described above. In each realization of the numerical simulation, the

angle of orientation of a smooth prolate spheroid with a given aspect ratio is ran-

domly generated by drawing a sample from a uniform distribution over [0, 27r). The

roughness is subsequently introduced by multiplying the random echo amplitude of

the smooth prolate spheroid (determined by the randomly-generated angle of orien-

tation) and a random sample drawn from the Rayleigh distribution. Random noise

is then added to each of the echo amplitude samples following the procedure detailed

in Appendix B. The final numerical echo pdf model was derived using simulated echo

amplitude samples generated from repeated realizations by KDE.

A maximum likelihood estimator (MLE) was used to select a best-fitting aspect

ratio for each echo pdf derived from the data (Azzalini, 1996). The operation of

the MLE is summarized here for convenient reference. Assume X1, X2,...,n are

independent and identically-distributed echo samples, this method computes the log-

likelihood

l(elx1, x 2 .... , Xn) = ln L(cxi,X2, . . . ,Xn)

= lIn Pmodel(X1, 2.. . , Xn le)

= In Pmodel (XiK ) (2.7)

= lnpmodel(xilC),

and performs the inference by maximizing the log-likelihood

cMLE= arg max l(Ex1,X2, - ,xn). (2-8)

Randomly-rough prolate spheroids with aspect ratios ranging from 1.5 to 2.6 were

found to best-fit the experimental data investigated here (Fig. 2-24). However, the

actual aspect ratios of volume-equivalent prolate spheroids are 6.52, 6.07, and 6.00
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for individuals 0814a, 0819c, and 0822a, respectively. In other words, the randomly-

rough prolate spheroid echo pdf model underestimates the aspect ratio of the squid.

This result may be explained by the discrepancy between model assumptions and

the scattering properties of the squid. Specifically, the weakly-scattering material

properties, complex outer shape, and internal inhomogeneities of squid are likely to

result in more "rays" compared to the impenetrable rough prolate spheroids assumed

in this model. Further investigation using more sophisticated models is needed to

verify this hypothesis.

2.6 Discussion

2.6.1 Model performance

Results of the data-model comparison show that the three-dimensional DWBA nu-

merical model, which takes into account only the fluid-like soft tissue in the squid

body, is capable of capturing the observed dominant scattering characteristics of

squid. In particular, the presence of two dominant peaks at normal incidence in the

CPO envelopes in the experimental data is consistent with the model predictions

(Fig. 2-8), and the pattern of the time domain CPO envelopes and model TS predic-

tions across all angles of orientation correspond reasonably well with the experimental

data (Figs. 2-9 to Fig. 2-11, Fig. 2-14, and Fig. 2-15).

Results of the data-model comparison also show that the three-dimensional DWBA

numerical model, compared to the analytical DWBA prolate spheroid model, is capa-

ble of giving better TS estimation once averaged over an ensemble of predictions made

using a set of squid shapes with randomized arms at fixed frequencies (Sec. 2.4.2).

This result is consistent with the previous conclusion reached by Jones et al. (2009)

and illustrated in Fig. 9 of that paper. The three-dimensional DWBA numerical

model also produces better predictions for TS averaged over a range of angles of ori-

entation at different frequencies (Fig. 2-14 and Fig. 2-15). However, this numerical

model was not able to predict the measured TS spectral curves even at angles near
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normal incidence when the backscattering is dominated by the front and back inter-

faces between the squid body and seawater (Fig. 2-13). This may be explained by the

fact that the spectral structure of the TS is highly sensitive to the precise size, shape,

orientation, and material properties, including detailed internal inhomogeneities, of

the animals (Stanton et al., 1998a), as well as the scattering contribution from other

sources in addition to the muscle tissue. The influence of the above parameters on

acoustic scattering from squid is discussed in more detail below.

2.6.2 Squid tissue material properties

In this study, the soft-tissue material properties of T. pacificus, a similar species in

the Pacific Ocean, have been used to model the scattering from L. pealeii. This was

done under the assumption that these epipelagic squid species have similar muscle

material properties, which are closely related to the habitat and ecological role of the

species (Seibel et al., 2004). Different material properties will be required to predict

acoustic scattering from other more distantly-related squid species, such as the larger

and highly muscular jumbo squid, Dosidicus gigas, or the mid-water, ammoniacal

squid with generally lower muscle density (O'Dor, 2002). In addition, variation of

local material properties may be required to model the scattering from some species.

For example, unlike the thickened flesh suction cups found in L. pealeii, each of the

suction cups of D. gigas has a chitinous ring of teeth, which may have different

material properties than the muscle.

2.6.3 Scattering contribution from other potential sources

The DWBA-based models employed in this study to predict scattering from squid only

consider the fluid-like soft tissue in the squid body and do not account specifically

for the scattering contribution from other body parts, such as the skull, chitinous

beak, eyes, and other internal organs. The model predictions were able to reproduce

the observed dominant scattering features in the time domain and give reasonable

estimation of the observed TS (Figs. 2-8 to Fig. 2-15). These results show that, at
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least in the lateral plane, the majority of the scattering energy can be explained by

the fluid-like scattering properties of the tissue, and the contributions from other

potential body parts are relatively insignificant.

Due to constraints in tank size and the geometry of the experimental setup, there

was no measurement available to directly assess the scattering contribution from the

squid pen in the dorsal-ventral plane, which is of more interest to fisheries applications

with downward-looking echosounders. The pen is a flat, elongated chitinous support-

ing structure lying internally along the length of the dorsal surface of the mantle.

Therefore, if the pen is an important scattering source, its contribution is likely to

lead to a large deviation between the tissue-only model predictions and the experi-

mental data at normal incidence in the dorsal-ventral plane. However, in the study

conducted previously by Jones et al. (2009), good agreement was found between the

experimental data and the three-dimensional DWBA numerical model predictions for

T. pacificus in the dorsal-ventral plane particularly at normal incidence. This result

appears to suggest that the pen does not contribute significantly to the scattering in

the dorsal-ventral plane, at least in the investigated frequency range.

2.6.4 Squid size estimation

One of the primary advantages of using broadband signals and pulse compression tech-

niques is the increased spatial resolution of the measurements, which allows dominant

scattering mechanisms to be determined as well as the scatterer size to be estimated.

In this study, the width of the squid mantle was relatively accurately assessed by mea-

suring the separation between the two main arrivals in the CPO envelope at normal

incidence, assuming an internal sound speed. However, there were some discrepancies

between the physically-measured width and the acoustically-inferred width based on

the experimental data as well as model predictions for the individual 0822a (Fig. 2-

8). There was also significant variability in the inferred width of the squid based

on the experimental data for all individuals. This variability is likely a result of the

expansion and contraction of the mantle during squid ventilation.

For the case of individual 0822a, the mean acoustically-inferred width from the
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experimental data is smaller than any of the model predictions. It is possible that

this is a result of the error associated with performing dimensional measurements on

dead specimens (obtained after the acoustic measurements were complete). In this

case, the maximum mantle width measured from a collapsed mantle cavity of a dead

squid is likely wider than the mantle width for the same animal when alive. Recall

that the squid shapes used in the models are scaled according to the dimensional

measurements of the squid.

The acoustically-inferred widths from the model predictions are also different from

the actual width of the model volumes, although only by a small proportion (<

2.67%). The inferred width of the analytical DWBA prolate spheroid model (2.92

cm) is slightly smaller than the short axis of the prolate spheroid (3 cm). The inferred

width of the three-dimensional DWBA numerical model (2.96 cm using the arms-

folded squid shape and 3.04 cm using the arms-splayed squid shape) are also different

than the actual average width (3 cm) of the digital squid volume. The variability

of the inferred widths is a combined effect of the shape of the scattering object and

the shape of the auto-correlation function (width of the mainlobe and height of the

sidelobes) of the replica signal used in pulse compression processing. For the analytical

DWBA prolate spheroid model, the smaller inferred width is an artifact resulted from

the summation of the sidelobes of the response of one of the water-body interfaces and

the mainlobe of the response of the other interface. For the three-dimensional DWBA

numerical models, the high degree of internal inhomogeneities in the squid volume

(see Fig. 2 in Jones et al., 2009) interacts with the sidelobes of the auto-correlation

function and smears the peak locations in the CPO envelope (Lee et al., 2010).

2.6.5 Squid shape

This study has shown that the shape of the modeled squid may also have to be ad-

justed to obtain the most accurate scattering predictions. In this study, the squid

shape used in the three-dimensional DWBA numerical model was based on SCT im-

ages of different individuals than those used in the actual scattering measurements.

Better agreement may have been achieved by using the same individuals for the scat-
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tering measurements and the SCT scans. The results of this study also show that

the most accurate model predictions are achieved by using squid shapes that do not

include the fins and have loosely-folded arms, most closely resembling the observed

shape of the squid during the actual experiment (Fig. 2-10). In the natural environ-

ment, squid usually swim with their arms fully folded and the fins fully extended.

Splayed arms are only observed during fighting, defense, or reproduction (Hanlon

et al., 1999; Hanlon and Messenger, 1998). Therefore, for acoustic data collected in

the field, model predictions made using squid shapes with folded arms and symmetric

fins may produce the best agreement with the data.

2.6.6 Modeling squid aggregations

Depending on the species, squid in their natural environment may be found dispersed

or in aggregations. To accurately model the scattering from squid aggregations, care

must to taken to select the shape of individual squid in the aggregation, the distri-

bution of the squid angle of orientation relative to the sonar beam, as well as the

distribution of squid size. For data collected using downward-looking sonar beams,

the shape of the fins is particularly important when the angle of orientation is domi-

nated by near-normal angles [Fig. 2-14(a)]. In field applications, the three-dimensional

DWBA numerical model using squid shapes with fins fully extended is likely to give

the best modeling results (see Sec. 2.6.5). However, the errors in the estimates of

the angle-of-orientation and size distributions may result in larger errors in the esti-

mated biomass than the choice of different squid shapes (Lawson et al., 2006). The

angle-of-orientation distribution of the squid relative to the sonar beam can also dic-

tate the choice of models. For example, when the angle of orientation is dominated

by near-normal angles, all models, including the analytical DWBA prolate spheroid

model, give similar results for averaged TS. However, when the angle of orientation

is dominated by off-normal angles, the three-dimensional DWBA numerical model

is necessary to accurately predict averaged TS, and the analytical DWBA prolate

spheroid model is likely to under-predict the averaged TS in this case.
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2.6.7 Statistics of echoes from individual squid

This study has shown that the echo pdf of individual squid can vary from highly non-

Rayleigh to Rayleigh-like depending on the range of angles of orientation included in

the analysis and the acoustic frequency (Fig. 2-16, Fig. 2-20, Fig. 2-21, and Fig. 2-

24). The analysis also showed that the shape of the echo pdf from all angles of

orientation can be explained based on the scattering beampattern of the squid, and

that the observed echo statistics features can be modeled using a randomly-oriented,

randomly-rough prolate spheroid with an effective aspect ratio (Fig. 2-24). These

results can be used to improve the parameterization of echo pdf models for individual

organisms, which are useful in modeling the statistics of echoes from aggregations of

organisms in Chapter 3 and Chapter 4.

However, the echo pdfs observed at normal incidence (Fig. 2-19) contain features

that are not consistent with the temproal and spectral features observed at this angle

(Fig. 2-8, Fig. 2-13, Fig. 2-17, and Fig. 2-18). For example, the transition from

strong non-Rayleigh to Rayleigh-like echo pdfs with increasing frequency (Fig. 2-19)

suggests that the scattering from different body parts other than the body interfaces

of squid, or the roughness on the outer surface may be important at higher frequencies,

which may explain the lack of distinct interference patterns in the TS spectra. In

contrast, the resemblance between the observed non-Rayleigh echo pdf features and

the modeled echo pdf produced by the summation of two random sinusoids suggests

that the echoes from the front and back interfaces of squid dominates the scattering

at normal incidence. Therefore, the results presented here are inconclusive and merit

further investigation through future experiment and modeling analysis.

2.7 Summary and conclusions

This study presents the first set of controlled laboratory measurements of broadband

acoustic scattering from live squid at all angles of orientation in the lateral plane.

The results indicate that sophisticated models are necessary to predict the scattering

over a wide range of important conditions.
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The performance of two DWBA-based models, a closed-form analytical prolate

spheroid model and a three-dimensional numerical model, have been compared to

the data. By using the three-dimensional DWBA numerical model and digitally

manipulating the squid shape, it was possible to assess the scattering contributions

from individual body parts, such as the fins and the arms. It has been found that the

analytical DWBA prolate spheroid model can accurately predict the measured TS

over a narrow range of angles of orientation near normal incidence, while the three-

dimensional DWBA numerical model can predict the measured TS across a wider

range of angle of orientation. Results of the data-model comparison also show that (1)

both DWBA-based models are capable of explaining the observed dominant scattering

features at normal incidence, but only the three-dimensional DWBA numerical model

can explain the dominant scattering features at angles of orientation well away from

normal incidence, (2) the contributions from the front and back interfaces of the

squid dominate the scattering at normal incidence, while the arms have a significant

effect at other angles, and (3) the scattering from the squid appears to be dominated

by the fluid-like weak scattering properties of squid. Statistical analysis of the data

also revealed the strong non-Rayleigh features in the echoes from randomly-oriented

individual squid, which provide additional information that is complementary to the

above temporal, spectral, and angular characterization toward understanding the

scattering mechanisms of live squid.

One of the ultimate goals of this study is to improve the acoustically-inferred esti-

mates of the distribution and abundance of squid in the ocean. For squid species com-

monly found in aggregations, potential field applications for the downward-looking

sonar and the side-looking sectors in the multibeam systems were investigated by

comparing the measured TS to the TS predictions, both averaged over several angle-

of-orientation distributions. It has been found that the analytical DWBA prolate

spheroid model can only predict the averaged TS for angle-of-orientation distribu-

tions dominated by near-normal angles, while the three-dimensional DWBA numer-

ical model was able to reproduce the observed averaged TS except for several small

subsets of the data. The incorporation of precise modeling parameters in the three-
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dimensional DWBA numerical model, including an accurate representation of the

squid shape, squid muscle material properties, as well as appropriate estimation of

the angle-of-orientation and size distributions, are required to improve the accuracy

of the TS estimates. The non-Rayleigh features in the squid echoes should also be

incorporated into echo statistics models of aggregations of organisms in the analysis

of data collected in the field.

Finally, squids are a diverse group of animals with a wide range of sizes and

shapes, but general anatomical features for these animals are similar for most species.

Therefore, the understanding developed in this study through measurements and

modeling of the scattering from L. pealesi may be applied to guide the modeling for

other squid species.
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Chapter 3

Statistics of echoes from mixed

assemblages of scatterers with

different scattering amplitudes and

numerical densities

3.1 Introduction

The ability to accurately characterize and discriminate between the echoes from var-

ious sources of scattering is crucial to many radar and sonar systems (Le Chevalier,

2002). When a sonar/radar beam scans through a volume or surface of interest, the

echoes fluctuate as a result of variation in the composition of scatterers, their orien-

tation distribution, locations of these scatterers in the beam, and numerical density

of the scatterers included in the analysis window. The statistics of the echoes provide

an avenue to infer key properties of the scatterers. For example, the shapes of the

probability density functions (pdfs) can be used to estimate the numerical density of

the scatterers (Stanton, 1985a,b). Furthermore, understanding these pdfs is impor-

tant in predicting sonar/radar performance when discriminating between a target of

interest and clutter (Abraham and Lyons, 2010; Watts and Wards, 2010).
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When the resolution cell of a sonar/radar system contains a large number of iden-

tical scatterers, the central limit theorem holds for the real and imaginary components

of the echoes, and the amplitudes of echo envelopes (or, more precisely, the magnitude

of the complex echo) are Rayleigh-distributed (Goodman, 1985). Here, the "resolu-

tion cell" is defined as the volume subtended jointly by the mainlobe and sidelobes

of the sonar/radar beam and the range resolution of the system. However, when the

above conditions are not satisfied, non-Rayleigh-distributed echoes with heavy tails

can occur. The "tail" is defined for the region where the values of the echo amplitude

are relatively high and probability densities are relatively low. When the resolution

cell contains only a small number of scatterers, the resultant echo amplitude pdf (here-

after referred to as the echo pdf) is highly non-Rayleigh, owing significantly to the

random weighting factors due to random locations of the scatterers in the beam. The

distribution associated with this echo amplitude modulation is termed the "beampat-

tern pdf" (Chu and Stanton, 2010; Ehrenberg, 1972) and this (beampattern) effect is

one of the primary factors for non-Rayleigh-distributed echoes.

Another common reason for non-Rayleigh-distributed echoes to occur is when

there is more than one type of scatterer in the aggregation included in the analysis

window (where the window is much larger than the resolution cell of the system,

resulting in many statistically independent samples within the window). In this case,

the statistics can be non-Rayleigh even when the total number of scatterers is large.

Here, the same "type" of scatterers refer to scatterers with the same scattering am-

plitude (or, if it is a random variable, the same amplitude distribution with the same

mean amplitude) at the frequency under consideration. For example, there could be

a single strong scatterer interspersed within a large number of scatterers of another

type, which has a much smaller scattering amplitude. Without the strong scatterer,

the echoes would be Rayleigh-distributed due to the relatively weak scatterers. How-

ever, if the echo from the strong scatterer is large enough so that it is comparable to or

larger than the collective echo from the weak scatterers, its presence can significantly

influence the statistics, increasing the tail and making it non-Rayleigh. This type of

condition is prevalent in nature such as in the cases of the presence of occasional large
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fish foraging in a zooplankton patch (Onsrud et al., 2004), sparsely distributed rock

outcrops on a bed of sand ripples on the seafloor (Heezen and Hollister, 1971), bub-

ble plumes from occasional breaking waves under a rough sea surface (Woolf, 1997),

isolated or small groups of trees in a field of bushes or grassland (Greig-Smith, 1984),

etc.

The spatial distribution concerning two different types of scatterers in an aggrega-

tion is illustrated for two distinct cases, one in which the two types are separated into

subregions [Fig. 3-1(a)] and the other in which the two types are interspersed [Fig. 3-

1(b)]. In each case, the size of the resolution cell of the sonar/radar system is much

smaller than the size of the analysis window and, in the first case, also much smaller

than the size of each subregion. Thus, in the first case, in any one ping, only one

type of scatterer is "seen" by the system [Fig. 3-1(a)]. As a result, the echo statistics

for the pings included in the analysis window containing both subregions are nonsta-

tionary across the two subregions (Abraham et al., 2011). The second case involves

the "mixed assemblage" which is the focus of this paper [Fig. 3-1(b)]. Here, the two

types of scatterers are interspersed and uniformly distributed so that the echo statis-

tics within the analysis window are stationary. Both scenarios are prevalent in nature

and require different statistical models. Note that the term "monotype aggregation"

will be used to refer the cases in which only one type of scatterer is included in the

analysis window that are opposite to the two cases described above. The terminology

discussed here will be used in this chapter and throughout this thesis.

Many models have been proposed to characterize non-Rayleigh-distributed echoes.

