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Abstract

Existing methods for extracting diagnostic information from carbon dioxide in the ex-
haled breath are qualitative, through visual inspection, and therefore imprecise. In this
thesis, we quantify the CO 2 waveform, or capnogram, in order to discriminate among
various lung disorders. Quantitative analyses of the capnogram are conducted by ex-
tracting several physiological waveform features and performing classification by dis-
criminant analysis with voting. Our classification methods are tested in distinguishing
between records from subjects with normal lung function and patients with cardiores-
piratory disease. In a second step, we discriminate between capnograms from patients
with obstructive lung disease (chronic obstructive pulmonary disease) and those with re-
strictive lung disease (congestive heart failure). Our results demonstrate the diagnostic
potential of capnography.
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Title: Henry Ellis Warren Professor of Electrical Engineering
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Chapter 1

Introduction

C APNOGRAPHY refers to the non-invasive measurement of the concentration of

carbon dioxide exhaled in the breath. Carbon dioxide is a byproduct of tissue

metabolism, and its concentration, [C0 21, can be measured as a function of time or as

a function of exhaled volume. These two types of capnography are described as time-

based and volumetric, with time-based capnography being the common type in clinical

use. Capnography was first introduced in 1943, when carbon dioxide was observed

to absorb infrared radiation [12]. Although some modern devices now utilize Raman

spectroscopy or photoacoustic methods to detect [C0 2], the vast majority use infrared

detection techniques.

Capnography monitors can be found in every operating room as monitoring [C0 2]

in patients is an essential aspect of modern anesthesia and respiratory care. With the

advent of more portable devices, or capnographs, capnography can now be used in

ambulatory settings as well [1].

The waveform produced during time-based capnography is called a capnogram

and contains much information about underlying respiratory dynamics. However, cur-

rent methods for assessing the capnogram are based on subjective and qualitative pat-

tern recognition, with the clinician observing the capnogram to see if it appears roughly

11



CHAPTER 1. INTRODUCTION

normal or abnormal.

Quantitative analysis of the capnogram would allow capnography to be used as a

diagnostic tool. Developing a capnography-based monitoring system that could quan-

titatively classify different states of respiratory disease would constitute a significant

improvement in diagnostics.

Several factors make capnography an attractive respiratory diagnostic tool. First,

as a measure of ventilation, it accurately reflects underlying pulmonary physiology and

pathophysiology. Second, capnography is an effort-independent measurement since it

simply entails breathing normally through a nasal cannula. Unlike spirometry, the

gold standard for measurement of airway obstruction, capnography does not require

forced exhalation, which many children and subjects in respiratory distress are unable

to perform. Third, with mathematical modeling, capnography provides an objective

test: rather than relying on subjective qualitative observation for disease state classifi-

cation, capnography allows for a quantitative respiratory assessment. However, present

methods of inspecting the capnogram are not quantitative in nature and result in an

underutilization of the capabilities of capnographic monitoring.

In order to investigate the efficacy of capnography in diagnostic settings, we

analyze the capnogram by first decomposing the waveform into physiological features.

These features are readily quantifiable and correspond to respiratory status. We then

implement statistical classification methods to label, or "diagnose," various patient

records.

The success of these classification methods hinges upon there being discernible

differences among capnograms representative of distinct disease classes. Obstructive

and restrictive lung disease constitute the main types of respiratory pathology. In

obstructive lung disease, exhalation becomes difficult with increased resistance in the

12
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airway. Restrictive lung disease instead limits the amount of air that can be inhaled and

does not allow for proper filling of the lungs. An obstructive capnogram appears very

differently from its restrictive counterpart. Capnogram features such as roundedness,

duration, and height can be seen to vary among diseases [18,28].

We quantify these features to separate capnographic measurements collected from

three types of patients: those that are in a normal state of health, those with congestive

heart failure (CHF), and those with chronic obstructive pulmonary disease (COPD).

These classes comprise a broad range of pulmonary states since CHF can be classified

as a restrictive disease and COPD as an obstructive disease [23].

Statistical classification begins after feature extraction and pre-processing of the

capnogram. In the context of quadratic discriminant analysis, we generate probabilistic

models to construct a quadratic boundary separating different classes of exhalations in

feature space. Individual exhalations classified in this manner then "vote" on the label

of their corresponding patient record. In turn, several different quadratic classifiers

constructed by training on different partitions of the training set then vote on the final

classification of a patient record. This voting scheme is found to boost classification

performance without demanding the use of more computationally intensive classification

techniques. Resulting test record labels are found to compare well with clinicians'

diagnoses. Such performance motivates the use of capnography in diagnostics.

The remainder of this thesis is organized as follows. Background information nec-

essary to the understanding of capnogram analysis is presented in Chapter 2. Chapter

3 provides an overview of feature-based classification, with an emphasis on supervised

learning methods. A detailed description of discriminant analysis is presented in Chap-

ter 4. The subsequent two chapters are specific to the patient dataset used during

classification: Chapter 5 details pre-processing and feature extraction methods, while
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Chapter 6 reports classification results. Finally, Chapter 7 summarizes the contribu-

tions of the thesis and touches on the possible directions of future work.



Chapter 2

Background

T ODAY , monitoring with capnography is standard practice for many aspects of

clinical care. Smaller, more portable capnography devices have made it feasi-

ble to use capnography in ambulatory settings for many different clinical applications.

These modern capnographs employ highly specific carbon dioxide sensors and allow

for use in spontaneously breathing subjects via nasal cannulae. Historically, though,

capnography has been limited to the operating room and intensive care unit to confirm

correct endotracheal tube (ETT) position. If the ETT is correctly placed in the trachea,

CO 2 will immediately be detected and a capnogram generated. If incorrectly placed

in the esophagus, where there is no significant CO 2 content, no capnogram will be

observed. Accidental esophageal intubation represents a real danger during anesthesia

and must be detected immediately [8]. The rapid nature of capnographic monitoring

proves useful for this task.

Although capnography has filled a monitoring need in the operating room, cur-

rent bedside CO2 monitors typically consider only a few sparsely sampled values of

the exhaled CO2 concentration and constitute an underutilization of the capabilities

of capnography. A more robust use of capnography would be in the field of diag-

nostics since capnography reveals much information about the underlying state of the

cardiorespiratory system.

15



16 CHAPTER 2. BACKGROUND

Toward the goal of improving the diagnostic precision of capnography through

capnogram quantification, a place to start is with two of the most common cardiopul-

monary diseases, CHF and COPD. These two diseases may present with similar symp-

toms such as shortness of breath and difficulty breathing, but have very different physio-

logical implications. COPD results from obstruction of the airway and limits exhalation,

while CHF typically causes fluid buildup in the lungs and limits the air that can be

taken in during inhalation. Accurate diagnoses are critical in initiating effective treat-

ment for these conditions, but because of similar presenting symptoms, rapid diagnosis

is not always straightforward [22].

E 2.1 Respiratory Physiology

During normal breathing, air is regularly inhaled and exhaled. In this way, oxygen

is delivered to the body and carbon dioxide is removed. This gas exchange occurs

as blood passes through the pulmonary capillary bed into the alveoli (Figure 2.1).

During inspiration, oxygen diffuses from the alveoli into the capillaries. Because the

concentration of carbon dioxide in room air is very close to zero, [C0 2] is insignificant

during inspiration. During exhalation, carbon dioxide is transported from deoxygenated

venous blood into the alveoli.

