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Abstract

Smartphones are pervasive, and possess powerful processors, multi-faceted sensing,
and multiple radios. However, networked mobile apps still typically use a client-
server programming model, sending all shared data queries and uploads through
the cellular network, incurring bandwidth consumption and unpredictable latencies.
Leveraging the local compute power and device-to-device communications of modern
smartphones can mitigate demand on cellular networks and improve response times.
This thesis presents two systems towards this vision.

First, we present DIPLOMA, which aids developers in achieving this vision by pro-
viding a programming layer to easily program a collection of smartphones connected
over adhoc wireless. It presents a familiar shared data model to developers, while
underneath, it implements a distributed shared memory system that provides coher-
ent relaxed-consistency access to data across different smartphones and addresses the
issues that device mobility and unreliable networking pose against consistency and
coherence. We evaluated our prototype on 10 Android phones on both 3G (HSPA)
and 4G (LTE) networks with a representative location-based photo-sharing service
and a synthetic benchmark. We also simulated large scale scenarios up to 160 nodes
on the ns-2 network simulator. Compared to a client-server baseline, our system
shows response time improvements of 10x over 3G and 2x over 4G. We also observe
cellular bandwidth reductions of 96%, comparable energy consumption, and a 95.3%
request completion rate with coherent caching.

With RoadRunner, we apply our vision to Intelligent Transportation Systems
(ITS). RoadRunner implements vehicular congestion control as an in-vehicle smart-
phone app that judiciously harnesses onboard sensing, local computation, and short-
range communications, enabling large-scale traffic congestion control without the need
for physical infrastructure, at higher penetration across road networks, and at finer
granularity. RoadRunner enforces a quota on the number of cars on a road by re-
quiring vehicles to possess a token for entry. Tokens are circulated and reused among
multiple vehicles as they move between regions. We implemented RoadRunner as

an Android application, deployed it on 10 vehicles using 4G (LTE), 802.11p DSRC
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and 802.11n adhoc WiFi, and measured cellular access reductions up to 84%, re-
sponse time improvements up to 80%, and effectiveness of the system in enforcing
congestion control policies. We also simulated large-scale scenarios using actual traffic
loop-detector counts from Singapore.

Thesis Supervisor: Li-Shiuan Peh
Title: Associate Professor
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Chapter 1

Introduction

Smart mobile devices are increasingly pervasive and powerful: a modern smartphone

has several communications interfaces, multi-faceted sensing capabilities, and multiple

processing cores, all in a single device:

1. Cellular radio: 3G cellular data is prevalent in many parts of the world, and

4G technologies such as LTE and WiMax are already deployed in many cities.

2. Device-to-device communications: A smartphone contains multiple short-

range wireless interfaces including WiFi, Bluetooth, and NFC.

3. Local computation: Modern smartphones are also quite powerful, commonly

possessing quad-core processors such as the Nvidia Tegra 3 [58], Samsung

Exynos Quad [68], and Qualcomm S4 Pro [64].

4. Multi-faceted sensing: Smartphones have many sensors, including GPS, ac-

celerometer, gyroscope, compass, barometer, multiple microphones, ambient

light, and proximity.

Furthermore, programmers can readily write mobile applications which will run on

millions of smartphones using popular platforms such as Google Android and Apple

iOS. The functions of popular mobile applications range from email, chat, social

networking, games, and photo sharing to mobile payments, taxi bookings, location-

based services, review aggregation, and video streaming.
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These networked mobile apps typically use a client-server model, where a thin

front-end application on the mobile devices primarily presents a graphical interface

and content and information to the user, while relying on a back-end server to store,

retrieve, and run computations on data. Many of these apps access data on a remote

server over the cellular network. Writing these applications with a client-server model

simplifies system design, but the heavy dependence on the cellular data network has

several disadvantages, including the consumption of limited cellular data allocations,

use of power-hungry cellular radios, variable and high communications latencies, and

limited cellular bandwidth (See Section 2.1).

If networked mobile apps could more fully leverage the local computation, sensing,

and communications capabilities of modern mobile devices, we can reduce bandwidth

pressure on already overloaded cellular networks and improve application respon-

siveness. This is the direction explored in this thesis. To realize such a vision, an

alternative programming model to the client-server model is first needed. DIPLOMA

addresses this, proposing and prototyping an alternative distributed mobile program-

ming model. ROADRUNNER seeks to illustrate how networking many mobile phones

together can lead to an effective computing platform for infrastructure-less Intelligent

Transportation Systems (ITS) services.

1.1 DIPLOMA

In Chapter 2, we present the design, implementation, and evaluation of DIPLOMA [26],

a system enables mobile app developers to easily program a collection of mobile de-

vices as if they were using a familiar shared memory model. DIPLOMA provides

coherent relaxed-consistency shared memory across different mobile devices in a geo-

graphic.

DIPLOMA is a platform upon which mobile application developers can take ad-

vantage of device-to-device communications and sensing to offload cellular data usage,

without having to design and implement a distributed system themselves. DIPLOMA

manages and abstracts away difficult issues such as device mobility, unreliable wire-
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less communications, cache coherence, allowing mobile application developers to write

applications using a familiar shared memory model.

1.2 RoadRunner

In Chapter 3, we present the design, implementation, and evaluation of RoadRunner,

a system that provides infrastructure-less congestion control for vehicular traffic.

Traffic congestion in urban areas is a widespread problem, causing delays and lost

productivity. Current congestion control schemes require the deployment of physical

infrastructure such as tollbooths, gantries and specialized in-vehicle units, resulting

in high cost and logistical difficulty of implementation at scale. Vehicles are becom-

ing increasingly intelligent, however, with built-in computing, communications and

integrated smartphone docks.

RoadRunner harnesses device-to-device communications over DSRC or WiFi ra-

dios, local vehicle positioning through GPS, and a distributed token reservation pro-

tocol to enable highly granular, high-penetration deployment of vehicular congestion

control at large scale by using a mobile phone inside each vehicle. RoadRunner elimi-

nates the need to build costly physical infrastructure such as tollbooths and gantries,

and judiciously utilizes DSRC or WiFi radios when possible to reduce pressure and

demand on cellular networks.

With these two systems, we demonstrate the viability and promise of leverag-

ing sensing, local computation, and device-to-device communications to enable an

alternative to the traditional client-server model for mobile applications.

12



Chapter 2

DIPLOMA: Consistent and

Coherent Shared Memory over

Mobile Phones

This chapter contains joint work with Anirudh Sivaraman, HaoQi Li, and Niket Agar-

wal.

2.1 Introduction

Mobile devices are now ubiquitous. Equipped with sophisticated sensors such as GPS,

camera, accelerometer and more, they already sense and generate large amounts of

data. With quad-core [68] phones now on the market, smartphones will increasingly

be able to compute on the sensed data in-situ as well. Yet, mobile phone applications

still use the conventional client-server model, with a thin client front-end on the phone

delegating compute-intensive tasks to servers in the cloud. This model is widely used

for simplicity, but has several disadvantages in a mobile context:

1. Overloading of cellular access networks: Wireless spectrum is at a pre-

mium [44]. Next-generation cellular data networks (4G/LTE) are unlikely to fix

this for two reasons: 1) 4G networks are now a substitute for home broadband;
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2) Higher screen resolutions are increasing user demand for high bandwidth

content such as streaming video. A recent study projected demand to exceed

capacity on cellular networks by 2014 [67].

2. Long and variable latencies: Cellular networks are characterized by long

and highly variable latencies, degrading application response times [41, 70].

Our own measurements in Section 2.4 confirm that 3G latencies can be as high

as 50 seconds. 4G latencies are currently significantly better (Section 2.4), but

performance on 4G networks will also degrade as user adoption increases.

3. Poor battery life: Cellular data transmission drains energy [9], a primary

resource for mobile phones.

4. Monetary cost: Cellular service plans are increasingly metered and monthly

caps are common [44].

We propose moving to a shared memory programming model for location-based

services, addressing the issues above by leveraging free, energy-efficient, and low-

latency adhoc WiFi to replace cellular accesses when possible. Application devel-

opers see a single global address space as our programming layer creates a shared

memory abstraction and hides the underlying mobility and phone-to-phone coordi-

nation. Thus, we make the following contributions in this paper:

1. We design and implement DIPLOMA, a Distributed Programming Layer Over

Mobile Agents, enabling distributed programming by exposing a shared memory

model to the application developer (Sections 2.2 and 2.3).

2. We implement an app similar to the popular location-based photo sharing ser-

vice on Google Maps, Panoramio [1], and a synthetic benchmark, and measured

substantial benefits in latency and cellular bandwidth reduction compared to a

conventional client-server implementation on 3G and 4G (Section 2.4).

14



2.2 The Design and Semantics of DIPLOMA

At a high level, a collection of mobile smartphones is a distributed system with each

device having a processor core and memory. Devices are interconnected by short

range radios such as ad-hoc WiFi. We propose that devices cooperate and share their

memory1 to form a distributed shared memory (DSM) system to present a familiar

interface to developers. However, typical DSM systems use static nodes connected

over a reliable interconnect, while a collection of smartphones represents mobile nodes

connected via unreliable wireless networking. To address device mobility, we divide

a geographical area into a 2D mesh of regions. Within each region, we abstract

the collection of all phones in the region into a single, reliable and immobile Virtual

Core (VCore) with its own memory (Section 2.2.1). To address the unreliability

of the wireless interconnect, we relax our memory consistency model (Section 2.2.2).

Additionally, we cache to speed up remote reads, and propose Snoopy, Resilient Cache

Coherence (SRCC) to maintain coherence (Section 2.2.3).

2.2.1 The Virtual Core layer (VCore)

VCores provide the abstraction of static reliable cores interconnected via a 2D mesh.

We leverage Virtual Nodes(VN) [21], which abstracts a collection of unreliable mobile

nodes in direct communication range of each other2 into a stationary reliable virtual

node. In the original VN system [13], a large geographical area like a city is first

divided into equal-sized regions. Mobile nodes can infer their region via localization

(e.g. GPS). Region size is chosen based on radio range, such that messages sent

from one region can be heard by all nodes in the region, as well as in all neighboring

regions. All physical nodes in a region participate in a state replication protocol to

emulate a single VN per region.

The nodes elect a leader using a simple algorithm. Each node, on entering a

'Mobile apps are typically sandboxed, so their effects on the system are isolated, mitigating
security concerns. Additionally, future mobile virtualization can further isolate DIPLOMA apps [7].

2DSMLayer, described later, removes this constraint so deployments can span arbitrarily large
geographic areas.
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new region, sends a leadership request to all nodes. If the leadership request is not

rejected, the node claims itself as the leader and sends out regular heartbeat messages

announcing its leadership. If a non-leader misses a certain number of heartbeats, it

sends out a leadership request.

The client nodes broadcast requests to their local region. The leader, and non-

leaders, run the same server application code. All nodes receive client requests and

process them according to the application code. Only the leader node sends responses;

others buffer responses until they hear the same response message from the leader.

By observing the leader's replies, the non-leaders synchronize their application state

to the leader and correct themselves upon a state mismatch.

The only practically deployed implementation of VN is described in [13], on a small

set of PDAs. Another implementation [88] simulates VNs on the ns-2 [24] simulator.