Statistical analysis of data usually involves fitting the data to a large pool of models

to determine the best representation (e.g., Abraham and Lyons, 2010; Gallaudet and

de Moustier, 2003; La Cour, 2004; Watts and Wards, 2010). However, since most

of these models do not provide explicit connections between the model parameters

and the underlying scattering mechanisms, statistical descriptions using this data-

driven approach are often only applicable to data collected using similar systems in

specific geographical locations. In other words, these models are neither predictive

nor interpretive with respect to the variation of sonar/radar system parameters or
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the scattering processes in the environment.

Several other models (Abraham and Lyons, 2002; Crowther, 1980; Jakeman and

Pusey, 1976; Middleton, 1999) do provide a link between the model parameters and

the physical scattering environment by imposing specific assumptions on the scatter-

ers in a resolution cell. Among them, the K-distribution has been successfully applied

to data collected under a variety of contexts (Jakeman and Pusey, 1976; Ward et al.,

2006). However, the link between the K-distribution model parameters and the en-

vironment was established under the assumption that the scattering amplitude of

scatterers or scattering patches after beampattern effects is exponentially-distributed

(Abraham and Lyons, 2002). This assumption is not realistic for many important sce-

narios in nature, including most biological aggregations in the sea (Lalli and Parsons,

1997).

Recognizing the potential nonstationarity of the echo samples included in the

analysis window [Fig. 3-1(a)], the multiple-component mixture model (referred to as

the "M-component mixture model" throughout this paper) has been used extensively

to fit experimental data (e.g., Abraham et al., 2010, 2011; Chotiros, 2010; Gallaudet

and de Moustier, 2003; Stanton and Chu, 2010; Ward and Tough, 2002). This model

describes the echo distribution as a linear combination of multiple probability distri-

butions through
M

p' (a) = wmnpA,mn(a), (3.1)
m=1

where a is the echo amplitude (or, more precisely, magnitude of complex echo), M

is the number of component pdfs, and pA,m(a) and wm are the pdf and proportion

factor of the mth component pdf, respectively, with the constraint m = 1.

Specifically for aggregations composed of more than one type of scatterer, each

being in their own subregion, M denotes the number of subregions in the aggregation,

and the proportional factor wm is determined by the relative proportion of data

included in the analysis window from the mth subregion. Each component pdf can

then be written as

pA,m(a) = pA,,(a; Nm, rm), (3.2)
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"7 (a) (b)

Analysis window

Figure 3-1: Illustration of analysis windows containing two possible spatial arrange-
mnents for aggregations composed of more than one type of scatterer. (a) Scatterers
of the same type are separated into their own subregion. (b) Scatterers of different
types are uniformly interspersed throughout the analysis window. In each case, the
sonar/radar resolution cell is much smaller than the analysis window and, in case (a),
is also much smaller than each subregion.

where Nm and rm are the number of scatterers and relative scattering amplitude,

respectively, of the mth type of scatterer. Each rm is calculated relative to the

amplitude of the weakest scatterer in the aggregation.

However, for mixed assemblages as depicted in Fig. 3-1(b), each echo sample is

formed by a coherent sum of the echoes from each scatterer (regardless of type)

contained in a single resolution cell (Chu and Stanton, 2010). Therefore, instead of a

weighted sum over several component pdfs, the resultant echo pdf should be evaluated

through a coherent summation of complex random variables, each associated with a

scatterer, which can be written in the following parametrized form

In this study, the echo statistics associated with mixed assemblages [as represented

in Fig. 3-1(b)] are formulated with this approach of coherently adding all echoes. This

is a physics-based approach, beginning with the scattering physics of individual scat-

terers and incorporating effects due to their locations in the beam. Both the scattering

by individuals and their locations in the beam are randomized. This is in contrast to
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the above-mentioned approaches in which parameters of the echo statistics are not di-

rectly linked to physical processes. The new formulation is a specialized version of the

general formula for the echo pdf of an arbitrary number of scatterers given in Chu and

Stanton (2010), which utilized the method of characteristic functions (CFs) proposed

by Barakat (1974) to calculate the envelope pdf of the sum of random variables. The

signals modeled are narrowband. The aforementioned beampattern effects are also

incorporated explicitly in this formulation (Ehrenberg, 1972). Theoretical predictions

made by this CF-based mixed assemblage pdf are validated by numerical simulations

of echoes from mixed assemblages.

In addition, the performance of the CF-based mixed assemblage pdf as an inference

tool is compared with that of the M-component mixture model in the case of mixed

assemblages containing two types of scatterers [Fig. 3-1(b)] over a wide range of

numerical densities and relative scattering amplitudes of the scatterers [Nm's and

rm's in (3.1) and (3.3)]. Through a best-fit analysis, it is observed that only the

CF-based mixed assemblage pdf is able to simultaneously fit the shape of the echo

pdf of simulated data and accurately infer the parameters of the simulated mixed

assemblage composition, while use of the M-component mixture model sometimes

results in significant errors in parameter estimates under important conditions.

This chapter is organized as follows. In Sec. 3.2, the theoretical development of

the CF-based mixed assemblage pdf and the incorporation of beampattern effects are

presented. In Sec. 3.3, the procedures of generating theoretical curves and numeri-

cal simulations are discussed, and important examples of numerically-validated CF-

based mixed assemblage pdfs are shown. The performances of the CF-based mixed

assemblage pdf and the M-component mixture model are compared in Sec. 3.4. The

summary and conclusion of this study are given in Sec. 3.5.
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3.2 Theoretical development of characteristic func-

tion (CF)-based mixed assemblage pdf

In this section, a general expression is derived to describe the echo envelope pdf for

mixed assemblages as a function of the numerical density and scattering amplitude

of each type of scatterer, as well as the number of scatterer types. This expres-

sion is general and applicable to the case in which the scatterers in the analysis

window are of arbitrary type. The derivation follows the method of characteristic

functions (Barakat, 1974) to obtain the envelope statistics for the sum of generic

complex random variables. The beampattern effects, which are of particular con-

cern for radar/sonar applications, are also incorporated explicitly in the formulation

(Chu and Stanton, 2010; Ehrenberg, 1972). Some derivations from previous work are

summarized here as they will be used in the final formulation.

3.2.1 Problem setup

In a mixed assemblage, different types of scatterers are uniformly interspersed among

one another, as depicted in Fig. 3-1(b). The geometry involves direct paths between

the radar/sonar and the scatterers in the backscattering direction, with no reflections

from the boundaries such as the seafloor and sea surface.

Assuming the use of narrowband signals, the echo voltage Vi received through the

sonar/radar system associated with each scatterer can be modeled as a narrowband

continuous wave (CW) signal and described in (complex) phasor form,

Vi =aie ' j(Oi~w(3.4)

where Wa is the angular frequency, j v/-I, and ai and 9, are the echo magnitude

and relative phase associated with the ith scatterer, respectively. All ai and 0, are sta-

tistically independent. The magnitude of each echo, aj, depends upon the size, shape,

orientation, and material properties of the ith scatterer, as well as the frequency and

the location of the ith scatterer in the beam. The dependence of ai upon the loca-
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tion of the ith scatterer in the beam is implicit here, and will be given in detail in

Sec. 3.2.3. Since the path differences induced by the position of the scatterers within

a resolution cell are assumed to be greater than the wavelength of the incidence wave,

and the locations of the scatterers are assumed to be random and independent of one

another, 0, can be modeled as a random variable uniformly distributed over the range

of [0, 27r).

For the case of N scatterers randomly located in the half-space insonified/irradiated

by the sonar/radar beam, the total echo (voltage) measured through the system, V,

can be expressed as a sum of the contributions from individual scatterers, i.e.,

N N

V E Vi = e'Wat aeioi. (3.5)
i=1 i=1

The echoes from all scatterers in the half-space overlap due to the infinite duration

of the assumed CW signals. Note, however, that the actual contribution of each

scatterer to the total echo is determined by the location of the scatterers in the

beampattern of the transducer. The scatterers located in the nulls of the beampattern

do not contribute to the total echo, and the contributions from scatterers located in

the sidelobes are much lower than the contributions from scatterers located in the

mainlobe. Therefore, the number of scatterers located within a resolution cell (see

definition in Sec. 3.1) is generally much less than N. The echo pdf analyzed in

this paper deals with fluctuations of envelope amplitude (i.e., magnitude of complex

signal) of the total field, a = IV'l, and its distribution will be denoted by pA(a)

throughout this chapter.

3.2.2 Method of characteristic functions - beampattern ef-

fects not explicit

The above formulation for the total echo measured through a sonar system is the same

as the general case described by Barakat (1974) in which a finite number of indepen-

dent sinusoidal waves with arbitrary magnitudes and random phases are summed
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coherently. He derived a useful formula to express the pdf of the resultant echo

magnitude as a Fourier-Bessel series expansion of the product of characteristic func-

tions (CF, Papoulis, 2002) associated with the pdf of the real or imaginary part of

individual phasors. The method is summarized below.

Define yi to be the real part of the scattering contribution from the ith scatterer

and pA,i(a) to be the distribution of its magnitude. Since y, = Re{Vi} = ai cos 0?,

yi can be viewed as the product of two independent random variables, a, and cos 02.

Through manipulation of the product of two random variables, the distribution of yi

is shown to be [eq.(13) in Barakat (1974)]

7r " _^''_"'71dai , yiJ < ai
pyP (yi) =d- (3.6)

0 ,yil > a,

Define y' to be the real part of the total echo field, y' = Re{V'}, its pdf can be

expressed as the convolution of pdfs of the real part of individual echoes,

pYE = pyI * py2 * py3 * - - - . (3.7)

Define #4 to be the CF of py,(yi) [eq.(21) in Barakat (1974)],

#i(w) = FT{py,(yi)} = pA,i(ai) Jo(wai)dai, (3.8)

where FT{-} denotes the Fourier transform and J,(.) denotes the cylindrical Bessel

function of the first kind of order v. Since the convolution of pdfs corresponds to

the product of CFs, the CF of the pdf of the real part of the total echo field from N

scatterers, #F, is
N

(W) q i(w). (3.9)
i=1

By considering yE as a projection of the vector (Re{V'}, Im{V'}) onto the real

axis in the complex plane and using the fact that Re{V } and Im{V'} have the same

amplitude distribution, the pdf of the length of this vector, a, can be written in the
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form of a Fourier-Bessel series [eq.(55-56) in Barakat (1974)]

00 O( )n
pA(a) = 2a [a"" 2 J. (77n ), (3.10)

_ [ama Ji(qnamax

where amax is the maximum echo amplitude, and rn (n = 1, 2,...) are the positive

roots of Jo(x) = 0. The combination of (3.9) and (3.10) can be used to calculate

the echo pdf of an aggregation of an arbitrary number of scatterers with arbitrary

scattering amplitudes. Note that since #Y decreases rapidly and oscillates while ap-

proaching zero asymptotically, in numerical implementations of (3.10), the sum of

the infinite series can be truncated at the location where the first zero in #' is en-

countered. The number of terms included is determined by the range of a where the

values of p'(a) are not negligible. This is analogous to the time-frequency reciprocity

in Fourier analysis, where the support of the temporal and spectral representations

of a given signal are approximately the inverse of each other.

3.2.3 Incorporating beampattern effects

Since each ai is measured through the radar/sonar system, the location of the ith

scatterer in the beam will determine the weighting factor applied by the radar/sonar

system to the scattering amplitude of the echo. These beampattern effects can be

explicitly accounted for when forming pA,i(ai). For a single scatterer randomly located

in the beam, the echoes "seen" through the receiver of the system (i.e., including

beampattern effects) can be viewed as a product of two random variables, si and b,

where si is the magnitude of the scattering amplitude of the ith scatterer, and b is

the random weighting factor imposed by the beam. The echo envelope pdf of the ith

scatterer as measured through the receiver can be expressed as

pA 1(ai) = s(si)p (a) (3.11)

where Ps, (si) is the distribution of the magnitude of the scattering amplitude of the

ith scatterer (i.e., the echo amplitude before the beampattern effects), and PB(b)
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is the beampattern pdf [originally derived in (Ehrenberg, 1972), with subsequent

papers summarized in (Chu and Stanton, 2010)]. For a system with an axisymmetric

beampattern,

PB(b) PxP (V),(b)) (3.12)
Sdb '

~b(b)

where @b is a random variable representing the polar angle between the scatterer

position and the axis of the beam, and each 01 is a root to b = b(4'). All simulations

and analyses carried out in this chapter are conducted under the assumption of an

axisymmetric transceiver aperture with kaT = 27r, where k is the wavenumber and aT

is the aperture radius. This corresponds to a beamwidth of approximately 300. For a

more complicated beampattern with both polar and azimuthal angular dependence,

such as a transducer with rectangular aperture, (3.12) has to be modified, but the

same general formulation in (3.11) is applicable.

3.2.4 Echoes from mixed assemblages

The above CF-based approach can be used to calculate the echo pdf associated with

mixed assemblages through a simple modification of (3.9). In the mixed assemblage,

assume that there are M types of scatterers, each with Nm (m = 1, 2, . .. , M) scat-

terers randomly and uniformly distributed in the half space. Using (3.9), the CF of

the pdf of the real part of the assemblage echo can be expressed as

M

# ) (#m())Nm (3.13)
n=1

where #m denotes the CF of a single scatterer of type m and can be obtained by (3.8).

The total echo pdf can then be calculated using (3.10).

The CF-based mixed assemblage pdf calculated using (3.10) and (3.13) rigorously

incorporates important parameters associated with the system and scatterers: 1)

beampattern effects associated with the random locations of the scatterers in the

beam; 2) statistics of the random scattering amplitude (before beampattern effects)

of each scatterer; and 3) number of each type of scatterer. Each of these parameters
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are all accounted for explicitly.

3.3 Numerical validation and examples of CF-based

mixed assemblage pdfs

In this section, the theoretical CF-based mixed assemblage pdf derived in Sec. 3.2 is

validated by simulated data. The effects of the change of mixed assemblage compo-

sition on the shape of the echo pdf are also examined.

As seen in (3.13), two of the parameters controlling the CF-based mixed assem-

blage pdf are the number of scatterer types, M, and the number of each type of

scatterers, Nm. A third model parameter is the relative, rather than absolute, scat-

tering amplitudes of the different types of scatterers. This is because the shapes of

echo pdfs are dictated by the composition of mixed assemblages, and the absolute echo

amplitudes only change the location of the pdfs on the amplitude axis. Therefore,

the pdfs will be plotted vs the echo amplitude normalized by the root-mean-square

(rms) amplitude following the procedure detailed in Appendix A. This normalization

procedure is conceptually analogous to normalizing normal distribution curves with

the same shape (and thus the same standard deviation) but different mean values to

the standard normal distribution.

As discussed in Sec. 3.2, the magnitude of the scattering amplitude of each scat-

terer is specified by a distribution (e.g., pAi(a) for the ith scatterer), instead of a fixed

value. Furthermore, it is the relative scattering amplitudes, rather than their absolute

levels, among the different types of scatterers that are important to the shape of the

echo pdf (associated with either individual or aggregation echoes). Therefore, the

statistics of the scattering amplitude of the mth type of scatterer can be described

through use of the ratio

rm = Am (3.14)
Ai

where Am and A, are the rms magnitudes of the scattering amplitudes of the mth

type of scatterer and the weakest scatterer in the assemblage, respectively (r =
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1, 2,.. . , M; Au > Am-_ > ... > A1 ). In this study, all simulated data and theoretical

curves are generated under the assumption that the magnitude of scattering amplitude

of each individual scatterer (i.e., the echo before beampattern effects) is Rayleigh-

distributed. In this case, Am is proportional to the mean of the distribution of the

magnitude of the scattering amplitude of the mth type of scatterer. Because the

quantity A2 is a measure of energy, r2 is equal to the ratio of the mean of the

backscattering cross section (square of magnitude of scattering amplitude) of the

mth type of scatterer to that of the weakest scatterer in the assemblage.

To illustrate the effects of mixed assemblage composition on the shape of the echo

pdf, particularly on the non-Rayleigh elevated tail of the pdf, theoretical curves are

generated for mixed assemblages composed of only two types of scatterers (M =

2). For simplicity, these two types of scatterers will be referred to as "strong" and

"weak" scatterers, with the number of each type of scatterer denoted by N, and N.,

respectively. The ratio of the magnitudes of the scattering amplitudes of the strong

to the weak scatterers, r 2 , is specially denoted by r8, in this case. The phase of each

individual scatterers is assumed to be uniformly distributed over the range of [0, 27r)

for all simulated data and theoretical curves.

3.3.1 Simulated data generation

Following (3.14), the echoes from the mnth type of scatterer (before the beampattern

effects) are simulated by drawing samples from Rayleigh distributions with parameter

rm, using the convention below

.X 2 2

A ; /2r. (3.15)

The magnitudes of these echoes are further modulated according to the random lo-

cations of the scatterers in the beam. In the present case when a circular aperture is

considered, the random location refers to the polar angle of the scatterer to the axis

of the beam. The phase of the echo from each individual scatterer is generated by

drawing samples from a uniform distribution over the range of [0, 27r).
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Each independent realization of the ensemble is formed by coherently summing

z_1 Nm random phasors with the above magnitudes and phases. The echo pdf of

the simulated data is obtained through forming the number frequency histogram of

simulated realizations that have been normalized following the procedure described

in Appendix A. In general, 10 3 realizations are sufficient to form the echo pdf with

reasonable accuracy over a wide range of echo amplitudes. However, with the focus

to accurately predict the tail of the pdfs, all simulated data presented in this paper

contain 10' realizations.

3.3.2 CF-based mixed assemblage pdf generation

The echo pdf of a single scatterer of type m, pA,m(a; Nm = 1, rm), is required to

calculate the CF for an arbitrary number of scatterers using (3.8) and (3.9). Since

the shape of the echo pdf is only affected by the assemblage composition regard-

less of the absolute scattering level, pA,m(a; Nm = 1, rm) can be obtained by scaling

pA,1(a; N1 = 1, ri) on the echo amplitude axis so that the ratio of the rms amplitude

of PA,m(a; Nm = 1, rm) to that of pA,1(a; N1 = 1, ri) equals to rm. Theoretical echo

pdfs of mixed assemblages are then generated by first obtaining the total CFs through

the combination of (3.8) and (3.13), and converting the total CFs to the total echo

pdf using (3.10).

3.3.3 Validation of CF-based mixed assemblage pdf (as a pre-

dictor)

Theoretical predictions given by the CF-based mixed assemblage pdf are validated by

numerical simulations generated over a wide range of ratios of scattering amplitude

and numbers of scatterer types (Fig. 3-2). It is observed that the accuracy of the

predicted echo pdfs is related to the accuracy of the echo pdf of a single weakest

scatterer, pA,1(a; Ni = 1, r 1 ), due to the procedure described in Sec. 3.3.2. Specifically,

inaccuracy in the region in which the values of echo amplitude are low and probability

densities are high reduces the accuracy of the resultant mixed assemblage pdf, because
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Figure 3-2: Validation of the theoretical CF-based mixed assemblage pdf using (3.10)
and (3.13) (lines) with numerically-simulated echo pdfs (symbols) for the case of two
types of scatterers uniformly interspersed as in Fig. 3-1(b). The number of weak
scatterers, N., is fixed at 100 whereas the number of strong scatterers, N8 , and the
ratio of the magnitudes of scattering amplitudes of the strong to the weak scatterers,
r8 s, are both varied.

energy contained in this region can affect the rms value used for normalization. This

is due to numerical issues with small numbers.