Initially, gas expelled during exhalation originates from the upper airway and

contains no CO 2 , corresponding to dead-space ventilation. A significant volume of

C0 2-free air is exhaled in each breath since inspired air filling the upper conducting

airways does not participate in gas exchange (Figure 2.2).

Dead-space volume is approximately 150 mL in an adult and constitutes roughly

one third of the tidal volume, which is the amount inhaled air per breath. After ex-

halation, dead space again comes into play when residual alveolar gas is expelled from
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Conducting

Conducting
airway

Alveolus

Pulmonary capillary

Mixed venous blood Systemic arterial
from right heart blood to left heart

Figure 2.1. Diffusion of oxygen out of the alveolus into the blood during inspiration and of carbon
dioxide from the blood into the alveolus during exhalation [9].

the alveoli, but remains in the conducting airways. This residual gas is then inspired

during the next inhalation.

* 2.2 Capnography Technology

Infrared sensors are the main means of carbon dioxide detection in modern capnographs.

Because carbon dioxide exhibits a very specific absorption at a wavelength of 4.26 pm,

the sensors function well in detecting CO 2 [30].

Portable capnographs typically perform sidestream capnography, in which the

infrared sensor responsible for detecting carbon dioxide is located in the monitor. Ex-

haled air is actively aspirated to reach the CO 2 sensor. In mainstream capnography,

Sec. 2.2. Capnography Technology 1'7
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150 i-Anatomic
0 dead space

Tidal volume -
= 500 mL

Alveolar air from
previous breath

Inspire one VT
End-expiration ------------------------------------. End-inspiration

Figure 2.2. Dead-space ventilation [9].

Mainstream

Sensor

Infrared source

Endotracheal tube
to patient

Sidestream

Circuit

Figure 2.3. Mainstream vs. sidestream capnography [24]. The depicted setups are specific to venti-
lated patients. On the righthand side of each configuration, the "Circuit" sections indicate ventilator
connections that will not be present during non-intubated capnography.

the sensor is located in line with the breathing circuit and is therefore reserved for

intubated patients [16]. Figure 2.3 illustrates the distinction between mainstream and

sidestream capnography.

Conducting
airways -

Alveoli

18s CHAPTER 2. BACKGROUND



Sec. 2.3. The Capnogram Signal 19

M 2.3 The Capnogram Signal

Each phase of the capnogram corresponds to a specific segment of breathing. The nor-

mal capnogram is roughly trapezoidal in appearance and is typically divided into four

phases (Figure 2.4). Dead-space ventilation occurs during the first phase of exhala-

tion, the start of alveolar gas exhalation during the second, an alveolar plateau during

the third, and an inspiratory downstroke constitutes the fourth phase to complete the

waveform. Each of these phases can be estimated as a straight line segment in the

normal subject, and the terminal value of alveolar [C0 2] is defined as the End-Tidal

CO 2 (ETCO2 ), the maximum [C0 2 ] in each breath.

In order to be classified as normal, a capnogram must exhibit the aforementioned

Begin Inhalation
Normal Capnogram

40 I D

E IV
E

A BE
0

Time (sec.)

Begin Exhalation

Figure 2.4. Normal capnogram appearance [19].
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50
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020
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0 2 4 6 8 10 12 14 16 18 20

Time (seconds)

Figure 2.5. The normal capnogram (above) is distinctly different from the obstructive capnogram
(below).

four phases, the [C0 2 ] must be zero at the start and end of the breath, and the ETCO2

must reach a normal level of 35-40 mmHg during each breath [12]. Several key clues

from the capnogram can be used to assess underlying respiratory function.

Figure 2.4 depicts the normal capnogram. However, in diseased states, the capno-

gram can take on a very different morphology. The two main classes of respiratory

diseases considered in this thesis are obstructive and restrictive. Airway obstruction

in diseases like asthma or COPD can cause a curved, "shark's fin" appearance to the

capnogram. The change in capnogram shape in obstructive lung disease correlates with

a reduction in spirometric measures [18]. In restrictive lung disease, the waveform tends

20 CHAPTER 2. BACKGROUND
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to appear more compact, as the exhalation duration is shorter and ETCO2 is lower [4].

E 2.4 Prior Analyses

In the 1950s and 1960s, early studies investigated the appearance of the normal capno-

gram and sought to model alveolar CO2 levels using time-dependent dilution equations

[7,32]. Linear segments were also fitted to the capnogram, and the canonical four phases

associated with the normal capnogram were established. During this period, few re-

searchers considered the appearance of the abnormal capnogram. However, ventilation-

perfusion mismatch was noted to produce non-uniformity in the capnogram [15], and

some work in the 1950s alluded to the possibility of using time-based capnography in

the diagnosis of obstructive lung disease [13].

Later research during the 1990s examined the shape of abnormal capnograms

more closely. A study conducted in mechanically ventilated dogs found that a sloping

S S3
SR=S2/S1 AR=A1/A2 SD1-2-3

S3

S2

S1i

Figure 2.6. Capnographic shape indices are defined in both normal (above) and asthmatic (below)
conditions. Parameters considered include tangent slopes Si, S2 , and S3 , slope ratio SR, areas A, and
A2 , area ratio AR, and second derivatives SD [34].
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alveolar plateau was produced as a result of uneven ventilation and prolonged gas

exchange from the blood to the alveoli during exhalation [25]. In 1994, a French study

investigated the links between capnogram shape indices and spirometric parameters in

normal and asthmatic subjects. In the asthmatic subjects, the capnogram intermediate

angle, measured between the initial expiratory upstroke and the alveolar plateau, was

found to correlate with severity of airway obstruction [34]. Depicted in Figure 2.6,

several capnogram shape and angle indices were defined in a small sample of subjects.

Previous research efforts have investigated the shape of both the normal and the

abnormal capnogram. In these investigations, line segments were frequently fitted to

the capnogram, and various geometric quantities were estimated. Although general

features of the capnogram were observed, attempts were not made to develop classifi-

cation rules based on these features. Our classification work, including feature-based

classification methods (Chapter 3) and discriminant analysis techniques (Chapter 4),

moves beyond basic feature identification and uses such features to classify normal

and abnormal capnograms. While several small quantitative studies of the capnogram

have been conducted, none has examined restrictive and obstructive lung disease in the

hopes of distinguishing them. We expand quantitative capnogram analysis by incor-

porating modern classification tools that may prove useful in enhancing the diagnostic

capabilities of capnography.



Chapter 3

Approaches to Feature-based

Classification

C LASSIFICATION is frequently carried out by first decomposing training and test

data into features that are readily quantified and classifiable. In supervised

learning, a labeled training feature set is used to allow the model to learn. Then labels

or predictions are assigned to the unlabeled test dataset. Choosing a robust set of

features is thus very important.

Interestingly, using a large number of dataset features is not always advantageous.

This is because features may be dependent upon one another, rendering some irrelevant.

Including many correlated features results in poorly conditioned learning. In Figure 3.1,

classification accuracy plateaus after a certain number of features is used. Much research

has been done on how to select the most appropriate features for solving a supervised

learning problem [11, 17].

Time-series data features could be constructed by taking a signal's average value

over time or its wavelet transform decomposition, by recording peak values, or in many

other ways. Various gene expressions are commonly used as features in genomic datasets

generated by DNA microarrays. In ECG analysis, feature extraction typically involves

23
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100-

95-

90-

o 85-

< 80-

75-

70-

65
0 50 100 150 200 250

Number of Features Selected

Figure 3.1. Classification accuracy is plotted as a function of the number of features present in the
feature set. Different symbols correspond to different classification methods. After roughly 50 features,
the accuracy no longer increases with the feature set size. Adapted from [20].

recording characteristics of the QRS complex or other marked segments of the waveform.