These original VN systems run into problems in practice due to unpredictable mobility

and unreliable networking. Regions could become unpopulated, causing VNs to lose

state. Wireless contention and range issues can create multiple leaders if nodes do

not hear heartbeats, causing inconsistent state.

Proposed Virtual Cores. To address these problems, we propose a new imple-

mentation called Virtual Cores (VCores). A VCore is the leader in a group of mobile

nodes in a single region. Most anomalies in Virtual Nodes occur when the elected

new leader is out-of-sync with the old leader. VCores correct this via occasional co-

ordination with a reliable cloud server using cellular networks like 3G (HSPA) or 4G

(LTE).

Region boot-up: When the first mobile node enters a region, it broadcasts a lead-

ership request message. If there is a VCore running here, it replies to the request and

the new node becomes a non-leader. If the new node does not hear a reply within a

timeout period, it contacts the cloud to nominate itself as a leader. The cloud knows

if a VCore is already running in the region, and rejects the leadership request if so.

Otherwise, it sends the latest shared memory state of this region back to the node,

which then boots itself as the region's new VCore.

Leader (re)election: The VCore provides a stationary, reliable core abstraction
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until it leaves the region. At this point, it broadcasts a LEADERELECT message

back to the old region. The nodes in the old region receive this message and reply

with a LEADERNOMINATE message. The old VCore randomly chooses one to be

the new VCore and sends it a copy of the shared state with a LEADERCONFIRM

message. The new VCore sends a final LEA DERCONFIRMA CK message to the old

VCore. If the election fails due to message losses or if the old region is unpopulated,

the old VCore sends the shared state to the cloud for later retrieval by a new VCore.

The above steps ensure that if the region is populated, exactly one node in this region

will be selected as the new VCore.

No state replication: In the original VN, the leader's state is replicated on all non-

leaders, which keep their state synchronized with the leader by observing requests

and the leader's replies. We eliminate replication since it does not improve reliability:

the cloud server has to confirm leadership requests anyway to ensure consistent state.

2.2.2 The DIPLOMA Shared Memory layer (DSMLayer)

DSMLayer is implemented as an API that runs atop the immobile and static VCore

abstraction which is overlaid over individual phones. DSMlayer glues VCores in a

grid/mesh topology, communicating via wireless multi-hop messages between adjacent

VCores. The phone currently running the VCore for a region contributes part of

its memory towards the global shared memory, addressed through variable names

rather than binary addresses. These variables make up the shared address space of

DSMLayer. Each shared variable resides on one VCore, its home VCore. Variables are

accessed consistently through the Atom primitive, which is a block of instructions

executed atomically on the shared variables resident on a single home VCore. To

execute an Atom, it is multi-hop forwarded3 from the originating VCore to the home

VCore and executed on its portion of shared memory.

Atoms are atomic, and always execute once or fail completely. They are equivalent

to a critical section, or an acquire-release block in Release Consistency (RC) [28]. We

3Beyond a certain threshold of hop count, ad-hoc WiFi energy and latency will exceed those of

cellular networks, and a hybrid cloud/WiFi solution would be better
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discuss similarities and differences with RC in detail in Section 2.5. We guarantee

relaxed consistency [2] by default and allow Atoms to be reordered by the unreliable

wireless network. To optionally enforce stricter ordering between atoms, we provide

AtomFence, a per-home VCore memory fence primitive that can be executed before

an Atom to guarantee that all previous Atoms occurring in program order in the

thread have completed. The use of AtomFence is optional: for some applications,

allowing reordering improves performance.

Additionally, DIPLOMA provides at-most-once [10] execution semantics for Atoms

by logging the reply when an Atom is executed. Thus, if a duplicate request is received

due to a retry, the logged reply is sent back without re-execution.

2.2.3 Snoopy and Resilient Cache Coherence (SRCC)

Accesses to remotely homed data result in round-trip (possibly multi-hop) communi-

cations between the requesting and home VCores; resending lost messages exacerbates

these delays. Caching addresses this problem, but necessitates a coherence protocol.

We explain our design choices below.

Traditionally, coherence protocols are either broadcast-based [30] or directory-

based [47]. In a wireless context, the latency of an extra hop (required by directory-

based protocols) is high and communication is inherently broadcast, so broadcast-

based protocols are a better fit. Further, write update protocols are more suitable

than write invalidate protocols since write update protocols result in fewer messages

exchanged. They consume more bandwidth by carrying the shared data in each

message, but WiFi bandwidth is sufficient. Additionally, we use a write-through,

no-write-allocate cache to ensure writes do not appear in the local cache until the

local VCore receives a write update confirming the write is complete at the remote

home VCore. To ensure memory consistency, all cached copies in the system must

see the same order of reads and writes to a particular memory address. We build

on timestamp snooping [53] and INSO [3], which are multiprocessor broadcast-based

protocols that achieve ordering on unordered networks by assigning ordered numbers

to coherence messages and presenting them in order to the destination caches. INSO
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ritd e of VCRCre 5 is VCoe3

(radast. pate ofsstmweis (b)odst.Tupate ofeactmhes updat Fis writeedatoe of

not reach VCore 4. both VCores 4 and 3. with a globat order of 2.

Figure 2-1: Walkthrough example of SRCC for two writes to VCore 5. Only VCores
3, 4 ,5 are detailed for clarity.

and timestamp snooping rely on a highly reliable interconnect, however, making them

unsuitable for wireless networks. DIPLOMA requires a novel write update, snoopy

(broadcast-based) cache coherence protocol resilient to unreliable networking.

We design a Snoopy and Resilient Cache Coherence (SRCC) protocol. SRCC

guarantees that memory operations to the same shared variable owned by any home

VCore are seen by all remote caches in the same order. To ensure that all VCores see

the same global order of Atoms, each home VCore keeps a counter called globalorder

maintained by DSMLayer. This counter indicates the number (order) that the next

Atom (which may contain load/store instructions to this home VCore's shared vari-

ables) will be tagged with. This counter is initialized to 1. Each VCore also maintains

a localorder, which indicates which number (order) this VCore will accept next, also

initialized to 1. A VCore accepts a write update when the globaLorder of the write

update equals its current locaLorder, and subsequently increments locaLorder. Write

updates with higher orders are buffered until their turn arrives. Figure 2-1 walks

through one such transaction of SRCC.
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2.3 DIPLOMA Implementation

2.3.1 DIPLOMA's API

Table 2.1 lists the DIPLOMA API. First, the application programmer wishing to

use DIPLOMA implements the UserApp i.e. the service to be provided in the net-

work. Within the UserApp, the programmer implements the function bodies of the

Atoms that can be executed on any specified home VCore at run time. Atoms can

contain arbitrary Java code that may contain reads and writes on multiple variables

on one home VCore. The application logic in the UserApp requests the execution

of an Atom by calling a method exposed by DSMLayer, makeAtomRequest. Behind

the scenes, the DSMLayer routes the request to the specified home VCore, where

handleAtomRequest is invoked with a reference to the local portion of shared mem-

ory on which to execute the Atom. handleAtomRequest (implemented by the pro-

grammer) returns a reply which is routed back to the originating VCore and passed

to handleAtomReply (also implemented by the programmer). The programmer may

also call atomFence to block program execution until all pending and in-flight Atom

requests to a home VCore from a requesting VCore have either succeeded or failed /
timed-out.

2.3.2 Prototype Design

We implemented DIPLOMA as an Android application running on Nexus S phones

with 3G and Galaxy Note phones with 3G and 4G. Our implementation is comprised

of 3 components: the application-developer-implemented app (UserApp), which runs

on top of the DIPLOMA Shared Memory Layer (DSMLayer) with caching (SRCC)

(enabled optionally), which runs on top of the Virtual Cores layer (VCore). All 3

components run in a single thread to eliminate inter-thread communication. This

also ensures execution of Atoms cannot be interrupted by VCore protocol messages.

Atoms are also marked with Java's synchronized keyword to disallow concurrent

access.
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Table 2.1: DIPLOMA API Methods

Method Implemented by -+ Called Invoked on Description
by

long makeAtomRe- DSMLayer -+ Programmer Requesting re- Request to execute a prede-
quest(long atomId, gion fined Atom (identified by ato-
long destVCoreX, long mId) on a destination VCore.
destVCoreY, boolean Can include data. Returns a
isWrite, byte[ data); long to identify the request.
Atom handleAtomRe- Programmer -+ DSMLayer Target region Execute an Atom on the local
quest(DSMLayer.Block portion of shared memory and
b, Atom c); return a reply Atom.
void handleAtomRe- Programmer -+ DSMLayer Requesting re- Callback for receiving an Atom
ply(Atom a); gion reply.
void atomFence(long DSMLayer -+ Programmer Requesting re- Block until all pending Atoms
destVCoreX, long gion have finished at the destination
destVCoreY); region.

A second thread runs a busy-wait loop to receive packets on the adhoc WiFi in-

terface. To communicate between the first and second threads, a Mux is implemented

in a third thread, so packets can always be en/dequeued regardless of activity in the

first thread. When a VCore needs to upload shared memory to the cloud server, the

VCore layer pauses the DSMLayer, serializes the shared memory to JavaScript Object

Notation (JSON), and sends it over the cellular network to the server.

2.3.3 Practical Considerations

Next, we discuss some of the issues that arise in a practical deployment of DIPLOMA,

describe how our implementation deals with them and continues to operate correctly.

Wireless range more limited than assumed. DIPLOMA's default behavior

for VCore assumes that the exiting leader remains in wireless range of its old region

when it moves to a neighboring region, so that it can elect a new leader. If the old

leader moves out of range before electing a new one, it sends its state to the cloud

server so that a new node may download and boot the VCore later. If the wireless

range turns out to be much smaller than expected, it could cause many region reboots,

hurting latency and completion rate. Our benchmark deployment (Subsection 2.4.1)

shows that WiFi wireless range is sufficient: 57% of leader hand-offs succeed without

requiring a region reboot, enough to achieve completion rates up to 95.3%.

Resilience to node failures. DIPLOMA monitors for low battery or user opt-
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out, and initiates leadership hand-off. It also monitors for unexpected node failures

with a leader-to-cloud heartbeat (every 120 seconds in our implementation), so that

the server will become aware of node failures and allow a new node to become the

leader with the last known state.

Atomic execution of Atoms in the face of interrupts. In our implementa-

tion, the DSMLayer runs in the same thread as the VCore layer and message handling

methods are marked with Java's synchronized keyword to ensure that VCore proto-

col messages cannot interrupt Atom execution. Additionally, when the VCore layer

hands off leadership, it pauses the DIPLOMA layer, ensuring that no DIPLOMA

Atom requests are processed by the old VCore while or after the new VCore receives

the state. Instead, any DIPLOMA Atom requests received during the hand-off a

dropped and resent to the new VCore later by the requesting VCore.

Intermittent cellular connectivity. When a node needs to make a cellular

access, e.g. upon entering an empty region, it sends a request to the server to become

the VCore, retrying if the server is unreachable. Thus, for DIPLOMA to work,

the cellular connection must be eventually available. Current metropolitan cellular

networks exhibit this behavior; in our benchmark deployment (Subsection 2.4.1), 3G

was available 98% of the time.