The difference between the echo pdfs of monotype aggregations and mixed assem-

blages depends on the composition of the aggregation (Fig. 3-3). For example, when

the N8 and r8 w are of moderate value (e.g., N8  5, 10 and r8 a = 5), both the tail

and the overall shape of the CF-based mixed assemblage pdfs differ from those of

monotype aggregations. However, as N/8 and r8 , increase, the total scattered field is

increasingly dominated by the strong scatterers, results in the almost identical shape

of the tails (e.g., CF-based mixed assemblage pdfs with r8 . = 20).
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Figure 3-3: Comparison of echo pdfs from monotype aggregation and mixed assem-
blages with varying number of scatterers and r,,. The number of dominant scatter-
ers, Ndom, is indicated for each plot. Ndom equals the total number of scatterers in
monotype aggregations the number of strong scatterers in mixed assemblages (i.e.,
Ndom - N,). N, is fixed at 100 for all mixed assemblages.
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Figure 3-4: Variation of the CF-based mixed assemblage pdf as a function of
mixed assemblage composition. The top plots show the effect of changing N,
(= 1, 5,10, 20, 50, 100) on the shape of the echo pdf when r,, = 5 and N, = 100. The
bottom plots show the echo pdf variation with the same combinations of N, and N.,
but with r,, = 20.

3.3.4 Effect of mixed assemblage composition on the echo

pdf

The effects of mixed assemblage composition on the shape of the echo pdfs are exam-

ined in cases consisting of only two types of scatterers.

Varying the ratio of scattering amplitudes

The shape of the echo pdf is shown to change by varying r while keeping N, and N,

fixed (Fig. 3-4). When r, is small (top panel), the echo contributions from the strong

scatterers are more confined to the tail of the pdfs. The lower amplitude portion of the

pdfs, which is dominated by the weak scatterers, remains relatively stable. However,

when r8, is increased (bottom panel), the scattered field is increasingly dominated by

the strong scatterers, and the energy contained in the tail of the pdfs is of a higher

proportion of the total scattered energy. Therefore, in addition to an elevated heavy

tail, the modes of the normalized pdfs with larger r8 , are displaced toward smaller

echo amplitudes.
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Varying the number of scatterers in each type

The shape of the echo pdf also varies with changing N, and N while holding r,, fixed

(Fig. 3-4). When N is small, the curves are highly non-Rayleigh owing to occasional

large echoes from the strong scatterers occuring in the mainlobe of the beam. As N,

increases, the shape of the echo pdf gradually approaches the Rayleigh distribution.

This trend of variation from non-Rayleigh toward the Rayleigh distribution with

increasing number of scatterers is the same as the results reported in Chu and Stanton

(2010) for assemblages consisting of only one type of scatterer. Furthermore, as N

increases, the total scattered field is increasingly dominated by the strong scatterers,

and the contribution from the weak scatterers becomes negligible. This explains why

echo pdfs with the combination (N, = 0, N, = 100) and (N, = 100, N, = 100) are

almost identical, regardless of the value of r,,. This property has an impact on the

use of echo pdfs to infer the composition of mixed assemblages, as will be discussed

in Sec. 3.4.3.

3.4 Comparison of the CF-based mixed assemblage

pdf and M-component mixture model

In this section, the performance of the newly developed CF-based mixed assemblage

pdf is compared with the commonly used Al-component mixture model in their use

to infer parameters of mixed assemblages. The echo pdfs of simulated data are fit

to model pdfs with varying parameters through a curve-fitting procedure. The pa-

rameters of the assemblage composition corresponding to the best-fitting pdfs (i.e.,

the inferred parameters) are then compared with the true parameters used in nu-

merical simulations. The discrepancies between the true and inferred parameters for

each model are compared. To simplify the analysis, the number of scatterer types is

limited to two (M = 2) for all calculations as in the earlier examples.

The simulated data are generated following the procedure described in Sec. 3.3.1.

The number of weak scatterers, N,, is fixed at 100 and the number of strong scatter-
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ers, N, is varied between 1 and 100. The ratio of magnitude of scattering amplitude

of the strong to the weak scatterers, ro, is varied from 5 to 60 for all combinations

of N, and N,. In order to test the sensitivity of the curve-fitting procedure to small

variations in the echo pdfs of simulated data, ten sets of simulated data, each with

10' independent realizations, are generated for each combination of parameters. Since

the results from all simulated data sets are similar, only one representative example

is shown in this chapter.

3.4.1 Echo statistic models formulated for two types of scat-

terers

Using the general formulations (3.1) and (3.3) in Sec. 3.1, the CF-based mixed assem-

blage pdf and the M-component mixture model are given here in simplified forms for

the case of only two types of scatterers. From (3.3), the CF-based mixed assemblage

pdf for two types of scatterers is

p'(a), CF-based = p'(a; N., NS, r8 .). (3.16)

From (3.1), the 2-component mixture model is

pr(a), mixture (1 - ws)pA,.(a) -± wpA,8(a), (3.17)

where pA,w(a) and pA,,(a) are the component pdf for the weak and strong scatterers,

respectively, and w, is the proportion of strong scatterers in the echo samples.

As with the more general (3.1) and (3.3), (3.16) is from a coherent summation of

the contribution from both the strong and weak scatterers, whereas (3.17) considers

the total echo distribution as a sum of two independent scattering processes, with

each sample drawn from either of the two processes.

Two versions of the 2-component mixture model are used in this model compar-

ison study. In the first version, the component pdfs are Rayleigh distributions with

different powers of a ratio of rsw. The use of a Rayleigh distribution implies that
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each echo sample is from a large number of unresolvable scatterers filling the beam,

i.e., N, -± oc and N, -+ oc. This version of the 2-component mixture model will be

referred to as the "2-component Rayleigh mixture model".

In the second version, the component pdfs are calculated using the CF-based echo

pdf formulation, but with only one type of scatterer in each component. Specifically,

pA,w(a) and PA,,(a) are calculated using (3.10) and

#r = (#w(o))N- and #r- = (#,(w))N (3.18)

This version of the 2-component mixture model will be referred to as the "2-component

CF-based mixture model". Note that these two mixture models contain an additional

parameter, the proportional factor, w, which does not have a physical meaning in the

context of mixed assemblages, where the different types of scatterers are uniformly

interspersed [Fig. 3-1(b)].

3.4.2 Method for inferring parameters of mixed assemblage

The composition of each simulated mixed assemblage is inferred by fitting the simu-

lated data to large pools of echo pdfs generated by the above models. The parameters

of the best-fitting model pdf are taken as the inferred parameters of the mixed assem-

blage composition. The best-fitting pdf is chosen by minimizing the Kullback-Leibler

(KL) divergence (Kullback, 1959) between the echo pdf of the simulated data and

model (theoretical) echo pdfs. The KL divergence calculates the overall mismatch

between the echo pdfs from the model and data, while emphasizing the mismatch

between the tails of the two pdfs through its use of a logarithm in the formulation

(Stanton and Chu, 2010):

DKL Pmodel (X) log dx, (3.19)
Pdata( )

where pmodel(x) and Pdata(X) are the echo pdfs of the model and simulated data,

respectively. The emphasis on the tail is often preferred for echo pdf analysis, because
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statistical description of the tail is usually of particular interest in the applications,

whereas the region with low echo amplitude is often contaminated by noise.

3.4.3 Performance of models as inference tools

The performances of the CF-based mixed assemblage pdf and the two 2-component

mixture models in their use to infer parameters of mixed assemblages are evaluated in

this section. The evaluation is based on the fit of the shape of the echo pdfs (Fig. 3-5)

and the accuracy of inferred parameters of assemblage composition (Fig. 3-6).

Several examples of the echo pdf of simulated mixed assemblages and correspond-

ing best-fitting model pdfs are illustrated (Fig. 3-5). The shape of the best-fitting

CF-based mixed assemblage pdf fits successfully to the simulated data in all investi-

gated cases. In contrast, the 2-component Rayleigh mixture model generally failed to

produce the appropriate shape fit to the simulated data in all cases, most notably on

the level near the "inflection points" and the slope of the tails (indicated by arrows

in Fig. 3-5). This mismatch in shape is a direct result of the inadequacy of using

the Rayleigh distribution to describe the scattering from a finite number of scatterers

with associated beampattern effects. When CF-based pdfs are used as component

pdfs in the mixture model (i.e., the 2-component CF-based mixture model), the shape

of model echo pdfs fits the simulated data in most cases, despite small deviations near

the inflection point or in the tail in some cases.

The results of inferred parameters of the assemblage composition for one repre-

sentative set of simulated data with all investigated combinations of N., N, and

rsw are illustrated (Fig. 3-6). For both the CF-based mixed assemblage pdf and the

2-component CF-based mixture model, the pools of model pdfs contain some cases in

which there is only one CF-based pdf component, i.e., N, = 0 in (3.16) and (3.18),

and w, = 0, w = 1 in (3.17). When the data are best-fitted by the one-component

CF-based model, the symbol is changed from a triangle (A) to a square (0) in the

CF-based mixed assemblage pdf case, and from a circle (0) to a cross (x) in the

2-component CF-based mixture model case. In these cases, r5 w is set to 0.

Only the CF-based mixed assemblage pdf is able to accurately infer the composi-
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Figure 3-5: Several representative examples of the echo pdf of simulated mixed as-
semblages (0) and the corresponding best-fitting model pdfs (lines). Also shown
on the plots are the true values of r8, and N, used to generate the simulated data.
The best-fitting assemblage composition parameters for the models are summarized
in Fig. 3-6. The arrows indicate the locations where the best-fitting mixture models
have noticeable divergence from the data.
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Figure 3-6: Comparison of the best-fitting assemblage composition parameters versus

the true parameters for the CF-based mixed assemblage pdf (A), the 2-component

CF-based mixture model (0), and the 2-component Rayleigh mixture model (.).
The squares (E) and crosses (x) indicate the cases when the best-fitting models are

composed of only one CF-based pdf component. The vertical dashed lines show the

approximate locations where the performance of the CF-based mixed assemblage pdf

as an inference tool starts to degrade. Note that the 2-component Rayleigh mixture

model does not contain parameters N, and N,.
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tion of simulated mixed assemblages (Fig. 3-6). Furthermore, the accuracy of this pdf

is limited to a subset of conditions explored. The inferred parameters are the most

accurate when the true N, is small. The model performance degrades as N8 increases

and as the shape of the echo pdf correspondingly approaches the Rayleigh distribu-

tion. Similar degradation in model performance is also observed for cases with large

r8 w (by comparing the locations of the vertical dashed lines for cases with different

r8, in Fig. 3-6). In extreme cases where both N and r8 are high, the best-fitting

curves are often one-component CF-based models.

These trends of accuracy degradation can be explained by the fact that when N,

or rsw is large, the echo samples are dominated by the strong scatterers, and the

contribution from the weak scatterers becomes negligible. In these cases, the CF-

based mixed assemblage pdfs with the same N, are very similar in the tails with only

incremental differences in the low echo amplitude region (Fig. 3-7 and Fig. 3-8). In

more general terms, the pdfs change the most when the number of dominant scatterers

is small, thus, errors in inference increase as the incremental changes decrease. Note

that these properties only apply in the analysis of normalized echo pdfs. Without

normalization, echo pdfs in the above ambiguous cases will have similar shapes but

different locations along the amplitude axis depending on the absolute scattering

levels.

In contrast to the CF-based mixed assemblage pdf, up to order-of-magnitude errors

result fromn the inference of mixed assemblage parameters when the other approaches

involving mixture models are used. In addition to failing to produce an adequate fit

for the shape of the echo pdf, the 2-component Rayleigh mixture model consistently

underestimates r8, in all cases investigated (Fig. 3-6, top row). The 2-component CF-

based mixture model, although producing a better fit on the shape of the echo pdf,

gives erroneous estimation on all three parameters N., N and r,,. Specifically, when

the true N, is small, this model overestimates N, and underestimates r8,. Similar to

the CF-based mixed assemblage pdf, the performance of the 2-component CF-based

mixture model degrades significantly with increasing N, and r,".

In addition to producing erroneous inference results, the lack of physical meaning
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Figure 3-7: Comparison of CF-based mixed assemblage pdf produced with varying

N, and fixed N, and r,,.
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Figure 3-8: Comparison of CF-based mixed assemblage pdf produced with varying

rsw (as shown on the legend) and fixed N,. Nw is fixed at 100 for all cases.
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for the proportional factor, w8, is also an inherent problem of the mixture models in

the context of mixed assemblages, due to the mismatch in the spatial distribution

of scatterers (Fig. 3-1). In the Rayleigh mixture case, it is likely that the fit of

echo pdf shape can be improved by using more than two components in the mixture

model through (3.1) (Gallaudet and de Moustier, 2003). However, with simulated

data generated from only two types of scatterers, any extra components would lack

physical meaning and do not connect with the underlying scattering processes.

Results of this parameter inference study using simulated data show: 1) although

each type of model pdf could be made to fit the simulated data over some, if not

all of the conditions, the accuracy of the inferred parameters varies dramatically,

depending on which model pdf is used and which range of parameters is studied;

2) the CF-based mixed assemblage pdf is necessary for not only producing a satis-

factory fit to the shape of the echo pdfs, but also for accurate inference of mixed

assemblage composition over a wide range of parameters. Its ability to infer pa-

rameters degrades when the number of dominant scatterers becomes large, and the

corresponding changes in pdf shape become small; 3) The 2-component Rayleigh mix-

ture model generally failed to fit the shape of the echo pdf of simulated data, because

the Rayleigh distribution is not adequate for describing the scattering from a finite

number of scatterers with associated beampattern effects. Furthermore, it produces

up to order-of-magnitude errors in the inference of assemblage composition owing to

its erroneous assumption on the underlying spatial distribution of different types of

scatterers; 4) The 2-component CF-based mixture model is capable of fitting the echo

pdf shape of simulated data, but can produce up to order-of-magnitude errors in the

inference of assemblage composition, for the same reason given in 3).

It should be noted that although the above analysis is based on normalized echo

pdfs, in practice, the absolute scattering levels in un-normalized echo pdfs may pro-

vide important information for identifying scatterers and should be considered in the

analysis of data collected in field experiments.
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3.5 Summary and conclusion

In this paper, a general expression for the echo pdf of mixed assemblages is formu-

lated based on the method of characteristic functions (CFs). By incorporating the

beampattern effects from an axisymmetric transceiver aperture, the theoretical pdf

curves are validated by numerical simulations and shown to have high accuracy over

a wide range of conditions. The CF-based mixed assemblage pdf is observed to be

highly non-Rayleigh when the number of the strongest type of scatterer in the assem-

blage is low and gradually approaches the Rayleigh distribution as the number of the

strongest type of scatterer increases.

This new CF-based mixed assemblage pdf significantly outperforms the commonly-

used M-component mixture model (Rayleigh-based and CF-based) when used as a

tool to infer the parameters of simulated two-component mixed assemblages. The

2-component Rayleigh mixture model generally fails to adequately fit the shape of

the echo pdf of simulated data. This mixture model and the 2-component CF-based

mixture model also both result in up to order-of-magnitude errors in the parameter

estimates. In spite of the high accuracy in predicting the echo statistics from mixed

assemblages, the usefulness of the CF-based mixed assemblage echo pdf in inferring

the assemblage composition from simulated data is limited to cases where the number

of dominant scatterers is relatively small. This is due to the fact that changes in the

shape of these pdfs owing to changes in number of scatterers is inherently small when

the number of scatterers is large.

The results show that, in order to accurately model and analyze the echo statistics

of mixed assemblages, it is important to 1) rigorously account for the scattering

from a finite number of scatterers and the associated beampattern effects, and 2)

rigorously account for the spatial distribution of the different types of scatterers when

combining their scattering contribution to the echo. When the echo data appear to

be stationary in the analysis window but the groundtruth information suggests that

there is more than one type of scatterer in the aggregation, the CF-based mixed

assemblage pdf, instead of the M-component mixture model, should be employed.
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Mismatches between model assumptions and the actual scatterer distribution can

lead to order-of-magnitude errors in data interpretation.

Although this study is inspired in the context of acoustic studies of mixed bio-

logical aggregations in the ocean and the examples given in this paper are specific to

volume backscattering sources with an axisymmetric transceiver aperture, the gen-

eral formulation of the CF-based mixed assemblage pdf is applicable to other types

of mixed assemblages in different environments measured with different systems. Ap-

plication of this new mixed assemblage pdf in the analysis of field measurements

may provide a new dimension of information toward classifying and discriminating

between various kinds of aggregations in nature through use of radar/sonar systems.
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Chapter 4

Statistics of broadband echoes:

application to estimating numerical

density of fish

4.1 Introduction

Recent advancements in high-frequency broadband scattering techniques and instru-

mentation have revealed new opportunities to develop reliable methods for the in-

terpretation of echoes from biological or physical sources in the ocean (Foote et al.,

2005; Lavery et al., 2010b; Roberts and Jaffe, 2008; Stanton et al., 2010, 2012). The

broadband capabilities of these systems provide continuous scattering information

over a wide frequency range and improve temporal resolution and signal-to-noise ra-

tios through pulse compression processing (Chu and Stanton, 1998; Turin, 1960). The

broad spectra of echoes collected in the field have been utilized to classify fish of differ-

ent size classes based on swimbladder resonances in the low kilohertz region (Stanton

et al., 2012) and to distinguish the scattering between zooplankton and oceanic mi-

crostructure using scattering spectra over a wider high-frequency band (Lavery et al.,

2010b). The fine temporal resolution has also been utilized for direct identifica-

tion of dominant scattering mechanisms for individual marine organisms (e.g., Au
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and Benoit-Bird, 2008; Lee et al., 2012; Reeder et al., 2004; Stanton et al., 1998b).

However, the use of broadband signals in acoustic scattering studies also poses new

challenges, such as reliable calibration of broadband transducers (Dragonette et al.,

1981; Foote, 2006; Foote et al., 1999a; Stanton and Chu, 2008) and high fluctuations

in high-frequency echo spectra.

The statistics of echoes, such as the shape of the probability density function of the

magnitudes of complex echo amplitudes (hereafter referred to as "echo pdf"), provide

a route for deriving discriminative information from echoes through summarizing echo

fluctuations over consecutive insonification of the same target or group of targets

(Stanton and Clay, 1986). The characteristics of the echoes vary according to the

properties and composition of the sources of scattering, and depend strongly on the

degree to which the echoes overlap, which is determined directly by the resolution of

system (Abraham and Lyons, 2002, 2004; Chu and Stanton, 2010). In the context

of volume scattering, a resolution cell is defined as the intersection between the solid

angle subtended by the sonar beam and the temporal resolution of the signals, which

is the length of the gated sinusoidal wave in the case of narrowband signals, and

approximately the inverse of bandwidth for broadband signals processed using pulse

compression. For the scattering boundaries, the size of the resolution cell is associated

with the size of the footprint of the sonar beam (Abraham and Lyons, 2004).

