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fulfillment of the requirements for the degree of Doctor of Philosophy.

A B S T R A C T

A nuclear power management model suitable for nuclear utility systems optimi-
zation has been developed for use in multi-reactor fuel management planning over
periods of up to ten years. The overall utility planning model consists of four
sub-models: (1) Refueling and Maintenance Model (RAMM), (2) System Integration
Model (SIM), (3) System Optimization Model (SOM), and (4) CORE Simulation and
Optimization Models (CORSOM's). The SIM and SOM sub-models were developed in
this study and are discussed in detail; full-scale computerized versions of
each (SYSINT and SYSOPT, respectively) are evaluated as part of the methods
development research.

The RAMM generates feasible, mutually exclusive nuclear refueling-fossil main-
tenance schedules. These are evaluated in detail by the rest of the model.
Using the Booth-Baleriaux probabilistic utility system model, the SIM integrates
the characteristics of the utility's plants into a representation which meets
the necessary operating constraints. Scheduling of system nuclear production
and detailed fossil production is done for each time period (few weeks) making
up the multi-year planning horizon.

Uti'lizing a network programming model, the SOM optimizes the detailed production
schedules of the nuclear units so as to produce the required system nuclear
energy at minimum system cost. CORSOM's are utilized to optimize reload para-
meters (batch size and enrichment) and to generate the individual reactor fuel
costs and nuclear incremental costs. These incremental costs are then used by
the SOM's iterative gradient optimization technique known as the method of
convex combinations.

The SYSINT model is shown to be remarkably fast, performing the Booth-Baleriaux
simulation for a single time period on a system with over 45 generating units
in less than 2.5 seconds on an IBM-370 model 155 computer. SYSOPT converged to
optimum solutions in roughly ten iterations. Immediate reduction of iterations
by roughly half is estimated by merely increasing piecewise-linearization of
the network objective function. Overall model computational requirements are
limited by available CORSOM's, which require 99% of the computational effort
(over 3 minutes per reactor per SOM iteration).



-3-

Nuclear incremental costs (- 0.8-1.6 $/MWH) are shown to be less than fossil
incremental costs (> 2.0 $/MWH) for the foreseeable future. Thus, nuclear
power should always be operated so as to supply customer demands with a
minimum use of the more expensive fossil energy. For the same reason, the
lengthening of nuclear irradiation cycles (in terms of both energy and time)
more than pays for itself by reducing the total cost of fossil replacement
energy. Idealized nuclear production schedules yield constant nuclear incre-
mental costs regardless of reactor unit and time. One of the key input para-
meters is the fossil thermal energy cost.

Thesis Supervisor: Edward A. Mason

Title: Professor of Nuclear Engineering
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CHAPTER 1

AN OVERVIEW

1.1 Historical Perspective of Nuclear Power Management

The advent of commercial nuclear power created new and

complex challenges to electric utility management. The

utility's staff not only had to resolve difficult questions

concerning safety and the environment during a nuclear plant's

construction, but also ensure the economical production of

energy during the plant's operating life. To aid management

in this operation planning, much effort was expended incor-

porating nuclear power plants into existing utility system

optimization models. By making reasonable and convenient

assumptions (e.g., base-load operation and annual refuelings),

the nuclear fuel cycle cost was determined satisfactorily and

allowed a nuclear plant to be treated merely as a "fossil"

plant with extremely low fuel cost.

However, as more nuclear plants are added to the grid and

nuclear power makes up a larger fraction of the installed

capacity, these assumptions become suspect. As a result,

operating plans based on them, may be far from optimal. "Tra-

ditional methods for planning the operation of a power system

cannot adequately consider nuclear fuel economics or fully

recognize constraints imposed by the nature of the nuclear

fuel cycle (28)."
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Thus, current emphasis has shifted to developing utility

nuclear power management tools which properly model nuclear

plants and the complexity of the nuclear fuel cycle.

1.2 Planning Tools Needed

Utility system planners are faced with four general types

of decisions:

(1) scheduling production,

(2) scheduling maintenance and refueling,

(3) purchasing new fuel and

(4) purchasing new capacity.

The above ordering of these decisions is not arbitrary.

Each of these problems dominates decision-making on a longer

time scale. Conversely, each characteristic time scale im-

poses a different set of constraints on the options available

to the planner. Daily production scheduling must be performed

within the context of the yearly maintenance and refueling

schedules. Likewise, these scheduled outages must be co-

ordinated with longer term fuel contracts anddeliveries. Sim-

ilarly, long term fuel contracts must be cognizant of future

capacity additions and retirements.

The complexities of accurately and efficiently modelling

the nuclear fuel cycle for each of these decisions requires

four different utility system simulation models (see Figure

1.1):



-28-
6253-80
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(1) Daily Model: This model deals with the hour-by-hour dis-

patching of the various generating units. Only a small

fraction of the energy potential in the nuclear fuel is

released and the sole parameter available for optimization

is the power output of each plant.

(2) Annual Model: This model deals with the operation of the

nuclear plants between refuelings. The fuel in each reac-

tor cannot be replaced, but the power operation of the re-

actor, date of the next refueling, and energy potential

of the discharge fuel are decision variables for each unit.

Widmer's analytical treatment of steady-state nuclear

refueling (57, 59) referred to this time scale as "short-

range."

(3) Multi-year Model: This model spans the time required for

the complete nuclear fuel cycle (on the order of 5 to 10

years). In addition to the variables mentioned for the

annual model, this one includes the fuel management reload

variables--fuel enrichment and batch size. This time scale

plays the determining role in planning for the purchase of

fuel and its required processing and fabricationas well as

the financing of all these costs. In the study by Widmer

(58, 59) this time scale was referred to as "mid-range."

(4) Expansion Model: This model covers a period of many years--

on the order of the expected lifetime of generating stations--

and is employed in planning for the addition and retirement

of generating equipment. Within the first three models,



certain plants are assumed to exist or to have been

ordered so that the type and characteristics of each unit

are specified. But in the expansion model, a variety of

new energy production equipment is under investigation.

Several considerations pointed to the multi-year model as

deserving the initial development effort. Relative to Figure

1.1, such a model ought to have many elements useful in the

development of the other three models. At the same time, the

multi-year model possesses all of the complex options inherent

in nuclear fuel management without the additional complexity

of the plant installation decision itself. Finally, multi-

year considerations vitally affect decisions regarding long-

term fuel financing. Such large dollar commitments hint at

large cost savings.

For these reasons, the multi-year nuclear power management

model put forth in this work was developed as the first of the

Commonwealth Edison-sponsored utility system optimization re-

search projects at the Massachusetts Institute of Technology.

1.3 Introduction to Multi-year Planning

In providing installed capacity to meet the customer loads,

a utility relies on up to five different types of generating

equipment:

(1) Nuclear units: very large capacity units generating

electricity from steam produced via the heat released

by a sustained nuclear chain reaction contained within

the reactor's core.
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(2) Fossil steam units: typically large capacity coal,

oil and/or gas-fired boilers producing steam that

is expanded in turbine-generators.

(3) Fast-start peaking units: small fossil-fueled jet

engine, gas turbine or diesel-driven generators.

(4) Hydro units: Typically medium capacity hydro-

electric turbines associated with dams which form

water reservoirs.

(5) Pumped-hydro units: similar to hydro except that its

dual-purpose turbine may alternately operate as a

pump, transferring water from the foot of the dam to

the higher reservoir elevation. Like a storage

battery, cheap off-peak energy is temporarily stored

in another form (water at a height) for retrieval

during the peak by reversing the process.

Regardless of the type of unit, certain key information is

required by the system planner on each and every unit of the

system:

(1) minimum and maximum power level,1

(2) fuel consumption rate vs. power level,

(3) fuel cost,

(4) fuel inventory,

1Throughout this work, all power levels are in units of
net MWe delivered to the transmission system busbar. That is,
plant auxiliary power requirements (-5%) have already been sub-
tracted from gross generator output, but transmission losses
have not been accounted for.
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(5) transmission losses,

(6) startup-shutdown data,

(7) maintenance requirements, and

(8) reliability data.

Table 1.1 presents a general summary of these character-

istics for each unit type, including capital cost estimates.

With the rates (prices) per unit electricity fixed ex-

ternally by regulatory commissions and the total amount of

electricity determined externally by the customers' demands,

the total revenue received by the utility is also fixed

(albeit, in a probabilistic sense). By minimizing the revenue

required to recover the cost of supplying that electricity,

the utility maximizes total profit. Therefore, the utility

objective function is the minimizing of the present value of

all future required revenue, i.e., the revenue requirement.

(Present valuing accounts for the time value of money.) For

any project, this sum represents that amount of money which,

if received immediately and invested in the company, would

just suffice to pay all expenses, as well as permitting a

fair return to investors.2 By including investors' permitted

return as another cost component, "revenue requirements" and

"total cost" become synonymous.

When considering different operating strategies over a

multi-year time horizon (on the order of 5 years), many of

the cost components (e.g., capital investment and overhead)

are essentially fixed.

The multi-year objective function may, therefore, be re-

duced to the operating costs directly related to supplying

2More precisely (55),

"The revenue requirement is that sum of money, which if received
as revenue by an investor-owned electric utility at the begin-
ningof the planning horizon and invested in the enterprise,
will defray all subsequent fuel cycle costs, the return allowed
by regulatory agencies on that portion of the original invest-
ment remaining unexpended at any time, and defray all associat-
ed income taxes."



Table 1.1

Characteristics of Types of Electric Generating Units

Nuclear Fossil Fast-Start Hydro Pumped-
Dimension Steam Steam Peaking ~rHydro

(LWR)

System Base-Load Base-Load Peaking Inventory Peaking
Use Base-Load and Cyclical Peaking Dependent Peaking

Capacity Fact. Percent 60-90 30-90 Up to 20 Up to 100 Up to 50

Capital Cost $/kwe 300-450 250-400 100-150 300-500 100-200

Unit Capacity MW 500-1200 200-1200 10-50 10-600 50-400

Mi. Power _ Cap. 10-40 10-50 75-90 0-10 25-40

Avg. Ht. Rate MBTU/MWH 10.5-11 8.5-14 12-17 N/A N/A

Avg. Net Energy Percent 31-34 25-40 20-28 85-93 65-80
Conversion Eff.

Fuel Cost Q/MBTU 16-20 50-10 (oal 50-100 0 pu pingpower

Energy Cost $/MWH 1. 7-2. 2 3.0-8.4 6.5-20 0 ~1.5 X pumping power

Comments Depends Approx. const. 4-8 hours Depends Depends on
on Fuel on fuel at 100 days (Oil) on operating
Inventory cycle supply season cycle

Trans. Losses Percent Up to 10 Up to 10 Up to 5 Up to 10 Up to 15

SU-SD Ht. Regt. MBTU/MW Cap. 3-6 3-8 0-2 ~0 ~0

Min. SD Time Hours <2 2-10 < 0.3 < 0.5 < 0.5

Maint. Regt. Week/Year 4-8 wk/refuel 3-5 1-4 1-2 1-2

Forced-Out Rate Percent Up to 15 Up to 20 -Up to 40 Up to 5 Up to 10

Perf. Prob. Percent 85-100 80-100 90-100 95-100 95-100

CA.)
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customer loads--fuel consumption within the system and net

electricity purchases from neighboring utilities along with

the associated taxes and carrying charges.

Adopting the notation that RR(X) is the total revenue

requirement related to direct expenditure X,

RR(X) = Present (Expenditure X)
Value

+Present Taxes associated
Value (with X

+Present Carrying charges
Value associated with X) (1.1)

Fuel consumption expenditures can be further broken down

into:

(1) XF, fossil fuel related directly to on-line production

(2) XN, nuclear fuel related directly to on-line produc-
tion, and

(3) Xg, fuel related to units' startup-shutdown heat
requirements.

Expenditures for electricity purchases from other utili-

tiesXUlrepresents both emergency purchases and economy

purchases. (Economy purchases are not considered further

in this work.)

The standard procedure in performing multi-year opti-

mization is to subdivide the entire planning horizon into

Z smaller time periods. In each time period p, expenditures

are estimated in undiscounted dollars. Period expenditures

are then present-valued at x per year from their mean time

t back to time zero. As Section 1.4 will point out, the
p
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addition of nuclear units may prevent immediate evaluation

of XN. [In fact, RR(X N) or RRN is determined directly only

after all periods have been simulated.]

The equivalent multi-year objective function ORR, the

operating revenue requirement, can then be expressed as

ORR = RRF + RRN + RRS + RRU (1.2)

or, in terms of the nonnuclear period expenditures,

ZIRXF ( )t%)

(1.3)

+ X, + X"

1.4 Complexities of Nuclear Power

The cost of fossil fuel is simply the cost of coal or oil

plus shipping charges. Assuming a constant coal stockpile,

newly delivered coal is burned immediately. From mine to ash,

fossil fuel consumption requires only a matter of some days.

Nuclear fuel, on the other hand, requires years to account

for all cost components. Miningconversion and enrichment

begin a year or more before insertion in the reactor. During

the three years or more of irradiation, the energy potential
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is slowly extracted not only from this fuel batch, but also

from two or so others in the core. Four months or more

after discharge, reprocessing occurs and fissile isotope

credits are received. The net result is that TCr, the cost

of a reactor's fuel over a time span of C cycles, is a non-

linear, nonseparable function of the energy produced in each

cycle, ErcP

TCr = Zr ( Erl > rZ >' > C (1.4)

Summing each reactor's total fuel cost (i.e., revenue

requirement) yields the system nuclear revenue requirement,

RRN'

R N ~~ TC =TCr (1.5)

Qualitatively, the nonlinearity,

ro, eElr rC

results from the fact that, given the refueling batch fractions,

cycle energy is approximately linear in reload enrichment,
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but the cost of this enrichment (i.e., separative work re-

quirement) is nonlinear.

Preventing a more general uncoupling of the cycle

energies,

$C O + Cr?(,) +C (Er2 (...+ (1.7)

is the multi-irradiation (multi-zone) nature of today's LWR

refueling schemes. The specification of reload enrichments

requires not only reactivity allowance for the next cycle,

but succeeding ones as well.

In summary, to calculate nuclear fuel costs, the cycle

energies to the horizon of interest must be known.

In the early years of nuclear power, this stringent re-

quirement did not pose a problem for conventional production

scheduling models. With only one nuclear plant on a system

(see Figure 1.2), base-load operation was possible. That is,

nuclear units were operated at full capacity whenever they

were available. (In addition, annual refueling meshed nicely

with fossil maintenance plans and appeared to be reasonably

economical.) For the base-load case (i.e., availability-

based capacity factor for unit r7L' = l),cycle energy Erc

could be immediately determined since

E ~ T_ fKr7 I Lr (1.8)
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where

pr = estimated probability reactor r is capable of

generating energy at random instant of time

Trc = length of irradiation cycle c for unit r, hoursrc

Kr = rated electric capacity of unit r, MW

If T' was constant, the cycles energies to the horizonrc

were the same and reactor steady-state fuel costs could be

calculated and used for all cycles.

However, as nuclear capacity on the system increased, two

problems became apparent. First, not all nuclear units could

be base-loaded if total nuclear capacity was greater than the

minimum load (see Figure 1.2). Equation (1.8) was no longer

easily evaluated because the nuclear portion of the load-

duration curve was no longer equal to 1.0 for all nuclear

units (L' = ? <1). Which nuclear unit should occupy the base-r

load position? Intra-nuclear incremental cost competition

had surfaced for the first time. Only rough estimates of

nuclear fuel costs had been necessary to decide that all

nuclear equipment was cheaper than all fossil equipment (22),

but very refined costs were now needed to decide nuclear

unit A versus nuclear unit B.

Secondly, annual refueling created scheduling problems

when each nuclear unit had to be refueled within every cal-

endar scheduling window. Coupled with decreasing nuclear

load demand, what was the optimum cycle length for each

reactor?
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The net result was that cycle energies were no longer

easily specified out to the horizon. The nuclear compli-

cations rendered previous utility system optimization models

obsolete. The nuclear power management model put forth here

was developed to provide a modern utility system optimization

model capable of handling nuclear plants explicitly. In a

utility system containing nuclear powered generating equip-

ment, the planning of the fuel management must be optimized

from the system demand viewpoint (cost to utility of supply-

ing all customer loads), not an individual reactor supply

viewpoint (cost to utility of supplying power from a particu-

lar reactor). The complex interaction between system load

and incremental operating costs of the multiplicity of

generating units available on a utility system must be con-

sidered in optimizing the two nuclear reload design vari-

ables--fuel enrichment and batch fraction. The result is

that what may appear uneconomical for a particular reactor

(e.g., refueling while energy potential remains in the core),

may indeed be optimum for the overall system.

1.5 A Nuclear Power Management Multi-year Model

A nuclear power management multi-year model currently

under development (23, 34, 41, 55) contains four sub-models

as presented in Figure 1.3. The overall model's purpose is

to supply the utility system planner with the following

outputs:
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(1) Optimum schedule for fossil maintenance and

nuclear refueling,

(2) Associated optimum production schedule and

(3) The resultant fuel requirements.

Operation of the overall model begins within the Refuel-

ing and Maintenance Model (RAMM). Incorporating such inputs

as load forecasts, maintenance requirements and scheduling

constraints, the RAMM determines a number of feasible multi-

year refueling and maintenance schedules. Each schedule is

a mutually exclusive, alternative mode of operating the entire

system over the multi-year horizon. The purpose of the rest

of the overall model is to determine which of the possible

alternative strategies results in the minimum total operating

revenue requirement ORR.

The output of the RAMM is accepted by the System Inte-

gration Model (SIM) in the form of either a set of downtime

dates for each unit on the system or a period-by-period (on

the order of one to four weeks per period) maintenance sched-

ule indicating which units are down in each period. Also

helpful to the rest of the model is an a priori RAMM ranking

of the strategies in order of estimated desirability. That

is, "ballpark" estimates by the RAMM of economics and re-

liability ought to indicate Strategy 1 is most likely to be

optimum, while Strategy n (n-100), though feasible, is highly

unlikely to be economically attractive and/or a reliable

operating scheme. Such a ranking would decrease computing
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requirements for the overall model by permitting the detailed

evaluation of only those strategies with a reasonable chance

of competing for the optimum.

Strategy-by-strategy evaluation begins in the System

Integration Model (SIM). For each strategy, the SIM inte-

grates the utility's available equipment, operating practices,

etc. into a realistic utility simulation model. Since nu-

clear incremental costs are much less than those of fossil

units, production scheduling is optimized so as to meet

customer load demand by maximizing nuclear energy and mini-

mizing fossil energy and fossil cost.

The task of the System Optimization Model (SOM) is to

then optimize the operation of the nuclear portion of the

system (see Figure 1.3) so that the nuclear energy ENuclear

is produced at minimum cost, $Nuclear* To do this, the SOM

postulates reactor-by-reactor multi-year production schedules

which are then passed to Core Simulation and Optimization

Models (CORSOM's) for each reactor unit or type (PWR, BWR,

LMFBR, etc.). With each production schedule specified to

the horizon, each CORSOM is then able to optimize its reload

parameters of batch size and enrichment, minimizing the total

fuel revenue requirement for the particular reactor. In

addition, the CORSOM calculates nuclear incremental costs

for each of the cycles.

With all reactors optimized for the given energy produc-

tion schedules, the SOM begins a second iteration by using

the CORSOM's incremental nuclear energy costs to postulate
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a better reactor-by-reactor multi-year production schedule.

At each iteration between SOM and the CORSOM's in Figure

1.3, each CORSOM accepts a new set of cycle energies (E's)

for its reactor and, in point of fact, the same set of cycle

lengths (T's) associated with the particular possible

alternative strategy. After simulating core physics-depletion

and optimizing the reload parameters (batch size and enrich-

ment), only two specific types of information are returned

to the SOM:

(1) the minimum total reactor fuel revenue requirement

(T r) and

(2) the X rc(E rc) nuclear incremental cost curve for

each reactor reload batch,

3TU
X cEr 3E r (1.9)

rc

Specific information about the fuel designs is not needed by

the SOM. As long as each CORSOM is properly matched with the

reactor unit that it represents, the SOM does not care which

units are PWR's, BWR's, HTGR's or fast breeders. Of course,

management personnel need fuel design information and it

must, therefore, be available in the printed output received

directly from the CORSOM (at least, for the final fully-con-

verged iteration).

Iterations between SOM and the CORSOM's continue until

the system-wide production schedule converges (see Figure 1.3),
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giving minimum system nuclear cost $Nuclear. The total

system cost for the particular refueling and maintenance

strategy under investigation is then merely the sum of

$Fossil and $Nuclear

After evaluating all possible alternative strategies in

this manner, the overall optimum system strategy is the one

resulting in the minimum total system operating revenue

requirement ORR.

Though the above discussiQn and, in fact, this entire

work assumes only fossil and nuclear equipment exist on the

system, the general structure of the overall model holds

even if hydro and pumped-hydro equipment have been installed.

The development of the complete nuclear power management

multi-year model is a very large task. The four sub-models

represent convenient building blocks suitable for somewhat

independent development. However, model interface problems

must be considered. Ideally, the models ought to be coupled

together like the boxcars of a train, not nailed together

like the tracks.

In the context of the Commonwealth Edison-sponsored

utility system optizimation research project at the Massa-

chusetts Institute of Technology, development of a RAMM was

assumed by the project sponsor (20). Development of a

pressurized water reactor CORSOM was undertaken at MIT by

Kearney (41) and Watt (55). The work reported here deals

specifically with the development of the remaining SIM and
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SOM. In this regard, Figure 1.4 and the following sections

describe these two models.

1.6 The System Integration Model (SIM)

The System Integration Model (SIM) has as its basic

purpose the simulation of multi-year utility operation. To

do this, it must integrate the following information into a

representative utility system model:

(1) Forecasts of customer loads,

(2) Generating equipment characteristics,

(3) Forecasts of fuel costs,

(4) Maintenance schedules,and

(5) Operating constraints.

To portray system operation more accurately, the multi-

year horizon is divided into much smaller time periods, on

the order of a few weeks. Periods shorter than a week create

an undue computational burden. On the other hand, periods

longer than a month are precluded by the necessity of dis-

cretely representing scheduled maintenance outages which are

usually two to four weeks in length.

These time periods are then simulated individually in

chronological sequence. Forecasted loads for each period

(Item 1 above) are represented by a normalized customer load-

duration curve. Thermal energy costs (Item 3) are combined

with the characteristics of the generating units to yield

unit incremental costs. Any units unavailable due to sched-

uled maintenance (Item 4) are treated as non-existent for
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that period. The next step is the establishment of the

startup and loading order for the remaining (on-line) units.

It is in this order that various operating constraints (Item

5), such as "spinning reserve" and "zone-loading" require-

ments are incorporated. Production scheduling of the result-

ing system representation is performed using the Booth-

Baleriaux (10, 19) probabilistic utility system model.

As pointed out earlier (see Section 1.4), the complexi-

ties of nuclear power preclude a priori knowledge of nuclear

fuel costs except for the special case of all nuclear base-

load operation. Nevertheless, by incorporating nuclear

versus fossil incremental cost arguments (22) to sub-optimize

each period, the SIM is able to mark time by calculating in

its placethe system nuclear potential (demand) N for each

period (a part of the horizon's total ENuclear ). The respon-

sibility for optimizing and costing intra-nuclear production

of this energy rests with the System Optimization Model (SOM).

Thus, the actual period-by-period output of the SIM

consists of:

(1) XF = Fossil fuel expense related to energy

production,

(2) N = Potential nuclear energy production,

(3) XS = Combined fossil and nuclear startup-shutdown

cost, and

(4) XU = Expense related to emergency energy purchases.
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1.6.1 Booth-Baleriaux Probabilistic Utility Simulation
Model

The Booth-Baleriaux probabilistic utility simulation

model is a recent adaptation of previous deterministic

utility models with new emphasis on the field of applied

probability theory. Though the original 1967 paper on the

subject is a product of Baleriaux, et al., (10) of Belgium,

Booth (17-19) of Australia deserves much of the credit for

introducing and promoting the model in the United States.

Previous papers reporting on the Booth-Baleriaux model,

including the work of Joy and Jenkins (39), have closely

followed the development in the original paper. With due

respect to these ground-breaking efforts, the following

presentation leads to computational savings in terms of time

and storage, and also follows a more direct line of reasoning.

The Booth-Baleriaux probabilistic utility model is based

on the concept of equivalent system load which embodies not

only direct customer demands on a particular unit, but also

the indirect demands left unsatisfied by previously loaded

units when they are on forced-outages.

The equivalent load P may be defined as

P P + P (1.10)

e D 0O

where

PD = actual direct customer load demand, MW
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PO = system capacity on forced-outage that would

be generating energy otherwise, MW

Capacity that is on forced-outage during what would other-

wise have been reserve (i.e., economy) shutdown hours any-

way is not counted since the outage does not affect system

generating operations.

In a probabilistic sense, PD is a random variable with

a complementary cumulative distribution given by FD (PD), the

normalized customer load-duration curve. Since forced-outages

are random, P0 is also a random variable characterized by

the performance probabilities of each unit. Thus, P is also

a random variable and the computation of its complementary

cumulative distribution (the equivalent load-duration curve)

Fe (P e) involves the convolution (26) of the distributions of

PD and P The heuristic presentation here is limited to the

common two-state model of forced-outages:

State 1: With performance probability p, the unit will

perform at any output up to its rated capacity

when called upon, and

State 2: With non-performance probability q, the unit

will not perform at all when called upon.

Thus,

p+q 1 (1.11)

In accounting for the forced-outages of all of the

utility's available generating units (i.e., those not down
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anyway due to scheduled outages), the approach presented in

this work performs the system-wide convolution by sequentially

incorporating each unit's contribution to the equivalent

load. Referring to Figure 1.5, the general equation for con-

volving up to the i th increment of unit r into the equivalent

load-duration distribution F wo can be shown to be as follows,ri

Fw.(P ) = p-Fw(P) + qF w(P -K .)ri e r ri e r ri e ri

for all Pe

(1.12)

where

F = Equivalent load distribution with the

forced-outages of i increments of unit r included.

F w = Equivalent load distribution without the forced-ri

outages of i increments of unit r included

Kri = rated capacity of unit r up to and including i th

increment, i.e., magnitude of forced-outage in-

cluded in P when forced-outage occurs (qr fraction

of the time), MW

pr= performance probability of unit r

q r J- 1~r

Due to Equation (1.10), Kri may be less than the Kr

maximum rated capacity of unit r because the rest of the

unit's capacity is not being used whether on forced-outage

or not.
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Since Equation (1.12) is valid- for all P e (not merely

the single value shown in Figure 1.5), the complete Fw (Pri e

curve can be calculated easily. Two limiting cases are

readily apparent. One caseis P less than the minimum load--

each F w= 1 , as does the resulting FW (P ). For very largeri ri e

P , each FW =0 and, hence, F e (P )= 0 . Equation (1.12) is the

heart and soul of the Booth-Baleriaux model. All subsequent

calculations involving F, whether convolutions or deconvolu-

tions (see below) are merely rearrangements of it.

Deconvolution merely refers to reversing the convolution

process~subtracting unit r's forced-outages from the equivalent

load. That is, given Fw (P ), determine Fwo (P ). The necessityri e ri e

of performing deconvolutions comes about because:

(1) entire units are not scheduled as single blocks of

capacity but as smaller capacity increments due to

units' varying incremental costs, and

(2) during the production calculation (see below),

increments of the same unit cannot possibly make up

for each other's forced-outages since they are all

forced offline together (at least, in the simple

two-state forced-outage model).

Rearranging Equation (1.12) to the following, deconvolu-

tion is accomplished thusly,

F P, = (DF Pe) - K,) (1.13)
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Making use of the fact that F (P ) = 1 for P less thanri e e

the minimum load, FW (P ) can be "boot-strapped" from rightri e
wo

to left in Figure 1.5 to determine the complete F ri

As illustrated in Figure 1.6, forced-outages of units

lower in the loading order increase the demand or duration of

load [F (P,) > FD(Pe)] to be satisfied by capacity increments

higher in the loading order. However, forced-outages affect

not only the demand F on each increment, but also the incre-ri

ment's energy production Eri. If the unit only performs 90%

of the time, then it is expected that only 90% of the produc-

tion demanded from it will be served. Recalling that pr is

the unit's performance probability, the increments' expected

energy production for the period is given by,

E Wr (1.14)

where

T' = duration of time period, hours

AKri = i th increment of capacity of unit r, MW

Pri= system equivalent load when increment i first

loaded, i.e., the increment's loading point.

Total unit energy production for the period, Er Iis given

by summing E . over the unit's I increments,
ri
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At an average cost of erl for .the first increment and

incremental costs X ri for the other increments, the cost

of each energy increment is

Xrl erl Erl (1.16)

Xri X ri Eri for i > 1 (1.17)

and hence, period production fuel expense Xr for unit r is

given by

Recall from Section 1.6, that for nuclear units, the

SIM' s required period output is not cost, but the system

nuclear potential N,

AMet. Urs

E (1.19)

In Figure 1.6, notice that for the final total system

curve, FT ,some indirect customer demand extends beyond the

available installed (on-line) capacity,

ON-t IE UONIC

r KI(1.20)
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As one measure of system reliability, DU represents the

energy unserved by the system's resources (i.e., wholly owned

capacity plus firm purchases),

00

- (1.21)

r
"Expected unserviced energy . . . is the expected cur-

tailment or, more realistically, the expected emergency sup-

port required during" the time period (49). The determina-

tion of the XU expenditure relative to the DU emergency

electricity purchases from neighboring utilities is straight-

forward given an eU average cost for this emergency support.

The period expenditure is merely,

:U : e D(1.22)

Along with DU, another measure of the system's reliability

is the LOLP "loss-of-load-probability,"

LOLP= F1_(K1) (1.23)

the fraction of time the utility is unable to serve its cus-

tomers with its own resources.
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With production scheduling completed, only the task

of determining the startup-shutdown cost component for the

period remains. To accurately calculate the period's XS,

startup-shutdown cost, an hour-by-hour production scheduling

model would be required. Having sacrificed detailed chrono-

logical load shapes for the more convenient load-duration

curves covering much longer periods of time, shutdown costs

must be estimated by an approximate technique.

Consider Figure 1.7 [after (18)] which displays qualita-

tively the approximate relation between Q, the frequency of

startup-shutdowns (per day) and L' the availability-based

capacity factor for the unit's first capacity increment.

That is,

Pr;'+ K

L'r/ K f F ( (Pe)dPe (.2

For must-run units, Lr equals 1 and Q equals 0. For

very expensive peaking units, LL approaches 0 and Q again

approaches 0. As expected, units never shutdown and units

never started-up incur no startup-shutdown cost. In between

are those units started-up and shutdown on a daily basis and,

hence, 0 approaches one.

If unit startup-shutdown cost Qr is specified in time

independent units of equivalent thermal energy input, multiply-

ing it by r, the unit's thermal energy cost for the period,
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Figure 1 .7
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permits escalation in terms of undiscounted dollars. Since

rlLrl is easily extracted for each unit during the Booth-

Baleriaux simulation, the fractional starts per day are easily

estimated given the proper dependence of Q upon Lrl. Thus,

a period T'/24 days long, incurs total period startup-shutdown

cost amounting to

R
xT 7

(LrI (1.25)

1.6.2 SYSINT, A Computerized Version of the SYStem
INTegration Model

SYSINT, a 2000 card Fortran IV version of the SYStem

INTegration Model is detailed in Appendix E. This section

merely summarizes its capabilities.

The standard two-state forced-outage model (perform or

not perform) is employed. A single startup frequency curve

0 (Lr'l) is input for the entire horizon. The limitations

of the current version, though easily altered, are as follows:

(1) up to 100 units (including retirements and additions),

(2) up to 5 valve points for each unit,

(3) no limit on number of strategies per computer run,

(4) up to 100 time periods per strategy and

(5) up to 25 typical load-duration "shapes," stored in

completely normalized form (i.e., peak demand also

equals one.)
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The multi-period strategy is input for each unit in the

following form:

(1) the period installed,

(2) period just prior to retirement and

(3) up to 20 intermediate periods of downtime for

maintenance or refueling.

For each period the following data may be input or altered:

(1) Choice of load-duration shape,

(2) Forecasted peak demand,

(3) Expected spinning reserve requirement,

(4) Length of time period,

(5) Average cost of emergency purchase energy,

(6) Fuel cost for each unit (optional initial guess

for nuclear units),

(7) Performance probability for each unit, and

(8) Startup order indicating must-run units and peaking

equipment.

As for typical running time, each-period of a simulation

of a utility system containing 40 units with a total of 150

valve points requires approximately 2.5 CPU sec on an IBM 370

Model 155 computer operating in an MVT environment. The code

itself requires 108 K bytes of storage, i.e., not including

the computer system supervisor. Total core requirements are

thus approximately 134 K bytes.

Data transfer from SYSINT to SYSOPT (see Section 4.6

and Appendix F) is completely automated via either disk,
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magnetic tape or punched cards.

1.7 System Optimization Model (SOM)

The SOM receives period-by-period information from the

SIM relative to the system nuclear energy production poten-

tial and each reactor's possible maximum (i.e., if it is the

first nuclear unit to be loaded) and minimum (i.e., if last

nuclear unit) contribution to it. In addition, the non-

nuclear cost totals are entered and later discounted at the

appropriate present value rate to yield the total non-nuclear

revenue requirement. Optimization itself (see Figure 1.4)

begins by utilizing any initial nuclear fuel cost estimates

to schedule period-by-period, reactor-by-reactor energy

production using network programming (NP).

1.7.1 Nuclear Supply Network Optimization

Since the optimization within the SOM deals with a single

commodity (nuclear energy production) in a strict one-to-one

(reactor) supply and (customer) demand sense, the production

constraints form a (nuclear energy) supply network. Figure

1.8 presents such a network configuration for a 3 reactor,

24 period (month) example. Numbers are displayed for the

nuclear potentials N to emphasize the fact that these are

fixed constraints throughout all of the iterations for a

particular refueling and maintenance strategy. Nuclear energy

is allocated (i.e., supplied) to each reactor-cycle (Erc ).

Within each cycle, this energy is allocated to the pertinent
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Figure 1.8

Sample Network Configuration

PERIOD REACTOR I REACTOR 2 REACTOR 3
PEID I CYCLE: CYCLE: CYCLE:NULA

p 1 2 1 2 3OETIL 2

2 2 06 9

3 REFUELING 1443

5 2070

6 2128

7 2193 ____

8 2128

9 x 2128

10 2025

11 2027

12 REFUELING 1438

13 x 2103

4 REFUELING 464

16 x RFEIG14164

17 ___ __ __ ___2105

18 ______ _ 2152

19 ___ __ __ __ __ _ _ 2206

20_____ x__ __ __ ______ 2152

21 x2152

22 >2075

23 _ _ 2062

24 REF X1465

HOLDOVER 2500 REF 2500

TOTAL E, E I , 2 E 2.1 E2,2 E2 3 E3 I E3 , 24'- 49,637 GWH
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periods (E rcp) so as to satisfy the system nuclear potentials

(i.e., demanded).

The objective function for the nuclear supply network

optimization is the system nuclear fuel revenue requirement,

,n~~t~~& ~ (Erl,rj.) (1.26)

Due to the nonlinearity of Equation (1.26) as discussed in

Section 1.4, an iterative gradient optimization technique

known as the "method of convex combinations" (54) is employed.

With the gradient defined as X rc, the incremental cost

(revenue requirement) of extracting an additional amount of

energy in cycle c of reactor r, then

-r (1.27)

r r,

Denoting the iteration or trials by the superscript t, a

Taylor expansion of the objective function about the "current"

t set of reactor-cycle energies yields,

rc
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Thus, given the information at the t th iteration, the

next iteration determines the t+l set of E so that therc

double summation term of Equation (1.28) is minimized subject

to the constraints indicated in Figure 1.8. Specifically,

the sum of any column must equal the energy supplied (or

extracted) during that particular reactor-cycle,

p in c

Erc= Ercp for all r and all c (1.29)

At the same time, the sum of any row must equal the period's

required nuclear potential,

all r

N = Ercp for all p (1.30)

The range of each Ercp is also constrained ("capacitated")

via

Emin < E < Emax for all r and all p (1.31)
rcp - rcp - rcp

which is indicative of the minimum and maximum demand in the

equivalent load range served by the nuclear units. Repre-

sentative Emin and Emax for each E in Figure 1.8 are
rcp rcp rcp

presented in Table 1.2.

At each iteration, the Erc cycle energy production re-

quirements are passed to the CORSOM's which design the fuel

reload batches (batch size and enrichment) to meet the
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Table 1.2

Reactor Production Limits for 3 Reactor,
24 Period Example

Reactor 1

Emin Emaxlcp lcp

1

2

3

4

5

.6

7

8

9

10

11

1-2

13

14

15

16

17

18

19

20

21

22

23

24

669

635

687

577

636

669

714

669

669

616

610

718

656

0

610

706

657

686

724

686

686

643

632

0

Reactor 2

Emin Emax
2cp 2cp

762

760

756

747

760

762

763

762

762

755

759

760

761

0

752

758

761

762

763

762

762

758

759

0

629

596

0

540

596

629

674

629

629

577

571

678

617

703

571

0

617

646

684

646

646

604

593

703

Period

All Ercp in GWH

Reactor 3

Emin Emax
3cp .3cp

669 762

635 760

687 756

577 747.

636 760

669 762

714 763

669 762

669 762

616 755

610 759

0 0

656 761

743 763

610 752

706 758

657 761

686 762

724 763

686 762

686 762

643 758

632 759

743 763

722

720

0

707

720

722

723

722

722

714

718

720

721

722

712

0

721

722

723

722

722

718

719

722
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production schedule and refueling dates at minimum reactor

cost. Information returned to the SOM is minimum total

reactor nuclear fuel revenue requirement T~C (for laterr

summation of total system nuclear costs) and the nuclear

incremental cost curve of each reload batch,

Erc(==c)M' (1.32)
rEr

With these incremental costs, the network algorithm reop-

timizes nuclear production in order to minimize the objec-

tive function [Equation (1.28)]. The result is that all nu-

clear reload batches are designed at the same incremental cost

within the limits of availability and loads (22).

To illustrate a single iteration, consider the 3 reactor,

24 period example of Figure 1.8 and Table 1.2. Figure 1.9

presents a hypothetical set of incremental cost curves returned

to the SOM at the end of the previous iteration. The "stair-

step" nature of the curves is indicative of the piecewise-

linearization of TC required to cast the double summation term

in Equation (1.28) in an NP format. Note that the NP program

effectively seeks to establish equal incremental costs among

the reactor-cycles that compete for the nuclear potential
* * *

(e.g., at the optimum, X 1  -1  A = 2 3 1 ) . Figure 1.10

presents the complete, optimized period-by-period reactor

production schedule for this example.



Figure 1.9

Hypothetical Set of Incremental Cost Curves
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Figure 1.10

Sample Reactor Production Schedule
REACTOR I REACTOR 2 REACTOR 3

PERIOD CYCLE: CYCLE: CYCLE: NUCLEAR
p 1POTENTIAL, Np

1 715 "722 __ 691 2128 _ _ _

2 697 720 652 >< 2069

3 722 REFUELING __X 721 __ 1443

4 661 707 582 1950

5 697 X >< 720 653 270

6 715 ><]>< 722 691 2128

7 738 X >< 723 732 2193

8 715 __ 722 I 691 ___2128

9 715 722 h 691 _ _ _2128

10 685 __ 714 ) I 626 2025

11 684 ____672 671 2027

12 738 _ __ 700 _ ._ REFUELING 1438

13 668 _ 674 x 761 2103

14 REFUE NG 703 762

15 _ 752 571 686 2009

16 758 REFUEL ING 706 1464

17 x761 x$687 657 2105

18 762 704 686 2152

19 763 __ 719 724 2206

20 762 704 686 2152

21 _ 762 _ 704 686 2152

22 758 >< 674 643 2075

23 759 __ 671 632 2062

24 x -REF >< < 722 7431 1465.

HOLDOVER 2500 EF 2500

TOTAL 9150 6837 1442 8350 8085 7401 8372-"" 49,637 GWH
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In addition to the above network constraint Equations

(1.30) and (1.31), which are special cases of linear con-

straints and can therefore be handled easily by a standard

NP code (45), a nonlinear constraint for each period must

also be incorporated. In particular, after the iterations

are complete, a check must be made to ensure that the opti-

mum Ercp reactor-period energy productions are compatible,

or feasible, with regard to shape of the period's equivalent

load curve. As illustrated in Figure 1.11, even though

Equation (1.30) is satisfied, the set of energy productions

for the four nuclear units is not feasible. Within that seg-

ment of the equivalent load curve preassigned to the nuclear

units (i.e., after the must-run fossil units), the low minimum

load permits only one unit A or B to operate as a base-load

unit.

In order to account for this feasibility problem, a

shape constraint (similar to a least-squares fitting criterion)

was derived that of necessity, included second-order terms in

rcp I

avail. avail.
units units

. E + . E < C (1.33)
c 1 rcp c 2 rcp - p

rp Z rp

The c1  , c2  and cp are constants for each reactor r in

rp rp

period p, precalculated by the SOM using the nuclear segment
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Figure 1.11

Example of Infeasible Equivalent Load Shape
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of the actual equivalent load curve and the performance

characteristics of the various nuclear units.

As mentioned above, the nonlinear shape constraint is

implemented as a posterior check on the optimized reactor-

period production schedules. For each period violating the

shape constraint Equation (1.33), the Emin and Emax of each
rcp rcp

reactor's production constraint Equation (1.31) are "squeezed"

slightly toward their mean so that infeasible schedules (such

as in Figure 1.11) are unlikely to occur in that period

again. After checking and adjusting the production con-

straints for all infeasible periods, the revised network is

again optimized. Such shape iterations continue until all

periods of an optimized schedule satisfy their respective

shape constraint.

When iterative convergence and feasibility of the pro-

duction schedule is realized, overall fossil-nuclear system

operation has been optimized for the particular possible

alternative maintenance and refueling schedule under inves-

tigation.

With the optimization task completed, the resulting

(minimum) TC* represents the total revenue requirement for

nuclear fuel RR . By present-valuing all of the other

period expenditures (received as input from the SIM) accord-

ing to Equation (1.3), the determination ofORR is complete,

Z IXORR RR --I-X tX5+xU) (1.34)



-73-

The ORR operating revenue requirement is appropriately

stored for later comparison with that of other possible

alternative strategies. With the completion of this task,

processing of the particular alternative refueling and main-

tenance strategy is complete. And with completion of the

last alternative strategy, selection of the minimum ORR cost

strategy becomes possible.

1.7.2 SYSOPT, A Computerized SYStem OPTimization Model

SYSOPT, a 2100 card Fortran IV version of the SYStem

OPTimization Model is detailed in Appendix F. SYSOPT is

link-edited with the Out of Kilter Network Program (45)

which represents an additional 1200 cards in Fortran IV and

Assembler Language. Out of Kilter is detailed in Appendix

G. This section merely summarizes the capabilities of the

current combined version of SYSOPT.

The limitations of the current version of SYSOPT,

though easily altered, are as follows:

(1) up to 15 reactors,

(2) up to 15 cycles per reactor within the horizon,

(3) up to 3 cycles per reactor beyond the horizon,

(4) no limit on number of strategies per computer run,

and

(5) up to 100 periods per strategy.

Input data for each strategy includes:

(1) Present value rate,

(2) Various convergence criteria, and
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(3) Maximum number of iterations to be permitted.

Input data supplied manually for each reactor includes:
* *

(1) Optional initial estimates of Xrc or E ,

(2) Holdover energy at end of planning horizon, and

(3) Cycle energies and refueling dates beyond planning

horizon.

The large volume of SYSINT output required by SYSOPT may

be passed either on disk, magnetic tape or punched cards.

As for typical running times on an IBM 370 Model 155

computer (MVT environment), a hypothetical six reactor

utility required only 9 CPU seconds per inner iteration

(exclusive of time spent in CORSOM's) for strategies 72 peri-

ods long and totaling 30 reactor-cycles. The SYSOPT code

itself requires 130 K bytes of storage (plus -26 K for com-

puter supervisor), while the Out-of-Kilter Network Program

requires an additional 135 K. Using an overlay structure

reduces the 265 K total to 200 K. Execution time is not

noticeably increased by the use of the overlay structure.

1.8 Model Evaluation

To properly evaluate the SIM and SOM (or more specifi-

cally, the computerized versions SYSINT and SYSOPT, respec-

tively), required interfacing them with a RAMM and CORSOM's

to complete the nuclear power management multi-year model of

Figure 1.3.

For the purposes of developing and testing a SIM and SOM,

the multitude of possible alternative strategies output by a
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RAMM were replaced by a few typical strategies developed

through simple hand calculations. On the other hand, the on-

line iterative nature of the optimization procedure requires

computerized CORSOM's. The state of the art, as witnessed

by the concurrent methods development research by Kearney

(41) and Watt (55), precluded utilization of an established

multi-year CORSOM. In order to proceed with the testing of

the SIM and SOM, QKCORE, a psuedo-one dimensional, quick core

model (performing simulation only), was developed (see Appen-

dix H). The nature of QKCORE necessarily limited the scope

of the evaluation to LWR's with the following characteristics:

(1) Modified-scatter refueling with fixed number of

zones (e.g., refueling fraction was fixed at one-

third),

(2) No plutonium recycle,

(3) No stretchout beyond reactivity-limited energy, and

(4) No cycle-to-cycle optimization

(i.e., at each refueling, minimum enrichment chosen

regardless of future cycles).

To evaluate the model's usefulness, several sample cases

were calculated. An electric utility possessing six 1050 MW

PWR's on a 46-unit 11,000 MW system was hypothesized. Minimum

customer loads (typically 4000 MW), combined with other

system operating constraints, restricted average nuclear

availability-based capacity factors to about 80 per cent,

i.e., below base-load operation.
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Three possible refueling strategies were investigated:

S-1: strictly annual refuelings

S-2: gradual shift to longer (14 month) cycles

S-3: immediate shift to the longer cycles with

additional cost of one million dollars for each

short notice enrichment change.

Underlying later discussion of the choice from among the

several optimized strategies are the properties of the indi-

vidual strategies themselves. The important numerical proper-

ties are convergence, incremental costs and computational

requirements. The results (see Table 1.3) of Strategy 2 over

a six year horizon will be used for most of the discussion.

However, when this Strategy fails to clearly demonstrate a

point under discussion, one of the other two will be utilized.

1.8.1 Convergence

Starting from a relatively poor initial guess of equal

energy in each cycle regardless of cycle length, the opti-

mization of S-2 required ten cost iterations to converge to

the initial optimum TC*. The iteration-by-iteration system

-t
nuclear fuel cost TC (i.e., the objective function of the

optimization) in presented in Figure 1.12. Since initially

50% of the 72 periods failed their shape constraint, three

more iterations were required to produce the feasible

optimum. This resulted in a cost increase of only 0.25 (out

of nearly 300)million dollars.
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Table 1.3

Revenue Requirements and Undiscounted Energy
for Accepted Global Optimum of Strategy 2

over Six Year Horizon

Fossil Fuel

Startup-shutdown Cost

Emergency Purchases

Non-nuclear Production

Nuclear Fuel

System Production

Fixed Firm Purchase

106$

276.583

1.704

0.407

106 MWH

85.836

0.048

278.964 85.884

297.709 194.077

576.673 279.961

133.920 81.468

System Total 361.429710.593
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The symbol A in the Figure represents the energy step

size used to segment the continuous incremental cost curves

into the stair-step cost functions required by the SOM's

NP optimization package. As A decreases, the accuracy of

the stair-step representation increases as do the computa-

tional requirements. Thus, the relatively poor Xrc fits at

large A were utilized for the initial iterations until

either the cycle energies converged (to within a specified

percent of A, typically 100%) or the objective function it-

self converged (i.e., the last iteration failed to improve

the objective function by more than a required amount, say

$2000). In fact, iteration 5 displayed "negative" improve-

ment because piecewise-linearization of TC r prevented the

NP program from seeing the smooth increase of X forrc

fractional A changes in cycle energy. The net result was

that the NP program over-reacted to small differences be-

tween various Xrc incremental costs.

After convergence using the first A, a second and

smaller A was utilized and convergence again attained using

the same two criteria. This second converged solution was

considered to be the initial optimum TC*.

From three standpoints, a third A choice appeared un-

warranted:

(1) With total nuclear fuel cost approaching $300,000,000

for the six year horizon, the fuel cost improvement

from the A = 100 GWH optimum solution to A = 20 was
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only $220,000 for the fivefold A reduction and

would undoubtedly have been much less than that

for another fivefold reduction.

(2) At A = 20 GWH, cycle energies were already converged

to well within 1% (+ 50 GWH out of 6000-8000 GWH).

and

(3) The fuel cost errors and cycle energy errors both

appear to be well within the noise levels of

CORSOM errors (> $100,000 per reactor over the plan-

ning period) and the errors inherent in forecasting

load demands and availabilities (> 1%).

Using the above sequence of the two step sizes, all

cases effectively converged (i.e., objective function de-

creasing insignificantly for A = 20 GWH) within ten iterations.

Inasmuch as completed CORSOM's are estimated to require over

3 minutes of IBM 370 Model 155 CPU time per reactor strategy

per iteration (41), an average six reactor-four iteration

solution would involve over an hour and a half of computer

time for the CORSOM's alone. The ad hoc simulator QKCORE

required less than 3 minutes for all ten iterations.

1.8.2 Nuclear Incremental Costs at the Optimum

An analytical discussion of nuclear utility system

optimization similar to that in (22) presents two conclusions

relating a strong primary dependence between pertinent cycle

incremental costs for each reactor during each period and a
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weak secondary conclusion relating an idealized state that

may not be attainable:

Conclusion I:

At the optimum reactor-cycle energies,

for all r (1.35)

At drc

during each period for the pertinent cycle of each reactor.

Conclusion II:

At the optimum reactor-cycle energies,

) - (1.36)
)l

for all periods, all cycles and all reactors simultaneously.

As for typical values of ANg and AN, the results of

Widmer (57), Kearney (51) and Watt (55) indicate optimum mid-

range nuclear incremental costs in the range of 0.9 to 1.5

$/MWH.

The terms "strong" and "weak" refer to the number of incre-

mental cost violations anticipated because of over-riding

engineering and time constraints.

The A* cycle-by-cycle incremental costs at the opti-
rc

mum of Strategy 2 are presented inFigure 1.13. In analyzing

these values, four important points are to be made. First,

the general equality of Arc at each point in time confirms

Conclusion I.
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Secondly, incremental costs increase over the first few

cycles as the short-range incremental costs of the first

year give way to the mid-range incremental costs of later

cycles. During the first year, incremental costs are very

low because a large proportion of each reactor's cycle costs

(e.g., separative work, fabrication and reprocessing) are

already spent or committed. Discharge burnup is the only

variable. Thus, A is Widmer's short-range incremental

cost (57, 59). For a cycle further into the future, a larger

degree of flexibility is available in the design of the reload

batch (size and enrichment) and a larger fraction of total

cycle costs can thus be altered. For c > 2, Arc becomes

Widmer's mid-range incremental cost (58, 59). Thus, short-

range incremental costs evolve into mid-range incremental

costs.