2.4 Evaluating DIPLOMA

We implemented two mobile applications to evaluate DIPLOMA vs cloud-only solu-

tions: a synthetic benchmark that is scripted to generate a specified percentage of

read and write requests to a random VCore, and a Panoramio-like [1] app. For com-

parison, we also implemented cloud-only applications functionally equivalent to the

DIPLOMA versions, but relying purely on HTTP requests over 3G/4G to a single-

threaded Python web server. The server ensures that accesses to the shared memory

are consistent, and provides the same functionality. The server is located in the same

geographic region as the phones to minimize backbone Internet latency.
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Figure 2-2: Completion rate, latency and power comparison of SMCloud and
DIPLOMA in Pedestrian Deployment

2.4.1 Benchmark App

We carried out a deployment with our synthetic benchmark running on Google Nexus

phones with 3G radios in a covered pavilion last year. The area is divided into four

regions of 5mx5m per region. Ten volunteers held two phones each, with DIPLOMA

running on one phone and cloud-only shared memory (SMCloud) on the other. The

volunteers walked among the regions with the phones and indicated which region

they were in at a given time. We evaluated DIPLOMA under combinations of

SRCC caching disabled/enabled and varying read/write distributions. We measured

DIPLOMA's performance against the cloud-only version (SMCloud) using: (1) aver-

age latency of successful requests, (2) completion rate of requests, (3) average energy

consumed per successful request, and (4) cellular data consumption. Our methodol-

ogy and results are detailed below.

Average latency: User interface interactions are timestamped to obtain end-

to-end request latencies. We compare DIPLOMA to SMCloud in Figures 2-2(b) and
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2-2(e) 4 . Request latencies for DIPLOMA are typically an order of magnitude lower

than those in SMCloud.

Without caching, read and write latencies do not vary greatly across read vs.

write distributions, as they both incur hops to remote HOME VCores. With caching

enabled, high read percentages (90%) show significantly decreased latencies: when

requests are serviced at the local VCore from its cache, hops to remote VCores can

be eliminated. Write latencies are significantly higher than read latencies because

they require write updates to be broadcast to the entire system. This increased write

latency is even more pronounced at lower read (higher write) percentages (60%, 30%)

as the write updates increase network congestion, and even impact and increase read

latencies, too. Thus, caching is advantageous in applications with a higher proportion

of requests being reads.

Request completion rate: We calculate the percentage of issued requests that

complete (Figures 2-2(a) and 2-2(d)). Again, we measure reads and writes separately

and in aggregate, and compare the completion rate of DIPLOMA to SMCloud.

Without caching, the completion rate of application-level requests is 57%, and does

not vary between read/write distributions, as expected. With caching, at 60% reads,

80% of application-level requests on DIPLOMA complete. Note that these application-

level requests incur an extra wireless hop from a client app to the UserApp on the

region's VCore, which may fail before DIPLOMA is even invoked; the completion

rate of the DIPLOMA Atoms alone is 90.9% for 60% reads, and 95.3% for 90% reads.

Caching allows many read requests to be successfully serviced from the local VCore

even when a read request to the remote VCore fails.

The completion rate is lower at lower read distributions (30%) due to several

factors: more requests are writes, which have lower completion rates than reads

because they cannot be cached and must be sent to remote regions; higher wireless

contention due to more write updates being broadcast to the entire network, resulting

in dropped application packets. This is seen in the disparity between DIPLOMA-level

4SMCloud results appear in both the cache and no cache trials because we ran it in every trial
simultaneously against DIPLOMA to control for cellular conditions between trials.

24



and application-level request completion rates. The application-level implementation

does not implement a retry/ack mechanism, unlike DIPLOMA. Thus, at 90% reads,

though 95.3% of the DIPLOMA Atoms successfully complete at the VCore, the local

VCore's subsequent reply to the client node is only received in 66.8% of requests.

In contrast to DIPLOMA, in SMCloud we observe a 100% completion rate (not

shown in figure) of requests, but requests can take as long as 55 seconds to complete in

our evaluations. Such high latencies are instances of a problem called Bufferbloat [27].

We discuss DIPLOMA's completion rate further in Section 2.4.3.

Power consumption: We use the Monsoon power meter [54] to build an energy

model for the Nexus S devices. Devices running DIPLOMA use adhoc WiFi, so

energy for access point scanning and associations is not incurred. Consistent with

previous studies [9, 65], our results shows that the energy of a WiFi transmission is

significantly less than that of 3G. In our applications, a single HTTP request over

3G is measured to consume 2.6 Joules, while a single WiFi packet transmission might

consume only 0.066 J. We do not factor into account energy expended in localisation

because this is a task common to both SMCould and DIPLOMA.

We create a linear regression for receive and transmit energy across several packet

sizes (1k, 2k, 4k, and 8k bytes) (R-squared=0.999 for Tx, 0.959 for Rx). This re-

gression is applied to average packet sizes calculated from the deployment logs to

obtain per-packet energies for each of the deployment trials, obtaining total energy

consumed by WiFi and 3G in each trial.

WiFi idle power (turned on, but not receiving or transmitting) is also measured,

and then calculated for each of the trials using experimental run time. Again, con-

sistent with [9, 65], we find that WiFi consumes significant idle power: with only the

3G radio turned on, current consumption is 149 mA. Once adhoc WiFi is turned on,

current consumption increases 46% to 218 mA, without any WiFi traffic.

We use these observations to measure the power consumption of both DIPLOMA

and SMCloud by processing logs offline. Both SMCloud and DIPLOMA applica-

tions wait for 2 seconds between requests 5. The 3G radio does not return to a low

52 seconds being a realistic time between user interactions. We choose not to batch requests since
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power state between requests in SMCloud due to cloud accesses being much more

frequent; therefore, measurements include 3G tail energy [9] for all cloud accesses.

Taken together, these measurements give total energy consumed by WiFi + 3G for

DIPLOMA, and total energy consumed by 3G for SMCloud, per trial. These totals

are then divided by the number of successful requests per trial to arrive at an average

energy consumed per successful request per trial.

As we see in Figure 2-2(f), DIPLOMA reduces active wireless energy consumption

by up to 94% per successful request. However, when WiFi idle power is factored in,

DIPLOMA is more energy efficient only with caching enabled at 60% read distribu-

tions or higher (Figure 2-2(c)), due to WiFi idle power being quite significant. This

highlights the need for better power management of WiFi radios when used in adhoc

mode for short-range phone-to-phone communications.

Cellular access reduction: SMCloud solely communicates with the cloud server

over the cellular data network, so a cloud access is incurred for every read or write

request to shared memory. In contrast, DIPLOMA incurs cloud accesses only for

region bootups and leadership changes, which occur due to mobility rather than

application interactions, so these accesses are amortized over the requests from the

application. Hence, we divide the total number of successful cloud accesses by the

number of successful requests (DIPLOMA was able to reach the cloud through 3G in

98% of attempts). These results are shown in Figure 2-3 where the x-axis represents

the percentage of reads in our benchmark app.

DIPLOMA without caching averages 0.21 cloud accesses per successful request,

a 79% reduction from SMCloud, and DIPLOMA with caching averages 0.14 cloud

accesses per successful request, a 96% reduction. Caching leads to more successful

requests and quicker responses, while the number of cloud accesses remains the same.

This advantage is more pronounced at higher read percentages.

they are user-initiated, and to maintain a responsive user experience, should not be delayed
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2.4.2 Panoramio-like App

We implemented a Panoramio-like app on Galaxy Note phones to demonstrate that

popular consumer mobile apps today can be readily ported onto DIPLOMA. In the

app, we use the shared memory abstraction provided by DIPLOMA to retrieve and

update photo data. Users (clients) can take pictures of interesting things where they

are, and they can also get pictures taken by other users. The photos are stored in the

same region that they are taken in. If a user desires to view photos from a remote

region, gets can traverse multiple hops on their way to a remote region. The phones

serve double duty by both participating in DIPLOMA (as leaders or non-leaders) and

being the clients of the application themselves. To reduce the size of data transfers,

we apply JPEG compression to all pictures before transmission. We also implement

a functionally equivalent cloud version (CCloud) of the same app (accessed through

3G/4G) and compare the DIPLOMA version without caching (CameraSM) to the

cloud based version in terms of completion rate and request latencies.

We carried out a deployment of Panoramio on 20 Galaxy Note phones over 3G

and 4G networks this year, with 10 phones running CameraSM, and another 10

running CCloud. Phones are placed statically and uniformly across 6 regions (5mx5m

each) within an open indoor space. Two people walk around the phones clicking on

buttons simultaneously on CameraSM and CCloud pairs of phones, taking and getting

pictures. We present mean and median latencies in Tables 2.2 and 2.3, omitting
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Table 2.2: Panoramio-like

takes takes
CameraSM CCloud

mean 144 ms 2558 ms

app latencies over 3G

gets gets
CameraSM CCloud
217 ms 2279 ms

median 109 ms 2465 ms 161 ms 2229 ms

Table 2.3: Panoramio-like app latencies over 4G

takes takes gets gets
CameraSM CCloud CameraSM CMloud

mean 144 ms 546 ms 178 ms 469 ms
median 107 ms 534 ms 159 ms 469 ms

distributions for brevity. Similar to the benchmark application, we also measured the

number of cloud accesses per application-level get or take request for both CameraSM

and CCloud. Since CCloud makes a cloud access on every request, this number is 1

for CCloud on both 3G and 4G networks. For CameraSM, we observed 0.29 cloud

accesses per request on 3G, and 0.22 accesses per request on 4G . Since the phones

were static, these accesses were primarily due to leader-to-cloud heartbeats which

occurred at 2 minute intervals. The heartbeat interval allows us to trade off between

number of cloud accesses and the reboot time of an unpopulated region. We observed

a high completion rate of 98.6% for CameraSM across 573 requests, and 100% for

CCloud across 564 requests. These results show DIPLOMA outperforming both 4G

and 3G cloud implementations in response times while retaining high completion

rates.

As Panoramio has substantial write traffic, our write update caching protocol leads

to excessive WiFi traffic (approximately 6KB write updates for every region when a

picture is taken, plus associated ACKs) and was turned off in this deployment. In

hindsight, applications like Panoramio would work better with a write-back protocol.

We don't have power comparisons for Panoramio as 4G has more sophisticated power

management, making it difficult to apply a power model naively to our activity traces

to get accurate power estimates.

We also conducted outdoor mobile deployments with this app, but saw high loss
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rates over ad-hoc Wifi, which could be due to the large packet size of images, high

WiFi interference in the area, and/or poor antennas on the Notes. We are in the

process of diving further into these ad-hoc WiFi problems and investigating potential

optimizations.

2.4.3 Simulation studies

We use ns-2.37 [24], a discrete event network simulator, to evaluate our system at

scale with the synthetic benchmark. Node mobility is simulated with the Random

Way Point model with three settings: slow, medium and fast (Figure 2.4). Node

movements are constrained to a 350m x 350m terrain and the radio range is fixed at

250m. 250m is well within the transmission range of 802.11p or DSRC [36], which we

expect will become the basis for adhoc communications for distributed mobile apps.

This radio range dictates our region size since every broadcast has to be heard by

the neighboring regions as well, resulting in 4 x 4 regions. Since we have 4 regions in

each dimension, we also evaluate the efficiency of caching for requests that traverse

between 0 and 3 hops. Each simulation lasts 40000 seconds.