When the echoes are from coherent summation of a large number of random scat-

terers within each resolution cell, the echo pdf converges to the Rayleigh distribution

asymptotically as a result of the central limit theorem (Goodman, 1985). Therefore,

the degree to which the statistics of echoes deviate from the Rayleigh distribution

is often used as a proxy to describe the scattering from an aggregation of scatterers

in a scenario different from the above. Due to the potential of noise contamination

in low-amplitude echoes, the most reliable echo pdf features are usually observed in

the high-amplitude "tail" of the echo pdf, which is the region where the values of the

echo amplitude are relatively high and probability densities are relatively low (Jones,

2012; Stanton and Chu, 2010).

The application of echo statistics analysis has been an integral component for
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many remote-sensing research fields, such as in the study of electromagnetic scat-

tering from sea surface using radar and the characterization of acoustic scattering

from seafloor features using sonar (e.g., Abraham and Lyons, 2010; Ward et al.,

2006; Watts and Wards, 2010). Most of these studies used a data-driven approach

in which echo observations are fit using generic probabilistic distributions or their

mixtures to determine the best representation of echo statistics features (e.g., Gal-

laudet and de Moustier, 2003; Gelb et al., 2010; La Cour, 2004). Since these models

were derived empirically without explicit connections between model parameters and

the underlying sources of scattering, the models are not predictive, and their appli-

cation is often limited to data collected using similar systems in specific geographical

locations. To overcome these problems, a physics-based approach was taken in the

derivation of theoretical models in a number of other studies (e.g., Abraham and

Lyons, 2002; Crowther, 1980; Middleton, 1999). Results of these studies showed that,

by rigorously considering the various components in the acoustic scattering processes,

including characteristics of the system, signal, and scattering sources, features of the

echo pdfs can be exploited for direct inference of the scatterers or parameters of

interest.

The physics-based approach has also be used to study the statistics of echoes from

marine organisms. For example, in the case where echoes from a single animal are

considered, research has shown the connection between the observed echo pdf fea-

tures and the dominant scattering mechanisms of the animal at different angles of

orientation or behavior states (Clay and Heist, 1984; Stanton et al., 2004). Theoret-

ical models capable of predicting statistical features of the echoes as a function of

the properties and composition of the insonified target or target aggregations have

also been developed (Chu and Stanton, 2010; Denbigh and Smith, 1991; Jones, 2012;

Stanton and Chu, 2010; Wilhelmij and Denbigh, 1984). These models can be used

as inference tools to provide complementary information in addition to conventional

spectral and temporal echo features for accurate interpretation of echoes for the char-

acterization of scattering sources in a direct-path geometry or under the influence of

ocean waveguide.
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However, the echo statistics model mentioned above may be of little use in the

analysis of narrowband data collected in the field, primarily due to their use of the as-

sumption of continuous-wave (CW). This is caused by the limited temporal resolution

of narrowband signals, which under typical field scenarios would result in significant

echo overlap and consequently strong Rayleigh-like echo pdf features. This can be

problematic, since the discriminative power of echo statistics analysis relies on the

presence of non-Rayleigh features, and the performance of such methods degrades

rapidly when the echo pdf approaches the Rayleigh distribution (Denbigh and Smith,

1991). Furthermore, the recent development of broadband echosounders has provided

much valuable information that can be explored for better echo interpretation as has

been previously mentioned, but the existing narrowband (CW) echo statistics models

are incompatible with these new broadband data. Therefore, to take full advantage of

the broadband signals and the associated substantially-improved temporal resolution,

a physics-based broadband echo pdf model is developed in this chapter and applied

to analyze data collected in the field.

There are several outstanding challenges in modeling the statistics of broadband

echo envelopes. First, broadband pulse-compressed echoes are temporally-localized,

and therefore cannot be modeled using random phasors of infinite time span as has

been done under the CW assumption. Instead, broadband echo pdfs are formed

by sampling the envelopes of the time series consisting of partially-overlapping echo

pulses with varying shapes, and the shapes of the pulses are jointly determined by

the spectral content of the signals and the frequency responses of the system and

scatterers. An approximate analytical solution for the tail of the echo pdf may be

derived using a combination of mixture model and Barakat's method of characteristic

functions (Barakat, 1974). However, exact analytical formulation for the echo pdf

over the entire amplitude is difficult to obtain (Clifford et al., 1993), compounded by

complications associated with system- and scatterer-specific parameters.

A Monte Carlo numerical simulation framework is developed in this chapter to

model the pdf of the magnitudes of broadband pulse-compressed echo envelopes. This

physics-based modeling framework rigorously accounts for important components in
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the processes by which sound is transmitted, scattered, and received. The numeri-

cal model is implemented using the exact parameters of a high-frequency broadband

single-beam echosounder in a direct-path geometry typical in acoustic scattering stud-

ies of marine organisms (Fig. 4-1). The parameters include the frequency-dependent

responses of the sonar system, scatterers, and transducer beampattern, and the model

can easily be extended to incorporate addition information derived from groundtruth

observations, such as the distribution of the size and angle of orientation of the scat-

terers. This model is applied as an inference tool to estimate the numerical density

of fish in monospecific herring aggregations observed in the Gulf of Maine, and re-

sults in density estimations comparable to those obtained from conincident volume

backscattering strength (Sv) measurements and modeled target strengths (TS). Lim-

itations of the broadband echo pdf model as a tool for echo analysis and potential

errors associated with various model assumptions are also discussed.

Although this study is inspired in the context of acoustic scattering study of marine

organisms, the model developed here is general and can be applied to predict the echo

pdf from other types of scattering sources in different environments observed using

different systems, such as the scattering of electromagnetic signals received by radar

systems. This generality is a direct benefit of the physics-based approach which allows

explicit adjustment of model parameters according to specific experimental conditions

and the environment.

This chapter is organized as follows. The numerical modeling framework for

broadband echo pdf is introduced and results of model implementation are shown

in Sec. 4.2. Sec. 4.3 contains detail of the selection and processing of echo data from

the field experiment. In Sec. 4.4, numerical densities of fish are estimated using the

broadband echo pdf model and two TS-based methods, and the results are compared.

The summary and conclusion of this study are given in Sec. 4.5.
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4.2 Numerical simulation of broadband echo pdfs

4.2.1 Modeling framework for numerical simulation of broad-

band echo pdf

The modeling framework used in this study is developed in the time domain based

on the temporally-localized features of broadband pulse-compressed echoes (Fig. 4-

1). In contrast to the echoes of CW signals that are of infinite length so that all

echoes overlap, broadband pulse-compressed echoes are localized in time and will

generally, at most, only partially overlap with one another. In this framework, a gate

of length T is arbitrarily chosen to represent the temporal span of the analysis window

in which samples of the echo envelopes are taken. The volume included in this gate

is a hemispherical shell in space and the thickness of this shell, Lg, is related to the

temporal length of the gate by

Lg = cT/2, (4.1)

where c is the sound speed in the medium. For each independent realization, an echo

time-series in the gate is generated from an arbitrary number of randomly-distributed

scatterers. Independent samples are taken from the envelopes of repeated realizations

to form the ensemble from which the echo pdf is derived. Note that the length of the

gate is much larger than the size of the resolution cell (approximately given by the

inverse of the signal bandwidth when echoes are pulse-compressed).

Each scatterer in the hemispherical shell is randomly located in space, and the

location is determined jointly by its temporal location in the gate, which corresponds

to the distance between the scatterer and the system, and its angular position with

respect to the axis of the transducer aperture (Fig. 4-1). The temporal location of each

scatterer in the gate is generated by drawing a sample from a uniform distribution

over a range of [0, r], and its angular position is generated by calculating the polar

and azimuthal angles of a randomly-located point in a hemispherical half-space.

The various parameters involved in this numerical framework are summarized be-

low in mathematical terms (Fig. 4-2). Assume the ideal (computer generated) trans-
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Broadband signal

Pulse compression

Transducer

Echo envelope:

Sample point

A 2

3

1 -- -IB 3 2

A-B >> 1/BW

Low-frequency High-frequency
narrowband BP narrowband BP

Figure 4-1: A schematic of one realization of the numerical model showing important
elements in the modeling framework. The model uses broadband signals and the
echoes are processed using pulse compression before the envelopes are taken. The
sample point is arbitrarily selected in the region away from the edges of the range
gate, AB (= L9 in text). A transducer with a circular aperture is used here for
illustration, and can be substituted according to the specific system parameter. A
low-frequency and a high-frequency narrowband beampattern (BP) are sketched to
illustrate the frequency-dependent property of the beampattern. Note that the echoes
are modulated across all frequencies according to their locations in the beam. Com-
pared to the other two scatterers, scatterer #2 is located within the mainlobe of the
beam and therefore results in a sharper echo (see Sec. 4.2.2).
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mit signal is y(t) and the impulse response of the system (which includes frequency-

dependent modifications of the transducer and system circuit) is s(t), the actual signal

transmitted from the transducer ys([) is the convolution of the two, given by

yS(t) = y(t) * s(t). (4.2)

The echo pulse from the ith scatterer is

ei(t) = r,,(t) 9 hi,tot(t), (4.3)

where r,,(t) is the autocorrelation function of the actual transmit signal,

rs(t) = yS(t) 9 y8 (t), (4.4)

and hitot(t) is the composite impulse response of the ith scatterer (Chu and Stanton,

1998). The composite impulse response can be expressed as

hi,tot (t) = hscat,i(t) * hD,i(t, ri) * hB,i(t, Qi, #i), (4.5)

where hceat,i(t) is the impulse response of the scatterer, hD,i(t, Ti) =(t -- 7) represents

the temporal location of the scatterer in the gate, and hB,i(t, Oi, #i) is the non-uniform

weighting factor imposed by the frequency-dependent beampattern depending on the

location of the scatterer in the beam, which is a function of the polar (02) and az-

imuthal (#i) angles of the scatterer with respect to the center of the transducer. In

this study, the model is implemented with the assumption of a circular aperture with

axisymmetrical beams. In this case, the beampattern response depends only on the

polar angle of the scatterer and therefore hB,i(t, 6i, #i) = hB,i(t, 0%). Unless other-

wise specified, the exact parameters of the high-frequency broadband echosounder

described in Sec. 4.3.1 are employed for model implementation in this study. Details

of other important components are discussed in Sec. 4.2.2 to Sec. 4.2.4.
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The time-series resulted from the contributions of N arbitrary scatterers is

N

eZ(t) E ei(t), (4.6)

from which the envelope of the echoes, a(t), is computed and a random sample of the

envelope, a, is drawn. For the convenience of model implementation, the samples are

drawn from a fixed location in the middle of the range gate in this study as depicted

in Fig. 4-2. This procedure is equivalent to drawing samples at random locations

away from the edges of the range gate, due to the random temporal locationsof the

scatterers in the gate. The kernel density method is selected to estimate the echo pdf,

pAE(a), based on its ability to produce a continuous estimated density function and

an intuitive explanation of the smoothness of this function based on signal processing

theory (Scott, 1992). To avoid the violation of the boundary condition that a > 0 and

to produce smooth estimation in the high-amplitude tail where the number of samples

may be scarce, the envelope samples are log-transformed before the kernel density

estimation is performed, and an inverse transformation is used to obtain the final

estimated pdf in the linear domain. The algorithm proposed by Botev et al. (2010)

is used here for its efficiency and adaptive kernel bandwidth selection capability.

The logarithmic transformation was used in order to obtain a smoother density

function in the tail where the occurrence high-amplitude echoes are sporadic, and also

to satisfy the constraint that echo amplitudes are always positive. Note py (a) here

is analogous to p'(a) in Chapter 3 except for the difference between the envelope of

broadband and narrowband (CW) signals, and will be referred to "broadband echo

pdf model" throughout this chapter.

4.2.2 Effects of broadband beampattern response

When scatterers are observed through a directional beam of a sonar/radar transducer,

random amplitude modulation factors are imposed on the receiving echoes depend-

ing on the locations of the scatterers in the beam, and the resultant echo pdf can

be evaluated numerically using the analytical formula in (3.11) (Chu and Stanton,
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Figure 4-2: Block diagram of the numerical simulation procedure. All involving

components are discussed in Sec. 4.2. Note the block diagram depicts the procedure to

generate one realization. The ensemble of samples collected from multiple realizations

is used for the estimation of the echo pdf model.

2010; Ehrenberg, 1972), involving the probability distribution associated with this

echo amplitude modulation (the "beampattern pdf", see Sec. 3.1). For echoes col-

lected using narrowband signals, the resultant echo pdf produced under the influence

of the "beampattern effects" is frequency-specific and varies with increasingly heavier

tail at higher frequencies (Fig. 4-3). For echoes collected using broadband signals,

the sonar/radar beamwidths and associated modulation from the beampattern effects

become frequency-dependent and can be described by the beampattern impulse re-

sponse, hB (t, 0) [Fig. 4-4(a)]. For scatterers located near the axis of the aperture,

the scatterers are included in the mainlobes of the beams for all frequencies, and the

frequency response of the beampattern resembles that of an "all-pass" filter. On the

other hand, scatterers located further away from the axis of the aperture are only

included in the mainlobes of lower frequency beams and fall into the sidelobes of

higher frequency beams. In this case, the beampattern filtering is uneven across the

frequency and has a response analogous to that of a "low-pass" filter. By the time-

frequency reciprocity of Fourier analysis, these characteristics explain the observed

changes in the simulated beampattern impulse response, whose time span increases
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Figure 4-3: (a) Narrowband beampatterns with respect to the polar angle (0) of

a circular aperture at three frequencies (30, 50, and 70 kHz). The aperture has a
radius of 0.054 m, chosen to match the specification of the high-frequency broadband

echosounder used in the field experiment (AirMarLow channel, Sec. 4.3.1). (b) Two-
way beampattern pdf [PB(b), thin black line] and the associated echo pdf produced
with only one scatterer in the resolution cell [PA(a), thick black line]. Definition of
these quantities can be found in Sec. 3.2.3. Unless otherwise specified, the parameters
of the transducer given here are used for all modeling results presented in this chapter.

as a function of increasing polar angle [Fig. 4-4(a)].

Similar to the narrowband cases presented in Chu and Stanton (2010), non-

Rayleigh echo characteristics are more pronounced for broadband echo pdfs under

the influence of the beampattern effects compared to the cases when the beampat-

tern effects are neglected (Fig. 4-5).

Two shaded linear chirp signals are used to investigate the frequency-dependent

effects of beampattern on the echo pdfs. The signals are generated by shading an ideal

linear chirp signal (30 -70 kHz) by two different windows with approximately 20 kHz

bandwidths and centered at 40 kHz (LF Hann) and 60 kHz (HF Hann), respectively

(Fig. 4-6, first column). These windows are constructed by padding 1's in between
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Figure 4-4: (a) The impulse responses of the two-way beampattern at three different

polar angles (0 = 50, 100, and 30'). (b) Time domain characteristics of the autocor-
relation functions of different signals modified by the beampattern impulse response.
The widths of the responses are jointly determined by the bandwidths and frequency
contents of the signals.
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Figure 4-5: Broadband echo pdf models generated with and without the beampattern
effects in three cases with different number of scatterers (N) in the range gate. This

comparison shows the strong non-Rayleigh influence of the beampattern effects. The

Rayleigh distribution is plotted as a background reference for all echo pdf figures in

this chapter. Unless otherwise specified, all echo pdfs in this study are normalized

according to the procedure in Appendix A.
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halves of a Hann window of a length equals to 1/4 of the transmit signal, and padding

O's in the front and back of the signal so that the "passband" of the resultant window

covers the desired frequencies. These two signals have identical bandwidths and thus

the same autocorrelation functions, but the resultant echo pdfs are substantially dif-

ferent owing to the strong influence of the frequency-dependent beampattern effects.

Specifically, the narrower mainlobes for the high-frequency components in HF Hann

give rise to the heavily-elevated tails in the echo pdfs. From the time domain point of

view, the rapid decrease of pulse-compressed echo amplitude for the LF Hann signal

compared to that for the HF Hann signal also explains the observed differences in the

shape of the echo pdfs (Fig. 4-4(b), first column).

4.2.3 Effects of signal characteristics

The influence of signal bandwidth on the echo pdf is investigated in this section

using two shaded linear chirp signals. The narrowband signal (Narrow Hann) has a

bandwidth of approximately 5 kHz centered at 50 kHz, whereas the broadband signal

(Wide Hann) has a bandwidth of approximately 20 kHz, also centered at 50 kHz

(Fig. 4-6, second column). Both signals are shaded using windows constructed by the

method described in Sec. 4.2.2. The superior temporal resolution achieved using the

Wide Hann signal effectively results in less overlap between pulse-compressed echoes,

and therefore produces stronger non-Rayleigh features in the echo pdfs. In addition,

the Wide Hann signal contains more high-frequency components than the Narrow

Hann signal, which, by the reasons given in Sec. 4.2.2, will also tend to produce

elevated tails in the echo pdfs.

However, although the above results can be used to understand the connection

between signal characteristics and echo pdf features, the interaction between the

temporal and spectral characteristics of the signals and the frequency-dependent

beampattern is complicated and requires careful modeling and investigation. Broad-

band echo pdf models are also computed using two signals related to the use of the

high-frequency broadband echosounder in the field experiment (AirMarLow channel,

Sec. 4.3.1). The first signal is the computer-generated ideal transmit signal loaded
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Figure 4-6: Spectra (a), autocorrelation functions (b), and echo pdfs (c) generated
using different signals in cases with different number of scatterers in the range gate
(N). Comparisons are made between: two linear chirp signals shaded using a narrow
Hann window (Narrow Hann) and a wide Hann window (wide Hann); two linear
chirp signals shaded using a narrow Hann window (Narrow Hann) and a wide Hann
window (wide Hann); and the ideal (Ideal Tx) and actual (Actual Tx) transmit
signal associated with the high-frequency broadband echosounder used in the field
experiment.
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into the system (Ideal Tx). The second signal is the actual transmit signal (Actual

Tx) obtained by modifying the ideal transmit signal using the frequency response of

the system measured during calibration (Sec. 4.3.1). Although the system response

slightly reduces the bandwidth of the signal, for the cases when the number of scat-

terer in the range gate is small (e.g., N = 10 and N = 50 in Fig. 4-6, third column),

the tails are more elevated for echo pdfs computed using the Actual Tx signal. This

may be related to the specific tapering in the time domain for the Actual Tx signal

[Fig. 4-4(b)]. For cases in which the number of scatterers in the range gate is high

(e.g., N = 300), the predicted echo pdfs are very similar in the tail and only differ in

the low-echo amplitude portion. This shows that, depending on the numerical density

of the scatterers in the experimental scenario, the distinction between different model

signals may not be important, since the discriminative power of echo pdf analysis re-

lies primarily on the features of the tails and less on the low-amplitude echoes, which

can easily be contaminated by noise.