An essential task in capnogram classification is to select a small set of powerful

features that perform well in separating different disease classes. As will be seen in

Chapter 5, these features also turn out to be physiologically rooted.

U 3.1 Preparing the Dataset

Since in supervised learning, we first start with a labeled training set and aim to sub-

sequently classify an unlabeled test set, the relative sizes of the two sets will impact

classifier performance. Various training and test set partitions have been used in the

literature. In the process displayed in Figure 3.2, a learning algorithm is applied to

develop a classifier using a training set. The classifier is then implemented to label a

24
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Training Set

1 Yes Large 125K No
2 No Medium 1OOK No
3 No Small 70K No
4 Yes Medium 120K No
5 No Large 95K Yes
6 No Medium 60K No
7 Yes Large 220K No
8 No Small 85K Yes
9 No Medium 75K No
10 No Small 90K Yes

Test Set

11 No Smal 55K ?
12 Yes Medium 80K ?
13 Yes Large 110K ?
14 No Small 95K ?
1151 No Large 67K I

Figure 3.2. Supervised learning conducted on
from [29].

L

400Deduction

a training set that is larger than the test set. Adapted

smaller test set.

Generally, the training set will comprise many more data samples than the test

set. A 70%/30% partition is used in Chapter 6 for our classification experiments. In

order to avoid overfitting during the supervised learning process, it is helpful to maintain

a diverse test set containing a broadly representative sample of the data.

[14].

used

used

The test set size is often chosen to be inversely proportional to classifier accuracy

Occasionally, a single test set is treated as a "holdout" set that is kept aside and

only for error estimation. In other settings, a validation set is also formed and

to choose which model will be implemented.

Sec. 3.1. Preparing the Dataset 25



26 CHAPTER 3. APPROACHES TO FEATURE-BASED CLASSIFICATION

N 3.2 Supervised Learning Methods

Many techniques have been developed to tackle the problem of supervised learning.

Common methods include classifiers such as decision trees, probabilistic graphical mod-

els, k-nearest neighbors, discriminant analysis, and support vector machines.

" Tree-based methods: Decision trees sequentially divide the data based on fea-

ture values. At each node in the tree, the dataset is split based on a given feature.

Thus, the features that best classify the data will be placed at the root of the

tree. Trees can be quickly implemented and are easily understood, but they tend

to overfit the data.

" Bayesian networks: Probabilistic graphical models like Bayesian networks use

graphs to represent probabilistic influences among events. These types of directed

graphical models are frequently used to identify signaling pathways and in fault

diagnosis [5,35].

" Clustering methods: Techniques such as the k-nearest neighbor algorithm

assume that like data will be proximal in feature space and classify unlabeled test

points based on which labeled training points are the closest neighbors in feature

space. These methods perform surprisingly well, but they tend to demand large

datasets.

" Discriminant analysis: Discriminant analysis methods take into account a

prior probability distribution on the dataset and map the data to lower dimensions

in feature space to select the classifier that maximizes interclass variance and

minimizes interclass variance. The technique is straightforward and works even on

small datasets.
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* Kernel-based methods: Support vector machines (SVMs) search for the op-

timal hyperplane that will maximize the margin between classes of the dataset.

Although this optimal boundary may sometimes be linear, kernel functions allow

for nonlinear feature combinations [26]. Kernel-based methods can produce strong

classifiers, but can also demand large training sets and prove to be computationally

intensive.

Many classification methods exist, and different problems demand different learn-

ing techniques. Rule-based learners such as decision trees tend to work best with dis-

crete feature values [21]. For continuous features, such as those extracted during capno-

gram classification, the robust classification options are narrowed down to k-nearest

neighbors, discriminant analysis, or kernel-based techniques.

We opt to implement discriminant analysis methods and describe more about the

technique in Chapter 4. Alternatives such as kernel-based techniques typically require a

very large dataset in order to produce reliable classification. As will be seen in Chapter

6, discriminant analysis proves to be a suitable method in the context of our supervised

learning problem given that the dataset is relatively small and is well-described by a

small number of features.
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Chapter 4

Discriminant Analysis Methods

D ISCRIMINANT analysis is unlike more modern methods of classification, such as

support vector machines, in that it is very straightforward and performs well

on small datasets, as mentioned in Chapter 3. Many challenging supervised learning

problems in genomics and imaging still implement discriminant analysis methods.

In particular, we focus on the subtopic of quadratic discriminant analysis, which

will be implemented in Chapter 6. Quadratic discriminants result from an extension

of linear discriminant analysis. They allow for quadratic combinations of features and

yield more robust classification schemes than linear discriminants.

* 4.1 Linear Discriminant Analysis

First proposed by Ronald Fisher in 1936 for use in taxonomic classification, linear

discriminant analysis (LDA) projects high-dimensional data to one dimension in feature

space [33]. Given a particular feature space, an initial task is choosing the projection

vector. Data are projected onto this vector for subsequent classification. Figure 4.1

displays two different projection vectors for the same dataset. There exist both good

and bad projection vectors, as some vectors allow the data to be readily separable while

others are not helpful in classification of the presented datasets.
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Figure 4.1. Data projected to a poorly chosen vector (left) and a more appropriate vector (right).

After selecting an appropriate projection vector, the next step is to decide where

to bisect the vector and effectively create a separating plane. Figure 4.2 shows thresholds

corresponding to the two projection vectors shown in Figure 4.1. The first projection

vector produces poor classification while the second performs well.
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Figure 4.2. Thresholds bisecting the poor-performing vector (left) and the appropriate vector (right).

Occasionally, datasets are not separated well by a linear boundary, but do much

better when a quadratic boundary is used. Figure 4.3 shows a dataset partitioned by
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a linear separator and a quadratic separator. In this case, using a form of discriminant

analysis more elaborate than LDA, namely quadratic discriminant analysis (QDA),

yields better performance.

I All A AA A

AA

I I

0. 1 1 3 3 40 1 Ii E (.)3 3 4
Femb",* ,3 E Ouh. en Cn(s) Fersh, 1,e..Exh~i " sn m(s)

Figure 4.3. Data are separated poorly with a linear boundary (left) and much better with a quadratic
separator (right).

U 4.2 Diagonal Quadratic Discriminant Analysis

In conducting QDA, a multivariate normal distribution is assumed. The training phase

involves estimating the means and covariance matrices of each class in the training

set. If the features are relatively uncorrelated within each class, then a more robust

classification is obtained by constraining the covariance matrix estimates to be diagonal.

Say we have three features and two classes. Let us first compute the means of

each training set. Mean p1' corresponds to training data from class C1 and mean p12 is

computed from class C2's training samples.