Variation of node density. We vary the number of nodes from 40 to 160

to study the effect of increasing node density on DIPLOMA's performance. The

resulting node density is close to typical car densities in US cities which vary from

1700-8000 cars per square mile [59], or about 80-380 cars for our 350m x 350m terrain.

Figure 2-4(a) shows the effect of varying the number of nodes on the completion rate

of DIPLOMA. We see that increasing the node density significantly improves the

performance of DIPLOMA. Also, after a threshold density of 80 nodes, the completion

rate saturates near 100%.

Usefulness of caching. One intuitively expects caching to be more useful for

reads to farther away regions. Writes would also take longer since they trigger updates

in SRCC. To study this, in Figure 2-4(b) we plot the completion time of a request

with caching enabled for varying node speeds. The numbers are normalized to a no-

caching implementation. The proportion of reads and writes is kept equal to avoid

any bias. We see that caching improves latency for all requests spanning 1 hop or

29



Table 2.4: Simulation settings

Parameter slow med fast
Min. speed (m/s) 0.73 1.46 2.92
Max. speed (m/s) 2.92 5.84 11.68
Min. pause time (s) 400 200 100
Max. pause time (s) 4000 2000 1000
Mean cross time (s) 48 24 12
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Figure 2-4: Completion rate and latency of DIPLOMA in simulation.

more. On average, the 1-hop, 2-hop and 3-hop requests have a 35%, 45% and 48%

lower request latency as a result of caching. However, the incremental benefit of

caching decreases with increasing hops. This is understandable since write latencies

scale linearly with hop count.

In summary, our simulation results demonstrate the effectiveness of caching and

show how penetration of DIPLOMA affects performance. We envision that a large

city scale deployment will have sufficient density to achieve a completion rate close

to 1, while simultaneously providing the latency and cellular utilization benefits we

observed in our deployments.

2.5 Related Work

DIPLOMA is related to several systems in Computer Architecture, Sensor Networks,

Distributed Algorithms and Distributed Systems. We outline key similarities and

differences.

Computer Architecture: Most commercial architectures, such as x86 [75] and
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IBM PC [34], stay close to sequential consistency [43] by reordering only certain

instruction combinations. Similar to DIPLOMA, some processor architectures (Al-

pha [5], Sparc [77]) aggressively reorder all instructions by default and provide mem-

ory fences for the programmer or compiler to enforce ordering if required.

Among research systems, DIPLOMA is closest to Release Consistency (RC) [28].

RC defines memory operations as either ordinary or special. Special operations are

either synchronization or non-synchronization accesses. Synchronizing accesses are

either acquires or releases. Memory accesses within an acquire-release block form a

critical section and execute atomically, provided each critical section is protected with

enough acquires. Every Atom in DIPLOMA implicitly begins with an acquire and

ends with a release, guaranteeing exclusive access to the Atom's shared variables.

DIPLOMA has similarities to Transactional Memory [32]: Atoms are like transac-

tions, but transactions allow atomic modifications to arbitrary portions of the mem-

ory, while Atoms operate on memory belonging to one VCore alone.

Sensor Networks. Several programming languages have been proposed for col-

lections of resource-constrained devices. Kairos [31], an extension of Python, abstracts

a sensor network as a collection of nodes which can be tasked simultaneously within

a single program. Pleiades [40] borrows concepts from Kairos and adds consistency

support to the language. These proposals are tailored to static sensor nets and do

not deal adequately with mobility.

Distributed Algorithms. Most distributed algorithms for mobile agents tackle

programmability by first emulating a static overlay. Virtual Nodes (VN) [21] is

one such abstraction. Section 2.2.1 discussed the practical issues with VN. Geoquo-

rums [22] provides consistency support using a quorum-based algorithm to construct

consistent atomic memory over VNs, but it assumes reliable physical layer communi-

cation. [16] presents complex algorithms to implement reliable VNs over an unreliable

physical network through consensus, which is expensive in practice on wireless net-

works.

Distributed Systems. There are several loosely coupled distributed systems

that explore varying notions of consistency. Bayou [80] allows eventual consistency
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between data copies residing on differing replicas, which could be mobile nodes or

dedicated servers. All replicas are equal and merged opportunistically using an anti-

entropy protocol. In contrast, DIPLOMA maintains one authoritative copy of the

data (the VCore) and actively resolves conflicts using cache coherence. CODA [391,

is a file system for mobile devices with unreliable cellular connections. DIPLOMA

instead targets shared memory and assumes modern cellular connections are far more

reliable (albeit with very long and variable latencies). InterWeave [15] is a hierarchi-

cal consistency model with varying consistency guarantees for different levels ranging

from hardware shared memory to weakly consistent shared memory across the In-

ternet. It is significantly different from our system since DIPLOMA is homogeneous

and flat and operates primarily on wireless LAN links. Semantically, TreadMarks [6]

is the closest to DIPLOMA since it implements release consistency. Further, similar

to DIPLOMA, it implements Distributed Shared Memory. However, TreadMarks is

tailored to a workstation environment with highly reliable LAN links. Mobility and

network unreliability are new problems DIPLOMA tackles.
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Chapter 3

RoadRunner: Infrastructure-less

Vehicular Congestion Control

3.1 Introduction

Traffic congestion is a widespread problem affecting road transportation infrastructure

in many cities, and is expected to increase in severity [78]. In 2005, congestion resulted

in 4.2 billion hours of travel delay and 2.9 billion gallons of wasted fuel in the United

States [73]. One widely studied approach to reducing congestion is road pricing [50],

a monetary policy to disincentivize drivers from entering tolled regions. Road pricing

has traditionally been implemented through manned toll booths but electronic toll

collection systems are now widespread in many cites [84]. Here, we discuss several

systems along with their implementation:

1. Singapore. The Electronic Road Pricing (ERP) system deployed in 1998 was

the first in the world to apply electronic road pricing for congestion control of

a large downtown area. It uses dedicated short-range radio communications

(DSRC) to detect and collect tolls from vehicles passing under physical gantries

on roads leading to heavily congested areas. Prices change throughout the

course of a day [74, 29, 38].

2. London. The London Congestion Charging Scheme (LCCS) [69] installed in
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2003 charges a fixed per-day price for vehicles entering a controlled area and

uses CCTV cameras mounted atop poles to automatically detect car license

plates. Nightly, detected plates are matched with a database for accounting,

and missed vehicles are manually verified.

3. United States. In the United States, several open road high-speed tolling

systems have been deployed: FasTrak in California (1993), SunPass in Florida

(1999), and the Northeast's E-ZPass (1991) [25]. These systems use windshield-

mounted radio transponders to communicate with physical gantries as vehicles

drive by.

Congestion can also be controlled through regulatory or non-monetary policies

that directly limit the number of vehicles that may drive on a road, also known as

road-space rationing. Daganzo [20] proposed a pareto optimum congestion reduc-

tion scheme that, in certain cases, can improve everyone's utility, through a hybrid

road pricing and road-space rationing strategy, and Nakamura et al [55] have also

shown that pure road-space rationing can perform better than any combination of

road pricing and road-space rationing. In short, prior studies have shown that road-

space rationing schemes are a valuable tool in a transportation engineer's arsenal.

Road-space rationing has past and current deployments in several cities around the

world [83], mostly with simple, manual, policy-driven implementations:

1. Singapore's Area Licensing Scheme [62] prior to the ERP system required

vehicles to purchase and display a paper license before entering a restricted

zone (RZ). The number of licenses was a fixed quota and ALS was manually

enforced by officers at the boundaries of the RZ. Now, a quota on the total

number of cars in Singapore is enforced through the Certificate of Entitlement

(COE) system which requires a COE to be purchased before a car can be driven

in Singapore. The COE lasts for 10 years and is priced based on auctioning,

with an average price of S$70K-90KCOE for December 2012.

2. Beijing implemented a temporary road-space rationing scheme by restricting

even and odd license plate numbers on alternate days for three months prior to
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the 2008 Olympic Games. A slightly modified policy was implemented perma-

nently following the successful three-month trial which improved urban traffic

conditions [90]. London similarly enforced a road-space rationing scheme for

the 2012 Olympics.

All above-mentioned systems require the deployment of costly physical roadside

infrastructure such as gantries, tollbooths or enforcement stations and personnel,

and/or specialized in-vehicle devices. As a result, deployment of congestion control

tends to be limited to few selected regions within cities, with regions covering a wide

swath of roads. It is hence very costly to re-define controlled regions.

A congestion control system that does not require the setup of new physical in-

frastructure can address these downsides of existing systems, and enable widespread

deployment of congestion control across entire cities, at the fine granularity of specific

roads, permitting flexible definition of regions and quotas for more responsive poli-

cies. In fact, Singapore recently released a call to companies for proposing systems

for the next-generation ERP that is to be GPS-based [4], with field trials currently

underway.

In this paper, we propose, design and deploy RoadRunner, an infrastructure-

less congestion control system that simply runs on ubiquitous smartphones. Today,

smartphones are widely adopted in most cities, with penetration reaching 50.4% [57]

and 70% [56] in the U.S. and Singapore respectively. Phones can be readily plugged

in vehicles, with car manufacturers providing docks for smartphones onto the dash-

board [23], enabling seamless connectivity to a substantial energy source, driver-

friendly interfaces, vehicular-context information as well as vehicular communica-

tions such as DSRC [11, 76]1 Using smartphones enables an already widespread

infrastructure-less solution to congestion control, but comes with additional chal-

lenges:

1. Inaccuracies in localization. Physical infrastructure enables precise detec-

'All vehicles in Singapore are required to install an in-vehicle unit equipped with DSRC for
communications with ERP gantries. These units can potentially be leveraged for pervasive V2V
communications if modified to support the 802.llp DSRC standard.
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tion of entries and exits of road regions. The GPS modules on smartphones,

however, are often optimized for low power at the expense of reduced sensitivity.

2. High cellular bandwidth presure. As smartphones and other mobile con-

nected devices continue to proliferate, demand for cellular bandwidth is ex-

pected to exceed available capacity by 2014 [67]. The increased throttling

and cost of 3G/4G data plans and phasing out of unlimited data plans are

clear symptoms of increasing bandwidth pressure on mobile data networks [44].

A phone-based infrastructure-less system permits the extension of congestion

control to all roads across an entire city, but a conventional client-server imple-

mentation will lead to millions of vehicles communicating through the cellular

network to servers running and policing congestion control, creating intense

bandwidth pressure on already overloaded networks.

3. Low response latency. Phone-based congestion control needs to swiftly re-

spond to drivers so they can adapt their routing appropriately. A conventional

client-server phone app implementation which relies on the cellular data network

may experience long and unpredictable latencies, especially when the network

is heavily loaded in a dense region [42, 71], and face difficulties meeting the

real-time requirements of congestion control.

RoadRunner tackles the above challenges by judiciously leveraging the myriad

networking interfaces, sensing and substantial computing capability of state-of-the-

art smartphones with a distributed congestion control system that offloads computing

to nearby in-vehicle phones, leveraging vehicle-to-vehicle networking via ad-hoc WiFi

and DSRC to ease the bandwidth pressure on 4G/LTE and improve real-time re-

sponse latencies. RoadRunner is a decentralized mobile phone app for vehicles to

reserve places on roads in a transportation network. The system distributes tokens

to vehicles as permission for their entry into regions or roads, and records infractions

and/or enforces fines for violations of congestion control policies. For localization,

our experiments demonstrate that today's smartphone GPS receivers have high ac-

curacy and sensitivity, that, when combined with buffer zones between regions at
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intersections, enable accurate identification of controlled region entries and exits.