During the middle two to five years of Strategy 2, the

constancy of Arc for most reactor-cycles provides ample

evidence that Conclusion II is also valid.
*

Finally, the Arc beyond the fifth year are, indeed,

optimal (but erratic) due to the assumed horizon end condi-

tion which involved specifying cycle energies b the

horizon in order to permit cost evaluation of the core con-

tents at the horizon.

Though Figure 1.13 confirmed Conclusion II, the typical
*
A optima of the other strategies did not. For example,
rc

Figure 1.14 presents A for Strategy 1 over the same sixrc
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year horizon. Though Conclusion I continues to be valid with

few violations, evidence supporting Conclusion II is non-

existent. However, each inconsistency in these incremental

costs as cycles begin and end, can be translated directly

into the optimal loading order. During reactor-cycle E-3

(with AE,3 = 1.689 $/MWH), Reactor E is loaded only after

all other nuclear units (with Arc = 1.240 $/MWH) are fully

loaded. Since for economic reasons E-3 is always last, it

generates E during each included period of cycle 3 and,

hence, EE,3 = E0 As Figure 1.15 illustrates, this lower

limit on cycle energy prevents E-3 from reaching the cost.

min
parity of Conclusion I. (If E was less than EE,2 , ob-E,3 E

viously uneconomic fossil energy costing over 2 $/MWH would

be substituted for its 1.7 $/MWH energy.)

Reactor-cycle F-1 of Figure 1.14 has the opposite prob-

lem. With the initial core configuration assumed fixed,

*
AF,1 is a (cheap) short-range incremental cost. (Cycle burn-

up is the only design variable.) Thus, Reactor F is always

loaded first, generating E for the cycle. In an analogous

manner, this upper limit on cycle energy can also prevent

incremental cost parity.

*
The other Arc inconsistencies of Figures 1.13 and

1.14 are merely more complicated versions of these two simple

cases--reactor-cycles E-3 and F-l. In each instance, the

optimal economic period loading order is easily deduced:

cheapest first.
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Figure 1.15
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Comparing all reactor-cycles of Figures 1.13 and 1.14,

A is seldom over 1.41 $/MWH. As Figure 1.2 pointed out,rc

base-loading of a utility system's nuclear reactors may be

impossible because the utility's minimum load is too low.

However, since XN is always much less than AF (>2.0 $/MWH),

two possibilities exist for economically utilizing the excess

nuclear capacity during the low load periods. One alternative

is to sell excess nuclear capacity (i.e., energy) to neighbor-

ing utilities at a price greater than its incremental cost.

Incorporation of such nuclear economy interchange sales into

the SIM and SOM is desirable since this may well become a

common utility practice.

The second option is to use the excess capacity on the

utility's own system by operating a pumped-hydro station.

By pumping during low load hours, A = AN < 1.4 $/MWH. Using

the stored energy for peak-shaving high cost fossil the next

day, AG = XF > - 4 $/MWH. Even if overall pumped-hydro

efficiency is only 67%, total operating revenue requirements

are reduced roughly 2 $/MWH (i.e., 50% of AF) for each fossil

MWH displaced. Since such a station is also comparatively

cheap to install (100-200 $/kwe), a pumped-hydro station on

the grid of a heavily nuclear utility produces startling

economies (21, 35). "From a utility's viewpoint, pumped

storage is a natural fit with large base-load plants. It can

take on load instantly, it uses off-peak power to replenish

its resources, and its reliability is second to none (5)."
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As pumped-hydro stations become more numerous [~4400 MW

installed versus over 8000 MW under construction in entire

United States at end of 1972 (5)], the appropriate planning

tools must be developed. Thus, it is highly recommended that

pumped-hydro units (and hydro units, as well) be incorpor-

ated into the SIM.

Underlying the above discussion of incremental costs

is the source of those costs--the CORSOM, or specifically,

the QKCORE in-core simulator developed merely to test the

SOM. By forgoing reload optimization, QKCORE is unable to

see some obvious means of saving money. For instance,

reactor-cycle E-3 of Figure 1.14 has a very high incremental

cost due to energy production requiring 4% enriched reload

fuel. Yet, the previous cycle loaded the minimum enrich-

ment allowed (1.5%). If QKCORE allowed early shutdown

(reactivity > 0) and optimized the enrichments alone, it

might well have loaded 2.5% fuel in E-2, burned only part of

the way down and then loaded 3.0% fuel for a complete burn.

Indeed, a full-scale CORSOM would be able to optimize re-

load batch size, as well. What would be the optimum incre-

mental costs for such modes of operation? Obviously, the

incorporation of more versatile CORSOM's is a prerequisite

to completing a fully operational nuclear power management

model.



-89-

1.8.3 Computational Requirements

The computational requirements of SYSINT are detailed

in Section 1.6.2 while SYSOPT details can be found in

Section 1.7.2. However, Table 1.4 presents a summary of

computer usage for Strategy 2.

1.8.4 Evaluation of Competing Strategies

Having discussed the properties of a single optimized

strategy, it now becomes appropriate to discuss the broader

question of strategy versus strategy comparison. In par-

ticular, given the same set of input data (i.e., forecasts),

which of the individually optimized strategies represents

the optimum plan for operating the utility system? How sen-

sitive is this choice to various parameters in the input?

To answer these questions, the results for the three Strate-

gies over a four year horizon are presented in Table 1.5.

Recall that S-1 is an annual refueling strategy, S-2 a

gradual shift to longer cycles and S-3 an immediate shift to

longer cycles.

Of prime importance in correlating the results, is the

refueling downtime of each strategy. Naturally, the more

rapid the shift to longer cycle lengths, the fewer refuelings

that must be scheduled.

With less nuclear downtime, the nuclear energy production

increases and fossil energy production decreases by approxi-

mately the same amount. Also, startup-shutdown cost is

decreased as the fossil units move farther away from nightly
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Table 1.4

Computational Requirements for
Strategy 2

(Based on IBM 370 model 155 computer operating in
MVT environment)

Total
Core
Storage
(Bytes)

134 K

CPU Time

2.2

Input/
Output Time

Time Units

0.5

(246 K with 9
overlay

f o246 K w th 
9t

371 K without 13
'overlay .

Sec/period

7 Sec/inner
iteration

<1 Sec/inner
iteration

Program

SYSINT

SYSOPT

QKCORE
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TABLE 1.5

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY OVER FOUR YEARS

(48 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

106$

(106 MWH)

Fossil fuel 184.223 176.348 173.250

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.497 1.281 1.227

Emergency purchases 0.464 0.317 0.265

(0.053) (0.036) (0.030)

Nonnuclear production 186.184 177.946 174.742

(51.756) (50.097) (49.420)

Nuclear fuel 198.267 197.189 199.821

(118.376) (120.035) (120.712)

System production 384.451 375.135 374.563

(170.132) (170.132) (170.132)

Fixed firm purchase 95.166 95.166 95.166
(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 479.617 470.301 471.729

(224.444) (224.444) (224.444)
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shutdown. Fewer emergency energy purchases are required due

to increased on-line resource margins.

All three components of non-nuclear production cost

thus favor reducing downtime. (By looking at the differences

in non-nuclear production cost, average long-term levelized

replacement energy costs of 5.2-5.7 $/MWH can be calculated.)

As mentioned above, each succeeding strategy is able to

increase production because of less refueling downtime. How-

ever, the cost of this energy does not increase proportion-

ally. In fact, compared to S-1, S-2 generates more nuclear

energy for less money! To explain this anomaly, consider the

following:

(1) Less downtime means fewer reloads must be purchased.

(2) Increased average cycle length, however, means in-

creased cycle energy and reload enrichment.

(3) Even with increased batch enrichment cost, the

savings due to foregone reloads and the increased

energy for amortizing fixed costs, etc., result in

a 1.9% decrease in levelized nuclear fuel costs

over the four year horizon.

(4) Due to fixed initial conditions and only gradual

shift to longer cycles, S-1 and S-2 are very similar

in energy production during the first year. At the

end of four years, energy production by S-2 is only

1.4% higher. (For longer horizons, the first year
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matters less and energy production differences

are greater.)

(5) Finally, since the levelized nuclear fuel cost

decreases percentagewise more than energy produc-

tion increases, the net result is more nuclear

energy for less money.

Turning to S-3, the immediate shift to longer cycles

results not only in increased energy production, but also

in increased levelized fuel cost. The result is a return

to normalcy--more nuclear energy costs more.

Looking then at system production cost, S-3 saves

$570,000 over S-2 and roughly ten million dollars over S-1.

This, of course, is not enough to absorb S-3's assumed

additional two million dollars in penalties for the two short

notice enrichment changes required for the immediate shift

to longer cycles. Thus, among the three strategies, S-2 has

minimum total system cost.

During the first four years, then, S-2's gradual shift

to longer cycles saves 9.3 million dollars compared to the

annual cycles of S-1. Such a savings clearly justifies a

few hundred thousand dollars in overhead necessary to imple-

ment the engineering design changes in the reload fuel

specifications.

However, S-2 and S-3 are roughly competitive depending

on the magnitude of the enrichment change penalty. Without

the penalty S-3 is favored by roughly $600,000. (Of this
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$600,000, roughly $95,000 could also be saved by S-2 were

it allowed to freely change initial enrichment for two of

the reactors.) But after the 2 million dollar penalty, S-3

is 1.4 million dollars more costly.

1.9 Summary

This work presents a multi-reactor, multi-year fuel

management model consisting of four sub-models (RAMM, SIM,

SOM and CORSOM). The SIM and SOM sub-models have been dis-

cussed in some detail. Numerical results were presented as

an example of the model's ultimate versatility. Some work

remains to be done before the completely computerized nuclear

power management multi-year model is ready for implementation

on nuclear utility systems. The most severe deficiency is

not in either the SIM (SYSINT) or the SOM (SYSOPT), but is

due to the large computational requirements of current PWR

CORSOM's (estimated at several hours for optimizing a single

refueling and maintenance for the entire utility system).

In addition, CORSOM's for the other types of reactors are

also needed. Acceptable RAMM's already exist (e.g.,(20)]

and merely require proper interfacing.

As for the major required improvements in SYSINT and

SYSOPT, there are two: (1) addition of hydro and pumped-

hydro unit types (likewise, permitting initial cycles of

nuclear units to be treated as a scarce-resource initial

condition) and (2) on-line sensitivity analysis of the
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effect on total operating revenue requirement of various

forecasting errors, such as incorrect customer load demands

or unit performance probabilities.
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CHAPTER 2
AN INTRODUCTION TO NUCLEAR

POWER MANAGEMENT

2. 1 Characteristics of a Utility

An electric utility, like any other business enterprise, exists because

its product fulfills an established need. The utility generates electricity

to supply the requirements, or load, demanded by the customers in its

geographical service region. The utility's objective is to do so at minimum

total cost.

These three characteristics (load demand, power supply and utility

objective) must be fully understood before system optimization techniques

can be successfully applied to utility management problems.

2. 1. 1 The Demand: Customer Loads

The load supplied by a utility at any one instant in time is the sum

of the individual loads demanded by thousands of customers. These

loads range from a residential customer's 40-watt light bulb to a heavy

industrial customer's 100 MW's of factory equipment. The statistical

nature of the sum of hundreds of thousands of residential customers,

thousands of commercial customers and scores of industrial customers

makes minute-by-minute load patterns far too cumbersome for even daily

management planning work. The typical unit of analysis is the average

load during the hour. These hourly loads follow definite daily and weekly

patterns for each utility (see Figure 2. 1). Minimum loads range from 35%

to 60% of peak demand depending on the utility's mix of large round-the-

clock heavy industrial customers and small cyclical loads due to residential
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and commercial customers. Even for the same utility, seasonal variations

and annual load growth affect these patterns.

For daily (or even annual) models, chronological hourly load detail

may be appropriate. However, multi-year and long-range models cannot

afford to look at each of the 8760 hours in each year. For these models,

the load-duration curve is more appropriate. Figure 2. 2 presents the

load-duration curve for the data of Figure 2. 1. The 168 hours in the week

are merely rearranged in order of decreasing load demand. Thus, the

peak demand occurs during the first hour of the new time scale and the

minimum load occurs during the last hour. The interpretation of the new

time scale is the number of hours the load was greater than or equal to a

specified power level - in short, the load's duration.

The rearrangement of loads results in the complete loss of chrono-

logical information, but preserves the more important property that the

integral under the curve is the total energy demanded during the week.

Realizing hourly loads are actually averages of a rapidly changing

but continuous function, such histograms are usually drawn as smooth

curves. In addition, two other changes are made to the load represen-

tation throughout the work reported here. First, the axes are reversed

so that the power level P is the abscissa and duration d the ordinate

(see Figure 2. 3). This facilitates mathematical treatment of power level

as the independent variable and duration as the dependent variable. The

second alteration involves normalizing the duration scale by the total

length of the time period T'. The new zero-to-one ordinate scale can be

interpreted as not only the fractional duration F but, more importantly,

as the probability that the load will be greater than or equal to the speci-

fied power level at a random instant of time. From Figure 2. 3, the load
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Figure 2.2

Load-Duration Curve (Standard Format) for the Typical Week
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Figure 2.3

Load-Duration Curve (Altered Format) for the Typical Week
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was always (100% of the time) greater than or equal to the minimum load

of 3120 MW, but never (0% of the time) greater than the peak of 7050 MW.

Neither of these changes alters the basic property that, in the correct

units, the integral under the curve is the total energy demanded during the

time period,

DT= f d. dP = T' dP = T' f F dP (2.1)
0 0 0

2. 1. 2 The Supply: Generating Equipment

2. 1. 2. 1 Types

In providing installed capacity to meet the customer loads, a utility

relies on up to five different types of generating equipment:

(1) Nuclear units: very large capacity units generating electricity

via the heat released by a sustained nuclear chain reaction

contained within the reactor's core. If the core coolant exits as

a gas or vapor (as in a BWR), it may be expanded directly in

turbine-generators. Otherwise, the heat may be first trans-

ferred in boilers to produce expandable steam (as with a PWR).

(2) Fossil steam units: typically large capacity coal, oil and/or

gas-fired boilers producing high temperature-high pressure

steam that is expanded in turbine-generators.

(3) Fast-start peaking units: small fossil-fueled jet engine, gas

turbine or diesel-driven generators.

(4) Hydro units: typically medium capacity hydroelectric turbines

housed in man-made dams. These dams create the necessary

water height differential, or head, by trapping a river's inflows

in the reservoir behind the dam.
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(5) Pumped-hydro units: similar to hydro except that the dual-

purpose turbine may also operate as a pump, transferring

water from the foot of the dam to the reservoir. Like a storage

battery, excess energy is temporarily stored in another form

(water at a height) for later retrieval by reversing the process.

2. 1. 2. 2 Data Required On Each Unit

Regardless of the type of unit, certain key information is required

by the system planner on each and every unit of the system:

(1) minimum and maximum power level,1

(2) fuel consumption vs. power level,

(3) fuel cost,

(4) fuel inventory,

(5) transmission losses,

(6) startup-shutdown data,

(7) maintenance requirements and

(8) reliability data.

Table 2. 1 presents a general summary of these characteristics for

each unit type, including capital cost estimates.

The minimum and maximum power levels indicate the lower and

upper bounds, respectively, for continuous plant operation. Below the

minimum (typically 10 to 50 percent of the maximum), engineering prob-

lems, such as boiler flame instability for fossil units, preclude reliable

and sustained operation. Similarly, stressing the unit above its maximum

power level would be unwise.

1 Throughout this work, all power levels are in units of net MWe delivered
to the transmission system busbar. That is, plant auxiliary power require-
ments (-5% ) have already been subtracted from gross generator output, but
transmission losses have not been accounted for.



TABLE 2. 1
Characteristics of Types of Electric Generating Units

Nuclear Fossil Fast-Start Hydro Pumped-
Dimension Steam Steam Peaking Hydro

(LWR)

System Base-Load Base-Load Peaking Inventory PeakingUse and Cyclical Dependent

Capacity Fact. Percent 60-90 30-90 Up to 20 Up to 100 Up to 50
Capital Cost $/kwe 300-450 250-400 100-150 300-500 100-200

Unit Capacity MW 500-1200 200-1200 10-50 10-600 50-400

Min. Power % Cap. 10-40 10-50 75-90 0-10 25-40

Avg. Ht. Rate MBTU/MWH 10.5-11 8.5-14 12-17 N/A NA
Avg. Net Energy Percent 31-34 25-40 20-28 85-93 65-80Conversion Eff. __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _

Fuel Cost C/MBTU 16-20 35-80 (Coal) 50-100 0 Cost of
50-100 (Oil) pumping power

Energy Cost $/MWH 1. 7-2.2 3.0-8.4 6.5-20 0 ~1.5 X pumping power

Comments Depends Approx. const. 4-8 hours Depends Depends on
on Fuel on fuel at 100 days (Oil) on operating
Inventory cycle supply . season cycle

Trans. Losses Percent Up to 10 Up to 10 Up to 5 Up to 10 Up to 15
SU-SD Ht. Regt. MBTU/MW Cap. 3-6 3-8 0-2 ~0 ~0
Min. SD Time Hours <2 2-10 < 0. 3 < 0.5 < 0. 5
Maint. Regt. Week/Year 4-8 wk/refuel 3-5 1-4 1-2 1-2
Forced-Out Rate Percent Up to 15 Up to 20 Up to 40 Up to 5 Up to 10
Perf. Prob. Percent 85-100 80-100 90-100 95-100 95-100

C
(-4
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Fuel consumption data are important in characterizing the unit's

thermal efficiency as a function of its power level. Figure 2.4 presents

H (heat input rate) versus P (power level) at the valve points typical of a

fossil generating unit. Defining h and hinc as the average and incre-

mental heat rates, respectively,

H 3 .413 Mega BTU/MWH (2. 2)

hinc 3.413 Mega BTU/MWH (2.3)dP inc 5 i

During fuel consumption tests, H can only be measured to within a

few percent (20). This uncertainty plus the complicated nature of the true

H curve ( 4, 52) make the actual derivative dH/dP impossible to obtain.

The result is that AH/AP is usually substituted and treated as a constant

for each capacity increment (i. e. , between valve points). Figure 2. 5 pre-

sents h and h. for the data of Figure 2. 4. With h. interpreted as theinc inc

additional heat input required to generate the next increment of electrical

energy, H(P>K ) can be expressed mathematically as,

IdH in
HP=H+ -- dP = h K + h.(P) dP (2.4)

In terms of thermal energy, heat rate data can be treated as constant

for years at a time. By then applying # time-dependent thermal energy

fuel cost, similarly shaped time-dependent incremental energy costs can

be calculated,

X(P, t) = h inc(P) 4(t) and e = h 1(t) (2.5)

In the same way that fuel cost has more meaning for a fossil plant

than for a hydro unit (where the water is normally assumed to be free),

fuel inventory information pertains specifically to the energy-limited type
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Figure 2.4

Heat Input Rate versus Net Power Output Level for
Typical Fossil Unit [After (3Z)]
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Figure 2.5

Heat Rates versus Net Power Output Level for Typical Fossil Unit
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of units - nuclear, hydro and pumped-hydro. Fossil fuel inventories are

normally maintained at about a 100-day supply (20). Thus, deliveries and

consumption can be treated under LIFO last-in, firt-ut accounting pro-

cedures while considering the fuel inventory as an additional initial fixed

plant investment. On the other hand, the nature of the nuclear unit's fuel

cycle (i. e. , core reactivity requirements), the seasonal nature of a hydro

unit's river inflows and the weekly pumping-generating cycles of a pumped-

hydro unit create situations when there is not enough of the cheap resource

to operate the unit at full power all the time. The fuel (or water) becomes

a so-called "scarce resource." Generating decisions utilizing scarce

resources require a separate method of analysis (see Sections 2. 2. 2 and

2.2.3).

Transmission losses from the generating unit to the load center must

be accounted for. If the customer demands 10 MW, a unit 150 miles away

.±may have to generate 11 MW. Though detailed load flow calculations are

required for on-line dispatching (43), more approximate representations

are suitable for planning scales on the order of months or years. One of

the simplest assumptions is that each unit loses a characteristic percentage

of its generation due to this resistance heating. The net MW output for each

valve point can then be written down by this percentage so that, just as load

demand is in units of MW at the load center, so is unit production. An even

simpler assumption (and the one adopted throughout this work) is that trans-

mission losses are negligible or, at least, invariant.

Included in startup-shutdown data are generally three pieces of

information: (1) the net cost in time-dependent units of equivalent thermal

energy input required for a combined startup-shutdown sequence (see

Figure 2. 6), (2) the minimum shutdown time (i. e. , it is not practical to
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Figure 2.6

Startup-Shutdown Cost Data Sheet
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shut down a fossil unit and then have it back on-line within an hour or so

even if it were economically attractive), and (3) maximum rate of change

of power due to engineering limitations. For a model simulating operation

on the order of years, only the startup-shutdown cost is required. For

models dealing with day-to-day operating decisions (and restrictions), all

three must be included.

Preventive maintenance is performed to keep the units in good oper-

ating order. Typically, each unit type has a periodic maintenance require-

ment, such as two weeks per year. As for scheduling this maintenance,

most utilities have an annual peak demand period (frequently the summer

months) when scheduled maintenance is prohibited to provide the maximum

possible system resources (i. e. , wholly-owned generating capacity plus

the committed capacity of neighboring utilities) to meet the peak. On a

calendar, these taboo periods act as partitions between scheduling windows.

It is during these windows that all of the system' s required maintenance

must be scheduled.

Reliability data account for unscheduled maintenance downtime due

to a unit being forced out of service by operating problems, a "forced =

outage." Normally quoted is the forced-outage rate FOR defined by the

Edison Electric Institute ( 7 ) (see Figure 2. 7) as

FOR = FOH+SH (2.6)

(Instances of merely derating the unit capability to less than full power due

to equipment problems, "forced-deratings," have been ignored. ) Currently,

the utility industry is continuing (2 ) to discuss the proper measurement of

unit reliability. For this reason, the following detailed discussion is pre-

sented.
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Figure 2.7

Edison Electric Institute Definitions Related to
Equipment Availability (Assuming No Forced-Deratings)
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Defining the "importance" f as the fraction of forced-outage hours

occurring when service was desired (2 ), the suggested breakdown of FOH

in Figure 2. 7 becomes

FOSH = f FOH (2.7)

FORH= (1-f)FOH (2.8)

These additions are required because FOR is not always an accurate indi-

cation of how often the unit did not perform when it was called upon. A

much better indication of forced-outage effects is q, the nonperformance

probability defined as,

FOSH
q FOSH + SH (2.9)

Thus the probability that the unit will perform service when called

upon, p, can be defined as

p= 1 - q (2.10)

Returning to Equation (2. 9) and utilizing Equation (2. 7),

f FOH (2.11)
f FOH + SH

From Equation.(2. 6),

FOH = SH OR ) (2. 12)

Therefore,

SH ( FOR f
\1 - FOR) /

q = (2.13)

SH (1 -FOR)f + SH

Rearrangement and cancellation lead to the following result,

f FOR
q = 1 - FOR (1-f) (2. 14)
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Figure 2. 8 plots the nonperformance probability as a function of the

forced-outage rate and the importance. As f approaches 1, q approaches

FOR as would be expected for base-load units which are operated whenever

possible. On the other hand, forced-outage rate statistics of around 20%

to 40% for peaking units make these units appear very unreliable. Consider-

ing their low utilizations of around 10%, FOR converts into a respectable

2. 5% to 6% nonperformance probability.

2. 1. 2. 3 Five-Unit Reference Utility System

A small Reference Utility System consisting of five units will be used

throughout Chapters 2 and 3 for presenting numerical examples designed to

assist the reader in understanding the procedures developed here. Quoting

Wagner (54), "the manager who resolutely avoids familiarizing himself

with the basic mechanism [underlying] his ... application is flirting with

trouble. If he really wants to maintain control, he must nurture his insight

to the approach."

The pertinent unit data are presented in Table 2. 2. The normalized

load-duration curve of Figure 2. 9 represents the typical month's (730 hour)

customer demands. A convenient step size of 100 MW is used for all calcu-

lations. A summary of all six examples is presented in Appendix B.

As a final note, a much larger hypothetical utility system consisting

of 46 generating units will be used for the nuclear power management model

evaluation in Chapter 5. (See Section 5. 3.)
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Figure 2.8

Non-Performance Probability as a Function of Forced-Outage Rate and Importance
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TABLE 2.2

Unit Characteristics for Reference Utility System

Total Capacity = 2000 MW

Rated

Cap.

Kr

Perf.

Prob.

Fuel

Cost

MW % g/MBTU 3

SUSD.'

Heat

QM
MBTU

Valve Point Data

K 1
MW

h
r1

BTU/kwhe

Kr 2

MW

h.
inc 2

BTU/kwhe

100

200

300

600

800

95

95

90

90

85

50 100

Equivalent startup-shutdown heat requirement

F = Fossil, N = Nuclear,, P = Peaking

3 MBTU=Mega BTU

Unit

Name

Type

r

I

II

P 2

F

N

F

N

III

IV

90

50

19

40

18V

800

1200

3600

2400

18, 000

11, 000

12, 000

9, 800

12, 500

100

100

200

300

-J

1

2

200

300

600

800

8,500

10,000

8, 300

9,500
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Figure 2.9

Normalized Customer Load-Duration Curve for 730 Hour Month on Reference Utility System
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2.1.3 The Objective: Supply All Demands at Minimum Cost

The electric power supply industry is often chosen as the

textbook example of pure monopoly. In fact, electric power is

a "natural monopoly" because economies-of-scale with regard to

investment in generating and transmission equipment make compe-

tition impossible (56). "Recognizing the advantages...of avoid-

ing wasteful duplication and competition, the public [the utility's

customers] ... grants a utility an exclusive franchise for its par-

ticularservice in a given geographical region [24]."

As a means of controlling the utility investor's rate-of-

return, the Federal Power Commission and state public utilities

commissions retain the right to oversee the utility's actions

vis-a-vis the public interest. In particular, the local commis-

sions must approve all changes in the electricity rate structure

(i.e., prices charged to the utility's customers).

With the rates per unit electricity fixed externally by the

regulatory commissions and the total amount of electricity deter-

mined externally by the customers' demands, the total revenue receiv-

ed by the utility is also fixed (albeit, in a probabilistic sense).

By minimizing the revenue required to recover the cost of supply-

ing that electricity, the utility maximizes total profit. There-

fore, the utility objective function is the minimizing of the present

value of all future required revenue, i.e., the revenue requirement.

(Present valuing accounts for the time value of money.) This sum

represents that amount of money which, if received immediately and

invested in the company, would just suffice to pay all expenses,

as well as permitting a fair return to investors.2 By including

investors' permitted return as another cost component, "revenue

requirement" and "total cost" become synonymous. The utility

decision-maker is thus responsible for supplying all customer

load demands in a reliable manner at minimum total cost.

2 More precisely (55),

"The revenue requirement is that sum of money, which if received
as revenue by an investor-owned electric utility at the begin-
ningof the planning horizon and invested in the enterprise, will
defray all subsequent fuel cycle costs, the return allowed by
regulatory agencies on that portion of the original investment
remaining unexpended at any time, and defray all associated
income taxes."
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In accounting for all the costs relative to utility operation, revenue

is required for the following items:

(1) investment in equipment and facilities,

(2) fuel consumption,

(3) electricity purchases from (less sales to) neighboring utilities,

(4) overhead expenses,

(5) labor and supplies,

(6) maintenance expenses,

(7) taxes and

(8) carrying charges on all of the above.

When considering different operating strategies over a multi-year time

horizon (on the order of 5 years), many of the above components are

essentially fixed. The long lead times required to effect changes in

current equipment installation plans remove item (1) from the multi-year

decision-maker's control. On the other hand, total strategy overhead

(item 4), labor and supplies (item 5) and maintenance (item 6) are largely

invariant though the timing of the latter may be slightly altered by the

multi-year strategist.

The multi-year objective function may, therefore, be reduced to the

operating costs directly related to supplying customer loads--fuel con-

sumption (item 2) and electricity purchases (item 3) along with the associ-

ated taxes (item 7) and carrying charges (item 8).

Adopting the notation that RR(X) is the total revenue requirement

related to direct expenditure X,
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RR(X) = Present (Expenditure X)
Value

+ Present Taxes associated\
Value with X /

+ Present (Carrying charges\
Value \ associated with X/ (2. 15)

Fuel consumption expenditures can be further broken down into:

(1) XF, fossil fuel related directly to production,

(2) XN, nuclear fuel related directly to production, and

(3) X 5 , fuel related to startup-shutdown heat requirements.

Expenditures for electricity purchases from other utilitiesXUrepre-

sents both emergency purchases and economy purchases. (Economy

purchases are not considered further in this work. )

The standard procedure in performing multi-year optimization is to

subdivide the horizon into Z smaller time periods. In each time period p,

expenditures are estimated in undiscounted dollars. Period expenditures

are then present-valued at x per year from their mean time t back to
p

time zero. As Section 2. 3 will point out, the addition of nuclear units may

prevent immediate evaluation of XN. [In fact, RR(XN) or RRN is determined

directly only after all periods have been simulated.]

The equivalent multi-year objective function ORR, the operating

revenue requirement, can then be expressed as

ORR = RRF + RRN + RRS + RRU (2. 16)

or, in terms of the nonnuclear period expenditures,

Z
ORR = XF (1) p + RRN

p

z Xz I-
+ X """""""* + X t (2.17)

p p
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2. 2 Production Scheduling

Given the predicted customer loads and generating equipment, how

are operating expenditures on the Reference System estimated? Much

work has been done on modelling utility production scheduling (9, 18, 30,

43, 48, 52, 53). A relatively new technique, the Booth-Baleriaux proba-

bilistic system model (10,19 ) is rapidly gaining acceptance among utility

system planners. The following sections describe qualitatively how the

model schedules each type of unit. A quantitative description of the model

has been postponed until Chapter 3.

2. 2. 1 Fossil, Peaking and Nuclear Units

As Section 2. 4 will point out, the key element in any utility system

optimization is incremental cost. Thus, the first step in any production

scheduling technique is surveying the incremental costs of the available

units. Using the rth unit and i th increment notation, Equation (2. 5)

becomes

erI r~ -(2.18)

Figure 2. 10 presents the resulting incremental costs for the Reference

System of Section 2. 1. 2. 3. Utilizing these, the order in which the plant

increments are started up and loaded (i. e. , the startup and loading order)

can be established. If all units but Unit I are assumed to be already run-

ning at their minimum loads (700 MW in toto), the question is "Which

increment should then be loaded when the 7 0 1 st MW is demanded?" The

cheapest unused increment (1. 71 $/MWH per Figure 2. 10) is that of Unit V.

Thus, it is loaded until total demand reaches 1200 MW. Now Unit III's

1.90 $/MWH increment should be loaded for the next 200 MW.



-120-
6253-18

Figure 2. 10

Incremental Costs for Reference Utility System (See Table 2.2)
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This procedure of loading in order of increasing incremental cost

results in the loading order and system incremental cost curve shown in

Figure 2. 11. Overlaying this loading order on the customer loads of

Figure 2. 9 yields the production schedule shown in Figure 2. 12. Tempo-

rarily assuming all units are always operable (i. e. , no forced-outages),

energy production by each unit increment E ri equals the total period length

T' (the normalizing factor) times the area Ari under that increment's

section of the normalized customer load-duration curve,

P 0 .+AK
E . = T'A . = T' f ri rF(P) dP (2.19)r1 r1i g

ri

and total unit energy production Er is given by

I
E = E ri (2.20)

At an average incremental cost of X ri' the cost of each energy incre-

ment is

Xrt r1 Er1 XrI ri> (2. 21)

and hence,

X r= X i (2.22)

Table 2. 3 summarizes each unit's energy and cost totals for Example 1.

(Startup-shutdown costs are ignored throughout this chapter. )

The above description is typical of older, deterministic utility models

since all units were assumed always operable with no stochastic forced-

outages. Example 2 (see Figure 2. 13) portrays the more realistic case

where each unit is assumed to have a fixed percentage of random downtime.
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Loading Order and System Incremental Cost for Example 1
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Figure 2.12

Produc-ion Scheduling for Example 1 No Forced - Outages)

P0

1.00 0
i + Mri

0.75
Al

F, CUSTOMER
I- LOAD-DURATION

OZ -CURVE

0.50 K

KT = INSTALLED CAPACITY

0.25
0 0 GWII

219 GWH 73 146 73 235.8 73

-a III-I IY-I11-1 III-2 29.2 1-2 1-1

0.00
0 250 500 750 1000 1250 1500 1750 2000

P, LOAD (MW)



-124-

TABLE 2. 3

Example 1 on Reference Utility System:

"Deterministic Model (No Forced-Outages)"

(See Appendix C for further details.)

Unit Increment Position Increment Increment
in Energy Cost

r Loading E . Xri
Order ri r1

(GWH) (103 $)

I 1 9 (last) - 0 - - 0 -

II 1 4 73.00 401.5

2 8 -0- -0-

III 1 2 73.00 166.4

2 6 73.00 138.7

IV 1 3 146.00 572.3

2 7 29.20 97.0

V 1 1 (first) 219.00 492.8

2 5 335.80 574.2

Utility Production 949.00 2442.9

Emergency Purchases (at 10$/MWH) - 0 - - 0 -

Total 949.00 2442. 9

Loss-of-Load Probability, LOLP = 0%
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Production Screduling for Example 2 (Deterministic Scheduling Using Reduced Rated Capacities)
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One of the first attempts at accounting for these forced-outages was to

reduce each capacity increment by its nonperformance probability. A

200-MW unit performing 90% of the time was treated as a 180-MW unit

performing 100% of the time. Table 2.4 summarizes the energy and

cost totals for this example.

A more elegant means of incorporating forced-outages in production

scheduling has been developed (10,19 ) and is portrayed as Example 3 in

Figure 2. 14. The abscissa has been relabeled the equivalent load Pe

signifying the stochastic or random nature of those units on forced-outages.

The original normalized customer load-duration curve has been relabeled

FD, the "direct" customer demand to signify that each increment is

directly responsible for satisfying customers within its section of the

curve. However, if increment V-2 is off-the-line due to a forced-outage,

increments of other units higher in the loading order (i. e. , to its right)

possess excess capacity capable of satisfying the customers V-2 is

temporarily failing to serve. These customers are the direct responsi-

bility of V-2 but are also the indirect responsibility of the other units.

This additional indirect demand on all partially loaded unit increments is

indicated by F . The resultant total equivalent demand F on each incre-

ment (derived in detail in Chapter 3) is given by

Fe(P e )= FD(P e) + F (Pe) (2. 23)

Forced-outages affect not only the demand on each increment, but

also the increment's production. If the unit only performs 90% of the time,

then it is expected that only 90% of its demand will be served. Recalling

from Section 2. 1. 2. 2 that pr is the unit's performance probability,

Equation (2. 19) becomes,
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TABLE 2.4

Example 2 on Reference Utility System:

"Deterministic Model (Reduced Capacities)"

(See Appendix C for further details.)

Unit Increment Position Increment Increment
in Energy Cost

r Loading E .X
Order ri ri

(GWH) (103 $

I 1 9 2.51 40.7

II 1 4 69.35 381.4

2 8 5.81 24.7

III 1 2 65.70 149.8

2 6 108.82 206.8

IV 1 3 131.40 515.1

2 7 79.85 265.1

V 1 1 186.15 418.8

2 5 299.30 511.8

Utility Production 948.89 2514.2

Emergency Purchases (at 10$/MWH) 0. 11 1. 1

Total 949. 00 2515.3

Loss-of-Load Probability, LOLP = 1. 25%
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Figure 2.14

Production Scheduling for Example 3 (With Forced-Outages)
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P*. +AK.
E . = T'p ri ri F (P ) dP (2.24)

r1

For this more general case, Equation (2. 24) replaces Equation (2. 19)

for E ri. However, Equations (2. 20) to (2. 22) remain unchanged.

Table 2. 5 presents the production and cost summary for the Reference

System as loaded in Figure 2. 14. Notice that, in contrast to Figure 2. 12

where peaking Unit I was not utilized to meet any direct demand, in

Examples 2 and 3 the unit is subject to some indirect demand due to forced-

outages of the other four units. Furthermore, some indirect customer

demand extends beyond the available installed (on-line) capacity,

R'
K' = K (2. 25)

As one measure of system reliability, DU represents the energy unserved

by the system's resources,

0o

D = T' F (P ) dP (2. 26)U ,e e e

"Expected unserviced energy ... is the expected curtailment or, more

realistically, the expected emergency support required during" the time

period (49).

Along with Du, another measure of the system's reliability is the

LOLP "loss -of-load-probability,"

LOLP = F (KY) (2.27)

the fraction of time the utility is unable to serve its customers with its own

resources.
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TABLE 2.5

Example 3 on Reference Utility System:

"Probabilistic Model (With Forced-Outages)"

(See Appendix C for further details.)

Unit Increment Position Increment Increment
in Energy Cost

r i Loading E .XOrder ri ri

(GWH) (103 $)

I 1 9 11.93 193.3

II 1 4 69.35 381.5

2 8 14.01 59.5

I1 1 2 65.70 149.8

2 6 80.69 153.3

IV 1 3 131.40 515.1

2 7 70.85 235.2

V 1 1 186.15 418.8

2 5 288.81 493.9

Utility Production 918.89 2600.4

Emergency Purchases (at 10$/MWH) 30. 11 301. 1

Total 949.00 2901.5

Loss-of-Load Probability, LOLP = 15. 6%
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The quantitative details of Chapter 3 underlying the above discussion

center around the calculation of Fe.

Far more germane to the current topic is how other unit types are

handled by this model. As for fast-start peaking units, their high fuel cost

places them very high in the loading order, but, when their turn finally

comes, they are represented exactly like fossil units.

Nuclear units, with very low fuel costs, are also treated like fossil

units but they come very early in the loading order, provided each has suf-

ficient reactivity inventory to supply the resulting energy requirements.

If not, they are treated like the scarce resource hydro units in the following

Section 2. 2. 2.

2. 2. 2 Hydro Units

The important characteristic of hydro unit scheduling is making opti-

mum use of a free, but scarce, resource. To do this requires finding that

place in the loading order (see Figure 2. 15) that utilizes all the available

hydro energy while displacing the most costly fossil fuel possible. This is

the same process often interpreted as "peak-shaving" the system demand

(51).

In terms of Equation (2. 24), the optimum hydro loading point P* is

determined such that,

*
P +K

E T T'Hf * H F (P ) dP (2.28)
H PHP*e e e (.8

The cost of EH is zero, but by utilizing EH in this manner, each hydro

megawatthour has been used to displace the most expensive fossil energy

possible and thereby saving the maximum amount of money.
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Determining the hydro's position in the loading order given EH is

not difficult. The much more difficult question to answer is how much

of the year's forecasted hydro resources to allocate to the period in

question - i. e. , determining E H itself. Large scale computer programs

(51) are required to tackle this problem on a realistic mixed fossil-hydro

system. In order to avoid the hydro complexities in this early nuclear

power management development work, hydro units were not included in

this study.

2. 2. 3 Pumped-Hydro Units

The most complicated of all, pumped-hydro unit production schedu-

ling requires not only hydro-type utilization of a fixed energy resource,

but also involves the pumping of that resource into the reservoir prior to

the generation. Figure 2. 16 portrays the situation. Pumping involves an

added direct demand on nonfully loaded increments low in the loading

order, while generating involves using the stored energy to displace more

expensive fossil equipment high in the order. If ny and 7G are the net

efficiencies in the pumping and generating modes, respectively, pumping

is continued until the last increment of pumping energy costing XP just

breaks even displacing an associated increment of generation saving XG'

That is, pumping continues until,

X = (2.29)
G t7y tG

However, this is subject to the constraint that the upper level reservoir

capacity is not exceeded before pumping is terminated.

As with hydro units, pumped-hydro units were not included for

further consideration in this initial development effort to avoid unnecessary

complexity.
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Figure 2.16
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2. 3 Complexities of Nuclear Power

The cost of fossil fuel is simply the cost of coal or oil plus shipping

charges. Assuming a constant coal stockpile, newly delivered coal is

burned immediately. From mine to ash, fossil fuel consumption requires

only a matter of days.

Nuclear fuel, on the other hand, requires years to account for all

cost components. Mining and enrichment occur nine months or more

before insertion in the reactor. During the three years or more of irradi-

ation, the energy potential is slowly extracted not only from this fuel batch

but also from two or so others in the core. Three months or more after

discharge, reprocessing occurs and fissile isotope credits are received.

(Appendix H treats nuclear fuel cycle costs in more detail.) The net

result is that the cost of a reactor's fuel over a time span of C cycles is

a nonlinear, nonseparable function of the E rc energy produced in each

irradiation cycle,

TC r= TC r(E r E , ,E rC) (2.30)

Qualitatively, the nonlinearity,

TC /c +c - E +c - E +.. +c -.E(.1
r rO r1 r1 r2 r2 rC rC (2.31)

results from the fact that, given the refueling batch fractions, cycle energy

is approximately linear in feed enrichment, but the cost of this enrichment

(i. e. , separative work requirement) is nonlinear.

Preventing a more general uncoupling of the cycle energies,

T~C r C +C (E )+C (E )+... +C (E ) (2.32)r rO r1 r1 r2 r2 . rC rC

is the multi-irradiation (multi-zone) nature of today's LWR refueling

schemes. The specification of reload enrichments requires not only
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reactivity allowance for the next cycle, but succeeding ones as well.

In summary, to calculate nuclear fuel costs, the cycle energies to

the horizon of interest must be known.

In the early years of nuclear power, this stringent requirement did

not pose a problem for conventional production scheduling models. With

only a single nuclear plant on the system (see Figure 2. 17), base-load

operation was possible. That is, nuclear units were operated at full

capacity whenever they were available. In addition, annual refueling

meshed nicely with fossil maintenance plans and appeared to be reason-

ably economical. For the base-load (F = 1) case, Equation (2. 24)

reduced to

E p T' K (2. 33)
rc r rc r

for all cycles. If T' was constant, the cycles energies to the horizonrc

were the same and reactor steady-state fuel costs could be calculated

and used for all cycles.

However, as nuclear capacity on the system increased, two prob-

lems became apparent. First, not all nuclear units could be base-loaded

if total nuclear capacity was greater than the minimum load as in

Figure 2. 17. Equation (2. 33) was no longer valid because the nuclear

portion of the load-duration curve was no longer equal to 1. 0 for all

nuclear units. Which nuclear unit should occupy the base-load position?

Inter-nuclear incremental cost competition had surfaced for the first time.

Only rough estimates of nuclear fuel costs had been necessary to decide

that all nuclear equipment was cheaper than all fossil equipment, but very

refined costs were now needed to decide nuclear unit A versus nuclear

unit B.
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Secondly, annual refueling created scheduling problems when each

nuclear unit had to be refueled within every scheduling window. Coupled

with decreasing nuclear load demand (F ), what was the optimum cycle

length for each reactor?

The net result was that cycle energies were no longer easily speci-

fied out to the horizon. The nuclear complications rendered previous

utility system optimization models obsolete in the sense that operating

plans based on them might be far from optimal.

The nuclear power management model to be put forth in Section 2. 5

was developed to provide a modern model for utility system optimization,

capable of handling nuclear plants explicitly. To do this, it must accu-

rately predict cycle energies out to the horizon.

2.4 Comparison of Fossil and Nuclear Utility System Optimization

Incremental cost techniques for optimized fossil system dispatching

(43,48) have been in use for many years. As Section 2. 3 pointed out,

nuclear plants present new problems due to the long-range time coupling

inherent in the nuclear fuel cycle. Widmer et al. (59. ) optimized

fossil-nuclear systems using nuclear incremental costs defined much dif-

ferently from those of fossil plants. This section presents a parallel

treatment of both fossil and nuclear incremental costs in order to point out

the contrasting assumptions and results.

Consider the following general problem:

Minimize total system cost (i. e. , revenue requirements)

from time 0 (zero) to the end of the horizon Z (on the order of

ten years) for a system containing R generating units.
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Fuel for each unit is assumed to be provided under several consecu-

tive fuel contracts. The objective function is then:

R
Minimize TC = T Cr (r' r2' E r3...) (2.34)

subject to the load constraint,

R
YP r(t) = P(t) (2. 35)

If H r r) represents the instantaneous heat input rate at power level

Pr for the rth unit, then from the end of the previous contract, T rc-1 ' to

the end of current contract, Trrc, the plant consumes thermal energy equiva-

lent to

8 = f r, c H (P ) dt (2. 36)
rc T r r

r, c-1

2. 4. 1 Incremental Costs on All Fossil System

For fossil units, two important assumptions come into play:

a) the various fuel supply contracts for each generating unit

are uncoupled:

TCr (r' r2'''' rl r)+TC2 r 2 ) +... (2.37)

and b) the contract total cost TC is linear in 8 :rc rc

TC =TC + -E (2.38)
rc rc rc rc

where r = levelized incremental thermal energy unit cost.

For an all fossil system, adding all C contracts for all the R units

yields the objective function:

R C T

TC TC* + i rc H dt (2.39)
reT{ c rcI 

r, c-1
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Since one summation is over all contracts (i. e., cycles), all time

from 0 to Z is included and that summation may be replaced by an integral

over t. Defining

C

TCrc

then

(2.40)

T C = TC* +
Z
0

R 

d

rcHr r) dt (2.41)

or more generally,

TC = TC +
z

0
(2.42)

Since the objective function is a definite integral over t, the calculus

of variations (32) allows immediate reduction of the problem. Employing

the integrand of Equation (2. 42) and the load constraint Equation (2. 35) to

form the auxiliary function #F'

OF = f(t; all Pr; no derivatives (2.43)Pr) + XF(t) P(t) -

Immediately, the optimum behavior of each P r(t) is given by Euler's

equation:

d 3 Fj

a Pr I

0

- p = 0
r

Since there is no dependence of OF on Pr' Equation (2.44) reduces to

0 = '. ' - XF(t)
r

Substituting for f(... ) using Equation (2. 41) and rearranging,

8H (P )

<re 8P
r

(2.44)

(2.45)

AF(t) = (2.46)

R
TC =

f(t; P 1(t), P2(t),. *..) dt

R

IP r
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8H (P)
Since r r equals the incremental heat rate at Pr, h. (P '

r r

X F(t) = 4* h. (P ) (2.47)Fncr r

for all R units at the same time t, subject to Equation (2. 35).

The Lagrangian multiplier XF(t) represents the time-varying incre-

mental energy cost (i. e. , proportional to 4rc discounted dollars over

undiscounted energy) at which all fossil units on the system should be

operating for minimum system cost. Equation (2. 47) is the same result

Kirchmayer obtained (43) with the a priori knowledge that instantaneous

optimization gave the long-term optimum rather than beginning with the

long-term objective function, Equation (2. 34).

Typical values for present day fossil systems involve unit fuel costs

of 25 to 50 g/Mega BTU and incremental heat rates as low as 8000 BTU/kwhe

at night to over 15, 000 BTU/kwhe (8 to 15 Mega BTU/MWH) during the

hours of peak demand. System incremental fossil fuel cost thus varies on

a daily basis from 2. 0 to 7. 5 $/MWH.

2.4. 2 Incremental Costs on All Nuclear System

For nuclear reactors, which have coupled, nonlinear cycle costs,

the two assumptions made for fossil units [Equations (2. 37) and (2. 38)] do

not hold. However, the data of Figure 2. 18 indicates that for today's

LWR's, the incremental heat rate of a nuclear plant is approximately

constant over the operating range of interest (40% to 100% of full power),

hinc (P ) (2.48)
r

Extrapolating the heat rate curve Hr (P r) back to P r= 0 at the constant incre-

mental heat rate hinc
r

Hr (P ) = H + h. . P for P > 0 (2.49)r r r incr r r
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Figure 2.18
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Since Pr (and hence H = 0 during the refueling downtime following

shutdown at T r, c-1 (the end of the irradiation cycle), Equation (2. 36) need

only be integrated over the available generating hours Trc'

8r= f rc H* +h. -P )dt (2.50)
rc T -, r in r

rc rc

Assuming the nuclear units to be "must-run" units (see Section 2.4. 3),

they can be expected to perform at least at minimum load (i.e., Pr >> 0) for

p T' hours.r rc

Hence,

E = H 0 p T + h. frc P dt (2.51)
rc r r rc incr 7 -T, r

rc rc

or,

e = H0 p T' +h. E (2.52)
rc r r rc incr rc

Since 8 is linear in E , direct substitution into the objectiverc rc

function is possible:

R R

T-IwrC r rl' r2'* ) Cr(Erl, Er 2,...) (2.53)

In order to transform the customer loads into corresponding energy

units, the time horizon is segmented into Z convenient time periods on the

order of weeks. Then, the right-hand side of Equation (2. 35) is integrated

over each time period to yield period energy demand,

t
D = fP P(t) dt (2.54)

p-1

Assuming there are enough nuclear units on the system to prevent

loss-of-load, the period energy demand must be generated by the R units

in that period,
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R'
D = E (2.55)

p rep

During a particular reactor-cycle, the energy must be the sum of the

reactor's production in each of the included periods,

pin c
E rc = Erp (2.56)

Thus, the independent variables in Equation (2. 53) can be further

subdivided into period energy productions,

R
TC = IT r ({E rcpr) (2.57)

To form the Vi N auxiliary function of Equation (2. 57), the constraints

[Equation (2. 55)] are incorporated using a XN Lagrangian constant for
p

each period,

R Z R
ON= ITC r({E rcp}) + XN - D - E (2.58)

which is only a function of the Ercp set, { E rcp.

For ON to be a relative minimum (31), the following must hold for all

r, all c and all p:

__E N r ~ 
(2.59)aE TErep rep p

Therefore, during each period of the optimum,

aTC

XN aE r (2. 60)
p rep

for the pertinent cycles of each reactor, subject to Equation (2. 55).

Since the Ercp sum linearly to give the cycle energy Erc

[Equation (2. 56)] ,
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aE . E ) for all p in c (2.61)3E E
rcp rc

the optimality condition Equation (2. 60) can be restated as

aTC
XN aE r (2.62)

p rc

The Lagrangian constant XN (with units identical to X F discounted
p

dollars over undiscounted energy) represents the incremental energy cost

at which the pertinent refueling cycle of each nuclear unit should be designed

and operated. The coupling of nuclear energies in the objective function

prevents the simplifications made in the fossil case. However, the approxi-

mately constant incremental heat rate of today's nuclear units (above 40% of

capacity) permits a different simplification and leads to Equation (2. 62).

To contrast Equations (2.47) and (2. 62) in more general terms,

consider that

DTC aTC d 8

"N aE r _ r dErc (2.63)
p rc rc rc

Differentiating Equation (2. 52),

de

dE hinc (2. 64)
rc r

Hence, for nuclear units,

aT C
N N r hinc (2.65)

p rc r

resulting in nuclear dispatching on a cycle-by-cycle basis using energy-

related incremental costs.
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Fossil units, on the other hand, are dispatched using instantaneous

incremental costs related to power level [Equation (2. 47)]

XF(t) = 4 h. (P (t)) (2. 66)
rc cr r

Substituting the definition of hinc [Equation (2. 3)]
r

.-. dH (P )

Ft =rc dP (2.67)
r

Comparing Equations (2. 65) and (2. 67), the former is in terms of

energy because the "incremental" effect or derivative is in the fuel cost

component related to cycle energy, not the incremental heat rate hinc
r

which is assumed constant for any power level. The reverse is true for

the latter's fossil incremental cost. The XF is power level dependent

because the hinc is recognized as a function of P r(t), the fuel cost com-
r

ponent TCr /a8rc is assumed a constant 4rc independent of cycle energy.