= l1,Featurel 11,Feature2 l1,Feature3 (4.1)
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and

2 /12,Featurel P12,Feature2 P2,Feature3 ' (4.2)

We next compute standard deviation vectors. Let vector ai represent the stan-

dard deviation of the training data from the first class, C1, and 2 be the standard

deviation of the training data from the second class, C2. Then

o1 = [ 1,Featurel U1,Feature2 U1,Feature3 (4.3)

and

2 2,Featurel 2,Feature2 ~2,Feature3 ] (4.4)

The diagonal covariance matrices E1 and E2 can be expressed as

2
Uf- Ci

29 1

2

2
Uf-

(4.5)

C 2

where f represents the feature space dimension. Denote the feature vector of a typical

data point in the test set by the row vector X'. In the case of three features, we have

2(Ti

29 2
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37= XFeat 1 XFeat 2 XFeat3 ] (4.6)

We describe the class-conditional density, p(&lCk), of a given sample zF using a

multivariate normal distribution. Then we compute a ratio similar to the log-likelihood

ratio, but also containing the class priors, p(Ck) [2]. This ratio is used as a test to

determine whether the sample is a member of one class or another. For each class, Ck

(with k = 1, 2),

1 1 1 - - ,
P( k) (2r) | ex 2

(4.7)

The modified log-likelihood ratio then becomes

In p(PIC1)p(Ci)
p(zIC 2 )p(C 2 )

P(c1) 
-iz - ~)T }

_ (2 7 ) 4 ert1x17

p(C 2 ) --

(27r)f IE 212 x 2X A2 2 X P

=In P(C) 1 12| I 11((
p(C2) 1 2 |E1| 2 { M 1  ) P X A2 2 X )A2

=zW zT + 222 + wo

(4.8)

where

1
W = ( 2 (4.9)
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2o= (P22 P2' - pI IP~1) + Zn I1 + In P(C1)
+111E| p(C2) (411

The decision boundary described in Equation 4.8 describes a quadratic decision surface

of the form:

K + YL + !QiT < 0 (4.12)

When the argument takes a value greater than 0, sample 7 is labeled as a member

of C1. If the argument is less than 0 for a given 7, that 7 is labeled a member of C2.

Because this discriminant compares posterior densities in order to classify a sample, it

looks very much like a maximum a posteriori (MAP) estimator.

MAP estimators typically use the ratio presented in Equation 4.8 in order to

determine an unknown 7 [10]. Our application is a bit different in that we know the

location of test samples 7 in feature space and are estimating which class membership is

most likely. The resulting decision boundary has coefficients K, L, and Q, corresponding

to constant, linear, and quadratic terms, respectively. The constant coefficient, K, is a

scalar and is expressed as:

34 CHAPTER 4. DISCRIMINANT ANALYSIS METHODS



Sec. 4.2. Diagonal Quadratic Discriminant Analysis 35

K = -1 1

2 1~ 2,Feat i 1 2,Feat i . 51,Feat i P-1,Feat i

+ In U2,Feat i - in U1,Feat i

L, the linear coefficient, is represented by a column vector:

1 1
uiFeat 1 I1,Feat 1 2 ,Feat 1 12, Feat 1

L 2 - 2
1,Feat 21 2,Feat 202 2 Feat 2

1 - - - - 1

S ,Feat 3AM1,Feat 3 \ 2,Feat 3 P2,Feat 3

Finally, the quadratic coefficient, Q, is a diagonal matrix:

(4.13)

(4.14)

( 1 1
1,Feat 1 02,Feat 1

Q =0

0

(2112
1,Feat 2

0

- I21
U2,Feat 2

0

0

0 , (4.15)

2( 1 - 1
1,ea 3 2Feat 3/

resulting in the separator from Equation 4.12.

Figure 4.4 shows such a quadratic classification boundary in three dimensions.

Quadratic combinations of the three features are considered, but because our analysis

considers a diagonal quadratic classifier, there are no cross-terms and, where x repre-

sents Feature 1, y is Feature 2, and z is Feature 3, the surface will take the form:

35Sec. 4.2. Diagonal Quadratic Discriminant Analysis
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Figure 4.4. A quadratic separator with 3 features.

O = K + Lx + L2y + Lz + Qix 2 + Q2y 2 + Q3z 2  (4.16)

Individual exhalations falling on one side of the separator will be classified as one

class, while exhalations falling on the other side will be considered as members of the

other patient class.

In Figure 4.5, we see a quadratic separator projected into 2 dimensions. Here there

are only two features considered in classification, and the separator does a reasonable job

distinguishing between the two patient classes when deciding on individual exhalations.

Discriminant analysis, although an old method for classification, holds up well

with small datasets and is useful in classifying individual exhalations of the capnogram.
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Figure 4.5. Quadratic separator with 2 features.

The next chapter describes how to extract features from these individual exhalations.

In Chapter 6, subsequent voting methods will be outlined that combine the verdicts

of several classifiers created using quadratic discriminant analysis. In this way, even if

one classifier is not performing well individually, the ensemble of various classifiers can

exhibit boosted accuracy.

V
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Chapter 5

From Time Series to Feature Space

B OTH pre-processing and feature extraction are performed to prepare the data

for discriminant analysis and later consideration. Toward the goal of robustly

detecting outlier exhalations and excluding them from consideration, a template exhala-

tion of each record is constructed. This template also proves useful in visual inspection

of the capnogram and could be used as an alternative way to examine records, instead

of the conventional waveform strip.

Time-series capnographic data of varying morphologies are shown in Figure 5.1.

It can be seen that capnogram shapes vary greatly from class to class. This fact is useful

in later classification of capnograms by disorder. In order to implement feature-based

classification, distinct features must be formulated and extracted.

Features formulated during curve-fitting and those rooted in physiology are con-

sidered when extracting features from the capnogram. Curve-fitting features include

parameters that correspond to fitting the capnogram with exponential curves. More

relevantly, physiological features directly relate to the respiratory system and are also

useful in classification. These include exhalation duration, ETCO2 levels, and end-

exhalation slope.

39
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Figure 5.1. Capnograms from various patient classes, including restrictive disease (CHF), obstructive
disease (Asthma, COPD), and Normal.

E 5.1 Capnogram Pre-processing

In preparing capnograms for classification, exhalations must be quantified. Accurately

detecting the beginning and end of exhalation is crucial to the robustness of subsequent

analyses. After exhalation detection, a composite view is formulated in which capno-

grams are described by a single exemplary exhalation. This template is then used to

judge exhalations and determine which should be excluded from analysis.
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U 5.1.1 Exhalation Detection

Specifying the start and stop of exhalation is essential to processing a capnogram sig-

nal. Although prior studies have used more complex schemes such as artificial neural

networks for breath detection, looking for a slope change from negative to positive

at the beginning of exhalation and from positive to negative at the end of exhalation

seems to mark breaths reasonably well. Figure 5.2 displays the capnogram and detected

exhalations.
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Figure 5.2. Using slope changes to indicate the start and stop of exhalations. The capnogram is
shown in blue, and detected exhalation segments are marked in green.

When attempting to detect exhalations with the slope change method, challenges

include sections of breathing that oscillate or change slope outside of the start and stop

of exhalation. These occurrences can be quite frequent and are mitigated by imposing

[C0 2 ] thresholds on what constitutes the beginning and the end of an exhalation.
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* 5.1.2 Template View

Capnograms are most commonly viewed as a waveform strip on a long time-axis. Ex-

amining records that are 20-30 minutes long in this fashion can be a daunting task.

To facilitate the viewing of the capnogram, a template view presents an alternative to

the ordinary sequential waveform view of the capnogram signal. Breaths from a single

record are overlaid over the duration of the longest exhalation in the record.

To do this, the exhalations are anchored at some fixed value of PeCO 2 , the partial

pressure of carbon dioxide in the exhalate; we chose 15 mmHg. Thus, all exhalations

cross 15 mmHg at the same time in the template view. This anchoring is shown in Figure

5.3. In this way, more of a composite breath is seen and the eye is not thrown off by

outlier breaths as much as when viewing the time-based capnogram in the ordinary

way.

Obstrictive Record 25: FCTR 100811150152 1
35-

30 -

25

~20-

15 -

10 -

5 -

0 0.5 1 1.5 Tm s 2 2.5 3 35
Time (s)

Figure 5.3. Anchoring all exhalations of a single record at a PeCO 2 of 15 mmHg.