Our deployments on 10 vehicles show that RoadRunner improves mean system re-

sponse times by 80% when coupled with DSRC radios for V2V communications, and

reduces cellular data accesses by 84% compared to a traditional client-server imple-

mentation that only utilizes the cellular network. Our simulation results (Section 3.5)

indicate that such an approach can enable infrastructure-less congestion control on a

large scale at realistic vehicle densities.

3.2 Design

At a high-level, the goal of congestion control is to ensure that there are not too many

vehicles on a particular segment of road at any one time. RoadRunner is an electronic

token-based reservation system where vehicles must possess a corresponding token to

drive on a specific road segment within an enforced region that is pre-defined, which

is analagous to road-space rationing.

Regions and a quota of tokens, provided by a central server, are pre-defined by

the transportation authorities. Vehicles may not create or duplicate tokens, ensuring

an upper bound on the number of vehicles in a region. Tokens can expire, which

helps ensure that lost tokens are effectively reset and do not impede the operation of

the system over a long period. If a vehicle in the region does not have a valid token,

the system logs a violation and enforces a penalty, which could be a fine or reported

infraction.

We conducted micro-experiments to answer key design questions and guide our

final design:

o Can we accurately and quickly enforce boundaries of pre-defined regions in

an infrastructure-less manner, using the GPS receivers on commodity smart-

phones?

o Can vehicle-to-vehicle (V2V) communications offload cellular bandwidth pres-

sure and lead to better response times?
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Figure 3-1: Map of programmed region boundary and detected region boundary for
static GPS microexperiment.

3.2.1 Boundary enforcement microexperiments

We implemented a prototype of RoadRunner using the built-in GPS receiver on Sam-

sung Galaxy Note smartphones (See Section 3.3 for details) and conducted experi-

ments with a vehicle driving on Vassar Street in Cambridge, Massachusetts, USA. The

vehicle crossed a region boundary at vehicular speeds of 15-20 mph. We predefined

the region boundary as a transportation engineer would in our system by calculat-

ing the coordinates of the region boundary from Google Maps satellite images and

programming the coordinates into our RoadRunner implementation.

Boundary detection accuracy

We first measured the accuracy of the phone's GPS when held statically by a person

standing on a street (Vassar Street, Cambridge, MA). We noted where the phone

detected the boundary crossing by walking a bit down the street, stopping, and

noting whether the phone detected a boundary crossing. When the phone detected

the boundary crossing, we honed in on it by walking back and forth across it in

successively smaller distances. We visually referenced this location to satellite images,

and measured the distance of this detected boundary from where we expected the

programmed boundary to be. This resulted in a boundary detection inaccuracy of 30

meters, as shown in Figure 3-1.
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Figure 3-2: CDF of boundary detection latency, 10 trials.

Boundary detection latency

Next, we conducted 10 trials of driving across the region boundary at speeds of 15-

20 mph on Vassar Street, in a car with RoadRunner installed. The driver pressed

a button to indicate when he crossed the region boundary, producing a timestamp

to compare to the one created when the system detects a boundary crossing. The

boundary detection latency is the time between physically crossing a detected region

boundary and when the system reports a boundary crossing. This delay averaged

821 milliseconds, with a maximum detection latency of 1.5 seconds (Figure 3-2),

sufficient to detect a vehicle within 47 meters even at high travel speeds of 70 mph.

These results indicate that transportation authorities should define controlled regions

that are sufficiently long to ensure that vehicles do not pass undetected through a

region.

These experiments gave us confidence that the integrated GPS receiver on a smart-

phone delivers sufficient accuracy and responsiveness in boundary enforcement for

RoadRunner. Ensuring a minimum buffer distance between region boundaries suf-

fices to enable correctly detected boundary crossings. The road intersections in our

Cambridge, MA, USA deployment (Section 3.4) are 30 meters across, and we place re-

gion boundaries at least 20 meters before the intersections, producing buffer distances

between boundaries of at least 80 meters.
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Figure 3-3: V2V microexperiment test route

3.2.2 Vehicle-to-vehicle and vehicle-to-cloud

microexperiments

We compared Vehicle-to-Vehicle (V2V) and Vehicle-to-Cloud (V2Cloud) communica-

tions response latencies for requests occuring Vehicle-to-Cloud over 4G LTE cellular

data (V2Cloud), Vehicle-to-Vehicle over adhoc Wi-Fi (V2V-WiFi), and Vehicle-to-

Vehicle over DSRC (V2V-DSRC). All interactions are timestamped on the phone

from the instant a request is sent to when the corresponding response is received to

obtain end-to-end system latencies.

We benchmarked V2V communications in 2-car microexperiments. The vehicles

looped back and forth on a straight 1.2 kilometer segment of Vassar Street (Figure 3-3)

in an urban setting at speeds varying from 0 to 30 mph, in various situations including

one car following another, one car stationary, both cars stationary, and both cars

driving in opposite directions and passing by each other. The V2V-DSRC and V2V-

WiFi experiments occurred simultaneously over 1.5 hours, and the cars continuously

exchanged a token back and forth when they were within communications range.
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Figure 3-4: V2Cloud microexperiment test route

The V2Cloud measurements occurred over 20 minutes of a single vehicle driving

through Cambridge and Boston on the urban route in Figure 3-4, with speeds varying

from 0 to 30 mph. We drove a longer and more diverse route for this experiment as

we did not have to coordinate the movements of two cars as in the V2V experiments.

The system exchanged a token between the vehicle and the server every 2 seconds.

These response latency microexperiments generated 13067 V2V-DSRC, 1375 V2V-

WiFi, and 473 V2Cloud end-to-end latency measurements (Figure 3-5). There are

many more V2V-DSRC measurements than V2V-WiFi because the DSRC radios

are able to communicate and exchange tokens at longer distances than the WiFi

radios: in the scenario with two vehicles driving in opposing directions, with inter-

vehicle distance varying from 1.2 km to 0 m, we observed that the distance of token

exchanges were 7.4 meters mean and 6.8 meters median over 45 WiFi exchanges, vs.

100.2 meters mean and 99.6 meters median over 519 DSRC exchanges. It should be

noted that these experiments were carried out largely to test the radios and obtain

initial numbers for guiding the system design, and not intended as a rigorous head-
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Figure 3-5: End-to-end latencies of V2Cloud, V2V-WiFi, and V2V-DSRC requests
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Figure 3-6: End-to-end completion rate of requests made over V2Cloud, V2V-WiFi,
and V2V-DSRC.

to-head comparison; our deployment (Section 3.4) later enables a direct comparison

by maintaining the same experimental settings across measurements.

V2V latencies are significantly lower than V2Cloud latencies, with up to 68.5%

reduction in mean latency and 70.0% reduction in median latency.

Request completion rates are shown in Figure 3-6. V2V request completion rates

are lower than V2Cloud completion rates. Because requests (the first message of two

in each token exchange) do not have a retries or multiple transmissions, they have

lower reception rates than responses, which are sent 3 times to prevent token loss,

evident in Figure 3-6.

These findings are consistent with prior characterization studies for cellular data

networks [37, 33], phone-based adhoc WiFi [26], vehicular WiFi [35, 52], and DSRC [8].
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reception rate.

In summary, these experiments point to the potential benefits of leveraging V2V

communications for a distributed token protocol over a conventional client-server im-

plementation where all token requests and responses go through the cellular network

to a central server, but the distributed token protocol will need to be able to accom-

modate the unreliability of V2V networking.

3.2.3 Distributed RoadRunner protocol

We thus designed a distributed token exchange protocol for RoadRunner that lever-

ages V2V communications to pass tokens directly between cars where possible, falling

back to a central server through the cellular network only as a backup.

A vehicle can make requests for tokens, and/or offer tokens that it is not using and

does not anticipate using. The requests and offers are contained in a vehicle status

report that is broadcast periodically to any neighboring vehicles in communications

range. If another vehicle responds to a request with an offered token or can make use

of an offered token, the vehicles exchange tokens.

This is only possible when two vehicles are within communications range of each

other. As a backup, when a vehicle needs a token but cannot find an available token

from cars in range, or if it has an available token but is unable to find another vehicle

that demands it, it will contact the remote server via cellular to request/return a

token.

There are three types of V2V packets in RoadRunner: ANNOUNCE, TOKENREQ UEST,
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and TOKENSEND. Each vehicle broadcasts an ANNOUNCE packet every 2 sec-

onds, which contains the vehicle's ID, location, speed, bearing, region IDs of tokens

requested by the vehicle, and region IDs of tokens currently offered by the vehicle.

When a requesting vehicle receives an ANNOUNCE that contains an offer for a token

that it needs, it sends a TOKENREQ UEST packet containing the region ID that it

wants. The offering vehicle removes the token from its offers list, and sends back a

TOKENSEND packet containing the token and a nonce. It sends this packet three

times to increase probability of reception. The requesting vehicle uses the nonce to

identify and discard duplicate packets.

3.2.4 RoadRunner Walkthrough

At the beginning of a trip, a vehicle determines its route to a given destination and

which regions under congestion control it must traverse. For each of these regions,

the vehicle contacts the server over the cellular data connection to see if any tokens

are available for those regions. If a token is available, it downloads and removes the

token from the server and stores it in a collection called tokensInUse. Otherwise,

it places the unfulfilled request in a retry queue. The list of unfulfilled requests is

included in the ANNOUNCE packet which is periodically broadcast to any nearby

vehicles (every 2 seconds in our deployment), and occasionally retried to the server

in case any tokens are newly available on the server.

Entering a congestion-controlled region

When the vehicle enters a congestion-controlled region, one of the following scenarios

occurs depending on whether it has a valid token for the region or not:

WITH a valid token. As the driver continues along the route and encounters a

congestion-controlled region, it checks whether it has the corresponding token in its

tokensInUse collection. If it does, then the token is marked in-use and the vehicle

may drive through the region without any penalty or infraction logged.

Upon exiting the region, the vehicle removes the in-use designation from the token
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and places it into a tokensOffered collection. A list of regions for which this vehicle

is offering tokens is included in the periodic ANNOUNCE broadcast.

WITHOUT a valid token. If a corresponding token is not available for a

region, RoadRunner excludes that region from its navigation calculation and will not

choose routes going through that region.

If a corresponding token is not available for the region and the driver enters the

region anyway, RoadRunner logs an infraction of the congestion control policy and

enforces a penalty. A PENALTY token for that region is created and marked in-use.

This PENALTY token serves to allow the driver to continue driving in that region,

and possibly exit and renter it multiple times without incurring multiple penalties,

expiring after a certain amount of time (10 minutes in our experimental deployment).

Upon exiting the region, the PENALTY reservation for this region is stored in a

penaltyTokens collection so that the driver may reuse it for this region until it expires

without incurring additional penalties (since the penalty for this region has already

been paid).

Vehicle-to-Vehicle interactions

If vehicle A receives an ANNOUNCE broadcast from another vehicle B over the V2V

radio (whether adhoc Wi-Fi or DSRC), vehicle A checks whether vehicle B is offering

any tokens that vehicle A has unfulfilled requests for. If it does, for each of these

unfulfilled requests, vehicle A sends a TOKENREQ UEST message to vehicle B with

the region that it wants.