4.2.4 Scatterer response

In this study, the responses of all scatterers are assumed to be uniform across the

frequency of interest, i.e., hscat,i(f) = hscat,i. This assumption is chosen to allow

investigation on the influence of other frequency-dependent effects, such as the beam-

pattern and the spectrum of the transmitted signal. The validity of this assumption

on fish backscattering data is justified by the understanding that the frequency band

of interest (30 - 70 kHz) is in the geometric regime with weak frequency-dependent

features for the scattering from dominant fish species in the survey area, especially

in cases where near-normal incident angles dominate the distribution of angles of ori-

entation. The influence of this assumption on the inference results will be discussed

in detail in Sec. 4.4.4.

Two probability distributions are prescribed for the distribution of the amplitude

of the uniform frequency response. The Rayleigh distribution is first used as the

baseline reference to allow direct comparison between the broadband echo pdf models

developed here and the narrowband echo pdf models presented in Chu and Stanton
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(2010) and Chapter 3. This choice can be interpreted as a result of the combination

of variation of all parameters contributing to the scattering of each scatterer, such as

the animal's size, shape, angle of orientation, complex internal structure and outer

shape, etc. (Medwin and Clay, 1998). Recall that the Rayleigh distribution is the

asymptotic limit of the echo pdf resulted from coherent summation of a large number

of independent random phasors (Goodman, 1985).

The second class of models are evaluated assuming the amplitude of the uni-

form frequency response follows the strongly non-Rayleigh echo pdf generated by a

randomly-rough prolate spheroid (Bhatia et al., submitted). This model is chosen

because the shapes of elongated marine organisms can be reasonably approximated

by randomly-rough prolate spheroids with different aspect ratios, and the echo pdf

of squid insonified from all angles of orientation has been successfully fit using this

model (Sec. 2.5). Note that the analytical echo pdf model for a randomly-rough

prolate spheroid developed by Bhatia et al. (submitted) only considers the situa-

tion in which the prolate spheroid is randomly orientation in the plane containing

the maximum response axis. To make the modeling scenario compatible with the

problem setup in this study, a numerical simulation scheme is employed here to in-

corporate the scattering from the prolate spheroid in all angles of orientation in the

three-dimensional space. Detail of the numerical simulation can be found in Sec. 2.5.2

except for the angle of orientation of the prolate spheroid is allowed to vary randomly

in the three-dimensional space here.

Comparison of the broadband echo pdf models computed using the above two

amplitude distributions shows the pronounced effect of the non-Rayleigh character-

istics of the echoes from individual scatterers on the echo pdf of the aggregation

(Fig. 4-7). Note that arbitrary scattering functions can easily be incorporated into

the current numerical modeling framework through modification of hscat,(t) in (4.5).

For the inference of the numerical density of fish in Sec. 4.4, only the Rayleigh-

distributed uniform frequency response is used to provide a first-order assessment of

the performance of the broadband echo pdf model. The influence of other potential

characteristics in the response of the scatterers are discussed in detail in Sec. 4.4.4.
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Figure 4-7: Comparison of echo pdf models generated using scatterers with amplitude

distributions following the Rayleigh distribution and the distribution of a randomly-

rough prolate spheroid (aspect ratio ( = 5) randomly-oriented in a three-dimensional

space. The influence of the strong non-Rayleigh characteristics of the scattering from

the rough prolate spheroid is evident in the tail of the resultant echo pdf.
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4.2.5 Broadband echo pdfs from monotype aggregations and

mixed assemblages

The numerical model is implemented to investigate the statistical characteristics of

echoes for both monotype aggregations and mixed assemblages. Following the defi-

nition given in Chapter 3, "monotype aggregations" refer to cases in which all scat-

terers are of the same type, as opposed to in the "mixed assemblages" where there

is more than one type of scatterer spatially-interspersed and uniformly-distributed

in the analysis window. The same "type" of scatterers refer to scatterers with the

same scattering amplitude (or, if it is a random variable, the same amplitude dis-

tribution with the same mean amplitude) at the frequency under consideration (see

Sec. 3.1 for detailed definition of mixed assemblages). The same set of parameters as

in Chapter 3 is used in modeling the echo pdf from mixed assemblages, including the

number of scatterer types, the ratio of their backscattering cross sections, and the

number of each type of scatterer in the gate. The modeling and analysis are based

on two-component mixed assemblages so that basic properties of broadband mixed

assemblage echo pdfs can be examined without excessive complexity.

Broadband echo pdfs of mixed assemblages and monotype aggregations are com-

pared (Fig. 4-8). For convenience, Nw,mono and Nw,mix will be used to denote the

number of scatterers in the range gate for monotype aggregations and the number

of weak scatterers in the gate for two-component mixed assemblages, respectively,

and Ns,mix will be used to denote the number of strong scatterers in the gate for

two-component mixed assemblages. Comparisons are made between cases with the

same number of dominant scatterers, Ndom, in the model gate are the same, i.e.,

Ndom = Nw,mono Ns,mix. The results show that the overall shape of the echo pdf of

mixed assemblages deviates significantly from that of monotype aggregations over the

full range of echo amplitude when the ratio of backscattering cross section between

the strong and weak scatterers, rsw, is small (e.g., rsw = 5). When rs, is large and the

strong scatterers dominate the scattering field, the shape of the elevated tails of echo

pdfs for both cases are very similar and the echo pdfs only differ in the low echo am-
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plitude portion. As expected, the shape of the broadband echo pdfs approaches the

Rayleigh distribution asymptotically with increasing number of dominant scatterers.

The consequences of these features in an inference context are discussed in Sec. 4.4.4.

4.3 Broadband acoustic backscattering data from

fish aggregations in the ocean

4.3.1 Data collection and system calibration

Acoustic data were collected during a series of fish backscattering experiments using

a towed broadband echosounder (EdgeTech) over Georges Bank area in the Gulf

of Maine (see Stanton et al., 2012, for detail). The acoustic measurements were

accompanied by a pelagic rope trawl deployed by a separate research vessel. The

acoustic system contains four broadband channels that jointly span a frequency range

from 1 kHz to 130 kHz, with some gaps. The net catches by the trawl provided

important groundtruth information on the species composition of the observed fish

aggregations as well as the length distribution of each species of fish [Fig. 4-9, also

see Fig. 4 in Stanton et al. (2012)].

This study makes use of the echo data from the lower three broadband channels

with frequency spans of 1-6 kHz (Shamu), 10-18 kHz (424), and 30-70 kHz (AirMar-

Low). Data from all three channels are used for spectral analysis, whereas only data

from the AirMarLow channel are used for echo statstics analysis. The system was

calibrated at various operational depths using a standard spherical target (a 30 cm

diameter Aluminum sphere) (Fig. 4-10). The Shamu channel was calibrated using

the "full-wave" approach in which the calibration curve is obtained by comparing

the echoes from the entire standard target to theoretical predictions across the fre-

quency band of interest. This method is suitable for the Shamu channel since there

are no spectral nulls in the scattering of the standard sphere within this frequency

band. The 424 and AirMarLow channels were calibrated using the "partial-wave"

approach which takes advantage of the pulse-compression processing and compares
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Figure 4-8: Comparison of echo pdf models for monotype aggregation and two-

component mixed assemblages with varying composition. The ratio between the

backscattering cross section of the strong to the weak scatterers in the mixed assem-

blage (rsN) is varied from 5 to 30. The number of dominant scatterers in the range gate

(Naom,,) is defined to be equal to the number of scatterers in monotype aggregations and

the number of strong scatterers in mixed assemblage, i.e., Naom = Nw,mono = Ns,mix.
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Figure 4-9: Distribution of the length of herring concluded from trawl net catches

[reproduced from Fig. 4(c) of Stanton et al. (2012)].

the data and model predictions for the echoes from only the front interface of the

target (Stanton and Chu, 2008). This approach was developed with an aim to reduce

calibration errors associated with the resonances of the standard target, where un-

certainties in the size and material properties of the target that can cause significant

variation of the locations of resonances. Full-wave calibration was also conducted for

the 424 and AirMarLow channel for comparison purposes [Fig. 4-10(c)]. The full-wave

calibration curve corresponds well to the partial-wave calibration for the AirMarLow

channel, but larger differences are seen in the low frequency region (5 - 7 kHz) for

the 424 channel. The discrepancy is likely caused by the difficulties in separating the

specular reflection from the front interface of the sphere due to the limited bandwidth

of the 424 channel [Fig. 4-10(b)]. Detail of the calibration procedures can be found

in Stanton and Chu (2008) and Stanton et al. (2010).

4.3.2 Echo data selection

A subset of echo data is carefully selected in order to facilitate the assessment of the

performance of the broadband echo pdf model as an inference tool for estimating the

numerical density of fish. The criteria for the selection of suitable fish aggregations

are discussed in this section.

First of all, preference is given to echo data that produce strong non-Rayleigh

echo pdfs with elevated tails. This is due to the reasons discussed in Sec. 4.1 that

the discriminative power of echo statistics analysis diminishes when the probability

distribution of echoes approaches the Rayleigh distribution, which is the asymptotic
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Figure 4-10: Calibration data and results for the three broadband channels (Shamu:
1 - 6 kHz, 424: 10 - 18 kHz, and AirMarLow: 30 - 70 kHz) channels in the EdgeTech
broadband echosounder. (a) Sphere echoes selected for use in the calibration. Each
echo is plotted as a circle (0) according to the roll and pitch angles of the towbody
recorded at the instant of sonar transmission. The circles are color-coded according
to the relative amplitudes of the peaks of the echo envelopes, with the red-to-blue
variation denotes high-to-low amplitude variation. Circles marked with ' are echoes
with the top 5% highest amplitudes. Echoes within an arbitrarily-chosen 1.5' radius
from the mean roll and pitch angles of these marked echoes (further marked by larger
red circles) are selected for use in the calibration. This procedure is employed to
exclude echoes resulted from off-axis insonification of the standard sphere. (b) Time-
series of the envelopes of the selected echoes. Echoes from the 424 and AirMarLow
channel are adjusted so that the peaks of the envelopes of specular reflections are
aligned to facilitate paritial-wave analysis. Echoes from the Shamu channel are not
adjusted. (c) Results of calibration for all three channels. Results for both the full-
wave and partial-wave analyses are shown for the 424 and AirMarLow channel.
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limit of the echo pdfs resulted from coherent summation of a large number of random

scatterers. In this study, since samples are taken from rectangular analysis windows

on the echogram encompassing a range of depth and a number of pings, fish "patches"

[as defined in Stanton et al. (2010)] observed at closer ranges from the echosounder

system is preferred. This is because an analysis window at a closer range encloses a

smaller volume compared to a window of the same size at a greater range from the

sonar. For a constant numerical density of scatterers in space, an analysis window

at a closer range would contain a smaller number of fish in the range gate (Fig. 4-1),

which results in less overlap among echoes and a higher probability of non-Rayleigh

echo pdf.

Second, echo data from patches formed by only one species of fish (a "monospe-

cific" aggregation) is preferred in order to constrain the number of free parameters

in the inference problem. For example, for proper parameterization of a mixed as-

semblage of fish, parameters such as the number of fish species and the ratio of

backscattering cross section between species, as well as the numerical density and

the distribution of size and angle of orientation for each species, have to be included,

and the number of parameters grow significantly as a function of the number of fish

species. By constraining the analysis to monospecific aggregations and using the dis-

tribution of fish length derived from trawl net catches (Fig. 4-9), the number of model

parameters is kept at minimum, which avoids the problem of overfitting and at the

same time reduces the computational loads for echo pdf model generation.

Preference is also given to echo data collected from survey periods during which

the towbody maintained relatively constant pitch and roll angles while hovering above

the fish aggregations. This criterion minimizes the variability in the echo data resulted

from changes in the relative orientation and distance between the insonified fish and

the system.

Using the above criteria, analysis windows are selected from the interior of a fish

patch occurring near seafloor in early daylight hours (approximately two hours after

first light) [Fig. 4-11(a)]. The dominant fish species in these aggregations was identi-

fied to be Atlantic herring (Clupea harengus) based on a combination of information
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from the observed resonance in volume backscattering strength in the Shamu channel

[Fig. 4-11(b)], prior knowledge of the surveyed region, and trawl catches (Nero et al.,

2004; Stanton et al., 2010, 2012). The echo pdfs derived from data in the AirMarLow

channel contain non-Rayleigh features that can explored for inference through echo

statistics analysis Fig. 4-11(c)]. The procedure through which analysis windows are

selected and echo pdfs are derived from the acoustic data is discussed in Sec. 4.3.3.

Another set of analysis windows are also selected from a patch of mixed assem-

blage of fish occurring near the sea surface at night [Fig. 4-12(a)]. The swimbladder

resonances observed in this patch have been analyzed in detail by (Stanton et al.,

2012). Two prominent resonance peaks are observed in the volume backscattering

strength in the Shamu channel [Fig. 4-12(b)]. The echo pdfs from this mixed assem-

blage derived from data in the AirMarLow channel show very strong non-Rayleigh

characteristics with heavily-elevated tails [Fig. 4-12(c)], which likely result from occa-

sional insonification of large fish within a background of an aggregation of small fish.

Due to the complexity involved in developing efficient and adaptive inference frame-

work under the constraint of computational capability, echo pdfs from this mixed

assemblage are shown but not analyzed (see Sec. 5.2.2 for more discussion).

4.3.3 Echo pdf from fish aggregations

Echo pdfs are derived using the acoustic data collected from the AirMarLow chan-

nel, due to its narrower beamwidth and broader bandwidth (and thus better temporal

resolution) that are more likely to give rise to echoes with strong non-Rayleigh charac-

teristics suitable for echo statistics analysis. Each echo envelope sample is normalized

to the rms echo amplitude of all samples in the analysis window (Appendix A). The

echo pdfs are estimated using the same procedure outlined in Sec. 4.2.1.

Each echo pdf is derived using all echo envelope samples included in a given

analysis window, such as the ones shown in Fig. 4-11 and Fig. 4-12. The sizes of the

analysis windows are chosen based on two competing criteria: 1) the analysis window

has to to large enough to include enough number of independent echo samples that

form a representative ensemble for the estimation of the echo pdf, and 2) the size of
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Figure 4-11: Examples of data and analysis of monotype (monospecific) aggregations
of herring observed near the seafloor in the day time. (a) Echogram of the aggregation

with two analysis windows. (b) Broadband volume backscattering strengths (Sv)
and their respective best-fitting broadband physics-based hybrid models for the two

analysis windows marked in (a) (Sec. 4.4.2). Also shown are the ranges of frequency

(36.3 - 39.7 kHz) included for the analysis of narrowband Sv. (c) Broadband echo
pdfs of the data and best-fitting models(Sec. 4.4.1).
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Figure 4-12: Examples of data and analysis of mixed assemblages of fish observed near
the sea surface at night. (a) Echogram of the mixed assemblage with two analysis
windows. (b) Broadband volume backscattering strengths (Sv) for the two analysis
windows marked in (a). (c) Broadband echo pdfs of the data. Note the prominent
highly-elevated tails that may have been caused by occasional insonification of large
fish in the mixed assemblage. This aggregation is the same as aggregation E that has
been analyzed in Stanton et al. (2012).
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the analysis window has to be small enough that the scattering processes within the

analysis window is stationary within the fish patch (Stanton and Chu, 2010). The

second criterion is particularly important for the selection of analysis window within

the inherently patchy aggregations of marine organisms. In this study, the above

criteria resulted in analysis windows that span a minimum depth range of 4 m and

cover at least 5 pings, which generally include several thousands of envelope samples

recorded at the Nyquist sampling frequency during the field experiment.

Since the data were collected without knowledge of the spatial distribution of

the scatterers, the response from the same scatterer or the same set of scatterers

may be sampled at multiple consecutive temporal locations in the time-series, i.e.,

adjacent echo samples from the echo time-series may not be statistically independent.

However, since these repeated samples can be considered as analogous to oversampling

in the temporal domain, the estimation of echo pdf is still possible provided that

enough independent samples are included in the ensemble. Owing to the fine temporal

resolution achieved through pulse compression processing of broadband signals, some

of the envelope samples in the same ping are from independent set of scatterers

separated in time by greater than the inverse of the bandwidth. When data across

several pings at the same range are considered, the echoes are either 1) from non-

consecutive pings separated by a distance greater than the footprint of the mainlobe

of the beam, which ensures that completely different sets of scatterers are insonified,

or 2) from consecutive pings sampling different sets of scatterers that partially-overlap

but with random phases uniformly distributed over [0, 27r). Combining the above,

the total number of independent samples included within each analysis window is in

the lower hundreds to well over a thousand, depending on the window size. Note that

the attenuation of acoustic energy by seawater is negligible within the window at the

range under consideration (approximately 40 m for the windows shown in Figs. 4-11

and Fig. 4-12), and therefore envelope samples within an analysis window at different

ranges can be pooled for the estimation of the echo pdf.

By pooling all echo samples included in an analysis window for the estimation

of a single echo pdf, the composition of fish aggregation is assumed to be stationary

171



within the enclosed volume. More specifically, ping-to-ping variations are assumed

to have been produced solely by changes in the scatterer locations in the beam,

angle of orientation of each scatterer with respect to the transducer, and distance

between each scatterer and the system. Even though the set of insonified scatterers

may change across consecutive pings in the analysis window as a result of horizontal

movement of the sonar system, the assumption is that the composition of the set

of insonified scatterers at each ping, such as the numerical density and the mean

scattering amplitude of the scatterers, is identical. The analysis windows in the study

are visually selected based on the structure of the observed aggregations revealed

through the distribution of echo amplitudes on the echograms. Although formal

statistical analysis on stationarity within the analysis windows may be possible using

methods that have been developed recently (Borgnat et al., 2010), this is outside the

scope of this study and is recommended as a future research topic in Sec. 5.2.3.

4.4 Estimation of the numerical density of fish in

monospecific aggregations

In this section, the broadband echo pdf model is used as an inference tool to esti-

mate the numerical density of fish in the selected monospecific fish aggregation. The

results are compared with the densities estimated using conventional echo integra-

tion techniques in combination with a semi-empirical narrowband TS model and a

broadband physics-based hybrid model. This comparison provides an assessment of

the applicability and performance of the broadband echo pdf model in the analysis

of data collected in the field.

4.4.1 Numerical density estimation using broadband echo

pdf models

A set of broadband echo pdf models are constructed using the exact parameters of the

high-frequency broadband transducer (AirMarLow) in the EdgeTech system. Since
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Figure 4-13: Examples of monotype broadband echo pdf model used in the inference
analysis. The shape of the echo pdf varies from highly non-Rayleigh toward the
Rayleigh distribution with increasing number of scatterers in the range gate (N).
The echo pdf model's shown here are produced with N = 10, 50, 100, 200, 500, and
800. Rayleigh-distributed noise was added to each model following the procedure
described in Appendix B.

the goal is to infer the numerical density of fish in monospecific aggregations, the only

varying parameter in the models is the number of scatterers within the gate (Fig. 4-

13). Rayleigh-distributed noise is added to the ensemble of model realizations before

model echo pdfs are estimated. This is necessary to make the models applicable to

data collected in the field where noise is present and may influence the statistical

properties of the echoes. The procedure of noise addition is provided in Appendix B.

