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Abstract

Human error in machine operation is common and costly. This thesis introduces,
develops, and experimentally demonstrates a new paradigm for shared-adaptive control
of human-machine systems that mitigates the effects of human error without removing
humans from the control loop. Motivated by observed human proclivity toward
navigation in fields of safe travel rather than along specific trajectories, the planning and
control framework developed in this thesis is rooted in the design and enforcement of
constraints rather than the more traditional use of reference paths.

Two constraint-planning methods are introduced. The first uses a constrained
Delaunay triangulation of the environment to identify, cumulatively evaluate, and
succinctly circumscribe the paths belonging to a particular homotopy with a set of semi-
autonomously enforceable constraints on the vehicle's position. The second identifies a
desired homotopy by planning - and then laterally expanding - the optimal path that
traverses it. Simulated results show both of these constraint-planning methods capable of
improving the performance of one or multiple agents traversing an environment with
obstacles.

A method for predicting the threat posed to the vehicle given the current driver
action, present state of the environment, and modeled vehicle dynamics is also presented.
This threat assessment method, and the shared control approach it facilitates, are shown
in simulation to prevent constraint violation or vehicular loss of control with minimal
control intervention. Visual and haptic driver feedback mechanisms facilitated by this
constraint-based control and threat-based intervention are also introduced.

Finally, a large-scale, repeated measures study is presented to evaluate this
control framework's effect on the performance, confidence, and cognitive workload of 20
drivers teleoperating an unmanned ground vehicle through an outdoor obstacle course. In
1,200 trials, the constraint-based framework developed in this thesis is shown to increase
vehicle velocity by 26% while reducing the occurrence of collisions by 78%, improving
driver reaction time to a secondary task by 8.7%, and increasing overall user confidence
and sense of control by 44% and 12%, respectively. These performance improvements
were realized with the autonomous controller usurping less than 43% of available vehicle
control authority, on average.

Thesis Supervisor: Karl Iagnemma
Title: Principal Research Scientist
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1
CHAPTER 1: INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Humans make mistakes. When humans control dynamic systems, the rate and

ramifications of those mistakes increase. Whether it occurs while driving a car, flying an

airplane, teleoperating an unmanned vehicle, controlling industrial machinery, or

manipulating medical devices, human error can lead to costly and often deadly

consequences. In 2010, over 32,000 people were killed and another 2.2 million injured in

motor vehicle accidents in the United States alone [1]. During Operation Iraqi Freedom

(2003 - 2011), vehicle crashes killed more than twice as many service members as the

next leading cause of non-combat fatalities [2]. Even the manufacturing sector is

susceptible to human error; forklift operation alone is estimated to claim 100 lives and

cause 94,500 injuries each year in the United States [3].

Perhaps nowhere is the effect of human error more evident than in teleoperated

systems. Operators of Unmanned Ground Vehicles (UGVs) and Unmanned Aerial

Vehicles (UAVs) must not only cope with the challenges inherent to manned navigation,

but must also perform many of its same functions with a restricted field of view, limited

depth perception, potentially disorienting camera viewpoints, and significant time delays

[4]. Remotely operating a vehicle under these conditions while monitoring the vehicle's

health status, its task completion, and the condition of the environment is challenging and

prone to high failure rates - even for trained operators. In studies conducted to date, the

average mean time between UGV failure ranges from six to twenty hours - implying that

in their present state, many of today's UGVs cannot complete even one standard (12-20

Chapter 1: Introduction 10



hour) shift without experiencing a mechanical failure or human/controller-caused

accident [5]. In UAVs, the mishap rate is estimated at 12-100 times greater than that of

their manned counterparts, with 71% of collisions attributed to human error [6], [7].

Roughly categorized, human error is caused by deficiencies in recognition,

decision, or performance [8]. Recognition errors result from a human's inability to

properly perceive or comprehend a situation. Common causes of recognition errors

include inattention, inadequate surveillance, and internal or external distractions, among

others. Decision errors arise when a human takes an improper course of action or fails to

act when action is necessary. In ground vehicle applications, these errors are typically

made when the human drives the vehicle faster or more aggressively than the

circumstances (vehicle, environment, etc.) allow. Finally, performance errors refer to

miscalculations in low-level control functions, often due to insufficient reaction time.

Drivers of ground vehicles often make these errors by overcompensating or applying

improper directional control. In a nationally representative sample of 5,471 crashes

conducted from 2005 to 2007, the United States National Highway Traffic Safety

Administration (NHTSA) attributed roughly 41 percent of vehicle crashes to recognition

errors, 34 percent to decision errors, and 10 percent to performance errors [9]. While

insufficient training and challenging scenarios or environments can exacerbate each of

these error types, the human-machine control allocation and methods can also

significantly affect the combined system's ability to respond quickly and appropriately to

safety imperatives [10].

In this thesis, we address the challenge of reducing the frequency and effects of

human error via shared-adaptive control. While the implementation presented in this

thesis is designed specifically for manned and unmanned ground vehicles, the framework

that results is also relevant, and can be adapted to, human-machine systems generally.

1.2 PREVIOUS WORK

In recent years, improvements in sensing, control, and computation capabilities

have facilitated the development of driver assistance, autonomous, and shared-adaptive

control systems designed to aid, replace, or correct human operator and thereby reduce or

eliminate the effect of human error [11]-[13]. While distinct in their intended outcomes,

11 Chapter 1: Introduction



the inability of these systems to effectively share control with a human driver or

capitalize on human-machine synergies has its root in a common, basic building block:

each assumes the presence of a single path that the vehicle should follow. Regardless of

the planning method used to obtain it (sampling, graph searches, potential fields, etc.)

[14]-[16] or the control method employed to track it (PID schemes, linear-quadratic

regulators, nonlinear fuzzy controllers, model predictive controllers, etc.) [17]-[20], this

path identifies, evaluates, and seeks to limit the vehicle to just one of the many trajectory

options available to the human operator. The subsections that follow describe how three

broad categories of modem vehicle control architectures use these paths and how this

usage affects their ability to effectively aid the human driver.

1.2.1 DRIVER ASSISTANCE SYSTEMS

In recent years, the focus of vehicle safety has shifted from measures designed to

reduce the effects of collisions on vehicle occupants (eg. seat belts, air bags, roll cages,

and crumple zones) to driver assistance systems designed to prevent those collisions from

happening altogether. Driver assistance systems generally fall into one of two categories:

reactive safety systems such as antilock brakes, traction controllers, electronic stability

controllers, and lane-assist systems monitor the current state of the vehicle and apply

low-level control actions to meet some safety-critical criteria. For example, stability

controllers monitor the lateral acceleration, yaw, and wheel rotational speeds, and apply

asymmetric torques to the wheels when estimated lateral or longitudinal tire slip exceeds

a prespecified threshold. In order to avoid collisions, these systems rely on the human's

ability to 1) foresee, 2) judge, and 3) respond appropriately to impending hazards to

trigger intervention. This reliance on driver actions renders reactive safety systems

vulnerable to human recognition and decision errors; for drivers who do not recognize

and correctly respond to hazards, these systems can do very little. As estimated in

NHTSA's study these errors make up a sizable portion (~75%) of vehicle accidents [9],
[21].

Predictive safety systems, on the other hand, consider not only the current state of

the ego vehicle, but also the predicted state evolution of the vehicle and environmental

hazards through a finite preview horizon. These systems then preemptively assist the

Chapter 1: Introduction 12



driver in identifying, assessing the threat posed by, and in some cases avoiding an

impending hazard. Recent work in predictive safety has resulted in systems that use

audible warnings [22], haptic alerts [23], [24] and steering torque overlays [25] to help

the driver avoid collisions [26]-[28], instability [29], or lane departure [12], [30].

In contrast to the strategic planning of a human driver that inherently considers

multiple hazards, active safety systems take a more tactical approach, seeking only to

avoid the most imminent threat. To estimate which of many possible scenarios (i.e.

lane/road departure, frontal collision, loss of control, etc.) is most imminent and

determine the appropriate type and degree of driver assistance, active safety systems use

various threat assessment metrics. Threat metrics described in the literature

predominantly use time-, distance-, and acceleration-based measures [31]-[38]. Time-

based threat measures project time to collision (TTC) based on current speeds, positions,

trajectories, and (in some formulations) other vehicle states [32]-[34]. Distance-based

metrics are generally calculated using prevailing range and vehicle speeds and employ

constant velocity/acceleration assumptions and simple hazard geometry [36], [37].

Acceleration-based metrics assess the threat of a given maneuver based on the minimum

(and often assumed constant) lateral or longitudinal acceleration that a simple avoidance

maneuver would require, given the current position, velocity, and acceleration of both

host and hazard [31], [35]. Figure 1.1 illustrates the threat that might be assessed by time-

and acceleration-based measures in a scenario with moving hazards.

13 
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Figure 1.1. Illustration of time- and acceleration-based threat assessment metrics

While these threat metrics have been shown to provide useful estimates of the

danger posed by a simple maneuver, they are not well suited to consider multiple hazards,

complex vehicle dynamics, or complicated environmental geometry with its attendant

constraints. The geometrically-simple (straight-line or constant-radius-curve) avoidance

maneuvers they assume may also misestimate the true threat posed by scenarios in which

the physically-achievable vehicle trajectory would require a curve of varying radii or

non-constant velocity/acceleration, such as cases in which a lane boundary requires that

the trajectory straighten out after passing an obstacle.

The threat-assessment method presented in [31] illustrates common deficiencies

in existing approaches. This method estimates the lateral acceleration required to avoid a

single obstacle via a constant radius evasive maneuver given the host vehicle's current

position, velocity, and heading, and compares this value to the longitudinal acceleration

required to avoid the obstacle by braking. When either of these threat metrics reaches a

predefined threshold, corresponding countermeasures may be implemented to assist the

human driver. As Figure 1.2 illustrates, this approach's failure to consider 1) the driver's

intended maneuver, and 2) the effect of present evasive actions on future threat scenarios

can make its threat assessment inaccurate. For example, a driver assistance system

seeking to prevent a rear-end collision with obstacle C might assess threat based on a

leftward passing maneuver while the human or a more strategic controller might instead
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choose to stop or pass on the right. In addition to this threat assessment ambiguity, the

simplified geometry of the assumed lateral avoidance maneuver (blue dashed arc of

Figure 1.2) fails to consider both the lateral acceleration required to straighten out in the

opposing lane as well as the vehicle's ability to successfully complete the passing

maneuver before colliding with Obstacle B (illustrated by black solid line).

Figure 1.2. Illustration of steering (blue dashed), and braking (green solid)

maneuvers commonly assumed by threat assessment methods and the more realistic

(black) maneuver required to avoid Obstacles C and B.

The local focus of existing active safety systems, together with the inherent

difficulty of assimilating distinct sources of threat into a single, actionable metric has led

to solutions that operate purely or primarily in one dimension. Whether governing

longitudinal dynamics (traction controllers, anti-lock braking systems, or adaptive cruise

controllers), monitoring lateral dynamics (lane-assist systems), or assisting in stability

control (yaw/roll stability controllers), these systems largely fail to consider threats from

a holistic or integrated perspective. Consequently, when placed on the same vehicle,

their warnings and/or control inputs can be suboptimal at best or contradictory at worst.

15 
Chapter 1: Introduction

15 Chapter 1: Introduction



1.2.2 AUTONOMOUS SYSTEMS

Made possible in recent years by developments in onboard sensing, lane

detection, obstacle recognition, and drive-by-wire capabilities, and promoted by

competitions such as the DARPA grand challenge, autonomous planning and control

frameworks for ground vehicle navigation seek to control a vehicle without requiring - or

generally accepting - inputs from the human operator. The typical architecture for these

systems consists of a perception layer, a strategic motion planning layer, and a tactical

execution layer [39]. The perception layer commonly uses a combination of onboard

sensors, such as radar, LIDAR, and camera-based feedback to identify, localize, and

predict the motion of environmental hazards such as road edges and collision threats [40].

Within the workspace thus mapped by the perception layer, the motion planner designs a

hazard-free trajectory to a desired goal or waypoint using any of several motion planning

techniques configured to satisfy vehicular task requirements. Common methods used to

design these paths include sampling, graph search, and potential fields [14]-[16]. The

paths that result from the motion planning layer are often geometric in nature, and do not

consider the dynamic or kinematic constraints of the vehicle. As such, tactical re-

planning is typically performed at a lower, execution layer to locally "smooth" or convert

the path plan into a control reference compatible with the vehicle's kinematic and

dynamic constraints [11], [41]-[43]. This control reference is then tracked using any of a

number of low-level controllers [17]-[19]. When model-based methods such as Model

Predictive Control (MPC) or closed-loop RRT are used, replanning and control are

performed in the same calculation [44]-[47]. In [48], for example, the authors use a

model-based, finite-horizon constrained optimal controller to simultaneously generate

and track an optimal trajectory that satisfies lane constraints and control limitations.

MIT's DARPA Urban Challenge vehicle illustrates the path-based hierarchy

many of today's autonomous systems [11]. As shown in Figure 1.3, its RRT-based

motion planner samples potential branches from feasible regions of the drivability map

generated from onboard sensing. The motion planner then generates kinodynamically

feasible trajectories to each of this tree's nodes by forward-simulating the vehicle's

dynamics assuming pure-pursuit steering and proportional-integral (PI) speed control.
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Finally, it checks the resulting path against the drivability map and uses these same

controllers to track the trajectory generated in simulation.

Figure 1.3. Illustration of the closed-loop RRT motion planner showing motion

control points (blue), infeasible paths (red), and feasible paths (green)

While many variations of path-based planning and control have proven effective

in autonomous implementation, their inability to account for the planning preferences and

control inputs of a human operator in either stage of the navigation task make them ill-

suited for human-in-the-loop or "semi-autonomous" control. Incorporating a human into

the control loop, particularly when the vehicle command was designed to track a specific

reference trajectory, is non-trivial. Without contingencies in the trajectory plan

specifically accounting for the alternative goals implied by the human driver, the control

inputs s/he provides, or the threat those inputs pose to the vehicle, path-based planning

and control methods designed for autonomous implementation are not suitable for semi-

autonomous operation.

1.2.3 SHARED CONTROL AND THE CASE AGAINST FULL AUTOMATION

Despite the frequent occurrence and significant socioeconomic costs of human

error, and the promise of fully autonomous systems, humans will continue to control

i I
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dynamic systems for the foreseeable future. Their superior judgment and robust reasoning

capabilities, together with high automation costs and powerful social pressures create a

compelling need for humans to remain "in the loop". Complete automation often requires

expensive and coordinated infrastructural changes such as the re-tooling of production

facilities, the re-working of highways and traffic management systems, and redrafting of

legislation to accommodate a fundamentally new definition of liability. While these

changes are in some cases feasible, the social acceptance hurdles that must be

surmounted to achieve complete automation may not be quite so tractable. Automating

traditionally human-controlled tasks eliminates jobs. On this premise alone, labor unions

such as the National Air Traffic Controllers Association have fiercely opposed the

introduction of even low-level automation [49], with other groups such as transportation

and manufacturing unions sure to follow suit in the advent of a credible automation

threat.

Perhaps more compelling than practical arguments against full automation of

traditionally human-controlled machines is the prospect of improved semi-autonomous

performance through the exploitation of human-automation synergies. As originally

published in 1951 [50] and widely discussed since [51], humans and automation are

uniquely well suited to specific types of tasks [52], [53]. Whereas automation excels at

responding quickly and precisely to well-defined or repetitive control objectives, humans

tend to make more mistakes as the frequency and complexity of the control task increase.

Conversely, humans have the unique ability to detect and contextualize patterns and new

information, reason inductively, and adapt to new modes of operation, whereas

automation typically struggles at these tasks. The goal of semi-autonomy or "shared-

adaptive" control is to exploit these synergies in the abilities of both humans and

automation to improve planning and control performance of the combined system and -

where possible - the actors therein [54]. To be effective, shared-adaptive systems should

provide intuitive, intention-preserving assistance without increasing the human's mental

workload, over-restricting the human's control freedom, reducing vigilance, or inducing a

false sense of security [52], [55], [56].

Figure 1.4 illustrates the autonomy chasm that exists between the minimal level of

decision-making and control required by today's driver assistance systems (described in
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Section 1.2.1) and the complete control required by fully autonomous systems (detailed

in Section 1.2.2). Shared-adaptive, or "adaptively autonomous" control systems have the

potential to bridge this gap, replacing active driver assistance, passive driver assistance,

and autonomous vehicular control with a single assistance strategy that adapts its level of

autonomy (and corresponding safety contribution) as circumstances require.

j4 Safety
Contribution

Ariver Assistance chasm Autonomous Control

Level of
Autonomy

Figure 1.4. Illustration of the level of autonomy and safety contribution of today's

driver assistance systems (red), proposed autonomous systems (blue), existing

shared control systems (dark gray) and the unrealized potential of adaptively

autonomous systems (light gray)

Similar to autonomous control systems, shared control methods proposed in the

literature today also rely on specific paths and must therefore choose, infer, or accept

(typically from a human operator) a specific goal or end point. In supervisory control,

these waypoints are often explicitly designated prior to, or during the navigation task.

Other methods infer them from the operator's control actions.

In [57], the authors introduce a hierarchical control strategy that considers human

inputs at various levels of the wheelchair navigation task. At the "deliberative", or motion
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planning layer, users designate a desired goal, which the controller sets as the target of a

potential field. The controller then navigates toward the target via gradient descent on the

potential field, modifying the user's command only when that command deviates by

more than 90' from the field gradient or comes within a pre-configured proximity of an

obstacle. When the latter occurs, a reactive controller modifies the direction of the human

input to satisfy the constraint. Urdiales et al. [58] use a similar, potential-field-based

approach to assist a human user while accommodating some human input at both the

motion planning and execution levels. In their embodiment, control authority is allocated

between the human and the PFA controller based on assessments of the "smoothness"

(angle between robot's current direction and that of the provided motion vector),

"directiveness" (angle between the current wheelchair heading and the vector to the

goal), and "safety" (distance to the closest obstacle with respect to the wheelchair

heading) of the human's input. Besides being subject to the local minima common to

potential-fields-based approaches, the ad hoc assistance modulation employed by both of

these strategies requires considerable tuning and does not guarantee 100% obstacle

avoidance.