Upon receiving a TOKEN-REQUEST message, vehicle B checks whether it has

a token for the request region in its tokensOffered collection. If it does have a cor-

responding token, vehicle B removes the token from its tokensOffered collection and

sends it back to A in a TOKENSEND message.

This ANNOUNCE, TOKEN-REQUEST, TOKENSEND hand-shake is necessary

to ensure that each token is a singleton; if the tokens were grabbed directly from

the ANNOUNCE message, multiple copies of the token may appear since multiple

vehicles may hear the ANNOUNCE message. The TOKENSEND message includes
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the unique ID of the vehicle that is allowed to receive and use the token, so no

duplicates occur among multiple vehicles. To ensure that no duplicates occur on the

intended vehicle due to retransmissions, each TOKENSEND message also includes

a per-vehicle nonce so that extra receptions of the same TOKEN-SEND message can

be identified and discarded.

If multiple vehicles send a TOKEN-REQUEST in response to an ANNOUNCE

message, the offering vehicle processes TOKENREQ UEST messages in the order

received, removing tokens from the tokensOffered collection as it goes. If it reaches a

TOKENREQ UEST message and does not have the requested token anymore (since

it handed it over in response to an earlier TOKEN-REQ UEST message), it ignores

that TOKEN-RE QUEST message.

ANNOUNCE packets are not rebroadcast or flooded through the system because

beyond 1-hop, the latency of a V2V token exchange would exceed that of a V2Cloud

token exchange, and result in a lower completion rate. Assuming a 40-millisecond

latency for a single message from vehicle to vehicle (estimated from our 2-message

response latency microexperiments), a 2-hop token exchange incurs 4 messages total,

resulting in a latency of 160 ms vs V2Cloud's 140 ms latency.

3.2.5 RoadRunner design parameters

We describe the design parameters of RoadRunner that impact token utilization/reuse,

and in turn, the effectiveness (latency and throughput) of the congestion control pol-

icy.

1. On-demand requests versus pre-reserve requests. RoadRunner can op-

erate in two modes:

Pre-reserve requests allow RoadRunner to request all the tokens it needs for

a route at the beginning of a trip. Even if RoadRunner does not obtain all

the tokens it needs at the beginning, it will continue attempts to fulfill any

remaining requests as the vehicle continues on its route. This increases the

frequency of token requests, as the vehicle keeps trying from the beginning of
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the trip until it enters the region. Vehicles hold tokens for a longer period of

time without actively using them, too, decreasing token utilization rates. Pre-

reserve requests may provide a better user experience, however, since the system

can show the driver a complete, preferable route at the beginning of the trip if

available, rather than as a reroute while the user is already driving.

On-demand requests allow RoadRunner to delay making token requests until

just before it needs a token. This reduces the frequency of token requests as

the vehicle does not continually attempt unfulfilled token requests from the

beginning of the trip, and reduces the length of time that tokens may remain

unused on a vehicle before it has reached the region. This may provide a poorer

user experience, however: more preferable routes may become available only

during the drive, requiring reroutes, imposing uncertainty.

These two modes represent a trade-off between providing the driver more cer-

tainty about the route he will take at the beginning of a trip vs. reducing the

time tokens spend not in use but unavailable to other cars.

2. Server retry timeout for unfulfilled requests. Any unfulfilled token re-

quests are periodically retried to the server. Longer retry periods reduce cellular

data accesses, while shorter retry periods decrease the time that an available

token will sit unused on the server. For the deployments, we used a server retry

timeout of 2 seconds for the cloud-only variant, 10 seconds for the on-demand

variant, and 30 seconds for the pre-reserve variant, determined empirically: for

the cloud-only variant, any available tokens are always on the server, so that is

the only place to check. For the V2V-enabled on-demand variant, any available

tokens may be on other vehicles and not necessarily the server, so we don't check

the server as often. For the V2V-enabled pre-reserve variant, tokens are even

more likely to be available on neighboring vehicles rather than on the server

because all the available tokens are grabbed from the server in advance by the

vehicles, so we check the server even less often.

3. Timeout for returning tokens. Any tokens that the vehicle has finished

47



using (detected when it exits a region) and no longer needs is returned to the

server after a timeout. A longer delay until returning the token allows the vehi-

cle more time to encounter another vehicle that can receive the token over V2V

communications, while a shorter delay decreases the time that a token might

sit unused on the vehicle. For the deployments, we used a 10 second timeout

for returning the tokens on the V2V-enabled on-demand variant, and a 60 sec-

ond timeout on the V2V-enabled pre-reserve variant, determined empirically:

For the on-demand variant, there are fewer oustanding unfulfilled requests in

the system overall because requests are made just-in-time / on-demand when

nearing a region, while for the pre-reserve variant, there are more outstanding

unfulfilled requests in the system overall because each vehicle attempts to grab

multiple tokens at the beginning of the trip.

3.2.6 RoadRunner metrics

Token utilization. This is the proportion of time that a token spends on a car

inside a controlled region, and is directly related to region capcaity utilization. A

higher token utilization implies that the number of vehicles in a controlled region is

close to or at its quota, resulting in higher traffic throughput while avoiding congested

conditions.

Token request fulfillment time. This is the delay from when a car initially

makes a token request, until when it finally obtains a token, perhaps after several

retries to the server or after a V2V interaction with a nearby vehicle. Longer token

fulfillment times may be necessary to maintain a quota and reduce congestion on

controlled regions, but are often undesirable, as they can result in lowered throughput

through the transportation system as cars are throttled waiting for tokens. They can

also result in more retries to the server, thus adding load on the cellular connection.

Ultimately, token reuse is desirable, and underpins the benefits of RoadRunner's

distributed road reservation protocol. When tokens can be circulated and reused

among cars directly, cellular accesses for requesting tokens are offset, and token fu-

fillment times can be lowered when cars can obtain a token from another car rather
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than waiting on a periodic server retry. To enable token reuse, however, cars that are

done using their tokens must hold onto the tokens for a period of time to make them

available to other cars over V2V. This results in fewer free tokens being available on

the server.

3.3 Implementation

We implemented RoadRunner as an Android application on Samsung Galaxy Note

smartphones. The application consists of an Android Service (RoadRunnerService)

that implements the main logic of RoadRunner and continuously runs in the back-

ground, and an Android Activity (MainActivity) that shows the status of the appli-

cation. RoadRunnerService and MainActivity run in the same thread. A separate

thread manages the V2V communications interface (adhoc Wi-Fi or DSRC), running

a busy-wait loop to receive packets from the network interface associated with the

V2V radio.

3.3.1 V2Cloud Communications

The smartphones communicate with the remote server over 4G LTE cellular data,

which represents the state-of-the-art in mobile data access today.

On the server, we implemented a Python application that services requests over

TCP through a line-based protocol, allowing vehicles to make requests (a GET re-

quest) for and receive tokens from the server, and to send tokens back to the server

(a PUT request). If there are no tokens available for a requested region, the server

will respond with an error code (GET 500 FULL).

3.3.2 V2V Communications

For V2V communications, the app can leverage either 802.11n adhoc Wi-Fi or 802.1lp

DSRC. We implemented support for both interfaces in our Android application.
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V2V over 802.11n Wi-Fi

To use 802.11n adhoc Wi-Fi, we run Android 2.3 Gingerbread on the Galaxy Note

smartphones to use adhoc Wi-Fi because only the Gingerbread drivers for the Broad-

com BCM4330 chipset in the phone support wireless extensions (WEXT). We use a

cross-compiled iwconfig binary to configure the cards in adhoc mode at the lowest

bitrate supported (1Mbps) with power management turned off. Each smartphone is

configured with a unique IP address, and all V2V communications is done over UDP

broadcast.

V2V over 802.11p DSRC

To use 802.11p DSRC, we connect the Android smartphone to a Cohda Wireless

MK2 WAVE-DSRC Radio [18]. The MK2 provides a USB 2.0 host interace through

the use of a mini USB On-The-Go (OTG) adapter, to which we connect the Android

smartphone with a microUSB cable. We enable USB tethering on the Android smart-

phone, which presents the Android smartphone as a generic USB ethernet adapter

(USB CDC Ethernet) to the MK2 host, allowing for ethernet frames to be transmitted

between the two devices.

The MK2 runs FwdWsm, a software bridge application that receives UDP packets

on the USB Ethernet interface, encapsulates them in WAVE Short Message (WSM)

packets, and broadcasts them over the 802.11p wireless interface. FwdWsm also re-

ceives WSM packets, removes the WSM headers, and forwards the resulting UDP

packets to the USB Ethernet interface. This allows Android applications to commu-

nicate over the 802.11p radio simply by sending and receiving UDP packets on the

USB Ethernet interface.

The MK2 radios utilize dual roof-mounted 5.9 Ghz antennas, and are powered by

the 12V power supply from the vehicle's cigarette lighter port.
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3.3.3 Implementation discussion

Several practical considerations of implementing a distributed congestion control sys-

tem are discussed below.

Electronic tolling/road-pricing. A time-based road pricing scheme, such as

that used in Singapore's ERP [74], where a different rate is charged at different times,

can be straightforwardly implemented with RoadRunner by having the server attach

prices to tokens at the start of a time interval when first distributing, and having

tokens expire at the end of a time interval. Every time a vehicle receives a token,

it deducts the corresponding value from the vehicle's account. Thus, every time the

tokens expire, a new batch of tokens with new prices can be generated on the server.

The payment account can be implemented via a prepaid smartcard inserted into

an interface to the smartphone, as is currently done with a specialized in-vehicle

unit in Singapore's ERP [74] system, or it can be electronically managed via online

accounting systems like PayPal.

From another perspective, RoadRunner already operates as a hybrid road-pricing

and road-space rationing scheme, as drivers could intentionally drive onto roads with-

out a token and choose to pay the penalty, which could change according to time-of-

day. These penalty charges could be updated over time as well.

Security. In existing electronic congestion control schemes, the security of the

system is dependent on the presence of a trusted in-car unit in each vehicle, and

tampering with the unit is prohibited by regulations policy [74]. The RoadRunner

app runs on a user's smartphone, an untrusted host, and we want to prevent malicious

users from forging and/or duplicating tokens or spoofing their location to misreport

presence in a region, which can be addressed by prior work on the trustworthiness of

a reported location [46]. Claessens et al [17] remark that the most difficult problem in

doing secure electronic transactions on mobile devices is that of the untrusted host;

in this case, we want to protect the transportation authority from a mobile device's

user, known as undercover-agent trust [61]. RoadRunner can use digital signatures

to verify that tokens are legitimate, requiring that the module verifying signatures to
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be trusted, e.g. the implementation by Schmidt et al [72] of the Trusted Computing

Group's Mobile Trusted Module specification, or by Winter et al [85] on embedded

linux-based ARM trustzone platforms.

Privacy. Lenders et al [46] also describe a decentralized certificate authority for

their secure localization service, which can preserve the privacy of users generating

location-tagged information (such as the ANNOUNCE messages).

GPS localization in urban cities. GPS localization faces problems in urban

environments with tall buildings (called urban canyons). To overcome this challenge,

Cui et al [19] successfully demonstrated a vehicle path-constrainment method, and

Vicek et al [81] combined GPS with a gyro and vehicular odometer, techniques which

are orthogonal to RoadRunner.