Then, the average exhalation is computed. This is done by taking the mean

PeCO 2 at every time sample in the overlaid exhalations. The average exhalation can be
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thought of as a composite breath that is representative of the record as a whole. Rather

than paying too much attention to outlier exhalations, the composite exhalation, shown

in Figure 5.4, allows for quick viewing of each record.

Obstrictive Record 25: FCTR_100811_150152_1
35-
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E
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00 0 5 1 1.5 Tie()2 2.5 3 3.5
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Figure 5.4. Computing the template as the average exhalation.

Toward the goal of cropping outlier breaths, the standard deviation from the

average exhalation, or template, is computed. At each sample in the exhalation, the

standard deviation bars can be seen in Figure 5.5.

Again, the template view proves very useful in that a general, or exemplary,

exhalation can be seen when all the exhalations from a single record are overlaid. Figure

5.6 displays one obstructive disease record in the template view. All the exhalations

are plotted, with the average or template exhalation highlighted. Since most of the

exhalations cluster around a 2.5-second duration, it is easy for the eye to discard the

several outlier exhalations when examining the general trend of the record.

In classification quizzes administered to a knowledgeable physician and two biomed-

ical researchers first with the standard view and then later with the template view, the

template seemed to be the preferred way to view the capnogram. The quiz setup in-
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E
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Obstrictive Record 25: FCTR_100811 150152_1

Time (s)
3.5

Figure 5.5. Computing the standard deviation of the template exhalation.

Waveform View Template View

Average Performance 70.4% 77.8%

Table 5.1. Quiz performance on 9 records from CHF, COPD, and Normal classes.

volved nine records being presented to evaluators familiar with capnogram analysis.

Quiz records were either CHF, COPD, or Normal. The evaluators classified each of the

records as one of these types and, as shown in Table 5.1, performed nearly 10% better

when presented with the template view.

Sample CHF, COPD, and Normal records are shown in Figures 5.7, 5.8, and

5.9. To readily see the distinctions among different disease states, records are shown in

template view. Note the generally shorter exhalation duration and smaller ETCO2 of

the CHF capnograms, the longer duration and larger ETCO2 of the COPD capnograms,

and the moderate appearance of the Normal capnograms. Viewing the templates in this
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Figure 5.6. Template view of an obstructive capnogram. The curved shape is seen, and the template
exhalation is shown in red.

way presents a clearer picture of the distinctions among different classes.

In an even more condensed presentation, Figure 5.10 shows all quiz records over-

laid by class. One can readily pick out the waveform differences and see the rounded

shape of the obstructive capnograms, the compact and shortened form of the CHF

records, and the moderate, almost rectangular, morphology of the Normal set. The

template view provides one way to better view the capnogram.

The canonical capnogram waveform view is informative, but can be overwhelming

when examining long records. By distilling capnogram information to just a single

template, humans seem to perform better during classification and perceive a more

accurate representation of the general waveform trend.
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Figure 5.7. CHF templates.
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Figure 5.8. COPD templates.
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Figure 5.10. Template views of pathologic and normal capnograms.

M 5.1.3 Discarding Outlier Exhalations

To further eliminate the effect of outlier exhalations, atypical breaths must occasionally

be dropped from consideration. In order to complete the cropping process, the capno-

gram template is used as an exemplary breath. Exhalations that deviate significantly

from the template are then excluded from analysis and classification.
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Figure 5.11. Normal record in which two breaths are excluded.

Figure 5.11 shows a Normal record in which only two outlier exhalations are

detected. Displaying an even more consistent record, Figure 5.12 shows a Normal record

in which every exhalation matched the template well and none were recommended for

exclusion.

In practice, not very many exhalations are excluded from each record. Since

pathologic exhalations tend to be more disordered and irregular, more outliers tend

to occur in those records. Normal records, though, are generally more consistent and

require less exhalations to be cropped.

Exhalation exclusion criteria include exhibiting a standard deviation from the

template above a certain threshold. Additionally, if ETCO2 or exhalation duration

deviates greatly from the record mean, the exhalation will be deemed an outlier.
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Figure 5.12. Normal record in which no breaths are excluded.

To better see the differences among detected exhalations, templates, and excluded

exhalations in different classes, Figure 5.13 shows brief 30-second waveform strips from

each of the patient classes considered. Exhalations that are kept in consideration seem

to line up fairly well with the template exhalation, while those that are cropped deviate

significantly.

Excluding atypical exhalations is an important part of preparing the waveform

for feature extraction and further analysis. Outlier breaths can significantly impair the

performance of classifiers if not cropped from consideration. The template formulation

proves useful here in determining which breaths to crop and which exhalations to keep.
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Figure 5.13. Waveform strips from normal and abnormal capnograms. Detected exhalations (green)
are overlaid with the record's template exhalation (black) and outlier exhalations are displayed in red.

* 5.2 Feature Extraction

Both analytic features and features that directly correspond to lung health are extracted

from the capnogram. The first type of feature corresponds to parameters found during

analytic curve fitting of the capnogram. Other features link directly to physiology

and are extracted from the waveform by computing straightforward metrics such as

duration, height, and slope of the capnogram.
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* 5.2.1 Curve Fitting Parameters

Our initial exploration with the respiratory waveform dataset involved examination of

the upward exhalation slopes. Changes in lung dynamics will mostly affect the second

and third capnogram phases, corresponding to the rise of [CO 2 ] during exhalation. By

further examining expiratory rise behavior, much can be inferred about internal lung

function. After exhalation rises around a semi-arbitrarily chosen point that they all

cross, in this case [CO 2] = 15mmHg, the average rises of four different patients, one

from each class, can be compared, as shown in Figure 5.14.
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Figure 5.14. Analyzing the exhalation upslope.

Variance in the predicted exhalation time constants for different disease states

is already evident in the expiratory rise diagram. Restrictive lung disease, expected

to have a shorter time constant, rises very quickly during exhalation. The obstructive

diseases, COPD and asthma, exhibit rise morphologies that lie on the other side of the
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normal rise. These disease states were predicted to exhibit a longer time constant and

indeed rise more slowly to ETCO2 . The expiratory rise plot is encouraging in that it

shows good agreement with the predicted time constants.

First-order systems are often characterized by exponential transients. In an effort

to identify a straightforward way of fitting the training data, an exponential rising to

a final value of ETCO2 was formulated. The time constant r appears as the only

unknown in this model:

[C0 2](t) = ETCO2 (1 - e7) (5.1)

Rearranging Equation 5.1 and taking logarithms allows for linear least squares

fitting to find a suitable r value. However, in performing this linear least squares fitting

of expiratory rises, the lines obtained do not cross through the origin:

[CO2(t) -t
ln 1 - [C=2 - - + b (5.2)

ETCO2  T

Stated differently, there exists a non-zero y-intercept in the model. This y-intercept,

termed b, shows up in the exponential model as an additional constant A. The value

of A is unknown, meaning that the resulting exponential model contains two unknown

values:

[C0 2)(t) = ETCO2(1 - Ae 9 ) (5.3)

Preliminary fits of this model performed very well even with the two unknowns.

In order to perform the fits, expiratory rises were first detected and extracted from the

time-series data. Rises were detected by monitoring changes in the sign of the slope
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of the waveform. Once rises were extracted, each of three adjacent rises was fitted to

the model. Thus, each rise was assigned its own A value and r value. These values

were then averaged to achieve the mean rise parameters. Averaged parameter values

constituting the mean rise were then used to plot the resulting exponential fits, which

matched the data surprisingly well.