In contrast to supervisory or reactive control strategies that require a priori

knowledge of the user's target, other control strategies have been proposed that infer the

user intention from the operator's control actions. This approach is used in [59], for

example, where the authors interpret the human user's desired goal with inverse

reinforcement learning and adjust the level of autonomy based on the certainty of this

goal estimation. When prediction certainty is high, the robot is allocated a greater degree

of control. When certainty is low, the user retains more autonomy. Other approaches

which rely similarly on a specific goal estimate to control the vehicle have also been

proposed [60], [61]. The reliance of these systems on prediction accuracy in order to

determine appropriate control allocation makes them ill-suited to assist the human in

unplanned or emergency scenarios where the actual human intent is either 1) predictable

but not safe (as in cases where the human fails to identify a hazard and continues to

operate as before), or 2) difficult to ascertain or predict. In such scenarios, rather than

take more control, systems whose intervention and control actions rely on the certainty of

a path prediction can actually take less. Further, in low-threat scenarios, where direct
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control by the human operator would be sufficient to keep the vehicle safe, these

approaches effectively reduce the human's role to a supervisory one - not following

his/her commands directly, but using the control inputs s/he provides to infer a desired

goal.

1.3 PROPOSED APPROACH

The work presented in this thesis builds on the premise that adaptive autonomy

based on constraints, rather than inferred goals and associated motion paths, is better

suited to share control with humans whose planning and control strategy is better

represented by operating constraints and fields of safe travel than by specific paths [62].

Such fields contain an infinite number of continuously deformable trajectory candidates,

or path homotopies of similar perceived "goodness", as illustrated in Figure 1.5.

Identifying and circumscribing these homotopies by constraints, then allocating control

authority as necessary to satisfy them neither over restricts the human operator in safe

scenarios nor fails in risky ones, but instead ensures that the driver retains as much direct

control freedom as possible without allowing the vehicle to lose control or collide with

obstacles.
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Driver-Perceived Field of Safe Travel - Homotopy Class 1

Goal / Target Region - - Homotopy Class 2
-- Homotopy Class 3

Figure 1.5. Illustration of prominent homotopies as they might be perceived by the

human driver

Figure 1.6 illustrates how three prominent homotopies in a cluttered environment

might be perceived by a human operator. In off-road environments, the desired homotopy

may not be as clearly delineated, though vehicle dynamic constraints require that it

exclude any region through which the vehicle cannot travel without colliding with

obstacle(s).
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Figure 1.6. Visualization of prominent homotopies available to a human operator

(image best viewed in color)

In addition to homotopy-imposed position constraints, the approach proposed in

this thesis enforces stability-imposed state constraints and actuator-imposed input

constraints on the vehicle. Together, these constraints bound an n-dimensional tube

through the vehicle state space. The threat-based intervention system focuses its planning

and control strategy on disallowing dangerous maneuvers or departure from the safe or

controllable state envelope (which can be objectively defined given knowledge of vehicle

dynamics and estimates of the environmental topology and conditions) rather than

imposing a non-unique and potentially unsafe avoidance maneuver. Instead of telling the

system what to do, the constraint-based system determines what not to do, given the

current state of the vehicle, driver, and environment. Rather than forcing the driver to

track a specific path, which is in many cases arbitrary from the human perspective, the

constraint-based approach allows the driver to take any of an infinite number of safe

(collision-free and dynamically-stable) paths through the environment. Figure 1.7 shows

the basic architecture of a constraint-based, shared control system.
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Figure 1.7. Block diagram of a constraint-based, shared control system

While potentially better suited for shared, human-in-the-loop control, constraint-

based semi-autonomy also presents significant challenges. Similar to its path-based

counterpart, planning in constraint or "homotopy space" requires the identification of

homotopies and an evaluation of their goodness. However, because the constraints

bounding a path homotopy admit an infinite number of paths, identifying these

constraints and assessing their goodness requires a new set of evaluation criterion from

those commonly used in path planning. For example, whereas the goodness or optimality

of a specific path is well defined using metrics such as length, curvature, and dynamic

feasibility, corresponding measures lose their traditional meaning when applied to a set of

constraints and the many paths they admit. Further, planning methods typically used to

design paths, such as grid-based search, potential fields, and sampling-based algorithms,

will not necessarily work to plan constraints since the latter must be designed to

circumscribe - rather than simply remain within - a safe operating region.

1.4 OUTLINE AND CONTRIBUTIONS OF THIS THESIS

This thesis develops, simulates, and experimentally evaluates a constraint-based

approach to shared human-machine control. Chapter 2 describes two methods for

identifying, evaluating, and circumscribing path homotopies with semi-autonomously

enforceable constraints and illustrates these method in single- and multi-agent target

tracking and obstacle avoidance. Chapter 3 then describes a method for assessing the
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threat, or likelihood of violating position and stability constraints and using that threat

assessment to allocate control authority between the human and an onboard controller.

This chapter also illustrates a threat-based control allocation method in shared control of

a simulated ground vehicle. Chapter 4 then presents the setup and results of a 1,200-trial

study conducted to assesses the effect of constraint-based navigation and associated

driver feedback on the teleoperation performance of twenty drivers navigating an

unmanned ground vehicle through an outdoor obstacle course. Finally, Chapter 5 closes

the thesis with general conclusions and a proposal for future work.
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CHAPTER 2: HOMOTOPY-BASED CONSTRAINT PLANNING

In 1938, James Gibson, and Laurence Crooks postulated that rather than plan and

track a specific path, human drivers identify and seek to remain within a field of safe

travel comprised of "...all possible paths which the car may take unimpeded" [62]. As

envisioned by Gibson and Crooks, this field extended "[like a] sort of tongue protruding

forward along the road" (see Figure 2.1). This thesis extends their conception of human

planning behavior to incorporate consideration of the many possible collision-free fields

and their associated path homotopies existing within an environment with obstacles. If

path homotopies can be identified, and their goodness evaluated, vehicle position

constraints can be designed at the edges of a desired or optimal homotopy to circumscribe

the set of paths it contains and ensure that the vehicle remains safely within it.

Figure 2.1. Illustration of a "field of safe travel" as envisioned by [62]

This chapter defines path homotopies, explains their significance to the vehicle

navigation problem and notes how they have been used in traditional, path-based

approaches to vehicle control. It then describes two new methods for identifying and

evaluating the desirability of these homotopies, given the vehicle dynamics and control
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constraints, and demonstrates each method in simulated studies of one or more ground

vehicles.

The methods introduced in this chapter assume that the location, velocity, and size

of obstacles in the environment are known over a finite preview horizon. In practice,

obstacle information provided by onboard sensing is uncertain and range-limited.

Improving the accuracy and coverage of these predominantly radar-, LIDAR-, infrared-,

and camera-based sensing techniques is an active research area with significant

implications for planning and control techniques that rely on these sensors [63], [64]. As

demonstrated in several autonomous vehicle initiatives in recent years, these sensing

systems have reached an acceptable level of accuracy for use in vehicular collision

avoidance applications [11], [40], [65], [66]. As inter-vehicle communication techniques

and protocols are implemented in the coming years, the accuracy, range, and robustness

of environmental data is anticipated to improve further [67], [68].

The homotopic path planning techniques presented in this chapter also assume

that the vehicle operates on a two-dimensional plane unless otherwise specified. This

assumption is relaxed in Section 2.3.2.

2.1 PATH HOMOTOPIES

A path homotopy is a topological equivalence relation comprising multiple

obstacle-avoiding paths that can be continuously deformed into one another without

encroaching on obstacles [69]. More formally, a path homotopy in topological space X

consists of a family of paths h: I * X, indexed by t such that: 1) hj(0) = x, and h,(1)= x,

are fixed, and 2) the map H: I x I- X given by H(s, t) = h,(s) is continuous [70].

In the context of vehicle control, all paths spanning from the vehicle's current

position X to a goal location Xg are said to be homotopic if they pass through the

obstacles in the same manner. Visualized another way, a path homotopy spanning Xs to

XG is a subset of the field of safe travel that does not contain any holes. Thus, the on-road

environment illustrated in Figure 1.5 contains at least four path homotopies; one passes to

the right of both Obstacle C and Obstacle B, while another passes both obstacles to the
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left. Yet another homotopy passes to the left of Obstacle C and to the right of Obstacle B,

and the final passes to the right of Obstacle C and to the left of Obstacle B.

2.1.1 TRADITIONAL USES OF HOMOTOPY RELATIONS IN PATH PLANNING

In robotic applications, homotopies have traditionally been employed as a

topological guide to the path planning step of hierarchal motion planners [71]-[73]. In

[74], Jenkins uses homotopy classes to simplify the shortest path problem (which in the

presence of obstacles does not lend itself to exhaustive search) by partitioning the

workspace into a set of mutually exclusive and collectively exhaustive classes, within

each of which a shortest path solution may be found. Hernandez [75] extends Jenkin's

method by introducing a Homotopic RRT to search within each homotopy class for a

desired path. This use of homotopy classes to partition the planning calculation or reduce

the search space of probabilistic path planners is not uncommon; various methods have

been proposed using homotopy classes to reduce the size of probabilistic roadmaps while

ensuring that they capture the multiple-connectedness of a robot's configuration space

[76]-[78].

Still other path planning approaches use visibility graphs, Voronoi diagrams, or

Delaunay triangles to identify homotopies and thereby facilitate sample-based or optimal

path planning [12], [15], [79]-[82]. In [83], the authors present a method for quickly

assessing the homotopy to which any path belongs, independent of the method used to

derive it, by defining a complex function that is analytical everywhere in the two-

dimensional vehicle plane except for at distinct points placed at obstacle locations. This

approach then allows one to verify the homotopy to which any path belongs by simply

integrating this function along it and verifying the value of the result. This allows for

relatively simple integration with existing sampling or graph search methods, since path

plans derived from any of a variety of methods can be retained or discarded according to

their homotopy equivalence.
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2.1.2 PROPOSED USE OF PATH HOMOTOPIES IN CONSTRAINT-BASED

VEHICLE CONTROL

In contrast to existing approaches, the constraint-based navigation framework

proposed in this thesis plans and evaluates path homotopies as a proxy for the myriad of

trajectory options each homotopy presents to the human driver. Rather than use

topological equivalence to facilitate the planning of a single path, the proposed solution

identifies and characterizes path homotopies in order to design and evaluate a set of

position constraints bounding a heuristically-optimal, or driver-preferred set of collision-

free paths. To this end, two approaches to homotopy-based constraint design are

presented here. In the first, the environment is discretized into constrained Delaunay

triangles, with path homotopies represented by sequences of adjacent triangles, across

whose unconstrained edges every possible vehicle trajectory belonging to that homotopy

must pass. Geometric and reachability heuristics are presented as a means of evaluating

the "goodness" and dynamic feasibility of competing homotopies and establishing

position constraints to bound the optimal class. The second uses a rectangular cell

decomposition to discretize a reduced vehicle state space and facilitate calculation of a

reachable and optimal homotopy by dynamic programming.

2.2 CONSTRAINT DESIGN WITH DELAUNAY TRIANGULATION

One particularly useful tool for revealing the topological structure of the

workspace is the Voronoi Diagram [84]. As illustrated in Figure 2.2, the Voronoi diagram

for a set of points, P, partitions configuration space C into a set of cells R, such that every

point within cell R, is closer to Pi than to any other point in P. The line segments at the

boundaries of these cells trace out the topological skeleton, or medial axes of the free

workspace; points along these axes are equidistant from the nearest obstacles [85].
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Figure 2.2. Voronoi diagram for a set of points, P, with cells R; shaded

Besides providing an effective means of planning paths that meet specific

clearance requirements [86], the Voronoi diagram also provides a provably complete

method for capturing the connectedness of a workspace or designing a roadmap that

traverses it [87], [88]. As a result, the lateral expansion of each medial axis in a Voronoi

diagram describes a unique homotopy class with that axis's start and end points. For

example, in the workspace illustrated in Figure 2.3, all paths connecting the start position,

S, with a particular goal position G. will belong to one of two possible homotopies: the

first passing to the left of Obstacle A, and the second passing to its right. The Voronoi

segment existing within each represents the path of maximal clearance belonging to the

homotopy.
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Figure 2.3. Generalized Voronoi diagram in an environment with obstacles

Various methods have been proposed for calculating Voronoi diagrams in worst-

case 0(nlogn) time and with O(n) complexity [89], [90] and for using the result to plan

collision-free paths [86], [91], [92]. While well suited for identifying homotopies and

calculating maximal-clearance paths through obstacles, Voronoi diagrams do not encode

the aggregate properties of the homotopies they delineate [80], [91]-[94]. In the

paragraphs that follow, we introduce the Voronoi diagram's geometric dual - the

Delaunay triangulation - as a more succinct representation of the paths existing within

each homotopy that retains the connectedness information embedded in the Voronoi

diagram.

The Delaunay triangulation for a set of points in a plane is a triangulation (or

homogenous simplicial 2-complex) in which no point lies within the circumcircle of any

triangle [95]. Its dual relationship with the Voronoi diagram captures the homotopy

classes identified by the Voronoi; when connected by straight lines, the centers of the

Delaunay triangulation's circumcircles form the medial axis of the Voronoi diagram.
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Figure 2.4. Delaunay triangulation for a set of points, P, with Delaunay triangles

shaded

The Constrained Delaunay Triangulation (CDT) of a planar, straight-line graph G

is a triangulation of the vertices, P, of G that includes the edges, e, of G (such as those

existing along obstacle boundaries) as part of the triangulation but otherwise remains as

close as possible to the Delaunay triangulation [96] (see Figure 2.5). Introduced in 1934,

the CDT has been used in various path planning algorithms [97]. In [81], the authors

construct a channel from a sequence of triangles. Within this channel, a modified version

of Hershberger and Snoeyink's funnel algorithm plans a minimum length path with

requisite clearance from the channel's vertices [72]. Others have similarly used the

constrained Delaunay triangulation to design a convex polygon or dual graph within

which a minimum length or dynamically feasible path may be calculated using potential

fields [98], model predictive control [79], or graph search algorithms [99]. These

methods are similar in technique, though very different in purpose and execution from the

usage proposed in this thesis.
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Figure 2.5. Generalized Voronoi diagram (thin black lines) and corresponding

constrained Delaunay triangulation (blue) of an environment with obstacles (black

rectangles)

The constraint-based planning and control approach presented here uses the exact

discretization and topological information provided by the constrained Delaunay

triangulation to: 1) identify the edges across which paths belonging to specific

homotopies must pass, the constraints they must satisfy, and the "control freedom" they

provide, 2) evaluate the dynamic feasibility of transitions between those edges, and 3)

design vehicle position constraints to circumscribe a desired homotopy. Each of these

considerations is discussed below.

2.2.1 HOMOTOPY IDENTIFICATION

In this work, we identify homotopies by decomposing a two-dimensional

configuration space C2 E R2 into a homogenous simplicial 2-complex of constrained

Delaunay triangles. Because the CDT provides an exact decomposition of C2, each

sequence of adjacent triangles existing within it uniquely describes a single path

homotopy connecting any point lying within the first triangle of that sequence with any
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point lying within the last. Paths traversing each of these homotopies, while not

necessarily remaining within the unconstrained boundaries of the triangulated channel,

must cross each of the adjacent edges shared by its triangles. In this section, we present a

method of simplifying this triangle connectedness to create a dual graph with nodes N

corresponding to triangles T and edges ei representing adjacent and unconstrained

triangle edges E.

The constrained Delaunay triangulation of an environment with polygonal

obstacles 0 consists of three types of triangles, each of which can be classified by the

number of vertices, Pi., it shares with obstacles in the workspace. Triangles with three

vertices corresponding to the same obstacle, O, do not contain any free space and thus do

no admit collision-free paths. For the present purpose, we label these triangles "Type 3"

and exclude them from subsequent consideration in homotopy evaluation and constraint

planning decisions.

Those with only two vertices per obstacle contain both free space and a

constrained edge; simple paths that traverse them via their unconstrained edges are

homotopic with respect to those edges. That is, any path through Ti that begins on edge

Ei,1, ends on E,2 , and does not violate the constrained edge E,3 or encroach on the vertex

opposite this edge may be continuously deformed into any other such path. For the sake

of convenience, this thesis labels these triangles "Type 2".