The parameters in model implementation are summarized in the paragraphs below.

The modeling scenario assumes an aggregation of N identical scatterers insonified

by a transducer with a circular aperture (Fig. 4-1). The aperture has a radius of 0.054

m that corresponds to the dimension of the AirMarLow transducer. The actual trans-

mit signal (ys(t)) is modeled by modifying the computer generated ideal linear chirp

signal (y(t)) with the system response (s(t)) measured during calibration (Sec. 4.2.3).

The response of each scatterer is assumed to be uniform across the frequency band

with a Rayleigh-distributed amplitude (Sec. 4.2.4). The length of the gate in which

the scatterers are randomly distributed is arbitrary chosen to be L9 = 0.5 m. The

numerical density of scatterers associated with each model echo pdf can be calculated
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by

p ~ N/ [-rr2Lj , (4.7)
13_

where the term in the bracket represents the hemispherical shell enclosed by the

analysis window (Fig. 4-1), and r is the distance between the center of this sampling

volume and the sonar system.

Two methods are used to fit the echo pdf derived from the data to the broadband

echo pdf models. The first method performs curve-fitting by minimizing the Kullback-

Leibler (KL) divergence (Kullback, 1959) between the data and the echo pdf models

DKL(p) JPmodel (X; p) log Pmodel(X dx (4.8)
Pdata(X)

where p is the numerical density of scatterers associated with each echo pdf model,

and Pmodel(X; p) and pata(X) are the echo pdfs of the model and data, respectively.

The numerical density is estimated by

?KL = arg min DKL(p). (4.9)

Since the calculation of KL divergence depends on the exact values of the pdfs,

uncertainties and bias associated with the estimation of echo pdfs (Scott, 1992) can

lead to errors in the inference. This problem is addressed by verifying the best-fitting

model with the nonparametric two-sample Kolmogorov-Smirnov (KS) test which ex-

amines the hypothesis that the data samples and numerical simulations are drawn

from the same distribution (Conover, 1999). By comparing the data and all models

using the KS test, a confidence interval can also be identified in the model parameter

space. In this study, the range of numerical densities associated with echo pdf models

that pass the KS test are reported as an estimate of the confidence interval. However,

it should be noted that the current resolution of model parameters may be too coarse

to give a proper estimate of the confidence interval. Numerical models with more

finely-spaced variation of the numerical density of scatterers and the theoretical dis-

tribution of Kolmogorov-Smirnov statistic can be used to achieve a better estimation
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of the confidence interval.

The second method uses a maximum-likelihood estimator (MLE) to estimate the

numerical density of fish. Assume X1, X2.... , z, are independent and identically-

distributed echo samples included in the analysis window, the method computes the

log-likelihood

l(pziX, X2, . . . Xn) = In L(plzi, 22, . .X., )

= lnPmodel(Xi, X2, . X.. ,np)

n

= In fPmodel(XiIP) (4.10)

n

= Zlnmod1(XiIp),

and performs the inference by maximizing the log-likelihood

PMLE = arg max l(pjxi,x 2 ,... ,Xn). (4.11)
P

The MLE assumes knowledge of the true echo pdf models but does not require the

echo pdf of the data to be explicitly estimated. This is advantageous in this study,

since the number of echo samples is usually limited for data collected in the field

(Sec. 4.3.2), but the size of the ensemble of simulations can be increased to reduce

the uncertainties associated with the estimation of echo pdf models. Following the

method outlined in Azzalini (1996), a cubic spline is used to interpolate the log-

likelihood function and a confidence interval can be determined using

{p: 2l((pMLE) - I(p)) < Cal, (4.12)

where c, is the (1-a)-level quantile of x2 distribution with k equals the dimension of

the parameter space (k = 1 in this study), which is the asymptotic distribution of

the log-likelihood ratio.
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4.4.2 Numerical density estimation using measured Sv and

modeled TS

Narrowband semi-empirical TS model

The averaged Sv centered at 38 kHz with a bandwidth 3.4 kHz is compared with

TS predictions given by the narrowband, depth-dependent semi-empirical model pro-

posed by Ona (2003) (hereafter referred to as the "narrowband TS model") to esti-

mate the numerical density of fish. This method is chosen in order to imitate the

procedure involved in conventional fisheries acoustic studies where narrowband signals

and empirical or semi-empirical models are used (Simmonds and MacLennan, 2006).

This model was derived by regressional analysis of TS measurements from a series of

in-situ experiments where the effect of depth-dependent swimbladder compression is

considered. The model is reproduced here for reference:

TSNB = 20 log Lf - 2.3 log(1 + z/10) - 65.4, (4.13)

where TSNB denotes target strength prediction, Lf is the length of the fish in cm,

and z is the depth of the fish in m. The measured distribution of the length of

herring (Fig. 4-9) and the mean depth of the analysis window were used in the model

prediction. The numerical density of fish estimated using this narrowband TS model,

PNB, is given by

PNB 10(sV,NB-TsNB)/1O (4.14)

where Sv,NB is the measured volume backscattering strength averaged over the band

between 36.3 kHz and 39.7 kHz [marked by the vertical shades in Fig. 4-11(b)].

Broadband physics-based hybrid TS model

The Sv measured across the Shamu, 424, and AirMarLow channels is compared with

TS predictions given by the broadband physics-based hybrid TS model proposed by

Chu et al. (2006) (here after referred to as the "broadband TS model") to estimate

the numerical density of fish. This broadband TS model involves coherent summa-
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g h
Swimbladder 0.0012(1 + 0.1D)o 0.22(1 + 0.1D)( 1 --T) 2

Fish body 1.05 1.05

Table 4.1: Summary of model parameters used in the broadband physics-based hybrid
model. Here, the ratio of specific heat, -yo, is 1.4, and D is the depth of the fish in
meters.

tion of the backscattering cross section predictions from the swimbladder and the

fish body. The gas-filled prolate spheroid model proposed by Ye (1997) is used to

predict the swimbladder resonance in the low frequency region (approximately < 10

kHz), and the modal-series-based deformed cylinder solution is used to describe the

scattering by the swimbladder at higher frequencies (Stanton, 1989). The model for

scattering from the fish swimbladder is produced by connecting the low-frequency

and high-frequency backscattering cross section predictions at around 10 kHz using

a smoothing function. For all frequencies, the distorted-wave Born approximation

(DWBA, Morse and Ingard, 1987; Stanton et al., 1993b) evaluated using a fluid pro-

late spheroid is used describe the scattering from the weakly-scattering fish flesh. The

predicted backscattering cross sections for the swimbladder and the fish body are then

coherently combined to give the final broadband physics-based hybrid models. The

values of model parameters are summarized in Table 4.1.

Instead of the prolate spheroidal shape used in Stanton et al. (2010), the geome-

try of the swimbladder is modeled here using the cross-sectional profile of a prolate

spheroid but with its centerline adjusted to achieve a flat dorsal surface [Fig. 4-14(a)].

This modified shape bears a better resemblance to the typical shape of a herring swim-

bladder, and with its more directional scattering pattern, was found to produce more

biologically-reasonable inference results in terms of the distribution of angles of ori-

entation of fish when compared to the results produced using the original prolate

spheroid geometry.

A separate investigation was also conducted to compare the predictions of swim-

bladder resonance given by Love (1978) and Ye (1997). Specifically, the models are

implemented here using eq.(63) in Love (1978) and eq.(33) in Ye (1997). These two

models differ primarily in the shapes used to present the fish swimbladder. Love's
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Figure 4-14: (a) Two model shapes for the fish swimbladder. The first model uses
the shape of a prolate spheroid. The second model uses the cross-sectional profile of
a prolate spheroid, but with its center adjusted to achieve a flat dorsal surface. The
specific shapes shown here are generated assuming a swimbladder volume of 13 mL
at sea surface for a 25 cm herring. (b) Examples of predicted averaged TS of this fish
at a depth of 170 m evaluated using different angle of orientation distributions. The
distributions of angle of orientation used here are normal distributions with different
mean values (Omean=0 , 55,and 100) and an identical standard deviation (Ost = 30).

model was derived using modal-series expansion oni gas-filled spherical shells with

equivalent volume to the swimbladder with the resonance frequency heuristically cor-

rected using the relationship given by Weston (1967). Ye's model was derived by

evaluating the Kirchhoff integral over a volume-equivalent prolate spheroid. Ye also

showed that his formulation can be reduced to exactly the results in Love (1978) by

setting the aspect ratio to 1 in eq.(30-31) and eq.(35-36) in Ye (1997). However, it is

observed that the TS predicted by these two models differ by approximately 6 dB in

the low frequency region investigated (Fig. 4-15). This discrepancy is likely resulted

from the extra factors accounting for the aspect ratio of the spheroid in Ye's model,

which are completely absent in Love's model due to its assumption of a spherical

shell. Nevertheless, the exact cause of this discrepancy is out of the scope of this

study and further research is needed to resolve this issue.

In this study, Ye's model was selected for modeling the swimbladder resonance

due to its better consistency with TS predictions at the transition (~10 kHz) between
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Figure 4-15: Comparison of TS predictions of swimbladder resonance given by two

models. The first model (Ye) was derived assuming a prolate spheroidal shape (Ye,
1997), whereas the second model (Love) assumes a spherical shape with equivalent vol-

ume (Love, 1978). The low-frequency TS predictions are plotted along with the high-

frequency TS predictions given by the modal-series-based deformed cylinder model

(HF) using a swimbladder shape with flat dorsal surface. The calculation uses the

same parameters as in Fig. 4-14.

the low-frequency resonance and high-frequency predictions given by the deformed

cylinder model (Fig. 4-15).

A set of broadband TS models is constructed using a set of parameters including

a range of fish flesh viscosities ((, Fig. 4-16) and a distribution of angles of orientation

of fish described by a normal distribution with mean 6
mean and standard deviation

9
std (Fig. 4-14). A standard swimbladder volume for a 25 cm fish at sea surface (Vo)

is back-calculated from the observed resonance frequency at the depth of the analysis

window by evoking Boyle's Law and the neutral buoyancy assumption (Nero et al.,

2004). Recall that 25 cm is the mean length of the herring sampled by the trawl

(Fig. 4-9). The resonance frequency is determined by fitting the observed Sv in the

Shamu channel using a third-order polynomial and interpolate to obtain the location

of the spectral peak. The swimbladder volumes for different sizes of fish are then

calculated by scaling V isometrically according to the length of fish. The values of

Omean are constrained by the tilt of the swimbladder in the fish body (~5' relative

to the body axis of herring, and the values of 0
std are varied arbitrarily within a
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Figure 4-16: Comparison of TS predictions in the swimbladder resonance region with
different values of viscosity for fish flesh ( ) using Ye's model (Ye, 1997). Here, the
value of ( varies from 10 to 60 Pa- s at an interval of 10 Pa- s. Calculations were made
using the same parameters as in Fig. 4-14 and Fig. 4-15.

biologically-reasonable range between 1 to 200.

The best-fitting broadband TS model, TSBB, was determined by a least-squares fit-

ting procedure in the logarithmic scale to the shape of the observed volume backscat-

tering spectra. The numerical density of fish estimated using this broadband physics-

based hybrid models, PBB, is given by

PBB = 1 0 (sV,BB-TsBB)/10, (4.15)

where Sv,BB is the measured volume backscattering strengths across all three broad-

band channels (Fig. 4-11).

The confidence intervals for both the narrowband and broadband TS models are

calculated indirectly through the confidence intervals associated with the spectral

estimation for Sv. In other words, the upper and lower bounds for the density es-

timation are obtained by fitting the TS models to the upper and lower bounds of

the Sv estimation. In this study, the spectral level of Sv and associated confidence

intervals are calculated using the Welch method (Welch, 1967).
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4.4.3 Comparison of the estimated numerical density of fish

The numerical density of fish estimated using the broadband echo pdf model is com-

pared to the density estimated using the two TS models described in Sec. 4.4.2 (Fig. 4-

17). These estimations are fundamentally different in the inference approaches, since

the inference given by the broadband echo pdf model is made based on the fluctua-

tions of echoes, whereas the inference given by the TS models is based on the mean

echo energy obtained through echo integration. This comparison gives an indirect

assessment of the performance of the broadband echo pdf as an inference tool for the

analysis of echoes collected in the field. The assessment is "indirect" due to the lack

of groundtruth information on the actual numerical density of fish in the analyzed

aggregation, even though the use of narrowband TS model in combination with echo

integration is the industry standard in fisheries acoustics studies and the results are

generally accepted as credible (Simmonds and MacLennan, 2006). Direct assessment

of the performance of the broadband echo pdf model may be possible and is discussed

as a future research direction in Sec. 5.2.2.

The numerical densities of fish estimated using the broadband echo pdf model by

KL divergence and MLE are generally comparable for all analysis windows investi-

gated (Fig. 4-17, red circles and black crosses). These statistics-based estimations are

also comparable to the numerical densities estimated using the narrowband TS model

(Fig. 4-17, blue squares), but are lower than and completely outside of the confidence

intervals of the estimations given by the broadband TS model (Fig. 4-17, green trian-

gles). However, the general trend of the variation of the estimated numerical density

of fish within the aggregation across multiple analysis windows is similar for all three

models, with higher numerical density toward the center and lower numerical density

toward the edges of the fish aggregation (Fig. 4-17). The agreement in the trend of

the estimated numerical density establishes the first-order applicability of echo statis-

tics methods on data collected in the field. Potential sources of errors associated with

each method are discussed in Sec. 4.4.4.
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Figure 4-17: (a) Echogram of the monospecific herring aggregation with analysis
windows. Windows #1 and #2 are identical to the two windows shown in Fig. 4-11.
(b) Numerical density of fish estimated using various methods. Results are plotted
along with their respective confidence intervals.

4.4.4 Errors associated with the estimation of the numerical

density of fish

Errors in the estimation given by narrowband and broadband TS models

The errors associated with the numerical density estimations given by the narrow-

band and broadband TS models are subject to different constraints imposed by the

assumptions and parameterization used in each model. For example, the narrowband

TS model was derived using measurements from Atlantic herring in Norwegian waters

(Ona, 2003). Therefore, the application of this model on data collected in the Gulf

of Maine represents an extrapolation to this regression model (Fsssler et al., 2008)

and is likely to produce biased results. This is because the applicability of empiri-

cal or semi-empirical TS models are generally justified by the assumption that the

distribution of angle of orientation, behavior, and life history state of the measured

population are representative of the target population (Sec. 1.3.2). Extrapolation

of the models without detailed verification of these parameters using groundtruth

information results in violation to this assumption and is expected to cause error.

However, the relatively simple formulation of the narrowband TS model avoids
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the challenges posed by the large number of nuisance parameters in the broadband

TS model. Nuisance parameters are parameters that are not of immediate interest

but must be accounted for to infer the parameters of interest. For the broadband TS

model discussed here, nuisance parameters include the distribution of the angles of

orientation and lengths of fish, the viscosity of fish flesh, the shape of fish swimbladder,

as well as the volume and associated depth-related compression of the swimbladder.

Although groundtruth information from trawl catches and prior knowledge about

the survey region were used to constrain these parameters, and a best-fit procedure

(Sec. 4.4.2) was used to optimize the selection of parameter values, the sensitivity of

model output with respect to uncertainties in each parameter has to be quantified

to give a reliable measure of the accuracy of this model (see Sec. 5.2.3 for future

discussion).

Errors in the estimation given by broadband echo pdf models

Errors associated with the estimated numerical density of fish using broadband echo

pdf models are directly related to parameters selected in the model implementation.

This section discusses several important potential sources of errors and their corre-

sponding effects on the estimation results (Table 4.2).

First of all, the amplitudes of echoes from each individual scatterer are assumed

to be Rayleigh-distributed in the model implementation. However, the validity of

this assumption depends on the behavioral state and the distribution of angle of ori-

entation of the fish within the aggregation. For example, it has been shown through

data collected in laboratory experiments that the echo amplitudes from individual

live fish can contain strong non-Rayleigh features when the fish was calm or physi-

cally constrained in a harness, such that the echoes are primarily from the scattering

contributions of only few dominate sources, such as the swimbladder, across a nar-

row range of angles of orientation (Clay and Heist, 1984; Stanton et al., 2004). The

same sets of experiments also showed that when the fish was active or when echoes

from all angles of orientations are pooled, the scattering from other body parts of

the fish dominates the echoes, and the resultant echo pdfs can be very Rayleigh-like,

183



Model assumption Influence on estimation result if the
model assumption is violated

Echoes from individual fish are Rayleigh- Underestimate
distributed

All fish are of the same size in the selected Underestimate
fish aggregation

The fish are randomly distributed in the
entire hemispherical space enclosed by the Underestimate
analysis window

The fish has uniform frequency response Overestimate
across the band of interest

Table 4.2: Summary of potential sources of errors and corresponding impact on the
estimation results associated with model assumptions used in this study.

especially for echoes collected at higher frequencies.

In this study, since the echo data were collected from dense monospecific herring

aggregations using a downward-looking sonar beam, it is highly likely that the fish

were insonified across a limited range of angles of orientation, and that the resul-

tant echo pdf for individual fish would be strongly non-Rayleigh. This argument is

strengthened by the result that the standard deviation of angle of orientation (Ostd)

associated with the best-fitting broadband TS model generally falls between 100 to

170 for the analysis windows examined. According to the results of the comparison

of broadband echo pdf models generated assuming Rayleigh-distributed scatterers

and randomly-rough prolate spheroids (Fig. 4-7), it is expected that the incorpora-

tion of non-Rayleigh-distributed individual scatterers will lead to broadband echo pdf

models with stronger non-Rayleigh features. This would cause the current model to

underestimate the numerical density of fish in the observed aggregation.

The current model also assumes that the mean backscattering amplitude is iden-

tical for all scatterers, which is not realistic considering the distribution of fish length

revealed by trawl catches (Fig. 4-9). Since the mean echo amplitude varies accord-

ing to the size of the scatterer, echo pdfs produced by scatterers of a range of sizes
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will tend more toward the Rayleigh distribution compared to echo pdfs produced by

the same number of identical scatterers. Therefore, the current model is likely to

underestimate the numerical density of fish.

On the system level, the current model assumes that the scatterers are randomly-

distributed in the entire space enclosed in the hemispherical shell between the range

gate (Fig. 4-1). However, the fish aggregations observed in the experiment had a

finite vertical extent under the towbody (i.e., a layer). Therefore, echoes are more

likely to originate from scatterers located in or near the mainlobe of the sonar beam,

which would give rise to a heavier tail in the echo pdf when the number of scatterers

within the gate is the same. In this case, the current model would underestimate the

numerical density of fish in the observed aggregation.

It is also known that for elongated scatterers such as fish, the directionality of the

scattering function increases with increasing frequencies (Medwin and Clay, 1998).

Therefore, for fish schools with a particular distribution of angle of orientation, the

measured volume backscattering strength is likely to decrease with increasing fre-

quency (Fig. 4-14). These characteristics will create an effect similar to a low-pass

filter on the signals and also reduces the signal bandwidth. Based on the results of

Sec. 4.2.2, these modifications will cause the echo pdf to tend toward the Rayleigh

distribution. Therefore, the current model evaluated assuming uniform frequency re-

sponse for all scatterers is likely to overestimate the numerical density of fish. This

is to the contrast of the influence of the other factors discussed above.