Original Rises, CHF Patient A

10050

Same Mean Fit Parameters on Different Rises, CHF Patient A

E
o"
1

Same Mean Fit Parameters on More Riess, CHF Patient A
X W0

1.76 1.78 1.8 1.82
Samb x10

Figure 5.15. Fitting the 2-parameter model (red) to CHF data (blue).

In order to see if the results could be replicated on more data, the same mean fit

parameters were used to identify exponentials for more expiratory rises from the same

patient. This time, the exponentials still fit the data well. Testing on even more rises

also revealed good agreement. During a more stringent test, the same exact mean A

and r parameters as found in the original three expiratory rises evaluated were found

to also fit the rises of different patients within the same disease class extremely well.

These were surprising results that revealed the robustness of the fit and showed that
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there may be physiological validity to the model.

The two-parameter model fit all the tested pathological disorders fairly well. New

A and T parameters were identified for each disorder and were found to match up

consistently with the data. However, the fits were not as good with data from normal

subjects.
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Figure 5.16. Pathologic data (blue) is fitted with the 2-parameter model (red).
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Figure 5.17. Attempting to fit the 2-parameter model to Normal data.
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The above result prompted the search for a new model to used for normal subjects.

There was some behavior in the two-parameter model indicating that it may not be

the best choice. For instance, in the cases where exhalation corresponded to a long,

continued effort, the terminal value of the expiration may not be accurately reflected

by the ETCO2 detected. Perhaps such exponentials would continue to rise if inhalation

were not to bring [CO 2 ] down quickly. The ETCO2 value then simply represents the

[CO 2] value that occurs at some time tE. The new model takes the form of a different-

looking exponential, now with T as the only unknown:

[CO2] (t) = ET CO2 _E(5.4)

This new model with only one unknown can no longer be rearranged into a form that

allows linear least squares fitting. Thus, a line search was conducted to find the value

of T that would minimize the squared difference between the data and model values.

The 1-parameter model exhibited a uniformly higher mean squared error across

all disease states. Normal records, however, always showed smaller error with the 1-

parameter model. This result allows for quick separation of normal states from patho-

logic disease states.

* 5.2.2 Physiological Features

Physiological features are characteristics of the waveform that directly correlate to phys-

iological processes. Features such as respiratory rate, exhalation duration, ETCO2 , and

end-exhalation slope are rooted in respiratory function. Besides being more understand-

able and easier to link to physiologic function, these features are also straightforward

to extract from the waveform.
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Exhalation duration is measured from the onset of exhalation, the time at which

the capnogram slope becomes positive, until the last time at which [C0 2] is recorded on

the exhalation (yielding ETCO2 ). The measurement is depicted in Figure 5.18. Patients

with restrictive lung disease tend to exhibit shorter exhalation durations while those

with obstructive disease have longer exhalations as they attempt to forcibly exhale air

from the lungs against an obstruction.

Exhalation Duration
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Figure 5.18. Measuring the first physiological feature, exhalation duration.

A second important physiological feature, shown in Figure 5.19, represents ETCO2 ,

the terminal value of the capnogram on exhalation. This value is captured just before

the signal begins decreasing and is labeled as the ETCO2 value. This quantity is highly

correlated with respiratory health. Obstructive disease patients are generally seen to

exhibit high ETCO 2 values, reflecting high arterial [C0 2 ], as they do not satisfactorily

expel carbon dioxide during exhalation. On the other hand, restrictive lung disease

results in decreased ETCO2 levels since perfusion of carbon dioxide into the alveoli is

impaired.

End-exhalation slope, seen in Figure 5.20, represents the third feature that we
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Figure 5.19. The second physiological feature, ETCO 2.

shall use, not so much because of its physiological significance as because of its promi-

nence as a distinctive feature of COPD. In order to extract the end-exhalation slope, a

linear regression is implemented over the last fifth of the capnogram exhalation. The

End-exhalation Slope
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Figure 5.20. End-exhalation slope, the third feature used in our analysis.
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slope of this tangent is then taken as the end-exhalation slope. Because normal breath-

ing results in a relatively flat alveolar plateau and obstructive disease yields a more

rounded shape, the end-exhalation slope feature is especially useful in distinguishing

obstructive from normal exhalations.

In summary, several steps are necessary in the pre-processing of capnographic

data. First, properly detecting exhalations is essential to accurately analyzing the

waveforms. Formulating a record template is helpful in both viewing the record in a

composite manner and in developing a normal standard for later exclusion of outlier

exhalations. Cropping outlier breaths is important to clean the capnogram data before

feature extraction. By considering a few important features, including those corre-

sponding to curve analysis and those connected directly to lung physiology, we expect

the classification process to prove robust.



Chapter 6

Classification Results

O U R classification process involves several steps. First, we examine the dataset

and what types of patient records it contains. We then describe the partitioning

of the dataset into training and test sets, each comprising a small number of succes-

sive breaths from different patients. Several quadratic discriminators are then trained

implementing the three physiologic features highlighted in Chapter 5, using different

training set partitions. Two levels of voting are now employed to classify each record

in the test set. For each discriminator, the individual exhalation classifications vote on

the preliminary classification of their corresponding test record. The various classifier

verdicts then vote on the final record classification. Subsequent analyses show classifi-

cation sensitivity and specificity while varying the number of exhalation votes required

for classification on each test record. We also examine the effect of varying the size of

the training set.

* 6.1 Dataset

The dataset comprises records from 128 patients having CHF, COPD, or diagnosed as

Normal. Records originate from both Albert Einstein Medical Center (Philadelphia,

PA), and Brigham and Women's Hospital (Boston, MA). Severity metrics are only
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Class # Patient Records

CHF 31
COPD 33
Normal 64

Table 6.1. Dataset distribution.

known for the CHF patients from Albert Einstein. Table 6.1 displays the number of

patients in each category.

Although patients are lumped into the three general categories of CHF, COPD,-

or Normal, not all patients in the pathologic classes exhibit the same severity level.

Indeed, in the case of CHF, for which most records have a physician-assigned severity

score, the majority of patients exhibit moderate severity. Figure 6.1 summarizes the

CHF severity spectrum in histogram form. There are a total of 30 patient records

20
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Figure 6.1. Severity levels of CHF patients in the dataset. Most patients lie in the moderate category.
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depicted in Figure 6.1 since one CHF record did not have an associated severity score.

Selecting the proportions of the training set and test set is another considera-

tion. Roughly a 70%/30% training/test partition is used. Table 6.2 provides the record

numbers in each partition. In this experiment, our classification algorithm takes into

account 35 exhalations from each patient record. Short records containing less than

35 exhalations are removed from consideration during training and test. For this rea-

son, not all patient records in the dataset are members of the training and test sets

summarized in Table 6.2.

Training Set Size (Records) Test Set Size (Records)

Normal vs. {CHF, COPD} 67 30

CHF vs. COPD 44 20

Table 6.2. Dataset partition when considering 35 exhalations from each patient record.

M 6.2 Voting Schema

To help improve the performance of the classifiers produced by quadratic discriminant

analysis, two levels of voting are performed. This is similar in many ways to boosting,

the method of creating combined classifiers from several base classifiers by means of

voting [27].

Specifically, the two levels of voting employed in this process are the following:

9 The classifications of the individual exhalations by a given classifier are taken as

individual votes on the eventual classification of the record. The proportion of

votes needed for a classification in one direction or the other may be varied.
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Figure 6.2. Voting schema, illustrated for the case of Normal vs. {CHF, COPD} discrimination.