Finally, triangles whose vertices span three different obstacles contain free space

but do not describe a single homotopy by their unconstrained edges. With respect to

starting and ending edges, these "Type 1" cells describe a bifurcation in the two

homotopies that begin at any of their three free edges. Table 2.1 summarizes and

illustrates this classification.
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Table 2.1. Triangle classification method and implications for planning

Type/Illustration Characteristic Utility/Implications

3 Shares three vertices with Prohibited region (excluded from

a single obstacle search)

2 Ei Shares two vertices with a Simple paths that traverse it via its

single polygonal obstacle unconstrained edges are homotopic

(one constrained edge) with respect to those edges

1 Vertices lie on three Describes a bifurcation in the

different obstacles (zero homotopy search space

constrained edges)

With triangle types defined, we construct the dual graph of the CDT to delineate

each homotopy existing in the workspace. Triangles in the CDT are represented by nodes

in the dual graph, while edges in the graph represent the connectivity of those triangles

across their adjacent edges, Ei. Any feasible homotopy containing the vehicle's current

position X, and the position of the goal location, XG, may be defined as a sequence Hn of

adjacent triangles TO... Tn extending from the triangle circumscribing the vehicle's current

position (To in Figure 2.6) to any of the triangles containing the goal location(s). This

goal may be described by a single point or by a given region of R2 , such as the distal edge

of the local sensing window illustrated in red in Figure 2.6.
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Obstacles - Generalized Voronoi Diagram

Selected Homotopy Delaunay Triangulation

Target Region

Figure 2.6. Illustration of triangulated environment highlighting one of its

homotopies

2.2.2 HOMOTOPY EVALUATION

In order to plan a set of constraints circumscribing a desired homotopy, metrics

describing homotopy goodness must be defined and ascribed to individual triangles (node

costs) and transitions between them (edge costs) to enable graph search over the dual

graph. This thesis proposes three distinct heuristics for evaluating homotopy goodness: an

estimate of the average "distance" traveled by paths belonging to the homotopy, an

estimate of the control freedom available to an operator while navigating within the

homotopy, and the dynamic reachability of the homotopy's paths from the vehicle's

current state. We note that because the human driver's eventual path through any given

homotopy is not known, evaluations of that homotopy's goodness necessarily require

some assumption of the general shape and direction of the driver's path, as well as

generalizations about the control freedom it provides and the dynamic feasibility it

allows.
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I) LENGTH HEURISTIC

Assuming that all obstacles in the environment are or can be represented by

convex regions*, any path starting at a point X in triangle To, ending in a goal region

XG n n , and belonging to a particular homotopy H" = To U T, U...U T, will pass through

each triangle T in H", entering T through the edge it shares with Ti.1 (E;.1,;) and exiting

through E, i41 into T;1+. The average "distance" Li.1,j±; traveled by all simple (non-self-

intersecting) paths as they cross T, may therefore be heuristically described as the

distance from the midpoint of E;..1, to that of Eii,. Figure 2.7 illustrates the dual graph

embodying this heuristic and the resemblance it shares with the generalized Voronoi

diagram.

Obstacles - Generalized Voronoi Diagram
--- Delaunay Triangulation

Selected Homotopy - -- Medial Path Heuristic
Target Region

Figure 2.7. Triangulated environment illustrating the relationship between the

medial path heuristic used to estimate homotopy length and the Voronoi Diagram

* Several methods have been proposed for convexifying non-convex polygons [100], [101]. One of the simplest and most

conservative methods circumscribes obstacles by a convex buffer shell and regards this shell as the obstacle in subsequent

computations.
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1l) CONSTRAINT FEASIBILITY HEURISTIC

Various measures have been devised for planning a robust path or describing its

disturbance invariance and dynamic feasibility [102]-[104]. In the presence of an

unbounded and equally likely (given the human's unknown future inputs) set of

homotopic paths, these measures loose their traditional meaning and utility. To

accommodate this ambiguity in the evaluation of a set of homotopy constraints, the

feasibility metric heuristically describes the control freedom or range of motion these

constraints allow and the dynamic demands they present by evaluating the pass-through

clearance and required "curvature" of the triangles comprising the homotopy. We

motivate this choice of heuristics with the following observations:

1. The dynamic feasibility of any path followed by a vehicle with Dubins

constraints and friction-limited tires may be characterized by the

lateral acceleration that path requires. This lateral acceleration directly

relates to tire friction utilization, which is limited by tire-road

interactions and vehicle weight.

2. This lateral acceleration is directly proportional to the square of

vehicle velocity and inversely proportional to the radius of curvature

of the path it traverses.

3. In any homotopy H", the maximum radius of curvature of any of the

constant-velocity paths belonging to H" is limited by the "width" wi, or

minimum pass-through clearance of the Delaunay Triangles

comprising the homotopy and the relative orientation, #j, of the

constraint edges it must satisfy. The blue dashed line in Figure 2.8

illustrates the maximal radius path belonging to one particular

homotopy.

4. In a constrained Delaunay triangulation, the medial "pass-through"

line spanning from the midpoint of the entry edge to the midpoint of

the exit edge is parallel to the constrained edge. Thus, changes in the

orientation of this line - segments of which derive from dual graph for

the length heuristic - reflect changing orientations of the constraint

boundaries that must be satisfied by paths traversing the homotopy.
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Figure 2.8. Illustration of a triangulated homotopy and the heuristics used to

describe its constraint restrictiveness and dynamic feasibility

Ill) CONSTRAINT REACHABILITY HEURISTIC

In [105], Bertsekas and Rhodes introduce a backstepping approach to estimating

the reachability of a target set by recursively estimating the size of the "effective target

sets" that the system must traverse in order to reach it. Broadly stated, for the discrete

dynamical system

Xk+1 =f (xkI,uk), k E N (2.1)

in configuration space C" E R", with input constraints umin s. u s u , initial state xo, and

target set XN SCn, this approach reduces the problem of driving the system from x0 to

XN to one of driving it to intermediate, or "effective" target sets Xk<N that satisfy the

constraint

Chapter 2: Homotopy-Based Constraint Planning39



Xk :={ Xk EC" : f (xkI,uk) E= Xk+. (2.2)

Applying this concept to a constrained Delaunay triangulation and defining sets

Xk,k+1 E 91n as (n-1)-dimensional slices of n-dimensional configuration space C"

coinciding with adjacent triangle edges Ekk+, we make a similar observation:

dynamically feasible paths spanning from the vehicle's current position, xo, to a goal

region, XN, must also traverse only the reachable subset of EkkA :

Xklk : {Xk1,k E E-_,k :f (xk ,k,uk1,k) E Xkk+ (2.3)

Figure 2.9 illustrates how the effective target sets comprising one homotopy

spanning from xO to XN might appear.

x0,

XN

Figure 2.9. Illustration of effective target sets as edges of constrained Delaunay

triangulation

The "size" or volume of effective target sets or the effective target tube can be

used to assess the dynamic reachability and current constraint "restrictiveness" of the

homotopy itself from the vehicle's current state. In what follows, we develop this

reachability heuristic using an adaptation of the dynamic window approach originally
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presented in [106]. In their work, Fox, Burgard, and Thrun map the location of obstacles

in the robot's environment to inadmissible translational and rotational robot velocities;

those from which the synchro-drive robot's actuators could not prevent collision with an

obstacle. The authors then search within a "dynamic window," or velocity space that can

be reached within the next time interval, and calculate optimal translational and rotational

velocities that allow the robot to progress toward a goal without colliding with obstacles.

The adaptation of the dynamic window approach presented here similarly

considers the vehicle's actuator limitations, but uses those limitations, together with

"avoidance accelerations" - the acceleration required to avoid collisions with obstacles -

to approximate the margin of control freedom afforded by the available homotopies.

Rather than map obstacles onto a 2-dimensional velocity space, this approach instead

maps the total vehicle acceleration required to avoid obstacles onto the one-dimensional

steering space of the vehicle. It then calculates the surplus tire friction available to the

human driver if s/he were to steer into one homotopy or the other. Steering angles from

which the vehicle cannot avoid a collision with an impending obstacle are excluded from

this area calculation. Figure 2.10b illustrates one such region (labeled "Collision

Imminent") corresponding to a range of steering angles from within which the vehicle

cannot avoid the black obstacle at its current speed.
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Figure 2.10. Illustration showing a) triangularized environment with obstacles (gray

and black), and b) avoidance acceleration mapped to steering commands (with gray

and black blocks corresponding to obstacles in (a).

Assuming constant velocity V, wheelbase length L, tire friction coefficient P,

gravity g, stationary obstacles (see 2.3.2 for treatment of moving obstacles), and no-slip

conditions (turns of constant radius), the turning radius required to avoid an obstacle by

passing it to the left (RL) or to the right (RR) by steering is given by Table 2.2 and Table

2.3.

Table 2.2. Avoidance radii calculation for polygonal obstacles

Condition y2 <0 & y1 <O y2>0 & y1 <O y2>0 & y1 >O

Avoidance Radii L min(R 1 R2, R3? R4) RL min(R2 , R3) min(R1 , R2, R3 4)
RR:= max(R1, R2, R3, R4) RR:= max(R1, R4 ) RR:= max(R1, R2, R3, R4 )
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Table 2.3. Avoidance steer special cases

The lateral acceleration required to avoid an obstacle to the left or to the right by

steering alone is then given by

V 2

alat. = - (2.4)
=R.'

which for a front-wheel-steered vehicle with Dubins constraints, wheelbase L, and

steering angle 6, can be approximated by

V 2 tan(6.)
La,-= L (2.5)

As a function of vehicle steering angle, the longitudinal acceleration required to

avoid the vehicle-facing edge of an obstacle at a distance x is then approximated by

-V 2 tan6 6 0

2Larctan( L xtan(

alog =X 2_2 tan 215f (2.6)
v 2  6=0
2x
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while the longitudinal acceleration required to avoid the heading-tangent edge of an

obstacle at a lateral distance y from the vehicle is approximated as

-V 2 tan 6

along "'22L arctan 
(2.7)

L-ytan6

Thus, the total acceleration required to avoid collision with obstacle *, with

extremal steering commands 6.,1 and 6.,2 passing to its left and right, respectively, as a

function of vehicle steer angle is given by

2 2atotal = al+aong

0

1 V4 tan b(4#2+1)
2 2

0

(2.8)
, b6,2

66, : (

where

#=arctan x tan 6

L-ytan6'

6= arctan X2)

and

L- L2 -tan 2 ()x 2

tan(6)

(2.9)

(2.10)

(2.11)

Summed over all steering angles corresponding to each homotopy choice, the

surplus tire friction for homotopy i is then given by
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ai pg-max ({a(6):j=1,...,n})] (2.12)
Amin

A' axminl(657mao 6 tanma~ max (1),(l) ,11(2)))
max ( actuator 9 knematic E EE

A ' = m a x "", ,i - ,i " m in ( 65 1 ) , ( ) ( 2 .1 3 )
(_m (2))) inmti E'

where E1, . (1) and 6 E1, . (2) are the extremal steering angles from which the two edges of

set E1,. can be reached. 6'actuator refers to physical steering limits, and 6'kinematic represents

the maximum non-slip steering angle allowed by the tire friction and current vehicle

velocity as given by

6*kinematic = ±arctan (m L (2.14)

With heuristics Lk, Wk, #k, and asurplus thus calculated, a graph search (Dijkstra's

algorithm is used here) may be performed to calculate the optimal path homotopy and its

associated constraints. In the results shown below, the objective function is defined as

mn k DW I I+nk Li-1, J W k I + ooi-l, i 1(2.15)
m' n asurplus i=0 min( i-,

XG TG
s.t. Ek = {(,, T+) where Ek is unconstrained (2.16)

This objective function incorporates an estimate of average homotopy "length"

(from L) with an approximation of the control freedom it provides (from w), the dynamic

stability it affords (from #), and the present reachability it allows to the vehicle (from

asurplus).

2.2.3 CONSTRAINT-BASED NAVIGATION WITH MULTIPLE AGENTS

Once an optimal homotopy has been identified, the orientation of its centerline or

the physical position of its edges can be enforced as constraints on the heading or
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position of the vehicle by a lower level controller. While the constraint-based framework

presented in this thesis is specifically designed for, and provides distinct advantages

when combined with, shared-adaptive control strategies, the lower-level controller need

not be semi-autonomous. In what follows, we demonstrate one example of a

decentralized, autonomous controller taking advantage of the constraint-based

framework's homotopy identification to improve efficiency of transport for multiple

agents.

This demonstration adapts the control law presented by Chang et al. in [107] to

navigate a group of vehicles through an obstacle course toward a goal. As presented by

Chang et al., this control law uses scalar potentials to drive an agent toward the goal and

gyroscopic forces and damping forces to avoid collisions with obstacles and other

vehicles. In what follows, we compare this controller's performance and navigational

efficiency with the performance and efficiency of a slightly modified version which

makes use of CDT-derived homotopy constraints.

1) CONTROLLER SETUP

Given a point mass with mass m, state q, control input u, and second-order

translational dynamics

q =(2.17)

Chang et al. apply a control law u consisting of potential (Fp), dissipative (Fd), and

gyroscopic (Fg) forces described by equations (2.18) - (2.21)

U = F, +Fd + F (2.18)

F, = -V V(q) (2.19)

F =-(D +D b( (2.20)

F, = -S(n, q)q (2.21)
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As given in [107], the potential force Fp, is calculated as

V(4)= 1K, | -qG 2
2 (2.22)

The damping force Fd consists of a positive definite dissipative damping constant

Ddc, and a positive definite braking component Db for avoiding frontal collisions with

obstacles. With the vector I5|s R, representing the distance and direction to the nearest

detected obstacle, Db is given by

Dh (h)= C exp(- 5|)- C2 - (2.23)

Finally, the gyroscopic force Fg is calculated as

Fg=

where

0

Sg

-S]

0 
q (2.24)

Sg = C3 -sign(5 x q)-exp(- ||5|)- C4 , (2.25)

Figure 2.11 illustrates the forces applied by this control law.

RS q

Rn

F
Fg

Figure 2.11. Diagram of a vehicle with detection shell R,, normal vector to nearest

obstacle (n) and corresponding control forces
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11) SIMULATION SETUP

Two embodiments of this control strategy were simulated to demonstrate the

utility of triangulation-derived constraints in a distributed, multi-agent target acquisition

and obstacle avoidance scenario. In the first test configuration, the gyroscopic controller

was implemented as described in [107] - with the attractive potential force Fg directed

toward the target from each vehicle's current position.

The second configuration replaced the target attractive force with a proportional

control on the vehicle's heading. At each time step in this approach, each vehicle

triangulated the known environment, planned an optimal sequence of triangles through it,
and proportionally controlled the vehicle heading to the orientation, #k of the resulting

channel. In both cases, vehicle velocities were taken as constant (Fd = 0). Table 2.4

summarizes the control law used by each vehicle in the corridor-tracking case. Note that

with the exception of lines 3 and 4, the control simulation (without corridors) was

identical (replacing the reference heading in line 5 with the reference heading from the

vehicle toward the goal).

Chapter 2: Homotopy-Based Constraint Planning49



Table 2.4. Pseudocode for control law used in corridor-based controller

1 FOR each vehicle v

2 Identify all obstacles within sensing radius Rs

3 Decompose known/static environment (from map) into a contiguous set of

Delaunay Triangles (note that this decomposition does not account for

unanticipated or previously-unmapped obstacles.

4 Plan an optimal sequence of adjacent triangles from triangle containing the

current vehicle position to the goal using graph search. Dijkstra's algorithm was

used here, though others can also be used.

5 Compute turning force F (align vehicle heading with reference heading of

current triangle)

6 Identify nearest (frontal) hazard and construct normal vector to that hazard

7 Compute gyroscopic avoidance force Fg (avoid nearest frontal hazard)

8 Execute control action u- = F, + Fd + Fg

Thirty vehicles, each performing decentralized constraint planning and control,

start at X=0, -6<Y<6 and travel toward a goal region at X=200, -10<Y<10. Rectangular

obstacles (shown in gray in Figure 2.12 and Figure 2.13) are assumed to be known

globally (as though from a map or road database), while the circular obstacles shown in

red are only knowable locally via each vehicle's local sensing.

Il1) SIMULATION RESULTS

Figure 2.12 shows the vehicle paths resulting from navigation without a

homotopy-guided controller. While all thirty vehicles eventually arrive collision-free at

the target, their routes are inefficient and involve significant maneuvering to avoid
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vehicle-vehicle and vehicle-obstacle collisions. In light of the reactive collision

avoidance strategy being employed by each vehicle, these results are not surprising;

traveling blindly toward the goal causes each vehicle to spend a significant amount of

time maneuvering along the face of intermediate obstacles and directly into the path of

oncoming vehicles.

30

20

10

>-0

-10

-20

0 50 100 150 200
x

Figure 2.12. Simulation results showing traces of the paths taken by 30 vehicles

without corridor planning capability

When homotopy constraints are incorporated into the goal seeking behavior of

each vehicle, the common orientation shared by the triangles comprising these

homotopies (as seen from each vehicle's homotopy planner) provides order to an

otherwise decentralized control strategy. That is, within each Type 2 triangle, vehicles

share the same orientation reference. While navigating through Type 1 triangles, these

orientation references can differ by up to 1800, though while traversing these triangles,

vehicles are free to violate any of the unconstrained edges if necessary to avoid a

collision. This alignment of vehicle references does not require vehicle-to-vehicle

communication and leads to more efficient vehicle paths that require less collision

avoidance maneuvering compared to decentralized strategies that rely solely on potential

fields and local collision avoidance.
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As Figure 2.13 shows, when using this approach, all thirty vehicles again

successfully navigate the course without collisions, though with significantly better

efficiency. Note that when traversing narrow corridors with unconstrained edges, the

reactive collision avoidance controller (2.18) causes the vehicles to fan out, with some

crossing into unrestricted regions of the environment. This increases vehicle-to-vehicle

clearance and eases congestion without significantly affecting completion time. Note that

in this particular scenario, all thirty vehicles happened to choose the same homotopy.

While constraint plans starting from different locations may and often will be unique,

their construction from a common workspace and identical homotopy evaluation criterion

ensures that all vehicles passing through a triangle T share a similar orientation reference

and direction of travel.

30

20

10

S0

-10

-20

-30
0 50 100 150 200

x

Figure 2.13. Simulation results showing traces of the paths taken by 30 vehicles with

corridor planning capability

Figure 2.14 plots a distribution of the time that vehicles employing each controller

configuration required to complete the course. Note that due to their shorter, more

efficient paths, vehicles navigating with homotopy constraints reduced average course

completion time by 25% relative to vehicles navigating without these constraints. this
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decrease was statistically significant: without constraints, vehicles required an average 61

seconds to complete the course. With them, the average dropped to 46 seconds (F(1,58) =

166.9, p < 1 e-18). Uniformity provided by a similar set of constraints also significantly

decreased variation in course completion time, from a 5.8 second standard deviation for

the controller that did not consider homotopies, to 1.6 seconds for the homotopy-

following controller.