Another conclusion regarding nuclear incremental costs can be

deduced by considering the cycle-to-cycle overlap of two reactors as in

Figure 2. 19. In the pth period, both reactors have the same incremental

cost per Equation (2. 60). Going one step further, Equations (2. 56) and

(2. 62) indicate that within the range of periods in the companion cycles,

the incremental cost remains the same. Finally, as the cycle ends for

Reactor 1, XN remains at the same level due to Reactor 2. But,
p

Equation (2. 62) states that Reactor 1's next cycle should also be designed

at this same level to maintain the equality. Thus, the overlapping of

reactor-cycles creates a constant Xrc regardless of reactor and cycle.

Consequently,

XN N = constant for all p (2. 68)
p
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and

AN 3Er (2. 69)
rc

for all r and all c simultaneously.

A consequence of Equation (2. 69) is that steady-state would never be

reached. Due to the discounting of dollars, but not energy, it becomes

profitable to generate more and more energy in each succeeding cycle,

relying on the increasing discount factor to appropriately reduce the

additional undiscounted cost. This is the case for cycles 1 through 3 of

Figure 2. 20. While Equation (2. 69) indicates the profitable thing-to-do,

it does not indicate how feasible it is. Cycles 4, 5 and 6 of Figure 2. 20

are examples of steady-state designs (with decreasing incremental costs)

being forced by a constraint, namely, that the capacity factor cannot be

greater than one. In other words, generation cannot be postponed.

Demand must be satisfied instantaneously, not four years later. Gener-

ation can be shifted from one reactor to another on a day-to-day basis but

the total production each period must be met [Equation (2. 55)] .

The net result is the primary Conclusion I [Equation (2. 70)] , relating

a strong dependence between pertinent cycle incremental costs for each

reactor during each period and a secondary Conclusion II [Equation (2. 71)]

relating an idealized state that may not be attainable:

Conclusion I :

At the optimum reactor-cycle energies,

aT C
XN aE r (2.70)

p rc

during each period for the pertinent cycle of each reactor.



6253-20

Figure 2-20
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Conclusion II:

At the optimum reactor-cycle energies,

aTC

N E r (2. 71)
rc

for all periods, all cycle and all reactors simultaneously, subject to physi-

cal constraints.

As for typical values of XN and X N, the results of Widmer (57),
p

Kearney (41) and Watt (55) as well as Section 5. 6. 3 indicate optimum mid-

range nuclear incremental costs in the range of 0.9 to 1.6 $/MWH.

2.4. 3 Optimization of a Mixed System

The two previous sections have indicated how an all fossil or an all

nuclear system would meet the same loads at minimum total system cost.

This section endeavors to show the reasoning behind segmenting the more

realistic mixed fossil-nuclear system into an equivalent "all fossil plus

all nuclear" system such that,

DT = F + EN + DU (2. 72)
p p p p

Given the normalized customer load-duration curve and the available

generating equipment, a startup and loading order is required by the

production scheduling model. The first consideration is the placement of

unit increments under the "knee" of the load-duration curve, i. e. , below

the minimum load (see Figure 2. 12) where they will be operated even during

periods of lowest system demand, such as the early morning hours. These

unit increments are typically the minimum loads on all of the large units

(e. g. , rated capacity > 300 MW). If such units were shut down overnight

due to economics alone, minimum shutdown times and other engineering
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problems might prevent the unit from being in service when it was needed

for the next day's peak. Losing such a large unit creates reliability prob-

lems. Thus, the operating philosophy is that all large units must be

running at least at minimum load if possible. If the minimum load is too

low to permit this, either the smallest of the "must-run" units is shut

down or its excess capacity is sold to neighboring utilities on an hour-by-

hour economy interchange basis.

For a mixed fossil-nuclear system, this must-run philosophy results

in grouping all nuclear minimums at the lowest point in the startup and

loading order. Next comes the must-run fossil minimums in order of

decreasing size. Figure 2. 12 portrayed the must-run units in Examples 1

to 3 for a lower limit of 200 MW.

The startup and loading order for the rest of the system is determined

by noting two important points. First, on a time scale where reload fuel

is being designed, nuclear units are not energy-limited, and nuclear pro-

duction should not be scheduled as scarce resource. Secondly, even with

fossil fuel costing as little as 25 g/MegaBTU, the best-plant fossil incre-

mental costs are at least 2. 0 $/MWH (see Section 2.4. 1). Since even the

highest nuclear incremental fuel costs are less than 1.6 $/MWH (see

Section 5. 6. 3), nuclear power should be operated so as to displace maxi-

mum fossil energy. In other words, the greatest potential for cost savings

in each period is in maximizing nuclear production EN vis-a-vis fossil
p

production EF . (DU is invariant given the on-line equipment.) Mathe-
p p

matically, total period cost is a minimum when

D =Emin + E max + D (2.73)T F N U
p p p p

The above loading order does just that, maximizing EN and resulting in Np,p
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the system's nuclear potential for the period,

N = Emax (2. 74)
p N

p

Thus, after starting up and raising to minimum power the must-run

units that are not shut down regularly, all nuclear plants are loaded to full

power in accordance with system demands. As demand continues to

increase, all the remaining fossil power is loaded in order of increasing

incremental cost.

Figure 2. 11 portrayed such a startup and loading order applied to the

Reference System in Examples 1 to 3. It is now a simple matter to sepa-

rate the "all nuclear" system from the "all fossil" system. Performing

the above for each time period of a study thus separates the fossil and

nuclear portions of the system. These two subsystems can then be opti-

mized using the techniques of Sections 2.4. 1 and 2.4. 2, respectively.

The key assumption leading to the fossil-nuclear dichotomy, bears

repeating since it is the basis of the entire nuclear power management

model presented in the next section.

XN < X F(t) for all t and p (2.75)
p

2. 5 A Nuclear Power Management Multi-Year Model

A nuclear power management multi-year model currently under

development (23,34) contains four submodels as presented in Figure 2. 21.

The overall model's purpose is to supply the utility system planner with

the following outputs:

(1) Optimum schedule for fossil maintenance and nuclear refueling,

(2) Associated optimum production schedule and

(3) The resultant fuel requirements.
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Operation of the overall model begins within the Refueling and

Maintenance Model (RAMM). Incorporating such inputs as load forecasts,

maintenance requirements and scheduling constraints, the RAMM

determines a number of feasible multi-year refueling and maintenance

schedules. Each schedule is a mutually exclusive, alternative mode of

operating the entire system over the multi-year horizon. The purpose of

the rest of the overall model is to determine which of the possible alterna-

tive strategies results in minimum total cost.

Strategy-by- strategy evaluation begins in the System Integration

Model (SIM). For each strategy, the SIM integrates the utility's available

equipment, operating practices, etc. into a realistic utility simulation

model. Production scheduling is optimized so as to meet customer load

demand by maximizing nuclear energy and minimizing fossil energy and

fossil cost (see Section 2. 4. 3).

The task of the System Optimization Model (SOM) is then to optimize

the operation of the nuclear portion of the system (see Section 2.4. 2) so

that the nuclear energy ENuclear is produced at minimum cost $Nuclear'

To do this, the SOM postulates reactor-by-reactor multi-year production

schedules which are then passed to Core Simulation and Optimization

Models (CORSOM's) for each reactor unit or type (PWR, BWR, LMFBR,

etc. ). With each production schedule specified to the horizon (see

Section 2. 3), each CORSOM is then able to optimize its reload parameters

of batch size and enrichment, minimizing the total fuel cost for the par-

ticular reactor. In addition, the CORSOM calculates nuclear incremental

costs for each of the cycles.

With all reactors optimized for the given schedules, the SOM begins

a second iteration by using the CORSOM's incremental nuclear energy
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costs to postulate a better reactor-by-reactor multi-year production

schedule. Iterations continue until the system-wide production schedule

converges, giving minimum system nuclear cost $Nuclear'

The total system cost for the particular refueling and maintenance

strategy under investigation is then merely the sum of $Fossil and

$Nuclear'

After evaluating all possible alternative strategies in this manner,

the overall optimum system strategy is the one resulting in the minimum

total system cost.

Though the above discussion and, in fact, this entire work assumes

only fossil and nuclear equipment exist on the system, the general

structure of the overall model holds even if hydro and pumped-hydro

equipment have been installed.

The development of the complete nuclear power management multi-

year model is a very large task. However, the four submodels represent

convenient building blocks suitable for somewhat independent development.

However, model interface problems must be considered. Ideally, the

models ought to be coupled together like the boxcars of a train, not nailed

together like the tracks.

In the context of the Commonwealth Edison-sponsored utility system

optimization research project at the Massachusetts Institute of Technology,

development of a RAMM was assumed by the project sponsor (20).

Development of a pressurized water reactor CORSOM was undertaken at

MIT by Kearney (41) and Watt (55). The concluding sections of this chapter

emphasize these two models, indicating the important aspects relative to

RAMM and CORSOM development and their interfacing with the rest of the

model (see Figure 2. 22). As the title indicates, the work reported here

deals specifically with the development of the remaining SIM and SOM.
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2. 5. 1 Refueling and Maintenance Model (RAMM)

Taking due account of the five inputs indicated in Figure 2. 22, the

RAMM's purpose is to generate possible alternative strategies for further

investigation by the rest of the nuclear power management multi-year

model.

The output of the RAMM is anticipated by the SIM in the form of

either a set of downtime dates for each unit on the system or a period-by-

period (on the order of one to four weeks per period) maintenance schedule

indicating which units are down in each period.

Also desirable is a RAMM ranking of the strategies in order of

anticipated desirability. That is, "ballpark" estimates of economics and

reliability ought to indicate Strategy 1 is most likely to be optimum, while

Strategy n (n ~ 100), though feasible, is highly unlikely to be economically

attractive and/or a reliable operating scheme. Such a ranking would

decrease computing requirements by permitting the detailed evaluation of

only those strategies with a reasonable chance of competing for the optimum.

With regard to the testing of the nuclear power management model in

Chapter 5, Sections 5. 2 and 5. 3. 3 indicate the RAMM utilized in the evalu-

ation.

2. 5. 2 System Integration Model (SIM)

Chapter 3 is devoted to a detailed discussion of the SIM and, in par-

ticular, the Booth-Baleriaux utility model.

2. 5. 3 System Optimization Model (SOM)

Chapter 4 is devoted to a detailed discussion of the SOM.
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2. 5. 4 Core Simulation and Optimization Model (CORSOM)

At each iteration in Figure 2. 22, the CORSOM accepts a new set of

cycle energies (E's) for its reactor and, in point of fact, the same set of

cycle lengths (T's) associated with the particular possible alternative

strategy. After simulating core physics-depletion and optimizing the

reload parameters (batch size and enrichment), it is required to return to

the SOM only two specific types of information:

(1) the minimum total reactor fuel cost (TC r) and

(2) the nuclear incremental cost curve for each reactor reload

batch,

rX (E ) = 8T (2. 76)
rc

Specific information about the fuel designs is not needed by the SOM. As

long as each CORSOM is properly matched with the reactor unit index that

it represents, the SOM does not care which unit indexes are PWR's, BWR's,

HTGR's or fast breeders. Of course, management personnel need fuel

design information and it must, therefore, be available in the printed out-

put received directly from the CORSOM (at least, for the final fully-

converged iteration).

The details of such a PWR core model can be found in the work of

Kearney (41) while the techniques of incremental costing can also be found

in the work of Widmer (57) and Watt (55).

With regard to the testing of the nuclear power management model in

Chapter 5, Section 5. 2 and Appendix H- detail the CORSOM utilized in the

evaluation.
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CHAPTER 3
THE SYSTEM INTEGRATION MODEL

3.1 Overview of the SIM

Many aspects of the System Integration Model (SIM)

have already been described in Chapter 2. The emphasis

in the current chapter will be on detailing the Booth-

Baleriaux probabilistic utility model and describing

the calculation of the various cost components.

The SIM has as its basic purpose the simulation of

multi-year utility operation. To do this, it must inte-

grate the following information into a representative

utility system model:

(1) Forecasts of customer loads,

(2) Generating equipment characteristics,

(3) Forecasts of fuel costs,

(4) Maintenance schedules and

(5) Operating constraints.

To portray system operation more accurately, the

multi-year horizon is divided into much smaller time

periods, on the order of a few weeks. Periods shorter

than a week create an undue computational burden. On the

other hand, periods longer than a month are precluded by

the necessity of discretely representing scheduled main-

tenance outages which are usually two to four weeks in

length.
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These time periods are then simulated individually in

chronological sequence. Forecasted loads for each period

(Item 1 above) are represented by a normalized customer

load-duration curve such as the month on the Reference

Utility System presented in Figure 2.9. Thermal energy

costs (Item 3) are combined with the characteristics of the

generating units per Equation (2.18) to yield unit incre-

mental costs. Any unavailable units down due to scheduled

maintenance (Item 4) are treated as non-existent for that

period. The next step is the establishment of the startup

and loading order (see Section 3.2) for the remaining on-

line units. It is in this order that various operating

constraints (Item 5), such as "spinning reserve" and "zone-

loading" requirements are incorporated. Production sched-

uling of the resulting system representation is performed

using the Booth-Baleriaux probabilistic utility system

model (see Section 3.3).

The qualitative discussion of the Booth-Baleriaux

model presented in Section 2.2.1 developed cost components

for most of the required period expenditures enumerated in

Section 2.1.3:

(1) XF = Fossil fuel expense related to EF energy

production,

(2) XN = Nuclear fuel expense related to EN energy

production,
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(3) XS = Combined fossil and nuclear startup-shut-

down cost (not discussed in Chapter 2) and

(4) XU = Expense related to DU emergency energy

purchases.

Later, Section 2.3 pointed out that the complexities of

nuclear power preclude a priori knowledge of nuclear fuel

costs XN except for the special case of all nuclear base-

load operation. Nevertheless, by incorporating the nuclear

versus fossil incremental cost argument of Section 2.4.3

to sub-optimize each period, the SIM is able to mark time

by calculating in its place the system nuclear potential

N for each period. The responsibility for optimizing and

costing inter-nuclear production of this energy rests

with the System Optimization Model (SOM).

Even an a priori estimate of unit nuclear fuel costs

ON. is sufficiently accurate for the nuclear component of
r

system startup-shutdown costs since (XS)N represents only

a small fraction of total nuclear production fuel cost

XN'

X5 << X (3.1)
) A/ A/

Furthermore, for nuclear units (all assumed to be must-run

units), there are very few startup-shutdowns since the

units are always running. Hence, nuclear startup cost is

also much less than fossil startup cost,
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(3.2)
(XS)N S F

Thus, an initial error in #N has a very small effect on
r

total period expenses.

In summary, the actual period-by-period output of the

SIM consists of:

min
(1) XF = Fossil fuel expense related to EF

energy production (see Section 3.3),

(2) N = Nuclear potential equal to Emax energy

production (see Section 3.3.3),

(3) XS = Combined fossil and nuclear startup-shut-

down cost (see Section 3.4) and

(4) XU = Expense related to DU emergency energy

purchases (see Section 3.5).

In addition to these outputs discussed in this chapter,

the SOM of Chapter 4 requires various data related to the

nuclear potential and each reactor's possible contribu-

tions to it. Discussion of these more subtle outputs is

postponed until Section 4.2.

3.2 Determining Startup and Loading Order

The Booth-Baleriaux model to be discussed in Section

3.3 is an objective, mathematical algorithm for calcu-

lating energy production given a startup and loading order

for the capacity increments. Thus, it is in determining

this input loading order (sometimes referred to as the
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"pecking order"), that the more subjective aspects of

utility operating practices and constraints must be con-

sidered.

The goal is to determine for each period the startup

and loading order that meets all operating constraints at

minimum total cost. Ironically, startup-shutdown cost

itself is not used in the multi-year model for determining

the startup order. For one thing, total startup-shutdown

cost is rarely as large as 1% of production fuel cost. In

addition, accurate startup-shutdown cost prediction requires

a daily or hourly model, as in the work of Joy (37, 38).

Though this cost component is not considered in determining

the loading order prior to the Booth-Baleriaux simulation,

Section 3.4 will discuss how X is estimated from the

model's output.

To determine the unit-by-unit startup order, minimum

average fuel costs are determined by inspection of average

heat rate data as in Figure 2.5.

(3.3)

A tentative startup order can then be determined by plot-

ting this data in ascending order of cost. Figure 3.la

presents such a startup order for the on-line units of a

hypothetical utility system. This order is the most

attractive economically (ignoring incremental effects due
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to startup-shutdown cost itself).

However, various operating constraints alter the

order. For instance, engineering and reliability con-

straints may dictate that some units are must-run units

(see Section 2.4.3). Additional constraints related to

the distribution of units, loads and transmission lines

among geographical regions or zones may impose zone-load-

ing requirements. Such constraints require a unit to be

started earlier in the order so that utilization of the

entire transmission system will remain approximately

balanced. This not only reduces the probability of a

transmission system outage, but also reduces the conse-

quences should one occur. Figure 3.lb presents the final

constrained startup order for the data of Figure 3.la.

The first increments in the complete system loading

order are, by definition, the minimum power levels of

each must-run unit. As Figure 2.12 and Equation (2.33)

indicate, the exact order below the minimum system load

is arbitrary since all are base-loaded. In fact, the

generally low level of nuclear fuel costs coupled with

the must-run constraint for such large units is sufficient

to permit the assumption that all nuclear minimums are

base-loaded. Furthermore, the incremental cost argument of

Section 2.4.3 justifies placing all of the upper nuclear

increments, as a group, next in the order just to the right

of the must-run increments. As it turns out (see Section
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3.3.3), the exact intranuclear loading order for these upper

increments is arbitrary, relieving the necessity of having

precise nuclear incremental costs during the SIM's calcu-

lations.

Having assigned all nuclear capacity and all must-run

fossil minimums, the incremental cost arguments of Sec-

tions 2.2.1 and 2.4.1 determine a complete, but tentative,

startup and loading order. For determining the startup

-minof remaining units, er represents unit r's opportunity

generating cost if the unit is on-line at the power level

that minimizes E. However, costing of the unit's first

increment is performed using the e rl out-of-pocket average

cost [per Equations (2.18) and (2.21)].

Y = r(3.4)
r1 r1 ri

The unit's upper increments are characterized by the usual

X ..
ri

Given the constrained startup order, the completed

loading order is the economic optimum. However, actual

operating practices may violate this ordering in the same

way that the economic startup order was violated. For in-

stance, a daily practice may involve bringing units up to

minimum load a few hours early so that any minor startup

problems can be alleviated and their capacity will be avail-

able when actually required. Another operating constraint
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is the requirement for several hundred megawatts of spin-

ning reserve in case a large unit suddenly trips off the

line. Spinning reserve represents the readily available

(on the order of minutes), uncommitted capacity of turbines

already spinning, but generating at less than full capac-

ity. Such a requirement necessitates earlier (uneconomical)

startup of some units so that cheaper increments, pre-

viously comprising the spinning reserve, may be loaded

(see Figure 3.2).

Because of their fast-start capability, peaking unaits

are considered as a separate "stand-by reserve". As such,

they need be committed only when their high fuel cost is

economically justified.

With such operating constraints properly factored in,

the startup and loading order for the period is complete.

The evaluation of the period's resulting energy and cost

components is the subject of the rest of this chapter.

3.3 Scheduling and Costing Production

3.3.1 Basics of Booth-Baleriaux Probabilistic Utility
Simulation Model

3.3.1.1 Background

The Booth-Baleriaux probabilistic utility simulation

model is a recent adaptation of previous deterministic

utility models with new emphasis on the field of applied

probability theory. Though the original 1967 paper on the



Figure 3.2

Example of Variation of Spinning Reserve as Units are Startedup and Loaded

A

ECONOMIC STARTUP
OF 200 MW UNIT -

ECONOMIC LOADING

OF INCREMENTS

REQUIRED STARTUP
OF 100 MW UNIT )

OF 150 W UNIT

'.

STARTUP

SPINNING RESERVE REQUIREMENT = 100 MW

3300

SYSTEM LOAD,

3400 3500

MW

400

300

CI

r200

100

0 -V
3000 3100 3200

I I

3600 3700

(7'



-169-

subject is a product of Baleriaux, et al. (10) of Belgium,

Booth (17-19) of Australia deserves much of the credit for

introducing and promoting the model in the United States.

Previous papers reporting on the Booth-Baleriaux model,

including the work of Joy and Jenkins (39), have closely

followed the development in the original paper. With due

respect to these ground-breaking efforts, the following

presentation leads to computational savings in tersia of

time and storage, and also follows a more direct line of

reasoning.

The Booth-Baleriaux probabilistic utility model is

based on the concept of equivalent load which embodies not

only direct customer demands on a particular unit, but also

the indirect demands left unsatisfied by previously loaded

units when they are on forced-outages.

The equivalent load P e may be defined as

p E P + P 
(3.5)

where

PD = actual direct customer load demand, MW

P = system capacity on forced-outage that would be

generating energy otherwise, MW

Capacity that is on forced-outage during what would other-

wise have been reserve (i.e., economy) shutdown hours anyway
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is not counted since the outage does not affect system

generating operations.

In a probabilistic sense, PD is a random variable with

a complementary cumulative distribution given by F D (PD)

the normalized customer load-duration curve. Since forced-

outages are random, P0 is also a random variable character-

ized by the performance probabilities of each unit. Thus,

Pe is also a random variable and the computation of its re-

quired complementary cumulative distribution function

F (P ) involves the convolution of the distributions of

PD and P0 (26). Hence, Fe (P) is the load-duration curve

for the equivalent load P . The heuristic presentation

here is limited to the common two-state model of forced-

outages:

State 1: With probability p, the unit will perform

at any output up to its rated capacity

when called upon and

State 2: With probability q, the unit will not per-

form at all when called upon.

Thus,

p + q (3.6)

A rigorous treatment of the more general case allow-

ing for forced deratings (i.e., inability of the unit to

perform at rated capacity, though partial output is possi-

ble), is presented in Appendix A.
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To keep the numerical effort to a minimum while illus-

trating the principle, the detailed numerics of the Booth-

Baleriaux convolution algorithm are first presented by way

of a simple two-unit, single-increment example. ("Single

increment" refers to the fact that each unit is treated as

a single block of capacity). This model, the original

contribution of Baleriaux, et al. (10), is the so-called

"one-piece" Booth-Baleriaux model. Building on this, a

more general "multi-piece" procedure (39) permitting the

multiple increments to be scheduled separately is presented

in Section 3.3.2.

3.3.1.2 Heuristic Derivation of Booth-Baleriaux
Convolution using Two Unit, Single Increment
Examp1e

In order to derive the basic Booth-Baleriaux con-

volution equation, consider a 500 MW system consisting of

Unit 1 (200 MW with p, = 70%) and Unit 2 (300 MW with

P2 = 60%). As displayed in Figure 3.3, the system is at-

tempting to satisfy the indicated F D customer load-duration

curve abcde with a peak demand of 400 MW. For convenience,

let the time period duration T' = 1 hour. Hence, total de-

mand DT = 250 MWH (area zabcdez).

Since Unit 1 is the first to come on line, the first

step in the simulation is to compute its loading. Since

there are no units to its left, the equivalent load as seen

by Unit 1 is merely the direct customer demand FD. However,

the unit performs only 70% of the time. Thus, Unit 1 is
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only able to generate 70% of the energy demanded from it

(area sabcs2),

K)

E, r = T(,)Pe (3.7)

0

or

E = Iikir x 07 K IbO -W-=126 MU/ (3.8)

hour

Unit 1 has been loaded according to FD, the equivalent

load curve F "without" an adjustment for Unit l's outages

(EF wo). Unit 2, on the other hand, sees not only direct

customer demand FD, but also indirect demand unsatisfied by

Unit 1 while it was down due to a forced-outage. Thus, be-

fore loading Unit 2, Unit l's outages must be "convolved"

into F (FD) to yield F (i.e., "with" an allowance for

Unit l's forced-outages).

To do this, it is necessary to consider the two

states:

(1) Unit 1 performs, a state with the probability p1

(= 0.7), and

(2) Unit 1 fails to perform, a state with the proba-

bility q, = 1-pl (= 0.3).

Thus, a particular equivalent load, for example P >300 MW

can be arrived at in only two possible independent ways.

The probability that the equivalent load > 300 MW is the
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sum of the probabilities of each of the individual ways.

When unit 1 performs, the probability that the equivalent

load P > 300 MW is the product of the probability that

unit 1 will perform (p1 ) and the probability that the

equivalent load will exceed 300 MW without an allowance

for outage of unit I [Fwo(P )], that is plFwo(P ).1 e 11 e

When unit 1 fails to perform, its forced outage of

K = 200 MW contributes 200 MW to the equivalent load of

300 MW. Hence, the other probability that the equivalent

load P e> 300 MW (when Unit 1 fails to perform) is the

product of the probability that Unit 1 fails (q ) and the

probability that the equivalent load will exceed P e- K

= 300 - 200 = 100 MW without the K1 = 200 MW allowance for

the forced-outage of Unit 1 [Fwo(P -K that is,1 el~'tais

qj Fwo (P -K )

Hence, the equivalent load curve with allowance for

forced-outages of Unit l,F W(P ),is the sum of the proba-

bilities for states 1 and 2,

F (P = p Fwo (P) + ql F (P -K) (3.9)

or

F (P 0.7-F (P ) + 0.3-F wo(P- 2 0 0 ) (3.10)1 e 1 e1 e

For the P = 300 MW example of Figure 3.3

Fw (300) = 0.400 and Fwo 11.00.
( i b)

(point d) pod
e
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F (300) = 0.7 (0.4) +
(point d)

0.3 (1.0)
(point b)

= 0.58
(point g)

Continuing thus for all the points along Fl,

= 0.7 x 0.600 + 0.3
(point c)

= 0.7 x 0.0 + 0.3
(point e)

= 0.7 x 0.0 + 0.3
(point t)

= 0.7 x 0.0 + 0.3
(point j)

x 1.0 = 0.720
(point a) (point

x 0.600 = 0.180
(point c) (point

x 0.400 = 0.120
(point d) (point

x 0.0 = 0.000
(point e) (point

In more general terms, any unit r can be convolved into

the equivalent load distribution,

F (P)r e

11

+

11

S F (P-Kr)r (e r

11 I' (3.13)

Prob. r Prob. (P>P) Prob. r Prob. (P>Pe-Kr)

performs w/o outages + fails W/o outages of
of r incl. r included

(3.14)

MW Contribution
to Equivalent
load:

0 + >e Kr + P -Kr

>P -

(3.11)

F (200)

F (400)

F (500)

F (600)

f)

h)

(3.12)

i)

j)

F (Pr e

or 11

% -W -

e
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In deriving Equation (3.13), use was made of the

common assumption of statistical independence between the

forced-outages of the various units vis-a'-vis each other

and the customer demand. Furthermore, Equation (3.13)

is valid for all P . One limiting case is P less than the

minimum load where each Fwo=1 as does the resulting Fw (Pr r e

For very large P , each Fwo= 0 and, likewise, Fw (P ) 0.e r r e

Equation (3.13) is the heart and soul of the Booth-

Baleriaux model. All subsequent calculations involving F,

whether convolutions or deconvolutions (see Section 3.3.2.1)

are merely rearrangements of it.

Returning to the two unit example, Figure 3.3 indi-

cates the resulting Fw obtained by applying Equation (3.13)1

at each multiple of 100 MW. [Equation (3.13) could be

applied explicitly at intermediate P e, but linear inter-

polation is rigorously correct for this example because

the FD curve consists of straight-line segments.]

Since Unit 2 follows Unit 1 in the loading order,

the production of Unit 2 must be determined using an

equivalent load curve (F w) that includes not only the

direct customer load demands, FD, but also the forced-

outages of units to the left of it in the loading order

(i.e., Unit 1). Thus,

F o(P) = F (P)2 e 1 e (3.15)
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That is, the probability that the equivalent load will

exceed a particular value Pe without taking into account

forced-outages of Unit 2 equals the same probability

taking into account forced-outages of Unit 1.

As with Unit 1, the loading of Unit 2 is determined

by multiplying the total demand on the unit (area sfghits)

by its performance probability p2 '

E = T'p 5 0 0 FWo(P )dP (3.16)
2 P2 j2 (e e

2 00

E2= 1 hour x .60 x 118 MWH = 70.8 MWH (3.17)
H

Rewriting Equation (3.16) in general notation for

any Unit r,

P*+K
r (P)d

Er = T'pr Fr (P )dP (3.18)

r

where P* = Loading point for unit r, MWr

Now that Unit 2's production has been accounted for,

its outages must be convolved into F . By applying Equa-

tion (3.13),

F ( p2 -F (P ) + q 2 Fwo P -K2) (3.19)
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For example (see Figure 3.3), since K2 = 300 MW and

p2 = 60%,

F (P,) = 0.6 x F ' (Pe) + 0.4 x Fw (P 300) (3.20)

In particular, at P e = 500 MW (point n)

F (500) = 0.6 x .120 + 0.4 x 0.720 = 0.360
(point i) (point f) (point n)

(3.21)

Continuing thus,

= 0.6 x 0.0 + 0.4
(point j)

= 0.6 x 0.0 + 0.4

x 0.580 = 0.232
(point g) (point o)

x 0.180 = 0.072
(point h) (point p)

(3.22)

= 0.6 x 0.0 + 0.4 x 0.120 = 0.048
(point i) (point q)

= 0.6 x 0.0 + 0.4 x 0.0 = 0.000
(point j) (point r)

Since both of the units on the system have been con-

volved in via Equation (3.13), the resulting F equivalent

load distribution (see Figure 3.3) includes the entire

system, F .

Hence, the remaining D unserved energy (i.e.,
U

unserved by the K TMW of the system's own resources or

F w (600)

F (700)

F (800)

F (900)
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area tnopqrt) is equal to

DU = T' F (P )dP = 53.2 MWH (3.23)

T

This energy represents the amount of emergency support

required from neighboring utilities.

The second measure of system reliability is the LOLP,

loss-of-load probability (i.e., percent of time emergency

support is required: P >K T). Hence,

LOLP = F (P = 500 MW) = 0.360 (3.24)

(point n)

Note that total system production plus emergency purchases

have met total customer demand:

DT E + E2 + DU (3.25)

250 MWH = 126 + 70.8 + 53.2 MWH (3.26)

3.3.1.3 Single Increment Example for Reference
Utility System

Returning to the original Reference Utility System of

Section 2.1.2.3, the customer loads of Figure 2.9 are re-

peated in Figure 3.4. As for the five generating units,

assume the loading orderunit characteristics and average

(i.e., equivalent single increment, see Table C.13 in
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Appendix C) costs also indicated in Figure 3.4. This then

represents Example 4 on the Reference System.

Applying the load-then-convolve sequence of Section

3.3.1.2, the unit loadings Er are simulated in order.

Table 3.1 presents all of the resulting probability dis-

tributions.

When the last unit (Unit I) has been convolved in,

the resulting F distribution includes the entire system

F . Hence,

DU T F (Pe)dP, = 30,111 MWH (3. 27)

T

and

LOLP = F (P = KT) = 15.647% (3.28)

This completes the Booth-Baleriaux energy calculations for

Example 4. Equation (2.21) can then be utilized to deter-

mine the cost of each unit's energy production.

X = e - E (3.29)

Figure 3.5 sketches the complete flow of calculations, in-

cluding the energy and cost totals (see also Table 3.2).



Table 3.1

Summary of Equivalent Load Distributions for Example 4 with
Indication of Segments Used for Loading Each Unit
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III

Table 3.1--Continued
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Figure 3.5
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TABLE 3.2

Example 4 on Reference Utility System:

"Single Increment Booth-Baleriaux Model"

(See Appendix Cfor further details.)

Unit Increment Position Increment Increment
in Energy Cost

Loading
r i Order Eri Xri

(GWH) (103 $)

1 1 5 11.93 193.3

II 1 4 30.85 152.2

2

III 1 2 184.54 375.0

2

IV 1 3 195.17 710.6
2

V 1 1 496.40 949.4

2

Utility Production 918.89 2380.5

Emergency Purchases (10 $/MWH) 30.11 301.1

Total 949.00 2681.6

Loss-of-load Probability, LOLP = 15.6%
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3.3.1.4 Single Increment Algorithm

From Figure 3.5, the load-convolve sequence of the single

increment Booth-Baleriaux algorithm can be stated as follows:

Step 1: From the specified loading order, label the

first unit as unit r. Re-label FD, the nor-

malized customer load-duration curve so that

it becomes the "current" F.

Step 2: Re-label the current F so that it becomes

woF.
r

Step 3: Load unit r by calculating its expected

production,

P*+K
r r

E = T' Fwo(P )dP (3.30)
r Tr r e e

P0
r

where P* = equivalent load level when unit rr

is at zero power level.

Step 4: Convolve the unit's outages into Fwo tor

account for the production unit r was unable

to satisfy,

Fw(P ) = p * Fwo(P ) + q - Fwo(P -K) (3.31)r e r r e r r e r

Step 5: If there are no more units in the loading

order, go to Step 6. Otherwise, label the

next unit in the specified loading order as
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unit r. Return to Step 2 and continue.

Step 6: Since there are no more units to be loaded,

the current F is for the total system. Label

it F Then,

LOLP = FT(Pe = KT) (3.32)

and

Go
Du = T' FT(Pe)dPe (3.33)

KT

This completes the Booth-Baleriaux algorithm for one-

piece units. Production costing of the energy,

Xr = er Er (3.34)

can be performed either on-line as a second part of Step 3

or off-line after all of the energies have been assigned.

3.3.1.5 Important Numerical Properties

Seven important numerical properties of the Booth-

Baleriaux model are worthy of note. The first three relate

directly to the computational effort involved while the lat-

ter four deal with the more philosophical aspects of the

results.
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First, by invoking Equation (3.6), the time involved in

the convolution of Equation (3.31) can be reduced by almost

one-half by rearranging to:

F (P ) = F (P ) + q [Fw (P -K )-F wo(P )] (3.35)r e r e r r e r r e

Two time-consuming multiplications can be reduced to one.

CAs a sidelight, F at P never decreases in magnitude asr e
loading proceeds since the second term in Equation (3.35)

can never by negative.] Secondly, though Example 4 in-

volved six different F's, only one was required at any one

time and, furthermore, none was ever required a second

time; the result being that only one array of storage need

ever be allocated to F. The array F is stored in the com-

puter as a one dimensional array of equally-spaced points

DM MW apart (see Figure 3.6). Thus the 12th array location

has stored in it F(P = 12*DM). Linear interpolation is

assumed between points.

Since the convolution of Equation (3.31) involves only

the point of interest (at P ) and points to its left

(specifically, at P e - Kr), it is convenient to begin the

convolution of each unit r at the extreme right-hand side

of Figure 3.6. Proceeding toward the left, each array lo-

cation has its current quantity [F (P )] increased byr e

q *F [Fo(P -K ) - Fw(P )] per Equation (3.35). In this
r r e r r e

wo -w
manner, F is convoluted to yield F . By being

Fw wo
identically located, F automatically becomes F for

r

the next unit. The result is that the single F array

is kept "current" as the scheduling algorithm
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proceeds from unit to unit.

The third and final point concerning computational

details involves deconvolution. Even if a previous F were

needed again, it could be easily restored by reversing

Equation (3.31). Such a deconvolving, or stripping out, of

the outages of a previously included unit r can thus be

achieved by,

F (P)=- [F (P,)-q - Fw (P -K)] (3.36)r e Pr r e r r e r

For deconvolution, the direction of calculation would also

be reversed, proceeding from left to right of Figure 3.6

so that F(Pe) for Pe to the left of the point of interest

would already be Fwo as required by Equation (3.36).

The first important philosophical result has already

been seen in Section 3.3.1.2: The production of previous

increments is unaffected by changes in the loading order of

subsequent units. The order of the computations bears this

out immediately.

Secondly, with regard to any currently stored F array,

it is a function of the units convolved in, but not a func-

tion of the order in which they were added. Consider an

initial customer demand F D and the simple two unit utility

system (Unit 1 and Unit 2). The task is to prove that

F T(P ) is identical whether the loading order is (1) Unit 1,

then Unit 2 (see Section 3.3.1.2) or (2) Unit 2, then
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Unit 1.

Equation (2.31) holds for both cases,

F (Pe) = p F{ (Pe) + qFwo(P - K)

and

F (P ) = P2F (P) + q2 F (P -K 2 )

For Case (1) (Unit 1, then Unit 2),

FWO = F1 D

2 1

F = F W
T 2and

(3.39)

(3.40)

(3.41)

Thus,

FT e= P 2 PlFD(Pe) + qFD e(P - K 1 )]

+ q2 1FD e - 2) + qi D e - 2 - K 1 )]

(3.42)

or finally,

FT (P PlP 2 FD(P e + q 1 P2FD Pe - K1 )

+ plq 2 FDe(P - K 2 ) + qlq2 FD (P - K 1 - K 2)

(3.43)

(3.37)

(3.38)
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For Case (2) (Unit 2, then Unit 1),

F WO F2 D

1 2

(3.44)

(3.45)

and

F = FT 1 (3.46)

Thus,

FT (Pe) 1 P2FD(Pe) + q2FD(Pe - K 2)]

+ q1 (P2FD(Pe - K ) + q 2 FD(Pe - K, - K 2)

(3.47)

or, rearranging,

FT(Pe) PlP 2FD (Pe) + q 1 P 2FD Pe - K1 )

+ p q 2FD Pe - K 2 ) + qlq 2FD Pe - K, - K 2)

(3.48)

Since FT in Case (1) [Equation (3.43)] is term by term

identical with FT in Case (2) [Equation (3.48)], the proof for

the two unit system is complete. The generalization to more

units is straightforward, though cumbersome and is not pre-

sented formally. In conclusion, each F is a function of the

units whose outages have already been included but not a



-193-

function of their order of inclusion.

The third philosophical point follows immediately from

the above. Since F is independent of the order of inclusion,

a unit's loading, determined using the F, is also indepen-

dent of the ordering. However, as with F, it does depend

on which units are included.

The fourth and final philosophical point also follows

from the second. When all units have been convolved in,

the resulting FT is independent of the loading order. Thus,

the LOLP and DU are not functions of the startup and load-

ing order, but only of the original customer demand and

the aggregate system equipment not on scheduled maintenance.

3.3.2 Modifications for Multiple Increments

3.3.2.1 Algorithm Derived

The original single increment Booth-Baleriaux model

was a tremendous leap forward in utility system simulation.

As Example 3 in Section 2.2.1 pointed out, not only was

the production of peaking equipment more accurately pre-

dicted, but themodel was also better able to estimate the

LOLP and unserved energy DU by the same technique. One

large stumbling block remained--how to accurately repre-

sent the interweaving of the multiple increments of the

various units. Units are not scheduled as single blocks of

capacity, not only because of economics, but also because

of spinning reserve requirements.
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To handle this more general case rigorously, only a

slight modification of the single increment algorithm is

required. The load-convolve pattern is replaced with a

deconvolve-load-convolve sequence.

To derive the algorithm, after loading the first

increments of several units, assume (1) the next increment

in the loading order is AKri (the i th increment of unit r),

(2) that i > 1 and (3) that the current F, (Fw
r,3-1

already includes unit r's increments up to Kr,i-l* if

AK was mistakenly loaded using F itself, the i th

increment would, in essence, be meeting demands due to

(1) customers, (2) the forced-outages of increments of other

units already loaded and (3) the forced-outages of its own

lower (i-1) increments. However, the latter is an impossi-

bility. If the lower increments are down on forced-outage,

so is AKri. (The converse is not necessarily true. See

Appendix A.)

Thus, to load AK ri properly (see Figure 3.7), the

previously convolved forced-outages of unit r (K r,i- MW

at pr percent) must be stripped out of F to yield

wo
Fr,i-l

Equation (3.36) does just that,

F wo 1 F(P )p - qFwo (P -K

(3.49)
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After deconvolution,

Fiwo. w 3.50)r,1-1 ri

and
P*.+ AK.
ri ri

E . T' Fw?(P )dP (3.51)ri Pr ri e e

P*.
ri

Once the i th increment itself has been loaded, the

outages of all the i increments can be convolved into Fri

at one time,

F. (P ) =(P ) + q Fw?(P - Kri e r ri e r ri e ri

(3.52)

The resulting deconvolve-load-convolve sequence of

Figure 3.7 can be applied successively to each increment in

the loading order.

Using the indicated multiple increment loading order

(Units III-V must run; 80 MW spinning reserve), Table 3.3

presents the results for this Example 5 on the Reference

Utility System. Table 3.4 presents a summary comparison of

Examples 1 through 5. The DTI DU and LOLP are reassuringly

equal for all three probabilistic examples. Furthermore,

the multiple increment Example 5 does save $123,000 in

production costs over the less economical (early startup
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TABLE 3.3

Example 5 on Reference Utility System:

"Multiple Increment Booth-Baleriaux Model (V-2, then 111-2)"

(Among Nuclear Upper Increments V-2, then 111-2)

(See Appendix Cfor further details.)

Unit Increment Position Increment Increment
in Energy Cost

Loading

r Order Eri Xri

(GWH) (103 $)

I 1 9 11.93 193.3

II 1 6 36.71 201.9

2 8 14.01 59.5

III 1 2 65.70 149.8

(Nuclear) 2 5 103.90 197.4

IV 1 3 131.40 515.1

2 7 70.85 235.2

V 1 1 186.15 418.8

(Nuclear) 2 4 298.24 510.0

Utility Production 918.89 2481.0

Emergency Purchases (10 $/MWH) 30.11 301.1

Total

Loss-of-load Probability, LOLP = 15.6%

949.00 2782.1



Table 3.4

Comparison of Examples 1 to 5 on Reference Utility System

System
Production
Fuel Cost

(106 $)

LOLP
(%)

Reference
Table

1 Deterministic 949 0.00 2.443 0.00 2.3
(No Forced Outages)

2 Deterministic (with
Reduced Capacities) 949 0.11 2.514 1.25 2.4

3 Probabilistic, Multi-
ple Increment; Early
Startup of II 949 30.11 2.604 15.65 2.5

4 Probabilistic, Single
Increment; No Must- 1
Run, No Spin Res. 949 30.11 2.380 15.65 3.2

5 Probabilistic, Multi-
ple Increment;Oper-
ating Constraints App'd. 2to Econ. order 949 30.11 2.481 15.65 3.3

1Lower limit if all operating constraints are violated.

2Lower limit if all operating constraints are satisfied.

Example Remarks D T

(GWH)

D U

(GWH)

_j0
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of Unit II) but practical (spinning reserve satisfied)

multiple increment Example 3. The low cost of Example 4

is misleading because the must-run status of Unit IV and

the system spinning reserve requirement were ignored,

rendering the single increment loading order infeasible

(i.e., the system operating constraints were violated).

Before formally stating the steps of the more general

multiple increment Booth-Baleriaux algorithm in the next

section, two important points need to be made to justify

that generality. First, the method is valid even if i = 1.

For then,

K - = K r 0 (3.53)Kr,i-1 r,0

and the deconvolution of Equation (3.49) reduces to

F (P ) = F- q Fwo(P- (3.54)rO e 17 LFrO'pe r rOej

Utilizing Equation (3.6), Fwo = F 0. That is, if no in-

crements of the unit have been previously loaded, straight-

forward application of Equation (3.49) correctly deconvolves

zero MW.

The second point also involves a limiting condition.

Suppose all the multiple increments for a given unit happen

to be scheduled adjacent to each other. This case ought to

revert to the results of the single increment model. In-

deed, each "convolution to left; deconvolution to the right"
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sequence returns F to the identical FW. In fact, this
r

was the actual scheme used to calculate Example 4 of

Section 3.3.1.3 (see Appendix C).

3.3.2.2 Multiple Increment Algorithm

The deconvolve-load-convolve sequence of the more gen-

eral, multiple increment Booth-Baleriaux algorithm is stated

as follows:

Step 1: From the specified loading order, label the

Step 2:

first unit increment as unit r, increment i

(i = 1). Re-label FD the normalized customer

load-duration curve so that it becomes F W

Deconvolve the i-1 previously loaded incre-

ments of unit r which cannot create indirect

demand on the current increment,

FWO 1 Fw FP - F(P -Kr 1

(3.55)

and re-label the result Fw
ri

Step 3: Load the unit increment by calculating its

expected production,

P*. +AK.
ri ri

E =T' Fw?(P )dP
ri fr ri e e

P*.
ri

(3.56)
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Step 4:

where P* = equivalent load level when theri

unit increment is at zero power level.

Convolve the outages of the unit's incre-

ments loaded thus far (K r) into F tori ri

account for the production unit r has thus

far been unable to satisfy,

F (P) op F (P,) + g ' F (P -Kr)ri e =r ri~e) rq * ri e Kri~ (3.57)

Step 5: If there are no more unit increments, go to

Step 6. Otherwise, label the next unit in-

crement in the specified loading order as

unit r, increment i. Re-label the current

F so that it becomes Fw Return to

Step 2 and continue.

Step 6: Since there are no more increments to be

loaded, the current F is for the total system.

Label it FT. Then,

LOLP = FT = K/ ) (3.58)

and

DU = T'

KT

F T(Pe )dP

This completes the Booth-Baleriaux multiple increment

algorithm. Comparing it with the single increment

(3.59)
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algorithm of Section 3.3.1.4, only Step 2 is significantly

different. Instead of immediately re-labeling the current

wo
F to F , a deconvolution must first be performed to ensurer

that no outages of unit r are included.

As before, production costing of the energy increment,

Xrl 1 rl )r ) Xri Xri Eri for i>l (3.60)

can be performed either on-line as a second part of Step 3

or off-line after all of the energies have been assigned.

3.3.3 Constancy of Nuclear Potential

An extremely important conclusion regarding nuclear

energy production can be deduced by combining the simple

logic of the optimized loading order presented in Sections

2.4.3 and 3.2 and the purely mathematical properties of

the Booth-Baleriaux model as discussed in Section 3.3.1.5.

Conclusion: Irrespective of the the intra-group load-

ing order of the nuclear increments, the

period's nuclear potential N is a

constant.

Consider Figure 3.8 which presents a typical period load-

duration curve being satisfied by a nuclear utility system

using a loading order as suggested in Section 3.2. Pro-

ceeding from left to right through the startup and loading

order, the first two groups of increments are the nuclear

minimums (group 1) and the fossil minimums (group 2) for the
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must-run units. Since today's nuclear units all possess

incremental costs on the order 0.9 to 1.5 $/MWH, next

comes an amorphous block of capacity comprised of all the

nuclear upper increments (group 3). (It is assumed that

there are units in group 2. Otherwise, groups 3 and 4 must

be mixed in order to provide spinning reserve.) After

group 3 comes the well-ordered, but much more expensive,

remaining fossil equipment (group 4) costing from 2 $/MWH

on up. Beyond this installed capacity, are the emergency

resources of neighboring utilities (group 5).

The conclusion is postulated as follows:

Given two alternative loading orders for group 3

(g = 3A and g = 3B), show that the nuclear potentials are

equal:

Ng=3A = Ng=3B (3.61)

The other group loading orders remain the same. For in-

stance,

g - 4A E 4B (3.62)

Since,

N _ E _ + Eg = 3 (3.63)

The question becomes,

Eg=lA + Eg=3A Eg=lB + E g=3B(3.64)
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Since groups 1 and 2 remain the same and precede group

3, the conclusions of Section 3.3.1.5 dictate that those

groups produce the same energy. Dropping the "g =" notation

for convenience,

ElA = lB (3.65)

and E2A E2 B (3.66)

Moving through group 3, the first increment of group 4

is loaded utilizing the F curve remaining after the last

nuclear increment has been convolved in. Since all.of the

nuclear increments have been convolved in, the current F

must be identical for the two alternatives since the order

they were included is immaterial. Thus, all of the Booth-

Baleriaux calculations for group 4 will be identical and,

E4A = E (3.67)

As for DU ( Eg=5), Section 3.3.1.5 already stated that it

is invariant. Thus,

ESA = ESB (3.68)

Since the same customer demand is satisfied for both

alternatives,
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D T ElA + E2A + E3A + E4A + E5A

11 11 U1 1 1 (3.69)

DT = lB + E2B + E3B + E4B + E5B

With four of the five components on the right-hand side

being equal, the remaining components must also be equal,

E 3A = E3 B (3.70)

and Equation (3.64) is, in fact, true.

Therefore,

E + Eg=3 = N = constant (3.71)

independent of the intra-nuclear loading order.

Q.E.D.

As a matter of fact, a much more general conclusion can

be proven in an analogous manner: Each sub-group of unit

increments produces the same energy regardless of the

intra-group loading orders, provided that the inter-group

loading order remains the same.

Example 6 on the Reference System is presented in

Table 3.5. It involves the rearrangement of nuclear upper

increments V-2 and 111-2 with respect to Example 5 of

Table 3.3. In both examples, the two upper nuclear incre-

ments produced a total of 402.14 GWH and a system nuclear

potential of 653.99 GWH.



-207-

TABLE 3.5

Example 6 on Reference Utility System:

"MultiDle Increment Booth-Baleriaux Model (111-2, then V-2)"

(Among Nuclear Upper Increments 111-2, then V-2)

(See Appendix C for further details.)

Unit Increment Position Increment Increment
in Energy Cost

Loading

r Order E ri Xri

(GWH) (10 3$)

I 1 9 11.93 193.3

II 1 6 36.71 201.9

2 8 14.01 59.5

III 1 2 65.70 149.8

(Nuclear) 2 4 131.40 249.7

IV 1 3 131.40 515.1

2 7 70.85 235.2

V 1 1 186.15 418.8

(Nuclear) 2 5 270.74 463.0

Utility Production 918.89 2486.3

Emergency Purchases (10 $/MWH) 30.11 301.1

Total 949.00 2787.4

Loss-of-load Probability, LOLP = 15.6%
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The conclusion concerning constant nuclear potential

is extremely important to the structure of the nuclear

power management model of Figure 2.21 because the Booth-

Baleriaux simulation in the SIM does not require de-

tailed reactor-by-reactor nuclear incremental costs. (Re-

call that "ballpark" nuclear incremental costs were, none-

theless, useful in establishing the loading order groups.)

Any intra-nuclear order is as good as any other for cal-

culating the system nuclear potential. The model merely

picks an arbitrary order for the amorphous nuclear group

(g=3), simulates the system and totals the nuclear produc-

tion to get the constant nuclear potential.

Furthermore, after all periods have been simulated

by the SIM, the SOM begins optimizing the intra-nuclear

production of the nuclear potentials. Since period nuclear

potential is a constant regardless of the various detailed

incremental costs (i.e., loading orders) calculated at each

iteration by the CORSOM's (see Section 2.5), the itera-

tions in Figure 2.21 need not loop back through the SIM.

All of the above, make this an extremely important con-

clusion.

3.4 Estimating Startup-Shutdown Cost

To accurately calculate the startup-shutdown cost

component of operating revenue requirements, an hour-by-

hour production scheduling model is required. Having

sacrificed the detailed chronological load shapes for the
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more convenient load-duration curves (see Section 2.1.1)

covering much longer periods of time, it becomes necessary

to estimate startup-shutdown costs by an approximate

technique.