The accuracy of the numerical density of fish estimated by the broadband echo pdf

model depends on the specific choices of parameters in model implementation and the

actual experimental scenario in the field, and detailed sensitivity analysis on the scale

of influence and the relative importance of each of the factors is clearly needed (see

Sec. 5.2.2 and Sec. 5.2.3). However, given the fact that the distribution of angle of

orientation of fish is unknown and that the other three factors can easily be violated

in the current experimental scenario, it is more likely that the numerical densities of

fish given by the broadband echo pdf model reported here are underestimates. The

results can thus also be interpreted as effectively provide a set of lower bounds for
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the numerical density of fish in the observed aggregation.

4.5 Summary and Conclusion

A Monte Carlo numerical simulation framework has been developed to model the

probability density function of the magnitudes of complex envelopes of pulse-compressed

echoes (echo pdf) collected using a single-beam broadband echosounder. This model

adopts a physics-based approach and rigorously accounts for the influences of sonar

system parameters and signal and scatterer characteristics in the backscattering pro-

cess. Broadband echo pdf model predicted using this new model were applied as an

inference tool to estimate the numerical density of fish in monospecific herring ag-

gregations observed in the ocean. The numerical density of fish estimated using the

broadband echo pdf models are comparable but generally lower than the densities

estimated using the other two methods involving Sv measurements and modeled TS.

Errors in the estimation can be explained by potential deviation of model parameters

from the actual values.

The numerical model is constructed in the time domain based on the temporally-

localized features of broadband pulse-compressed echoes. The modeling framework

allows the incorporation of various frequency-dependent components, including the

beampattern effects (Chu and Stanton, 2010; Ehrenberg, 1972), response of the sonar

system (from both the transducer and system electronics), features of the transmit

signal, scatterer characteristics including the distribution of size and angle of orienta-

tion, and spatial distribution of these scatterers in the sampling volume (Fig. 4-1 and

Fig. 4-2). Using the exact parameters of the AirMarLow transducer in the EdgeTech

broadband echosounder system, the model is implemented and applied to predict the

echo pdfs from arbitrary number of scatterers observed through an axisymmetrical

circular aperture using linear chirp signals (30-70 kHz).

The shapes of broadband echo pdfs are sensitive to the frequency content and

bandwidths of the echoes, which are jointly determined by characteristics of the sys-

tem, signals, and scatterers. Signals with broader bandwidths or more high frequency
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energy tend to produce echoes with strong non-Rayleigh characteristics, whereas sig-

nals that are narrowband or contain more low frequency energy are more likely to

produce echo pdfs with more Rayleigh-like features. Similar to the cases where nar-

rowband signals are considered (Chu and Stanton, 2010), the shape of the broadband

echo pdf approaches the Rayleigh distribution with increasing number of scatterers

in the specified sampling volume (Fig. 4-1 and Fig. 4-13), and the presence of more

than one size class of scatterer in mixed assemblages will lead to dramatic changes in

the shape of the resultant echo pdf (Fig. 4-8, also see Chapter 3).

Monospecific herring aggregations observed near the seafloor during day time are

selected for analysis with an aim to assess the performance of the broadband echo

pdf model as an inference tool for estimating the numerical density of fish in the

aggregation. The numerical density of fish is estimated using two methods. The first

method involves curve-fitting by minimizing the KL divergence between the echo pdf

of the data and the model, and the second method uses a maximum likelihood esti-

mator. Results of the estimated numerical density of fish are compared to the density

estimated using echo integration techniques in combination with a narrowband semi-

empirical TS model (Ona, 2003) and a broadband physics-based hybrid model (Chu

et al., 2006) .

The numerical densities of fish estimated independently from the above three

models are comparable, but the estimation given by the broadband echo pdf model

is generally lower than the densities estimated by the other two models. The dis-

crepancy can be explained by potential mismatches between model assumptions and

the actual values of corresponding parameters in the backscattering process. The

results suggest that better groundtruth information and more detailed understanding

of the echo statistics properties from individual fish can improve the performance and

applicability of the broadband echo pdf model.

The broadband echo pdf model is constructed based on physics principles of the

transmission, scattering, and reception of sound, and thereby provides explicit links

between features of the echo pdf and the sources of scattering. Due to the same reason,

although this model is inspired and developed in the context of acoustic scattering
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study of marine organisms and the analysis presented here focuses on the echoes

collected by a downward-looking single-beam broadband echosounder in a direct-path,

volume-backscattering geometry, this model is generally applicable to other types of

scattering sources in different environments observed using different systems. For

example, the proposed numerical modeling framework can be implemented to predict

and analyze the scattering of electromagnetic signals from aerial objects observed by

radar, as well as fish echoes in a multi-path environment, such as an ocean waveguide

(Jones, 2012). Results of this study suggest that the statistics of echo fluctuations

can be used as an additional dimension of information in complement to the spectral

and temporal features for accurate interpretation of echo data.
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Chapter 5

Summary of contributions and

recommendations for future

research directions

The research in this thesis focuses on the analysis of echoes from random scatterers,

inspired by the need for accurate and reliable acoustic scattering techniques for echo

interpretation in the context of the study of marine organisms. This research makes

contributions to the field of active acoustic sensing of the ocean by providing new data

and models in combination with a unique approach that can be summarized by: 1)

quantitative characterization of the spectral, temporal, and statistical features derived

from echoes collected using both broadband and narrowband signals, and 2) a physics-

based modeling approach that aims to interpret the echoes by connecting echo features

to the physics of acoustic scattering and the influence of the sensing systems. These

are distinct from the approaches taken by conventional fisheries acoustic studies which

generally make heavy reference to subjective morphological description of biological

aggregations observed on the echogram, rely primarily on the echo levels at one or

several narrowband frequencies, and analyze echoes using empirical- or semi-empirical

data-driven models (Sec. 1.3). A summary of the contributions and significance of

this research is given in the sections below, followed by recommendations for future

research directions and a discussion of the broader impact of this study on active
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remote-sensing using sonar and radar, and in particular, its implications for animal

echolocation studies.

5.1 Contributions and significance

5.1.1 Broadband backscattering from live squid

Chapter 2 investigates the acoustic backscattering from live squid through a com-

bination of laboratory measurements and modeling. Building on the understanding

of basic principles that governs the scattering from squid in the literature (Au and

Benoit-Bird, 2008; Benoit-Bird et al., 2008; Kang et al., 2005; Madsen et al., 2007;

Starr et al., 1998), this study is unique in providing the first broadband laboratory

backscattering data set for squid at all azimuthal angles of orientation and novel in

the analysis of echoes that involves a series of detailed data-model comparisons in the

angular-dependent spectral and temporal features for both laboratory and simulated

field conditions. The results conclusively confirm the backscattering mechanisms of

squid across all angles of orientation and confirm the fluidlike, weakly-scattering prop-

erties of squid. This study also successfully demonstrates that the three-dimensional

numerical distorted-wave Born approximation (DWBA) model is capable of predict-

ing squid TS over a wide range of angles of orientation provided that proper shape

representation is derived using groundtruth information such as optical images or

direct observation of the squid behavior. These findings serve as the basis for the pa-

rameterization of squid scattering models that is critical for accurate interpretation

of squid echoes collected in field. This study also reveals that echoes from individ-

ual randomly-oriented squid contain strong non-Rayleigh characteristics, which can

be further exploited for the purposes of scatterer discrimination, classification, or

identification.

The results of this study are crucial in providing better estimation of the abun-

dance and distribution of squid in the ocean by using active acoustic survey methods.

Despite the importance of squid in global commercial fisheries and their key roles
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in the marine ecosystems as both predator and prey, such information has remained

crude due to the lack of appropriate survey techniques that can counteract the effec-

tive net-avoidance capabilities of these rapidly-moving animals. The modeling tools

verified in this study also provide a means of predicting the scattering from many squid

species that are not otherwise available for controlled laboratory measurements owing

to the difficulties associated with specimen handling. This is particularly important

in the studies of midwater fauna, of which squid are a major component (Boyle and

Rodhouse, 2005), since human exploration of deep waters have increased dramatically

in recent years as a result of depletion of shallower water resources (Pauly et al., 2002;

Roberts, 2002). Combined with the information from other empirical backscattering

measurements of squid (Au and Benoit-Bird, 2008; Benoit-Bird et al., 2008; Kang

et al., 2005; Madsen et al., 2007; Starr et al., 1998), results of this study can further

be applied to aid the interpretation of foraging behaviors of many deep-diving toothed

whales, who feed predominantly on midwater squid through echolocation.

5.1.2 Statistics of echoes from arbitrary aggregations of scat-

terers

Chapter 3 and Chapter 4 are devoted to the development and application of statistical

models for the probability distribution of echo amplitudes (echo pdf) from arbitrary

aggregations of scatterers. In contrast to the laboratory studies designated to eluci-

date the backscattering mechanisms of individual squid, the echo statistics models are

developed based on typical scenarios in field experiments where parameters related

to the composition of the scatterer aggregations are often the goal of echo interpre-

tation. Examples of such parameters for biological aggregations include the type of

organisms as well as their numerical densities and distribution within the aggrega-

tion. Here, different types of oragnisms are characterized by their physical scattering

properties, which are determined by the acoustic frequency and the acoustic bound-

ary conditions, sizes, and shapes of the organisms. The scatterers are generally not

resolved, and the geometry is in the backscattering direction in the direct-path case
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where there are no interfering echoes from neighboring boundaries. The study here

is aimed at establishing the statistics of echoes as a new dimension of information

that is complementary to the commonly-used spectral and temporal echo features,

with the ultimate goal of accurate interpretation of echoes for biologically-relevant

information. An example for the joint use of spectral and echo statistics information

is demonstrated in Chapter 4 in the analysis of broadband echoes collected in the

ocean.

Statistics of echoes from arbitrary aggregations of scatterers measured

using narrowband signals

In Chapter 3, a theoretical continuous-wave (CW) model is developed for describing

the echo pdf from arbitrary aggregations. This model is an extension of the formu-

lation presented in Chu and Stanton (2010) and is specifically applied in this study

for predicting and analyzing the echoes from mixed assemblages of scatterers. Mixed

assemblages are defined here for cases in which more than one type of scatterer are

spatially-interspersed and uniformly-distributed within the volume enclosed by the

analysis window. Such scenario is prevalent in important marine ecological processes,

such as foraging, where animals from multiple trophic levels are spatially collocated

(Benoit-Bird, 2009a; De Robertis, 2002). From a broader perspective, mixed assem-

blages are also ubiquitous in a wide range of terrestrial and oceanographic contexts

that can be measured using either acoustic or electromagnetic signals. Examples

include mixed vegetation composition across landscapes observed using radar (Greig-

Smith, 1984), and sonar observation of sub-sea surface bubble plumes (Woolf, 1997)

and geophysical features on the seafloor (Heezen and Hollister, 1971).

In contrast to the conventional data-driven approach which focuses primarily on

describing the statistics of mixed assemblage echoes using mixture models (weighted

sum of pdfs) (e.g., Abraham and Lyons, 2010; Watts and Wards, 2010), the physics-

based model developed here directly connects the statistical features in the echoes

with the composition of mixed assemblages and the influence of the transducer beam-

pattern of the sensing system. When used as an inference tool for analyzing simulated
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mixed assemblages, this new model achieves significant improvement in the accuracy

of the inferred parameters of assemblage composition, sometimes by an order of mag-

nitude, when the inference results are compared with those of the mixture models.

Through the development and application of this model, this study demonstrates

the superior performance of physics-based models over data-driven models in the in-

terpretation of echoes and shows that echo statistics methods can be useful in the

analysis of mixed assemblages of scatterers.

Statistics of echoes from arbitrary aggregations of scatterers measured

using broadband signals

Although the study in Chapter 3 demonstrated the power of physics-based echo statis-

tics models in echo interpretation, the narrowband (CW) model may be of limited

use in the analysis of data collected in the field, since the discriminative power of

echo statistics models depends on the presence of strong non-Rayleigh echo features

that may not be regularly encountered in typical in-situ experimental scenarios. This

is due to the limited temporal, and thus spatial, resolution of narrowband signals

coupled with increasing sampling volumes at depth, which result in significant over-

lap of echoes and consequently Rayleigh-like statistical characteristics. This problem

motivates the development of a model that is capable of predicting the statistics of

the magnitudes of broadband pulse-compressed echo envelopes from arbitrary aggre-

gations in Chapter 4. This model takes advantage of the substantially-improved tem-

poral resolution of broadband signals after pulse compression processing, which gives

stronger non-Rayleigh echo features compared to narrowband signals. The model

development is also motivated by the need for a tool capable of providing statistical

information from broadband echoes to complement the rich temporal and spectral

information obtained using broadband signals in the field (Sec. 1.4).

The new broadband echo pdf model is developed under a Monte-Carlo numer-

ical modeling framework, and is implemented using the exact system parameters

and transducer beampattern of a broadband echosounder (30 - 70 kHz) deployed in

field experiments. The models are used to estimate the numerical density of fish in
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monospecific herring aggregations over Georges Bank in the Gulf of Maine, identi-

fied using the resonance peak on the spectrum. This particular one-parameter es-

timation scenario is selected in order to simplify the inference procedure and also

in view of the importance of the numerical density of organisms in the study of bi-

ology in the ocean. The numerical density of fish estimated using the broadband

echo pdf model is generally comparable to the densities estimated using two conven-

tional methods, which involve comparing measured volume backscattering strengths

to target strengths predicted using a broadband physics-based spectral model and

a semi-empirical regression model. This result shows that echo statistics methods,

which can be applied without detailed calibration of the sensing system, can infer

biologically-relevant information from the echoes and thereby establishes the first-

order applicability of broadband echo pdf models in the interpretation of echo data

collected in the field.

5.1.3 Summary of contributions of thesis work

The contributions achieved in this thesis are itemized below:

" Collected the first broadband laboratory backscattering data set from individual

live squid at all angles of orientation (Chapter 2)

" Confirmed the fluidlike, weakly-scattering properties of squid through a series

of detailed data-model comparisons in the spectral and temporal domain over

all angles of orientation (Chapter 2)

" Improved the parameterization of the three-dimensional distorted-wave Born

approximation numerical model for predicting the scattering from squid by in-

vestigating the influence of different shape representations (Chapter 2)

" Revealed the strong non-Rayleigh statistics features in the echoes from randomly-

oriented individual squid (Chapter 2)

" Developed a physics-based analytical narrowband (continuous-wave) model for

predicting the probability distribution of echo amplitudes (narrowband echo
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pdf) from arbitrary aggregations of random scatterers (Chapter 3)

" Demonstrated that the physics-based narrowband echo pdf model can achieve

order-of-magnitude performance improvement compared to conventional data-

driven mixture models when used as an inference tool to analyze the composition

of mixed assemblages (Chapter 3)

" Developed a physics-based numerical model for predicting the probability distri-

bution of the magnitudes of broadband pulse-compressed echo envelopes (broad-

band echo pdf) from arbitrary aggregations of random scatterers (Chapter 4)

" Applied the physics-based broadband echo pdf model to broadband fish echoes

(30 - 70 kHz) collected in the ocean, which produced estimations of the numer-

ical density of fish that are comparable to the densities estimated using con-

ventional acoustic-based methods that involve volume backscattering strength

measurements and target strength models (Chapter 4)

" Established the first-order applicability of the physics-based broadband echo

pdf model in the interpretation of echo data collected in the field (Chapter 4)

5.2 Recommendations for future research direc-

tions

5.2.1 Backscattering from squid

Concurrent in-situ acoustic and optical observation of different squid species

Results of Chapter 2 showed that the success of the three-dimensional numerical

DWBA model in predicting the target strength of squid depends considerably on

the choice of the shape representation of squid. Therefore, in-situ groundtruth in-

formation via net- or optics-based methods capable of delivering information on the

general shape of the target squid species is crucial for the application of this model

for analyzing data collected in the field. A potentially fruitful experimental approach
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would involve simultaneous deployment of collocated broadband echosounder and

video or still-image cameras on remote operated vehicles (ROV), with a goal to col-

lect concurrent optical and acoustic backscattering data from different squid species

distributed in different layers of the water column. Combined with the application

of the three-dimensional DWBA numerical model, this type of direct measurements

with groundtruth information will significantly increase the reliability of subsequent

analysis of acoustic data collected over a larger volume at similar spatial location and

depth.

Measurements of material properties of a wide range of squid species

The concurrent acoustic and optical observation of squid proposed above would also

allow further verification of the applicability of the DWBA model in predicting the

scattering from this diverse group of animals that are known to possess distinct mus-

cular composition depending on the physiological demand of each species according

to their ecological niche (O'Dor, 2002; Seibel et al., 2004). Specifically, more ex-

tensive measurement of the material properties (mass density, g, and sound speed,

h) of the muscles of different squid species are needed to increase the accuracy of

the DWBA model prediction (Smith et al., 2010). Important groups of squids to be

investigated include the midwater ammoniacal squids (the "blimps", O'Dor, 2002),

which are likely to have g and h values closer to 1 than the Loliginids studied here,

and the more muscular species such as the Humbolt squid, which may require further

investigation of more sophisticated scattering models due to the potential local ma-

terial property changes from cartilage to bony structures for organs such as the skull

(Benoit-Bird et al., 2008).

Investigation of other potentially important scattering sources within squid

As discussed in Sec. 2.6.3, the scattering contributions from squid body parts other

than the fluidlike muscles remain an important topic of future research. For example,

the potential scattering contribution from the gladius should be properly assessed

using backscattering data collected in the dorsal-ventral plane as opposed to data
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in the lateral plane, as collected in Chapter 2. Potential species-specific structural

changes, such as the one described above for Humboldt squid (D. gigas), should also

be addressed. Transducers with broader bandwidths in combination with broader

bandwidth signals that can achieve better temporal resolution should also be used

in order to separate the potential scattering contribution from the beak or the skull

from that of the arms of the squid.

Development of echo statistics models for individual squid or other marine

organisms

Results in Sec. 2.5 showed that the statistics of echoes from individual squid at all

angles of orientations can be described by the echo pdf from a randomly-rough, ran-

domly oriented prolate spheroid with a smaller aspect ratio compared to the actual

/aspect ratio of the measured animal. The aspect ratio is considered "effective" due

to: 1) the prolate spheroid is assumed to be impenetrable, which is not consistent

with the material properties of squid muscles, and 2) the model roughness is intro-

duced heuristically by modulating the echo amplitudes by the Rayleigh distribution,

whereas a more realistic equivalent roughness of squid should be estimated through

the correlation length of the temporal scattering features of squid. A new model ca-

pable of incorporating the weakly-scattering, and thus penetrable, material properties

of squid and arbitrary roughness are expected to better describe the echo pdf from

squid with more accurate estimation of the aspect ratio. Similar models can also be

developed to re-examine the non-Rayleigh scattering properties observed from a va-

riety of individual marine organisms, including zooplankton and fish (Stanton et al.,

2004). Such echo statistics models for individual organisms provide a means to sum-

marize the fluctuations in the echoes and may be useful for the discrimination of

scattering sources and serve as building blocks for modeling the statistics of echoes

from aggregations of scatterers.