(D)
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Without Homotopy Reference With Homotopy Reference

Figure 2.14. Course completion time for controllers with and without a homotopy

reference

The time each vehicle spent actively avoiding imminent collisions also decreased

significantly as a proportion of total travel time with the homotopy-following controller

enabled. Since all vehicles shared a common velocity, we estimate collision risk by the

time it spends avoiding all "head-on" collisions with the nearest obstacle within its

detection radius. More specifically, we define a head-on collision incident for vehicle i as

one in which q, * 4 < 0 when 1 -4 j R, where 114i - 4j< |jq| - 4,| Yk * i,j. Figure

2.15 illustrates one such incident.
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As shown in Figure 2.16, the average percentage of course navigation time each

vehicle spent avoiding head-on collisions with other vehicles was reduced by 83% when

homotopy constraints are enforced (from M = 10%, SD = 3% to M= 1.7%, SD = 1%).

This reduction was also statistically significant given a 95% confidence interval (F(1,58)

= 221, p < le-20). This result follows simply from the observation made above;

homotopy constraints in a given obstacle field provide a common reference and direction

to vehicles traveling within them. Enforcing those constraints allows vehicles to avoid

much of the uncertainty and conflicting trajectories inherent to purely local navigation.

I

Figure 2.15. Illustration of a "head-on" collision incident
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Figure 2.16. Percent of total course time spent avoiding head-on collision for

controllers with and without a homotopy reference

2.3 CONSTRAINT DESIGN WITH PATHS

While the method described in Section 2.2 provides a particularly convenient

means of identifying and evaluating constraints from the environment's homotopies and

effective target sets, it is not the only approach to homotopy-based constraint design.

Given that the function of the constraint planner is to identify an optimal homotopy and

design constraints to keep the vehicle safely inside it (with or without a human in the

loop), the method it uses need only be fast, dynamically aware (to ensure that constraints

admit dynamically feasible trajectories), and predictive (in order to provide sufficient

preview for predicting threat and engaging control intervention). This section

demonstrates a, path-based alternative to the triangulation-based approach that uses

dynamic programming to calculate a dynamically optimal, zero-width path and expands

that path into a set of position constraints bounding the homotopy that contains it.

Reachable set constraints, transition symmetry, and maneuver primitives are also

introduced as a means of reducing the computational burden.

2.3.1 STATE REDUCTION VIA ACKERMANN POINT TRANSFORMATION

Representing its steering and acceleration inputs in the body-fixed frame, a

vehicle with negligible roll dynamics can be modeled by

F'
max 1 0 1 0

may = 1 0 1 F (2.26)
I-V 0 x, 0 X' F

yr

where Fxj, Fyf, Fxr, and Fyr represent the longitudinal and lateral (in a body-fixed frame)

tire forces at the front and rear wheels respectively, as illustrated in Figure 2.17.
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Figure 2.17. Illustration of vehicle model used in constraint planning

In order to reduce the computational complexity of the dynamic programming

algorithm, we simplify these dynamics by assuming a constant forward velocity, V, and

applying a state transformation originally described by Ackermann in [108]. This

transformation effectively decouples the effect of front and rear lateral forces on the

vehicle lateral dynamics and allows for the approximation of steering maneuvers as

constant radius turns decoupling point, P. Transforming (2.26) using the method

described by Ackermann yields

max 1 0 1 0 F4

I x. V5ma,+ = 0 1+ 0 0 (2.27)Xr Xl+r Fxr (.7

I?1 0 x, 0 -Xr Fr

which decouples the lateral acceleration at a point distanced x,= I., /mx, ahead of the

vehicle's center of gravity (labeled P in Figure 2.17) from the vehicle yaw dynamic. The

lateral acceleration of this point may then be written as

x, + x,a, = r f (2.28)

where the lateral force at the front wheels is a nonlinear function of the tire stiffness

curve, Cj, and the lateral sideslip at the front wheels, af:
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F4 =-Cf(af)a,

= C, (a,) tan- (V +Xf )

-X (2.29)

VV +XfV)

In a strict implementation of the path computed by the dynamic program, a low

level controller might be used to manipulate vy, vx, and 6 and thereby track the desired Fy1 .

In the constraint-planning implementation presented here, however, only the (physically-

realizable) lateral acceleration ay, required to avoid obstacles is of interest as it provides

an objective (friction-constrained) gauge by which to penalize maneuver aggressiveness

or nearness to instability. Ignoring friction circle effects (assuming constant velocity and

no longitudinal acceleration), this friction limit on achievable lateral acceleration is

described by

a,, 1 pg (2.30)

Considering piecewise-constant lateral acceleration of the Ackerman point

(constant-radius turns) as the input action, discretizing x, y, and V/ over a preview horizon,

and considering continual forward progression between fixed Ax intervals, the state

transitions are given by:

Xk+1 - Xk + Ax (2.31)

2V 2 cospk - VV4 cos 2 1P - ,4a,,Ax(a, Ax + 2 V2 sin9pk)
Yk+1 - Yk + 2ay (2.32)

lVk+ = k +sin-[K (Axcosk + Ayksin/k)] (2.33)

where curvature Kk is given by
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S Ayk cosPk - Ax sin ,k
KCk AX2 +Ayk2 (2.34)

and

2V 2 COSVok - j4V4 COS 2 1/k - 4a, Ax(a, Ax + 2V 2 sinQ (3
Ayk - (2.35)

2.3.2 CONSIDERATION OF DRIVING OBJECTIVES AND ENVIRONMENTAL

DISTURBANCES

In its simplest form, a cost function penalizing lateral acceleration and distance

traveled is used in the finite horizon DP problem. This penalty on lateral acceleration is

consistent with the objective of finding the most stable/controllable (and comfortable)

path through the constraint space. Penalizing distance traveled provides the necessary

incentive for the vehicle (assumed to be moving at a constant speed) to progress along the

road. Equations (2.36)-(2.38) illustrate this cost function.

N-1

Sba( 0 )= h,, (x[N + g(x[n1 al, [n n) (2.36)

g(x[n]a ,a[nn)= gha,, = K, a n]j + Kd (X2 + AY[n (2.37)
ama

hbase (x[N = 0 (2.38)

Consideration of rules of the road, moving obstacles, and terrain effects may be

incorporated into the constraint planning problem via various modifications of this cost

function. For example, assuming that lane directions are known, the constraint planner

can be biased to drive in the appropriate lane (or, more specifically, to avoid the

oncoming lane where possible) by augmenting (2.37) as
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0
9 ~ gbase + K(y - yeeln,,ey

Y < Y ,,nerine

Y a Ycenterine (2.39)

Constraint planning objectives may be further extended to consider hazard motion

by predicting the anticipated intersection of the host vehicle with dynamic hazards and

shifting the regions of high cost corresponding to predicted collision states accordingly.

Many methods for deterministic and probabilistic collision state prediction have been

proposed in the literature[37], [109]-[l 11]. In this work, perfect sensing or vehicle-to-

vehicle communication is assumed, and collision states are predicted by estimating time

to collision as follows.

Given a (constant) host velocity hos, and obtaining the current velocity of

roadway hazards iha- from tracking sensors or vehicle-to-vehicle communication, where

x,,, (t) and X,, (t) represent the current position of the host and hazard, respectively at

time t, the estimated time to collision Atc evaluated at time to was evaluated by

At1 =t - to =

5(to){ for

S(to) or

for

or

X (to)<0, 'i(to)>0

X (to) >0, i(to)< 0

X,:(to j 50, 'i(to )< 0

X(to)>0, i(to)>0

to first order where

$tW= h ( -

and

ort = xha W - xhst

or
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- :-(to)-2 (toQ0  2XiiaQ)(to ){o~at) ,sI)-2 2to for Xha(to) <0, $(to )< 0

Atc (to) for shaz (t)0, $(to)< 0 (2.43)
x(to )-4-fo X0haz (to )> 0, :-(to) 0

fo r 2 J ) > 0 , ((to)

or 6 (o)=0, 4(to) 0

to second-order (requiring that i5(to ) 0 in (2.43)).

Given At1 , the x position of each road hazard at tc is then estimated as

x (e (, ) Xhaz (t ) + 'h,, (to e AtIl (2.44)

or

Xha t = x = h ) ha= 0 c , ha= 0 c to 2 (2.45)2

to first- and second-order, respectively. Assuming some knowledge of true hazard depth

AXhaz (which may in practice be difficult to gain from onboard sensors alone), the depth

of the predicted collision state from the host vehicle's perspective may be estimated by

ha= ) t Xha: (t0 ) ha: (t0 ) Xha: (t0  : 0  (2.46)

For a vehicle with negligible roll dynamics, terrain effects (such as sloped

shoulders) change the magnitude and direction of the accelerations it experiences during

turning maneuvers. More specifically, a sloped roadway decreases the magnitude of

friction-critical normal forces at the tires while simultaneously applying an additional

lateral acceleration on the vehicle's center of gravity. Sloped road shoulders were

considered in the constraint planner by modifying (2.37) to read

g(x[n aat[n n) = K, aia,[n]- aha +Kd(Ax 2 + Ay~n ) (2.47)
max /
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where in this formulation,

abase = g sin 6cos q? (2.48)

represents the lateral acceleration caused by gravity (independent of steering or Fyf

command). Acceleration constraints imposed on the tires in this formulation are reduced

to

am| Ug cos . (2.49)

Figure 2.18 illustrates 6 and ( on a common road shoulder.

001

0
M1

Figure 2.18. Illustration of sloped road shoulder and associated parameters

2.3.3 SIMULATED TRAVERSAL OF AN OPTIMAL HOMOTOPY

The simulations that follow demonstrate constraint-based navigation using

dynamic programming to guide homotopy constraint planning.

1) SETUP

These simulations assume that road lane data is available and that the

instantaneous position, velocity, and acceleration of road hazards have been measured or
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estimated by on-board sensors or vehicle-to-vehicle communication devices. At each

timestep, a dynamic programming problem using one of the cost functions described

above and the state discretization described in Appendix D, is solved to obtain an optimal

vehicle path from the vehicle's current position to the limits of onboard sensing (~80 m).

A y-convex corridor bounding this path's homotopy is then calculated and enforced by a

Model Predictive (MPC) Controller as a constraint on vehicle's lateral position. Subject

to these constraints, this MPC controller plans and tracks a stability-optimal trajectory

that keeps the vehicle within the desired homotopy through a 40-sample (~40m at 0.5

sec/sample and V = 20 m/s) prediction horizon. Section 3.2 describes this controller in

greater detail. Note that the simulations presented below implemented the MPC control

actions autonomously for the sake of demonstration. The dynamics of the vehicle were

simulated using a nonlinear MSC Adams model of a generic light truck (described in

Appendix A). Tire forces were approximated from a Pacejka tire model [112].

II) RESULTS

Figure 2.19 illustrates a DP-generated cost function (sampled on the g-0 plane),

together with its path plan and the resulting constraint corridor (red wall) enforced by the

MPC controller.
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Figure 2.19. Illustration of DP-generated cost surface, path, and constraint plan

Figure 2.20 illustrates how this cost varies within the three-dimensional state cube

x, y, and V. Note that the long and relatively narrow road/shoulder surface causes yaw

angles larger than ~30' to be heavily penalized as these require large (accumulated)

accelerations to recover and remain inside the region of interest. Also note that regions of

low to moderate cost existing on any given slice roughly correspond to "effective target

sets" similar to those described by [105] and exploited in Section 2.2.2.
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Figure 2.20. Illustration of objective function cost in the state cube

Figure 2.21 shows a snapshot of an obstacle avoidance scenario in which the DP

planner calculates a minimum-acceleration, minimum-time homotopy through a non-

convex obstacle field. Note that in this simulation, the symmetric hazard setup

(translucent gray rectangles), together with the initial vehicle state at x=y=YI=O, makes

the choice of homotopies passing to the left or right of the first obstacle rather arbitrary.

In a semi-autonomous implementation of the MPC control law (described in Chapter 3),

this directional neutrality in homotopy selection would allow the human driver to bias the

constraint plan by changing the initial conditions it uses in its goodness/feasibility

estimate (where the control authority available to do so would be much greater in low

threat scenarios such as before the vehicle reaches the first obstacle).
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Time: 3.600
6-

Vehicle Trail

DP Path Plan

Homotopy
Constraints

0MIK MPC Plan

-
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x(m)

Figure 2.21. Snapshot of an obstacle avoidance simulation (obstacles stationary)

Just as directional neutrality in the corridor plan can be beneficial in some

scenarios (like the semi-autonomous application discussed above), not considering

preferred regions of the roadway in the constraint plan may present a liability in others.

One such scenario includes that experienced by a vehicle traveling on a bi-directional

highway. In this scenario, a careless or inattentive driver input may cause the corridor

planner to draw a path that deviates into an oncoming lane in spite of the fact that another

corridor of similar expected "goodness" exists in the host lane. Consideration of lane

directionality and overall "goodness" of different road regions motivates the use of cost

incentives in the corridor plan that bias it toward selecting "desirable" regions of the road

surface. The relative magnitude of these cost incentives (with respect to penalties on

friction utilization, distance, etc.), however, requires careful tuning to avoid causing the

planner to choose an overly-aggressive corridor in the host lane when a safer (and

perhaps even obstacle-free) option exists in the opposite lane. Figure 2.22 shows how the
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DP cost function defined by (2.36) and (2.39) affects the corridor plan and subsequent

vehicle trajectory through an obstacle field. Notice that in this simulation, the opposing

lane was defined by y >Ycenerfine 0.

Time: 3.000
6-

Vehicle Trail

DP Path Plan

Homotopy
4 -Constraints

ioc0KMPC Plan

-6 -
20 40 60 80 100

x(m)

Figure 2.22. Snapshot of a simulation with penalties

oncoming lane

120 140 160 160 200

applied for deviation into an

Beyond highlighting the utility of lane/region penalties on the corridor plan, this

simulation demonstrates how the DP algorithm's additional lookahead (relative to that

used by the MPC controller) can improve the locally-optimality MPC solution by

providing an optimal corridor plan through a larger and non-convex configuration space.

Note that at t = 3s, the MPC solution is as yet unaware of the large obstacle looming at x

= 145m. Were a corridor to be planned around the MPC's predicted solution, the vehicle

might pass through the second column of obstacles at y=-5 or -3 < y 5 -2.5, resulting in a
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"dead-end" scenario that would require a dangerous avoidance maneuver. With its added

preview distance, the DP planner appropriately calculates a path and designs corridor

constraints that ensure the MPC solution remains within the more dynamically feasible

homotopy. Figure 2.23 shows the vehicle, corridor, and path plan(s) a few seconds later.

Notice that although the DP solution seeks to avoid traveling in the opposing lane,

the MPC solution applies no such penalty, causing it to travel freely in either lane when

no obstacles are present. Were another hazard to appear (at, e.g., 21 Om), the MPC

solution would be constrained to pass it on the DP-preferred side. This partial decoupling

of corridor plan and MPC objectives is seen as a desirable characteristic where semi-

autonomous operation is concerned. That is, the goal of corridor constraints is to provide

the driver with as much freedom as possible in the absence of road hazards. On a two-

lane highway, for example, the driver should be free to choose a preferred trajectory and

lane of travel if the roadway is clear and lane markings allow. Only in the presence of

obstacles (and corresponding homotopy bifurcations) does the lane convention restrict the

driver's freedom.
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Figure 2.23. Snapshot of a simulation with penalties applied for deviation into an

oncoming lane

Figure 2.24 shows two clips of a simulation with moving obstacles. In this

simulation, obstacle motion was predicted using a first-order hold (equations (2.40),

(2.41), and (2.44)) on obstacle velocities (which were constant in this case). Notice that at

t = 0.5s, obstacles 1 and 2 share the same x-position and the obstacle field is symmetric.

Were the corridor planner to neglect obstacle velocity, this setup would lead to a corridor

plan that causes the vehicle to pass under the third (stationary) obstacle. Accounting for

obstacle velocities leads to a shifting in the high-cost (predicted collision state) regions

and leads to a corridor plan that more appropriately passes above the third obstacle once

obstacle 1 has passed.
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Time: 4.100
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Figure 2.24. Snapshots of a simulation with moving obstacles

As mentioned above, when load transfer is neglected, the effect of gravity on

sloped terrain both scales and shifts the reachable set. This causes the DP solution

described by (2.36) and (2.47)-(2.49)) to penalize slopes that push the vehicle toward

unsafe regions (either on or off the road surface). Figure 2.25 illustrates a simulation in

which the corridor planner constrains the MPC solution to pass above an obstacle rather

than travel on a road shoulder sloped at a relatively high 6= 500. This scenario highlights

one additional effect of using distinct cost functions and vehicle models in the corridor

planner and MPC controller. As mentioned above, in many semi-autonomous driving

scenarios, the distinct corridor/path goals caused by this disparity can provide a desirable

freedom to the human driver. This freedom, however, comes at the cost of the increased

Chapter 2: Homotopy-Based Constraint Planning 70



lookahead that would be available to the MPC were the DP costmap used to extend the

MPC preview via terminal penalties interpolated from the cost gradient of the DP map.