Consider Figure 3.9 [after (18)] which displays

qualitatively the approximate relation between Q, the

frequency of startup-shutdowns (per day) and Lr1 , the

availability-based capacity factor for the unit's first

increment. That is,

P* +K
rl rl

L = Fwo (P )dP (3.72)rI Kr rl e e

rl

For must-run units, L equals 1 and Q equals 0. For

very expensive peaking units, Lrl approaches 0 and Q again

approaches 0. As expected, units never shutdown and units

never started-up incur no startup-shutdown cost. In be-

tween are those units started-up and shutdown on a daily

basis and, hence, 0 approaches one.

Since unit startup-shutdown cost Qr is specified in

time independent units of equivalent thermal energy input,

multiplying it by 0 r, unit thermal energy cost for the time

period, permits escalation in terms of undiscounted dol-

lars. Since L' is easily extracted for each unit duringri

the Booth-Baleriaux simulation, the fractional starts per
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Figure 3.9

Example of Startup-Shutdown Frequency versus

Availability-Based Capacity Factor [After (]8)]

0.2 0.4 0.6 0.8

L' , AVAILABILITY-BASED CAPACITY FACTOR

FOR FIRST INCREMENT OF UNIT

1.0

1.0

0.8

.4

Cl-

0.6
Uj

I-

0.4
* -.

0.0 W
0.0



-211-

day are easily estimated given the- proper dependence of

Q upon L' Thus, a period T'/24 days long, incursrl

total startup-shutdown cost amounting to

X = R 0 r (L'rl) (3.73)

Table 3.6 presents the detailed calculation of unit

startup-shutdown costs for Example 5 which was presented

in Table 3.3.

3.5 Determining Cost of Emergency Purchases

The determination of expenditures relative to DU

emergency electricity purchases from neighboring utilities

is straight-forward once the SIM has been given an

e average cost for this emergency support. The total

expenditure is merely,

XU = e - DU (3.74)

3.6 SYSINT, A Computerized Version of the SYStem
INTegration Model

SYSINT, a 2000 card Fortran IV version of the SYStem

INTegration Model is detailed in Appendix E. This section

merely summarizes its capabilities.

The standard two-state forced-outage model (performs

or fails) isemployed. A single startup frequency curve

P(Lrl) is input for the entire horizon. The limitations

of the current version, though easily altered, are as

follows:



Table 3.6

Calculation of Startup-Shutdown Costs for Example 5 on
Reference Utility System

Unit Fuel
Cost

r

#/MegaBTU

Susd.
Heat
Reqt.

M rT
MegaBTU

Avl.-bsd.
Capacity
Factor

Ll

Susd.
Frequency

Q(L' )

per day

Unit
Susd.
Cost

$r r
$

Daily
Susd.
Cost

r r
$/day

Period
Susd.
Cost

r r QT'/24

$

.15

.86

-0-

-0-

-0

2 45 6.85 208

0 400 344.00 10,460

228 -0- -0-

1440 -0- -0-

432 -0- -0-

Total Startup-Shutdown Cost-$12,670

1 See Figure 3.9

I
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V

90

50
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3600

2400

.172

.529

1.000

1.000

1.000
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(1) up to 100 units (including retirements and

additions),

(2) up to 5 valve points for each unit,

(3) no limit on number of strategies per computer

run

(4) up to 100 time periods per strategy and

(5) up to 25 typical load-duration "shapes",

stored in completely normalized form (i.e., peak

demand also equals one).

The multi-period strategy is input for each unit in the

following form:

(1) the period installed,

(2) period just prior to retirement and

(3) up to 20 intermediate periods of downtime for

maintenance or refueling.

For each period the following data may be input or altered:

(1) Choice of load-duration shape,

(2) Forecasted peak demand,

(3) Expected spinning reserve requirement,

(4) Length of time period,

(5) Average cost of emergency purchase energy,

(6) Fuel cost for each unit (optional initial guess

for nuclear units),

(7) Performance probability for each unit and

(8) Startup order indicating must-run units and

peaking equipment.
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As for typical running time, each period of a

simulation of a utility system containing 40 units with

a total of 150 valve points requires approximately 2.5

CPU sec on an IBM 370 model 155 computer in an MVT en-

vironment. The code itself requires 108 K bytes of

storage, i.e., not including the computer system super-

visor. Total core requirements are thus approximately

134 K bytes.

Data transfer from SYSINT to SYSOPT (see Section

4.6 and Appendix F) is completely automated via either

disk, magnetic tape or punched cards.

3.7 Summary of the SIM

For each multi-year refueling and maintenance strate-

gy, the SIM performs period-by-period detailed production

scheduling utilizing the Booth-Baleriaux probabilistic

utility system model. Besides, calculating the system

nuclear potential N (shown to be a constant), the model

outputs the following system cost components:

(1) XF, the fossil fuel expense related to

electricity production,

(2) X5 , the startup-shutdown cost and

(3) XU, the cost of emergency energy purchases.

This and other data are then passed to the SOM of

Chapter 4 for iterative optimization of the production of

the nuclear potential and present-valuing of all the cost

components to obtain the final ORR for the given strategy.
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CHAPTER4

THE SYSTEM OPTIMIZATION MODEL

4.1 Overview of the SOM

The System Optimization Model (SOM), shown schematic-

ally in Figure 2.22 performs two tasks for each of the

possible alternative refueling and maintenance strategies

under investigation. The first, and most difficult, is op-

timizing each reactor's energy output so as to produce the

required system nuclear potential for each period with a

minimum total revenue requirement for nuclear fuel over the

multi-year horizon (see Section 4.2.1). The SOM receives,

as input, the period-by-period results (see Section 3.7) of

the System Integration Model (SIM) which are used to formu-

late the constraints on this optimization (see Sections

4.2.2 to 4.2.4). Interfacing with a CORe Simulation and

Optimization Model (CORSOM) for each reactor (see Section

2.5.4), the SOM passes a set of reactor-cycle energies and

receives the minimum total reactor fuel revenue requirement

to the horizon and the partial derivatives of this cost with

respect to each of the cycle energies. These nuclear incre-

mental cost data are then used to iterate toward the opti-

mum set of cycle energies (see Section 4.4).

When the system nuclear fuel revenue requirement has

been thus minimized, the supervisory task commences. This

second task (see Section 4.5) merely involves present-valu-

ing the non-nuclear period expenses and adding in the total
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nuclear revenue requirement to determine the total operat-

ing revenue requirement for the particular possible alter-

native strategy under investigation. With the completion of

this task, processing of the refueling and maintenance strat-

egy is complete and optimization of the next such strategy

may begin.

4.2 Elements of Optimization Problem in SOM

The following sections outline the elements of the

SOM's optimization problem. In Section 4.2.1, the objec-

tive function of the optimization is first presented

straightforwardly as the total system nuclear fuel revenue

requirement. Then assumptions and simplifications are made

to reduce the objective function to a form readily solvable

by an iterative gradient technique. Next, the constraints

on the optimization are discussed in detail.

Reviewing the context of this optimization, the princi-

pal SIM result passed to the System Optimization Model is

the nuclear potential, N , which is equal to the sum of the

subset of reactor period energy productions, Ercp, for each

period. As indicated in Section 3.3.3, each N value is
p

independent of the detailed loading order of the nuclear

increments. Hence, for each period p subset of Ercp'

there exist many possible combinations of each reactor's

E which will satisfy N . The SOM is able to determine
rcp p

these additional possible subsets of Ercp more rapidly than

if the SIM is used repeatedly, thus eliminating the need for
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more than one SIM calculation per period. The object of

the SOM is then to determine, subject to certain feasibil-

ity constraints, which combination of these subsets of Ercp

for each period in the entire planning horizon results in

the minimum system revenue requirement.

The first constraint (see Section 4.2.2) ensures that

each system production subset of Ercp satisfies the nuclear

potential, N , that was calculated by the SIM for that per-

iod. Next, the reactor production constraints (see Section

4.2.3.1) put limits on each reactor's maximum and minimum

period energy production. These represent the SIM cases

when each nuclear unit's total upper capacity was loaded

first or last, respectively, within the system upper nuclear

capacity. Finally, a shape constraint (see Section 4.2.4)

is used to select subsets of reactor-period productions,

E rcp, which are compatible with the shape of the equivalent

load curve.

4.2.1 Obiective Function

The optimization seeks to minimize TC (ERRN), the sys-

tem nuclear fuel revenue requirement, over the multi-year

horizon as a function of E, the set of all Ercp'

minimize TO = TO ( E ) (4.1)

Since TC is the sum of the various reactor fuel costs TO r

calculated by the CORSOM's, which, in turn, are really func-

tions of the E rc cycle energies,
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TO ( ) = Z or (Erl, Er 2  ... ) (4.2)

As Section 2.3 pointed out, TCr is non-linear and non-

separable. However, since Tr has been minimized by the

CORSOM for the given set of Erc, it must be well-behaved

in the sense that it is continuous and unimodal, increasing

with increasing E rc. Hence Tr is differentiable and

"Tr
rc r 0 (4.3)

Equation (4.3) permits taking the total differential

of Equation (4. 2),

SErc

Since TO is a point function, given a cost Tt at £ t

trial set of Ercp, the cost iC+1 at any other set E t*l

can be obtained by integrating Equation (4.4),
t*l

fTC - T = i -- dg- (4.5 )
(- lErc r t+

E E t +

(Section 5.6.1 of Chapter 5 refers to the integral on the

right-hand side as the actual or true difference between

and T+1 t+l
'dTact

To be rigorously accurate, the line integral must follow a

tortuous route through the multi-dimensional space from
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t to Et**. Thus, each partial derivative must

be calculated along a different line segment connecting

two adjacent intermediate points along the route. It is

far easier to calculate each partial derivative only about

the current trial point -t itself, (DTCr/ aErc)6  * .

If these derivatives are used to replace those in Equation

(4.5), an error term t+1 must be included to correct

for the approximation,

t E

integral limits reduce to E to E t+1 and the two summa-rc rc

tions may be taken outside,

r

____ (4.7)
r e bTr

or t*1

TC C
erc.

Defining the double summation term as

estimated change in TCt

d 6rc (4.8)

2: 1 theOEST~

+ Z (.
ES T

- t*I -- t*1TrC = ~iC + J +

tt/
TC = ~TC +A' (4.-9)
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Provided that the error in the approximation or esti-

mation X is sufficiently small (see Section 5.6.1),

Equation (4.9) provides an excellent basis for re-formulat-

ing the non-linear objective function and hence, the opti-

mization, into an iterative procedure:

Given a trial point E t with cost Tet and increment-

al costs ;c , the next feasible trial point E t+ is

determined that minimizes Ft+1

Since TC is constant within the iteration, the mini-

mization of YCt+1 may be replaced by the approximately

equivalent minimization of Yt+. Using the new £t+1

the CORSOM's can then generate the corresponding TCt and( r

t+1. The next SOM iteration then seeks to minimize

t+, and so on.

In general, convergence of and TC may occur but

globality of the optimum 6 * and T cannot be guaran-

teed. However, for the special case of a convex T( ),

both convergence and globality are guaranteed (54). That

is,

TCr >4. 10)-

or

EF rcE rc.Erc
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The work of Widmer (57) and Watt (55) have shown

that this is a reasonable assumption--the nuclear incre-

mental cost A rc increases or, at least, does not de-

crease with the cycle energy Erc. That is, each addi-

tional increment of cycle energy (i.e., reload enrichment)

costs at least as much as the previous increment.

To summarize, given that TC ( , ) is convex, the

iterative optimization will converge to the global opti-

mum using as the objective function,

minimize ~j'(4.12)

rc

The above objective function is actually not a function

of the period productions, but only of the cycle sub-

totals, the Erc cycle energies. However, all of the vari-

ous constraints on the optimization, discussed in the

following Sections 4.2.2-4.2.4, are period constraints and

involve Ercp explicitly.

4.2.2 System Production Constraint

The constraint on system production requires that

in each period the reactors produce sufficient energy to

meet the nuclear potential,
R

Ercp = N for all p (4.13)

Calculation of N has already been discussed in Section
p

3.3.3.
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4.2.3 Reactor Production Constraint

There are two types of reactor production constraints.

The first, discussed in Section 4.2.3.1 brackets the per-

missible values of each reactor's production for each of

the Z periods within the planning horizon,

,pin < E < Emax for all r and p (4.14)rcp - rcp - rcp

The second, discussed in Section 4.2.3.2, specifies

the reactor energy production beyond the planning horizon.

These horizon end conditions permit the CORSOM's to

evaluate and cost (at least approximately) the reactivity

requirements of cycles beyond the end of the planning

horizon. The goal is to normalize strategy vs. strategy

horizon end effects. To accomplish this,

Er-C = ErCp + Er,C,Z+l for all r (4.15)

where Er,C,Z+l = energy held over for production by

reactor r beyond the horizon cycle C (in fictitious period

Z+1). In addition, Er,C+l , Er,C+2 , etc. are specified.

4.2.3.1 Typical Period

The reactor period production constraint [Equation

(4.14)] merely establishes the limits on each reactor's

production. For the trivial case when unit r is down for

refueling in period p,
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Emin = Emax = 0 (4.16)
rcp rcp

The SOM pre-calculates the other minimums and maximums using

results from SIM. Two important load-duration curves,

(Fmin and F max), not previously discussed, are among these

results (see Figure 4.1).

The Fmin was the SIM's current F immediately prior

to the deconvolution required to load the first nuclear

upper increment of group 3 (see Figure 3.8). That is,

Fmin includes forced-outage allowances for all of the

nuclear minimums (group 1) plus any must-run fossil mini-

mums (group 2). This curve is used to determine the

Emax since the maximum energy a reactor's upper incre-
rcp

ments can produce occurs when all of its remaining cap-

acity,

k = K - K rl= Kr - K (4.17)r rI rl r rl

is loaded at the very beginning of this group 3.

Thus to determine Emax, the following two step
rcp

procedure is performed (see Figure 4.2) for each on-line

reactor:

Step 1:From Fmin, which includes all on-line nuclear

minimums, deconvolve the initial increment

of unit r,
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FJ(Pe)[= F (Pe) - Fr ( P-Kri) (4.18)

Step 2: Since F is the proper curve for loading theri

remaining kr MW in order to maximize Ercp'

Imin+k
+r

Emax = E* + T' Fwo dP (4.19)
rcp rcp rir rl e

min

where E* is the invariant energy production of the units
rcp

first K rl MW.

To determine E requires the Fmax of Figure 4.1,rcp

which represents the SIM's current F after the last nuclear

upper increment of group 3 has been convolved in. That is,

Fmax includes any fossil must-run minimums plus all of the

nuclear maximums. Whereas E was maximized when k MWrcp r

were first in group 3, minimum reactor energy production

for the period occurs when unit r's kr MW are the very last

in group 3 to be loaded. Thus, the following two step

procedure is applied to Fmax for each reactor (see Figure

4.3):

Step 1: From Fmax, which includes all on-line nuclear

units at their maximum capacity, deconvolve

the entire KrI MW of unit r,

F(P)- - gr, 1(Pe-kF1) (4.20)
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Step 2: Since FrI is the proper curve for loading the

remaining k MW in order to minimize E ,
rrc

E"~''= E' -PT' " A P "-EZ7 Fr1 (4.21)

P .kr

4.2.3.2 Horizon End Condition

To properly evaluate fuel cycle costs (i.e., reload

requirements and discharge characteristics) incurred within

the planning horizon, each reactor's CORSOM must receive

not only the energy of each of the C "included" cycles

within the horizon, but also estimated cycle energies for

several "excluded" cycles beyond the horizon. The speci-

fied end condition should match as closely as possible the

same general operating philosophy (i.e., capacity factor)

anticipated for the strategy's included cycles. That is,

excluded cycles continue with similar cycle lengths in

both energy and time as those within the horizon, not re-

turn to some arbitrary state, regardless of the particular

included strategy.

To effect this requires an estimate of Er,C,Z+l the

amount of cycle C energy held over beyond the horizon (for

fictitious period Z+1) for production before the next re-

fueling (see Figure 4.4),

E-ZE E (4.22)
r C - rCP + r, C, 2+l
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In addition, several completely excluded cycle energies

are estimated (E r,C+l E r,C+2, etc.). Total system

nuclear production from all reactors during the excluded

cycles should be held constant for all refueling and main-

tenance strategies to ensure similar system-wide core

energy content at the end of the planning horizon. Recall

that the goal is to normalize strategy vs. strategy horizon

end effects.

Since the end condition exists only in deference to the

CORSOM's calculational requirements, it is not included

explicitly in the mathematical formulation of the SOM's

optimization problem summarized in Section 4.3.

4.2.4 Shape Constraint

The shape constraint is used to guarantee that the

reactor energy productions within the period are, in

the aggregate, compatible with the given equivalent load

shape. In the Booth-Baleriaux calculations of the SIM,

the various increments of each unit are assigned various

segments of the equivalent load curve on a MW for MW basis.

Summing the I increments of energy production Eri for each

unit,

I
E = E. (4.23)

These Er represent each unit's energy production for the

period using the specified increment-by-increment loading

order. By the nature of the SIM calculation, any detailed
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loading order specifies a set of feasible E r's for the

rrperiod (i.e., a set of Er 's which are compatible with the

shape of the equivalent load curve).

However, the optimization variable in SOM is not the

detailed loading order, but each nuclear unit's period

production E rcp. Thus, the shape compatibility question

becomes: "For a given subset of reactor-period energy

productions (Ercp for all r at p) whose sum equals the

required period nuclear potential Np from SIM, could a

corresponding detailed reactor loading order be found that

satisfies the period's equivalent load shape (calculated by

SIM) yet results in the SOM's postulated E rcp?" The shape

constraint attempts to quantify the feasibility of finding

such a loading order (yet circumvents actually having to

perform the search or SIMulation).

The general form of the shape constraint will be shown

to be second-order,

R' R

Z/I p E c 2? r 4 % (4.24)

where clrp, c2rp and cp are constants pre-calculated by the

SOM from SIM results. While the system and reactor produc-

tion constraints [Equations (4.13) and (4.14), respective-

ly] are linear, (i.e., first order), the shape constraint

Equation (4.24) is non-linear. As with all but the most

trivial problems in operations research, non-linearities

greatly complicate the optimization algorithm (see Section
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4.4.3). The current discussion, however, concentrates

solely on understanding "why" and "how" the shape constraint

is formulated in the first place.

4.2.4.1 Purpose

To understand why the shape constraint is necessary,

consider the following example which would otherwise be per-

mitted by the SOM as a feasible solution. Assume the cus-

tomer loads remain as on the Reference Utility System in

Figure 2.9. However, assume for the sake of this example

that the utility system itself consists of only six identi-

cal 400 MW nuclear reactors which, for simplicity in the

example, have no forced-outages (pr = 100%) and no minimum

load constraint; therefore, FDF e. Figure 4.5 portrays

system production calculated by the SIM for the specified

startup and loading order. Note that for this feasible

production schedule, the SIM results indicate nuclear sys-

tem production of

DT G4 JI4 (4.25)

and reactor production limits equivalent to

M",( =(zI /1 C 1 (4.26)

0 G W 4H (4.27)
rCp
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Figure 4.5

Six Identical Reactors versus Reference Utility Customer Demand
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Inserting these values in the two production constraints

[Equation (4.13) and (4.14)] and ignoring any shape con-

straint, the SOM would be perfectly justified in postulating

the production schedule shown in Figure 4.6 since the de-

sired total energy Np (proportional to area under the curve)

is supplied. Comparing this production shape with that of

the customers (FD), the shape infeasibility is readily

apparent since production never reaches a power level great-

er than 1400 MW while the customer demand is greater than

that 20% of the time.

Thus, the optimization model must include either (a)

some method of forcing each subset of Ercp derived in the

SOM to satisfy the load shape, or (b) include a constraint,

or posteriori check, which rejects from further considera-

tion any subsets of Ercp which cannot satisfy the load

shape. The latter method, referred to as a "shape con-

straint," is utilized in the model presented here.

Having established the necessity of a shape constraint,

how might the "shape" be quantified?

First of all, the shape most indicative of the demands

to be satisfied by each nuclear unit is not the direct cus-

tomer load-duration curve FD (unless all pr are actually

equal to 100%), but the equivalent load-duration curve Fe,

which includes not only direct, but also indirect, customer

loads. (Section 4.2.4.3 discusses the practical means by
min max

which the SOM determines Fe given F and F .) Further-

more, by focusing attention only on the nuclear units and

assuming their size and economics make them all must-run
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units, the pertinent range of F can be reduced to that

segment served by the nuclear upper increments of the R'

available (on-line) nuclear units (group 3 of Figure 4.1).

Henceforth, the term "system shape" and symbol F refer

to that segment of the equivalent load curve over the range

of loads running from zero MW upper nuclear capacity to

the system total availability-based nuclear upper increment

capacity k (i.e., each unit's first increment is excluded

from the discussion since all K rl MW are base-loaded),

R I

4T Krj)(4.28)

In order to characterize the production schedule in

terms of the optimization variables Ercp, consider the

capacity factors of the units. (For convenience, the Ercp

notation is shortened to Er since the same period p applies

to all reactors and cycle c is immaterial to the current

discussion.) As Widmer (57, 58) stated with elegant sim-

plicity,

E = KLT (4.29)

where

E = electric energy production

K = rated electric capacity

L = average capacity factor

T = total length of time (i.e., including
all outages)'
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Equation (4.29) actually serves to define L,

L E (4.30)

With the current discussion limited to any time period of

length T' during which the unit (with a performance proba-

bility p) is never down for scheduled maintenance or re-

fueling, a more meaningful parameter is the availability-

based capacity factor L'

E = KL'T'p (4.31)

or

L' E (4.32)

In words, L' represents the capacity factor the unit experi-

enced during the period's pT' available hours that it was

not down due to maintenance or refueling (T-T') or forced-

outages [(1-p)T']. By comparing Equation (4.31) with

Equation (2.24) integrated over the appropriate segment of

the complete F e

rLr (4.33)

or, O

/ KKKSr(P (4.34)Lr
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Hence, L' represents the average value of F in those seg-

ments placing demand on unit r.

Since the discussion is limited to the nuclear unit's

upper (i.e., I-1) increments, define Z' as the availability-r

based increment capacity factor for unit r. Thus,

E E E + k t' T' p (4.35)
r ri rl r r r

or

Er - Erl =aE-

r kE = rrlr (4.36)

kr r

where

a E 1/kr Tr (4.37)

r E Erl /kr r (4.38)

Given each reactor's postulated production, Ercp, (the p

subset for all r resulting in N in toto) , each 2' can bep r

calculated and then ordered and plotted in decreasing mag-

nitude. The resulting curve, whose abscissa is defined as

P r, is labeled the "average reactor shape" Fr in Figure

4.7c.

Using Figure 4.7a as an illustration, the segments of

F used for loading each reactor's upper capacity kr can be

replotted separately as in Figure 4.7b. The average F for

each reactor's upper increments is then 2'. Reordering the
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Figure 4.7 Decomposition and Reordering of System Shape
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reactor segments of Figure 4.7b with the largest 2' first,r

the detailed reactor shape Fr of Figure 4.7c results, de-

fining the abscissa Pr, the composite reactor upper incre-

ment power. The system shape F, (P ) of Figure 4.7a has

merely been segmented and then reordered into the detailed

reactor shape of Fr (P r) of Figure 4.7c on the basis of the

average demand on each unit's upper increments 2.'. Mathe-

matically speaking, Fr (P r) is a one-to-one mapping of

F e(P ) since for every element of (point along) F at P ,

there exists a corresponding element of (point along)

F atP r. (However, in general, P e P r.) Thus, the total

area under the three shapes (i.e., for all k' MW of on-

line nuclear upper increment capacity) is the same,

1 .0

T TT

Fe ( Pe)d Pe = F.(PrdPr f Pr)dr (4.39)
OF

00

The example in Figure 4.7 is, by definition, feasible

since the detailed upper increment loading order resulting

in each Er (recall that each Krl MW are base-loaded) and

Np in toto is clearly specified in Figure 4.7a. However,

recall that in the SOM, only the F system shape to be
e

satisfied and a postulated subset of Er's are specified

(not the detailed loading order). Hence, too little infor-

mation is known to determine the detailed Fr r) as in

Figure 4.7c. Nonetheless, the Fr average reactor shape can

be determined for the postulated subset of Er's. By
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applying Equation (4.36), each reactor's 2' can be calcu-
r

lated and placed in descending order, resulting in the de-

sired F .
r

The question of feasibility can then be stated as

follows:

Given a postulated subset of Er 's (and the resulting

"postulated" average reactor shape Fr on the upper incre-

ments), does there exist at least one intra-nuclear upper

increment loading order such that the on-line reactors can

indeed satisfy the given detailed system shape F ?

A detailed loading order need not be determined,

merely its existence established. If one exists, the

postulated set of Er represent a feasible means of opera-

ting the nuclear units; if none exists, then the postulated

schedule is infeasible.

Two methods were considered for determining the exis-

tence of such a loading order: (1) area method and (2) var-

iance method. The area method (see Appendix B), though

rigorous (i.e., necessary and sufficient), involved an

inordinate amount of computer data handling and storage

and, therefore, was not implemented.

Utilizing the other (approximate) variance method, the

shape constraint (derived in Section 4.2.4.2 and implemented

per Section 4.2.4.3) is used to eliminate postulated sub-

sets of E 's which result in infeasible shapes by comparing
r

a single parameter, the "variance" of the shape produced by

the postulated Er 's against a similar parameter for the
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SIM-calculated system shape F,.

4.2.4.2 Mathematical Basis

To derive the shape constraint, consider the Fe (P )

system shape on the upper nuclear increments shown in

Figure 4.7a. As a measure of the system shape, compare

the shape with its mean,?

o AAe

Defining S2 as the "variance" of the system shape com-

pared with its mean,

.5 d~e(4.41)

For a known feasible solution, the S2 variance will

be the same whether integrated directly from 0 to k' (see

Figure 4.7a), or first segmented into the respective de-

tailed MW-by-MW reactor load shapes, reordered and then

integrated (see Figure 4.7c).

2T
(4.42)

Breaking this integral into a sum over each of the R'

on-line reactors,
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R

r
0

Pr

Adding and subtracting 1; inside the

summation,

RP; +A,

(F,

-OW j7 (4.43)

integrals of the

(4.44)rhr

or IP '

r)2i "4 dP

r

for then

(4.45)

The third term inside the brackets vanishes since

equals a constant and

Pr'~t4 Pr) d Pr

=2 ' )2(F,-. )(I;-F)&,

(4.46)

(4.47)' r

= 0

Thus,

-17) 2. d'Fro-

P-1+A rr

S
)dpr
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= k Pr* 2S .rA'dr +ZA ~ f (4.48)

PrT

V

52 V
2

+ 2
(4.49)

where V = total internal variance of sub-segments of F forr

each reactor (i.e., requires detailed loading

order)

W2 = weighted sum of squares of reactor average versus

system average of F (i.e., not dependent on MW-

by-MW loading order, only average Fr over each

kr MW)

For a feasible Er subset, V2 must be non-negative since the

integrand is squared. Therefore, if V2 is negative for

some other postulated production schedule when calculated

by taking the difference in the calculated values of S2

[Equation (4.41)] and W2 [Equation (4.48)], that postulated

schedule is clearly infeasible. Note that the converse is

not true. If (S2 - W2 ) is greater than or equal to zero,

feasibility is not guaranteed. The following Section 4.2.4.3

discusses the practical implementation of this approximate

constraint.
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Typical values of S2 calculated in this study are on

the order of 0.01 to 0.03, while the theoretical maximum

value is 0.25 for the pathological case of

Fe(P) = 0 Pe < 0-5'
(4.50)

For the infeasible example of Figure 4.6, 2 = 0.201

while the reactor summation term W2 has a value of 0.217.

Thus, V2 = S2-W2 = -0.016, a highly infeasible value.

4.2.4.3 Practical Implementation

Practical implementation of Equation (4.49) as the

SOM's shape constraint involves (1) determining the system

shape F given the SIM's Fmin and Fmax (see Figure 4.1) and

2 2
(2) incorporating a V rejection level on V to allow flex-

ibility in the model's handling of the constraint that

V2 2W 2 > 0.

The practical definition of F is the demand curve used

for loading each MW according to Equation (2.24). For the

first MW of the nuclear upper increments, the deconvolve-

load-convolve sequence of the multiple increment algorithm

of Section 3.3.2.2 must be applied to Fmin. Since the iden-

tity of the first nuclear upper increment to be loaded is

arbitrary at this point, a hypothetical unit with the aver-

age values of pr and Krl which gives the same average MW of

outage would appear to be useful,
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I

K

=Z~r 21KrI
kIZKrI

Deconvolving this unit per Equation (3.55),

F (P,)FA& (Pe) - - )F (Pe-K)

This Fwo is the average curve used to load the first
r

(4.52)

(4.53)

MW of

the nuclear upper increments. In a similar manner, an

can be determined from Fmax that estimates the curve used

for loading the last MW of the nuclear

ZPr KrI z
upper increments:

(4.54)

k

Kr1 ZKJ

and

L frr

Pr (4.51)

Fwo
rl

(4.55)

(4.56)
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Figure 4.8 presents FwO and F for the Fmin and Fmax of
r1 rI

Figure 4.1. Since each Fwo is equal to F at a particular

point of application,

Point A: "F() (4.57)
r i

Point B: a( = (4.58)

then F (P ) must trace a path connecting points A and B of

Figure 4.8. Thus,F can be simply approximated by inter-

polation over the range 0 < P < k' ,

(Pe)=(I- -) Fq (P,) + - F P.)

With F approximated, T' and S2 are easily calculated

(see Figure 4.9),

-~ f--~~ ~~f' (4,40)

0

A-- (4.41)

With ' and S2 pre-calculated by the SOM before the

iterative optimization procedure begins (see Section 4.4),

Equation (4.49) is implemented as the shape constraint on
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Figure 4.9
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each iteration's postulated set of Er. This involves

(1) using Equation (4.36) to calculate 2' for each postulatedr
E,

. = ar E r (4.36)r r r r

(2) calculating W2 from the resulting k' (see Figure 4.9),

2 
(4.48)

T

and (3) testing the resultant V2 ( 2-W 2) versus a V 2
REJ

rejection level designed to establish feasibility, not

merely infeasibility, as discussed below.

Rearranging Equation (4.49),

V2 2 W2 (4.60)

This is the convenient form of Equation (4.49) since deter-

mining V2 by difference does not required a detailed loading

order (which may not even exist). For V < 0, the postulated

production schedule is infeasible; V2  0, may be infeasible;

V2 >> 0, almost certainly feasible. To implement the con-

2straint, a VR2 rejection level is introduced such that if

2 2V < V , the postulated schedule is rejected as probably

infeasible. Figure 4.10 presents a visual interpretation of

the implementation.
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Figure 4. 10
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Note the flexibility of a model allowing V2  as anREJ

input parameter:

(1) If V = 0, Equation (4.48) holds directly with V2 > 0REJ

being required, or (2) If V < -0.25, the shape constraint

is effectively nullified. To be accepted W2 must be

< S2 _ V REJ S 2 + 0.25. Theoretically, (W2) max = 0.25 (see

Section 4.2.4.2) and (S2)min = 0. Thus, W is always

< S2 + 0.25 and,hencealways accepted.

To summarize the complete formulation of the shape

constraint for period p, the Er notation returns to Ercp

Hence, a postulated period production schedule is not re-

jected as infeasible if

W 6. 5-Y; (4.61)

or

RRws A ( i E o - -24).

Note the existence of second-order terms (Erc) as

was indicated in Equation (4.24) .
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4.3 Mathematical Statement of Optimization Problem

Summarizing the elements of the optimization problem

formulated in Section 4.2, the problem can be stated

succinctly as,

R
minimize 4 E.1

or equivalently

minimize
tI

Arc d rc

such that the following period constraints are met for

System Production:

Zrc /V a 'eP

Reactor Production:

E E c p . ErGIp /...e r&A f

and Shape:

R'is

Z 4, (Or, Erep -rf p -i)
"'

reg
Ar

(4.12)

(4.13)

(4.14)

(4.62)

10 V 2RA3"

minimi ze (4.1)
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4.4 Method of Optimization

In choosing a method of optimization, the size of the

problem itself must be considered. Suppose a utility with

eight reactors desires to optimize the system refueling

strategy over the next six years using time periods two

weeks long. Then, there will be Z ~ 150 time periods, each

of which has two constraints [Equations (4.13) and (4.62),

one of which is non-linear]. Each of the R-Z = 1200

optimization variables in E, has a lower and an upper limit

(2400 more constraints). The final total: 1200 variables to

be optimized subject to 2700 constraints--a very large

optimization problem, particularly if solved in an iterative

fashion.

The schematic diagram of a two-stage iterative opti-

mization procedure is shown in Figure 4.11. The optimization

is initiated by the precalculation of constraint limits

(Block A) based on the output supplied by the SIM. Then for

each outer shape iteration, s, the inner cost iteration

loop, consisting of the network program without any shape

constraints (Block B) and the CORSOM's (Block C), operates

within the remaining constraints. The inner loop's output

is a complete set of optimized reactor-cycle energies,

E *rs, which results in the minimum nuclear fuel revenue re-
rc

quirement for the system, TC ' . In the second stage, the

network program of Block D is used to apportion each reactor-

cycle energy in this set among the various reactor-periods
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making up a reactor-cycle. The objective is to minimize the

likelihood that the shape constraint for any period will be

violated, M*,s. Then, Block E compares the "variance",

V 2, for each period of the resulting set of reactor-period
p
energy productions, {E*,s}, with the preselected shape re-rcp

jection criterion, V2  If the shape of any period violatesREV

the criterion, another outer shape iteration is begun by de-

creasing the range of the permissible reactor-period energy

productions for all reactors supplying energy in each re-

jected period. When all period shapes are accepted, the

optimization of the SOM is complete. The resulting opti-

mized (i.e., minimized) nuclear fuel revenue requirement,

TC , is combined with the non-nuclear operating revenue re-

quirements to produce the system's total optimized operating

revenue requirement (as shown in Figure 2.22) for the par-

ticular alternative refueling and maintenance strategy under

investigation.

While many iterative, non-linear optimization tech-

niques seek the global optimum by operating within the feasi-

ble E. hyperspace, this two-stage technique approaches the

optimum from without, i.e., from the infeasible region. Con-

sequently, instead of each iteration decreasing the objective

function, the objective function increases as feasibility is

approached, giving a lower bound for the more feasible solu-

tion at the next iteration (see Section 5.6.2).
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4.4.1 Concept of Nuclear Energy Supply Network

Since the only non-linear constraint [Equation

(4.62)] is not considered explicitly in either sub-opti-

mization of Figure 4.11, the remaining constraints are

linear. In fact, because the resulting sub-optimizations

deal with a single commodity (nuclear energy production) in

a strict one-to-one (reactor) supply and (customer) demand

sense, the constraints form a nuclear energy supply network.

Figure 4.12 presents such a network configuration for a

3 reactor,24 period (month) example. (Numbers are displayed

for the nuclear potentials to emphasize the fact that these

are fixed constraints throughout all of the iterations for a

particular refueling and maintenance strategy.) Nuclear

energy is allocated (supplied) to each reactor-cycle. With-

in each cycle, the energy is allocated to the pertinent

periods so as to satisfy the system nuclear potentials (de-

manded). The sum of any column must equal the energy sup-

plied (or extracted) during that particular reactor-cycle

while the sum of any row must equal its required nuclear

potential (Equation (4.13)]. The range of each Ercp is

also constrained via Equation (4.14) (presented in Table

4.1 but not shown explicitly on Figure 4.12) leading to the

term "capacitated" network.

Each of the sub-optimizations in the following sec-

tions thus seeks to determine that e set of Ercp that sat-

isfies these network constraints, yet minimizes its repec-

tive objective function.
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Figure 4.12

Sample Network Configuration

P REACTOR I REACTOR 2 REACTOR 3
PERIOD CYCLE: CYCLE: CYCLE: NUCLEAR

I 2 2 3 I 2 POTENTIAL, Np
2 1 2 3 1 2

I< _<_ 2128 GWH

2 < d2069

3 REFUELING 1443

4 E3 1 4 1950

5 2070

6 2128

7 __ 2193

8 2128

9 2128

10 _2025

I1 ><_ __ _________ 2027

12 REFUE LING 1438

13 2103

I4 REFUELING 1465

15 2009

16 REFUELING 1464

17 _ 2105

18 ><F __ 2152

19 __ _ 2206

20 ___ __ 2152
21 _ 2152
22 ><_ ______ 2075

23 2062

24 REF 1465

HOLDOVER 2500 REF 2500

TOTAL Ei,1 E1, 2 E 2, 1 E2, 2 E2 , 3 E3,1 E3,2 49,637 GWH
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Table 4.1.

Reactor Production Limits for 3 Reactor,
24 Period Example

Reactor 1

Period min max
Perod lcp Elcp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

669

635

687

577

636

669

714

669

669

616

610

718

656

0

610

706

657

686

724

686

686

643

632

0

762

760

756

747

760

762

763

762

762

755

759

760

761

0

752

758

761

762

763

762

762

758

759

0

Reactor 2

min max
2cp 2cp

629

596

0

540

596

629

674

629

629

577

571

678

617

703

571

0

617

646

684

646

646

604

593

703

722

720

0

707

720

722

723

722

722

714

718

720

721

722

712

0

721

722

723

722

722

718

719

722

Reactor 3

min max
E3 cp E3cp

669

635

687

577

636

669

714

669

669

616

610

0

656

743

610

706

657

686

724

686

686

643

632

743

762

760

756

747

760

762

763

762

762

755

759

0

761

763

752

758

761

762

763

762

762

758

759

763

All E in GWHrcp
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4.4.2 Inner Iteration on Nuclear Cost

Each inner cost iteration of Figure 4.11 solves the

following sub-optimization problem:

minimize gd (4.12)
E ST re d EC

Erc

such that

E (4.13)

and Emins < E < Emax,s (4.14)
rcp < rcp - rcp

Inner iterations continue until t+1 converges to

s Critical to the minimization of Equation (4.12) is

the representation of the incremental cost curve Xrc as arc

function of E . Figure 4.13 presents a typical true incre-

mental cost curve and two approximations to it:

(1) linear approximation,

At = -e t + t
re 4rc En krc (4.63)

and (2)a "stair-step" approximation having the same areas

as the A GWH segments of the true curve,

re=EEA sE <E EPC rt
(4.64)

Er < Et - Et +
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Figure 4.13

Typical Incremental Cost Curve ond Approximations 6253-43
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Performing the integration of Equation (4.12), the

linear approximation results in a quadratic programming

(QP) problem,

1Z C

minimize 7 2(Ee -(Err),J + 6(E,-Eu)
(4.65)

subject to the capacitated supply network constraints of

Equations (4.13) and (4.14).

On the other hand, the stair-step approximation leads

to a linear programming (LP) problem utilizing the method

of "convex combinations" (54) of E and Ert+l In fact,

since the model's context is a supply network and the ob-

jective function is linear, this special LP problem reduces

to a network programming (NP) problem,

RZ C

minimize (= - (E - E (4.66)ZEST A rc Er rc

Considering only the accuracy of the underlying approxi-

mations, a QP code package ought to be favored over a NP

package for achieving the sub-optimization. However, even

the example optimization problem of Section 4.4 (with 1200

primary variables subject to 2700 constraints), is too large

for a typical generalized QP package (6) which permits only

1100 variables (including slack variables) and 800 con-

straints.
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Investigating the stair-step approximation further by

decreasing A and increasing the number of steps, Equation

(4.66) becomes a "piecewise-linear" (54) NP problem and the

second approximation approaches the first with regard to

accuracy. [This piecewise-linearization refers to TC
r and

is made possible by the separability of the equivalent ob-

jective function Equation (4.12)]. Furthermore, special-

ized NP packages tailored to capacitated networks (27, 45)

are available that can readily handle up to 10,000 primary

capacitated variables and up to 5000 system production-type

constraints (see Appendix G). Such capabilities easily per-

mit the additional variables introduced during the piecewise-

linearization.

To illustrate a single inner iteration consider the 3

reactor, 24 period example of Figure 4.12 and Table 4.1.

Figure 4.14 presents a hypothetical set of incremental cost

curves returned to the SOM at the end of the previous

iteration. These are taken with respect to changes about

tthe indicated E rc. Also indicated is the next trial set

t+1E resulting from the single inner optimization. Noterc

that (1) the NP program seeks to establish equal nuclear

incremental costs (see Section 2.4.2) among the reactor-

cycles that compete for the nuclear potential (e.g.,

l= A2,2 = X3,1) and (2) the total increase in cycle

energies in a given trial equals the total decrease in

cycle energies in that trial since the total nuclear
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potential, of course, does not change from iteration to

iteration. Figure 4.15 presents the complete period-by-

period reactor production schedule for t+l.

4.4.3 Outer Iteration on Shape Misfit Potential

As outlined in Section 4.4 and Figure 4.11, inner

cost iterations continue until the {Et's} converges torc
*S

{Er' } at which time the outer iteration commences. The
rc

objective function M s of the outer shape iteration is

based on the key fact that if all ' = ', then W2 = 0
rp p p

2 =
[from Equation (4.48)]. Hence, V = S and consequently,

p p

all periods are feasible since V >> V (see Figure 4.10).
p REJ

Furthermore, any deviation of Z' from T' increases the
rp p

likelihood of ultimate period rejection.

Each outer shape iteration of Figure 4.11 thus solves

the following sub-optimization problem:

2121 * E")J'" (4.67)
minimize 

Erp (E cpdE,(-?

such that R

(4.13)

__c = e Ef*1 rO jo% (4.68)Er.c rp
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Figure 4.15

Sample Reactor Production Schedule

REACTOR I REACTOR 2 REACTOR 3PERIOD CYCLE: CYCLE: CYCLE: NUCLEAR

1 2 1 2 3 1 1 2

1 715 _ 722 __ 691 2128 GWH

2 697 720 652 _ _ __2069

3 722 REFUELING 721 1443

4 661 707 582 1950

5 697 720 653 2070

6 715 _ 722 691 2128

7 738 __ 723 732 2193

8 715 __ 722 _ 691 __ 2128

9 715 ___ 722 691 __ 2128

10 685 _ _ 714 626 2025

II 684 ____672 671 2027

12 738 700 REFUELING 1438

13 668 __ 674 x > 761 2103

14 REFUE ING _ 703 762 1465

15 _ _752 _571 X __ 686 2009

16 758 REFUELING 706 1 1464

17 761 687 657 2105

18 762 ____ 704 686 2152

19 763 719 724 2206

20 762 ___ 704 > < 686 2152

21 762 ___ 704 _686 2152

22 758 ____ 674 643 2075

23 _ 759 _ 671 1 ( 632 2062

24 REF 722E 743 1465

HOLDOVER 2500 REF 2500

TOTAL 9150 6837 1442 8350 8085 7401 8372 49,637 GWH
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The M*,s system misfit potential, defined by Equation

(4.67), merely represents a mathematical "gimmick" de-

signed to force F. (i.e., the set of all E ) into thercp

feasible region, minimizing the number of period shapes

later rejected due to misfitting shapes (Equation (4.62)].

The all-important misfit forcing function, mrp, though

arbitrary, should possess the properties indicated in Fig-

ure 4.16. At E corresponding to V' = 7', m = 0;rcp rp p rp

for deviations in either direction from this Ercp, mrp in-

creases rapidly; and for the end points Emin,O and E max,0
rcp rcp

which are especially vulnerable to rejection, mrp should

still be finite since the extremums are not unacceptable

per se. The optimization of Equations (4.67) to (4.68)

thus attempts to force each Ercp to the bottom of the re-

sulting "trough" of m.p subject to the various constraints,

such as fixed reactor-cycle energy.

Since M ' is defined (via the m ) to be separable
rp

and convex, the methods of piecewise-linearization and con-

vex combinations can again be applied as was done for the

inner cost iterations of Section 4.4.2. Note that given

the typical, but arbitrary stair-step mrp curve of Figure

4.16, the linearized M 's optimization of the capacitated

supply network is not iterative in nature--the complete

optimization of E *,s occurs in one pass through the NP

package. The actual "iteration" involves checking re-

sulting period shape acceptabilities and appropriately

altering the reactor production constraints for the next
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Figure 4.16

Misfit Forcing Function versus Reactor-Period Production

40

FINITE AT LIMITS

30

EXAMPLE OF STAIR-

20 STEP mrp FOR
PIECEWISE-

LINEAR M*,s

EXAMPLE OF DESIRABLE

(CONTINUOUS) mrp

|0

AVERAGE
(ATJip)

0

OR IGINAL

MIN I MUM
ORIGINAL

MAXIMUM

Ercp, REACTOR-PERIOD ENERGY PRODUCTION

C-,

C>,

LA_

C.)
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set of inner cost iterations (see Figure 4.11).

Looking at each optimized period in turn (the notation

is shortened to Er for convenience), the variance test of

Equation (4.62) is applied. If S2W > V , the period is

accepted and processing moves on to the next period. If

the test fails, then V2 2-W2) < V 2 Defining a as

following measure of infeasibility,

(JT Y - i-- (4.69)

a represents the average change of each V (toward ~') re-

quired before the postulated production shape would pass

the test. If a fraction 1 of this average reduction is

applied to each reactor's limiting values of 2.' (see Fig-

ure 4.17), then from Equation (4.35),

ri dr T~r [(~ywU~eA$~T] (4.70)

E AO E j e Ohrr(~~') 6-~ (4.71)

When all periods have been tested thusly, and/or the

appropriate limits altered, the outer shape iteration

terminates and inner cost iterations begin on the new sub-

problem. The shape iteration which results in all period

shapes being accepted,terminates the entire optimization

at the feasible global optimum E * and minimum total
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--* 2
cost TC . [Note that if V 2 < -0.25 (see Section 4.2.4.3),

all period shapes are acceptable regardless of feasibility.

e*' 0 E6 -- 0 - medael.Hence, ' =C and TC '0 = TC immediately.]

4.5 Completion of Supervisory Task

With the optimization task completed, the resulting

-0
feasible optimum TC represents the total revenue require-

ment for nuclear fuel RRN. By present-valuing all of the

other period expenditures (received as input from the SIM)

according to Equation (2.17),

o&R =R~ +), (XF + x5  xU) (4.72)

The ORR operating revenue requirement is appropriately

stored for later comparison with that of other possible

alternative strategies. With the completion of this task,

processing of the particular alternative strategy is com-

plete. And with completion of the last alternative strat-

egy, selection of the minimum ORR cost strategy becomes

possible (see Section 2.5.1).

4.6 SYSOPT, A Computerized SYStem OPTimization Model

SYSOPT, a 2100 card Fortran IV version of the SYStem

OPTimization Model is detailed in Appendix F. SYSOPT is

link-edited with the Out of Kilter Network Program (45)

which represents an additional 1200 cards in Fortran IV

and Assembler Language. Out of Kilter is detailed in
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Appendix G. This section merely summarizes the capabili-

ties of the current combined version of SYSOPT.

The limitations of the current version of SYSOPT,

though easily altered, are as follows:

(1) up to 15 reactors,

(2) up to 15 cycles per reactor within the horizon,

(3) up to 3 cycles per reactor beyond the horizon,

(4) no limit on number of strategies per computer

run and

(5) up to 100 periods per strategy.

Input data for each strategy includes:

(1) Present value rate,

(2) Various convergence criteria,

(3) Various A for linearizing Xrc of inner

iterations,

(4) Maximum total number of inner iterations to be

permitted,

(5) Number of linearized segments in mrp (up to 10)

and

(6) VREJ and 1 of the shape iteration.

Input data supplied manually for each reactor includes:

* *
(1) Optional initial estimates of Xrc or Erc'

(2) Holdover energy at end of planning horizon,

Er,C,Z+l and

(3) Cycle energies and refueling dates beyond plan-

ning horizon.
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The large volume of SYSINT output required by SYSOPT

may be passed either on disk, magnetic tape or punched

cards.

As for typical running times on.an IBM 370 model 155

computer (MVT environment), the cases presented in Chap-

ter 5 for a hypothetical six reactor utility required only

9 CPU seconds per inner iteration (exclusive of time spent

in CORSOM's) for strategies 72 periods long and totaling

30 reactor-cycles. The SYSOPT code itself requires 130 K

bytes of storage (plus ~ 26 K for computer supervisor)

while the Out-of-Kilter Network Program requires an addi-

tional 135 K. Using an overlay structure reduces the

265 K total to 200 K. [When link-edited with QKCORE

(see Appendix H) to complete the overall nuclear power

management model (see Section 5.2), the code storage re-

quirement increases to 345 K without overlay or 220 K

with overlay (exclusive of computer supervisor).] Execu-

tion time is not noticeably increased by the use of the

overlay structure.

4.7 Summary

For each multi-year refueling and maintenance strate-

gy, the SOM receives period-by-period system nuclear energy

production requirements and system non-nuclear operating

costs. The SOM performs a two-stage iterative optimization

in conjunction with the necessary CORSOM's to produce the

required nuclear energy at minimum total nuclear cost. The
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optimized final nuclear cost is then added to the present-

value of all the other operating expenses to determine

the total ORR operating revenue requirement for the strate-

gy. It is this final total cost which is used to rank

the alternatives economically.
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CHAPTER 5
EVALUATION OF THE SYSTEM INTEGRATION AND

OPTIMIZATION MODELS

5.1 Purpose of Evaluation: Critical Questions

When pursuing research in "methods development," im-

portant questions must be answered. These critical questions

revolve around the characteristics of the numerical method

and the model itself:

(1) To what problems is the model applicable?

(2) What assumptions are required?

(3) Does the method converge to an optimum?

(4) Is it the global optimum?

(5) How accurate are the results?

(6) What are the computational requirements?

Once these questions have been answered satisfactorily,

research interest shifts from the methodology to the impact

of its results.

Since the main thrust of the work reported here is

methods development, the purpose of the evaluation is to aid

and abet further development by searching for the answers

to these basic questions. After a brief discussion of the

hypothetical utility system studied (Section 5.3), the

detailed discussion of results is presented. Section 5.8

concludes the chapter with a summary of the findings with

respect to each of the critical questions.
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5.2 Completion of Nuclear Power Management Multi-year
Model

To properly evaluate the SIM and SOM (or more specif-

ically, the computerized versions SYSINT and SYSOPT,

respectively), requires interfacing them with a RAMM and

CORSOM's to complete the nuclear power management multi-

year model of Figure 2.21.

For the purposes of developing and testing a SIM and

SOM, the multitude of possible alternative strategies out-

put by a RAMM may be replaced by a few typical strategies

developed through simple hand calculations (see Section

5.3.3). On the other hand, the on-line iterative nature

of the optimization procedure requires computerized CORSOM's.

The state of the art, as witnessed by the concurrent

methods development research by Kearney (41) and Watt (55),

precluded utilization of an established multi-year CORSOM.

In order to proceed with the testing of the SIM and SOM,

QKCORE, a pseudo-one dimensional, guick core model (per-

forming simulation only) was developed (see Appendix H).

The nature of QKCORE necessarily limited the scope of the

evaluation to LWR's with the following characteristics:

(1) Modified-scatter refueling with fixed number of

zones (e.g., refueling fraction was fixed at

one-third),

(2) No plutonium recycle,

(3) No optional stretchout beyond reactivity-limited

energy and
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(4) No cycle-to-cycle optimization

(i.e., at each refueling, minimum enrichment

chosen regardless of future cycles).

Nevertheless, QKCORE is a key element in the success

of the SYSOPT evaluation. By generating coupled and well-

behaved physics data, the resultant total costs and

marginal costs passed to SYSOPT are also well-behaved.