197



5.2.2 Statistics of echoes from aggregations of scatterers

Application of the narrowband and broadband echo pdf models to mixed

assemblages of marine organisms observed in the field

The study in Chapter 3 and Chapter 4 showed: 1) the newly-developed narrowband

mixed assemblage echo pdf model can be successfully applied as an inference tool

to analyze the composition of simulated mixed assemblages, and 2) the broadband

echo pdf model can be applied to estimate the numerical density of fish in monospe-

cific aggregation of fish observed in the field. Based on these results, it is expected

that the narrowband and broadband echo pdf models developed here can be used to

analyze the composition of mixed assemblages of fish and/or zooplankton observed

in the field. This type of data may be available from the four-frequency (38, 70,

120, and 200 kHz) narrowband echosounder systems that are commonly deployed for

fisheries applications in recent years (Simmonds and MacLennan, 2006). However,

the increasing number of free parameters associated with increasing complexity of

mixed assemblages will result in an exponentially-growing number of possible echo

pdf curves from all combination of parameters, which will render the best-fit proce-

dures used in Chapter 3 and Chapter 4 highly inefficient. This problem is further

exacerbated if the number of scatterer types are unknown in the mixed assemblage.

Advanced sampling techniques, such as the Markov-Chain Monte-Carlo methods that

are suitable for sampling multidimensional distributions , in combination with trans-

dimensional Bayesian models which can handle variable dimensions, may be explored

for a solution to these challenges (e.g., Chib et al., 2001; Quijano and Dosso, 2011).

Such analysis will allow further assessment of the applicability of echo pdf methods on

field data and provide an opportunity for investigating the advantage of assimilating

multidimensional (spectral, temporal, and statistical) features in echo interpretation.
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Laboratory backscattering experiments for direct verification of echo pdf

models

The study in Chapter 4 provided a first-order assessment of the applicability of broad-

band echo pdf model in the analysis of data collected in the field by comparing the

numerical density of fish estimated using the broadband echo statistics and two con-

ventional TS-based methods. However, this performance evaluation was indirect since

the actual numerical density of fish was unknown in the surveyed region. Direct ver-

ification of the performance of echo statistics methods may be achieved by applying

the broadband echo pdf model to estimate the numerical density of scatterers using

echoes collected in a laboratory backscattering experiment in which the number and

scattering characteristics of either artificial or biological scatterers insonified by the

sonar system is known. This data set from controlled experiment could also be used

to investigate the sensitivity of the estimation results due to errors in model assump-

tions, such the frequency and amplitude response of individual scatterers and their

spatial distribution, etc. (see Sec. 4.4.4 for detail).

Analysis of the statistics of echoes across multiple narrowband or broad-

band channels

Since the scattering response of different sizes of scatterers is a strong function of

frequency, comparison of the statistics of echoes across more than one narrowband or

broadband channels may provide additional features that can be exploited for echo

interpretation. This approach may be particularly valuable for analyzing the com-

position of mixed assemblages. For example, in a mixed assemblage composed of

two size classes of fluidlike zooplankton, the statistics of echoes for lower frequency

bands are more likely to be dominated by the larger zooplankton (effectively a mono-

type aggregation), while echoes from both sizes of zooplankton will contribute to the

statistics of echoes in the higher frequency bands (effectively a mixed assemblage).

The transition of echo pdf features, which is analogous to the spectral information in

TS for different sizes of organisms, may be used for the discrimination and classifica-
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tion of scatterers. Such analysis may also be useful for the analysis of bubble plumes

(Leighton, 1997), since the resonance structure of bubbles are likely to lead to high

tails in the echo pdfs, and the transition of echo pdf features across multiple frequency

bands may represent the transition of bubble densities along the size spectrum.

Derivation of analytical broadband echo pdf model

Another valuable research topic is the derivation of analytical solutions for the statis-

tics of broadband echoes from arbitrary aggregations of scatterers. Such analytical

models may be achievable by approximating the envelope of the compressed pulse out-

put from individual scatterers using convenient general functions, such as the Gaus-

sian function, approximating the oscillation using sinusoidal functions (analogous to

a narrowband assumption of the envelope function), and constructing the echo pdf

through Barakat's method of characteristic functions (Barakat, 1974). This type of

model can be useful for providing important benchmark assessment of the sources of

scattering before detailed echo statistics analysis is conducted using computationally-

expensive but rigorous numerical models. Furthermore, such a model, if capable of

capturing the behavior of the tail of echo pdfs, will be invaluable in verifying and im-

proving the numerical model, whose accuracy is inherently limited in the tail where

the probability density function varies dramatically and is prone to bias in density

estimation (Scott, 1992).

Improvement of uncertainty analysis for the estimation of the numerical

density of fish

Although attempts were made in Chapter 4 to quantify the uncertainties of esti-

mation results by reporting their associated confidence intervals, the treatment was

not complete and can be improved. Specifically, in the cases where the numerical

density of fish was estimated using modeled TS and volume backscattering (Sv) mea-

surements, only the uncertainties associated with the spectral estimation of Sv were

included. Uncertainties in the parameters of the TS models, such as the coefficients

in regression models, should be incorporated by propagation of error (Bevington and
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Robinson, 2003). In the cases where the numerical density of fish was estimated using

the broadband echo pdf model, uncertainties associated with many model parameters,

a multidimensional pool of broadband echo pdf models can be constructed to include

the uncertainties in model parameters, such as the statistical models for individual

scatterers and their frequency-dependent scattering response, so that a confidence

region involving multiple model parameters can be obtained (Azzalini, 1996). The

inclusion of the uncertainties in these parameters are expected to broaden the con-

fidence intervals but will provide a better assessment of the quality of the inference

results.

5.2.3 General approaches for the interpretation of echoes

Based on the experience and insights gained from this thesis work, additional recom-

mendations are made for future research directions related to general approaches for

the interpretation of echoes and data collection.

The influence of nuisance parameters in the context of acoustic scattering

by marine organisms

In the context of the study of acoustic scattering by marine organisms, the inter-

pretation of echoes is usually limited by the large number of "nuisance parameters"

that are important in determining the scattering from the organisms but are not

the quantities of interest. For example, in cases where the goal of estimation is the

numerical density of organisms in an aggregation, uncertainties associated with the

distribution of the size and angle of orientation of the organisms, as well as variation

in their shapes and material properties can significantly affect the estimation results.

In conventional fisheries acoustic studies, these nuisance parameters are usually incor-

porated in model predictions using fixed values determined from prior experience and

groundtruth information to simplify the analysis, and the influence of the uncertain-

ties in these assumptions on the estimation results are generally ignored. Although

sensitivity analysis of several important model parameters has been conducted for
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fish and zooplankton (Hazen and Horne, 2003; Lawson et al., 2006), there is a clear

need for an overarching framework under which the influence of nuisance parameters

can be investigated.

The Fisher information matrix and the associated Cramer-Rao bound provide

a potential framework to address this issue. The Fisher information measures the

amount of information available in the observation that can be used to infer un-

known model parameters, with which the observation are associated (Kay, 1993).

The Cramer-Rao bound is the inverse of the Fisher information and gives a lower

bound to the variance of the estimator, which provides a measure of the quality of

the estimator based on information in the observation. By decomposing the Fisher

information matrix into elements determined by two exclusive sets of parameters con-

sisting of desired parameters and nuisance parameters, respectively, it is possible to

formally quantify the influence of these nuisance parameters on the estimation results

(Scharf and McWhorter, 1993)

Optimization of the model formulation for echo interpretation

The analysis framework discussed above can also be used to theoretically or numer-

ically quantify the improvement in the amount of information available for better

inference as a result of different choices of model formulations, model parameters,

and observations (echo features). Such analysis can lead to quantitative methods for

optimizing the formulation of echo interpretation and selecting echo features specific

to the scientific question and the goal of analysis. For example, the set of echo features

chosen for the analysis of mixed assemblages of fish and squid and those chosen for

the analysis of mixed assemblages of different sizes of zooplankton should intuitively

be very different and may be revealed systematically through the above analysis.

This analysis can also aid in the design of new measurement protocols that can

bring in additional information to improve the interpretation of echoes. One potential

echo feature that can be explored is the strong angular dependency of the scattering

functions of most marine organisms. In Chapter 2, the angular dependency of the

temporal and spectral features in the squid echoes was utilized explicitly in data-
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model comparison for the determination of dominant scattering mechanisms and the

assessment of different models. In field experiments, angle-dependent echo features

can be collected using bistatic or multistatic sensing systems, or through repeated

insonifications of the same scatterer or set of scatterers from different angles of orien-

tation using monostatic systems (Jaffe and Roberts, 2011; Roberts and Jaffe, 2007,

2008). These features, and the sequential information embedded in the variation of

echoes across multiple orientations, can be incorporated into the model formulation

and provide additional dimensions of information for successful echo interpretation.

Stationarity in echo data

Another important topic that has not been investigated in depth in the context of

echo interpretation is the stationarity in the echo data selected for analysis. Generally

speaking, when an analysis window is selected from the echogram, it is assumed that

the scattering processes in the volume enclosed by the analysis window are invariant

during the time spanned between the first and last insonifications included such that

the echo signals are stationary. The existence of stationarity ensures that spectrum

estimated using these data is meaningful and the spectral features can be used quan-

titatively to infer the properties of the scattering sources through methods such as

those introduced in Sec. 1.3.4 or those used in Sec. 4.4.2. However, in practice, the

analysis windows are usually selected visually and subjectively without formal test of

stationarity, which impairs the reliability of the result of echo interpretation. Similar

problem is also present for inference conducted using echo statistics methods, since

the assumption of the invariance of scattering processes is fundamental in the deriva-

tion of echo pdf from the data (see Sec. 4.3.3). The methods proposed by Borgnat

et al. (2010) and other methods reviewed in that study provide several possibilities to

tackle this problem. An important concept introduced by Borgnat et al. (2010) that

may be particularly useful for stationarity analysis of echoes from marine organisms

is "stationary relatively to the observation scale", which conveniently provide an av-

enue to deal with the patchy nature of biological aggregations in the ocean (Folt and

Burns, 1999).
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Application of Bayesian inference in echo interpretation

In addition to the above discussion that focuses primarily on the analysis of echo fea-

tures, a distinct and promising future research direction involves the use of Bayesian

statistics in the formulation of echo interpretation. Different from the frequentist ap-

proach in which unknown parameters are often treated as having fixed values, in the

Bayesian approach, unknown parameters are described by probability distributions.

The Bayesian approach is advantageous because it provides a quantitative way to

incorporate empirical or groundtruth information of both the desired and nuisance

model parameters into the inference framework in the form of prior probabilities.

Examples of prior information include local knowledge of the spatial and temporal

occurrence pattern of different organisms, as well as groundtruth information from net

catches and optical images collected concurrently or at nearby locations along with

the acoustic data. Under the Bayesian framework, information gained in the observa-

tions is used to update the probability distribution of unknown parameters, and the

distribution of the desired parameters can be conveniently obtained by marginalizing

over the values of nuisance parameters (Box and Tiao, 1992).

5.3 Broader impacts

The new data, models, and approaches presented in this thesis can serve as the basi

s for improving the accuracy and reliability of active acoustic survey techniques for

collecting biological information such as the abundance and distribution patterns of

different organisms, as well as the taxonomic composition of biological aggregations

in the ocean. Active acoustic survey techniques are advantageous over the net-based

and optical methods in their ability to observe these important biological quantities

in a synoptic manner across relevant spatial and temporal scales at high resolution.

This is crucial for comprehensive studies of the marine ecosystems, which are essential

to the development of sustainable and ecosystem-based fisheries management.

Furthermore, although this research is inspired by the need for active acoustic

techniques for the remote observation of marine organisms, the echo statistics models
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developed here are generally applicable in a broader context in the analysis of echoes

from a variety of sources in different environments measured through other types of

remote-sensing systems, such as the scattering of electromagnetic waves observed by

radar. This generality is a direct benefit from the use of the physics-based approach

to model development, since any parameter specific to the sensing system and the

scatterers are explicit in the model formulation and can be adjusted adaptively ac-

cording to the experimental scenario. This is an important improvement from most

conventional data-driven echo statistics models whose usage is usually limited in time

and space due to their system- and environment-specific properties.

More broadly, the insights gained from this study have implications in the studies

of the echolocation of bats and toothed whales, particularly in the aspects of fea-

ture extraction from biosonar echoes. Specifically, the transmission, reception, and

processing of echoes by the animals are determined by the physiology of biologi-

cal structures, while at the same time the animals possess great maneuverabilities

with respect to the scatterers that are currently not available for most human-made

remote-sensing systems. In contrast to typical experimental scenarios for human-

made remote-sensing systems where a large number of repeated insonifications on

aggregations of scatterers are collected, echolocating animals usually focus on indi-

vidual prey and are subject to a limited number of biosonar emissions before capturing

or missing the prey. Application of the techniques and approaches from this research

may bring new ideas to the analysis of biosonar echoes to understand the processes

involved in the detection, recognition, and tracking of prey. Based on the superior

performance of biosonar systems over human-made remote-sensing system in these

aspects, results of the biosonar studies can in turn feedback to guide the development

of more accurate and reliable echo interpretation methods.
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Appendix A

Normalization of echo pdfs

The normalization procedure removes the echo pdfs' dependency on the absolute

scattering amplitudes of the scatterers and other environment and system-specific

parameters, such as range-dependent transmission loss and system gain. This enables

direct analysis of the aggregation composition using of a set of standard normalized

curves. For a set of discrete echo samples, the echo amplitude of each sample is

normalized by the rms amplitude of all samples which is calculated by:

Arms =r x2/N, (A.1)

where xq denotes the qth sample out of a total of N samples. For a given pdf, px (x),

each point on the amplitude axis is normalized by the rms amplitude of the pdf,

Arms J 2Px(T)dx. (A.2)

The effect of normalization on the echo pdf is demonstrated (Fig. A-1). In this illus-

tration, theoretical echo pdfs of several one-component aggregations are calculated

using (3.10) and (3.13) with M = 1 and different values of N (= N in Fig. A-1). The

predicted curves are normalized according to (A.2).
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Figure A-1: Comparison of several un-normalized (top) and normalized (bottom)
echo pdfs calculated using the CF-based echo pdf formula with varying numbers of
only one type of scatterer (N).
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Appendix B

Addition of noise to echo pdf

models

The echo pdf models developed or used in this thesis are "noise-free" models in which

only the scattering mechanisms of the scatterers and the influence of the sensing sys-

tems are considered in the physics-based modeling. However, the presence of noise is

expected to affect the statistics of echoes collected in both laboratory and field exper-

iments and must be incorporated in data analysis. Specifically, noise adds additional

complex random components to the echoes from scatterers, and is expected to result

in a slight "whitening" of the echoes and cause any non-Rayleigh characteristics to

tend slightly toward Rayleigh (Stanton and Chu, 2010). To account for this potential

effect, random noise is generated and added to the echo pdf models used for echo

statistics analysis of experimental data presented in Sec. 2.5 and Chapter 4. The

procedure is discussed as follows.

The echo pdf of background noise in the laboratory squid backscattering experi-

ments (Chapter 2) shows strong Rayleigh-like features [Fig. B-1(a)], as expected from

random complex noise with both the real and imagenary parts following the Gaussian

distribution. In this figure, both the squid echoes and the noise are normalized to the

rms amplitude of the squid echo samples following in the procedure in Appendix A.

Rayleigh distributions with different power parameters (AR) are plotted along with the

pdf of squid echoes and noise to facilitate the comparison [Fig. B-1(b)]. The Rayleigh
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distribution is shown below in order to avoid confusion among different conventions:

fR(X; AR) =-e _ 2 /2R. (B.1)
R

According to the Rayleigh-like features of the noise echo pdf, Gaussian-distributed

noise with a standard deviation on = 1/v'/ rf, is generated, where rft, is the ratio be-

tween the rms amplitudes of the fish echoes and the rms amplitude of noise. This noise

is added coherently to each realization of the ensemble of the numerically simulated

echoes from a randomly-oriented, randomly-rough prolate spheroid (see Sec. 2.5.2),

from which the noise-added echo pdf model is derived using KDE (see Sec. 2.5 for the

detail of KDE). As a result of normalization, the power parameters of the Rayleigh

pdfs are AR 1 and AR 1/rfn for the squid echoes and noise, respectively.

Due to the high level of noise in this data set (approximately one order of mag-

nitude lower than the squid echoes), prominent "whitening" effect of the noise is

observed on the resultant echo pdf models [Fig. B-i(b)]. Note that the noise thresh-

old shown here is 6 dB higher than the actual background noise level for the purpose

of data quality control as described in detail in Sec. 2.2.5.

A similar procedure is used to generate and add noise into echo pdf models used

in the analysis of the statistics of broadband echoes from fish collected in the ocean

(Chapter 4). An analysis window for background noise is identified by visually se-

lecting regions on the echogram that are close to the target fish aggregation and at

approximately the same range from the sonar, but with much lower echo returns

[Fig. B-2(a)]. Both the fish echoes and the noise are normalized with respect to the

rms amplitude of the fish echo samples (Appendix A). Analogous to the procedure de-

scribed above for the case of squid scattering, the ratio between the rms amplitude of

the fish echoes and the noise, rfn, is used to generated Gaussian-distributed noise with

a standard deviation o-= 1/v/Z rfn. The noise is added to the simulated time-series

before echo envelopes are taken (see Sec. 4.2). The above is done under the assump-

tion that the envelope amplitude of the noise is Rayleigh-distributed. Although the

observed echo pdf of noise has a strong non-Rayleigh tail [Fig. B-2(b)], this is likely
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Figure B-1: (a) Comparison of the pdfs of squid echoes and background noise, as
well as their corresponding Rayleigh pdfs (see text). (c) Comparison of rough prolate
spheroid echo pdf model's generated with and without added noise.
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Figure B-2: (a) Echogram of the fish aggregation with the analysis windows for fish
echoes and background noise. Note that the depth of the echosounder is not corrected
in this echogram so that the bottom appears to undulate as opposed to the flat bottom
shown in Fig. 4-11. (b) Comparison of the pdfs of fish echoes and background noise,
as well as their corresponding Rayleigh pdfs (see text). (c) Comparison of broadband
echo pdf model's generated with and without added noise.

caused by occasionally insonification of fish within the noise analysis window, given

its proximity to the fish aggregations. The Rayleigh-like shape of the noise echo pdf

except for the tail region is used to justify the use of the above procedure.

The broadband echo pdf models generated with and without the addition of noise

are nearly identical [Fig. B-2(c)]. This is expected, since the amplitude of added noise

is two orders of magnitude lower than that of the simulated fish echoes, as opposed to

the case of squid scattering where a higher level of noise was observed [Fig. B-1(a)].

Note it is possible that the noise may not be Rayleigh-distributed with a heavier

tail. In such cases, the contamination of noise will cause the model echo pdfs to

tend toward the Rayleigh distribution and result in underestimation of the numerical

density of fish (Sec. 4.4.4).
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