Time: 3.800
6

4

2

0

-2

-4

Vehicle Trail

DP Path Plan

Homnotopy
Constraints

- MPC Plan

Road Shoulde

0 20 40 60 80 100

x(m)
120 140 160 180 200

Figure 2.25. Simulation of a vehicle traveling near a (50*) sloped shoulder

2.4 CONCLUSIONS

This chapter introduced two general methods for identifying, evaluating, and

planning constraints to bound a path homotopy. While other evaluation heuristics and

cost functions might also be used to plan constraints, the methods described in this

chapter result in a set of minimally restrictive position constraints that is particularly well

suited for semi-autonomous enforcement. Chapter 3 describes the means by which these

homotopy constraints are combined with vehicle dynamic and control restrictions and

enforced via a shared adaptive control policy.
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3
CHAPTER 3: THREAT-BASED CONSTRAINT ENFORCEMENT

3.1 INTRODUCTION

Once a desired homotopy has been identified, the position, state, and input

constraints required to keep the vehicle within it must be converted into a semi-

autonomously enforceable control policy. This chapter describes a model-based threat

assessment method and a shared-adaptive control law that are particularly well suited to

this task. This threat assessment method and control law use constrained model predictive

control to predict the feasibility of satisfying position constraints, stability limits, and

control actuator restrictions within the desired homotopy and calculate an optimal control

policy that satisfies them. This control policy is then enforced according to the threat,

here defined as the nearness of the optimal predicted trajectory to the limits of vehicle

stability. When threat is low, the human retains significant autonomy. As threat increases,

control authority is increasingly allocated to an MPC controller to ensure that safety

constraints are satisfied.

The paragraphs that follow briefly describe the model and controller used to

predict threat and the threat-based control policy employed to enforce constraints.

3.2 MODEL-BASED THREAT ASSESSMENT

This thesis uses Model Predictive (alt. "receding horizon optimal") Control to

predict the vehicle's future state evolution and calculate an associated optimal control

input. Model predictive control is a family of finite-horizon optimal control schemes that

iteratively minimizes a performance objective defined for a forward-simulated plant

model subject to state and input constraints [18], [113], [114]. As illustrated in Figure
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3.1, MPC is particularly well suited for predicting a future state trajectory through the

position constraints imposed by a particular environment and path homotopy. Within the

convex constraints bounding this homotopy, the MPC calculation predicts a time-

parameterized state and control trajectory that is optimal with respect to a set of

performance criteria outlined in an objective function. Given an objective function that

emphasizes vehicle stability, this prediction then captures an objective measure of the

need for intervention and a stability-optimal control policy that satisfies constraints if

allocated sufficient control authority.

Past ----------- Future 5|

-4 -3 -2 -1 0 1 2 3 4 5
Time / Sampling Instants

Figure 3.1. Model predictive control illustration

3.2.1 MODEL PREDICTIVE CONTROL

When it was originally developed in the process control industry in the late

1970's, MPC's intensive computational requirements restricted its application to
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processes with low control update rates. Subsequent improvements in both computational

hardware and algorithm efficiency have significantly expanded its range of opportunity to

include diverse applications ranging from robot manipulators [115], [116] to vehicle

navigation systems [47], [117]-[119], inventory management [120], and clinical

anesthesia [121].

The MPC algorithm progresses as follows. At each time step, t, the current plant

state is sampled and a cost-minimizing control sequence spanning from time t to the end

of a control horizon of n sampling intervals, t+nAt, is computed subject to inequality

constraints. The first element in this input sequence is implemented at the current time

and the process is repeated at subsequent time steps. The following development

describes the specific MPC implementation employed in this work and is included for

completeness.

For a four-wheeled, front-steer vehicle with discrete-time state equations given by

Xk+1 = Axk + Buk + B,vk (3.1)

Yk = Cxk + DVVk (3.2)

with x, y, u, and v representing states, outputs, inputs, and disturbances of the system

respectively, a quadratic objective function over a prediction horizon of p sampling

intervals is defined as

k+p 1k+p-1 T k+p-11 T1

S= ( y -r 1 )T R, (yi - r +p-IT Ru, + - Au, T R Au, + -p 2 (3.3)-rj+ +2 2 u 2 (33

where Ry, RU, and RA. represent diagonal weighting matrices penalizing deviations from

y, = ri, and u; = 0, pe represents the penalty on constraint violations and E represents the

maximum constraint violation over the prediction horizon p. In this work, the elements of

Ry corresponding to vehicle position states are zeroed to reflect the absence of a vehicle

path reference. Inequality constraints on the states and inputs of the vehicle are defined

as:
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y min(i) eVimin(i)s y(k +i+1|k)5 yim (i)+eVma(i)

u min (i):5 u'(k + i + 1| k) s Uima()

Au a min (i):5 Au a (k + i + I I k):s Au am. (i (3.4)

i =t 0,..

where the vector Au represents the change in input from one sampling instant to the next,
the superscript "(- " represents the jtt component of a vector, k represents the current

time, and the notation (-)/(k+ilk) denotes the value predicted for time k+i based on the

information available at time k. The vector V is used to variably soften constraints over

the prediction horizon, p, by including E in the objective function.

Position constraints bounding the desired homotopy are sampled over the

predicted vehicle trajectory as upper and lower limits on the vehicle lateral position as

y 'max(k + 1) ymin(k +1)

Y'ma(k)= : ,ymin (k)= . (3.5)

y 'max(k + p) y'min(k + p)

With n representing the number of free control moves, AUk and U are calculated

by choosing a blocking vector Jm such that

Au(k) Zo
AU ==J :

k m (3.6)
Au(k + p -1 znI

and

I 0 -.. 0 T

I I ... 0 I
U = . . AUk + Uk-_ (3.7)

I1I1I1 I
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where z = [zo, ... , z. ]T represents the free optimization variables of the optimization

problem. By augmenting the vectors y, U, AU, and V over the prediction horizon as

Yk+1

Yk+2

Yk+p

Uk

Uk

Uk+1

Uk+p-1

AUk-

Auk

Auk+1

Auk+p-1

Vk

Vk+1

Vk+p-1

(3.8)

and calculating

p are given by

weighting matrices S., S. 1, S., and H., the augmented plant outputs over

Yk+1 Auk y

=S x +S u +S +Hx k U1 k-I U +Iv

Yk+p Auk+p-1 k+p-

Finally, representing the optimal control problem as

augmented outputs, inputs, and disturbances by calculating

gives

(3.9)

a quadratic program in its

Kx, K., Kut, Kv, and KAu

J = (XkTXX +UkITKU + Uk_1 TK, +VkT Uk+ AUkTHAU, + p,2,

with constraints represented by

ACAUk s bc.

(3.10)

(3.11)

Expressed as a quadratic program, the control problem is then solved using

conventional optimization routines [18], [113].

3.2.2 VEHICLE MODEL

The MPC prediction model used in this thesis considers the kinematics of a four-

wheeled vehicle, along with its lateral and yaw dynamics. Vehicle suspension dynamics

and roll states were excluded from present consideration to simplify the computational
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problem given the low center of gravity and high suspension stiffness of the experimental

platforms.

Figure 3.2 illustrates the vehicle model and its associated parameters. States

considered in this model include the position of the vehicle's center of gravity [x, y], its

yaw angle y, yaw rate zk, and sideslip angle #, and velocity V (with direction defined by

q+#). Steering input at the front wheels is denoted by 6.

y X
X f
r 4_

V
ZRO9

yw

x

Figure 3.2. Illustration of vehicle model used in MPC controller

Equations of motion describing this model's state evolution include

i= Vcos(p +13)

y= Vsin(p+3)

. V(P +f3)sin(7P+#3)-Cf(3-6)cos(p+6)-C,#3cos p

cos(p +3)

2 Cfaf cos(vp+ 6)+C,a, cos(?p)]+9Vsin(p +#)
Vcos(V+13)

y = 1 [-Cfafxf cos(t)+Crarxr]
Izz

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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where the sideslip angles at the front (af) and rear (ar) are given by

af =tan- (Vsin (p +pf) + Xf pcos(V)

Vcos(7p + 3) - xf Y sin(ip)
-6

(3.17)

(3.18)

and the lateral force at the tires is approximated from the tire stiffness characteristics at

the front (/) and rear (r) tires F, = afCf(as) and F, = arCr (a,.) as described in [112]

and illustrated in Figure 3.3.

U

0
Li-

_j

-12 -9 -6 -3 0 3
Slip Angle a [deg]

6 9 12

Figure 3.3. Tire cornering stiffness definition and approximation

Linearized about a constant speed and small slip angles, equations of motion for

this model become
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V (3.19)

.= V( '+13) (3.20)

-(Cr + c, ) (Crxr- fXf +mV (3.21)
mV mV1 mV

.. (Crx, -Cx,) (Cx2 + Cfxf) C~x
C r X ) - 12 f + C (3.22)

Izz Izzv Izz

with the tire stiffness characteristic linearized to FyfZ Cf eaf and Fyr ~ Cr *ar.

Table A. 1 (of Appendix A) defines and quantifies this model's parameters for the

model used in these simulations.

3.2.3 THREAT ASSESSMENT

The controller's projected path along a predefined trajectory or through a

constraint-imposed tube is shaped by the performance objectives established in the MPC

objective function. We configure the MPC objective function to satisfy homotopy-

required position constraints and actuator-imposed input constraints while quadratically

penalizing stability-critical states. As demonstrated in [122], several vehicle states are

coupled with its stability and can be used to gauge the vehicle's nearness to lateral, yaw,

or roll instability. In this thesis, we use front wheel sideslip (a = (x,1/Vf + p3 - 6 ) as

both the trajectory characteristic to minimize in the MPC objective function and the state

prediction to consider in the threat calculation. This choice is motivated by a number of

observations. Minimizing front wheel slip in the MPC objective function tends to lead to

trajectories that also minimize the lateral acceleration and roll angle required by those

trajectories. Additionally, front wheel sideslip strongly influences the controllability of

front-wheel-steered vehicles, since cornering friction begins to decrease above critical

slip angles (see Figure 3.3). These critical angles are well known and provide a direct

mapping from environmental conditions such as weather or terrain properties, to vehicle
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handling limitations; when predicted threat approaches this known limit, loss of stability

is imminent. The linearized tire compliance model's failure to account for this decrease

further motivates the suppression of front wheel slip angles to reduce controller-plant

model mismatch. Finally, trajectories that minimize wheel slip also tend to minimize

lateral acceleration and yaw rates, leading to a safer and more comfortable ride.

The hierarchy of objectives created by this position-constrained cost function

causes the controller to predict (and calculate the control commands required to track) the

trajectory of maximum stability existing within the safe homotopy. As such, the nearness

of this prediction's stability-critical states to their physical limits provides a useful

indication of "threat" and an objective assessment of the need for intervention to arrest

collisions or instability before they happen.

Ref. [122] presents an analysis of various norms for reducing the time-sampled

vector of predicted vehicle states ? to a scalar threat metric (D (tk ), the instantaneous

threat assessment at time k). In the simulations and experiments presented in this thesis,

we set (D (tk) to the maximum value of front wheel sideslip occurring within the MPC

prediction horizon:

(b(tk)=maxaJ : 1 5i 5n. (3.23)

This conservative estimate of threat is then used to determine the level of control

authority required to prevent the most dangerous predicted vehicle state from leaving the

stable performance envelope, as described below.

3.3 THREAT-BASED SHARED AUTONOMY

In the absence of plant-model mismatch and unanticipated constraint motion (e.g.

due to the sudden appearance of unanticipated obstacles in near proximity to the vehicle),

the MPC controller whose predicted control and state evolution do not exceed actuator or

stability limits is capable of performing the avoidance maneuver that constraint

satisfaction requires and the MPC controller (and therefore the threat assessment)

predicts. Given this observation, we design a control strategy that allocates control

authority between human and automation in accordance with predicted threat: when
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threat is low and the predicted state trajectory relatively safe, the driver retains full

control. As threat increases and the control inputs required to safely satisfy homotopy

constraints become increasingly more challenging, control authority is shifted to the

controller. In the limiting case - when the threat assessment reaches a critical value above

which stable constraint satisfaction by the human operator is unlikely - the MPC

controller is allocated full control authority and navigates the vehicle autonomously until

threat has been reduced to an acceptable level. Figure 3.4 illustrates extremes in control

allocation given different MPC state predictions and their corresponding threat

assessments.

Optimal Predicted Optimal Predicted 00.
TIrajectory Trajectory *

(Low Threat) (High Threat) *

Figure 3.4. Obstacle avoidance scenario illustrating low- (1) and high- (2) threat

predictions required to remain within the safe homotopy (outlined by dashed lines)

Denoting the current driver input by udr and the current controller input by uMPc,

the input seen by the vehicle, u, as a function of the intervention metric

K (C) E 0 1 ] is given by

u, = K(CD)ug, +(1-K(D))u, (3.24)

Various control authority allocation schemes, K(<D) satisfy the objectives

outlined above without overburdening (with too much intervention) or startling (with

intervention too abrupt) the human driver [123], [124]. This thesis uses intervention laws

of the general form
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05 ((1 _S) ^,j +sOBng)

eng AA

K(0) at' en" (3.25)
Q-B eng B :5 (1)B S=

ciB enB eng au

aut eng

1 i0 2 ((1 -s) ( au, + sOBu)

where the switch s(t,) is used to allow for hysteric control authority allocation as

S (tk) 0 K (tkl ) =1 (3.26)
1 K (tk_l ) -1I

Note that in (3.25),

aut eng , (3.27)

and generally,

0 (3.28)

Note that (3.28) is typically enforced to ensure that the vehicle retains sufficient control

authority following full intervention (K=1) to reduce the predicted threat to a safer level

before transitioning control back to the human driver.

As illustrated in Figure 3.5, the intervention function (3.25) is parameterized by

the threat level at which the MPC controller begins to intervene (Veng), and the level at

which it is given full control authority and effectively acts as an autonomous controller

(V'aut). When predicted threat iD is less than the low-threat threshold I'eng, K is set to

zero, effectively passing all of the driver's control input (and none of the controller's) to

the vehicle. Above the high-threat threshold &Waut, K is set to unity. This allows the

MPC controller full control authority to autonomously track the high-threat path. Once

the predicted threat has been reduced to a safer level (below cDBaut), the driver is again
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given more control authority, eventually controlling the vehicle autonomously once threat

has dropped below <DBeng- Note that, as described in [125], the parameters of this

intervention law allow considerable adaptation of the controller's intervention

characteristic to the performance and/or preference of the human driver, and to the type

or urgency of the navigation task.

0

0

0

0
eng eng aut aut

Threat

Figure 3.5. General form of control allocation schemes

3.4 DRIVER FEEDBACK

As mentioned in Chapter 1, remotely teleoperating an unmanned vehicle reduces

a human operator's situational awareness by limiting his or her perception of visible,

inertial, and tactical cues. If not supplemented with appropriate visual and/or haptic

feedback, we hypothesize that shared control can aggravate these effects by degrading the

driver's mental model when the vehicle response deviates from the driver's expectations.

In [126], the authors show a positive correlation between human performance at a remote

"pick-and-place" task and his or her telepresence, or sense of being present at the remote

site. In this work, we present two modes of feedback intended to similarly improve
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telepresence in the remote vehicle operator, inform his or her high-level planning

decisions, and communicate the controller's planning intentions and control actions.

3.4.1 VISUAL

The first driver feedback modality communicates the controller's intentions to the

human operator via a visual overlay of its desired homotopy on the driver's screen.

Indicators at the bottom of the screen show the driver where the vehicle is currently

steering (red line) and where the driver's steering command lies with respect to the

vehicle's current input. In high threat scenarios where safe control inputs deviate from the

driver's current command, these indicators diverge. Figure 5 illustrates these overlays in

a typical scenario.

Homotopy Overlay
Secondary Task

Driver Steer Command
Controller Steer Command

Figure 3.6. Illustration of the operator control interface showing the homotopy

overlay (green) and steering indicators (red and cyan lines at bottom center)

3.4.2 HAPTIC

The second driver feedback modality applies a torque overlay to the steering

wheel to indicate to the driver where the control constraints lie and how urgently they
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must be satisfied to avoid a collision. This overlay is provided not as a means of pushing

the operator in the right direction, per se, but of communicating to him/her what the

vehicle is currently doing and thereby preserve his/her mental model and telepresence

when control authority shifts. This sharply differs from the haptic feedback approaches

used in traditional driver assistance systems. In traditional usage, torque feedback is often

provided to motivate corrective action on the part of the driver [23], [24], [127]. In the

approach presented here, feedback is provided not because safe vehicle operation

depends on it (the controller will avoid collisions and losses of stability regardless of

what the driver does), but because the driver's situational awareness (and telepresence in

teleoperation applications) may improve because of it. Stated another way, the torque

feedback described here is designed to communicate predicted threat to the driver (with

the magnitude of that torque proportional to the predicted threat), and inform him/her of

action already being taken by the vehicle to reduce it (via this torque's direction and

magnitude).

The resistance torque applied to the operator's steering wheel is calculated as

T=kmaxKJodi,,, - ogPC (3.29)

where kmax represents the maximum available steering wheel torque, and is used to re-

dimensionalize the K E [ 0 1 given by (3.25).

Figure 6 illustrates the (hypothetical) response of the torque restoring function to

increasingly threatening MPC predictions (assuming the driver fails to steer). Notice that

as time progresses (denoted by ti labels on the host vehicle), the threat posed by the

optimal escape maneuver increases. Additionally, the immediate steering command

required to track this optimal trajectory (u*) begins to drift leftward. The combined effect

of an increasingly-urgent, and progressively-leftward u* recommendation increases K

and shifts the torque resistance "trough". In the limiting case, for which only the optimal

steering command can reasonably be expected to avoid both the hazard and loss of

control (sometime shortly after t4, the controller exerts the maximum available torque on

the operator's steering wheel, ensuring that the steering wheel tracks that of the vehicle
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(preserving the operator's mental model) and communicating predicted threat and related

controller actions to the driver.