It provides all of this at a very high speed. On an IBM

370 model 155 computer, less than 15 milliseconds (CPU

time) per reactor cycle were required to choose the proper

refueling enrichment to yield the required cycle energy,

deplete the core and calculate the cost of that energy.

On the same computer, a simplified two dimensional FLARE-

type model requires on the order of seconds to perform

the depletion task alone--an increase of at least two

orders of magnitude.

5.3 Hypothetical Utility System Studied

An 11,000 MW (- 45% nuclear) utility was hypothesized

in order to confirm the nuclear power management multi-

year model's applicability to large utility systems. To

properly represent scheduled downtime and, at the same

time, keep computation costs within a development budget,

one month was chosen as the length of each time period.

Customer loads (see Section 5.3.1) were forecast for six

calendar years on this monthly basis. With respect to

generating equipment, the utility's forty fossil generating
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units (see Section 5.3.2) were chosen so as to have a

representative span of sizes and heat rates. With respect

to nuclear equipment, four 1050 Mwe PWR's were assumed to

be on the system initially with two more to be commissioned

on specific dates within the planning horizon. These addi-

tions, plus typical fossil additions and retirements were

taken as fixed for the multi-year horizon.

Assuming negligible (or invariant) transmission costs

and with all alterations to system generating capacity com-

pletely specified, only the operating revenue requirements

need be considered when comparing alternative refueling and

maintenance strategies (see Section 2.1.3). Three such

possible alternative strategies (see Section 5.3.3) were

developed for satisfying the customer load demands and the

generating equipment maintenance requirements.

The model's behavior for a typical strategy (see

Section 5.6) and the relative economics of the three

strategies (see Section 5.7) form the data base for all of

the evaluations in this chapter.

5.3.1 Customer Loads

Representation of monthly customer loads required

three pieces of information:

(1) a load-duration curve, normalized on both scales,

(2) a normalizing factor for the load scale (Pmax MWD
peak load) and
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(3) a normalizing factor for the duration scale

(T' hours in the time period)

Utilizing Commonwealth Edison data covering several recent

years, the four normalized load-duration curves presented

in Figure 5.1 where chosen to represent obvious seasonal

variations.

A typical set of twelve monthly peaks (see Figure 5.2)

was assembled for the first year with an overall peak of

10,000 MW occurring in July. The resultant monthly minimum

loads are also presented in Figure 5.2. Note that what may

appear at first glance in Figure 5.1 to be seasonal varia-

tions in the minimum load are actually the result of

variations in the peak loads, i.e., the normalizing fac-

tors. In fact, the non-seasonal nature of the nightly

minimum load components results in remarkably constant

monthly minimum loads.

For the remaining five years in the planning horizon,

monthly peaks (see Table 5.1) were forecast using 7% annual

growth (rounded to 10 MW). As for time period duration,

all months were assumed to be 730 hours (30.4 days) in

length.

Having specified the required three pieces of informa-

tion for each period, customer loads had been forecast six

years in the future. One of the current model's short-

comings is that it assumes these are perfect forecasts,

which, therefore, are treated as deterministic. The
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Figure 5.1

Input Load-Duration Curves
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Figure 5.2

Forecasted Monthly Minimum and Maximum Loads for First Year
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Table 5.1

Forecast of Monthly Peak Loads

Month

January

February

March

April

May

June

July

August

September

October

November

December

Year 1

7,900

7, 800

7, 100-

7, 300

8,000

9, 500

10,000

9, 750

8,500

7,600

7, 900

8, 200

Year 2

8,450

8, 350

7, 600

7,810

8, 560

10, 180

10, 700

10,430

9, 100

8, 130

8,450

8, 770

(in Megawatts)

Year 3

9, 050

8, 940

8, 130

8, 360

9, 160

10, 890

11,450

11, 170

9, 730

8, 700

9,050

9, 400

Year 4

9, 680

9, 560

8, 700

8, 950

9, 800

11, 640

12, 250

11, 950

10, 410

9, 310

9,680

10, 050

Year 5

10, 350

10, 210

9, 300

9, 560

10,490

12, 450

13, 100

12, 780

11, 130

9,960

10, 350

10, 740

Year 6

11, 070

10, 910

9, 950

10, 220

11, 200

13, 300

14, 000

13, 650

11, 900

10, 640

11, 070

11, 490

rCo
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significant probabilistic nature ofthe Booth-Baleriaux

model derives from the simulation of each unit's stochastic

forced-outages, not customer's stochastic demands. Though

errors in forecasting monthly peaks can be incorporated

into the model (18), the truly difficult uncertainties,

such as incorrect load-duration shape, have not been ade-

quately investigated. Research into this area is needed to

establish the sensitivity of various results to such un-

certainties and to develop means of incorporating them

directly so that the model yields not only a numerical

answer, but also a confidence interval around it.

5.3.2 Generating Equipment

Again relying on Commonwealth Edison Company data, a

representative mix of fossil generating equipment was

assembled (see Table 5.2). For reliability, units greater

than 300 MW were considered must-run units (i.e., at least

at minimum load) provided enough demand was present for the

must-run units themselves.

Also presented in Table 5.2 are unit heat rate charac-

teristics for each of the nuclear plants. Because of their

size and economics, these six units are also treated as

must-run units. All have high heat rates characteristic

of light water reactors. The two nuclear units (E and F)

under-construction at time-zero are assumed to have only 70%

performance probabilities for the first twelve months of

commercial service. After this shakedown period, they are
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assumed to perform 95% of the time. The physics character-

istics of the reactors are detailed in Appendix H.

In order to impose a more severe test of the nuclear

planning ability of the model, the dispatcher's opportu-

nities to base-load the nuclear capacity were decreased by

adding an admittedly artificial constraint--a long-term con-

tract with a neighboring utility for 1550 MW capacity with

100% guaranteed availability.

The schedule for installing and retiring utility equip-

ment to keep pace with load growth is presented in Table 5.3.

All plants not specifically mentioned exist both before and

after the time span of interest. Note the typical trend of

retiring smaller (and older) equipment with high heat rates

in favor of larger, more efficient units. The system

characteristics are summarized in Table 5.4. (The term

"system resources" refers to wholly-owned capacity plus firm

purchases). A typical summer and non-summer month on the

hypothetical system are shown in Figures 5.3 and 5.4,

respectively. The difficulty in base-loading the nuclear

plants is readily apparent.

5.3.3 Maintenance and Refueling Strategies

While developing maintenance and refueling strategies,

various scheduling constraints, maintenance requirements and

initial conditions had to be considered. Due to summer peak

loads, reliability considerations were assumed to dictate

that no scheduled maintenance was to be performed during



Table 5.3

Additions and Retirements of Equipment

First Month

June

June

June

Additions

(Period)

(6)

(18)

(30)

Retirements

Unit Name

Reactor
PK-15

Last Month

E

A-600

A-830
PK-16

August

August

(Period)

(8)

NONE

(32)

Unit Name

A-160

B-160

Reactor F

C-220
B-600
PK-17
PK-18

D-220
B-830
PK-19

Year

First

Second

Third

June

June

Fourth

Fifth

Sixth

(42)

(54)

I
r1a
00
M
I

June

August

August

August(66)

(44)

(56)

(68)

A-100

A-120

B-120
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Table 5.4

Summary of System Characteristics

I. Customer Loads:

Load-Duration Curves

Monthly Peaks for First Year

Monthly Peaks for Six Years

II. Generating Equipment:

Unit Data

Additions and Retirements

III. Resulting System Configuration:

Equipment Type

Fossil (Non-Peaking)

Fast-Start Peaking

Nuclear

Firm Purchases (1550 MW)

Total System Resources

Annual Peak Demand

Resource Margin

See Figure 5.1

See Figure 5.2

See Table 5.1

See Table 5.2

See Table 5.3

Per Cent of System
Resources

29-36

10-11

41-46

11-14

100/

88-89

11-12%



DURATION (FRACTION OF MONTH)

o4 000 Oo C o 0lC

FIRM PURCHASE
0

NUCLEAR MINIMUMS
00

CA~ C
MUST-RUN FOSSIL MINIMUMS 3

(D

0

o OC

NUCLEAR UPPER INCREMENTS
rn 0(DL

0

OD

_n Co

c") 0

-~ -n
o 0

o mC

- REMAINING FOSSIL C
0D

INSTALLED CAPACITY

(NO SCHEDULED

MA INTENANCE)

6t-ES9



DURATION (FRACTION OF MONTH)

0>

--

FIRM PURCHASE

o NUCLEAR MINIMUMS

MUST-RUN FOSSIL MINIMUMS

NUCLEA
INCREIMCA)

REMA IN ING
FOSS I L

R UPPER
ENTS

-C

I-)

CIO

FAST-START
.- PEAKING

4 ON-LINE CAPACITY

~-4

o3

SCHEDULED
MA INTENANCE

-4 INSTALLED CAPACITY

r
0)

(3'
0

0

0

0

".3

0o

U,
(3,
0

0

0

".3

-F

0l

p.-

C

~1

0

m

0

-F

-4

I I I



-290-

June, July or August. This typical constraint provided a

convenient way of looking at schedules--as nine month

"windows" between two summers. Maintenance requirements for

(non-peaking) fossil equipment were set at one month per

year while fast-start peaking equipment was assumed to be

maintained during off-line hours. Two months downtime was

assumed for each nuclear refueling. The initial conditions

of each reactor core are indicated in Table 5.5.

Within this context, the following three nuclear re-

fueling schedules were postulated:

S-1 : Strictly annual refueling

S-2 : Gradual shift to longer cycles (14 months) to

increase cycle energy production

S-3 : Immediate shift to the longer cycles.

These schedules are presented graphically in Figures 5.5,

5.6 and 5.7, respectively. For each of these strategies,

fossil maintenance was then scheduled so as to level-off

the monthly capacity margin. Figures 5.8, 5.9 and 5.10

present detailed views of the maintenance and refueling

schedules for each of the strategies during the first full

scheduling window. Note that during the windoweach

strategy, in turn, refuels one less reactor (i.e., 2100 MW-

months less downtime). Thus, the average monthly resource

margin during the nine month window increases by 233 MW.

Before considering Strategy 3 further, note that due

to the immediate shift to longer cycles, two initial condi-

tions must be violated--namely, the enrichments already



Table 5.5

Initial Conditions of Nuclear Reactors

Scheduled
Refueling During
First Year

Enrichment
Ordered
(w/o U-235) Zone

Current Core Contents
Enrich. (Fab.) Current Burnup
(w/o U-235) (MWD/Kg)

A Generating

B Generating

C Down for
Refueling

D Generating

E Under-Constr.
(On-line June
First year)

F Under-Constr.
(On-line June
Fourth year)

October-
November

February-
March

January
(Current)

April-
May

Open

Open

Reactor
Current
Status

Open

3.4

3.6

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

1
2
3

3.2

Open

3.3
3.3
3.3

3.4
3.2
3.2

3.3
3.3
N/A

3.2
3.2
3.2

3.2
2.7
2.2

3.2
2.7
2.2

1.5
11.5
20.5

9.0
19.0
28.0

10.0
20.0

N/A

7.0
17.0
27.0

0.0
0.0
0.0

0.0
0.0
0.0

Open



Figure 5.5

Strategy 1:Annual Refueling (12 Month Cycles = 10 Up + 2 Down)

ENRICHMENT LOADED AT START OF CYCLE (w/o U-235)
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Figure 5.6

Strategy 2: Gradual Shift to Longer Cycles (14 Months when Possible = 12 Up + 2 Down)
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Figure 5.7

Strategy 3:Immediate Shift to Longer Cycles (14 Months when Possible = 12 Up + 12 Down)
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Figure 5.8

Resource Commitment for S-1 During First Scheduling Window
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Figure 5.9

Resource Commitment for S-2 During First Scheduling Window
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9.0

8.5

8.0

A S 0

FIRST

N D J

YEAR

MONTH

F M

SECOND

A M J

YEAR

6253-60

0.0



-297-
6253-61

Figure 5.10

Resource Commitment for S-3 During First Scheduling Window
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scheduled for Reactors B and D. [Kearney (41) noted the

same infeasibility for abrupt large energy changes in the

initial cycles.] These longer cycles require increased be-

ginning-of-cycle reactivity to generate the additional

energy. Because theQKCORE simulation model required con-

stant refueling batch size for each unit throughout the

horizon, the only alternative was to refuel with a higher

enrichment. However, the minimum notice for changing re-

load enrichments is about nine months (20). In order to

permit evaluation of S-3, a one million dollar penalty

(roughly one year's carrying charges on the unused reload

batch) was assessed for changing a batch enrichment on less

than nine months notice. This raised new questions:

Could S-3 pay such a penalty and still be economically

attractive? How much of a penalty could it afford to pay?

The ability of the nuclear power management model to

answer such "What if . . . ?" questions is but one indica-

tion of the model's versatility and usefulness as a utility

management planning tool.

5.4 Remaining Parameters of Interest

In addition to the customer load demand, utility gen-

erating equipment and feasible maintenance and refueling

schedules, other operating and cost information must be

provided. Some of these inputs were arbitrarily fixed at

reasonable values (see Table 5.6) throughout the evaluation.

Other inputs were adjusted from case to case to evaluate the
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Table 5.6

Input Parameters Fixed Throughout Evaluation

Startup-Shutdown Frequency Curve

Spinning Reserve Requirement

Fossil Fuel Cost

Peaking Fuel Cost

Emergency Energy Purchase

Firm Energy Purchase

Tax Rate

Refueling downtime

Nuclear Data:

Enrichment Feed Assay

Enrichment Tails Assay

Pre-Irradiation Investment Lead Time

Post-Irradiation Credit Lag Time

Delay Time From Yellowcake to UF 6

Processing Yields:

Conversion

Fabrication

Reprocessing

Re-conversion

Value Dimensions

See Figure 3.9

600 MW

40 //MegaBTU

90 //MegaBTU

10 $/MWH

2 $/MWH

52 per cent

2 months/
refueling

0.711

0.25

0.5

0.6

0.123

w/o U-235

w/o U-235

year

year

year

0.995

0.99

0.99

0.995
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model's performance (see Tables 5.7 and 5.8).

From a computational viewpoint, note that the six

cases per strategy represent perturbations of only SYSOPT's

input. Thus only one reference 72 period SYSINT run was re-

cruired per strategy. Furthermore, because many of SYSINT's

unit costs were fixed per Table 5.6, the effect of varying

cost parameters could be determined by hand calculation.

5.5 Numerical Results

With all the pertinent information specified for each

of the eighteen optimizations, the necessary computer runs

were carried out. The revenue requirements and undiscounted

energy totals up to the end of specified planning horizon

are tabulated for each of the cases in subsequent sections

where appropriate to the particular discussion. These

tables are cross-referenced in Table 5.8 for ease in

locating the results of the six cases.

In addition to these results, Appendix D also presents

more detailed numerical results relative to each reactor-

cycle (e.g., cycle energy, average energy cost, incremental

energy cost and reload enrichment).

The discussion of the results of the cases is the sub-

ject of the remainder of this chapter.

5.6 Numerical Evaluation of an Optimized Strategy

Underlying later discussion of the choice from among

several optimized strategies are the properties of the indi-

vidual strategies themselves. The important numerical



Table 5.7

Nuclear Fuel Cycle Unit Costs

Cost Component

Yellowcake

Conversion to UF6

Separative Work

Fabrication

Ship. and Reproc.

Re-conversion

Pu Credit1

Dimensions

$/lb U308

$/Kg U

.$/Kg SWU

$/Kg U

$/Kg (U + Pu)

$/Kg U

$/gm. Fis. Pu

Notation

Low
(75% Reference) Reference (J_.)

6.00 8.00

1.72 2.30

24.00 32.00

52.50 70.00

26.25 35.00

4.20 5.60

9.38 7.50

High
(125% Reference)

10.00

2.88

40.00

87.50

43.75

7.00

5.62

CA~
C

Note that since plutonium is a credit, it is changed in the opposite
direction.



Table 5.8

Structure of Case Study

All three Strategies (S-1, S-2 and S-3) were optimized for each set
of input parameters comprising Cases I through VI.

Shortened
Case
Notation

72M,7%,R,0

48M,7%,R, N

48M,0%,R,N

48M,12%, R,N

48M, 7%, L, N

48M,7%,H,N

Horizon
Length
(months)

72

48

48

48

48

48

Present
Value
Rate (%)

7

7

0

12

7

7

Nuclear
Unit
Costs 2

Reference

Reference

Reference

Reference

Low

High

Shape Rej.
Criterion3

0.0

N.A.

N.A.

N.A.

N. A.

N.A.

For
Results
See

Table 5.12

Table 5.14
Table 5.16
Table 5.19

Table 5.15

Table 5.17

Table 5. 18

Table 5.20

1Refers to parameter values in next four columns.

2 See Table 5.7.

3 23 Per Section 4.4.3, if VREJ < -0.25, all period production shapes are
accepted regardless of feasibility. Thus, "N.A." represents "Not Applied."

Case
Number

I

II

III

IV

V

VI
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properties are cost convergence, shape convergence, incre-

mental costs and computational requirements. The results

(see Table 5.9) of Strategy 2 in Case I (i.e., S-2 with

72 month horizon, 7% present value rate, Reference nuclear

unit costs and zero rejection level) will be used for most

of the discussion. However, when this strategy fails to

clearly demonstrate a point under discussion, another will

be utilized.

5.6.1 Convergence of Inner Cost Iterations

Starting from a relatively poor initial guess of equal

energy in each cycle regardless of cycle length, the

initial (s=0) shape iteration of S-2 in Case I required

ten inner cost iterations to converge to TC ' (see Section

4.4.2 and Figure 4.11). The system nuclear fuel cost TCt

(i.e., the objective function of the optimization) for each

iteration is presented in Figure 5.11. The revenue re-

quirements and undiscounted energy for this converged solu-

tion are shown in Table 5.10.

The symbol A in Figure 5.11 represents the energy step

size used to segment the incremental cost curves into the

stair-step cost functions required by the NP optimization

package (see Figure 4.13). As A decreases, the accuracy

of the piecewise-linear representation increases as does the

computational requirement. Thus, a relatively coarse

piecewise fit for X rc at large A was utilized for the

initial iterations until either the cycle energies
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Table 5.9

Revenue Requirements and Undiscounted Energy
for Accepted Global Optimum of Strategy 2

in Case I (72M, 7%, R,0)

Fossil Fuel

Startup-shutdown Cost

Emergency Purchases

Non-nuclear Production

Nuclear Fuel

System Production

Fixed Firm Purchase

106 $

276.583

1.704

0.407

106 MWH

85.836

0.048

278.964 85.884

297.709 194.077

576.673 279.961

133.920 81.468

System Total 710.593 361.429
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Figure 5.11

Convergence of Inner Cost Iterations for Initial Shape
Iteration of Strategy 2 in Case I

10 12

300

LU
x

LU

LU

w
LL

LU

-J

LU

0

299

298

297

0
0 2 4 6 8

t, INNER ITERATION NUMBER
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Table 5.10

Revenue Requirements and Discounted Energy For
Converged Initial' Shape Iteration of Strategy 2

in Case I (72M, 7%, R,O)

106 $

276.853Fossil Fuel

10 6MWH

85.836

Startup-shutdown Cost

Emergency Purchases

Non-nuclear Production

Nuclear Fuel

System Production

Fixed Firm Purchase

System Total

1.704

0.407 0.048

278.964 85.884

297.456 194.077

576.420 279.961

133.920 81.468

710.340 361.429

Per Section 4.4.3, these results also apply for the
global optimum for the following input set:
72M, 7%, R,N (cf. Table 5.8).
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converged (to within a specified per cent of A, typically

100%) or the objective function itself converged (i.e.,

t+1 SEEST of the last iteration failed to improve the objective

function by more than a required amount, say $2000). In

fact, iteration 5 displayed "negative" improvement because

piecewise-linearization of TC r prevented the NP program

from seeing the smooth increase of Arc for fractional A

changes in cycle energy. The net result was that the NP

program over-reacted to small differences between the

incremental costs Arc'

After convergence using the first A, a second and

smaller A was utilized and convergence again attained

using the same two criteria. This second converged solu-

tion was considered to be the inner optimum TC'.

From three standpoints, a third A choice appeared un-

warranted:

(1) With the total nuclear fuel revenue requirement

approaching $300,000,000, the fuel cost improve-

ment from the A = 100 GWH optimum solution to

A = 20 was only $220,000 for the fivefold A re-

duction and would undoubtedly have been much less

than that for another fivefold reduction.

(2) At A = 20 GWH, cycle energies were already con-

verged to well within 1% (1 50 GWH out of 6000-

8000 GWH), and
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(3) The fuel cost errors and cycle energy errors

both appear to be well within the noise levels

of CORSOM errors [> $100,000 per reactor over

five years (55)] and the errors inherent in fore-

casting load demands and availabilities (> 1%).

Using the above sequence of the two step sizes for

all cases, the initial shape iteration was effectively

converged (i.e., objective function decreasing insignifi-

cantly for A = 20 GWH) within ten inner iterations. In

as much as completed CORSOM's are estimated to require

over 3 minutes of IBM 370 model 155 CPU time per reactor

strategy per iteration (41), a six reactor-ten iteration

solution would involve over 3 hours of computer time for

the CORSOM's alone. (The ad hoc simulator QKCORE required

less than 3 minutes for all ten iterations.) Since each

iteration of the SOM [using roughly 9 seconds (see Sec-

tion 4.6)] involves another 20 minutes of CORSOM time,

further investigation is recommended into improving the

SOM's NP convergence and decreasing the number of itera-

tions required.

Returning to Figure 5.11, a detailed analysis of the

iteration-to-iteration improvement in the objective func-

tion is warranted. Recalling the development of the cost

objective function E in Section 4.2.1, Equation (4.8)
EST

stated that
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Si

tt/

-rc 014 c c Ere
-- ~Z i+t -- ti

6 rc
nce,

Esrr- ; - t + / ... - t-0- 4-Z */
TC =TC + = TC +3 J1'CT C.S T

(5.1)

(5.2)

Therefore,

ACT
(5.3)

f*/

t+1 t+1Both EET~ and 6 are presented in Figure 5.12.EST

Section 4.2.1 postulated simplification of the objective

function [Equation (4.12)] based on the assumption that the

resulting error 6 t+l was much less than the projected improve-

ment, which is the case seven out of nine times. The two

failures are a combination of (1) the actual error in the

simplification and (2) the NP program's over-reaction to

small differences in incremental costs.

By plotting 6t+1 versus the average (root-mean-square)

energy change for all reactor-cycles altered between the two

iterations, Figure 5.13 results. Intuitively, such behavior

was to be expected--namely, 6 t+ tends to grow large for large

shifts in energy. The cluster of data representing less than

S t/



-310-
6253-63

Figure 5.12
Change in Total Nuclear Fuel Cost During Inner Iterations
of Initial Shape Iteration of Strategy 2 in Case 1
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Figure 5.13

Erro' in Estimated Improvements versus Change in Cycle Energies
(Strategy 2 in Case 1)
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$30,000 errors for changes on the order of 50 GWH provides

adequate justification that the assumption in Chapter 4

can be applied for small changes in energy. The fact that

even the largest 6 t+ still permits a net improvement indi-

cates, though somewhat less convincingly, an even larger

range of applicability.

In summary, the validity of the 6 t+ assumption of

Section 4.2.1 has been established. The inner NP optimi-

zation based on it converged adequately with regard to both

cycle energies and total system nuclear fuel cost. However,

as previously mentioned, the rate of convergence left some-

thing to be desired.

5.6.2 Convergence of Outer Shape Iterations

Strategy 2 in Case I (72M, 7%, R, 0) required four

outer shape iterations to achieve the acceptable optimum

m..,

TC by the method described in Section 4.4.3 using the

"stairstep" m rp of Figure 4.16. Figure 5.14 plots the

progress at each outer s shape iteration of TC*,s and the

number of rejected periods versus the average rejected

2
V . Convergence is rapid in the sense that the early
p

2
iterations greatly reduce the average V while the later

p

iterations reduce the number of periods that must be in-

cluded in the average.

Also presented inFigure 5.14 are similar data pro-

2
vided by a separate computer run in which the VREJ was raised

from 0.00 to 0.01. Table 5.11 presents a summary of the
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Figure 5.14
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Table 5.11

Results at End of Outer Shape Iterations
(Strategy 2 in Case I)

Average
Rejected

V 2

P 3
(x10

Number of
Periods
Rejected

V 2 E 0.0REJ

-12.31
- 4.03
- 4.15
+ 0.09

2 VVREJ = 0. 01

-12.31
- 8.03
- 4.73
+ 2.75
+ 6.29
+ 9.00
+10.03

s
-- * Is
TC '

3
(10 $)

Lowlst
V
P 3

(xlO

0
1
2
3

297,457
297,627
297,701
297,709

-8.66
-2.35
-1.50

0.0

29
22
4
0

0
1
2
3
4
5
6

297,457
297,717
297,938
298,098
298,173
298,199
298,205

-1.12
+3.65
+6.63
+8.20
+8.39
+9.46
10.00

64
61
54
36
13

4
0
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important results at the end of each shape iteration for

both runs.

During the outer iterations, reactor production limits

of each rejected period are "squeezed" toward each other to

decrease the likelihood of further rejection (See Section

4.4.3 and Figure 4.17). When the final iteration reaches

the global optimum, a distribution of the Z = 72 periods

versus the percent original energy range remaining can be

2
plotted as in Figure 5.15. For the run with VREJ = 0, 42

of the 72 periods required no reduction in energy range

(i.e., 100% remaining since never rejected) and the maximum

reduction for any single period was 22% (78% remaining).

2
The much stiffer requirements imposed by VREJ = 0.01

2
(S was only - 0.02), resulted in only 3 unaltered periods
p

and 45 periods with reductions of 25% or more.

2
As for the proper choice of VRE itself, Figures 5.16

to 5.18 present system and average reactor shapes yielding

2 2
the indicated values of S and V . Visual inspection indi-

p P

cates the infeasibility of Figure 5.16 and the acceptability

of the other two periods. Furthermore, the system shape it-

self is not an ironclad constraint from the standpoint that

the information it contains is the result of many fore-

casts (customer load-duration shape and performance proba-

bilities), not of well-defined engineering constraints such

as are found in deterministic optimization problems (e.g.,

optimum heat exchanger design). The net result is a



Figure 5.15. Distribution of 72 Period Energy Ranges Remaining
at Accepted Optimum (Strategy 2 in Case I)
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Figure 5.16

Typical Period with Infeasible Postulated Average Reactor Shape (V <0)
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Figure 5.17

Typical Period Giving Shape Test V Near Zero
p
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Figure 5.18
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recommendation that V2  ~ 0 is satisfactory for planningREJ

purposes.

s
Figure 5.19 presents the iterative progress of TC

2
for Strategy 2 in Case I versus the lowest V (i.e.,

p

V ,for the period failing the criterion by the largest
p

2
amount or equivalently, the VREJ that would have accepted

all periods). Since both solid curves begin from the same

point, but are not co-linear, TC*,s is only valid as a

measure of minimum system nuclear cost at the final optimum

-- 2
TC for each VREJ In other words, the outer iterations

reach their respective global optimums by a sequence of non-

optimum iterations. The means of increasing the rate of

outer shape convergence, as with inner cost convergence,

lies merely in increasing the number of steps used in the

piecewise-linearization of the objective functions.

Another input parameter affecting the outer shape

iterations is the fraction ( of the a (= RE 2

actually applied to the reactor production limits [Equations

(4.70) and (4.71)]. Figure 5.20 presents a plot of all

2
three optimizations in Case I (VRE = 0) as a function ofREJ

the V used to achieve the global optimization. The ordinate

--S -* 0
represents the increase of TC over TC ' , absolute minimum

cost when all shape constraints are ignored (i.e., ignoring

feasibility). (The revenue requirements and undiscounted

energy totals for Case I are presented in Table 5.12.)
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Figure 5.19

Strategy Cost versus VREJ (Strategy 2 in Case I)
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TABLE 5.12

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE I

(72 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs,
0.0 Shape Rejection Criterion)

Direct Calculation Using 7f = 0.25

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 62 51 49

Average cycle length (months) 12 14.9 15.2

System nuclear capacity factor 0.642 0.656 0.658

106$

(106 MWH)

Fossil fuel 293.205 276.853 274.082

(90.068) (85.836) (85.196)

Startup-shutdown cost 2.022 1.704 1.650

Emergency purchases 0.655 0.407 0.363

(0.079) (0.048) (0.043)

Nonnuclear production 295.882 278.964 276.095

(90.147) (85.884) (85.239)

Nuclear fuel 294.690 297.709 300.137

(189.814) (194.077) (194.722)

System production 590.572 576.673 576.232

(279.961) (279.961) (279.961)

Fixed firm purchase 133.920 133.920 133.920

(81.468) (81.468) (81.468)

penalty for short-notice enrichment
changes 2.000

System Total 724.492 710.593 712.152

(361.429) (361.429) (361.429)
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Two points are worthy of note. First, Y ~ 0.1 to

0.3 appears optimal since for 'smaller, a larger number of

outer iterations (>10) would be required (i.e., slower

convergence) while for 'larger, the method over-corrects

the offending periods causing an additional cost penalty.

Secondly, for scoping purposes only (i.e., when only ORR

is required for the comparison of many strategies and the

feasibility of E60 is not important for actual production

purposes), the additional computations required in attain-

ing an acceptable optimum for each and every run may not

be required. (However, if the convergence of SYSOPT is

accelerated, the additional shape computations may be easily

tolerated in the first place.) Since the strategy versus

strategy "cost of feasibility" differences are small

(<$100,000 for S-3 vs. S-2) relative to overall cost dif-

ferences (-$1,400,000), a single benchmark run is sufficient

for determining the appropriate strategy cost penalty.

--W* 0
Adding this to each TC ' eliminates the need for any fur-

ther outer shape iterations (for scoping purposes only).

The results of Cases II through VI presented in Section

5.7 represent such TC* 0 solutions (i.e., ignoring all shape

considerations). By applying the cost penalties indicated

in Figure 5.20, they can be approximately converted to

TC (however, to E' ).
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5.6.3 Comparison of Theory and Result: Incremental
Costs

The analytical discussion of utility system optimiza-

tion in Section 2.4.2 presented two conclusions:

Conclusion I: The strong conclusion [Equation (2.70)]

that all reactor-cycles generating energy

during the same time period should be designed

at the same incremental cost, and

Conclusion II: The weak conclusion [Equation (2.71)]

that all reactor-cycles should simultaneously

be designed at the same incremental cost.

Recall that "strong" and "weak" refer to the number of in-

cremental cost violations anticipated because of over-riding

engineering and time constraints.

The Arc cycle-by-cycle incremental costs at the optimum

of Strategy 2 in Case I are presented in Figure 5.21. In

analyzing these values, four important points are to be made.

First, the general equality of Arc at each point in timerc

confirms Conclusion I that

aTC

AN 3E r- = constant for all r at each p (5.4)
p rc

Secondly, incremental costs increase over the first

few cycles as the short-range incremental costs of the first

year give way to the mid-range incremental costs of later

cycles. During the first year, incremental costs are very

low because a large proportion of each reactor's cycle costs



Figure 5.21
Incremental Costs and Cycle Energies at Accepted Global Optimum
for Strategy 2 in Case I
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(e.g., separative work, fabrication and reprocessing) are

already spent or committed. Discharge burnup is the only

S
variable. Thus, A is Widmer's short-range incrementalri

cost (57, 59). For a cycle further into the future, a

larger degree of flexibility is available in the design of

the reload batch (size and enrichment) and a larger frac-

tion of total cycle costs can thus be altered. For

c > 2, Ar becomes Widmer's mid-range incremental cost
rc

(57, 58). Thus, short-range incremental costs evolve into

mid-range incremental costs.

During the middle two to five years of Strategy 2

S
(see Figure 5.21), the constancy of Arc for most reactor-

cycles provides ample evidence that Conclusion II is also

valid.
0

Finally, the A beyond the fifth year are optimalrc

(but erratic) for the fixed horizon end condition of

Section 4.2.3.2. Further investigation into the ideal end

condition for each reactor and each strategy are recom-

mended.

Though Figure 5.21 confirmed Conclusion II, the

S
typical A optima of the other strategies did not. For

rc
S

example, Figure 5.22 presents A for Strategy 1 in Case
rc

I. Though Conclusion I continues to be valid with few

violations, the results do not support Conclusion II.



Figure 5.22

Incremental Costs and Cycle Energies at Accepted Global Optimum
for Strategy 1 in Case I
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Underlying any discussion of incremental costs is the

source of those costs--the CORSOM, or specifically, the

QKCORE in-core simulator developed merely to test the SOM.

By foregoing an internal optimization, QKCORE is unable

to see some obvious means of saving money. For instance,

reactor-cycle E-3 of Figure 5.22 has a very high incremental

cost due to energy production requiring 4% enriched reload

fuel (see Appendix D, Table D.8). Yet, the previous cycle

loaded the minimum enrichment allowed (1.5%). If QKCORE

allowed early shutdown (reactivity > 0) and optimized the

enrichments alone, it might well have loaded 2.5% fuel in

E-2, burned only part of the way down and then loaded 3.0%

fuel for a complete burn. Indeed, a full-scale CORSOM should be

able to optimize reload batch size, as well. The develop-

ment and incorporation of more versatile CORSOM's is a

prerequisite to completing a fully operational nuclear power

management model as in Figure 2.21.

Each inconsistency in incremental costs as cycles be-

gin and end, can be translated directly into the optimal

loading order (see Figure 5.22). During reactor-cycle E-3

0
(with X = 1.689 $/MWH), Reactor E is loaded only after

E,3
0

all other nuclear units (with X= 1.240 $/MWH) are fully
rc

loaded. Since E-3 is always loaded last, it generates

Emin during each included period of cycle 3 and, hence,
E,3,p

min
E = E As Figure 5.23 illustrates, this lower limit
E,3 E,3

on cycle energy prevents E-3 from reaching the cost parity
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Figure 5.23
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E wa les tan min
of Conclusion I. (If E,3 was less than E,3, obviously

uneconomic fossil energy costing over 2 $/MWH would be

substituted for its 1.7 $/MWH energy.)

Reactor-cycle F-1 of Figure 5.22 fails to establish

cost parity for the opposite reason. With the initial

core configuration assumed fixed, XF,1is a cheap (0.818

$/MWH) short-range incremental cost. (Cycle burnup is

the only design variable.) Thus, Reactor F is always

loaded first, generating Emax for the cycle. As FigureF.-l

5.24 indicates, this upper limit on cycle energy can also

prevent incremental cost parity.

The other X inconsistencies of Figures 5.21 and
rc

5.22 are merely more complicated versions of these two

simple cases--reactor-cycles E-3 and F-l. In each in-

stance, the optimal economic period loading order is easily

deduced: cheapest first.

Comparing all reactor-cycles of Figures 5.21 and 5.22,

A rc is seldom greater than 1.41 $/MWH. This observed upper

limit on the mid-range incremental cost of nuclear power

for an optimized utility system is typical of the individual

reactor incremental costs observed by others (41, 55, 57,

58), especially since the Reference nuclear unit cost set

(12) is also representative of typical "current" economic

parameters.

As Figures 5.3 and 5.4 pointed out, base-loading of

the hypothetical utility system's six nuclear reactors is



-332-
6253-73

Figure 5.24

Upper Limit on Cycle Energy Preventing Incremental Cost Parity
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impossible because the utility's minimum load is too low.

However, since XN is always much less than AF (>2.0 $/MWH),

two possibilities exist for economically utilizing the

excess nuclear capacity during the low load periods to

decrease system operating revenue requirements. One alter-

native is to sell excess nuclear capacity (i.e., energy)

to neighboring utilities at any price greater than its in-

cremental cost. Incorporation of such nuclear economy

interchange sales into the SIM and SOM is recommended since

this may well become a common utility practice.

The second option is to use the excess capacity on the

utility's own system by operating a pumped-hydro station

(see Section 2.2.3). By pumping during low load hours,

AP = AN < 1.4 $/MWH. Using the stored energy for peak-

shaving high cost fossil the next day, AG = AF > - 4 $/MWH.

With overall pumped-hydro efficiency typically 67%, total

operating revenue requirements are reduced roughly 2 $/MWH

(i.e., 50% of AF) for each fossil MWH displaced (Equation

(2.29)]. Since such a station is also comparatively cheap

to install (See Table 2.1), a pumped-hydro station on the

grid of a utility unable to base-load its nuclear capacity

produces startling economies (21, 35). "From a utility's

viewpoint, pumped storage is a natural fit with large base-

load plants. It can take on load instantly, it uses off-

peak power to replenish its resources, and its reliability

is second to none (5]."
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As pumped-hydro stations become more numerous

[~ 4400 MW installed versus over 8000 MW under construction

in entire United States at end of 1972 (5)], the appro-

priate planning tools must be developed. Thus, it is highly

recommended that pumped-hydro units (and hydro units, as

well) be incorporated into the SIM.

5.6.4 Computational Requirements

The computational requirements of SYSINT are detailed

in Section 3.6 and Appendix E, while SYSOPT details can be

found in Section 4.6 and Appendices F and G. However,

Table 5.13 presents a summary of computer usage for

Strategy 2 in Case I.

5.7 Evaluation of Competing Strategies

Having discussed the properties of a single optimized

strategy, it now becomes appropriate to discuss the broader

question of strategy versus strategy comparison. In par-

ticular, given the same set of input data (i.e., forecasts),

which of the individually optimized strategies represents

the optimum plan for operating the utility system? How

sensitive is this choice to various parameters in the

input? To answer these questions, first the results for

Case II will be presented in Section 5.7.1. Later sections

will then discuss the other Cases and the optimum strategy

choice with respect to horizon length (Section 5.7.2),

present value rate (Section 5.7.3), nuclear unit costs
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Table 5.13

Computational Requirements For
Stragegy 2 in Case 1

(Based on IBM 370 model 155 computer operating in
MVT environment)

Total
Core
Storage
(Bytes)

134 K

CPU Time

2.2

SYSOPT 246 K with 9
overlay

QKCORE 371 K without 13
overlay

Input/
Output Time
Time Units

0.5 Sec/period

7 Sec/inner
iteration

<1 Sec/inner
iteration

Program

SYSINT
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(Section 5.7.4) and non-nuclear unit costs (Section 5.7.5).

5.7.1 Comparing Strategies in a Single Case

The optimized results for the three strategies (S-1,

S-2 and S-3) in Case II are presented in Table 5.14. Re-

call from Section 5.3.3 that S-1 is an annual refueling

strategy, S-2 a gradual shift to longer cycles and S-3 an

immediate shift to longer cycles.

Of prime importance in correlating the results, is the

refueling downtime of each strategy. Naturally, the more

rapid the shift to longer cycle lengths, the fewer refuel-

ings that must be scheduled.

With less nuclear downtime, the nuclear energy produc-

tion increases and fossil energy production decreases by

approximately the same amount. Also, startup-shutdown cost

is decreased as the fossil units move farther away from

nightly shutdown. Fewer emergency energy purchases are re-

quired due to increased on-line resource margins (see

Section 5.3.3).

All three components of non-nuclear production cost

thus favor reducing downtime. (By looking at the differ-

ences in non-nuclear production cost, average long-term

levelized replacement energy costs of 5.2.-5.7 $/MWH can

be calculated.)

As mentioned above, each succeeding strategy is able

to increase production because of less refueling downtime.

However, the cost of this energy does nct increase
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TABLE 5.14

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE 1I

(48 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

106$

(106 MWH)

Fossil fuel 184.223 176.348 173.250

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.497 1.281 1.227

Emergency purchases 0.464 0.317 0.265

(0.053) (0.036) (0.030)

Nonnuclear production 186.184 177.946 174.742

(51.756) (50.097) (49.420)

Nuclear fuel 198.267 197.189 199.821

(118.376) (120.035) (120.712)

System production 384.451 375.135 374.563

(170.132) (170.132) (170.132)

Fixed firm purchase 95.166 95.166 95.166
(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 479.617 470.301 471.729

(224.444) (224.444) (224.444)
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proportionally. In fact, compared to S-1, S-2 generates

more nuclear energy for less money! To explain this anomaly,

consider the following:

(1) Less downtime means fewer reloads must be purchased.

(2) Increased average cycle length, means increased

cycle energy and reload enrichment.

(3) Even with increased batch enrichment costthe

savings due to foregone reloads and the increased

energy for amortizing fixed costs, etc., result

in a 1.9% decrease in levelized nuclear fuel costs

over the four year horizon.

(4) Due to fixed initial conditions and only gradual

shift to longer cycles, S-1 and S-2 are very

similar in nuclear energy production during the

first year. At the end of four years, nuclear

production by S-2 is only 1.4% higher. (For long-

er horizons, the first year matters less and nu-

clear energy production differences are greater.)

(5) Finally, since the levelized nuclear fuel cost

decreases percentagewise more than nuclear pro-

duction increases, the net result is more nuclear

energy for less money.

Turning to S-3, the immediate shift to longer cycles

results not only in increased energy production,but also in

increased levelized fuel cost. The result is a return to

normalcy--more nuclear energy costs more.
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Looking then at system production cost over the 48

month horizon, S-3 saves $570,000 over S-2 and roughly ten

million dollars over S-l. This, of course, is not enough

to absorb S-3's assumed additional two million dollars in

penalties for the two short-notice enrichment changes.

Thus, among the three strategies, S-2 has minimum total

system cost.

During the first four years, then, S-2's gradual shift

to longer cycles saves 9.3 million dollars compared to the

annual cycles of S-1. Such a savings would clearly justify

a few hundred thousand dollars necessary to implement the

engineering design changes in the reload fuel specifications.

In fact, the savings is large enough to perpetuate S-l's

poor showing in all six Cases of the input parameters (see

Table 5.8 and Appendix D). (Strategy 2 is always cheaper

by at least 6.7 million dollars.)

However, S-2 and S-3 are roughly competitive depending

on the magnitude of the enrichment change penalty. Without

the penalty S-3 is favored by roughly $600,000. But after

the 2 million dollar penalty, it is 1.4 million dollars

more costly. This competitiveness is used to advantage in

the following sections where the sensitivity study is pre-

sented as a comparison of S-2 vs. S-3 directly (i.e., without

Of this $600,000, roughly $95,000 could also be saved
by S-2 were it allowed to freely change initial enrichment
for Reactors B and D.
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any penalty) and with penalties of a half or one million

dollars per change.

5.7.2 Sensitivity to Horizon Length

Ideally, a management planning tool should yield con-

sistent results whether the planning horizon is taken to be

four, five or six years into the future. To test this as-

pect of the model, the results in Figure 5.25 were produced

using the Case I (see Table 5.8) detailed optimized solu-

tions for Strategies 2 (see Figure 5.6) and 3 (see Figure

5.7). However, the operating revenue requirement summation

[Equation (2.17)] for the 72 months covered by the horizon

of Case I was only carried up to and including the horizon

indicated on the abscissa (enrichment change penalties were

not included). The disturbing oscillatory nature of the

comparison is almost identically matched by the shifts in

downtime advantages which are also presented. In a particu-

lar period, if an additional reactor is down for refueling

in Strategy S-3, then S-3 will lose areactor-month of down-

time advantage. More importantly each nuclear MWH foregone

must be made up with fossil replacement energy. Thus, each

month of downtime means roughly 300 GWH (discounted) of

short-term replacement energyat 4.0 $/MWH versus nuclear

average costs of 2.0 $/MWH. The net result: each reactor-

month of downtime five years in the future costs roughly

$600,000.
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The next question is "What causes these shifts in

downtime advantage?" The answer is given in Figure 5.26,

a composite of the two month refueling outages in each

strategy presented in Figures 5.5 to 5.7. [Note the

regularity of S-l's annual refuelings and the fact that

every refueling window involves at least two months of

simultaneous or "stacked" refuelings. S-2 and S-3, by

selectively skipping over a window with different reac-

tors (see Section 5.3.3),are able to avoid simultaneous

refuelings until the fifth year.] S-3's two reactor-month

downtime advantage at 48 months can be pin-pointed as

actually occurring during the first full window of the first

year when S-3's immmediate shift to longer cycles dictated

immediately skipping a summer. Further note that although

the four year horizon ends exactly after a refueling for

both S-2 and S-3, S-2 shifts the next refueling back one

month. This causes the temporary one reactor-month shift

in downtime advantage just after four years.

At the six year horizon, shown on Figure 5.26, note

both S-2 and S-3 conveniently terminate exactly after a

refueling. Now consider the relative position of their

simultaneous refueling with respect to a five year horizon.

In S-3, it occurs before the five year cutoff, but in S-2,

it is postponed until just before the summer. The window,

as a whole, involves no shift in downtime advantages, but

if the horizon occurs within the window (e.g., 5 year

horizon) an anomalous one million dollar added advantage may
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accrue to S-2. Since no refuelings occur during the summer

and, in fact, the summers represent the partitions between

the windows, it is recommended that a single horizon co-

inciding with one of these partitions be chosen. Note that

if the horizon occurs in any of the six summer months ap-

pearing in Figure 5.25, S-3 is cheaper by roughly $700,000

(if no enrichment change penalty is applied).

In the absence of utility refueling constraints (e.g.,

no refuelings in summer) that create the computationally con-

venient windows and partitions, a single, long horizon

could still be calculated in detail. However, prudence

would dictate developing shorter horizon results such as

those in Figure 5.25 to permit a more intelligent evalua-

tion of strategy cost differences.

Though the above horizon-at-partition conclusion is

presented with verification, a solid conclusion concering

which partition must await the second generation nuclear

power management model possessing detailed CORSOM's. As an

interim rule of thumb, intuition suggests that the horizon

ought to include a complete core of freely specified en-

richments for each reactor. In other words, the horizon

should be far enough into the future to predict completely

the discharge characteristics of the next reload enrichment

to be finalized (i.e., actually ordered from vendor) for

each reactor.

In summary, choice of a proper horizon is imperative,

but not difficult. If the worst comes to the worst, a long
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horizon evaluated per Figure 5.25 would always be valid

and helpful. In any event, for planning horizons on the

order of five or six years, differences in total system

cost under a few hundred thousand dollars are best viewed

as insignificant (see Section 5.8.5). Such dilemmas ought

to be reconciled based on other criteria--e.g., the most

flexible, the easiest to implement or the most reliable

strategy.

5.7.3 Sensitivity to Present Value Rate

The optimized results for the three Cases with differ-

ent present value rates are presented in Table 5.15 for

Case III (0%), Table 5.16 for Case II (7%) and Table 5.17

for Case IV (12%).

By recognizing three general cost components of each

strategy, much insight can be gained. They are (1) all

fossil fuel related costs, (2) direct nuclear outlays and

(3) carrying charges on the nuclear outlays. At a 7%

present value rate, nuclear carrying charges are ~ 25%

of nuclear outlays while fossil carrying charges are

relatively insignificant.

As the present value rate increases, the revenue re-

quirements for (1) and (2) decrease slowly while those for

component (3) rise sharply. The result is that as the

present value rate increases, the heavier a strategy's

reliance on nuclear energy, the less advantageous that

strategy becomes. The optimum choice may not change, but
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TABLE 5.15

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE III

(48 Month Horizon, 0% P.V. Rate, Reference Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

106$

(106 MWH)

Fossil fuel 212.434 203.326 199.928

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.684 1.430 1.373

Emergency purchases 0.528 0.355 0.299

(0.053) (0.036) (0.030)

Nonnuclear production 214.646 205.111 201.600

(51.756) (50.097) (49.420)

Nuclear fuel 158.416 153.987 154.678

(118.376) (120.035) (120.712)

System production 373.062 359.098 356.278

(170.132) (170.132) (170.132)

Fixed firm purchase 108.624 108.624 108.624
(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 481.686 467.722 466.902

(224.444) (224.444) (224.444)
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TABLE 5.16

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE I1

(48 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs,
No Shape Constraints)

Strategy

Downtime to horizon (reactor-months)

Average cycle length (months)

System nuclear capacity factor

S-1 S-2

38

12

0.638

33

14.5

0.647

106$

(106 MWH)

Fossil fuel

Startup-shutdown cost

Emergency purchases

Nonnuclear production

Nuclear fuel

System production

Fixed firm purchase

Penalty for short-notice enrichment

changes

System Total

184.223

(51.703)

1.497

0.464

(0.053)

186.184

(51.756)

198.267

(118.376)

384.451

(170.132)

95.166
(54.312)

479.617

(224.444)

176.348

(50.061)

1.281

0.317

(0.036)

177.946

(50.097)

197.189

(120.035)

375.135

(170.132)

95.166
(54.312)

470.301

(224.444)

S-3

31

15.2

0.651

173.250

(49.390)

1.227

0.265

(0.030)

174.742

(49.420)

199.821

(120.712)

374.563

(170.132)

95.166
(54.312)

2.000

471.729

(224.444)

I
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TABLE 5.17

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE IV

(48 Month Horizon, 12% P.V. Rate, Reference Nuclear Unit Costs,
No Shape Constraints)

Strategy

Downtime to horizon (reactor-months)

Average cycle length (months)

System nuclear capacity factor

S-1

38

12

0.638

S-2

33

14.5

0.647

Fossil fuel

Startup-shutdown cost

Emergency purchases

Nonnuclear production

Nuclear fuel

System production

Fixed firm purchase

Penalty for

changes
short-notice enrichment

System Total

167.908

(51.703)

1.388

0.427

(0.053)

169.723

(51.756)

220.395

(118.376)

390.118

(170.132)

87.340

(54.312)

477.458

(224.444)

106$

(106 MWH)

160.762

(50.061)

1.194

0.294

(0.036)

162.250

(50.097)

221.107

(120.035)

383.357

(170.132)

87.340

(54.312)

470.697

(224.444)

S-3

31

15.2

0.651

157.850

(49.390)

1.142

0.245

(0.030)

159.237

(49.420)

224.731

(120.712)

383.968

(170.132)

87.340

(54.312)

2.000

473.308

(224.444)
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the advantage will decrease. For example, comparing S-1

(the annual strategy) and S-2 (the gradual shift to longer

cycles), S-2 is always favored but the savings decreases

from 14.0 to 6.7 million dollars as the rate goes from 0

to 12 per cent.

To investigate such changes in more detail, Figure 5.27

presents a cost comparison of S-2 (gradual shift) and S-3

(immediate shift) for the three rates involved. S-3 uses

more nuclear energy and less fossil. Therefore, it pos-

sesses a non-nuclear savings of 3.5 million dollars at 0

per cent. However, as a result of nuclear carrying charges,

S-3's added nuclear cost increases six times as fast as the

fossil advantage itself decreases! On an unpenalized

basis, S-3 is the optimum at a 7% present value rate, but

S-2 is optimum at 12 per cent. The break-even point is

9-1/4 per cent. Naturally, the higher the penalty, the

more S-3 must have saved prior to applying the penalty.

The result: one million dollars in penalties breaks even

at 5-1/2% while two million requires 2-1/4%. With any

reasonable penalty and present value rate, S-2 is clearly

optimum over both S-1 and S-3.

An interesting question is now posed: Suppose a

mythical fourth strategy differed from S-2 by only $500,000.

What size error in forecasting the present value rate would

completely mask this difference? Using the slope from

Figure 5.27,an error of approximately 1-3/4% in the present
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Figure 5.27

Non-Nuclear Savings and Nuclear Cost for S-3 versus S-2
as Function of Present Value Rate
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value rate would shift the total cost advantage $500,000.