3.4 Deployment of RoadRunner Prototype

We implemented a mobile application to evaluate three variations of RoadRunner: a

Cloud-only variant that communicates solely with a remote server, a Wi-Fi-enabled

variant that communicates with a remote server and with other vehicles over adhoc

Wi-Fi, and a DSRC-enabled variant that communicates with a remote server and

with other vehicles over DSRC / 802.11p. The server portion was implemented as a

Python application that serviced requests over HTTP, and was located in the same

geographic region as the phones to minimize backbone Internet latency.

For the V2V-enabled variations, we tested the two possible operation paradigms

of RoadRunner: 1) an on-demand navigation and routing system that requests tokens

just-in-time for the next region, and 2) a pre-reserve system that requests all necessary

tokens at the beginning of each trip iteration. For the Cloud-only variation, we did

not test on-demand vs pre-reserve because they are effectively the same: all requests

end up going through the remote server anyway, and unused tokens do not remain on

the vehicles for V2V exchanges. Only the cloud server has any available tokens, so it

does not matter whether vehicles begin checking with the cloud at the beginning of

a trip or on-demand.
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Our deployment took place in eastern Cambridge, Massachusetts, USA (Figure 3-

10). We split each road into regions between intersections which served as the buffer

zones, resulting in a total of 11 regions on 2570 meters of road, with 4 controlled

regions having a bounded number of tokens available for each, and 7 unrestricted

regions that did not require tokens to traverse (Figure 3-9). This resulted in a fine-

grained congestion control scenario of 4 controlled regions with a total distance of 900

meters. For comparison, Singapore's Orchard Road ERP zone is 1 controlled region

of distance 2200 meters, an order of magnitude larger.

Ten vehicles participated in our experiment, driving along a default loop through

Mass. Ave, Main St and Vassar St, with half of the vehicles going clockwise, and

the other half going anti-clockwise. The RoadRunner app will provide voice-over

instructions to drivers to divert to Windsor St or Albany St depending on the suc-

cess/failure in obtaining the necessary tokens. Vehicles circulated among the regions

for 20 minutes beforehand to reach a random steady-state distribution of vehicles over

the deployment area.

Each vehicle had two smartphones mounted on the windshield, one connected

to a DSRC radio and the other utilizing its internal WiFi radio as in Figure 3-8.

We ran two ten-minute trials each of V2V on-demand over WiFi, V2V on-demand

over DSRC, V2V pre-reserve over WiFi, V2V pre-reserve over DSRC, and Cloud-only

permutations of RoadRunner's modes.

3.4.1 Request fulfillment offload

Figure 3-11 shows the proportion of all fulfilled token requests that are fulfilled over

V2V (in the Cloud-only variant, all requests are fulfilled over V2C). V2V-WiFi is

not able to offload many token exchanges, due to the limited range of Wi-Fi: in

the deployment, only 5 token exchanges occur over WiFi at a mean distance of 29.2

meters, while 47 token exchanges occur over DSRC under the same conditions, at a

mean distance of 175.7 meters. V2V-DSRC is able to offload a significant portion

of token exchanges, up to 43%. The pre-reserve variants offload more than the on-

demand ones as requests for each region are made at the beginning of the trip rather
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Figure 3-8: Picture of deployment setup in each vehicle.
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Figure 3-9: Routes in our deployment, with controlled regions shaded and their ca-
pacity shown above each block.

Figure 3-10: Map of deployment area and regions.

54



100%

80%
PO

60%

40%

20%

0% L-En

Cloud-only V2V-WiFi V2V-WiFi V2V-DSRC V2V-DSRC
ondemand prereserve ondemand prereserve

Figure 3-11: Proportion of all fulfilled requests over V2V.
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Figure 3-12: Time to token request fulfillment.

than just before the region, giving vehicles more time to encounter a token offered

over V2V.

3.4.2 Request fulfillment time

All token requests are timestamped from when the request is created to when the

request is fulfilled, whether by the centralized server (V2C) or another vehicle over

V2V communications. We graph the fulfillment times for the variants of RoadRunner

in Figure 3-12.

Average request fulfillment times for DSRC and WiFi variants of RoadRunner are

similar to the Cloud-only baseline, with the exception of the V2V-WiFi pre-reserve

variant. This variant obtained only 5 tokens over V2V out of 73 total tokens obtained

(a 6.8% ratio) due to the limited range of WiFi, while V2V-DSRC pre-reserve obtained

37 tokens over V2V out of 86 total, a much higher 43% ratio. DSRC's improved range

allowed it to more often short-circuit the wait for a token to appear on the cloud,
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Figure 3-13: Request fulfillment rate

reducing its fulfillment time. Thus, the distributed token reservation protocol is able

to match the performance of the Cloud-only baseline in fulfillment time with good

V2V communications. On-demand variants have much lower median fulfillment times

than cloud-only and pre-reserve variants because requests for a region are made just-

in-time in the prior region.

3.4.3 Request fulfillment rate

The fulfillment rate is the proportion of token requests that eventually end in the

successful acquisition of a token. In a congestion control system, a fulfillment rate of

100% is undesirable since that would imply allowing every vehicle into a controlled

region, which implies no congestion control. The fulfillment rate is useful for un-

derstanding the effects of the more unreliable vehicle-to-vehicle communications and

token exchange protocol vs. the usually available cellular and cloud server (which

was available 100% of the time in our microexperiments, and 91% of the time in our

deployment).

Since the total number of vehicles in the system and the total number of tokens

per region is held constant throughout our experiments, we should expect similar

fulfillment rates from the V2V-enabled variations of RoadRunner. Any significant

deviations would imply that the RoadRunner system itself is negatively impacting

the ability of vehicles to obtain tokens, beyond the effects of traffic congestion.

We show the fulfillment rates for the variations of RoadRunner in Figure 3-13.

DSRC RoadRunner show similar fulfillment rates to the Cloud-Only baseline, imply-
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ing that when using DSRC for V2V communications, the distributed road reservation

protocol of RoadRunner successfully fulfills token requests just as well as a Cloud-only

implementation.

The WiFi variants show poorer fulfillment rate, indicating that the distributed

road reservation protocol is negatively impacting the ability of vehicles to obtain

tokens, due to WiFi not having sufficient range to meet other vehicles with tokens.

Pre-reserve DSRC Roadrunner has better fulfillment rates than on-demand DSRC

Roadrunner as token requests are created at the beginning of a trip rather than on-

demand, giving the vehicle more time to encounter a nearby vehicle offering that

token: indeed, DSRC pre-reserve was able to fulfill request over V2V more frequently

(43.0% of all requests vs. 10.6% for DSRC on-demand).

3.4.4 Reroute notice time

The reroute notice time is the time from when the route changes (a reroute) due to a

token being newly acquired, to when the driver turns onto the new route. Reroutes

occur if a more preferable route becomes available; when this happens, we automat-

ically update the navigation route to the most preferable, present updated turn-by-

turn voice navigation directions to the driver, and display tokens in possession on the

screen. If the driver chooses to take a different route or is unable to turn onto the

new route in time, RoadRunner makes the tokens available to other vehicles or puts

them back on the server.

In our deployment, the route passing through Windsor-1 is the shortest and most

preferable, the route passing through Albany-1 and Albany-2 is the next most prefer-

able, and the route through Vassar-1 is the least preferred. The Vassar-1 route is the

default route presented to the driver, and if no tokens are available, the driver will

incur a PENALTY.

The reroute notice times for the variants of RoadRunner are shown in Figure 3-14.

In all but one case in the Cloud-only variant, drivers had at least 50 seconds to turn

onto the route.

The on-demand V2V variants of RoadRunner outperformed the Cloud-only base-
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Figure 3-14: Reroute advance notice time available to driver when a more preferable

route becomes availabe.

line in reroute time provided to the driver. The pre-reserve V2V variants had a

bimodal distribution: when vehicles are able to prereserve tokens in advance at the

beginning of the trip, this counts as a reroute away from the default, longest route

and thus those lucky drivers are afforded a large amount of time to take the new

route. For drivers who did not get those tokens, however, they often get tokens just-

in-time as the previous group of lucky drivers finish using their tokens and make them

available to the latter group.

3.4.5 System responsiveness

We characterized the Vehicle-to-Vehicle (V2V) and Vehicle-to-Cloud (V2C) interac-

tions in our deployment for an apples-to-apples comparison. All token exchanges are

timestamped on the phones from request sent to response received to obtain end-to-

end system latencies. We compare the latencies for interactions occuring Vehicle-to-

Cloud over 4G LTE (V2C), Vehicle-to-Vehicle over adhoc Wi-Fi (V2V-WiFi), and

Vehicle-to-Vehicle over DSRC (V2V-DSRC).

V2V latencies, shown in Figure 3-15, are significantly lower than V2C latencies,

with interactions over WiFi showing 61.2% reduction in mean latency and 22.5% re-

duction in median latency, and DSRC showing a 79.9% reduction in mean latency

and 62% reduction in median latency. V2C latencies have a much higher mean than

median due to a long-tail distribution in which some cellular accesses taking a dis-

proportionately long time to complete. These findings are consistent with prior char-
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Figure 3-15: System end-to-end response latency to requests, whether requests are

fulfilled or not.

acterization studies [33, 42, 711.

DSRC latencies are not as low as the 100 microseconds delay requirement for safety

applications or previously measured DSRC latencies [89], as we have additional delays

incurred from the use of the FwdWsm software bridge, the USB Ethernet interface

to the phones, the Android stack and Dalvik VM that Android apps run within, and

the RoadRunner application overhead. Congestion control is not a safety applica-

tion, however, and DSRC RoadRunner already shows significant improvements over

the conventional client-server implementations of prior infrastructure-less electronic

tolling systems [51] [45] [79] that rely solely on cellular.

3.4.6 Cloud access offload

For each of the RoadRunner variants, we measure the ability of the system to reduce

the load on the cellular data network. For each variant, we divide the total number

of requests made to the cloud server over the LTE connection by the number of token

requests successfully fulfilled.

Figure 3-16 shows that all the V2V variants of RoadRunner are able to reduce the

number of cloud accesses per token significantly compared to the Cloud-only variant

with reductions ranging from 66.3% to 84.3%.
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Figure 3-17: Ratio of unnecessarily penalized entries to total entries. Certain variants

experienced no unnecessary infractions in regions.

3.4.7 Overall congestion control effectiveness

We evaluated the ability of RoadRunner to ensure that there are no more vehicles

with valid tokens in each region than was originally allotted, and that any vehicles

without a valid token incur a penalty reservation.

A system that is perfectly efficient would enforce an upper bound on the number

of vehicles in a region by allowing all vehicles to enter without penalty up to the upper

bound, and once the maximum capacity of the region is reached, would penalize all

vehicles entering above the upper bound. Vehicles may be unecessarily penalized

for entering a region even when the region has not yet reached capacity, due to

another vehicle posessing an unused or not-yet used token for that region, making

it unavailable to a vehicle that could have used the token earlier. We calculate the

unnecessary infraction ratio as the number of unnecessary infractions divided by the

total number of vehicle entries into a region for each controlled region, and for all

controlled regions, in Figure 3-17.