Physical Steering Limits -d

aKu*(ti)
g Au*(t2 )

0 A u*(t4)
CD)

0

udriver

4 %%%% 
@0

Figure 3.7. Scenario illustration showing the response of the restoring torque

function as a vehicle successively approaches a hazard from behind

3.5 SIMULATION STUDY

This section illustrates 1) the effect of threat-based constraint enforcement on the

performance of a simulated teleoperator operating under a 100-200 ms time delay, and 2)

the effect of homotopy-based constraint planning and threat-based constraint enforcement

on the simulated traversal of a static obstacle field by a semi-autonomous ground vehicle.

3.5.1 SETUP

These tests simulated the vehicle dynamics as those of a generic light truck with a

double wishbone suspension, passive roll stabilizers, and rack and pinion steering. This

vehicle was modeled in MSC Adams and approximated tire forces via a Pacejka tire
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model [112]. Appendix A describes this model's parameters. The MPC controller ran at

20 Hz, with its prediction and control horizons calculated over 60 and 40 timesteps,

respectively. Parameters in the MPC model (equations (3.19)-(3.22)) were linearized

about the 20 m/s simulation velocity and configured to closely match those of the Adams

plant.

In delay simulations, a pure pursuit driver model was used to simulate the inputs

of an operator seeking to track a predefined route through the center of a safe corridor.

This model implements proportional feedback on the path tracking error. Its main tuning

parameter is the lookahead distance, L. Driver steering inputs 6 are calculated as

2(x, ,6 = (y,( - y) 2 sin(e), (3.30)

where E is illustrated in Figure 3.8.

Driver Reference
-- p

L -'

0

X

Figure 3.8. Illustration of pure pursuit driver model

Two different driver inputs were tested. In the first, the driver failed to steer

around a hazard. Such a scenario can occur when a drowsy, inattentive, or otherwise

unresponsive driver fails to notice an impending hazard or when communications and

controls are impaired. [128]. The second type of driver input was derived from a well-

tuned (L=30), pure-pursuit controller (3.30). In the first set of simulations, time delays of

100 - 200 ms were introduced to simulate the effect of feedback and control delays on a
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remote human operator. Note that because the semi-autonomous controller runs on the

vehicle, its state feedback and control inputs are not directly affected by wireless

communication delays.

Figure 3.9. Block diagram of shared control system with a pure-pursuit driver

model tracking a predefined reference, ydes

3.5.2 RESULTS

I) HOMOTOPY-BASED CONSTRAINT PLANNING

Figure 3.11 shows the path homotopy and associated position constraints

designed by the homotopy planner (green channel) as well as the degree of control (K)

allocated to the MPC controller.
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Figure 3.10. Simulation results demonstrating constraint-based shared autonomy

through an obstacle field

Note that the "ricochet" off the lower bound of the workspace occurs because the

simulated input remains at zero for the entire maneuver. In practice, the significant

control freedom offered by the relaxed constraints between x=40 and 80 meters allows

the human operator to straighten out or steer clear of the walls if desired. Also note that

given the vehicle's initial position at (0,-2) [m], the optimal (shortest and most reachable)

path homotopy passes under the obstacles.

When an additional obstacle is placed under the second obstacle, the homotopy

plan changes. Because the homotopy passing below the obstacles is more tortuous and

offers less control freedom to the human operator, the objective function given by (2.15)

instead chooses the wider and less dynamically-challenging homotopy passing above the

obstacles. In this case, the controller must initially intervene strongly in order to avoid the

impending hazard, but quickly relaxes intervention as the vehicle enters a less restricted

. s % 0 8 0

80 100 120 140 160 180
x (M)

Delaunay Triangulation

ee Vehicle Trail
MMINK MPC Trajectory Prediction
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region of the homotopy above the obstacles, where the driver's

incurs less risk.

K
8

6

4

2

E 0

(O=0) steering command

I I

20 40

Obstacle

Selected Homotopy

Vehicle Location

60 80 100 120 140 160

x(m)
Delaunay Triangulation

ee*" Vehicle Trail

)WNI MPC Trajectory Prediction

Figure 3.11. Simulation results demonstrating constraint-based shared autonomy

through an obstacle field

II) THREAT-BASED CONSTRAINT ENFORCEMENT WITH COMMUNICATION DELAYS

Figure 3.12 compares the performance of 1) the driver model without time delays,

2) the same driver model in the presence of a 200 ms communication (sensing and

control) delay, and 3) the semi-autonomously-assisted driver model in the presence of a

200 ms delay. Note that introducing this delay into the control and feedback loops of an

otherwise-well-tuned (ie. stable in the absence of time delays) driver model (L = 14m)

renders the unassisted driver unable to maintain control of the vehicle while negotiating a

curve. This instability observed in the presence of time delays as short as a few hundred

milliseconds is consistent with experimental observations [128].
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Figure 3.12. Simulation results comparing the performance of an unassisted driver

(simulated by a pure-pursuit controller) with the performance of that same driver in

the presence of communication latency and with the assistance of a constraint-based

controller

With the semi-autonomous controller in the loop (operating on the vehicle itself),

the vehicle successfully negotiates the curve and prompts more moderate steering

commands from the human driver. This in turn, allows the human to retain significant

vehicle control and better track the driver-desired trajectory. Note that even though its

assistance helps the driver model more closely track the reference, the constraint-based

Chapter 3: Threat-Based Constraint Enforcement91



controller in this simulation sought only to satisfy position and stability constraints and

was not aware of this trajectory. These results are consistent with experimental

observations from real human drivers discussed in detail in Chapter 4.

That the shared controller exhibits similar performance improvements in the

presence of time-delays as it does with inexperienced drivers or poorly-tuned driver

models [124] is unsurprising considering the driver-agnostic nature of its threat-based

intervention characteristic. Because the constraint-based control strategy and threat-based

intervention method seek only to keep the vehicle within a constraint-bounded envelope

of operation, this framework's control actions treat any human error, regardless of its

source, the same way; if driver actions put the vehicle at imminent risk of leaving the safe

homotopy, it intervenes to prevent constraint violation and loss of stability.

3.5.3 CONCLUSIONS

This chapter has described a threat-based method for semi-autonomously

enforcing the position, input, and state constraints designed and imposed by the constraint

planners of Chapter 2. In simulated traversals of an obstacle field and a curved roadway,

and in the presence of time delay, this control method has been shown to effectively

avoid accidents and losses of stability while providing the human with significant control

when his or her control inputs are safe. Note that this capability assumes knowledge of

vehicle parameters, an accurate estimate of road friction coefficients, and perfect

knowledge of the state, position, and size of obstacles in the environment. In the presence

of uncertain sensing data, unknown surface friction coefficients, or model parameter

mismatch, safe semi-autonomous operation requires the application of safety margins

bounding the uncertain location of obstacles, conservatively estimating road friction

coefficients, and adaptively modifying the parameters of the MPC model consistent with

true vehicle parameters. The experimental testing performed in Chapter 4 implements

many of these techniques in order to safely avoid obstacles in spite of imperfect sensing.

This chapter has also introduced two new methods for communicating the

controller's chosen homotopy, predicted threat, and intervention actions to the human

over visual and haptic channels. These feedback mechanisms, while not employed in the

simulations presented in this chapter, are extensively studied in Chapter 4.
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4
CHAPTER 4: EXPERIMENTAL USER STUDIES

4.1 INTRODUCTION

This chapter describes a large-scale, repeated measures study of the constraint-

based control architecture and driver feedback mechanisms developed in this thesis and

its effect on the performance of twenty drivers remotely teleoperating a modified utility

vehicle through an obstacle field. Specifically, this study was designed to investigate the

architecture's effect on three key aspects of the navigation and control task:

1. The navigation and control performance of the combined, human-vehicle

system, as indicated by objective measures of control performance

2. The driver's cognitive workload as indicated by that driver's performance

on a secondary task, and

3. The driver's confidence in the system and sense of control over its

performance.

Four configurations of the control framework were evaluated to independently

examine the effects of its control sharing capabilities and the effect of its driver feedback

mechanisms. The experiment was designed as a 2 (Feedback: off vs. on) x 2 (Control:

unshared vs. shared) full factorial, between-subjects study and analyzed with a mixed

measures analysis of variance (ANOVA) and a significance threshold p = 0.05. The four

test configurations resulting from this design are named in Table 1. Note that because

feedback was provided as a means of communicating controller intent and actions to the

operator (see 3.4.2), feedback in the unshared control ("Feedback Only") configuration

was limited to visual overlays. For the shared, "Semi-Autonomy with Feedback"
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configuration, torque was also provided to communicate the result of controller

intervention. Finally, in "Transparent Semi-Autonomy," control was shared but no visual

or haptic feedback was provided to the human operator.

Table 4.1. Experimental factors and levels

"Semi-Autonomy with
Feedback"

The following sections describe the setup and results of this study.

4.2 SETUP

In this section, we briefly describe the experimental platform, testing course,

drivers, test schedule, and hypotheses. Section 4.3 then describes the results of these tests.

4.2.1 VEHICLE

Experimental testing was performed with a Kawasaki 4010 Mule - a four-

wheeled utility vehicle with 23x11-10 tires, an independent, MacPherson strut front

suspension, a semi-independent rear suspension, Electric Power assisted rack-and-pinion

Steering (EPS), four-wheel hydraulic drum brakes, a continuously-variable transmission,

and a top speed of 25 miles per hour.

Several modifications were made and components added to this vehicle to enable

semi-autonomous teleoperation. Among other things, these modifications included the

addition of a Roboteq AX3500 motor control board and a relay to transfer control of the

EPS motor between the stock Electronic Control Unit (ECU) and the Roboteq controller.
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This configuration was capable of a maximum 31 '/s steering rate and actuation over the

vehicle's entire ±330 steering range. Braking and acceleration commands were remotely

applied via servo-gearmotor-driven winches. Potentiometers, limit switches, and relative

quadrature encoders were installed to provide real-time feedback of the steering angle

and other control commands.

A Velodyne LIDAR, NavCom GPS, triaxial Inertial Measurement Unit (IMU),

and 640x480-pixel, 840 (horizontal) x 64' (vertical) Field of View (FOV), progressive

area scan color CCD camera were also installed to provide obstacle sensing, positioning,

motion feedback, and camera feedback, respectively. Figure 4.1 shows the completed

experimental platform. Appendix B lists its parameters as estimated and implemented in

the MPC prediction model.

Figure 4.1. Experimental platform
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An on-board Linux PC running at 2.66 GHz processed sensing and positioning

data, planned constraints, predicted threat, calculated control inputs, generated an

operator feedback signal, and allocated control authority at 10 Hz. Obstacles detected in

LIDAR scans were circumscribed by bounding boxes, dilated by the lateral and

longitudinal half-widths of the vehicle to account for the vehicle body (given a c.g.-

centered position reference), and spatially shifted along the longitudinal vehicle axis, x,

by Ax = -(Atc + At )V,, and along the lateral vehicle axis, y, by Ay = -(At + At)V,

where Atc represents the -300 ms control delay (measured empirically), AtL represents

the 100 ms sensing delay, and V, and V give the longitudinal and lateral velocities of the

vehicle, respectively. Without filtering, the GPS position estimate had an accuracy of

approximately 2 m. Processed through a Kalman filter, this signal combined with IMU

data to give approximately 0.5 m positioning accuracy. Sideslip feedback,#/, not available

from the IMU, was estimated as #=# + r assuming zero slip at the rear wheels
V

(#lrear = 0).

The location of obstacles in the vehicle-fixed frame were obtained from LIDAR

scans, and were known to within approximately 0.1 m. The MPC control algorithm and

its state prediction model ran at 20 Hz, with 40-step control and prediction horizons.

Figure 4.2 illustrates the general architecture of the combined system. Note that all

components except for the remote operator interface were physically located on the

vehicle (and were thus not subject to communication delays or dropout).

Figure 4.2. Sensing and control architecture
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Constraint locations, current threat, and other driver feedback signals were

transmitted to the remote operator control station over an 802.11g wireless link via an

omnidirectional, high-gain antenna with a 2 Watt amplifier on both the vehicle and at the

remote control station. In ideal conditions and operating line-of-sight, this setup provided

4 Mb/s bandwidth at a maximum range of approximately 1 km. In practice, range was

limited to approximately 100 m, and line-of-sight was not maintained. Figure 4.3 shows

the LIDAR, GPS receiver, and antennae.

Figure 4.3. LIDAR, GPS, and communication antennae

4.2.2 OPERATOR CONTROL UNIT AND USER INTERFACE

At the remote operator control station, a teleoperator received video and state

feedback data on a computer monitor and issued steering commands through a Logitech

G27 steering wheel. Torque feedback was applied to the operator's steering wheel via a

dual-motor force feedback mechanism. In order to simulate communication delays and

periodic loss of vision caused by random occurrences such as camera obfuscation, sensor

outages, and loss of communication, the camera feed seen by the teleoperator was
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delayed by 500ms and frozen at random intervals for up to 2 seconds at a time. Figure 4.4

shows the operator control unit setup. Note that in order to prevent drivers from looking

directly at the vehicle during testing, this control unit was placed inside a nearby

building.

Figure 4.4. Operator control unit

The Operator Control Unit (OCU) interface consisted of a (delayed) video feed

from the onboard CCD camera and various overlays. A compass, speedometer, and

secondary task button (described in Section 4.2.3) were overlaid on the screen regardless

of the control configuration in use. In addition to these indicators, feedback-enabled

configurations overlaid a wireframe representation of the selected homotopy, along with

a steering indicator showing the current position of the driver's current steering command

and the actual command being implemented by the shared controller. This indicator was

provided to give the driver a visual indication of the magnitude and difference between

his/her current input and the vehicle's response. Note that torque feedback on the steering

wheel was designed to communicate the same information over a different sensory

channel.

Chapter 4: Experimental User Studies 98



a) b)

Figure 4.5. Operator control unit interface with (a) and without (b) driver feedback

4.2.3 COURSE SETUP & OPERATOR TASKS

Testing was performed on a large (50 m x 30 m) and relatively flat grassy field.

Thirty-five barrels were spaced throughout the field in a sequence of five rows, each of

which contained one opening that was slightly larger than the others. As described in the

test schedule below, this arrangement and the location of preferred openings was changed

between rounds to prevent drivers from relying on worn paths or memorized patterns in

navigating it. Drivers were instructed to cross this course as quickly as possible without

hitting barrels. Each time the vehicle collided with (knocked over) or brushed (touched

but did not knock over) a barrel, a referee logged the event in a synchronized log of

vehicle state, threat assessment, and control inputs.

99 Chapter 4: Experimental User Studies
99 Chapter 4: Experimental User Studies



Figure 4.6. Picture of test environment

In addition to the primary control task, operators were given a secondary

monitoring and response task. This secondary task was administered during each trial to

estimate the cognitive workload imposed by the various control configurations on the

operator. The secondary task required the operators to press a button on the steering

wheel every time a warning indicator box in the lower left side of their screen indicated

the need. To make this task more challenging, the warning light assumed three states at

random, approximately 2-second, intervals during the trial. These states used redundant

text and color modalities and included: "Resting..." (white), "Don't Act!" (blue), and

"Press Headlights!" (red) as shown in Figure 4.7. Operators were instructed to press the

button only when this indicator assumed its red, "Press Headlights!" state. True positives,

false positives, and missed responses were logged along with the time that elapsed

between the start of each state and the operator's response.
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Figure 4.7. Secondary monitoring task button states

4.2.4 TEST DRIVERS AND INCENTIVE STRUCTURE

Twenty operators ranging in age from 20 to 51 years with 0-35 years of driving

experience, and 0-20+ years of video game experience (see Figure 4.8) were tasked with

remotely (non-line-of-sight) teleoperating the vehicle across the obstacle course shown in

Figure 4.6. These operators came from mostly technical backgrounds; programmers, 3d

artists, technical writers, and mechanical, industrial, quality assurance engineers were all

represented.
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Figure 4.8. Test driver composition

Operators were instructed to minimize the performance score, measured as

Score = Time + 10* Collisions + 5*Brushes - Hits + Misses. (4.1)

This score represents the total time it takes to navigate the course (in seconds),

plus 10-second penalties for each collision, plus 5-second penalties for each brush, 2-

second penalties for incorrect responses to the secondary task and 2-second rewards for

correct responses. As an incentive for good performance, $150, $100, and $50 gift

certificates were promised to the top three finishers.
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4.2.5 QUALITATIVE SURVEYS AND USER CONFIDENCE

Each operator's evolving comfort with, trust in, and preference for the various

feedback and control configurations was assessed via an 18-question survey administered

at the end of each day's testing (three surveys total). Sixteen of this survey's questions

(four for each configuration) were configuration-specific, while the final two questions

gauged the perceived helpfulness of the torque and visual feedback mechanisms for each

driver. All questions were posed on a 5-point Likert scale to provide some room for

subjective assessment without eliciting an unnecessarily granular level of detail.

Response sets were aligned with positive or numerically-large values consistently on the

right and negative or small values consistently on the left. Figure 4.9 shows the four

questions posed for each control configuration (the "Unassisted" configuration in the

example shown).
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Setting 0: No Assistance & No Visual Feedback

(Traditional teleoperation without assistance or corridor overlay)

How easy was it to navigate the course without hitting barrels? (without assistance)

1 2 3 4 5

Difficult O Easy,

How much control did you feel you had over the Mule's behavior? (without assistance)

1 2 3 4 5

% 11 ", (- !". (-, (,) ,
Very Lite lY . _ A Lut

How fast did you feel comfortable traveling? (without assistance)

1 2 3 4 5

SlowC O O OFast

How confident were you that the Mule would do the right thing? (without assistance)

1 2 3 4 5

Not YConfiient O er, Condent

Figure 4.9. Subset of the post-trial questionnaire pertaining to "Unassisted" control

configuration

Each survey ended with a question about the visual and haptic (torque) feedback

modalities specifically, and provided an opportunity for operators to comment on the

day's testing.
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How helpful was the torque feedback to your performance?