Such a forecasting error is not altogether improbable.

Thus, as standard practice, all near optimal policies

should be evaluated and ranked at several additional

present value rates (say, the nominal ± 2%), not at the

nominal rate alone. In this manner, strategies extremely

sensitive to the present value rate may be eliminated.

In the above recommendation, note the word "evaluated",

not "re-optimized". All of the results quoted in this

Section are for re-optimized solutions using the specified

present value rate. Practically speaking, the computer

expense of re-optimizing the Case II solutions was not

necessary. Re-optimization saved less than $90,000 each

on five out of the six cases involved [S-3 saved $275,000

if there was no time value of money (0%)].

5.7.4 Sensitivity to Nuclear Unit Costs

The optimized results for the cases involving Low,

Reference, and High nuclear unit costs (see Table 5.7) are

presented in Table 5.18 for Case V (Low), Table 5.19 for

Case II (Reference) and Table 5.20 for Case VI (High).

From a total cost standpoint, S-2 remained the optimum

choice. The trends in the S-2 vs. S-3 comparison are por-

trayed in Figure 5.28.

Of course, variations in nuclear costs do not affect

S-3's 3.2 million dollar fossil savings. But S-3's in-

creased nuclear energy does result in iLncreased separative
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TABLE 5.18

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE V

(48 Month Horizon, 7% P.V. Rate, Low Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

106$

(106 MWH)

Fossil fuel 184.223 176.348 173.250

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.497 1.281 1.227

Emergency purchases 0.464 0.317 0.265

(0.053) (0.036) (0.030)

Nonnuclear production 186.184 177.946 174.742

(51.756) (50.097) (49.420)

Nuclear fuel 141.229 141.156 143.463

(118.376) (120.035) (120.712)

System production 327.413 319.102 318.205

(170.132) (170.132) (170.132)

Fixed firm purchase 95.166 95.166 95.166

(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 422.579 414.268 415.371

(224.444) (224.444) (224.444)
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TABLE 5.19

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE II

(48 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

106$

(106 MWH)

Fossil fuel 184.223 176.348 173.250

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.497 1.281 1.227

Emergency purchases 0.464 0.317 0.265

(0.053) (0.036) (0.030)

Nonnuclear production 186.184 177.946 174.742

(51.756) (50.097) (49.420)

Nuclear fuel 198.267 197.189 199.821

(118.376) (120.035) (120.712)

System production 384.451 375.135 374.563

(170.132) (170.132) (170.132)

Fixed firm purchase 95.166 95.166 95.166
(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 479.617 470.301 471.729

(224.444) (224.444) (224.444)
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TABLE 5.20

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE VI

(48 Month Horizon, 7% P.V. Rate, High Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

106$

(106 MWH)

Fossil fuel 184.223 176.348 173.250

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.497 1.281 1.227

Emergency purchases 0.464 0.317 0.265

(0.053) (0.036) (0.030)

Nonnuclear production 186.184 177.946 174.742

(51.756) (50.097) (49.420)

Nuclear fuel 255.223 253.211 256.169

(118.376) (120.035) (120.712)

System production 441.407 431.157 430.911

(170.132) (170.132) (170.132)

Fixed firm purchase 95.166 95.166 95.166

(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 536.573 526.323 528.077

(224.444) (224.444) (224.444)
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Figure 5.28

Non-Nuclear Savings and Nuclear Cost for S-3 versus S-2
as Function of Nuclear Unit Costs
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work requirements. These, in turn, cause S-3 to suffer a

larger disadvantage as unit costs increase. Unpenalized,

S-3 is able to maintain at least a $300,000 advantage in

the entire range investigated. However, even one million

dollars in penalties turns the choice around for the same

range.

As for the forecasting error that results in $500,000

closer competition, a 40% change in Reference nuclear unit

costs is required. This would appear to border on the im-

probable. However, the characteristics of the six PWR

reactors comprising the hypothetical utility are so similar,

that generalizations to all types of nuclear reactors are

impossible. A utility possessing a broad mix of reactor

types (PWR, BWR, HTGR, LMFBR, GCFR, etc.) and sizes would

very likely find that small shifts within various unit

cost components would alter the reactor loading order. For

instance, rising plutonium value decreases LWR fuel costs

as a credit, but increases LMFBR fuel costs. Such an in-

vestigation is clearly beyond the scope of the current

nuclear power management model because of QKCORE's inherent

limitations (see Section 5.2). In the future, this may well

be the most interesting investigation of all.

A word about re-optimizing the Case II solutions is

again in order. With the qualifications just mentioned re-

garding other reactor types, re-optimization, though per-

formed, was not necessary. Since the reactors were nearly
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identical, energy was not re-optimized significantly. The

nuclear cost was merely re-evaluated. The average cost

savings for each of the six perturbed solutions was less

than $15,000.

5.7.5 Sensitivy to Non-Nuclear Costs

To evaluate the non-nuclear cost components, the re-

sults of Case II in Table 5.14 are used. Since the non-

nuclear cost components only affect SYSINT results directly,

parameterization of these costs did not require further

SYSOPT runs.

Cursory examination of Table 5.15 indicates immediate-

ly that startup-shutdown cost and emergency power purchases

do not vary by more than $300,000 from strategy to strategy.

On the other hand, fossil fuel cost can vary by 10 million

dollars or more. On account of their relative size and ab-

solute size with respect to various forecasting and core

modeling errors, the comparison is more convenient if all

non-nuclear components are lumped together. The obvious

parameter is cents per MegaBTU for fossil fuel. If this

were to increase, startup-shutdown costs would increase

proportionally since the major cost component is incurred

due to sensible heat requirements during startup (see

Figure 2.6). Emergency power purchases should also be

proportional to fossil fuel cost if the neighbor supplying

the energy relies on fossil fueled equipment to generate

it.
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With these assumptions, Figure 5.29 is presented indi-

cating breakeven points for S-2 (gradual shift) versus S-3

(immediate shift) as a function of fossil fuel cost. The

higher the cost of fossil fuel, the larger the fossil

savings of S-3 and the larger penalty it can successfully

absorb. Unpenalized, S-3 breaks even at 33# MegaBTU. Each

one million dollars in penalties requires another 12-1/29'

MegaBTU. Thus, with any reasonable penalty, S-2 is again

the optimum.

More importantly, note the forecasting error required

to equalize a $500,000 difference--merely 6-1/4g/MegaBTU.

Given the realities of today's fossil fuel marketplace and

the environmental concern, forecasting fossil fuel costs

five or six years into the future within 6 MegaBTU is a

near impossible task. This forecast very likely could turn

out to be the critical item in the overall model input.

The models of interfuel competition currently under develop-

ment in many institutions [e.g., (11)] may aid in pinpoint-

ing, or at least bracketing more closely, the future trends

in fossil fuel costs.

In short, fossil fuel thermal energy cost appears to be

one of the critical input data.

5.8 Critical Questions Revisited

Section 5.1 posed six critical questions pertinent to

the development of any management planning tool. The follow-

ing sections provide a summary of their answers as they apply
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to the current nuclear power management multi-year model and,

in particular, to the SIM and SOM developed in this work.

5.8.1 To What Problems is the Model Applicable?

The complete model of Figure 2.21 applies to the multi-

year management of utility systems possessing any types and

amounts of fossil, nuclear, hydro and pumped-hydro equipment.

As implemented in the SYSINT and SYSOPT computer models of

the SIM and SOM, respectively, only fossil and nuclear equip-

ment are currently permitted. Addition of the other two

types should receive a high priority. A computerized RAMM

should be interfaced with the models to permit the investi-

gation of many strategies. Development of detailed CORSOM's

for each reactor type are required to replace the limited

test simulator QKCORE.

Once these improvements have been made, the scope of

the problems the model could analyze are almost numberless.

Input to the model consists of forecasts, operating con-

straints, initial conditions, unit costs, etc. The opti-

mized outputs include period production schedules, fossil

maintenance-nuclear refueling schedules and nuclear re-

load parameters. The combination and permutations of

altered inputs affecting outputs generates an enormous

number of possibilities.
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5.8.2 What Assumptions are Required?

Though th. current computerized version of the nuclear

power management model contains several simplifying assump-

tions, only one of the assumptions is actually inherent in

the model of Figure 2.21. The others, enumerated below,

could be relaxed by reprogramming the affected portions.

The pivotal assumption involves the permanent relation-

ship between nuclear and fossil fuel costs. Namely, nuclear

incremental costs are sufficiently less than even the best

fossil incremental costs, that for the foreseeable future,

nuclear energy will be utilized so as to displace as much

fossil energy as possible. This maximization of nuclear

energy dictates the SIM's loading order segregation into

must-run fossil minimums, nuclears and remaining fossils

(see Section 3.2) regardless of intra-nuclear cost differ-

ences. The SOM then minimizes the cost of producing this

nuclear energy.

The SOM's inner iterative procedure involves passing

cycle energy vectors to the CORSOM's and receiving cost

information as a feedback loop to test for convergence and

determine the cycle energy vectors for the next iteration.

If the key assumption were to be relaxed or should it be-

come invalid due to unforeseen price shifts, the termina-

tion of the feedback loop would have to be shifted to the

SIM.2 For then, changes in nuclear incremental costs would

2 The ORSIM model, currently under d-velopment at Oak
Ridge National Laboratory (14), is of this more general type.
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also alter the fossil-nuclear competition (i.e., loading

order), resulting in varying amounts of fossil energy and

fossil cost at each iteration. The objective function in

the SOM would become the total system cost directly, not

merely the nuclear cost as at present.

Though the nuclear-vs.-fossil cost assumption does

restrict the model's generality, the prospects of violating

it are low and the computational savings may be signifi-

cant.

The following additional assumptions were made in

order to simplify programming the models:

(1) At time zero, none of the nuclear cores is so

depleted as to represent a scarce resource.

When further development enables the SIM to

handle scarce resource hydro units, this assump-

tion may be relaxed by treating energy-short

nuclear plants similarly.

(2) All forecasts (even six years into the future)

are 100% accurate (i.e., a deterministic future).

As recommended in Section 5.3.1, much work needs

to be done in this area with regard to confidence

limits on the various results.

(3) For such a non-expansion planning model, only

operating costs need be included in the objective

function since capital costs and related carrying

charges are already fixed by the additions and
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retirements specified and held constant for all

strategies (see Section 2.1.3). The addition of

these and other cost components to the model

would complete a useful tool for multi-year or

longer planning.

(4) The incremental heat rate of each nuclear plant

was assumed constant by the SOM over the operating

range of interest. As Section 2.4.2 pointed out,

proprietary data on today's PWR's and BWR's con-

firm the assumption. Future plant types, as well

as newer generations of the above, may force re-

evaluation of this assumption.

(5) The utility system contains enough must-run fossil

equipment to provide sufficient spinning reserves

to permit all nuclear upper increment capacity

(group 3 in Figure 3.8) to be scheduled as a

single, continuous block of capacity. In other

words, spinning reserve requirements do not make it

necessary to mix groups 3 and 4 (remaining fossil

capacity). This condition appears likely to pre-

vail for many years, i.e., as long as the system

contains large fossil units that cannot be shut-

down and then started up readily and reliably.

(6) All incremental cost curves are continuous and

monotonically increasing. All data produced by

the simple QKCORE model bore out this assumption.
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Such behavior assures convexity of the SOM's

operating cost objective function and permits the

use of a standard NP optimization package.

(7) Finally, all nuclear minimums are base-loaded.

One implied result is that there are no nuclear

startup-shutdowns. In addition, this assumption

coupled with assumption (4) allows the analytical

simplifications that lead to Equation (2.52) re-

lating thermal and electrical energy directly.

This same simplification facilitates the inter-

facing of the SIM and SOM, but, as with the other

six simplifications, it could be relaxed.

As for recommendations concerning further development,

numbers (1) and (2) ought to have high priority; (3) through

(5), medium priority; (6) and (7), low priority.

5.8.3 Does the Method Converge to an Optimum?

As the discussion in Section 5.6.1 pointed out, the

inner iteration on system cost did converge. Considering

the other errors inherent in the models (see Section 5.8.5),

convergence can be called complete. Convergence was, how-

ever, slow. This prompted the recommendation to study the

problem further.

Convergence of the outer shape iterations (see Section

5.6.2) was obtained with only slight increases in predicted

system total cost. However, outer convergence was also slow.
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Increasing the amount of piecewise-linearization would aid

both the inner and outer convergence rates.

5.8.4 Is it the Global Optimum?

Globality hinges on two key issues:

(1) Was the globally optimal strategy even included

as a possible alternative?

(2) Did the SOM achieve the minimum system cost for

each and every strategy that was evaluated?

The answer to the first question depends on the com-

pleteness of the RAMM. As for the second question, assump-

tion (5) of Section 5.8.2,relative to the incremental cost

curvesguaranteed convexity of the objective function (see

Section 4 . 4 . 2 ). And this, in turn, guaranteed the minimi-

zation of each strategy subject only to a posterior feasibility check.

Barring decreasing incremental cost curves, globality

thus depends solely on providing a suitable RAMM.

5.8.5 How Accurate are the Results?

The forecast error analysis of Sections 5.7.3 to 5.7.5,

combined with the work of Watt (55), indicate that strategy

versus strategy total cost differences are probably accurate

only to within a minimum of $500,000 when compared with the

actual (versus calculated) total costs realized over five

or six years (on the order of $500,000,000). The major con-

tributions to this error are CORSOM inaccuracies (>$100,000

per reactor) and poor forecasts regarding fossil fuel costs,
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present value rate, customer load demands and unit avail-

abilities. The latter two forecasting errors have been

totally ignored in this initial modeling work and should,

therefore, be high on the list for future development

effort.

5.8.6 What are the Computational Requirements?

Computational requirements have been previously dis-

cussed in Sections 3.6, 4.6 and 5.6.4.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDAT IONS

6.1 Summary

This work has presented a nuclear power management

multi-year model suitable for 5 to 10 year multi-reactor

fuel management studies. The overall model consists of

four sub-models:

(1) Refueling and Maintenance Model (RAMM),

(2) System Integration Model (SIM),

(3) System Optimization Model (SOM), and

(4) CORe, Simulation and Optimization Model
(CORSOM) for each reactor type.

The SIM and SOM sub-models have been developed in this

study and are discussed in detail. Computerized versions of

these (SYSINT and SYSOPT, respectively), were programmed and

tested. Numerical results were presented not only to evalu-

ate the models, but also as examples of the overall model's

versatility. As an aid in further model development, the

following sections summarize the main conclusions and

recommendations. (All computation times given below are in

terms of an IBM 370 model 155 computer.)

6.2 Conclusions

(1) While fossil unit instantaneous power levels are

chosen so as to maintain equal fossil incremental costs, the

nuclear unit period energy production schedules should be
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chosen so that all reactors are operating at the same nucle-

ar incremental cost.

(2) The overlapping of irradiation cycles for the vari-

ous reactors plus Conclusion (1) above leads to idealized

production schedules yielding a constant nuclear incremental

cost regardless of time. However, such production schedules

may not be feasible. The computer code SYSOPT determines the

optimum feasible production schedule that approaches this

ideal as closely as possible (i.e., with minimum total system

revenue requirement).

(3) While nuclear average fuel costs are on the order of

1.8 to 2.2 $/MWH, the incremental system cost of designing

more nuclear energy into a given cycle is on the order of 0.8

to 1.6 $/MWH. During nightly low load periods, it would be

economical to sell power to neighboring utilities in this

lower price range. In fact, it is even more advantageous to

use excess nuclear capacity for pumping at a stored-hydro

station.

(4) Even with fossil fuel costing as little as 25#/Mega-

BTU (and rising), the best-plant fossil incremental cost is

at least 2.0 $/MWH. Considering that even the highest nucle-

ar incremental fuel costs today are less than 1.6 $/MWH, the

conclusion is that nuclear incremental costs will be less

than fossil incremental costs for the foreseeable future.

(5) As a result of Conclusion (4) above, nuclear power

should always be operated so as to displace maximum fossil

energy.
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(6) Another conclusion based on Conclusion (4) above is

that an economic incentive exists for lengthening nuclear

irradiation cycles in terms of both energy and time. In-

creasing nuclear incremental costs are more than justified

by the reduction in average annual fossil replacement energy

required during refueling downtime. In addition, minimum

total system nuclear downtime (subject to burnup constraints)

appears to be a good a priori measure of the ranking of

various refueling and maintenance strategies.

(7) One of the key input parameters was shown to be

the fossil thermal energy cost. A small forecasting error

in this number alone (roughly 6 out of 40 #/MegaBTU) altered

example four year strategy cost differences by $500,000

(out of a total difference of $1,500,000).

(8) Using the latest in a PWR in-core model (41) and

assuming convergence in five iterations, computation costs

are on the order of 300 to 500 $ per strategy for a utility

system possessing five nuclear reactors. Assuming a 1%

annual savings in nuclear fuel revenue requirements alone,

roughly $500,000 per year would be saved. Thus, scores of

strategies could be run each year in order to up-date the

current operating strategy, specify the next set of reload

enrichments or, more importantly, re-optimize the strategy

to account for large perturbations from the intended produc-

tion or refueling and maintenance schedule. For example,

how does the AEC's 1973 step price increase in enrichment

charges from $32 to $38.50 per kg SWU (1) affect the
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current operating strategy. The nuclear power management

model's ability to quantify the complex utility system

trade-offs (not only nuclear-vs-nuclear, but also, nuclear-

vs-fossil) make it an indispensable planning tool for

nuclear utility decision-makers.

(9) The reactor-by-reactor nuclear energy allocation

problem may be cast as a network supply problem, permitting

the use of network programming rather than the more general

(and computationally difficult) linear programming.

(10) In addition, the Out of Kilter Network Program (45)

was demonstrated to be sufficiently flexible to permit

piecewise-linearization of the nuclear system optimization

to an extent approaching quadratic programming in accuracy

and exceeding it in the size of the problem solved.

(11) Several instances were encountered where strategy

reoptimization was not necessary in order to evaluate the

effect of various input data changes on previously optimized

solutions. The capability to merely re-evaluate several

previously optimized solutions eliminates the need for more

than a single iteration per strategy and thus, reduces

computational costs further.

(12) On a multi-year basis (~5 to 7 years), strategy-vs-

strategy cost differences are estimated to be accurate only

to within $200,000 per 1000 MW reactor (out of roughly

$50,000,000) given perfect (i.e., deterministic) load and

unit reliability forecasts. Estimates of the additional
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cost inaccuracies incurred due to errors in these forecasts

form part of the Recommendations.

(13) The multi-year planning horizon ought to include a

full core of freely specified enrichments for each reactor.

In other words, the horizon should be far enough into the

future to completely predict the discharge characteristics

of the next reload enrichment to be finalized (i.e., actu-

ally ordered from a vendor) for each reactor. In addition,

it is convenient to place the planning horizon in a for-

bidden maintenance period in order to minimize distortion

of strategy-vs-strategy cost differences due to horizon end

effects. Beyond the planning horizon, cycle energies should

be postulated so as to maintain the individual operating

philosophy ("character") of each strategy, not return to an

arbitrary final state.

6.3 Recommendations

(1) The Booth-Baleriaux probabilistic utility model

within SYSINT represents the latest in utility system

simulation. The current model is capable of simulating a

100 unit utility system (with up to 5 valve points per

unit) for up to 100 time periods.- Since nuclear, fossil

and peaking equipment are currently included, the addition

of hydro and pumped-hydro equipment (i.e., types involving

scarce resource utilization) is highly recommended in order

to complete the range of possibilities.
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(2) The Booth-Baleriaux model's accuracy has been

established by others (19, 36, 49) based on the reproduction

of historical data. However, little if any testing has been

done of the model's ability to project future production

given forecasted loads and unit reliability data. Research

into this area is needed to establish the sensitivity of

the various results to unavoidable forecasting errors.

Ultimately, the nuclear power management model should yield

not only a numerical answer, but also a confidence interval

around it.

(3) As a further refinement of the Booth-Baleriaux

model, the two-state forced-outage model ought to be replaced

with a more general model permitting unit derating (See

Appendix A).

(4) The principal recommendation for SYSOPT model im-

provement is expansion of the network structure to permit

decreased cycle energy step size (i.e., increased total

cost linearization) and, hence, provide a closer approxi-

mation to quadratic programming (QP). (Due to problem size,

the direct inclusion of a general QP model is out of the

question.) Each iteration of SYSOPT (itself using less than

10 seconds for a six reactor utility system) requires another

20 minutes of computer time within even advanced in-core

models (41). The reduction in step size is aimed at de-

creasing the number of iterations required to reach an

acceptable optimum nuclear production schedule (hopefully,

to as few as three of four).



-373-

(5) Other suggested improvements to SYSOPT include the

capability to optimize nuclear units with varying incre-

mental heat rates and to handle core reactivity stretch-

out (i.e., allowance for reduced plant capacity). The

inclusion of capital and other nonoperating revenue require-

ments in the total cost would complete a useful tool for

multi-year (or longer) planning horizons.

(6) Relative to completion of the overall nuclear

power management model put forth in this work, acceptable

RAMM's already exist. The most severe deficiency is not

due to either the SIM (SYSINT) or SOM (SYSOPT), but to a

lack of computationally efficient CORSOM's for each reactor

type. These in-core models represent the critical sub-

models requiring the greatest development effort. The

PWR in-core model recently developed by Kearney (41), though

a great leap forward in nuclear in-core simulation and

optimization, still requires over 3 minutes per reactor per

SYSOPT iteration. CORSOM's an order of magnitude faster

are desired so that computation costs can be rendered truly

insignificant compared with system savings.
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APPENDIX A
BOOTH-BALERIAUX EQUATIONS FOR GENERAL FORCED-

OUTAGE MODELS

A.l Forced-Outage Models

Presented in this Appendix are derivations of the most

general forms of the Booth-Baleriaux deconvolve-load-con-

volve Equations (3.55), (3.56) and (3.57) of the multiple

increment algorithm of Section 3.3.2.2. Whereas, Chapter 3

dealt exclusively with the two-state forced-outage model,

this Appendix extends the model to premit derating of a

unit. That is, a unit may be unable to produce at full

capacity, yet be capable of operating at 90% of capacity--a

10% derating.

To distinguish the more general unit performance models

from the simpler two-state model requires introducing their

probability density functions (26) f as a function of PGG

the generating unit output power capability. Thus, fG (PG)dPG

represents the probability that, at a random instant of time,

the unit's capability is limited to a range of dPG about PG'

For the two-state model (See Figure A.1), fG is one impulse

(qr) at PG= 0 and another (p r) at P G=Kr since the unit is

assumed not operable at all (P G=0) or operable over the en-

tire range to rated power (PG=Kr )

The probability density functions fG for the general

unit performance models are also shown in Figure A.l. With

probability pr, unit r is capable of ful power operation at
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Figure A. 1

Probability Density Functions of Unit Capability
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P G = Kr ( KrI )MW. Conversely, with probability qr the unit

is not capable of producing any power at all (PG=0). For

the "general derating" model, any fraction of capacity may

be derated and, hence, fG may have any shape between

0 < PG < Kr so long as the standard probability density

function requirement is met,

fG(P G)dPG = 1 (A.1)

More specifically,

Kr

pr + qr + G (PG)dPG = 1 (A.2)

0

In the second "discrete derating" model, only whole

increments of capacity may be derated and f G is restricted

to a probability mass function with each q ri coinciding

with the Kri capacity increments. For i = 0, qri =r0 = r

and

I-1

pr + ri= 1 (A.3)
1.=0

Finally, for the special case qri = 0 for all i > 0,

the discrete derating model reduces to the original (all-or-

nothing) "two-state" model of Chapter 3,

(A.4)pr + qr =
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The symbol 9 is used to denote the complementary

cumulative distribution function for fG'

(PG G G (P)dP (A.5)

Thus, (PG) represents the probability that the unit is

capable of generating PGMW or more at any random instant of

time. Figure A.2 presents typical for the three models.

When performing each convolution or deconvolution, the

pertinent portion of the KrIMW unit may be temporarily

treated as a smaller "sub-unit" of Kr MW. Derived in this

manner, the following equations are the most general.

For this smaller unit, 9 (PG), by definition, falls to

zero just beyond Kr&jW. In addition, fG for the sub-unit is

most easily viewed as the probability masses and derivative

of this truncated O(PG

fG-G) - G (A.7)
dPG

lNote that in this work, the complementary cumulative
distribution function is defined to include the equality at
the upper limit of the integral, in contrast to the usual
(26) placement of the equality with the cumulative distribu-
tion function itself,

e - - 9(P G

Prob. (P<PG) + Prob. (P=PG) + Prob.(P>P = 1 (A.6)

usual C.D.F. usual .C.C.D.F.

The distinction is purely academic as applied in this work.
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Figure A.2

Performance Probability Functions of Unit Capability
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Of more immediate use than fG in determining equivalent

load distribution is the forced-outage distribution

f (P0 ) since only the unit's forced-outages contribute to

the equivalent load [See Equation (3.5)]. To derive f O '

use is made of the fundamental applied probability equation

for changing random variables in a density function,

f0 (P 0)dPO =G G(PG)dPG (A.8)

or

f = O G G (A.9)

Since,

PG + PO Kr4 (= Kri + PO for the discrete case)

(A.10)

dPG
= -1 = 1 (A.ll)

dP0

Hence,

f (P G(Krd O) (A.12)

and fG is merely reversed (i.e., rotated about 0.5* Kri '

Figure A.3 presents typical f0 (P0) for the three models.
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Figure A.3

Probability Density Functions of Unit Capacity on Outage
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A.2 Convolution

As in Chapter 3, convolution is presented first since

deconvolution is most easily expressed as the reverse of

convolution. The aim of the convolution is to calculate an

F which includes (i.e., superscript w = with) unit r's

forced-outages (up to K AMW). The starting point is

(1) the current equivalent load curve FWO that does not

include any allowance for the outages of unit r (i.e.,

wo = without) and (2) the sub-unit's own forced-outage dis-

tribution f 0O). (Since all references to F are for the

same unit increment rJ the notation is shortened to Fw and

FwoF ).

From the equivalent load definition Equation (3.5),

the notation becomes

P e P D + (P0 ) Other + (O Unit r (A.13)

Units

Pw wo + (A.14)
e e PO

The equivalent load curve F wo is the complementary

cumulative density function of f wo or the probability that

P > Pwo
e- e

Fwo (Pwo) 1  wo (P)dP (A.15)
e
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Convolution is performed in the manner of Drake (26)

using Figure A.4. Thus, F (P ) represents the complemen-e

tary cumulative distribution function of fwO (i.e., below
e,,O

and to the left of the P e = constant line)..

Fw w
e

+0o (Pw_, P
e wo wo ' )dPwodP

f-00, fP,00 ep 0 e , 0)d d0

Assuming the usual statistical independence between

equivalent load (fwo) and un-included unit forced-outages

(f0 )0

fWO (PW P) f wo wo O ()e,O e '~0 e ) 0 0r (A.17)

Hence,

Fw wO=1 fwo dowodPeA(P.8 ))f(P)dP dP

(A.18)

Since

(A.19)

1= f oP)dPO

(A.16)
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Figure A. 4

Event Space Interpretation of Convolution
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Equation (A.18) can be factored into

+W (P -PO
Fw (PO) f O(P [ 0ff wo (P o )dP wo dPO

(A .20)

Since the bracketed term is, by definition Equation (A.15),

the complementary cumulative distribution function of

fwO, i.e., F (P -P ), thene 0

F w wow f P) wOPP d
(P S-0 e P0)d 0

(A.21)

Reducing the P notation to merely P , the result is thee e

convolution of the general derating model,

e +e 0
F ef0( ) OFw P--P0 d

(A. 22)

For the discrete derating model of Equation (A.3),

this reduces to

42-1
Fw e rF Pe) + gr i eF P -Kra-K ri (A.23)

Finally, the two-state model of Equation (A.4) yields the

original Equation(3.57),

Fw (Pe =prFwo (Pe) + qrFwoP -Kra) (A.24)
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A.3 Deconvolution

wo w
Deconvolution seeks to regain F given F That is,

it strips out the forced-outages of the K rMW unit.

Performing the integration of Equation (A.22) from

-- to + See Figure A.1),

OD

we rwoIw

(A.25)

Solving for FWO (P ), deconvolution for the general derating

model becomes

Fwo (Pr Fw(P e 0 (P 0 )Fwo(PP 0)dPO]

(A.26)

For the discrete derating model, Equation (A.23) rearranges

into

FWO(P = Fw Eri Fo (P -K +Kri (A.27)
r Ei=o

Likewise, the two-state model of Equation (3.55) may

be obtained from Equation (A.24),

Fwo (Pe) - Fw (P ) - q Fwo (P -K) (A.28)
e r.[ e r ra
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A.4 Loading

In performing the expected loading calculation of

Figure A.5, the statistical independence is again

invoked,

Energy incremi

Prob. at Pe=P0 . +6K
fe ri

is generated

Energy 6K increment of

=Prob. denanded x prob. oapacity is
at P operable, i.e.,

P atPG > K i+6KC ~ Ir,1-1 I

= F (P.+ 6K)
ri

(A.29)

( (K . + 6K)
r,i-1

(A. 30)

Integrating from 6K = 0 to 6K = AKri and multiplying by T',

the length of the time period, the general derating model is

loaded according to

PU. +K (P
E .=T' Pi+A iF wo (P

r3-

ri

) Q(K. i +P -Po.)dP (A.31)e r,i-1 e ri e

For the discrete derating model (See Figure A.2),

9(K +6K) = (. = constant for 0 < 6K < AK .
r~~i-1 ~ri -- r

(A.32)
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and, hence,

0P + AK
ri r i

Eri (ri

r i

Fwo (Pe )dP (A. 33)
e

The two-state model (Pr =r reduces to Equation (3.56),

. r rF (P )dP, (A.,34)

P .
ri

A. 5 Summary

Table A.1 presents a summary of the deconvolve-load-

convolve sequence of calculations for each forced-outage

models.
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Table A.1

Summary of Booth-Baleriaux Equations for Various Forced-Outage Models

- F''-)-!F()-f()"P-a/

C F''{)(l) F ( P Po )dPo
-0-

--

DF'''(P) =1, [F(P. ge '"(,/-,+

* F'"(P) F(Pe) - , F'-K A)

jPPrrLJ
E-=Tp S F"(Pe)eb?

F = E F"( ) + Pr F'( r- )

NI D = DECONVOLVE, L = LOAD, C = CONVOLVE

(2) IDENTIY OF SUB-UNI NCHANGES BEWENDECONVOLUTCNANDO

AK rP MW JUST LOADED.
(3) INACCORDANCECTH EQUATIO A(A.7) AND NO T E PrFRK SB-

EVALUADED AT PG - KrS-i
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APPENDIX B
AREA METHOD OF FORMULATING SHAPE CONSTRAINT

Section 4.2.4 explained the need for a shape constraint

in the SOM and derived an approximate variance method for

establishing the feasibility of postulated Fr shapes. This

Appendix presents the rigorous (i.e., necessary and suffi-

cient) but cumbersome, area method. Recall that given an

F system shape (cf. Figure 4.9 and Figure B.1) over the

system nuclear upper increment capacity from 0 to k , the

problem is to determine if a set of postulated period

energies E r(that resulted in the F postulated average re-

actor shape) could be satisfied by a feasible detailed

loading order.

The area method is based on an observation relative to

the mapping process of Figure 4.7. That is, over the range

from 0 to any equivalent load P, it is impossible to re-

order F (P ) into a detailed Fr (P r) such that the resulting

r (P r) contains more energy than the original F (P ). In

other words, there can be no pre-production of equivalent

load energy. Thus,

S dPr < F (P )dP (B.1)

0 0

or
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P

0 < (Fe (P )-F )dP (B.2)
-~ ee r e

0

Hence, the net area between F (P ) and Fr (P r) from 0

to any P must be positive (See Figure B.1).

If the inequality of Equation (B.1) or (B.2) does not

hold at any single P, the required detailed loading order does

not exist (e.g., see Figure 4.6). Herein, lies the difficulty

with the area method: it must be checked at every P or at

least at several well-chosen ones. Though the method is

rigorous, the amount of computer data handling and storage

are unwieldy even using a linear approximation to F .
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APPENDIX C

REFERENCE UTILITY SYSTEM EXAMPLES

Section 2.1.2.3 presented the Five-Unit Reference

Utility System. Unit characteristics were detailed in

Figure 2.2. Table C.l summarizes the data for each valve

point. Figure C.1 repeats the FD customer load-duration

curve of Figure 2.9 for the 730 hour month.

Table C.2 presents a SYSINT Fortran-to-text symbol

cross-reference table. The following Tables C.3 to C.20

present the numerical data of SYSINT's Booth-Baleriaux model

for each of the six Examplesin turn. (Section E.3 presents

the computer input decks actually used in executing the

Examples.)



Table C.1

Unit Characteristics for Reference Utility System

Total Capacity - 2000 MW

K

MW

100 (95)*

100(95)

100 (90)

200(180)

300(255)

Valve Point

eKrl r2
$/MWH MW

16.20 -----

5.50 200(190)

2.28 300(270)

3.92 600(540)

2.25 800(680)

* (95MW) = 0.95 x 100 MW = Kri for Example 2 only.

r x Kri

Unit
Name
r

I

II

III

IV

V

Type

Peaking

Fossil

Nuclear

Fossil

Nuclear

Rated
Cap.
Kr
MW

100

200

300

600

800

Perf.
Prob.
p9

95

95

90

90

85

SUSD.
Cost

$

45

400

228

1440

432

Data

r2
$/MWH

4.25

1.90

3.32

1.71

CA)

'.0
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Figure C.1

Normalized Customer Load-Duration Curve for 730 Hour Month on Reference Utility System
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Table C.2

SYSINT Fortran-to-Text Symbol Cross-

Reference Table

Text
Symbol

P .+AK
ri ri

F, (P,
AKri ri e

P*.
ri

E.
ri =L'.

K ri T r ri

Eri

I2 En.
ri

r

Description

Average availability-based
capacity factor for the capacity
increment

Increment energy production,
GWH

Spacing of Farray stored in
PROB.

Cumulative increment pro-
duction, GWH

Unit identification
number

PROB storage location of peak
equivalent load,
PROB(IEMAX) 0.0

Unit index x order unit data
read in = order final unit
results presented

Increment of capacity being
loaded for unit-of-interest
r

AK .

SYSINT
Fortran
Symbol

AVPROB

DELGWH

DM

EXPGWH

IDNO

IEMAX

L

MWADD

) , e
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Table C. 2--Continued

Text
Symbol

Kr,i-l

K .
ri

0
P * + AK .

F . (P =K*DM)ri e

Description

Unit r capacity previously
loaded.

Unit r capacity now loaded

Equivalent load after loading
increment

Current F equivalent load-
duration curve

Position in loading order

SYSINT
Fortran
Symbol

MWIN

MWTOT

PE

PROB (K)
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Table C.3

Example 1 on Reference Utility System:

"Deterministic Model (No Forced-Outages)"

(See Sect. 2.2.1 for further details.)

Unit Increment Position Increment Increment
in Energy Cost

r Loading E .XOrder ri ri

(GWH) (03 $)

I 1 9 (last) - 0 - - 0-

II 1 4 73.00 401.5

2 8 -0- -0-

III 1 2 73.00 166.4

2 6 73.00 138.7

IV 1 3 146.00 572. 3

2 7 29.20 97.0

V 1 1 (first) 219.00 492.8

2 5 335.80 574.2

Utility Production 949.00 2442.9

Emergency Purchases (at 10$/MWH) - 0 - - 0 -

Total 949.00 2442.9

Loss-of-Load Probability, LOLP = 0%



Table C.4
Example 1 : SYSINT Output Totals

TITLE :" SAMPLL SYSINT I.Uh PERFORPING CALCS. FOR EXAMPLES 1 & 2

TITLE :" EXAMPLE 4. : DETERMINISTIC 03CEL I A0 FORCED-OUTAGES I

IL tX 1ONO AAME LC FACT

2
3
4
5

101
202
!C3
4C4
SCS

IV
v

0.9
0.500oC0
J.fCtet 7
a.400000
C.5sCCou

CPER MRS

0.0
730.0000
73U.:J3)j
113.Co000
73%. cu 

$TfAiTUPS E SHUTDCWAhS
KUUNER MFG ABTIU COSTIS)

C.c
.30 oo

C. 33j3
c.c000
C. CIO

P U w f 9 :
IASTALLIC CAPACITY
0 N-LINE LAPACITY
PEAK LZA(' "CRECAST
CA-LIN* ARGIN 4d PEAK
SPINNING kESERVE

LCSS-CF-LCAD P(CPAEILITY

t E R G Y:
EXPET E) DEMAWNI
FXPECTFD PRCCUCTICN

( AuCLEAR
(NCN-ALoCLEAR

EXFECTEC EMENG PURCH
1LA.SEPVEU RY CIRECT rALC

0. 0.
0. 0.
0. 0.
0. 0.
J. 3.

MEGAhATTS
2000
2CO0
1ECo
230

0
O .0

EXPECTED PrJCUCTION
ELECT(Gwm) MEtARTo) COSTII.

a.0
73.00000

146.00000
175.200C0
554.8iJio0

0.
8C3CCO.

1606 000.
1673160.
5927600.

0.
401500.
305140.
669264.

1)66968.

TUTAkS
MEGA8TU COST( )

0. C.
;3303 . 4415 j.

1606O0C. 30514C.
1673160. 66Q264.
592 76J. 116656 .

GWH
949. 330O
949.3CCO
7c0.acco
248.2C001

0.CCCO
J. I

0 C L L A R C C i T : SYSTEM
PROUUCTION FUEL 2442172.
STARTUPS . SHUTCCWNS _____Q9

SUB-TJTALS 2442472.
EMERG.PURCH.a 1J.00 S/MWH._ .Q

TOTAL 2442672.

STRAT(CV I a

PERICC NUPBkR

I

I NCEA

2
3
4
5

to
to

NUCLEAk
1372108.

1372108.

NCN-NUCLEAR
1070764.

1070764.

u
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Table C.5

Example 1 : SYSINT Detailed Calculations
L ICOC Po Pol3s S00C NVOf 0Vp0000 OLMI. F APW L
.00 00000 000044,6 000040 71om0, 000000 4,*0**041000000414000 000. .. 0000 0. . . . .

.3i0C01 010? CF 167E090T PS000em.e.l.is"00 a P * *60.00 Do lmax 19 000 # 1900.0010
I.0C00C00 .CC000CC000 . 00000000 .0000wO4 00000 1.000000000 1.04609003 1.00J0333W 0.9.01000000 J.9JGJ0 J
C.0 06C0U0 0.0C00CC00 0.900C0000 o.2OC0000 0.160000000 0.1000000 0.00000000 0.0 0.0

1. IOC P#. 0,61% 40 WA TOTlo IAwpo00 DIE h I Mab,"M L0 9 3 0304 0 340 00o 0 C300003 219.400340 219.0404011

WINM FLA&I CO *th0E0EST POOSM.at.1,3110* a a . t00.00 0*0 J 49 pE0a * 1900.0010
3. Cc0CC000 c . 00CC000 I.C00000000 I.000000000 &.000000000 t.0000000*4 1.000000J0G 1.03000)0 0C.903000j 0.0GG3J0J0J
C.8SCC9C00 o C.01300000 0.OOCOOO 0.2OCtOcOO0 0.1CC00000 0.10000000 0.010000000 0.0 0.0

0*T0ML0 PLANT 0O INT "Most POOgOO.i.13EAl I O* O 100.00 000A* * 19 PENAR 1900.0010
I.C 000000000 1.000000000 1.000000 0 1..0000000 0.0o00000 1.000000 I.00000003 0.910000000 0.900000000
C.0 stdC4 t C.0CCCt000 0.OOCO0 0.200000000 o.150Oj3O00 0.o0oU00000 0.0 CC0000 .0. 0.0

L co&C 01 4111% AW*00 ONTOl AV""0 01*600 EXPOWN LI sea 400. 0 100 t00 1.00000000 73.000400 3.0C0000 3

MIT " LANT OP INTEOEST PR00000.set.*C* x I Os = 100.00 *EMA . 19 Pe0a0 . 1900.0010
1.0L "at0oo4 1. 00000 0000 a.oo 0b0,06 1. 0o 1.oCOO0Oo 1.0ooCo 000 1. OO00ooo00 1.000000030 0.950000000 0.900000000

C..9t. C..tet.CC0 .. 00Cm 000.2000003000"m u000000000 0110060004 J.1 t.0

090t011 PLANT CP INTE01Tt POOOOs*e0et.ifoax I up . 100.00 31Max = 19 Pf"A . 1933.J3*i
I.00C0000 3 1.0C0000000 .CC400000 1.00000 0 1.000000000 1.00000000 1.000000000 1.000000000 C.950000000 0.9CCC00000
C.000CC00 C.600090000 0.000C00000 0.000000j00 0.0SCCC0CC0 C.100C00000 0.01CLC0000 0.0 0.0

L 03N0 146 PWA00 06TOT AVPAC0 0060. ExPGW0 L

4 A0 600. 0 200 200 I.0CCCC000 16.000400 146.CC0000 4

wlTM PLAIT CF *0Y0000T pFoOOtO.m0.a.00 1 0= 100.00 *ENMA . 19 PEPA . 190.301.
I.o0C009000 1.C6 000 I.000C00000 1.0000 0 1.000400000 1.000400000 1.000000000 1.0000000J0 C.910000000 0.900000000

0.0C0CC00 0.00000 0.00C00000 0.000Cc00 0.190000000 C.100000000 0.09C0C0000 0.0 0.0
eeeseeeee0 eeeeeeeeeesee.."eeeeeeeeeeeeeseseesee.o see0ee6s...... nee...... se.s.... se.... es.....

WITMCaI PLT CP 0IISsT POIN1I.e.4,*300ax I am - 100.00 U1max . 19 PE0AS - 1900.0410
9.0ccc000000 CC 0C000 I.C0c000 1.000000000 1.0000 000 00 4 .J00300J 1.03o300903 1.033000333 C.95300a30 J.93C003joJ0.0%CC00000 6.0000C000 0.90000000 C.CCC00300 0.10000CC0 C.100000000 0.010000000 0.0 0.0

L 1001t oE 0h AD W840 0 10 29P9C0 I 00.00I- IfPGWM L
00 )00. 0 100 100 .CCCC00060 73.000000 3.00J00 2 P

NOT. PLANT CP lrEaEST Pool$ 1 le.1. "Ax I O . 100.00 * .e 19 EPAx . 194*.Q.0*
3.0CCOC00 1.000 000000 .OOJOao l.C00O03UJXJ 8.030000030 1.03034033J 1.330000030 1.3033)0 C.913J3 J J.9J300J3J0.05CC00000 0.0060000010 0.0000000 0.2CCC000000 0.5C000C00 0.300000000 0.000C0000 0.0 0.0

....... 00*0000000.........00. . . 0.. ... .... . ......

0*90CL PLANT OP INTOSIST Pa00s) .. ICRAX 5 UP a 100.00 E1081 0 . is 090* 1000.0010
1.0cc00000 1.000000000 1. 1.G000003 1.0000)00 1.00CCC0C00 1.000C00000 1.000CC00000 3.00*000300 * 0.9S0000000 3.v0000000J
C.8C0CCC00 0.000000000 0.0000C0000 C.2C000000 0.110J30000 3.1*0*0M30J 3.09000003J 0.3

L 10AC 0E 0 t00 P100% A9P000 0 0 60LGM 0PGM
5 'CS 2000. 'c0 100 000 0.92000000 331.000300 !54.@C0000 S

0070 PIAT. OF 00900019 FaOOOONI.a.1.3EM0 * 0 a. 100.00 IEt*0 . *a FENax e *00.000
L.A000C00 1.00000000 L.C00000000 .000C00000 1.00C0000 1.000003000 l.COCCC0000 1.000000000 0.95030000 3.900300000

C.00400CC00 0.0C000C0 0.CCC00000 0.200C4030*0 J.3000000 3.10000030 3.J1000000 3.0

ITIOCLI PLANT OF INTE0EST Pa000300.o IN0AX 00 = 130.00 EEAX I 1* PENA0* 14J.041J
1.00000J. 1.00000000 1.000040000 1.C0000000 1.000000000 1.000000000 1.000000000 1.000000000 0.990000000 0.900000000
C.010CC0C00 0.000C000 0.00C00000 0.200C0000 0.130000CC0 C.100C40000 0.09CCC0000 0.0
I. EON P0 00*0l 00*00 00909 AVFOOS 00*600. EXPCM4 L
I $ 1400. Ia 200 3000.9000G000 Y3.00000 0000NC 1410; IIo00 t i 0M A3EEC

.*9ITM PLANT OF INTEREST P4051s9.0i.I090AX o 0n . 300.jJ REMx *0 it PENAx * *JJ.0JJ
1.40C00000 1.000000000 1.000000000 1.000000000 1.000.3003.90*.0 . 000030 0.000000000 0.90C00G300
C.0CCCC00 C.0C000c000 0.500000000 0.200000000 0.100000C00 C.1OOoCQOoO 0.0CCC0000 0.0

*000. Fah C 00NE3S 03 00100ape0t01* s 09.0030 T e 00 00.00 Iaxe l Ex 10.0J
0.CCCCCC00 1.CC00Cc000 1.CC0C00000 1.00J0000JJ 1.JJJdJ0 *.dau0303j 1.J3000030 1.0 *3*JoJ13 C.9J3033,3 J.90000304
C.0CC00000 0.0C000C000 0.900CC0000 C.2CCCL0000 0.15000C00 0.300000000 0.000C0000 0.0

I I0AC PE II #6hPuAGC X70l AVPR" 0E"""" EXPCNH L
4 04 .00 0.G 4 .00 0.1. 29.200.00 .TS.200000 4

0l*0 s1*09 OF 1N9E0EST P0000* .0at.le0*0 * no - *00.00 INX I * p00 ax0 0 1000.0014
a.CCo CCCCOO 1.CCCCCC000 .C0000000 1.CJ00000 1.OJCCO0- 1.00*0JJ00 1.303000000 0.000033*0 0.990J0J 0.9CC000000
0.09CC00000 .0000000 0.90000000 .000003 0.10023030 C.*00C00000 0.050000000 0.3

*.0. 0..0..0........... ...........

0I*C7 I PLANT OF INT901S PRO i eneo. t lEMax I On - 100.00 0Ax IN PEMAX . 1800.0010
1.0C00C0000 1.000000000 1.00000000 1.00C000000 1.00CCC0CC0 1.000000000 l.00000000C 1.00000J3* C.91000000 0.9000000W

0..CC00 .C0C 00 0.CCC000 3.20 J J00 0.2*303 3.100)0000 3.03 GM0300 J.00000 0 3.3

10:C PE, Phik itADI MTOT .AVP-U. OELGNM E GM L

2 2a ... C. ACo 100 200 .0 j 10 3. Cco0

MITI PLAN0 00. imtpfST P 01000 ota.1040X 1 30 . 100.00 *nma to pfna9 . 1800.00*J
1.CC00c00 1.000000000 .C00C00000 3.00000000 1.000000000 *.000000000 0.0000C0000 1.000040030 0.94000000J 0.9000J0006
C.sctC00C0 C.0C00CC360 C.900C0000 C.2000000j 0.15000000 0.140000J 0.0%043420 3.0

0000 . 0.*00 000. 0.0 0.0... 0..0 .. .... ........

iTC f PLANT OF IN930S PGIs00.1.o1EMAX0 1 004 . *03.00 I0"A * 0"A . 1033..0j

0.00000000 1.000000000 1.C00000000 .CCC00000 1.00C000C000 1.000000000 1.00000C000 1.00000030 0.90000000 0.90C000.0.
C.0S0CCC00 0.C000CC000 0.900000000 0.200000J00 0.150000C00 C.100C00000 0.Cb0cc0000 0.0

IgAC PE sf M0 MfT A U0 LLGINM EXPCMM L,

i 0 00 00 100 a. 0.0 0. C

MifMo, PLANT CP INTEREIST POOBIPS. KetelEMAX 1 0M . 10J.00 IEmAx - is PtsleX . 6844. 0-i j
I.00low00 1.01 0 00 O'.CCO0000 .CCO(OCO0 1.000000000 1.000000000 1.000000040 1.000000000 0.94000sof-o 0.90C000cj.
C.OSCCGC00 . cC0c00 S.9C00000 0.200000000 0.150000000 C.100C00000 o.05CCC0000 0.0
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Table C.6

Example 2 on Reference Utility System:

"Deterministic Model (Reduced Capacities)"

(See Sect. 2.2.1 for further details.)

Unit Increment Position Increment Increment
in Energy Cost

r i Loading E x.
Order ri ri

(GWH) (103

1 9 2.51 40.7

H 1 4 69.35 381.4

2 8 5.81 24.7

I 1 2 65.70 149.8

2 6 108.82 206.8

IV 1 3 131.40 515.1

2 7 79.85 265.1

V 1 1 186.15 418.8

2 5 299.30 511.8

Utility Production 948.89 2514.2

Emergency Purchases (at 10$/MWH) 0. 11 1. 1

Total 949.00 2515. 3

Loss-of-Load Probability, LOLP = 1. 25%

-A



Table C.7

Example 2 : SYSINT Output Totals

STRATEGY ID a

PERICE NUMBER a

1 TITLE :0 SAMPLE SYSINT RUN PERFORMING CALCS. FOR EXAMPLES I & 2

TITLE :" EMPLE NO. 2 : DETERMINISTIC PCDEL I REDUCED CAPACITIES I

INDEX 10O AAME LD FACT

I
2
3
4
5

101
202
303
404
5cs

I

III
IV
V

0.C3f250
0. !418 15
4.6544J
0.'35891
0.S77932

CPER MRS

26.4625
130.0000
130.C(000J
130.0000
730.0000

STARTUPS & SMUTDCMAS
NUMBER MEGABTU COST(S)

C. 4410
0.0000
-i.000
0.0000
C.0000

22.
0.
0.
0.
J.

20.
0.
'3.
0.
0.

EXPECTED PROCUCTION
ELECTIGWM) MEGAOTU COSTiS)

2.51394
75. 158C6

174.52019
211.24831
485.44544

45251.
812219. *
1876602.
1950461.
5170182.

40726.
406109.
356554.
780184.
933633.

TOTALS
4EGABTU COSTs

45273.
812219.
18766C2.
1950461.
51731d2.

4074t.
40613S.
356554.
780184.
93 j63 3.

P 0 w E R :
IASTALLEE CAPACITY
1N-LINE CAPACITY
PEAK LOAD FCRECAST
CA-LINE PARGIN 4 PEAK
SPINNING RESERvE

LCSS-CF-LOAD PRCeAEILITY

E A E R G Y :
E3PECTEL) DEMAND
EXPECTED PRLCUCTICN

I AUCLEAR
(NJN-NLCL EAM

EXPECTEC FMERG PURCH
(LASERVED AY CIRECT CALC

O C L L A R C 0 S T : SYSTEM
PRJL'UCTIUN FUEL 25142C1.
STARTUPS C S.uTCCwANS ..- _-.. 9A

SUR-TJTALS 2514226.
E TEG.PURC. 0.00 6/M.H....L5L"7

TUJT AL 2515367.

0

MEGAbATTS
1175
1175

-25
0

0.012500

GWH
949..)000
948.8E59
659.9656)
288.S204)

0.1141
0o11411

NUCLE AR
1267187.

1287187.

NCN-NUCLEAR
1227019.