9 Each classifier votes on the final label of a record.

Figure 6.2 summarizes the voting process to determine final record classifications.

Base classifiers are trained on different partitions of the training set. Each partition is

a training subset comprising roughly 70% of the patient records in the full training set.
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E 6.3 Results

After proceeding through two stages of classification, {Normal vs. {CHF, COPD}} and

{CHF vs. COPD}, results are reported for both. The tasks are certainly not of equal

difficulty.

0.9-P

0.8-

0.7

0.e -

0

I~ I
0 0.1 0.2 0.3 0OA 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

Figure 6.3. ROC Curves obtained testing on 35 exhalations from each record. The threshold is varied
from 0 to 35 exhalations to reach a record verdict.

The ROC curves in Figure 6.3 display the true positive rate vs. the false pos-

itive rate over a variety of thresholds. In Normal vs. {CHF, COPD} classification,

classifying a record as Normal represents a positive detection. During CHF vs. COPD

classification, a CHF classification is considered a positive detection. The threshold
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A UC

Normal vs. {CHF, COPD} 0.85
CHF vs. COPD 0.88

Table 6.3. Area under the curves.

varied is the number of exhalations (out of the 35 total) required to reach a verdict on

the classification of a given record, for a given classifier. When this threshold is low,

sensitivity is increased as almost all positive instances of records are detected. As the

threshold is raised, less positive instances are detected, but the specificity is increased.

Area under the curve (AUC) is a typical way to evaluate the ROC curve's quality

[3]. A perfect classifier has an AUC of 1, while a coin-flip random classifier has an

AUC of 0.5. Table 6.3 shows the area under both displayed ROC curves. The {CHF vs.

COPD} classifier appears to perform slightly better than {Normal vs. {CHF, COPD}}.

Of course, a single threshold value must be exported as the final classifier. A

threshold of 15 exhalations is used in the subsequent test investigating detection sensi-

tivity as a function of the number of exhalations considered from each record.

In plotting the ROC curves of Figure 6.3, 35 exhalations from each patient record

were used. However, decreasing the number of breaths necessary would improve capnog-

raphy's effectiveness as a short-term monitor. For patients affected with CHF, this sort

of short-term monitoring is frequently not available [6]. Toward this end, we evalu-

ated the sensitivity as a function of the number of exhalations considered during both

training and test.

Figure 6.4 shows that as the number of exhalations increases, so does the sensi-

tivity. In order to achieve good performance, it appears that more than 25 exhalations

should be employed. Because the threshold for a positive instance is 15 breaths, con-
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sidering a number of exhalations less than 15 does not make sense. As the number

of exhalations considered from each record varies, the training and test set sizes also

shifts slightly. When 35 exhalations are considered from each record, the dataset is

partitioned as in Table 6.2. Moving to 40 exhalations, only dataset records containing

at least 40 exhalations were placed in the training and test sets. Similarly, when 20

exhalations from each record were considered, all dataset records containing 20 exha-

lations or more were used during training and test. This variation in the training and

test set sizes may also alter classification performance.

A related question is how many records must be present in the training set to

1_ -

0,67- 9 1

C

0.4 -

(.3 -

(.2 -

-Normal vs. (CHF, COPD)
--- CHF vs. COPD

0.1 -

15 2D 25 30 35 40

# Exhalations

Figure 6.4. Sensitivity attained when training on a different number of exhalations per record.
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yield good performance, i.e. how much data is needed to produce good classification.

To investigate this, we determine the sensitivity as a function of training set size. The

number of exhalations considered is set to 35 per record and the threshold for a positive

verdict to 15 exhalations. For the Normal vs. {CHF, COPD} classification, the test

set size is kept at 30 records, while a test set size of 20 records is used for CHF vs.

COPD classification. Results of this examination are summarized in Figure 6.5. The

sensitivity appears to increase with the size of the training set. {Normal vs. {CHF,

COPD}} classification appears to be more insensitive to changes in the training set

0.6- -

J.I

0.6-

0.5-

10 15 20 25 30 35 40

Training Set Size (patients)

Figure 6.5. Sensitivity attained
breaths positive.

when training on different record sizes. Using a threshold of 15
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size.

* 6.4 Misclassified Records

Although the outlined classification process performs well, it is not perfect, and some

patient records are misclassified. We would like to determine whether we are at least

correctly classifying the most severe of cases. If our classification is robust, the severest

of CHF records with a score of 3 should be properly classified. We expect misclassified

records to exhibit a lower severity and lie closer to the decision boundary. In order to

COPD waveform misclassified as CHF
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Figure 6.6. Misclassified COPD waveform.
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isolate the worst offenders, or those records that continue to be misclassified even as the

threshold for a positive instance is increased, we increase the positive verdict threshold

to 30 exhalations and observe which records are still misclassified.

When a threshold of 30 exhalations is used for Normal vs. {CHF, COPD} clas-

sification, the one CHF waveform misclassified as Normal is of moderate severity. It is

not severe. This is encouraging in that none of the severest CHF cases are misclassified.

Of the 2 COPD waveforms misclassified as CHF during CHF vs. COPD classifi-

cation with a threshold of 30 exhalations to be classified as CHF, one is shown in Figure

CHF waveform misclassified as COPD
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20

10

60 65 70 75
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s0 85 90

Figure 6.7. Misclassified CHF waveform.
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6.6. Although no physician-assigned severity score is available for the COPD records, it

can be seen that the waveform does not prominently display the characteristic shark's

fin COPD morphology or the higher ETCO2 values. In fact, the misclassified capno-

gram's features, such as low ETCO2 , short exhalation duration, and flat end-exhalation

slope, much more closely resemble a CHF waveform. This COPD waveform is quite

likely to be misclassified by a clinician as well.

The only CHF waveform misclassified as COPD in CHF vs. COPD classification

using the same threshold has a severity level of 1 (mild). Its waveform is plotted in

Figure 6.7. As can be seen, it exhibits the morphology and features more typical of a

COPD waveform.

In summary, classification via discriminant analysis was performed on a dataset

of patients exhibiting either restrictive, obstructive, or healthy capnograms. Patient

records were classified by disease, and classifiers were trained on roughly 70% of the

dataset. A number of different classifiers were trained on individual exhalations and

then allowed to vote on the final outcome of the record. This method of classification

and boosting performs reasonably well and further confirms capnography's potential as

a diagnostic tool.
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Chapter 7

Conclusions

M ATHEMATICAL capnogram analysis exhibits potential for distinguishing lung

disease states based on objective measures. Toward the goal of separating

obstructive from restrictive lung disease records, training datasets have been examined

to assess the general behavior of the capnographic time series. Preliminary tests indicate

reasonable performance of the models already developed.

In analyzing a dataset containing capnograms from CHF, COPD, and Normal

patients, a new method of quantitatively characterizing the capnogram is proposed in

the hopes of improving respiratory diagnostics and better quantifying the change in

lung parameters during disease conditions. Voting methods are implemented on top of

discriminant analysis in order to boost classification performance.

The small size of the dataset hampers classification performance and feature anal-

ysis. In the future, more pathologic data will be collected and will hopefully lead to bet-

ter classification performance. Successful discriminant analysis classification schemes

employ many more records and many more features. In extending to other disease

states, semi-supervised techniques may prove useful in learning the patterns of previ-

ously untrained classes such as asthma, cystic fibrosis, or pneumonia.