1 2 3 4 5

How helpful was the visual

1 2 3 4

Detrnmental '1, O -OO

corridor overlay ("yellow brick road") to your performance?*

5

O Very HeIpful

Optional

Do you have any additional comments about the experiment or your experience today?

Figure 4.10. Feedback modality questions and optional, free-form feedback

questions provided at the end of each day's survey

4.2.6 TRAINING AND TEST SCHEDULE

Prior to the experiments, all operators were briefed regarding the test setup,

control interface, and shared control details and provided with a detailed presentation of

the control algorithm and test configurations. In the weeks prior to the start of testing,

each operator manually drove the vehicle through a similar course several times to

accustom them to the teleoperation environment.

Each round of testing consisted of four unscored warm-up runs (one per

configuration), followed by 16 scored rounds (four per configuration), with the
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configuration order randomized to avoid ordering effects. Immediately following each

round's vehicle trials, drivers were administered the trust/preference survey. Operators

were staggered over the course of each week (approximately five per day), and staggered

such that each operator was provided approximately one week between rounds. The

course setup and barrel spacing was slightly altered each week to prevent users from

relying on worn paths or memorized control sequences to get through them.

1 week 1 week I
System description

Course run-through

Scoring & incentives

Round 1
Warm-up
- 1/configuration

Scored Trials
-4lconfiguration, random ordering

Survey
-4 questions/configuration

Warm-up
-1/configuration

Scored Trials
-4/configuration, random ordering

Survey
-4 questionsconfiguration

Course
Change

Warm-up
- 1/configuration

Scored Trials
-4/configuration, random ordering

Survey
-4 questions/configuration

ourse
hange

Figure 4.11. Experimental sequence and ordering

Altogether, 1,200 trials were conducted, with 960 of those trials scored (240

scored trials per test configuration), and 1,080 qualitative survey responses were

collected. Vehicle states, sensor data, constraint calculations, controller predictions, threat

assessments, driver inputs, collision events, and several other signals were recorded for

each run.

4.2.7 HYPOTHESES

This study tests the following hypotheses:
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1. Main effects: Control type and driver feedback both have a significant

effect on operator performance, cognitive workload, and confidence in the

teleoperation task.

2. Interaction effects: None - feedback improves performance and

confidence both with and without control assistance.

4.3 RESULTS

Figure 4.12 plots the results of a typical run with shared control and operator

feedback enabled. Note that obstacle were sensed in the local (vehicle-fixed) frame.

Corresponding bounding boxes were therefore subject to some positioning error when

plotted in the global frame (seen by the apparent obstacle "motion" of Figure 4.12).

Main and interaction effects were assessed using ten objective measures and four

subjective measures. Objective measures of teleoperation performance were assessed

from run data logged at 10 Hz. These include collision frequency (collisions/run), brush

frequency (brushes/run), average velocity (m/s), course completion time (seconds), driver

steer volatility (standard deviation of driver steer command, degrees), vehicle steer

volatility (standard deviation of vehicle steer response, degrees), secondary task reaction

accuracy and reaction time (s), average predicted threat, and overall performance score

(seconds). Subjective measures of operator confidence include driver-reported ease of

collision free navigation, perceived control over vehicle behavior, comfortable speed, and

confidence that the vehicle would "do the right thing". Appendix C tabulates key

performance metrics and survey results by factor. The discussion below elucidates these

and other results.
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NAVIGATION PERFORMANCE

Assessed over all drivers, courses, and dependent measures, the main effect of

constraint-based semi-autonomy was improved performance.

1) SHARED CONTROL

Shared control reduced the occurrence of collisions from 0.41 collisions per run to

0.11 collisions per run - an improvement of over 72% (F(1,956) = 65.54, p < 0.000 1).

Brush frequency also decreased, though by a smaller, 44% margin (F(1,956) = 12.39, p <

0.001). We attribute this disparity between collision avoidance and brush prevention to

sensor deficiencies and an insufficient dilation of the obstacle bounding boxes to account

for them. When obstacles entered the LIDAR's ~3m blind spot near the vehicle, their

predicted location was estimated using a combination of vehicle position estimates

(accurate to ~0.5 m) and visual odometry performed on obstacles that remain within the

LIDAR's view. Obstacle positioning errors arising from this tracking slightly reduced the

shared controller's obstacle avoidance efficacy. We hypothesize that with the addition of

SICK LIDAR or other short-range sensing, most of the remaining brushes and many of

the collisions can be avoided.

Presumably emboldened by the vehicle's obstacle avoidance capabilities when

shared control was enabled, operators drove faster - increasing average speed by 26%,

from 1.36 to 1.72 m/s (F(1,956) = 176.3, p < 0.0001) and reducing course completion

time by 25% - from 47.0 to 35.4 seconds (F(1,956) = 172.1, p < 0.0001). Note that the

distance traveled by the operators in their chosen routes was similar with and without

control assistance. This is principally due to the alternating "gate" structure of each row

of barrels and the slalom route users typically identified during their "warm-up"

(unscored) runs prior to the start of each day's trials. Figure 4.13 shows each of these

performance metrics and its standard error by configuration.
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Figure 4.13. Effect of shared control and driver feedback on the collision frequency,

brush frequency, average velocity, and course completion time of study participants

With the semi-autonomous control system in the loop, drivers not only drove

faster and with fewer collisions, but were also significantly more moderate in their

control inputs. With shared control enabled, driver steer volatility decreased by 41%

(F(1,956) = 409.93, p < 0.0001). This reduction in driver steer volatility led to a

corresponding reduction in the steering volatility experienced by the vehicle: with shared

control, the standard deviation of the vehicle's steering commands decreased from 15 to

11 degrees (F(1,956) = 152.23, p < 0.0001).
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Figure 4.14. Effect of shared control and driver feedback on the driver and vehicle

steer volatility

Figure 4.15 shows the Receiver Operating Characteristic (ROC) curve for the

secondary task response. While control sharing did not significantly change the rate of

True Positives (TP), it did increase the rate of False Positives (FP) from 0.03 FP/trial to

0.05 FP/trial (F(1,956) =6.15, p = 0.01). At the same time, reaction times to the

secondary task significantly improved, from 0.78 seconds per response without shared

control to 0.69 seconds with it (F(1,956) = 6.51, p = 0.01). Figure 4.16 shows the mean

and standard errors for reaction times to the secondary task.

We hypothesize that this willingness to respond more quickly - albeit at the cost

of accuracy - was the result of operators paying more attention and allocating greater

mental resources to the secondary task when shared control was enabled. While tenuous,

this hypothesis may be supported by the steering volatility results, which show that with

control enabled, operators made fewer and smaller adjustments to their steering

commands.
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In addition to improving collision and brush avoidance, shared control also

reduced the average threat experienced by the vehicle by 62% (F(1,956) = 81.4, p <

0.0001). Given the objectives of this shared control formulation - that of maintaining

predicted vehicle threat below a specified maximum (<Dau), this result is not surprising. It
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suggests that, on average, the shared controller provided safer trajectory options to the

vehicle by maintaining its current state and orientation better aligned with the safe

homotopy.
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Figure 4.17. Average predicted threat (mean and

type

standard error) by configuration

Finally, constraint-based semi-autonomy improved driver performance scores by

30% - from an average score of 47.2 seconds without assistance to an average of 33.3

seconds with it (F(1,956)= 186.87, p < 0.0001). Figure 9 summarizes the effect of shared

control and feedback on teleoperation performance.
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Figure 4.18. Overall driver performance score (mean and standard error) by

configuration type

With enough control intervention, similar improvements in collision avoidance

and average speed might be expected of any controller. What makes the constraint-based

framework unique is the minimal degree of adjustments it requires to achieve the above

results. Averaged across all drivers with shared control and feedback both enabled, the

controller took only 43% of the available control authority (mean(K) = 0.43, SD = 0.13)

to effect the above performance improvements. This minimal restriction on human

commands afforded the operators significant freedom to maneuver as desired while

simultaneously reducing the cognitive burden of high-speed, high-precision obstacle

avoidance calculations (as evidenced by improved reaction times on the secondary task).

II) OPERATOR FEEDBACK

The main effect of feedback was less significant than that of control strategy,

largely owing to greater variability in user response to it. The presence of feedback

decreased collision rates by an insignificant 13% (F(1,956) = 0.93, p = 0.34), and made

no significant difference for brush rates, average velocity, course completion time (see

Figure 4.13).
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The presence of visual and torque feedback did, however, significantly increase

driver steer volatility by 8.9% (F(1,956) = 11.93, p < 0.001) (see Figure 4.14). This

increase in driver steer volatility when presented with visual and/or torque feedback

suggests that one effect of such feedback on a teleoperator navigating with delayed and

intermittent visual cues is to prompt larger and more frequent control actions. We also

note that when presented with torque feedback, many operators naturally cede some

control (and corresponding placement) of the steering wheel to the torque feedback

controller, whose commands are typically larger and more rapid than those of the driver

when intervention is required. In most cases, including the run shown in Figure 8, this

additional input was necessary to compensate for an otherwise insufficient operator

command. As Figure 4.14 shows, the average steer volatility seen by the vehicle does not

significantly change with feedback (F(1,956) = 1.58, p = 0.21), owing largely to the

moderating effect of the shared controller.

Neither the accuracy, nor the response times to the secondary task changed

significantly when driver feedback was provided. Average performance scores were also

largely unchanged, decreasing by a statistically insignificant 0.002% when driver

feedback was provided (F(1,956)= 0.04,p = 0.85).

As discussed in Section 3.4, the intention of feedback in the context of constraint-

based semi-autonomy is not to directly improve vehicle performance, but to inform the

operator of actions the controller is taking (with shared control enabled) or would like to

take (shared control disabled) to improve vehicle performance. Thus, we anticipated its

effect on the comfort and confidence of the human operator to be more pronounced than

it was on objective performance metrics. This impact on operator confidence is explored

through qualitative user surveys (discussed in Section 4.3.2 below).

Ill) INTERACTION EFFECTS

As expected, interactions between control and feedback settings were minimal.

The only exception to this trend was driver steer volatility, which increased 63% more

(F(2,956) = 4.56, p = 0.03) when visual and haptic feedback was added to the shared

control configuration than it did when visual feedback was provided for an otherwise-

unassisted operator. This result follows quite closely from the observation above
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regarding operator propensity to yield to torque feedback. Since torque feedback was not

present in the unshared control configurations, the effect was less pronounced.

4.3.2 USER CONFIDENCE

Post-trial survey responses were also analyzed using mixed-measures ANOVA

with a significance threshold of p = 0.05 to evaluate the effect of control and feedback

strategy on operator confidence. Main and interaction effects discovered in this analysis

are discussed below.

I) SHARED CONTROL

Across all dependent measures, operators felt more confident in the system and

comfortable in their performance when the shared controller was enabled. With

assistance, operators reported a 43% increase in ease of navigation (F(1,236) = 85.8, p <

0.0001), a 38% increase in comfortable speed (F(1,236) = 72.4, p < 0.0001), a 12%

increase in perceived control (F(1,236) = 9.4, p < 0.01), and a 44% increase in

confidence that the vehicle would do the right thing (F(1,236) = 79.38, p < 0.0001).

Given the performance improvements noted in Section 4.3.1, many of these subjective

measures of user confidence are not particularly surprising; operator sentiment may have

simply been reflecting the performance improvements they observed.

What is surprising, and bodes well for the merits of constraint-based semi-

autonomy, is that even with an autonomous agent acting in concert to limit or adjust their

steering commands, operators still reported feeling like they had more control over the

Mule's behavior - not less. This result speaks to the minimally-restrictive nature of

constraint-based intervention; rather than assume, and force the operator to follow a

desired path, controllers based on constraints need only disallow unsafe regions that,

presumably, the operator would not have intended to traverse anyway. This parity of

objectives, together with the controller's ability to forgo intervention whenever possible,

instilled a greater sense of control in operators who, technically, had 43% less.
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Figure 4.19. Mean and standard error of subjective measures of operator confidence

11) OPERATOR FEEDBACK

We also note that, as expected, communicating controller intentions and control

actions to the operator via visual and haptic feedback improved most measures of driver

confidence. Main effects of this feedback included a 12% increase in ease of navigation

(F(1,236) = 11.59, p < 0.001), a 12% increase in comfortable speed (F(1,236) = 8.9, p <

0.01), an 8% increase in perceived control (F(1,236) = 4.1, p = 0.04), and an insignificant
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7% increase in confidence that the vehicle would do the right thing (F(1,236) = 2.77, p =

0.10). We note that, in long-form survey responses, many operators expressed that the

more familiar they became with the shared control framework and its capabilities, the less

they depended on visual or haptic feedback to understand or trust what it was doing. This

sentiment is borne out in survey responses - shared control strongly affected driver

confidence that the Mule would "do the right thing", while the effect of feedback was

statistically insignificant.

1|1) INTERACTION EFFECTS

Interaction effects were more significant for subjective measures of performance

than for the objective measures. Across nearly all subjective measures of operator

confidence, operators felt more comfortable, confident, and in control of the unshared

control system when provided with visual feedback. With shared control enabled,

operator confidence remained largely unchanged by feedback, the notable exception

being overall confidence in the system, which actually decreased by 3% when feedback

was added to shared control (F(2,236)= 5.99, p = 0.02). Taken together with the main

effects of shared control and feedback on collision rates and driver steer volatility, we

posit that this decreased confidence comes more as a result of operators misunderstanding

torque feedback (as a mandate rather than as a signal) rather than as the result of actual

performance degradation. In post-trial surveys, operators rated both feedback modalities

as helpful, but also consistently rated visual overlay as more so (M= 3.7, SD = 1.0 vs. M

= 3.2, SD = 1.0) than torque feedback (t[56] = 6.5, p = 0.01). Figure 11 shows average

responses and standard error. This result does not, however, necessarily require that user

perception of relative helpfulness wasn't shaped by configuration setup; where feedback

was more needed (and impactful) with unshared control, only visual overlay was present.

For shared control configurations, both visual and haptic modalities were used, and had

less significant an effect on overall driver performance.
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Figure 4.20. User impressions of the helpfulness of visual and haptic feedback

modalities as reported in post-trial surveys

4.3.3 LEARNING AND TRUST EFFECTS

Sections 4.3.1 and 4.3.2 describe the main and interaction effects of this thesis's

shared control framework and teleoperator feedback mechanisms on objective measures

of operator performance and subjective assessments of operator confidence. What this

analysis does not capture is the effect of these control configurations on operator

performance and preference over time, and the relative effect of perceived performance -

regardless of the configuration used - on subjective configuration rankings. This section

explores these elements of learning and trust.

I) EFFECT OF EXPERIENCE ON PERFORMANCE AND OPERATOR CONFIDENCE

Increasing operator experience tended to provide a similar improvement to most

objective performance measures for each control configuration studied. Figure 4.21

shows one such case in which operator performance increased as they became more

accustomed to the vehicle, the course, and the control interface. Note that "Run Number"

in this figure and those following refers to each run's sequence within that control

configuration's tests. That is, Run Number 3 for the "Feedback Only" configuration

could have happened before or after similarly numbered runs from other configurations in

Round One due to randomization of the run order. Hard breaks at runs one, five, and nine

represent the start of the first, second, and third rounds, respectively.
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Figure 4.21. Effect of experience on average velocity for the four control/feedback

configurations

Other objective measures showed a greater influence of learning on performance.

Operator steering volatility was particularly affected by experience; on average, operators

controlling the "Transparent Semi-Autonomy" configuration (feedback off, shared

control on) became more and more measured in their steering inputs as the experiment

progressed. As shown in Figure 4.22, this trend persisted across all three rounds. Both

configurations without shared control exhibited the opposite trend (though weakly so). As

the number of runs progressed, operators of the "unassisted" or "feedback only"

configurations actually became slightly more volatile in their steering commands. We

note that, given the limited dataset, these trends are merely suggestive. We also observe

that due to the random ordering of configurations, some of this increase in driver steer

volatility without assistance may be caused by changing expectations as the operator

switches mindsets from shared control configurations to unshared, and back again. A
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more rigorous study of learning would sample a larger user base consistently controlling

one configuration or another.
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Figure 4.22. Effect of experience on average driver steer volatility for the four

control/feedback configurations

As expected, course completion time roughly tracked average velocity, exhibiting

a slight downward trend for all four control configurations as the runs progressed and

operators became more accustomed to the vehicle, the control interface, and the course.

Figure 4.23 illustrates this result.
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Figure 4.23. Effect of experience on average course completion time for the four

controlfeedback configurations

Collisions per run were significantly less correlated with run order. As Figure

4.24 shows, collisions happened more often and with greater irregularity for the unshared

control configurations than for the shared, but showed little trend, experiment-wide.