-___- 23 .
122703-4.

INCIX

I
2
3
4
5

a

a
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Table C.8

Example 2 : SYSINT Detailed Calculations
I luC pt V601 P0AOC 10001 V60 01160 tAp0M L

..0........eeeee. ... . ..... e0..............s0...e.......e.............ee

o0t.CL1 96A*f Co 11llOlST P000 esle0. 06*x 00un * *00.00 E . 19 sE9a0 . 1900.0010
.3JCCJJUJA 1..C 0C,00 a6.,C0Jodd I..60J3JJ0 1.0003.00J0 w) " J k 0i0 I.000000000 1.00G0000J0 0.90J00000 I.90C000C00

0.00CC0000.. 9.0000C000 0.0000000 o.206C0300 0.1a000CC0 C.10CC00000 0.000C0000 0.0 0.0

L [Uht PE "Via PWAD0 ObTUT AVPPC:. UE1LGMP 1AGM L1010
So . 9 200 S .CtCCC000 c 0c . 000) t16.10000

0000 01A11 CP 1010000? P000 0.Itul.e!Pa* a ON. 100.00 000A0 * &9 PPA0 1900.0W.)d
0.3..C300J I.CL) 000 .6cCC0003 I.cC0000)0J 1.J002)J30J 0.40030000 I.40u0000000 .000000G00 0.99000000 4.9cC000000
0.006600000 0.0000CC000 0.0000000 0.20000000 0.16C6GCCC0 C.100003000 0.000c0000 0.0 0.0

siis.L1 P1A0 I C P is0 PRuSIX 0.00.1.0 eas A 00 s 100.00 I0AN . 19 PfPA . 1900.0010
1.ccc coo 0o.o0C C000 0.C0000000 1.000000000 A.00000000 1.000000006 1.CCCCC00U0 1.0 0000000 0.94J3'J))3 J.9)1j3JJJ'
0.0CC006Cp .. 0C0cCC000 0.00CCJc0 C.2aaJ jxo0 j.10c000C00 (.100000000 0.00C od00 0.0 0.0

1 C 39. a 10 9 . .CC0 393 as 64100430 60.49000ACL 1

WIfM 0LAN? CP 0010011 POt0 TO.1.eEMAX a nP . 100.00 01aa- 19 0,4 e 1900.0010
l.CCCOCC00 l.CC00CC000 1.6CC0@0000 1.000000000 1.000J0O000 1.00000009 I.006CC0000 1.000033))%. .011J103, 0.9JJa J3

(.011C0'00 C.0C36JCC00 0.9C6C60 0.300C60000 0.150000C00 C.10000000 0.00000040 0.0 0.3

eeseseeesseeeeeeeeee~eseeseeeeseeeesseeseesesesses*0******9****0****=..........se..... eeeee...........es
utiMC1t PLANT C 0016EST PROI010..,1EMAKA t Oo = 100.00 8eMA0 - 19 PE0A0 . 1900.*.lG

1.00c C 00. 1.G30CC3o600 1.c60C00000 1.C000000 1.3093J010 I.J0000100 1. 0000.0000 1.0000@.1 0 C.9000000 0.4Cco0oo
0.00CC00060 0.000CC000 0.00000000 0.200C00300 0.1C000C600 C.10000000 0.06OC00000 0.0 0.0

I. 50k0 PC wboh v6*00 61001lo 000060 061000 60011"
4 40. 1i. * 100 t00 8.CCCCCC00 131.400000 131.400000 L

WIT PLAH 0 OP 10TE0Es1 P100ta l. I.00 a 100.00 tm*am - IV PtPAA F 1900.0010
,. ",co)0034! a.CC00C000 1.00Co000 .600000000 1.a0003000 I.04400 0 1.4311000040 t.010000003 0.90oo0000 0.90c000000

C.osccof0 0.00000o O.50OC00000 0.o00COoo 0.19000ccco C.100001119 o.o0ccooo 0.0 0.0

..... . . 000...100......................... .....

0411Q1 P1*A1 CP 1NTEBEST PLANT CemetIlENaa a OP 100.00 11PA . 19 P91 A. 1900.0010
. 600600 l.0I000C000 1.000000000 1.00000000 1.000 .. 0000 00OO00 1.Cc16000 1.010000)0 O.95JavJJ 4 4.qJ0)3oJJ

C.05tC000G0 G.0C30CC300 J.06CC0000 .. 2JijcjjjjJ 0.tICO0c0 C.100000000 0.00CCJ000 0.0 0.0

t~ 10000 P Plo 90*06 100T 0090( 011401- 0006004
a 2c2 a 20* 99 9t .6C0.000) 69.39004o 69.110000C L

ItIT 1AN? C 111?61 P, pi 91:eI. taxs 1 00 - 100.00 Its 19 PPOPA . 1900.0010
0.06C600000 1.C660CC000 l.CC00000 1.000000000 1.000000000 1.000C00000 l.OOOCC0o 1.0000103J C.v j1,1Jj. J J.0JzJ0jo00
0.00C0c6o00 4.0C00CC000 0.11CCcc000 0.02CC00C0 0.406000C00 C.10000"00 0.000000000 0.0 0.0

.0.....................* 000. ......... .

111 11 LN P P 10611 P"0010s.0.1 MAX 9 OP - 140.00 I .IMA to P .-Al - 1000.0010
1.000000 1.00000000 I.C00C00C00 1.CC00L0000 1.00000C00 1.000000000 1.000000000 1.000000030 0.90000000 0.9CCoooCaC
6.00906C600 C.06C0aC006 0.SC600000 0.200C00)00 0.10000C00 C.10CC00000 0.04%JCC030 0.I

L~ 19M P 0080f W" 00*00010 AVPP04 611.0" f x0P.W1 1g , se. 166.,. ,, .2S 6". 0.9.49510 2S9.29,457 .6%.44s431 %0C P bbMA0MfT A~0 EGM PPM

WIH PLANT 0P N001 ST PROSOxI.0.101A0 a OP . 130.0) 10MA - 1 PEMAX . 1400.0010
1.00460000 0.00000000 1.600000000 1.0CCC0000 0 1.0060006 1.000C00000 1.00000000 1.000000000 0.050000000 0.900000000
C.0194CCC00 c.0CC0CC000 0.100C09000 0..0.000000 1061C0000 0.131030"3 O.0900C0)30 J.0

0................................e*-.* -e.**e *eee.........ee..*.e**.'

ItMllC19 PLANT OF 101E0101 PI0fmi01el1.E0ax 4 00 . 000.00 EMA0. is PtPA1 . 1000.001J
.u0cc30000 4005C000 1.C00C 00 I.C60000Jo 1.0)01)00)0 1.000000000 1.000000000 0.000000030 C.90000000 0.9CC000C00
C.00CC0000 0.06006600 0.00C00000 0.20000)00 0.1)C000CC0 C.10CC00000 0.100C00000 0.0

I 00 122S 0 100 210 0.420011 l00.000 174.00PET L

oIl" PLAh CIF 1TEPEST P1OOOOx0.91.16EAX 0 up 0 100.00 11MA0 00 FF0x . 10.301.0

1.00063000 1.0C00CC000 0.C00C0000J 0.CC0000003 1.000000000 1.000000000 1.000000000 1.00000000 0.90010000 0.9Cc0006C0
C.01tC0C(00 C.C00CC000 0.100C00000 0.200C00300 0.ICCCCC00 6.16CC00000 0.CSCCC0000 0.0

.0000#0004.. 00 .00... ...... 0. ...... ..........

WIinC6T PLANT CP 00INE0lll PROBIRI.K.1161MAR I UP . 100.00 0EA11 . Is PEPax9 1100.0010
I.0CCC6 6 .CC0cc000 1 .C00001000 1. .000000 0000000 .0 0C.00000C0000 1.CCCCCC006 1.00302)3 C.903330Jj 0.9J'3JJ)J03
6.0CCc000 C.0.101:CC 0.s0CC00000 C.2CCC000 0.1000CCO C.100000000 0.00000000 0.0

4 Ct 1999s. too3 360 '94-1 ,.303:3661 79.144"012 211.24213106 It 11 W8 11 4N
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Table C.9

Example 3 on Reference Utility System:

"Probabilistic Model (With Forced-Outages)"

(See Sect. 2.2.1 for further details.)

Unit Increment Position Increment Increment
in Energy Cost

r i Loading E . XriOrder ri ri

(GWH) (10 3

I 1 9 11.93 193.3

I 1 4 69.35 381.5

2 8 14,01 59.5

HI 1 2 65.70 149.8

2 6 80. 69~ 153.3

IV 1 3 131.40 515.1

2 7 70.85 235.2

V 1 1 186.15 418.8

2 5 288.81 493.9

Utility Production 918.89 2600.4

Emergency Purchases (at 10$/MWH) 30.11 301.1

Total 949. 00 2901.5

Loss-of-Load Probability, LOLP = 15. 6%



Table C.10

Example 3 : SYSINT Output Totals

STRATEGY IC a

PERICC AUPBER

TITLE :" SAMPLE SYSINT FUN PERFCRPING CALCS. FOR EXAPPLES 3 THRU 5

TITLE :0 EXAMPLF NO. 3 : PRfPABILISTIC MODEL I hITH Ft)CE-CUTAGES I

INDEX 10N0 NAME LO FACT CPER HRS
STARTUPS & SHUTDOWNS

AUPBER MEGABTU CCSTIS)
EXPECTEU PROOUCTION

ELECT(Gwmi MEGASTU COSTIS
TOTALS

MEGABTU COST(S) IAD EX

3.16 3473
J. !7C932
0.168428
3. 461762
0.113251

119.3353
653. 5000
657.OCOO
E57.000oo
620.5)00

4. 59C1
0. 3cj
C.CCCo
0.0000
G. 0000

F C k E R :
INSTALLED CAPACITY
ON-L INE CAPACITY
PEAK LOAD FCRECAST
ON-LINE MARGIN a PEAK
SFINNING RESERVE

LOSS-CF-LOAD PRCBAeILITY

E N E R G Y :
EXPECTED UEMAND
EXPECTED PRUCUCT ICN

I NUCLEAR
(NON-NUCLEAR

EXPECTEC EMERG PURCH
(UNSERVED BY DIRECT CALC

230. 2C7. 11.93353
0. J. 83.3561,j
0. 0. 146.38576
0. 0. 202.25111
U. 0. 474.961r1

MEGAATTS
2030
2COO
1800
200

0
J.156473

GWH
949.0000
918.8088
621.34751
297.5413)

30.1112
30.1112)

C 0 L L A R C 0 S T : SYSTEM
PRODUCT1UN FUEL 2600354.
STAkTUPS & SHLTOCWAS -

SUB-TOTALS 260C6C1.
EPEPG.PURCH.8 13.00 S/MH...JQ(AZa

TOTAL 2901113.

1
2
3
4
5

101
2C2
303
4(4
505

I

V
V

I

214EIC4.
881902.

1595258.
1875789.
5070586.

193323.
44J951.
303099.
75Jil.
912706.

215033.
3d 1902.

195258.
1875189.
5vu705 6.

193530.
440551.
30304.
TS73t.
91270t.

4

(I
Co

NUCLEAR
1215804.

1215804.

NCN-NUCLEAR
1384590.
13.. 207.
1384796.

a
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Table C.l11
Example 3 :SYSINT Detailed Calculations
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Table C.12

Example 4 on Reference Utility System:

"Single Increment Booth-Baleriaux Model"

(See Sect. 3.3.1.3 forfurther details.)

Unit Increment Position Increment Increment
in Energy Cost

Loading
r . Order Eri Xri

(GWH) (103 $)

I 1 5 11.93 193.3

II 1 4 30.85 152.2

2

III 1 2 184.54 375.0

2

IV 1 3 195.17 710.6

2

V 1 1 496.40 949.4

2)

Utility Production 918.89 2380.5

Emergency Purchases (10 $/MWH) 30.11 301.1

Total 949.00 2681.6

Loss-of-load Probability, LOLP = 15.6%



Table C.13
Example 4 : SYSINT Output Totals

STRATEGY IC =

PERIGC NLMBER

INDEX ICAO NAME

2
3
4
5

ICi
202
3C3
404
5C5

I vIIIII
IV
V

2

2

TITLE :" SAMPLE SYSINT RUN PERFORMING CALCS. FOP EXAMPLES 3 THRU 5

TITLE :" EXAMPLE NO. 4 SINGLE INCREMENT BOOTH-BALERIAUX MODEL

LC FACT OPER HRS

0. 163473
0.211304
0.642625
3.4455S4
O.850000

119.3353
168.4425
643.0387
522.2739
620.5000

STARTUPS & SHUTDOWNS
NUMBER MEGABTU COST(S)

4. 59C1
e.1273
0.3878

12. 1473
0.00CO

230.
6502.

465.
43730.

0.

2C7.
3251.

88.
17492.

0.

EXPECTED PROCUCTION
ELECT(GWH) MEGABTU

11.93353
30.85035
184.53487
195.17007
496.39998

2 14EC4.
304339.
1973956.
1776594.
5274250.

COST(S)

193323.
152169.
375J52.
710638.
949365.

TOTALS
MEGABTU COST( 5) INDEX

215033.
310840.
1974422.
1820324.
5274250.

19353C.
15542C.
375140.
72813C.
949365.

1
2
3
4
5

P O W E R :
INSTALLEC CAPACITY
CN-LINE CAPACITY
PEAK LOAD FCRECAST
CN-LINE MARGIN i PEAK
SPINNING RESERVE

LCSS-OF-LOAD PROPAEILITY

E N E R G Y:
EXPECTED DEMAND
EXPECTED PRODUCTICN

NUCLEAR
(NCN-NUCLEAR

EXPECTED EMERG PURCH
(UNSERVEO BY CIRECT CALC

C C L L A Q C 0 S T : SYSTEM
PROCUCTICN FUEL 238J547.
STARTUPS & SHUTDOwNS __ 210Q-if

SUB-TOTALS 2401585.
EMERG.PURCH.@ 10.00 S/MWH___jDilj2a

TOTAL 27u2697.

I
MEGAiATTS 0

2CCO CD
2000
1800
2Co

0.15647C

GWH
949.0COO
918.8e88
680. 9348)
237.9540)

30. 1112
30.1112)

NUCLEAR
1324417.

1324535.

NCN-NUCLEAR
105613J.

1077080.
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Table C.15

Example 5 on Reference Utility System:

"Multiple Increment Booth-Baleriaux Model (V-2, then III-2)"

(Among Nuclear Upper Increments V-2, then 111-2)

(See Sect. 3.3.2.1 for further details.)

Unit Increment Position Increment Increment
in Energy Cost

Loading

r Order E Xri

(GWH) (103 $)

9 11.93 193.3

II 1 6 36.71 201.9

2 8 14.01 59.5

III 1 2 65.70 149.8

(Nuclear) 2 5 103.90 197.4

IV 1 3 131.40 515.1

2 7 70.85 235.2

V 1 1 186.15 418.8

(Nuclear) 2 4 298.24 510.0

Utility Production 918.89 2481.0

Emergency Purchases (10 $/MWH) 30.11 301.1

Total 949.00 2782.1

Loss-of-load Probability, LOLP = 15.6%



Table C.16

Example 5 : SYSINT Output Totals

STRATEGY ID =

PkRICC NUMBER

2 TITLF :b SAMPLE SYSINT RUN PkRFORMING CALCS. FOR EXAMPLtS 3 T.4RU 5

TITLF :" E XAMPLL N. 5 : MJLTIPLE INCREPtAT BOCTH-1A (IAUX 0oDL IV-2.T14EN III-2) "

IACEX ICNC NAME LC FACT

2
3
4
5

ICl
2C2
303
404
ScS

II

I v
V

0*163413
0.347356
0.174412
0.461762
0.629441

CPER HRS

119.3353
367.0182
k57.00UO
657.0000
620.5003

STARTUPS E SHUTDCwNS
AUMBER MEGABTU CJST(IS

4. 55C1
26.1583
C.:30J
0.03cO
C.0000

230.
20927.

J.
0.
0.

2C7.
1I 46 3.

j .
0.
0.

EXPECT EU PROCUCT ION
ELECT(GWH) ME[LARTU CCSI(S)

11.93353
50. 71393

169.59633
2C2.251 71
4 8. . 39 3 31

214804.
522E 35.

1927363.
18757S9.
516.316.

191323.
261419.
34719.
750316.
923834.

TJTAL S
MtkARTU COSTIM)

215033.
543765.

182 7363.
1175789.
S t ft 1..

19353c.
2718aq?.
3411 45.
75316.
9248 Ii.

P 0 W E R :
IAST ALLEC CAPACITY
ON-LINE CAPACITY
PEAK LOAD FORECAST
Ch-LINE PARGIN i PEAK
SPINNING RESERVE

LCSS-CF-LCAD PRCeAFILITY

E h E R G Y :
EXPECTED DEPANC
EXPECTED PROCUCTION

I AUCLEAR
(NON-NUCLEAR

EXPECTED EMERG PURCH
(UNSERVED BY DIRECT CALC

MEGAbATTS
2000
213)
1C00
200

80
0.156470

GwH
949.300J
918.8188
653.9896)
264*85521

30. 1112
30.1112)

C C L L A R C 0 S T : SYSTEM
PRODUCTION FUEL 2481010.
STARTUPS & SHUTDCWNS .. _19

SUB-TOTALS 2491760.
EMERG.PURCH.a 10.00 I/MWH..3QJll1a

TOTAL 2792812.

3
4

NUCLEAR
1276033.

1276033.

NCN-NUCLEAR
1205058.

1215728.

I
4 b-. a
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Table C.17
Example 5 :SYSINT Detailed Calculations
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£.0C13022lC(0 .. CCCC2 £.oO02 1.0220 .00000 1.200000 1.0000) 11 5£000) 0.q£02001o*
0.06 :r C.10CO 0.of 2000 .0 19 0202.250000024 n.0000 1 .~?00 0.!coon 002 OOOO .UIO800Q01o QO.'0(ooOO,

1.CC(OCCI C.0

0..((1J300 I.CGCCCCOCA .)OTO 1.00200 .0jo0220000 £.00000 1.220000000 I.000000004 0.20380000'l0 2.£00

C:G000((001 006020 0......0 .200(2 0.1640"00 o0( 000010208 .O£O
8 0

0004.03201
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C.£O4oNC(Cll C.816302 J.I000 # .T801200T 2.2205.T2012 0.1114M012 2.00080I01N ).J1N1s01I 0.00200004 J2.0£IC18l0

0.00221000I 0.10 Soo00 0.100CT000 co0

4I814 LNTC 0£001 
1
000.K.I,.l1 I02 0p0 £200 1100 1 10 200 00. 4412200

.C1000 1.0000 £.01000200 wI .000220.OCOCCE0oJ I.2000000 .. 0.Co.,,.; .o12101 .200012R v.-014500031
C::c.o2120 l:0.0 1c.O~~ ':.IAl s.) 110 0. 28£ 0.14143111 . 1N2s0000a11a 2. I15 010 1 . jesCC4311 02 . )1500022 J . CN-0000 0.T10c0104
0.0G £00E 1 "Ill IN",20C 00100 £0018 110.£ 0001.02 k

( 00 S £s 'l. IC). 2 3 .01 ,100. 20.0213k 44,4. 002200o

%ITH, PLANT CF lNTgIEOT 000tA01.A2..I(00 1 ON .£00.00) [PA 29 110£. 008d22 010
1. (CC",(1120 I.C(CCCC20Q 1.COOJ(0~~ I.CC302.1 I. 200T£0.2T 1) .2.100T2211 .)2030 3 0001..3]J 4.900080ta0 0.002000

41)0*2(1o2" PLAN CO IOS.O 0800££,.1431S,00 111 010 3.410.0 0. .. l1o 20020.112si 020.ta0 0

C1.CCCCOC I. CC 020op. 1.1aU00002 .. OCO 012 1) .0 to 02'"I I .0.100.322 1 1. 330;1)0 1. 0011031 C:9611000 0. I?10200.0

0.dLCooTCC0:1 C.1TOCCOG9 0.C070020 0.01600(0204 0.30N20C24 .0100001 0.COOINO00 .0 410fs.12S).0.2soi

C~ sICC 0930l P0000soo 04001 LOPOC 000100 0.S010 0 1 .0710,0

330 00 10 200 300 0.19008001 10 3.804£36 200.000000

31 0 000Co CCC J k.NTIOESO P0 10.0.04 oo~o ..0:000 122.21OOD I£00c 1 . 00010£. O~t$35 02.,221
rC siOoooIO ..f0k)101I 0.066425020 0.2204 0.005044 (.200420241 2 .21302020 J.0.121)2 C. 104000 bO,.20.£

02J121323 23.049020O16 0.031121.017 0.12111so00 .02000(00 0.000120202z u 00232io01 0.,)009003j", 0.301422 4.008crs
C. C

::*I.CL PIANT l £180 P2T02I. Oft02 10 00.00 TIox. 0 £802. T222
I C(CCoCO I CCOOCCOOO I.Co0000200I .000002020 .00200000 1.000C00000 I.CcCCCOo t.2000) C.i 0400.21 0.3101.

® as 30 0 111 TN 01 '15101 001 011CO 4.0 0144
000 210 0C 90 £00 0.2)10 0..1020c C4.7(10204 02 19-01 1jioi .. ?s

C0000022 0.0000001 0.0?1O 0.02£N1?S008 0. 0100000 0.00 c0012002Po 0.20200020£ O2.0211ojOJOS 0.20£100200000

1(02 2 C .0 1o IZ1 3..0 k 1.?i14

WITH(1 PLANT 'If £thr8000 P0"10 ::1 1. 10212 360j £0.2 18 . 2 (00 00.11

0.203342200 C. 00Go 8)10 .00 ;2£ .04 0.000(204,0.280000 . 2000014 2.10£'. 20. 0.1001 .21 802

O~ s~w Z a10 008 £09 000 320 10885 2 %1 0014013611 J.2 144)0: 17)I -. 1-11*1
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Table C.18

Example 6 on Reference Utility System:

' 4ultiple Increment Booth-Baleriaux Model (111-2, then V-2)"

(Among Nuclear Upper Increments 111-2, then V-2)

(See Sect.3.3.3 for further details.)

Unit Increment Position Increment Increment
in Energy Cost

Loading

r Order E X

(GWH) (103 $)

1 9 11.93 193.3

II 1 6 36.71 201.9

2 8 14.01 59.5

III 1 2 65.70 149.8

(Nuclear) 2 4 131.40 249.7

IV 1 3 131.40 515.1

2 7 70.85 .235.2

V 1 1 186.15 418.8

(Nuclear) 2 5 270.74 463.0

Utility Production 918.89 2486.3

Emergency Purchases (10 $/MWH) 30.11 301.1

Total 949.00 2787.4

Loss-of-load Probability, LOLP = 15.6%



Table C.19

Example 6 : SYSINT Output Totals

STQATECY IC z

PERICC NUMBER

2 TITLE :" SAMPLE SYSINT RLN PERFORIOIN6 CALCS. FCF EXAMPLES 3 T II 5 "

TITLE :" EXAPPLE NO. 6 : MULTIPLE INCREMENT BU(TH-RALEMIAUx J,)EL (1iI-2,THEN V-21

INDEX ICAO NAME L FACT CPER HRS

3
4
5

IC1

3C3
4C4
50

IIIII

IV
V

3.163413
J.347356
a .50000

).4611f2
J.782345

119.3353
367.0782
657.C 000
f5 7. C(03
f20.5000

STARTUPS & SHUTDOWNS
NLOER 4EGABTU COSTISI

4.59CI
26. 1513
0.0000
0. )31
C.CCCo

230.
20927.

0.
3.
0.

2C7.

14o 3.
0.
2.
0.

EXPECTED PfDOnLCTITr,
ELECTIGw1i- ME6APTU CC.T(6Sj

11.93353
53.71393

I 7. U9959
2d.25L71
456.8q964

i14E64.
5228 3d.

21C2400.
1875 785.

4896S02.

L9.) 32' 3.
261,19.
199436.
r') j It.
481402.

TSTALS
mi LA3TI JSTI I I I'l EA

zis.33,

21 J/'4j.

4I, 149 12~.4:/ isJ.

I ~~s3
?IJ~.

1~. ~ IL.
'i1~J2.

P u w E R :
INSTALLED CAPACITY
GA6-LINE CAPACITY
PEAK LOAD FORECAST
ON-L INE MARCIN i PFAK
SPINNING RESERVE

LCSS-OF-LOAD PHCNAeILITY

E N E k G Y :
EXPECTED OEMANC
EXPECTED PRCCUCTICN

( NUCLEAR
(NCN-NUCL EAR

EXPEC TEC EMERG PLRAH
(UNSFRVEC BiY OPQEC! L AL(

MEGAhATTS
2000

183))
icC

***49*4*e

0.15641C

GWH
949.CCCC
919.aed
653 . 58961
264.8552)

3).1112
30. 11121

C C L L A R C C 5 T : SYSTEM
FFOCUCT10'4 FUEL 2486316.
STARTUPS E SHLTDCNS - LS oU&

SUB-TCTALS 24969 86.
EMEkG.PLRCH.a 10.00 S/MiH---QJIil2,

TOTAL 27Q8.58.

~1

NlCLE Ak

128125F.

12d12 5E.

12C%%3.

1 1 '2~.
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Table C.20
Example 6 :SYSINT Detailed Calculations

I wllr 0t 9616 MWLi0 "b010 AvpoCp J4000 G96- * 1 pb

a.. ,.0 .. 0.00... . ............. 0.3 PP O.s..3...... ....... ., 0* .................. 00£. ...........

... UCt J.Ci ' S.A,310OOD3 3.0000.10000 13.CCCCoAJ33 3.000Cc30000 3..3003u3 I.UO304 .0000011 0.09W.0..D .01; .
A41001000c .scooCcook) 0.500000.300 0204000 0.14,0004.4 C.100030003 C 10C" .0

1 ,001 at -10 PI "M00 Plu £00006 .0ttwe0. i # . 0

If IO04 141. a Sift3 s0a I.COCCO.)00 ld6. 14V02 116. 14900L

CF0030 .) 1411,11i P40011..l-.310£0& I oP 3lj)o*3 33 1. - i P1,5*U 21).4ii3
3. ooou I.01£U0 .. coaloO .. 0 .Cc000o.,oo I.Uoooc a 00 .0604013 I.) 0000 00UU30 1.40.14~0040 031,00020.1 ""10040

C.,

U3
3

.U #N1*33W 43 om105 P0.ki3*.i I060 If"& . 1).) r 1 01M*0 . 21 1). ).H3I
I.330000 3 .300103 .CoOOooo 3. Cocoo o CL I00 3.00300000 1. 30000303I I .0400U3 O.V151100404 0.0 IiooC4

0.POOOC(C5 0.P3.00"0 6.11600000S0 U.Y?01)1 "I't)MOO.l Ic1 C. k&40310.32033?000CjJzo34:'0 .6,1f,0004O' 02.OO1IUUQOO
1.0

MA I30C Pt Polk P0*00a Taf3 *09600R IM1 4.03 0001*4 .
IC.) 0 o a0 IC .GUQ0000 61.o0"M0 611.999911 3

a~l INI0 I3 asUIOt P00110:.I.lf101X Up 100.00 3030*0 at 01: 220.3.0013
cc00000 c.oo0000 3.C06000 I .30." 1.000 OU .UOOU .CCCUUUUQ 3."000000 0.*1000 J.99.01500.

'I.SIf 1c .OOCX ".19042.13 I2.Z)103,11 31) 5J0 3.306 011)3 0032100a0 0.0111000 1 1500004 0.0C0l'0002
0.1044006 4.0

.................# ...... ................. 0... 00

0300,CII PLANT OP 34110013 P0333... tOjl '4 300.30 IfA 1P .1 P034*1 . 20.000
I1a0cc(crloft 9.010000003 I.0,00000.30 I.i3343.3ak 3.004waaw.4) I.000030000t 1.COCIcUooof I.U3UO~U.3 0.961150001 o.9I01ws.oo

'.11".0036 .05C C.~~~ it atscz.I 3.1521340?0 o305304161P2100" U0.0-00! .05!00 0.01P?50(02
0.0011,0099 0.0

I Inh 0041 P;£IIU "I10 £0fl0 0113.11 3301.0 f 1
a .04 U0 00 103 1.OCCCCOU Ill. 1-9090? 114.6599971

I'll" PL*0! CO 301. 04? 0004 .14R..I!000A UP . 100.00 310*) . Z* 000£: 1"00U.00UIO
.tC't3-j . "S.1C!.'CJ) J. CJOOO I.C0J;,Jo34 i.3432jij 3.13 .43333U0U I.IOUOOUO3., l.Ou*O*3UO 0.401ses'S0)03 .9)3?l000

0.000*1sscm s ?%%00 0% J.641,300021 C.0001110 U?0005. C.l150322a 0.09113I004 J.303025331 O.0flz000, 0.231cips04
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APPENDIX D
NUMERICAL RESULTS FOR CASES I THROUGH VI ON

HYPOTHETICAL UTILITY SYSTEM OF CHAPTER 5

Section 5.3 presented the customer loads, generating

equiprrent and the three maintenance and refueling strate-

gies investigated. (Figures D.l to D.3 present the

reactor-cycle notation used in tabulating the results for

each strategy). Section 5.4 indicated the values chosen

for the remaining parameters of interest. Table 5.8 pre-

sented the structure of the Case I through VI studies.

Tables D.l through D.6 present the same Case-by-Case

results presented throughout Chapter 5. In addition,

Table D.7 presents the Case I results at the end of the

first shape iteration when T = *, These results differ

from Case II input only with respect to the planning horizon

(72 month rather than 48 month as in Case II).

Tables D.8-D.25 present strategy-by-strategy, Case-by-

Case detailed results for each reactor-cycle. In addition,

Tables D.26-D.28 present Case I strategy-by-strategy

data at the end of the first shape iteration.



Figure D.1

Reactor-Cycle Notation for Strategy 1 (Annual Refuelings)
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Figure D.2

Reactor-Cycle Notation for Strategy 2 (Gradual Shift to Longer Cycles)
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Figure D.3

Reactor-Cycle Notation for Strategy 3 (Immediate Shift to Longer Cycles)
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TABLE D.1

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE I

(72 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs,
0.0 Shape Rejection Criterion)

Direct Calculation Using 7 = 0.25

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 62 51 49

Average cycle length (months) 12 14.9 15.2

System nuclear capacity factor 0.642 0.656 0.658

106$

(106 MWH)

Fossil fuel 293.205 276.853 274.082

(90.068) (85.836) (85.196)

Startup-shutdown cost 2.022 1.704 1.650

Emergency purchases 0.655 0.407 0.363

(0.079) (0.048) (0.043)

Nonnuclear production 295.882 278.964 276.095

(90.147) (85.884) (85.239)

Nuclear fuel 294.690 297.709 300.137

(189.814) (194.077) (194.722)

System production 590.572 576.673 576.232

(279.961) (279.961) (279.961)

Fixed firm purchase 133.920 133.920 133.920

(81.468) (81.468) (81.468)

Penalty for short-notice enrichment
changes 2.000

System Total 724.492 710.593 712.152

(361.429) (361.429) (361.429)
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TABLE D.2

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE I

(48 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

106$

(106 MWH)

Fossil fuel 184.223 176.348 173.250

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.497 1.281 1.227

Emergency purchases 0.464 0.317 0.265

(0.053) (0.036) (0.030)

Nonnuclear production 186.184 177.946 174.742

(51.756) (50.097) (49.420)

Nuclear fuel 198.267 197.189 199.821

(118.376) (120.035) (120.712)

System production 384.451 375.135 374.563

(170.132) (170.132) (170.132)

Fixed firm purchase 95.166 95.166 95.166
(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 479.617 470.301 471.729

(224.444) (224.444) (224.444)
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TABLE D.3

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE III

(48 Month Horizon, 0% P.V. Rate, Reference Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

106$

(106 MWH)

Fossil fuel 212.434 203.326 199.928

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.684 1.430 1.373

Emergency purchases 0.528 0.355 0.299

(0.053) (0.036) (0.030)

Nonnuclear production 214.646 205.111 201.600

(51.756) (50.097) (49.420)

Nuclear fuel 158.416 153.987 154.678

(118.376) (120.035) (120.712)

System production 373.062 359.098 356.278

(170.132) (170.132) (170.132)

Fixed firm purchase 108.624 108.624 108.624
(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 481.686 467.722 466.902

(224.444) (224.444) (224.444)
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TABLE D.4

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE IV

(48 Month Horizon, 12% P.V. Rate, Reference Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

106$

(106 MWH)

Fossil fuel 167.908 160.762 157.850

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.388 1.194 1.142

Emergency purchases 0.427 0.294 0.245

(0.053) (0.036) (0.030)

Nonnuclear production 169.723 162.250 159.237

(51.756) (50.097) (49.420)

Nuclear fuel 220.395 221.107 224.731

(118.376) (120.035) (120.712)

System production 390.118 383.357 383.968

(170.132) (170.132) (170.132)

Fixed firm purchase 87.340 87.340 87.340

(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 477.458 470.697 473.308

(224.444) (224.444) (224.444)
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TABLE D.5

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE V

(48 Month Horizon, 7% P.V. Rate, Low Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

106$

(106 MWH)

Fossil fuel 184.223 176.348 173.250

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.497 1.281 1.227

Emergency purchases 0.464 0.317 0.265

(0.053) (0.036) (0.030)

Nonnuclear production 186.184 177.946 174.742

(51.756) (50.097) (49.420)

Nuclear fuel 141.229 141.156 143.463

(118.376) (120.035) (120.712)

System production 327.413 319.102 318.205

(170.132) (170.132) (170.132)

Fixed firm purchase 95.166 95.166 95.166

(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 422.579 414.268 415.371

(224.444) (224.444) (224.444)
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TABLE D.6

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE VI

(48 Month Horizon, 7% P.V. Rate, High Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 38 33 31

Average cycle length (months) 12 14.5 15.2

System nuclear capacity factor 0.638 0.647 0.651

1G6 $

(106 MWH)

Fossil fuel 184.223 176.348 173.250

(51.703) (50.061) (49.390)

Startup-shutdown cost 1.497 1.281 1.227

Emergency purchases 0.464 0.317 0.265

(0.053) (0.036) (0.030)

Nonnuclear production 186.184 177.946 174.742

(51.756) (50.097) (49.420)

Nuclear fuel 255.223 253.211 256.169

(118.376) (120.035) (120.712)

System production 441.407 431.157 430.911

(170.132) (170.132) (170.132)

Fixed firm purchase 95.166 95.166 95.166

(54.312) (54.312) (54.312)

Penalty for short-notice enrichment
changes 2.000

System Total 536.573 526.323 528.077

(224.444) (224.444) (224.444)
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TABLE D.7

REVENUE REQUIREMENTS AND UNDISCOUNTED
ENERGY FOR CASE I AT END OF FIRST SHAPE ITERATION

(72 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs,
No Shape Constraints)

Strategy S-1 S-2 S-3

Downtime to horizon (reactor-months) 62 51 49

Average cycle length (months) 12 14.9 15.2

System nuclear capacity factor 0.642 0.656 0.658

106$

(106 MWH)

Fossil fuel 293.205 276.853 274.082

(90.068) (85.836) (85.196)

Startup-shutdown cost 2.022 1.704 1.650

Emergency purchases 0.655 0.407 0.363

(0.079) (0.048) (0.043)

Nonnuclear production 295.882 278.964 276.095

(90.147) (85.884) (85.239)

Nuclear fuel 294.583 297.456 299.761

(189.814) (194.077) (194.722)

System production 590.465 576.420 575.856

(279.961) (279.961) (279.961)

Fixed firm purchase 133.920 133.920 133.920

(81.468) (81.468) (81.468)

Penalty for short-notice enrichment
changes 2.000

System Total 724.385 710.340 711.776

(361.429) (361.429) (361.429)
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TABLE D. 8

REACTOR-CYCLE RESULTS FOR STRATEGY I IN CASE I
2

(72 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs, V = 0)
R EJ

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5280 1.703 .683
A-2 10 5662 1.896 .992 2.876
A-3 10 5688 1.935 1.240 3.164
A-4 10 5799 1.931 1.063 3.178
A-5 10 5760 1.905 .921 3.036
A-6 10 5746 1.924 1.096 3.153
A-7 10 5950 1.909 1.182 3.226

B-1 1 * 638 1.845 .499 -
B-2 10 6418 1.832 .683 3.4t
B-3 10 6440 1.771 .992 2.907
B-4 10 6240 1.854 1.240 3.447
B-5 10 6230 1.825 .963 3.123
B-6 10 6180 1.815 .921 3.113
B-7 10 6500 1.834 1.096 3.471

C-1 10 6180 1.875 .683 3.61
C-2 10 6140 1.845 .992 2.786
C-3 10 5760 1.944 1.240 3.296
C-4 10 5740 1.936 1.031 3.096
C-5 10 5720 1.904 .921 2.983
C-6 10 5656 1.942 1.096 3.177

D-1 3* 2129 1.465 .448
D-2 10 5920 1.822 .683 3.2
D-3 10 6060 1.817 .992 3.040
D-4 10 6400 1.830 1.240 3.377
D-5 10 6149 1.827 .963 3.118
D-6 10 5983 1.830 .921 3.013
D-7 10 6120 1.852 1.096 3.255

E-1 9 3297 3.437 .683 3.21
E-2 10 5337 2.086 .992 1.5**
E-3 10 5089 2.183 1.689 4.012
E-4 10 5080 2.091 1.031 3.168
E-5 10 6869 1.718 .846 2.661
E-6 10 5326 1.967 1.122 3.331

F-1 15 7874 2.175 .818 3.21
F-2 10 6372 1.847 1.093 3.410
F-3 10 5882 1.840 1.130 3.086

* Fractional cycle
t Fixed initial condition

** 1.5 w/o U-235 was lower limit permitted by QKCORE.

(
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TABLE D. 9

REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE I
2

(72 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs, VREJ = 0)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months. Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5270 1.690 .959
A-2 12 6720 1.913 1.309 3.592
A-3 12 7280 1.900 1.408 3.927
A-4 12 7580 1.883 1.408 3.936
A-5 15 7775 1.979 1.408 3.966
A-6 12 7165 1.884 1.173 3.497

B-1 1* 667 1.802 .657 -
B-2 10 6420 1.819 .959 3 .4t
B-3 12 7566 1.798 1.309 3.650
B-4 15 7500 1.942 1.408 3.965
B-5 14 8060 1.872 1.408 3.984
B-6 12 7732 1.808 1.173 3.689

C-1 lot 6300 1.844 .959 3.6
C-2 12 7260 1.873 1.309 3.620
C-3 12 7218 1.902 1.408 3.863
C-4 15 7500 1.988 1.408 3.875
C-5 12 7480 1.878 1.248 3.760

D-1 3* 2100 1.481 .657
D-2 10 5340 1.905 .959 3.2
D-3 15 7820 1.894 1.408 3.841
D-4 12 7460 1.844 1.408 3.928
D-5 14 8060 1.872 1.408 3.975
D-6 11 7089 1.786 1.070 3.243

E-1 15 7200 2.284 .959 3.2
E-2 12 7623 1.843 1.401 3.838
E-3 13 7133 1.907 1.408 3.990
E-4 12 8174 1.781 1.244 3.822
E-5 15 7855 1.916 1.248 3.880

F-1 17 9060 2.053 1.408 3.2
F-2 13 6949 2.045 2.033 4.632

* Fractional cycle

t Fixed initial condition
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TABLE D. 10

REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE I

(72 Month Horizon, 7% P.V. Rate, Reference Nuclear Unit Costs,
2

V
R EJ

= 0)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (l$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5460 1.660 1.397
A-2 14 7206 1.994 1.905 4.101
A-3 12 7652 1.887 1.577 3.998
A-4 15 7406 1.974 1.228 3.626
A-5 12 6960 1.861 1.158 3.451

B-1 1* 710 1.735 .795 -
B-2 12 7265 1.820 1.397 3.718**
B-3 15 8026 1.912 1.905 4.140
B-4 12 7280 1.822 1.092 3.479
B-5 12 7400 1.817 1.092 3.546
B-6 12 7220 1.842 1.158 3.620

C-1 10 6473 1.817 1.312 3.6t
C-2 14 7740 1.953 1.905 4.119
C-3 15 7960 1.998 1.905 4.243
C-4 12 7320 1.876 1.092 3.504
C-5 12 7042 1.892 1.158 3.465

D-1 3* 2057 1.486 1.045
D-2 15 8445 2.023 1.600 5.0**
D-3 12 7880 1.881 1.905 4.242
D-4 12 8076 1.765 1.055 3.465
D-5 12 7480 1.817 1.092 3.550
D-6 11 7225 1.813 1.144 3.651

E-1 17 8295 2.159 1.418 3.2t
E-2 13 7120 1.959 1.905 4.230
E-3 12 6924 1.848 1.092 3.464
E-4 15 7584 1.895 1.185 3.533

F-1 16 8599 2.097 .436 3.2t
F-2 14 8174 2.035 1.158 5.0

* Fractional cycle
t Fixed initial condition

** Short notice enrichment change (5.0 w/o U-235 was upper
limit permitted by QKCORE).
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TABLE D. 11

REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE 1I

(48 Month Horizon, 7% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$l/MWH) ($/MWH) (w/o U-235)

A-1 9* 4960 1.752 0.632 -
A-2 10 5740 1.877 0.915 2.736
A-3 10 5880 1.948 1.227 3.465
A-4 10 5840 1.917 1.245 3.098
A-5 10 5919 1.887 1.339 3.083

B-1 1* 638 1.842 0.446 -

B-2 10 6500 1.819 0.630 3.4
B-3 10 6520 1.769 0.915 3.005
B-4 10 6420 1.836 1.227 3.492
8-5 10 6725 1.804 1.243 3.402

C-1 lot 5640 1.960 0.632 3.6
C-2 10 6654 1.803 0.889 2.765
C-3 10 5740 1.957 1.229 3.431
C-4 10 5800 1.922 1.245 3.061

D-1 3* 2129 1.457 0.442 -
D-2 10 6349 1.765 0.630 3.2t
D-3 10 5520 1.857 0.917 2.941
D-4 10 6614 1.825 1.227 3.494
D-5 10 6402 1.819 1.243 3.270

E-1 9 3697 3.194 0.632 3.2
E-2 10 5186 2.073 0.917 1.5**
E-3 10 5073 2.190 1.627 4.023
E-4 10 5088 2.099 1.313 3.152

F-1 15 7139 2.311 1.395 3.2t

* Fractional cycle
t Fixed initial condition

** 1.5 w/o U-235 was lower limit permitted by QKCORE.
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REACTOF

TABLE D. 12

-CYCLE RESULTS FOR STRATEGY 2 IN CASE II

(48 Month Horizon, 7% P.V. Rate,
Reference Nuclear Unit Costs,, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (l$l/MWH) ($/MWH) (w/o U-235)

A-1 9* 5400 1.671 0.924 -
A-2 12 6760 1.920 1.339 3.710
A-3 12 7240 1.892 1.474 3.812
A-4 12 7580 1.884 1.476 3.941

B-1 1* 710 1.747 0.614 -
B-2 10 6580 1.795 0.924 3 .4t
B-3 12 7422 1.810 1.339 3.674
B-4 15 7480 1.936 1.478 3.888
B-5 14 8524 1.889 1.476 4.374

C-1 1o 6220 1.855 0.924 3.6t
C-2 12 7420 1.865 1.339 3.678
C-3 12 7280 1.902 1.474 3.912
C-4 15 8129 1.999 1.674 4.346

D-1 3* 2057 1.494 0.636
D-2 10 5308 1.914 1.043 3.2
D-3 15 7820 1.892 1.474 3.802
D-4 12 7440 1.816 1.476 3.944

E-1 15 7080 2.308 0.926 3.2t
E-2 12 7609 1.838 1.374 3.743
E-3 13 6940 1.919 1.478 3.912

F-1 17 8834 2.084 1.258 3.2t

* Fractional cycle

t Fixed initial condition
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TABLE D. 13
REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE 1i

(48 Month Horizon, 7% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5560 1.647 1.309 -
A-2 14 7120 2.001 1.837 4.105
A-3 12 7704 1.882 1.601 4.009
A-4 15 8129 1.976 1.574 4.182

B-1 1* 710 1.735 0.772 -
B-2 12 7260 1.820 1.311 3.715**
B-3 15 7980 1.912 1.837 4.105
B-4 12 7392 1.786 1.302 3.561

C-1 1o 6609 1.799 1.240 3.6 -
C-2 14 7560 1.964 1.837 4.081
C-3 15 7940 1.992 1.833 4.189
C-4 12 7004 1.883 1.336 3.311

D-1 3* 2057 1.487 0.970
D-2 15 8373 2.032 1.492 5.0**
D-3 12 7865 1.874 1.833 4.175
D-4 12 8228 1.764 1.290 3.584

E-1 17 8405 2.142 1.313 3.2t
E-2 13 6960 1.966 1.835 4.177
E-3 12 7020 1.843 1.302 3.508

F-1 16 7634 2.238 1.242 3.2t

* Fractional cycle
t Fixed initial condition

** Short-notice enrichment change (5.0 w/o U-235 was upper
limit permitted by QKCORE).
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TABLE D. 14

REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE IlIl

(48 Month Horizon, 0% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (l$l/MWH) ($/MWH) (w/o U-235)

A-1 9* 5060 1.301 0.665 -
A-2 10 5880 1.290 0.799 2.886
A-3 10 6040 1.315 1.025 3.452
A-4 10 6047 1.308 1.170 3.200
A-5 10 5968 1.296 1.218 3.087

B-1 1* 660 1.264 0.552 -

B-2 10 6800 1.233 0.653 3.4
B-3 10 6397 1.231 0.799 3.114
B-4 10 6480 1.250 1.025 3.402
B-5 10 6660 1.252 1.170 3.375

C-1 l0 5680 1.341 0.655 3.6t
C-2 10 6654 1.284 0.779 2.792
C-3 10 5720 1.318 1.027 3.389
C-4 10 5700 1.320 1.172 3.006

D-1 3* 2107 1.129 0.552 -
D-2 10 6338 1.220 0.653 3.2t
D-3 10 5681 1.249 0.825 3.030
D-4 10 6414 1.265 1.025 3.312
D-5 10 6360 1.261 1.170 3.292

E-1 9 3268 2.445 0.761 3.2
E-2 10 5008 1.583 0.877 1.5**
E-3 10 5073 1.453 1.294 3.854
E-4 10 5039 1.403 1.237 3.220

F-1 15 7139 1.672 1.444 3.2t

* Fractional cycle
t Fixed initial condition

** 1.5 w/o U-235 was lower limit permitted by QKCORE.
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TABLE D. 15
REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE Ill

(48 Month Horizon, 0% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (l$l/MWH) ($/MWH) (w/o U-235)

A-1 9* 5342 1.272 0.756
A-2 12 6702 1.271 0.981 3.628
A-3 12 7300 1.269 1.227 3.907
A-4 12 7600 1.260 1.367 3.949

B-1 1* 710 1.239 0.566
B-2 10 6816 1.221 0.698 3.4
B-3 12 7300 1.220 0.981 3.746
B-4 15 7780 1.224 1.369 4.022
B-5 14 8582 1.233 1.350 4.367

C-1 1ot 6080 1.308 0.756 3.6
C-2 12 7600 1.264 0.979 3.706
C-3 12 7141 1.261 1.229 3.838
C-4 15 8129 1.279 1.516 4.354

D-1 3* 2057 1.152 0.665 -
D-2 10 5308 1.246 0.927 3.2t
D-3 15 7980 1.239 1.227 3.917
D-4 12 7487 1.230 1.367 3.948

E-1 15 7042 1.664 0.798 3 .2 t
E-2 12 7609 1.280 1.094 3.716
E-3 13 6980 1.235 1.369 3.963

F-1 17 8288 1.566 1.367 3.2

* Fractional cycle

t Fixed initial condition
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TABLE D. 16

REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE III

(48 Month Horizon, 0% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5400 1.266 1.088 -
A-2 14 7325 1.282 1.438 4.154
A-3 12 7704 1.263 1.423 4.047
A-4 15 8129 1.256 1.375 4.143

B-1 1* 710 1.230 0.748
B-2 12 7580 1.221 1.088 3.947**
B-3 15 8080 1.218 1.438 4.108
B-4 12 7740 1.204 1.244 3.725

C-1 lot 6440 1.289 1.088 3.6t
C-2 14 7780 1.275 1.438 4.125
C-3 15 7640 1.259 1.438 3.992
C-4 12 7382 1.242 1.197 3.589

D-1 3* 2057 1.145 0.904 -
D-2 15 8373 1.333 1.237 5.0**
D-3 12 7780 1.240 1.436 4.109
D-4 12 8228 1.192 1.189 3.596

E-1 17 8414 1.556 1.090 3.2t
E-2 13 6820 1.285 1.438 4.073
E-3 12 7377 1.223 1.242 3.768

F-1 16 6551 1.717 1.453 3.2

* Fractional cycle
t Fixed initial condition

** Short-notice enrichment change (5.0 w/o U-235 was upper limit
permitted by QKCORE).
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TABLE D. 17

REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE IV

(48 Month Horizon, 12% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (l$l/MWH) ($/MWH) (w/o U-235)

A-1 9* 4840 2.099 0.569 -
A-2 10 5780 2.284 0.954 2.690
A-3 10 5620 2.421 1.314 3.343
A-4 10 6002 2.348 1.295 3.274
A-5 10 5919 2.293 1.336 3.013

B-1 1* 638 2.250 0.421 -
B-2 10 6320 2.271 0.567 3.4
B-3 10 6366 2.151 0.954 2.803
B-4 10 6340 2.286 1.312 3.605
B-5 10 6749 2.208 1.263 3.433

C-1 lot 5420 2.463 0.569 3.6t
C-2 10 6654 2.160 0.882 2.622
C-3 10 5546 2.458 1.314 3.451
C-4 10 6080 2.348 1.293 3.282

D-1 3* 2129 1.694 0.362
D-2 10 6368 2.153 0.567 3 .2 t
D-3 10 5440 2.303 0.958 2.901
D-4 10 6540 2.230 1.297 3.465
D-5 10 6544 2.220 1.262 3.387

E-1 9 4198 3.499 0.567 3.2t
E-2 10 5380 2.353 0.956 1.5**
E-3 10 5073 2.750 1.923 4.207
E-4 10 5088 2.596 1.312 3.065

F-1 15 7139 2.770 1.336 3.2t

* Fractional cycle
t Fixed initial condition

** 1.5 w/o U-235 was lower limit permitted by QKCORE.
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TABLE D. 18

REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE IV

(48 Month Horizon, 12% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$t/MWH) ($/MWH) (w/o U-235)

A-1 9* 5380 1.965 1.005 -
A-2 12 6722 2.385 1.504 3.668
A-3 12 7160 2.347 1.553 3.773
A-4 12 7691 2.336 1.551 4.056

B-1 1* 638 2.237 0.592
B-2 10 6660 2.189 1.005 3.4t
B-3 12 7380 2.239 1.504 3.672
B-4 15 7460 2.448 1.555 3.866
B-5 14 8582 2.360 1.504 4.429

C-1 1o 6040 2.292 1.005 3.6t
C-2 12 7500 2.278 1.502 3.604
C-3 12 7160 2.375 1.553 3.906
C-4 15 8129 2.519 1.716 4.365