Another future goal would be to describe parameters of the lung, such as compli-
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Figure 7.1. Possible future descriptive capnography interface, including information about respiratory
resistance, compliance, oxygenation, and CO 2 content [31].

ance and airway resistance, in a very specific way via capnography. These quantitative

descriptors would lend an even more complete assessment of lung state and would allow

clinicians to view more information than a single disease classification with a confidence

interval. An example of a dashboard view of lung parameters that could be developed

is shown in Figure 7.1. Reporting such information would necessarily involve more

modeling of the lung to understand how respiratory parameter values are modified by

disease.

Future modeling efforts could thus focus on learning new classification techniques

based on statistical prediction methods and on how physical lung parameters change

during disease. Acquiring more data will undoubtedly allow for better capnogram

characterization and classification. Progress with the various records already tested

has been encouraging. Capnographic monitoring harbors the potential to become a

useful diagnostic tool in the assessment of lung disease.

72 CHAPTER 7. CONCLUSIONS



Bibliography

[1] T. Ahrens and C. Sona. Capnography application in acute and critical care. A A CN

Clinical Issues, 14(2):123 - 132, 2003.

[2] C. Bishop. Pattern Recognition And Machine Learning. Information Science and

Statistics. Springer, 2006.

[3] A. P. Bradley. The use of the area under the roc curve in the evaluation of machine

learning algorithms. Pattern Recognition, 30(7):1145 - 1159, 1997.

[4] L. H. Brown, J. E. Gough, and R. H. Seim. Can quantitative capnometry dif-

ferentiate between cardiac and obstructive causes of respiratory distress? Chest,

113(2):323 - 326, 1998.

[5] J. Cheng and R. Greiner. Comparing bayesian network classifiers. pages 101 - 108,

1999.

[6] V. Cheng, R. Kazanagra, A. Garcia, L. Lenert, P. Krishnaswamy, N. Gardetto,

P. Clopton, and A. Maisel. A rapid bedside test for b-type peptide predicts treat-

ment outcomes in patients admitted for decompensated heart failure: a pilot study.

Journal of the American College of Cardiology, 37(2):386 - 391, 2001.

[7] A. B. Chilton and R. W. Stacy. A mathematical analysis of carbon dioxide respi-

ration in man. Developmental neurobiology, 14(1):1 - 18, 1952.

73



74 BIBLIOGRAPHY

[8] P. Clyburn and M. Rosen. Accidental oesophageal intubation. British Journal of

Anaesthesia, 73(1):55 - 63, 1994.

[9] L. Costanzo. Physiology. Costanzo Physiology. Saunders/Elsevier, 2010.

[10] J. Crassidis and J. Junkins. Optimal Estimation of Dynamic Systems. Chapman

& Hall/CRC Applied Mathematics & Nonlinear Science. Taylor & Francis, 2011.

[11] M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis,

1(14):131 - 156, 1997.

[12] J. D'Mello and M. Butani. Capnography. Indian Journal of Anasthesia, 46(4):269

- 278, 2002.

[13] A. C. Dornhorst, S. J. G. Semple, and I. M. Young. Automatic fractional analysis

of expired air as a clinical test. Lancet, 1(6756):370 - 372, 1953.

[14] I. Guyon, J. Makhoul, R. Schwartz, and V. Vapnik. What size test set gives good

error rate estimates? In IEEE Trans PAMI, pages 52 - 64, 1996.

[15] B. I. Hoffbrand. The expiratory capnogram: a measure of ventilation-perfusion

inequalities. Thorax, 21(6):518 - 523, 1966.

[16] Z. Kalenda. Mastering infra-red capnography. Kerckebosch BV, 1989.

[17] D. Koller and M. Sahami. Toward optimal feature selection. 13th International

Conference on Machine Learning, pages 284 - 292, 1995.

[18] B. Krauss, A. Deykin, A. Lam, J. J. Ryoo, D. R. Hampton, P. W. Schmitt, and

J. L. Falk. Capnogram shape in obstructive lung disease. Anesthesia & Analgesia,

100(3):884 - 888, 2005.

[19] B. Krauss and D. R. Hess. Capnography for procedural sedation and analgesia in

the emergency department. Annals of Emergency Medicine, 50(2):172 - 181, 2007.



BIBLIOGRAPHY 75

[20] T. Li, C. Zhang, and M. Ogihara. A comparative study of feature selection and

multiclass classification methods for tissue classification based on gene expression.

Bioinformatics, 20(15):2429 - 2437, 2004.

[21] I. Maglogiannis. Emerging Artificial Intelligence Applications in Computer Engi-

neering: Real Word Ai Systems With Applications in Ehealth, Hci, Information

Retrieval and Pervasive Technologies. Frontiers in Artificial Intelligence and Ap-

plications. IOS Press, 2007.

[22] A. S. Maisel, P. Krishnaswamy, R. M. Nowak, J. McCord, J. E. Hollander, P. Duc,

T. Omland, A. B. Storrow, W. T. Abraham, A. H. Wu, P. Clopton, P. G. Steg,

A. Westheim, C. W. Knudsen, A. Perez, R. Kazanegra, H. C. Herrmann, and P. A.

McCullough. Rapid measurement of b-type natriuretic peptide in the emergency

diagnosis of heart failure. New England Journal of Medicine, 347(3):161 - 167,

2002.

[23] D. M. Mannino, E. S. Ford, and S. C. Redd. Obstructive and restrictive lung

disease and functional limitation: data from the third national health and nutrition

examination. Journal of Internal Medicine, 254(6):540 - 547, 2003.

[24] M. Marshall. Capnography in dogs. Compendium, 26(10):761 - 778, 2004.

[25] M. Meyer, M. Mohr, H. Schulz, and J. Piiper. Sloping alveolar plateaus of co2,

o2 and intravenously infused c2h2 and chclf2 in the dog. Respiration Physiology,

81(2):137 - 151, 1990.

[26] E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support

vector machines. In Neural Networks for Signal Processing [1997] VII. Proceedings

of the 1997 IEEE Workshop, pages 276 - 285, 1997.

[27] R. E. Schapire and Y. Freund. Boosting the margin: a new explanation for the



76 BIBLIOGRAPHY

effectiveness of voting methods. The Annals of Statistics, 26:322 - 330, 1998.

[28] U. Smidt. Emphysema as possible explanation for the alteration of expiratory po2

and pco2 curves. Bull Eur Physiopathol Respir, 12(5):605 - 624.

[29] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Pearson

Addison Wesley, 2006.

[30] K. R. Ward and D. M. Yealy. End-tidal carbon dioxide monitoring in emergency

medicine, part 1: Basic principles. Academic Emergency Medicine, 5(6):628 - 636,

1998.

[31] M. Wysocki and J. X. Brunner. Closed-loop ventilation: An emerging standard of

care? Critical Care Clinics, 23(2):223 - 240, 2007.

[32] W. S. Yamamoto. Mathematical analysis of the time course of alveolar carbon

dioxide. 15:215 - 219, 1960.

[33] J. Ye, R. Janardan, and Q. Li. Two-dimensional linear discriminant analysis. The

Eighteenth Annual Conference on Neural Information Processing Systems, pages

1569 - 1576, 2004.

[34] B. You, R. Peslin, C. Duvivier, V. Vu, and J. Grilliat. Expiratory capnography

in asthma: evaluation of various shape indices. European Respiratory Journal,

7(2):318 - 323, 1994.

[35] M. Zou and S. D. Conzen. A new dynamic bayesian network (dbn) approach for

identifying gene regulatory networks from time course microarray data. Bioinfor-

matics, 21(1):71 - 79, 2005.