Where weak trends were observed was within each round's results, as operators appear to

have improved their control strategies with shared control enabled as the round

progressed. Round 2 showed a particularly strong trend toward fewer collisions per run

when operators were assisted by the shared controller. The final round, however, proved

an exception to this trend - particularly for the shared control configurations. While the

underlying factors leading to this uptick in collisions are not completely understood, we

note that these final few rounds do correlate with a similar uptick in driver steer volatility

and a decrease in average velocity for all configurations, suggesting that either 1) the

course setup for this round was particularly challenging, or 2) some operators assumed

that they had not won the competition anyway, and were less careful in their control.
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Figure 4.24. Effect of experience on average collision rate for the four

control/feedback configurations

We also note that in all three rounds, and for all but one configuration (Feedback-

Assisted Semi-Autonomy," operators generally appear to have improved their collision

avoidance on the second run of the round. Taken by itself, this result might suggest that

one unscored warm-up round per configuration provided insufficient familiarity with

each new course configuration. But considered in light of later increases in collision rate

as the run progressed, as well as general variation that makes trends in the unshared runs

statistically insignificant, we posit that the number of warm-up rounds was not

insufficient. Finally, Figure 4.25 shows the general evolution in performance scores over

time.
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score for the four

Figure 4.26 - Figure 4.29 illustrate how operator confidence measures evolved

over time. Averaged across all drivers at the conclusion of each round, driver responses

to the "[ease of collision-free navigation]" question was relatively static, but trends in the

other three confidence measures were instructive and promising. In each post-trial

survey, operators consistently indicated both shared control configurations as having

made the collision-free navigation problem easier for them than the unshared control

configurations. While this reported ease of navigation generally trended upward as the

testing rounds progressed, its results were consistent with (and anticipated by) those

shown in Figure 4.19.
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Figure 4.26. Trends in operator sentiment about each control configuration as it

affected the ease of the navigation task

Figure 4.27 shows trends in the reported sense of control operators felt over the

vehicle's behavior as the testing rounds progressed. Here, we begin to see some of the

underlying trends leading to the result discussed in Section 4.3.2 II). Specifically, while

both shared control configurations gave users a greater sense of control on the whole,

feedback became less and less significant as the rounds progressed and users became

more familiar with the shared control system. In survey responses at the end of the first

round, users reported feeling a greater sense of control for configurations with feedback,

and less when that feedback was not present. By the end of the second round, most users

reported feeling roughly the same amount of control for both shared control

configurations regardless of feedback, and less with the unshared configurations.
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Figure 4.27. Trends in operator sentiment about each control configuration as it

affected their sense of control over the vehicle's behavior

Figure 4.28 shows how the speed at which the operator felt comfortable driving

changed with experience. This sentiment correlated with the reported ease of collision-

free navigation (Figure 4.26); on average, users reported feeling increasingly comfortable

traveling faster as they became more experienced. Perhaps not surprisingly when viewed

in light of Figure 4.27, this reporting initially gave the edge to semi-autonomy with

feedback before gradually shifting to favor transparent semi-autonomy.
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Figure 4.28. Trends in operator sentiment about each control configuration as it

affected the speed at which the operator felt comfortable traveling

Finally, overall user confidence that the combined system would "do the right

thing" followed a similar trend to users' sense of control. As operator experience

increased, feedback became less significant to user confidence and shared control became

more so. We note that the apparent flat lining of this confidence around a Likert scale

response of four may be the result of central tendency bias.
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Figure 4.29. Trends in operator confidence that the combined system would "do the

right thing" broken down by control configurations

11) THE RELATIVE IMPORTANCE OF PERFORMANCE ON OPERATOR SENTIMENT

Section 4.3.2 describes the relative importance of control configurations on

operator confidence. As noted previously, this analysis does not explain whether and how

much of these confidence measures could be explained by the performance

improvements that operators directly observed (ie. causality between improved

performance and operator confidence). Here, we seek to identify and explain some of

these correlations.

Correlations between actual operator performance and reported operator

confidence were generally less significant than correlations comparing perception to

control configuration. Nevertheless, a few weak ties did emerge. For instance, as operator

confidence that the vehicle would "do the right thing" increased, objective performance

metrics generally improved. In the second and third rounds, this correlation was

particularly significant; once operators had become accustomed to the test procedure,

user confidence that the system would do the right thing explained much of the decrease

in operator steering volatility (R2 = 0.89), increase in average velocity (R2 = 0.94),

decrease in average collisions per run (R2 = 0.71), and improvement in score (R2 = 0.86).
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Figure 4.30 plots various performance metrics against operator responses to the survey

question, "How confident were you that the [vehicle] would do the right thing?"
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Figure 4.30. Correlations between the operator's confidence that the vehicle would

"do the right thing" and measured performance (mean and standard error for

rounds 2 & 3). Metrics plotted in red correspond to the secondary y-axis.

Other survey responses explained less of the variation in driver performance. We

hypothesize that some of this correlation error may be due to central tendency bias. As

Figure 4.31 - Figure 4.33 illustrate, this bias appears to have been present in most survey

responses as users were hesitant to use either extreme in the 5-point Likert scales

provided.
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Figure 4.31. Operator-reported ease of navigation vs. measured performance

(means and standard errors for rounds 2 & 3). Metrics plotted in red correspond to

the secondary y-axis
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Figure 4.32. Operator-perceived sense of control vs. measured performance (means

and standard errors for rounds 2 & 3). Metrics plotted in red correspond to the

secondary y-axis
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Figure 4.33. Operator-reported comfortable speed of travel vs. measured

performance (means and standard errors for rounds 2 & 3). Metrics plotted in red

correspond to the secondary y-axis

Averaged across all three rounds, and plotted against the average sentiment

expressed in the four survey questions, operator control, confidence, and comfort

measures were only weakly correlated with performance metrics of interest. As Figure

4.34 illustrates, user sentiment explains only some of the confidence that users placed in

the system.
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4.4 CONCLUSION

This user study suggests that human performance and confidence in the vehicle

teleoperation task can be significantly improved via constraint-based planning and threat-

based semi-autonomy. While this shared control approach is effective both with and

without driver feedback, results indicate that providing visual and haptic feedback may

only marginally improve some objective measures of performance while significantly

improving subjective measures of driver confidence. In its complete configuration (full

autonomy with feedback), and compared to unassisted teleoperation under the conditions

of this study, this semi-autonomy framework eliminates 78% of all collisions while

simultaneously increasing average speed by 26%. The 0.096 collisions that continued to

occur per trial resulted largely from three sources. First, as mentioned previously, the

large LIDAR blind spot required a method for tracking obstacles when they dropped out

of view in close proximity to the vehicle. Given poor (~0.5 m) global positioning

estimates for the vehicle, this tracking sometimes resulted in misplaced obstacles and
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subsequently incorrect placement of MPC constraints. Improved positioning hardware, as

well as advances in the accuracy of onboard sensing techniques will reduce the

occurrence of collisions caused by sensing uncertainty. Secondly, the row spacing and

gate offsets in this course were configured such that beyond a certain (operator-

commanded) trajectory and speed, it became impossible for the controller to turn the

wheels fast enough to avoid collisions (giving steering rate constraints). The user study

shown here did not incorporate the velocity constraints or speed intervention necessary to

prevent this. Finally, while the MPC controller was configured to match the estimated

parameters of the vehicle and its interactions with the environment (tire friction, etc.), it

represents a linearized approximation of the true vehicle dynamics and is thus subject to

some model mismatch. This mismatch may also have played a role in failing to avoid the

occasional collision.
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5
CHAPTER 5: CONCLUSIONS

5.1 CONTRIBUTIONS OF THIS THESIS

This thesis has investigated methods for improved performance of human-

controlled systems through the homotopy-based design, and threat-based enforcement of

constraints. Shared-adaptive control presents a unique opportunity to reduce or eliminate

the effects of human error without unduly sacrificing human autonomy. By exploiting the

human's perceptual, judgment, and context-based reasoning in low-threat scenarios and

automation's facility for fast, accurate, and repeatable control in high-threat scenarios,
this approach ensures that the human operator retains as much control of the system as

s/he can safely wield without causing a collision or loss of stability.

Chapter 2 presented two methods for identifying, evaluating the goodness of, and

planning constraints to bound a desired path homotopy through a field of obstacles. In the

first, constrained Delaunay triangles are used to decompose the environment into a

complete set of contiguous cells, through any sequence of which a different path

homotopy may pass. A fundamentally new definition of "goodness" was derived to

evaluate the desirability of a constraint plan based on the aggregate properties of the

topologically equivalent paths it contains. The second constraint-planning method used a

more conventional, rectangular grid, dynamic programming, and reachability constraints

to identify homotopies and evaluate them based on the length and dynamic feasibility of

the optimal path each contained. Both constraint design methods presented in this chapter

were shown to improve various measures of the planning and control performance of one

or multiple vehicles navigating in an environment with obstacles.
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Chapter 3 described a model-based means of assessing the "threat" posed to a

vehicle given the position, input, and stability constraints it must satisfy. This chapter

also described a threat-based method for allocating control between a human operator and

automation to ensure that the vehicle does not violate these constraints. Two new

feedback mechanisms were designed specifically for this constraint-based framework to

communicate the actions and assessments of the autonomous assistant to the human

driver and thereby facilitate "co-situational awareness" through visual and haptic

channels. This chapter also presented various simulations investigating the effect of this

constraint enforcement technique on a simulated human driver in various environments

and in the presence of communication delays. These simulations showed that, when

assisted by the controller, the simulated driver is both more measured in its commands,

and better able to traverse the obstacle course without hitting obstacles or leaving the safe

road surface.

Finally, Chapter 4 presented the results of an extensive, 1,200-trial study of the

performance and control preference of 20 drivers teleoperating an unmanned ground

vehicle through an outdoor obstacle course. These experiments showed that, across

nearly all measures of performance, vehicle control performance and operator confidence

improved with the assistance of the shared-adaptive controller and visual and haptic

feedback. Additional improvement is expected with the addition of improved sensors and

shared-adaptive velocity control.

5.2 FUTURE WORK

Although simulated and experimental results have shown the shared control

framework presented in this thesis to be stable even in the presence of time delays and

non-binary control allocation between the human and the MPC controller, no formal

proof of stability has been presented. Developing such a proof will provide a useful set of

conditions for the constraint planner, threat assessor, and intervention method.

Anecdotally, we observe that allocating control authority based on the threat, or

objective function tradeoffs made by the MPC controller in order to satisfy constraints, is

qualitatively similar to including an input reference (placed at the current driver steering

angle and assumed constant through the predicted time horizon) in the objective function
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alongside the stability-maximizing term and implementing the control algorithm as a

standard, provably-stable, model predictive control algorithm. The evolution of the driver

reference assumed by this approach can be predicted using any of a number of

approaches. Its likely deviation from the true future driver inputs over time can be

considered by hyperbolically discounting penalties on deviations of the optimal predicted

control input through time.
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APPENDIX A: ADAMS MODEL PARAME TERS

Figure A.1. Model of vehicle used in MSC Adams simulations
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Table A.1. Plant model parameters for Adams vehicle model

Parameter Value [units]

Total mass 2450 [kg]

Body mass 2210 [kg]

Unsprung mass 240 [kg]

Wheel mass 60 [kg]

Body roll inertia 1240 [kgm 2]

Body gyroscopic inertia 0 [kgm 2]

Wheel gyroscopic inertia 0.2 [kgm 2]

Measurements

Wheelbase 2.85 [m]

Track width 1.62 [m]

C.G. height 0.76 [m]

C.G. longitudinal distance from front wheels 1.07 [m]

Wheel diameter 0.79 [m]

Tire full width 0.24 [m]

Suspension and tire stiffness

Suspension spring stiffness 40,000 [N/m]

Suspension roll stiffness 3700 [N-m/deg]

Suspension damping 5,300 [N-s/m]

Tire vertical stiffness 250,000 N/m

Tire cornering stiffness 1200 N/deg (Fz = 6000 N)

Steering wheel ratio 35 deg/deg

Max steer rate 30 [deg/s]

Steering range ±30 [deg]
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APPENDIX B: UTILITY VEHICLE PARAMETERS

Figure B.1. Kawasaki 4010 Mule used in experimental user studies
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Table B.1. Inertial, stiffness, and size parameters of the experimental platform

Parameter Value [units]

Total mass 2450 [kg]

Body mass 842 [kg]

Unsprung mass 160 [kg]

Wheel mass 60 [kg]

Body roll inertia 253 [kgm 2]

Measurements

Wheelbase 1.87 [m]

Track width F/R 1.16/1.18 [m]

C.G. height 0.74 [m]

C.G. longitudinal distance from front wheels 1.01 [m]

C.G. longitudinal distance from rear wheels 0.86 [m]

Wheel diameter 0.58 [m]

Tire full width 0.28 [m]

Suspension and tire stiffness

Suspension spring stiffness 40,000 [N/m]

Suspension roll stiffness 3700 [N-m/deg]

Suspension damping 5,300 [N-s/m]

Tire vertical stiffness 92,000 [N/m]

Tire cornering stiffness (estimated) 200 [N/deg]

Steering wheel ratio 14 deg/deg

Max steer rate 31 [deg/s]

Steering range ±33 [deg]
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APPENDIX C: DETAILED USER STUDY RESULTS

Table C.1. Main effects of control (unshared vs. shared) and feedback (off vs. on) on

qualitative survey responses

Control Feedback

Unshared Shared Change p Value Off On Change p Value

How easy was
it to navigate
the course 2.8 4.0 43 <0.0001 3.2 3.6 12 <0.001
without hitting
barrels?

How fast did

you feel 2.5 3.5 38 <0.0001 2.9 3.2 12 <0.01
comfortable
traveling?

How much
control did you
feel you had 3.0 3.4 12 <0.01 3.1 3.3 8.0 0.04
over the
vehicle's
behavior?

How confident
were you that
the system 2.6 3.7 44 <0.0001 3.0 3.3 7.0 0.10
would do the
right thing?
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Table C.2. Main effects of control (unshared vs. shared) and feedback (off vs. on) on

quantitative performance metrics

Control Feedback

Unshared Shared n p Value Off On Change p ValueChange Cag

Collisions/Run 0.41 0.11 -72 <0.0001 0.28 0.25 -13 0.34

Brushes/Run 0.21 0.12 -44 <0.001 0.14 0.19 33 0.08

veocitm 1.36 1.72 26 <0.0001 1.54 1.54 -0.6 0.72

Completion 46.9 35.4 -25 <0.0001 41.1 41.2 0.2 0.89Time Is]

Driver Steer 14.6 8.69 -41 <0.0001 11.2 12.2 8.9 <0.001Volatility 101

Vehicle Steer 14.6 11.4 -22 <0.0001 12.9 13.2 2.6 0.21Volatility 101

True Positive 0.78 0.80 2.6 0.38 0.78 0.79 1.0 0.67Rate

False Positive 0.03 0.05 70 0.01 0.04 0.04 11 0.72Rate

Secondary
Task Reaction 0.75 0.69 -8.7 0.01 0.70 0.74 5.8 0.12
Time Is]

Performance 47.2 33.3 -30 <0.0001 40.3 40.3 0.0 0.85Score Isi
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D
APPENDIX D: REACHABLE SETS AND DISCRETIZATION

Many discretization and function approximation techniques have been presented

in the literature to improve the computational efficiency of DP implementations [129],

[130]. In this work, a discrete state, continuous action implementation was used to

provide geometrically-uniform coverage of the road and shoulder surfaces and facilitate

fast, closed-form solutions of the lateral acceleration inputs required to transition between

states (via the constant-radius turns described above). Nonholonomic constraints require

interpolation of the yaw state, which was rounded to the nearest Ay = 10.

To further improve computational efficiency, state transitions are constrained in

this work to remain within the friction-bounded reachable sets described by (2.30) and

(2.35) on flat surfaces and (2.49) and (2.35) on sloped surfaces. Note that on sloped

surfaces, acceleration due to gravity both scales (by cos6) and shifts (by gsinO costp) the

reachable set. For a given discretization in Ax, the reachable set in Ay and yq are given by

(2.33) and (2.35), respectively. At lower velocities (V < ~7.5 m/s for the vehicle length,

vehicle mass, and surface friction considered here), steering angle constraints (Iol < 30')

dictate available state transitions, since the turns they allow require less tire friction than

what the road provides. At higher speeds like those considered here, tire friction becomes

the acting constraint in reachable set calculations.

Figure D. 1 illustrates the set of states at x = 6m reachable from an initial condition

x=y= 0 and V=q /6.
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Figure D.1. Illustration of an acceleration-bounded reachable set for V=20 m/s and

y/o = Kr6

As illustrated in Figure D. 1, nonholonomic vehicle constraints, together with the

limitations on feasible state transitions, limit the granularity with which the state space

may be discretized in x for a given yo before AY(k+1),max = Y(k+1),max - Y(k+1),min is less than

the Ay discretization (or Ay/2 if the reachable state is rounded to the nearest yk+1). This

range of reachable y states becomes important in the continuous state implementation

used here since acceleration inputs exceeding their friction-limited bounds are not

considered. Overly-fine Ax discretization for a given Ay grid may thereby lead to states

(such as those with a low initial yaw angle 7k) from whose y position the vehicle may not

escape.

Figure D.2 illustrates this effect on a (q=0) slice of the costmap. Notice that both

simulations use the same discretization in y and different discretizations in x (one three

times sparser than the other).
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Figure D.2. Illustration of a y/=O slice of the DP costmap for a) small Ax / Ay and b)

large Ax / Ay.

Notice that when reachability constraints are imposed, small Ax/Ay causes the

cost "shadow" cast by obstacles to be much longer, as paths satisfying vehicle dynamic

constraints cannot complete a full step in y. The minimum discretization in x necessary to

allow a vertical spread of at least Ay given an initial yaw angle y and acceleration

constraint amax can be described by
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IV2 sin(2 0)- amaxAysinV Vl amaAy(4V2 cosV - amaAy)

Ax 1J4V4 - 4a mAyV2 cosp + amax2Ay 2  (D.1)

2ama singp

Figure D.3 a) shows the range of reachable Ay (normalized by vehicle width T")

given a discretized Ax (normalized by wheelbase length xf and xr) and initial y. Figure

D.3 b) shows the minimum value of Ax for which the reachability set will allow lateral

transitions of /4 vehicle width. As these figures show, small initial yaw angles set the

lower limit on Ax.
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Figure D.3. Effect of rectangular discretization granularity on reachable states

This result allows one to choose a desired grid resolution in y (based on vehicle

width, obstacle density, etc.) and calculate (for a given velocity and acceleration

constraint) a suitable grid resolution in x. In the simulation results shown in Section 2.3,

Ax was set at or above the critical value.
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