V2V-WiFi consistently incurs more unnecessary infractions than both Cloud-only

and V2V-DSRC, because free tokens are effectively tied up on the cars as V2V offers
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that never get heard due to the limited WiFi range, making them unavailable to other

cars checking the server. V2V-DSRC has sufficient V2V communications range and

does not run into this problem, as reflected in Figure 3-17.

We see that even in the Cloud-only baseline, many unnecessary infractions occur.

This is due to the very low number of tokens available for each region and the total

system (only 2-5 per region), which is a consequence of our limited deployment size of

10 vehicles. In our Cloud-only simulation (Section 3.5), we see that infractions begin

to be enforced when the region has not quite reached capacity; this effect happens

here as well, except that we have few vehicles in the first place. Instead, we rely on our

large-scale simulation to demonstrate the enforcement effectiveness of RoadRunner's

distributed road reservation protocol.

In summary, these results demonstrate the benefits of leveraging V2V communi-

cations for token exchange interactions among vehicles, rather than a conventional

client-server implementation where all token requests and responses go throu-gh the

cellular network to a centralized server. We achieved reductions in cloud accesses

incurred per request by up to 84% and reductions in response latencies by up to 80%.

The RoadRunner distributed token protocol running over DSRC matches the fulfill-

ment rate of a Cloud-only baseline and does not significantly increase unnecessary

penalties on controlled regions. In the following simulation studies, we show that

at large scale, RoadRunner incurs much fewer unnecessary infractions in all variants

than in our limited deployment size.

3.5 Large-Scale Simulation of RoadRunner

We also evaluated the operation of RoadRunner at scale by using loop detector counts

from Singapore to simulate system operation over a 24 hour period beginning Sunday,

August 1, 2010, resulting in 165,272 boundary crossings across the entire Orchard

Road Region. Vehicle counts are available for nine intersections on Orchard Road

(Figure 3-18), a road region that experiences heavy traffic volume and is currently

under electronic road pricing congestion control as a single controlled region. We sim-
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Figure 3-18: Map of Orchard Road region and intersections used for simulation.

ulate Orchard Road as a single controlled region in RoadRunner as well, to motivate

the viability of RoadRunner as a drop-in replacement congestion control scheme to

this real-world congestion control deployment.

For each intersection, we manually annotated which detectors counted vehicles

turning onto (entering) the region, which detectors counted vehicles turning out of

the region (exiting), and which detectors counted vehicles continuing to travel inside

the region.

We simulated the RoadRunner on-demand protocol with a congestion control

policy providing 3000 road reservation tokens on Orchard Road. We did not simulate

RoadRunner pre-reserve as the loop count data does not provide locations of trip

origins. Since the loop count data is prerecorded, RoadRunner cannot reroute vehicles

that have not obtained a token, but it does detect them as infractions once they enter

the region without a token.

3.5.1 Vehicle movement model and communications model

The raw loop count data provides the number of vehicles crossing through the in-

tersection of each lane every 5 minutes through the use of loop detectors embedded

under each lane. To model the movement of vehicles within the region, we first in-

terpolate loop count data to a higher temporal resolution (necessary to simulate the

62



V2V communications) by modeling vehicle arrivals at each loop count detector as a

Poisson process and distributing these arrivals uniformly across the 5 minute time

interval. We then bin them into 30 second intervals, thus producing interpolated loop

count data with a temporal resolution of 30 seconds rather than 5 minutes.

We model 9 subregions, 1 for each of the intersections. With each subregion, we

model the movement of vehicles at a speed of 30 km/h when moving, and assume

the vehicle is in a stop-and-go traffic pattern moving half the time, for an average

speed of 15 km/h with entering vehicles traveling away from the intersection into the

region, and vehicles exiting the region traveling away from the region boundary. In

each 30 second timestep, these vehicles can travel up to 125 meters, providing us with

a bounded estimate of their distance from the intersection. Any entering vehicle is

thus at most 125 meters away from any exiting vehicle and vice-versa, and any vehicle

is at most 250 meters away from any other vehicle.

We assume a V2V communications range of 125 meters with a 100% message

reception rate, based on the average DSRC token exchange distance of 175.7 meters

in our real-world deployment (Section 3.4). Thus, in each timestep, all vehicles

entering and exiting a region are able to communicate with each other and exchange

any tokens.

We also simulate a cloud server that exchanges tokens with the vehicles over a

V2Cloud cellular connection, assuming this connection is available 100% of the time.

The cellular data connection was available 100% of the time in our microexperiments,

and intermittently available 91% of the time in our deployment (100% available after

retries).

Our simulated V2V and V2C communications are instantaneous, as the purpose

of these simulations is to evaluate the viability of RoadRunner's distributed token

reservation protocol at scale with realistic vehicle traffic patterns and densities.

3.5.2 Simulation initialization and iteration

We initialize the simulation by placing 1500 vehicles within the region when the

simulation begins at 12:00am. These vehicles all start with a valid token. (Over the
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course of the simulation, this yields a maximum of 3606 vehicles in the entire Orchard

Road region at 7:26pm and a minimum of 117 vehicles at 9:54am.)

At each timestep we simulate the RoadRunner distributed token reservation pro-

tocol at each intersection as follows:

1. Entry/exit calculation. We calculate the number of cars entering and exiting

the subregion/intersection by summing the loop counts for the relevant lanes in

which cars enter and exit. For lanes with more than one possible outcome (e.g.

a lane that allows turning left to exit the subregion or continuing forward and

remaining in), the car randomly chooses a path with equal probability.

2. V2V token exchange. Vehicles exiting the subregion in the opposite direction

send their tokens to vehicles entering the subregion over V2V communications.

3. V2C token exchange. Any entering vehicles that were unable to obtain a token

over V2V request a token from a cloud server, which returns a token if it has

any. Any exiting vehicles that still have tokens send them back to the cloud-

server. Note that even with perfect V2V message reception at each subregion,

RoadRunner still incurs cloud accesses: if there are no tokens being offered by

exiting vehicles or extra tokens after the token exchange simulation, requests

for getting and returning tokens must go to the cloud.

At the end of each timestep, we calculate statistics for each of the 9 simulated

subregions, including boundary crossings, entering and exiting vehicle counts, infrac-

tions, tokens exchanged over V2V, and tokens exchanged over V2C. We also compute

statistics for the entire Orchard Road region composed of these 9 subregions.

3.5.3 Simulation results

Quota enforcement and region utilization

We show the region utilization over time of Orchard Road in Figure 3-19 for a Cloud-

only baseline, and in Figure 3-20 for a DSRC-based V2V range of 125m. Note that
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Figure 3-19: Orchard Road vehicle count over course of Cloud-only simulation.
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Figure 3-20: Orchard Road vehicle count over course of DSRC V2V simulation.

RoadRunner successfully enforces the upper limit on the road at all times: the number

of vehicles with tokens in the region never rises above 3000.

Out of 83,075 vehicle entries, 3.03% (2517) of all vehicle entries have unnecessary

penalties in the Cloud-only baseline. These occurs when the cloud runs out of tokens

and an exiting vehicle returns a token to the Cloud too late for another entering

vehicle that has already requested a token from the Cloud. When V2V is enabled,

this drops to 2.96% (2461) since some vehicles that couldn't get a token from the cloud

are now able to obtain a token over V2V instead. These unnecessary infractions are

now due to the limited V2V range which does not allow for token exchanges across

multiple intersections. These results show that at real-world vehicle densities in a

controlled region, the use of our distributed token reservation protocol is able to

reduce unnecessary penalties.

Cellular data access reduction

In the Cloud-only baseline, 160,249 V2Cloud interactions or cellular data accesses oc-

cured, whether to GET or PUT tokens. With V2V enabled, 23,735 V2V interactions
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occured, offloading and reducing cellular data accesses by 29.6% to 112,836.

The cellular data access reduction is lower than in the evaluation because we do not

simulate the periodic server timeout, as the loop count data does not provide traces

for cars extending beyond the region, which are necessary to simulate the periodic

server checks as the car approaches Orchard Road.

3.6 Related Work

3.6.1 Infrastructure-less congestion control

RoadRunner is related to several previously demonstrated systems in infrastructure-

less congestion control, but differs from all of them by leveraging direct V2V commu-

nications instead of relying solely on a cellular data connection. Lu et al [51] built

a GPS-based tolling system using iPaq PocketPCs and portable GPS receivers, with

tolling information reported through a GPRS connection to a backend server. Lee et

al [45] built an electronic tolling system using GPS and 3G for localization and com-

munication, which sends tolling information over a 3G cellular connection. Srinivasan

et al [79] presented a map matching and development platform for infrastructure-less

electronic road pricing systems that runs on mobile devices, which can be applied to

RoadRunner for more accurate localization.

3.6.2 Vehicular networks

RoadRunner is not a traditional vehicular network as it combines a reliable cellular

connection and restricts vehicular routing to a single hop to keep response times low,

but the following systems provide valuable insights on routing of messages, vehicular

positioning, and security. Leontiadis et al [48] present a geographic routing protocol

for vehicular networks and simulate using vehicle traces. Wu et al's MDDV [87] is an

algorithm for data dissemination over V2V that combines opportunistic, trajectory

based, and geographical forwarding, applicable to keeping tokens geographically near

their regions. MaxProp [14] routes message between peers without knowing the state
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of a partitioned disruption-tolerant network or the meeting locations. Wisitpongphan

et al [86] show that conventional routing techniques such as AODV or DSR do not

work for sparse vehicular adhoc networks, such as on a RoadRunner controlled region

during times of low traffic. Boukerche et al [12] examine the suitability of data fusion

techqniues to provide robust localization for vehicular networks, which could help

improve our controlled region granularity. Parno et al [60], Raya et al [66], and Lin et

al [49] contribute protocols, discussion, and designs on securing vehicular networks,

critical to ensuring malicious users do not defraud or disable RoadRunner.
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Chapter 4

Conclusion

Our two system prototypes show that mobile applications running on widely-available

smartphones can achieve significant improvements in responsiveness and cellular band-

width consumption by leveraging mobile sensing, local computation, and device-to-

device communications.

With DIPLOMA (Chapter 2), we demonstrated that shared memory, a program-

ming paradigm that is widely adopted for parallel programming, can be realized

on mobile devices. As mobile applications for public services such as transportation

become increasingly pervasive, we envision the opportunity to piggyback systems soft-

ware such as DIPLOMA onto large numbers of mobile devices, realizing a powerful

mobile computing platform that can offload communications from cellular networks

and computation from servers. DIPLOMA takes a step towards this vision, investi-

gating shared memory as an alternative programming model to client-server, paving

the way for ubiquitous distributed mobile computing.

With RoadRunner (Chapter 3), we demonstrated that a congestion control sys-

tem can be realized with a distributed, infrastructure-less token reservation protocol

that combines ubiquitous smartphones with vehicle-to-vehicle communications. Our

microexperiments and deployments showed sufficient enforcement accuracy, faster re-

sponse times, and effective offload of cellular accesses when compared to a traditional

client-server implementation. Our simulation results show that at realistic density,

such a system can effectively enforce congestion control.
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Infrastructure-less ITS based on smartphones can enable very low cost, truly ubiq-

uitous intelligent transportation services. With device-to-device networking improv-

ing rapidly and gaining widespread implementation in modern mobile devices through

emerging standards such as WiFi Direct [82] and LTE Direct [63], we hope to see more

mobile distributed systems and applications.
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