D-1 3* 2129 1.711 0.564
D-2 10 5308 2.388 1.023 3.2t
D-3 15 7640 2.370 1.555 3.702
D-4 12 7520 2.236 1.553 4.021

E-1 15 7200 2.740 1.007 3.2t
E-2 12 7560 2.251 1.551 3.792
E-3 13 7140 2.400 1.555 4.008

F-1 17 8834 2.480 1.173 3.2

* Fractional cycle
t Fixed initial condition
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TABLE D.19
REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE IV

(48 Month Horizon, 12% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5574 1.924 1.409 -
A-2 14 7080 2.520 2.066 4.083
A-3 12 7704 2.326 1.710 4.010
A-4 15 8129 2.492 1.620 4.191

B-1 1* 710 2.097 0.805 -
B-2 12 7100 2.256 1.451 3.603**
B-3 15 7956 2.410 2.066 4.132
B-4 12 7320 2.209 1.332 3.541

C-1 lot 6609 2.170 1.350 3.6t
C-2 14 7560 2.459 2.066 4.081
C-3 15 8029 2.514 1.995 4.264
C-4 12 7004 2.346 1.370 3.304

D-1 3* 2057 1.733 0.955
D-2 15 8373 2.533 1.558 5.0**
D-3 12 7880 2.327 1.995 4.187
D-4 12 8228 2.175 1.317 3.582

E-1 17 8551 2.531 1.451 3.2t
E-2 13 6920 2.469 2.064 4.245
E-3 12 7092 2.286 1.332 3.518

F-1 16 7634 2.686 1.166 3.2t

* Fractional cycle
t Fixed initial condition

** Short-notice enrichment change (5.0 w/o U-235 was upper limit
permitted by QKCORE).
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TABLE D. 20

REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE V

(48 Month Horizon, 7% P.V. Rate,
Low Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (l$l/MWH) ($/MWH) (w/o U-235)

A-1 9* 4740 1.302 0.426 -

A-2 10 5800 1.379 0.627 2.642
A-3 10 5706 1.410 0.875 3.462
A-4 10 6020 1.347 0.856 3.246
A-5 10 5919 1.325 0.930 2.986

B-1 1* 680 1.007 0.320 -

B-2 10 6320 1.325 0.424 3.41
B-3 10 6477 1.269 0.627 2.884
B-4 10 6260 1.305 0.873 3.490
B-5 10 6749 1.274 0.846 3.453

C-1 10 5440 1.416 0.426 3.6
C-2 10 6654 1.289 0.590 2.635
C-3 10 5540 1.399 0.875 3.432
C-4 10 6080 1.348 0.854 3.287

D-1 3* 2087 0.987 0.320 -
D-2 10 6246 1.286 0.424 3.21
D-3 10 5509 1.337 0.665 2.865
D-4 10 6560 1.285 0.858 3.532
D-5 10 6506 1.282 0.852 3.343

E-1 9 4400 2.081 0.424 3.21
E-2 10 5180 1.454 0.665 1.5**
E-3 10 5073 1.525 1.226 4.168
E-4 10 5088 1.472 0.877 3.072

F-1 15 7139 1.662 0.989 3.21

* Fractional cycle
t Fixed initial condition

** 1.5 w/o U-235 was lower limit permitted by QKCORE.
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TABLE D. 21

REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE V

(48 Month Horizon, 7% P.V. Rate,
Low Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$l/MWH) ($/MWH) (w/o U-235)

A-1 9* 5400 1.211 0.676
A-2 12 6722 1.408 0.962 3.682
A-3 12 7180 1.368 1.025 3.778
A-4 12 7604 1.342 1.025 3.981

B-1 1* 667 1.006 0.450
B-2 10 6580 1.290 0.676 3.4
B-3 12 7380 1.300 0.962 3.629
B-4 15 7520 1.390 1.027 3.943
B-5 14 8440 1.347 1.025 4.301

C-1 lot 6120 1.321 0.676 3.6
C-2 12 7500 1.333 0.960 3.662
C-3 12 7220 1.357 1.025 3.903
C-4 15 8129 1.432 1.173 4.349

D-1 3* 2100 0.995 0.450 -
D-2 10 5308 1.385 0.711 3.2
D-3 15 7760 1.363 1.025 3.775
D-4 12 7500 1.286 1.025 3.988

E-1 15 7180 1.644 0.678 3.2
E-2 12 7609 1.321 1.016 3.814
E-3 13 7080 1.365 1.027 3.963

F-1 17 8834 1.496 0.898 3.2t

* Fractional cycle
t Fixed Initial condition
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TABLE D. 22

REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE V

(48 Month Horizon, 7% P.V. Rate,
Low Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5560 1.192 0.930 -
A-2 14 7100 1.468 1.306 4.089
A-3 12 7704 1.360 1.117 4.013
A-4 15 8129 1.422 1.108 4.187

B-1 1* 710 0.975 0.548 -
B-2 12 7200 1.310 0.932 3.673**
B-3 15 7960 1.384 1.306 4.106
B-4 12 7432 1.275 0.889 3.601

C-1 lot 6609 1.269 0.883 3.6
C-2 14 7560 1.415 1.306 4.081
C-3 15 8020 1.431 1.302 4.256
C-4 12 7004 1.357 0.953 3.304

D-1 3* 2057 0.998 0.684 -
D-2 15 8373 1.457 1.051 5.0**
D-3 12 7865 1.359 1.302 4.175
D-4 12 8228 1.268 0.876 3.584

E-1 17 8465 1.532 0.932 3.2t
E-2 13 6920 1.418 1.304 4.186
E-3 12 6980 1.316 0.889 3.466

F-1 16 7634 1.609 0.875 3.2t

* Fractional cycle
t Fixed initial condition

** Short-notice enrichment change (5.0 w/o U-235 was upper limit
permitted by QKCORE).
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TABLE D. 23

REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE VI

(48 Month Horizon, 7% P.V. Rate,
High Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (l$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5080 2.206 0.837
A-2 10 5766 2.374 1.199 2.824
A-3 10 5840 2.484 1.552 3.348
A-4 10 5840 2.484 1.653 3.126
A-5 10 5968 2.446 1.741 3.145

B-1 1* 638 2.650 0.636 -
B-2 10 6769 2.288 0.835 3.4
B-3 10 6260 2.289 1.199 3.002
B-4 10 6554 2.369 1.552 3.526
B-5 10 6720 2.336 1.651 3.394

C-1 10 5680 2.522 0.837 3.6
C-2 10 6654 2.315 1.155 2.792
C-3 10 5720 2.529 1.554 3.389
C-4 10 5707 2.495 1.653 3.011

D-1 3* 2129 1.936 0.588 -
D-2 10 6349 2.255 0.835 3.2
D-3 10 5560 2.373 1.201 2.966
D-4 10 6540 2.369 1.552 3.428
D-5 10 6500 2.355 1.651 3.354

E-1 9 3268 4.346 0.884 3.2t
E-2 10 5380 2.667 1.201 1.5**
E-3 10 5073 2.865 2.106 4.012
E-4 10 5039 2.734 1.742 3.138

F-1 15 7139 2.959 1.802 3.2t

* Fractional cycle
t Fixed initial condition

** 1.5 w/o U-235 was lower limit permitted by QKCORE
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TABLE D. 24

REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE VI

(48 Month Horizon, 7% P.V. Rate,
High Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment

Cycle on-line) (GWH) (l$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5360 2.140 1.157 -

A-2 12 6700 2.430 1.698 3.639
A-3 12 7320 2.426 1.924 3.913
A-4 12 7560 2.426 1.928 3.914

B-1 1* 710 2.508 0.747 -

B-2 10 6660 2.289 1.157 3.4

B-3 12 7420 2.327 1.698 3-726

B-4 15 7480 2.478 1.930 3.848

B-5 14 8566 2.432 1.927 4.407

C-1 1o 6218 2.400 1.157 3.6
C-2 12 7482 2.392 1.696 3.722
C-3 12 7257 2.448 1.926 3.878

CA 15 8129 2.564 2.175 4.342

D-1 3* 2057 1.985 0.820 -

D-2 10 5308 2.440 1.343 3.2
D-3 15 7841 2.423 1.924 3.817
D-4 12 7400 2.345 1.928 3.910

E-1 15 7042 2.966 1.208 3.2

E-2 12 7609 2.357 1.765 3.716

E-3 13 6880 2.471 1.930 3.888

F-1 17 8834 2.673 1.618 3.2t

* Fractional cycle

t Fixed initial condition
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TABLE D. 25

REACTOR-CYCLE RESULTS FOR STRATEGY 3 IN CASE VI

(48 Month Horizon, 7% P.V. Rate,
High Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5560 2.102 1.683 -
A-2 14 7120 2.534 2.364 4.105
A-3 12 7704 2.404 2.089 4.009
A-4 15 8129 2.530 2.038 4.182

B-1 1* 710 2.495 0.993 -
B-2 12 7320 2.330 1.685 3.757**
B-3 15 8000 2.438 2.364 4.105
8-4 12 7380 2.296 1.718 3.539

C-1 lot 6609 2.329 1.597 3.6
C-2 14 7560 2.513 2.364 4.081
C-3 15 7900 2.552 2.362 4.156
C-4 12 7004 2.410 1.720 3.316

D-1 3* 2057 1.976 1.231 -
D-2 15 8373 2.606 1.897 5.0**
D-3 12 7860 2.389 2.362 4.171
D-4 12 8228 2.260 1.706 3.585

E-1 17 8345 2.757 1.687 3.2t
E-2 13 6985 2.510 2.364 4.156
E-3 12 7032 2.372 1.718 3.532

F-1 16 7634 2.868 1.609 3.2

* Fractional cycle
t Fixed initial condition

** Short-notice enrichment change (5.0 w/o U-235 was upper limit permitted by QKCORE)
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TABLE D. 26

REACTOR-CYCLE RESULTS FOR STRATEGY 1 IN CASE I
AT END OF FIRST SHAPE ITERATION

(72 Month Horizon, 7% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (I$I/MWH) ($/MWH) (w/o U-235)

A-1 9* 5280 1.703 0.682 -
A-2 10 5660 1.896 0.997 2.875
A-3 10 5680 1.937 1.244 3.160
A-4 10 5690 1.937 1.032 3.107
A-5 10 5700 1.914 0.918 3.033
A-6 10 5740 1.928 1.102 3.168
A-7 10 5933 1.908 1.179 3.204

B-1 1* 638 1.845 0.495
B-2 10 6420 1.832 0.682 3.4
B-3 10 6420 1.772 0.995 2.895
B-4 10 6200 1.856 1.242 3.427
B-5 10 6316 1.823 0.990 3.190
B-6 10 6220 1.809 0.916 3.109
B-7 10 6520 1.830 1.100 3.470

C-1 lot 6200 1.872 0.682 3.6t
C-2 10 6140 1.847 0.995 2.798
C-3 10 5740 1.944 1.244 3.269
C-4 10 5620 1.943 0.992 3.025
C-5 10 5676 1.913 0.918 3.001
C-6 10 5700 1.941 1.102 3.212

D-1 3* 2129 1.465 0.454 -
D-2 10 5900 1.825 0.684 3.2
D-3 10 6080 1.815 0.997 3.042
D-4 10 6419 1.829 1.240 3.394
D-5 10 6260 1.822 0.990 3.182
D-6 10 6020 1.824 0.918 3.000
D-7 10 6141 1.850 1.100 3.260

E-1 9 3346 3.405 0.686 3.2
E-2 10 5320 2.084 0.997 1.5**
E-3 10 5073 2.185 1.678 4.004
E-4 10 4980 2.099 0.992 3.102
E-5 10 6962 1.721 0.872 2.753
E-6 10 5316 1.960 1.113 3.280

F-1 15 8057 2.146 0.813 3.2t
F-2 10 6260 1.859 1.100 3.445
F-3 10 5857 1.836 1.125 3.014

* Fractional cycle
t Fixed initial condition

** 1.5 w/o U-235 was lower limit permitted by QKCORE
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TABLE D. 27

REACTOR-CYCLE RESULTS FOR STRATEGY 2 IN CASE I
AT END OF FIRST SHAPE ITERATION

(72 Month Horizon, 7% P.V. Rate,
Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (l$l/MWH) ($MWH) (w/o U-235)

A-1 9* 5191 1.702 0.967 -
A-2 12 6780 1.907 1.347 3.583
A-3 12 7220 1.904 1.380 3.907
A-4 12 7540 1.883 1.380 3.910
A-5 15 7660 1.979 1.380 3.890
A-6 12 7218 1.850 1.159 3.567

B-1 1* 667 1.803 0.666 -
B-2 10 6400 1.822 0.967 3.4t
B-3 12 7602 1.797 1.347 3.661
B-4 15 7500 1.942 1.382 3.966
B-5 14 8021 1.871 1.380 3.950
B-6 12 7860 1.808 1.205 3.786

C-1 lot 6300 1.845 0.967 3.6
C-2 12 7220 1.874 1.347 3.591
C-3 12 7140 1.903 1.380 3.816
C-4 15 7440 1.990 1.382 3.854
C-5 12 7513 1.880 1.264 3.807

D-1 3* 2100 1.478 0.666
D-2 10 5480 1.882 0.969 3.2
D-3 15 7640 1.905 1.382 3.811
D-4 12 7460 1.840 1.380 3.896
D-5 14 7980 1.873 1.380 3.943
D-6 11 7238 1.784 1.079 3.361

E-1 15 7217 2.281 0.969 3.2t
E-2 12 7609 1.844 1.375 3.840
E-3 13 7100 1.906 1.382 3.959
E-4 12 8240 1.781 1.266 3.878
E-5 15 7940 1.916 1.262 3.936

F-1 17 9340 2.016 1.378 3.2t
F-2 13 6740 2.067 2.001 4.636

* Fractional cycle
t Fixed initial condition
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TABLE D. 28

REACTOR-RECYCLE RESULTS FOR STRATEGY 3 IN CASE I
AT END OF FIRST SHAPE ITERATION

(72 Month Horizon, 7% P.V. Rate,

Reference Nuclear Unit Costs, No Shape Constraints)

Average Incremental
Cycle Cycle Cycle
Length Cycle Energy Energy Reload

Reactor- (Months Energy Cost Cost Enrichment
Cycle on-line) (GWH) (l$l/MWH) ($/MWH) (w/o U-235)

A-1 9* 5603 1.642 1.322
A-2 14 7060 2.006 1.853 4.088
A-3 12 7704 1.883 1.630 4.001
A-4 15 7275 1.978 1.196 3.543
A-5 12 6960 1.865 1.160 3.490

B-1 1* 710 1.735 0.814 -
B-2 12 7260 1.820 1.397 3.715**
B-3 15 7980 1.911 1.853 4.105
B-4 12 7305 1.820 1.101 3.502
B-5 12 7440 1.816 1.101 3.574
B-6 12 7267 1.839 1.160 3.635

C-1 lot 6580 1.803 1.322 3.6
C-2 14 7580 1.961 1.853 4.074
C-3 15 7960 1.993 1.849 4.217
C-4 12 7320 1.877 1.101 3.528
C-5 12 7040 1.892 1.160 3.464

D-1 3* 2057 1.487 1.008 -
D-2 15 8373 2.032 1.537 5.0**
D-3 12 7885 1.874 1.849 4.191
D-4 12 8200 1.763 1.099 3.563
D-5 12 7540 1.813 1.101 3.564
D-6 11 7225 1.808 1.134 3.616

E-1 17 8391 2.144 1.399 3.2
E-2 13 6960 1.964 1.851 4.168
E-3 12 6980 1.843 1.101 3.485
E-4 15 7519 1.897 1.170 3.504

F-1 16 8712 2.081 0.436 3.2
F-2 14 8082 2.043 1.160 5.0

* Fractional cycle
t Fixed initial condition

** Short-notice enrichment change (5.0 w/o U-235 was upper limit
permitted by QKCORE).
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APPENDIX E
S Y S I N T

E.1 SYSINT Discussion

E.1.1 Introduction

SYSINT is a computerized version of the SYStem INTegra-

tion Model (SIM) discussed in Chapter 3. A summary of

SYSINT characteristics was presented in Section 3.6.

SYSINT performs (1) the Booth-Baleriaux probabilistic

utility system simulation for each time period in the plan-

ning horizon, (2) estimates all of the required cost com-

ponents and, (3) outputs data for SYSOPT, the computerized

SYStem OPTimization Model (SOM) of Chapter 4 and Appendix F.

E.1.2 Code Structure and Mode of Operation

Table E.1 presents a summary of SYSINT subroutine in-

formation while Figure E.1 portrays the general sequence of

operations occurring in a SYSINT production run. (Table

E.2 presents information relative to possible error messages

printed by subroutine ERRMSG.)

The input to SYSINT is modularized into three separate

datasets to permit maximum flexibility in changing para-

meters with a minimum number of input cards: strategy data

(alternative maintenance schedules) change often, period

data (e.g., load forecasts and fossil fuel costs) less

often, unit data (heat rates) seldom.



Table E.1

Summary of SYSINT Subroutines

Purpose

Main Program
Prints Title

BLOCK DATA ------ ------ Initializes data in COMMON areas

SUPSIM SYSINT BASIC Supervises entire SYSINT simulation;

(QUIT) PERIOD Reads Control cards;
STRATG Has ENTRY QUIT to terminate execution if severe
PRESIM error occurs.
PUNCHR
ERRMSG
CMPTIM
ERASE

BASIC SUPSIM PRPNDX Reads basic system information (unit data)
ERRMSG

PERIOD SUPSIM INNDEX Reads period data and stores it on direct acess
ERRMSG device

INNDEX
(PRPNDX)

BAS IC
PERIOD
STRATG
LDGORD
COMPRS

ERRMSG
ERASE

Determines INDEX corresponding to a particular
IDNO;
Has ENTRY PRPNDX to initialize procedure.

Name
Called

SYSINT
(Main)

Calls

SUPSIM
STRTIM

I
-Pb

4 b
ko
I



Table E.1--Continued

Called

By S

SUPSIM

Calls

INNDEX
ERRMSG
ERASE

Purpose

Reads refueling and maintenance strategy input

PRESIM SUPSIM NUSCAL Performs pre-simulation data manipulation for
LDGORD each period
SYSGEN
GWHNRG
PUNCHR
CMPTIM
ERASE

NUSCAL PRESIM GWHNRG Changes spacing of PROB from that determined by
ERRMSG input PKMW to DM

PRESIM INNDEX
COMPRS,
RETMRG
MERGER
ERRMSG
ERASE

U1f
C0

Optimizes loading order according to NORDOP
and encodes order as 1000*NPT + INDEX

Name

STRATG

LPGORD



Table E.1--Continued

Called

By

LDGORD

Calls

INNDEX
ERRMSG
ERASE

Purpose

Performs STATUS vs. IDNO check and then com-

presses and transfers NORDER into NTEMP;
Alters incremental cost curves and optimizes
startup order;
Has ENTRY RETMRG to return incremental cost
curves to original values.

MERGER LDGORD ERRMSG Merges newly started plant increments with those
of previously started plants

SYSGEN PRESIM SUBPLT Supervises actual simulation;
GWHNRG Calculates costs, etc.;
ADDPLT Prints period output.
PROBX
SUSDNO
PUNCHR
ERRMSG
ERASE

SUBPLT SYSGEN ERRMSG Subtracts outages of plant-of interest from PROB

CT1

Calculates energy under section of PROBPRESIM
NUSCAL
SYSGEN

Name

COMPRS
(RETMRG)

GWHNRG



Table E.1--Continued

Ca 1 led

By

SYSGEN

Calls

ERRMSG

Purpose

Adds outages of plant-of-interest into PROB

PROBX SYSGEN ------ Linearly interpolates PROB at a particular equi-
valent load

SUSDNO SYSGEN ------ Estimates number of startup-shutdowns during the
period

PUNCHR SUPSIM ERRMSG Performs output operations for SYSINT-to-SYSOPT
DAYTIM output;
WHEN* Dependent upon IBM Data Utility Program

IEBUPDTE (Release 20) (3)

SUPSIM.
BASIC
PERIOD
INNDEX
STRATG
NUS CAL
LDGORD
COMPRS
MERGER
SYS GEN
SUBPLT
ADDPLT
PUNCHR

QUIT

Lii
N)Q

Prints error messages;
Chooses to terminate execution if severe error
occurs (see Table E.2)

Name

ADDPLT

ERRMSG



Table E.1--Continued

Name

CMPTIM
(STRTIM)
(DAYTIM)

Called
By

SYSINT
SUPSIM
PRESIM
PUNCHR

Calls

WHEN*
TIMING*

Purpose

Calls MIT internal clock routines to monitor
execution time;
Prints subroutine-to-subroutine transfer times;
Has ENTRY STRTIM to start clock and ENTRY DAYTIM
to print calendar date and time.

ERASE SUPSIM ------ MIT Assembler Language program that sets arrays
PRPNDX to zeroes rapidly
STRATG
PRESIM
LDGORD
COMPRS
SYSGEN

*WHEN and TIMING ARE MIT internal clock subroutines

(>,
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Figure E.1

SYSINT Flowchart

SUBROUTINE

- CONTROL CARD

FOR PERIOD N



Table E.2

SYSINT Error Messages Printed by ERRMSG

Number*

1

2

3

4

5

6

7

8

9

A (=10)

B (=11)

C (=12)

Action
after Printing

CALL QUIT

CALL QUIT

RETURN

CALL QUIT

RETURN

CALL QUIT

CALL QUIT

STOP

CALL QUIT

STOP

RETURN

RETURN

Source

NUSCAL

SUBPLT
ADDPLT

NUSCAL

NUSCAL

SYSGEN

SUPSIM
I BASIC
PERIOD

fSTRATG

INNDEX

SUPSIM

LDGORD
COMPRS
MERGER
PUNCHR

QUIT

PUNCHR

PUNCHR

*The error number initiating the ERRMSG print appears as the rightmost digit in
the accumulated ERRCOD which is printed as part of the message.

Error

PROB not dimensioned large enough

Capacity of unit greater than minimum load

Warning of large error in changing PROB spacing

New PROB violate properties of probability function

Warning of large error in total area under PROB

Input deck has improper sequence &/or card

Invalid or inconsistent IDNO encountered

"STOP" Control Card; many small errors; etc.

Input NORDER is improper

QUIT executed "RETURN" to ERRMSG

Nuclear upper increments not consecutive

Nuclear minimums not base-loaded

L,
C;,
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E.1.3 SYSINT-to-SYSOPT Output Data Transfer

SYSINT-to-SYSOPT output can be obtained in either disk,

magnetic tape or punched card format. All are in card

image form with LRECL=80. Table E.3 summarizes the control

cards and output modes.

Figure E.2 portrays accumulation of SYSINT strategy out-

put during a single CALC step (see Section E.3, Figure E.5)

in the computer run. After terminating the CALC step, the

output must be separated by a STORE step or by hand for input

into SYSOPT. As an example of the volume of output data in-

volved, each of the three strategies of Chapter 5 (72 time

periods each) produced 2164 punched cards. Figure E.3 pre-

sents the punched output of the sample SYSINT run shown in

Figure E.5 of Section E.3.

Each strategy output deck begins with "./ADD NAME=" and

"---BEGIN" cards and ends with a "---ABORT" or "---END" card

followed by two blank cards. The ADD NAME card is used as

input to the IBM utility IEBUPDTE (3) in the STORE step.

[The IBM utility IEBPTPCH, used for printing and/or punching

datasets in the PUNCH step, is also detailed in (3).] The

ABORT card signifies abnormal termination of SYSINT-to-

SYSOPT output due to SYSINT execution errors. The END card

signifies normal (successful) completion of all SYSINT cal-

culations and output.



Table E.3

SYSINT-to-SYSOPT Output Modes

"OUTPUT" Control

Card 12

PUNCH Step Result
(if included)

(See Section E.3,
Figure E.5)_

'''''''0

STORE Step Result
(if included)

(See Section E.3,
Figure E.5)

"NO TAPE"

CARD"

"TAPE" Card Output Disk Output

Comments

No SYSINT-to-SYSOPT
output

Punched Cards only

Most Versatile

Notes:

1. Card Output:

2. Tape Output:

3. Disk output:

(a) No limit on number of strategies in one SYSINT run.
(b) May be put through later STORE step to create Disk output.
(c) Strategies may be separated and input directly into SYSOPT.

(a) May be temporary direct access dataset on SYSDA device if
STORE step used immediately to create Disk output with no
limit on number of strategies per run.

(b) If actually a (backup) tape, may be put through later STORE
step to create Disk output with no limit on number of
strategies per run.

(c) May be input directly into SYSOPT but limit of one strategy
per SYSINT run (i.e., per tape file).

Preferred SYSOPT input since Disk output is on-line, provides
faster data transfer and does not idly tie up tape drive during
subsequent SYSOPT execution.

Mode

I

II

III

IJ~
4::
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Figure E.2

SYSINT - to - SYSOPT Output Data Transfer

"S" FOR STRATEGY

OR SINGLE PUNCHED CARD DECK

6253-89

SINGLE TAPE FILE
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Figure EA3

-Example of SYSINT-to-SYSOPT Output Data
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E.1.4 Altering Dataset Reference Numbers

Table E.4 presents the dataset reference number for

each input/output device, their meaning and instructions for

altering them for other computer installations.



Table E.4,

SYSINT Dataset Reference Numbers

Current
Meaning

Card Reader

Output Printer

Card Punch

Output tape or disk
for SYSINT-to-SYSOPT
output

Temporary direct
access device storing
period-by-period
forecasts

Final Disk dataset

Value

5

6

7

8

9

Instructions for Altering

See BLOCK DATA subroutine

See BLOCK DATA subroutine

See BLOCK DATA subroutine

See BLOCK DATA subroutine and any
//G.FT08FOOl Data Definition
cards (see Section E.3)

See PERIOD and PRESIM subroutines
and any //G.FTO9FOl Data
Definition cards (see Section E.3)

See Section E.3, Figure E.5

Fortran
Symbol

RD

WT

CARD

TAPE

i

SYSUT2



-462-

E.2 SYSINT Input Specifications

Table E.5 presents complete input specifications for

SYSINT. The "START" Card 1 heads the plant data input mod-

ule (Cards 2-10). The "SAVE" Card 11 heads the period data

input module (Cards 12-20). Likewise, the "STRATEGY" Card

21 heads the maintenance strategy input module (Cards 22-24).

"Compute" Cards 25-26 determine which periods of the strategy

are executed. If no other modules are to be input and/or

executed, a "STOP" Card 27 terminates SYSINT calculations.
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Table E.5

SYSINT Input Specifications

Variable Columns Format Description

Card 1

... 1-5 ... "START" Control card initi-
ates input processing for plant
data, normalized startup-shut-
down frequency function and
load-duration shapes

Card 2

. . . 1-10 ... "PLANT DATA" Header card for
plant data

Card 3

NOSTNS 1-5 15 Number of units (stations) to
be read in, 1 < NOSTNS < 100

Note: For each of NOSTNS, a Card 4 of unit data is read
in.

Card 4

IDNO 1-4 14 Unique unit identification
number

NAME 5-8 A4 Unit name

TYPE 10 lXAl Type of Unit:

F= Fossil
Bl= Hydro (not currently used)
N= Nuclear
P1 Peaking
S= Pumped-storage (not cur-

rently used)

SUSDHT 11-20 F10.0 Or unit startup-shutdown equiv-
alent heat requirement, MegaBTU

PNOM 21-29 F9.5 Pr unit performance probability,
fraction

NPTS 30 Il I total number of capacity
incremen's, 1 < I < 5
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Variable Columns Format

MWPT

HTRAT

Note:

14

F6 .0

Description

Kri cumulative unit

capacity, MW

hinc ri
incremental heat rate,

BTU/kwhe

Continue (MWPT,HTRAT) sets until all I increments
have been read in.

Card 5

1-20

Note: There are three
20 Q values

Card 6

F (1) to
F (20)

1-80 8F10. 4

"NORMALIZED SUSD DATA" Header
card for normalized startup-
shutdown frequency function

Card 6's required to read in the

Q2(L' ) normalized startup-

shutdown frequency function
at increments of 0.05 of
L' ( .05 5 Ll 5 1.00); Q2(0)

0; linear interpolation
between points; per day

Card 7

1-10

Card 8

LDTYPS 1-5 15

"LOAD TYPES" Header card for
load-duration shapes

Total number of normalized
load-duration shapes,
1 < LDTYPS < 25

Note: For each of LDTYPS, Cards 9 and 10 of load shape
data are read in.

Card 9

Unique load-duration shape
identification number,
1 < LDTYPE < 25

LDTYPE 1-5 15
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Variable Columns Format

NUMONE 6-10 15

Description

Number of l.'s to be prefixed
to load shape data on Card
10, 0 $ NUMONE : 49

Note: There are [(50-NUMONE + 7)/81 Card 10's to be
read in for this LDTYPE

Card 10

PROB
(NUMONE

+ 1) to
PROB (50)

1-80 8F10.4 F completely normalized
castomer load-duration curve
from minimum load to peak
demand where FD = 0 for first
time. (Usually FD = 0 at
PROB (50) resulting in
spacing of 2% of PKMW.),
fractional duration

Card 11

Card 12

1-4

1-7

8-11

8-11

"SAVE" Control card sig-
nifying previous data on
Cards 1-10 to be saved.

"OUTPUT ",Control card for
large volume of data to be
transferred to SYSOPT

"TAPE", SYSINT data output
to temporary dataset with
Dataset Reference Number =

TAPE (See BLOCK DATA sub-
routine and Section E.1.3)

"CARD", SYSINT data output
to card punch with Dataset
R f T -=AD IS

BLOCK DATA Subroutine and
Section E .1.3)

... 8-14 ... "NO TAPE", SYSINT-to-SYSOPT
data not desired

Note: Choose one or include all three types of Card 12
with only last one read being valid
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Variable Columns Format Description

Card 13

"OUTPUT PRINT "Control card
for printed output on Data-
set Reference Number = WT
(See BLOCK DATA Subroutine
and Section E.1.4)

"MINI" prints input edit,
unit incremental costs, unit
production totals and system
totals

"MIDI" prints MINI plus Unit
increment loading during
load step of Booth-Baleriaux
algorithm

"MAXI" prints MIDI plus all
F's calculated at each con-
volve or deconvolve opera-
tion (Warning: This option
should be used only for very
small problems.)

Choose one or include all three types of Card
13 with only last one read being valid.

Note: A set of Cards 14-20 is included for each of
NPERS (up to 100) periods desired in planning
horizon. Each NPER need not be entered in
numerical order.

Card 14

"PERIOD" Header card

Card 15

PDTITL

Card 16

NPER

LDTYPE

7-10

1-80

1-4

5-8

A4

1OA8

14

14

Free for Comments

Period title

Period number, 1 < NPER < 100

Load shape desired,
1 < LDTYPE < 25

1-14

15-18

15-18

15-18

Note:

1-6
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Variable Columns Format

PKMW

SPNRES

DM

DT

CSTEMR

9-16

17-24

25-32

33-40

41-48

CSTFOS* 49-56

CSTNUK* 57-64

CSTPKG* 65-72

AVLALL* 73-80

F8.0

F8.0

F8.0

F8.0

F8.0

F8.0

F8.0

F8.0

F8.0

Description

Peak customer demand, MW
(The resulting minimum load
must not be less than largest
unit on the system.)

Spinning reserve requirement,
(Expected) MW

Desired equivalent load curve
spacing, should be 1 to 4% of
PKMW if PROB (49) 4 0 (Card
10), MW

T', Duration of period, hours

eU, Average cost of
emergency purchases, $/MWH

$F, Cost of fossil fuel for
all fossil units, g/MegaBTU

$N, Cost of nuclear fuel for
all nuclear units, $/MegaBTU

Cost of fuel for all peaking
units, g/MegaBTU

pr, Performance probability
for all units, (If 0.0 or
blank, 100*PNOMr used for
each unit for first period
read.), per cent

* Requires non-zero, non-negative entry to be effective.
To input zero, use l.E-50. If left blank, has no
effect on data remaining after previous period was
processed.

Note: Card 17 included for each unit whose data is to
be altered from current values (i.e., last
period processed plus effects of CSTFOS, CSTNUK,
CSTPKG or AVLALL for this period).

Card 17 (Optional)

1-5

17-20

"ALTER" Control Card

11X, 14 IDNO for unit whose data is
to be altered

ID
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Variable Columns Format Description

CST* 21-30 F10.4 $ unit fuel cost, g/MegaBTU

AVL* 31-40 F10.4 Pr unit performance probabil-
ity, per cent

ENER* 41-50 F10.4 Scarce-resource energy avail-
able (not currently used)

Note: Cards 18-20 optional if period is to use same
startup-shutdown data remaining after previous
period was processed.

Card 18

. 1-9 ... "SUSD DATA" Control Card

Card 19

NORDOP 1-5 15 Loading order optimization
option:
=1 , no optimization, NORDER
used as input. Each of NOENTY
represents next increment of
that unit.(SPNRES, NOBASE and
NOPEAK ignored).

=2 , Base group order as is;
Intermediate group started
in given order for either
economic or spinning reserve
reasons; Peaking group started
in economic order after all
of increments in IntermeTiate

group.

=3 , Same as 2 but Inter-
mediate group started in
economic order

=4 , Same as 3 but Peaking
group competes economically
after last unit of Inter-
mediate group is started.

NOENTY 6-10 15 Number of NORDER entries to
be read

NOBASE 11-15 15 The first NOBASE entries in
NORDER form the Base group of
increment- and are started in
the order specified (i.e., the
must-run increments)
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Variable Columns Format

NOPEAK 16-20 15

Note: There are [(NOENTY
read in.

Description

The last NOPEAK entries in
NORDER form the Peaking group
regardless of unit TYPE. The
Intermediate (central) group
is made up of the remaining
NOENTY-NOBASE-NOPEAK entries
in NORDER.

+ 15)/16] Card 20's to be

Card 20

NORDER (1) 1-80
to

NORDER
(NOENTY)

1615 Input startup-shutdown order,
unit (increment) IDNO.
SYSINT automatically strips
out off-line units and, there-
fore, it is wise to include
all units in NORDER since
various strategies will have
different off-line units in
the same period.

Note: A set of Cards 21-26 is included for each
strategy (no limit on number of strategies) to
be calculated.

Card 21

1-8 ... "STRATEGY" Control Card

Note: Card 13 required here if this is not first
strategy.

Card 22

2X, Ll

Ii

Nuclear power management
assumption check option,

=F, SYSINT-SYSOPT assumptions
concerning nuclear plant
utilization not checked (That
is, base-load nuclear minimums
and all nuclear upper incre-
ments consecutive)

="T", Assumptions checked

Version of strategy if same
strategy was run previously

NPM 3

IPLACE 4
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Variable Columns Format

IDSTRG 5-10 16

Description

Strategy identification num-
ber. If <0, skips SYSGEN
calculations for input check

Note: SYSINT-to-SYSOPT output data stored using 8
alphamerc character membername =
NPM + 100 *IPLACE + IDSTRG which should be
unique to save old results with same IDSTRG

SGTITL

Card 23

11-80 10A7 Strategy Title

1-11 "MAINT. DATA" Header card

Note: Card 24 must appear for each of NOSTNS.

Card 24

ID 1-4 14 Unit IDNO for which mainte-
nance data card applies

NAM 5-8 A4 Unit NAME (optional)

NOTZRO(1) 11-15

NOTZRO(2) 16-20

NDOWN (1)
to NDOWN
(20)

21-80

2X, 15

15

2013

Unit installed just prior to
period NOTZRO(l). If blank
or zero, unit already install-
ed before beginning strategy

Unit retired after period
NOTZRO(2). If blank or zero,
unit not retired during
strategy

Period number during which
unit off-line for maintenance
(or refueling). If blank,
zero or >NPERS has no effect

Note: If "COMPUTE" Card 25 omitted, only checks input
of strategy and/or periods.

Card 25

1-8 ... "COMPUTE "Control Card ini-
tiates computation of strategy
for all indicated periods

.. *. 9-12 ... "SOME" (optional) only some
of NPERS to be calculated
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Variable Columns Format Description

Note: Card 26 included only if "SOME" included
on "COMPUTE" Card 25. Then, there must
be [(NPERS + 79)/80] Card 26's.

Card 26

DOPERD(l) 1-80 80L1 Calculate period NPER = Card
to DOPERD Column?
(NPERS) "T"o = Yes

"F" or blank = No

Note: Next card may be "START" Card 1, "SAVE" Card 11,
"STRATEGY" Card 21 or "STOP" Card 27. Control
reverts back to that point in Card input
sequence.

Card 27

... 1-4 ... "STOP" Control card to
terminate SYSINT execution
for this computer run.
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E. 3 SYSINT Sample Problems

Two sample problem input decks are presented in Figures

E.4 and E.5. The deck in Figure E.4 was actually used to

generate Reference Utility System Examples 1 and 2 (see

Appendix C). The deck in Figure E.5 was likewise used for

Examples 3 to 6 and to produce the SYSINT-to-SYSOPT output

deck example in Figure E.3.
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Figure E.4
SYSINT Sample Problem Input Deck I

/ DE ATON' CL A.= of .. [ =)N 140-
/*MIT I )0 it 1f 474 . 0 .f-s 4)

/*MAIN LINEt.mIneCA14i > 0 T IME=
/4/CALC EXEC F 4 # 0es- itMn464.00354(o
//6.FTOMFOu0 U LTP ,UACCPtMf8.LCL*A0tIIta600).
// SPACE=(Cua .fi I .I, 1T=UI'.0':,S)
J//y.FTa,9F001 001) =v >.C us=.-C~40e(0:
//C-ecjSIN W)
.TART

-LANT DATA

101 I
702 11 F
303 III N
404 IV F
50o V 14

40)PbIAL I IF U
.02

.19
LOAD TYPEb

I *

* 9s
.95

.00

.00

.00

.00

,0.

P400.

.07.
"6.

.09

..0

.00

.0v

.00

.00

.00
SAVE
jUTPJT NO TAPE
3UTPJT PRINT MAXI
PERIDO I

EXAMPLE NO. I t
I I 1800.

ALTE'1 303
ALTEQ 7oe

USD DATA
3 5 4 1

505 303 404 202
STRATEGY

F1 I SA4PL
MAINT. DATA
505
404
303
202
101

COMPJTE SO4
TT

.v5s

.. 00

.00

.di

.12

.6 i

.03

2
2

005

.00

.00

.00

.00

100 14004
100 11000
tio 20ooo
e00 9mo0
m0 I/500o

.19

. 4

.00

.d0

.00

.00

.00
00

DETEMINI.allIC MDJL
0. lO. 730.

1;.
Sc.

200 M00
100 10000

600 9100
100 9500

.24 .44 .62 .74

.83 .17 .66 .37

.50

.00

.00

.00

.00

.20

.00

.00

.00

.00

.15

.00

.00

.00

.00

.16

.00

.00

.00

NO UORCED-OuIAGES )
10. 40. 18. 90. 100.

101

E SYSINT R.iN PAFO4MING CALCS. FOR EXAMPLES I 6 2

START
aLANT DATA

5
101 1 P
202 11 F
303 III N
404 IV F

505 V N
AORMALIZED

.02

.83

.19
LOAD TYPES

I 18
.95
.05
.00
.00
.00
.00

50.
8300.

1200.
3600.
P400.

SU5 DATA
.07
.86
.09

.90

.00

.00

.00

.00

.00

.95

.05

.90

.d5

2e
2
2

2

.12

.d6

.03

.00

.00

.00

.00

95 18000
95 11000
90 12000

140 9400
es 12500

.19

.66

.00

.0

.00

.00

.00

.00

SAVE
OUTPJT No TAPE
juTPJT PRINT MAXI

0FRIOD I
EXAMPLE NO. ' 0ElLMMIKA IjIC MJ0tL

I I 1800. 0. 10'. 730.
ALTER 303 1I.
ALTER ?0e 50.
SUSD DATA

3 5 . I
505 301 404 20e 101

STRATEGY
F 2 1

MAINT. DATA
101

303
404'
505
COMPUT F
STOP
/0

190 8500
270 10000
540 8300
680 9500

.2A .44 .62 .74

.83 .77 .66 .37

.50

.00

.00
.00
.00

.20

.00

.00

.00

.00

I RE00CLO CAPACITIE
10. 40.

.15

.00

.00

.00

.00

18. 90. 100.

SAMPLL SY5INT N', PfWFORMING CALCS. FOR EAAMPLES I & 2

.10

.00

.00

.00

.00
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Figure E.5
SYSINT Sample Problem Input Deck II

// 0lt AT3) ee6CLA' '=Ast I !- . - I ,o-
/*004 Tit) . OStk =(i/z 1'4, e4n-e4

/)aI LCW

/*M4AIN L INE'4aIlie tsy 's i :1-
//CA.C L 

4
.. F -It" 1( :e' t.. I t .4 /M94. )94 .( IAry).SYSIN I 1W) 0

// f. v I OF00 I Li )Ni I =jY,'Asta (- t'j Lt M=F ",L00 rt =40-,StKaSI/ t =1 00
// SPACt0(LYI.e ( 1e i) )*:11 "o- ,.)
//G.T9oFoo 1 61) ON91I=Sy9 T ,iA ( j=,5'qAc = f.000. 100) 
//.SYSN Ut*
-STAw f
-LANT DATA

'.'00

-4 IOU
900

./ *44 .6? .74
est4 lt .6h ,3T

.50

.00

.00

.00

.00

.20

.00

.00

.00

.00

.15

.00

.00

.00

.00

.1e

.00

.00

.00

.ot

!DAVE
JTPjT TAPE
-UtPJT POINT 'AAI
"E E4 130 1

EXAMPLE NO. 1 : 6ROi
I I ItQo0. 0.

AL TV4 3- it
ALFEk 202
sUS0 DATA

3 5 -e 1
505 303 404 ?02 101

JER1.30 2
EAA14PLE NU. 4 SING

2 1 ING0. 0.
:tJS DATA

1 9 0
505 505 303 30i 404

ZE4IDD 3
EXAMPLE NV. 5 : 'ILT

3 1 it'00. 104
SUSD DATA

3 5 3 1
505 303 404 20k 101

EXAMPLE NO. 0011L T
4 1 14e3. 0.

5uS OATA

55 303 4.04 103 S03
STOIATEGY

Alit hI it AJrEL
10.. 710.

Is.
,0.

wIT"1 FU4CED-UuTAGES )
10. 40. Is.

LE I-.Et"'.aT m0OTH-RALFRIAUA MOUUEL
10'.. 710. 13.

-404 20.'O e0/ 101

IPLF I'vCw~tMNT H00I-9ALtLIAUA MODEL
10... 73U. 10.

90.

0V-29THEN 11i-2)

JPLF 4r.PtMNT j00TH-0ALtIAux MOUFL fiII-?THEN V-7)
10. 730. 10.

O22 40-. ?U2 101

TI 2 SAMPLE SYSINI R4 4 ut.404N CALC5. FOR tAAMtLES 3 Tmku S
"AIN'T. OAT'A
20?
#*04
101
50
303

COPJTF b0lt
i rT
S TOP
/0

//PNCt4 EAtC 0i6=lEtPtPCr
//SSPRINI uLD SYsoJI:A
//SYSUTI 00 04-=*LALC. T.vi-F ,y I uIl5P=1UL0,0AS)
//SYSUT2 DO SYSaluTs
//SYSIN DO *

PUNCH MAAFLOS:I
RECRD fIEL)Id0)

/*

//STOwF EEEC POl1E..Te..A- NEW
//SYSPRINf 'J 5Y;,oJf=A
//SYSUT? DU LSUt'FILF. m7k'4.94M.-4Et.iJLT.SYS IT e

// DCI(L.tC.,=FTLOECL=8l00Lf5I/tJ A '00
// Se'ACE.lo00.(Iel.e/ 'JeeNL'NO.

//SYSIN 09 0)N. CALC.ri.FT 0.1 .f1j .MOuetELEITE e
// VOLUMEfF*-.CALC..F10.0-
/*

.9:

.,

10I
e100

0 l)

C

i

/00

)t00
ho o
P400

101 1
?4? 11 F
103 111 *4
4(4' IV F
50t V p

'4OWMALIiEu
0 0?
.m3
. I'

LOAO TYPE1

I I
.9c;
4050

.00

.00

.00)

.00

i0.
'.00.

1200.
1600.
?400.

)I1JVi) UA!'.
.47

.09

.90
* Oj

.0o

.01

.60

I moJoo

14,000
I/000

.00

.1)0

.00

.00.00
.00

.00

.1)3

.0
00

.00

.c00.00 0
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E.4 SYSINT Source Listing

The following is a Fortran IV source listing of the

SYSINT code (included only in MIT library copies).
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APPENDIX F
S Y S O P T

F.l SYSOPT Discussion

F.1.1 Introduction

SYSOPT is a computerized version of the SYStem OPTi-

mization Model (SOM) discussed in Chapter 4. A summary of

SYSOPT characteristics was presented in Section 4.6.

SYSOPT performs the nuclear system optimization in

conjunction with CORSOM's (specifically QKCORE of Appendix

H using the Out-of-Kilter (0-0-K) Network Program of Appen-

dix G. Input is accepted in the form of output from SYSINT

(See Section E.1.3) as well as SYSOPT's own card input.

F.1.2 Code Structure and Mode of Operation

Table F.1 presents a summary of SYSOPT subroutines

while Figure F.1 portrays the general sequence of operations

occurring in a SYSOPT production run. (Table F.2 presents

information relative to possible error messages printed by

subroutine OPERR.)

In interfacing with the off-line code SYSINT, the

SYSINT-to-SYSOPT outpAt is transferred per Section E.1.3.

To be operational, SYSOPTmustbe link-edited with 0-0-K

since variables are transferred into and out of 0-0-K's

storage on-line by SYSOPT. The structure of the network it-

self and the resulting arc "Types" are indicated in

Figure F.2.



Table F.l

Summary of SYSOPT Subroutines

Purpose

Oversees entire SYSOPT optimization;
Calls XCNPUT to permit INCORE Model to read
input

BLOCK DATA ------ Initializes data in Common areas;
Dimensions Out-of-Kilter (0-0-K) Network Program
arrays

PVINIT
OPERR

Reads in data directly pertinent to SYSOPT

subroutines (see QKCORE, Appendix H)

Called
ByName

SYSOPT
(Main)

Calls

RDOPTN
RDSTRG
RDPERS
ASMTYS
WTPERS
SETUPN
SETUPT
CONVRG
CHKSHP
EDTSHP
OPTMUM
LOC
OPERR
CMPTIM
STRTIM
ICNPUTl

RDOPTN SYSOPT

l INCORE Model



Table F.1--Continued

Called
By__

SYSOPT

Calls

OPERR
ERASE

Purpose

Reads SYSINT-to-SYSOPT information relative to

maintenance and refueling strategy

RDPERS SYSOPT PDCALC Reads SYSINT-to-SYSOPT information relative to

OPERR period results

PDCALC RDPERS SUBPLT Performs various pre-calculations for each

GWHNRG period;
PROBX Sets up some costs and limits for network arcs

OPERR

SUBPLT PDCALC OPERR Subtracts plant-of-interest from PROB;
Similar to SUBPLT of SYSINT

GWHNRG PDCALC ------ Calculates energy under section of PROB;
Identical to GWHNRG of SYSINT

PROBX PDCALC ------ Linearly interpolates PROB at a particular
equivalent load;
Identical to PROBX of SYSINT

SYSOPT PVPER$ Assembles various calendar dates to and beyond

horizon

Name

RDSTRG

ASMTYS

00
I



Table F.1--Continued

Calls

OPERR
ERASE

Purpose

Writes out input for the various periods and
system horizon totals

SETUPN SYSOPT ONLY$$ Sets up costs and limits for remaining arcs in the
LOC network
ERASE

SETUPT SYSOPT OPERR Sets up input tape for Out of Kilter (0-0-K)
Network Program

CALSHP
ARCPRT
SETELE
NEWMRG
PVPER$
LOC
OPERR
ERASE
OOKMAN1
INCORE2

Supervises inner cost convergence between OOKMAN
(0-0-K Main Program) and INCORE Model

1Out of Kilter (0-0-K) Network Program subroutines (see Appendix G)

2INCORE Model subroutines (see QKCORE, Appendix H)

Name

WTPERS

Called
ByP

SYSOPT

CONVRG SYSOPT

I.
11.4



Table F.1--Continued

Called
By

CONVRG
CHKSHP

Calls

LOC

Purpose

Calculates shape criterion for each period

ARCPRT CONVRG LOC Prints 0-0-K arcs after inner cost iteration
OPERR

SETELE CONVRG ERASE Sets up new table of E's to be investigated by
OPTMUM INCORE Model

NEWMRG CONVRG LOC Sets up new table of X's to be used by 0-0-K
OPERR

PVPER$ RDOPTN ------ Calculates present (at base date) value of one dollar;
(PVINIT) ASMTYS Has ENTRY PVINIT to initialize present value rate;

CONVRG Identical to QKCORE version

SYSOPT
SETUPN

CALSHP
ARCPRT
SQUEEZ
LOC
ERASE
OOKMAN1

00

Performs outer shape iteration and checks shape
criteria to evaluate acceptability;
Has ENTRY ONLY$$ to change objective function of
0-0-K from shape to cost

1Out of Kilter (0-0-K) Network Program subroutines (see Appendix G)

Name

CALSHP

CHKSHP
(ONLY$$)



Table F.1--Continued

Called
By

CHKSHP

Calls

LOC

Purpose

Squeezes reactor period energy production range

EDTSHP SYSOPT LOC Edits shape information and prints final
altered energy limits

OPTMUM SYSOPT SETELE Supervises printing of optimum solution;
INCORE1 Calls INCORE Model to get final nuclear costs at

optimum;
Totals all operating revenue requirements

SYSOPT
SETUPN
CONVRG
CALSHP
ARCPRT
NEWMRG
CHKSHP
SQUEEZ
EDTSHP

Calculates pointer to desired network arc

1
INCORE Model subroutines (see QKCORE, Appendix H)

Name

SQUEEZ

LOC

I
4 b
00



Table F.l--Continued

Called
By

SYSOPT
RDOPTN
RDSTRG
RDPERS
PDCALC
SUBPLT
WTPERS
SETUPT
CONVRG
ARCPRT
NEWMRG

Calls

ICERRS1

Purpose

Prints error.messages and chooses to terminate
execution if severe error occurs (see Table F.2);
Calls ICERRS to get final INCORE Model error edit

col

CMPTIM SYSOPT WHEN2  Calls MIT internal clock routines to monitor
(STRTIM) TIMING2  execution time;
(DAYTIM) Prints subroutine-to-subroutine transfer times;

Has ENTRY STRTIM to start clock and ENTRY DAYTIM
to print calendar date and time

ERASE RDSTRG ------ MIT Assembler Language program that sets arrays
WTPERS to zeroes rapidly
SETUPN
ERASE
SETELE
CHKSHP

INCORE Model subroutines (see QKCORE, Appendix H)
2WHEN and TIMING are MIT internal clock subroutines

Name

OPERR
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Figure F.1

SYSOPT Flowc

START

SUBROUTINE

SYSOPT

CONTROL CARD 
(MAIN)

"INCORE INPUT

"STRATEGY"

SYSOPTRDOPTN

YSINT-
0-SYSOPT
OUTPUT RDSTRG

"COMPUTE"

Tt A

rcOR CONVRG

Erc (D

Ercc

CHKSHP

SQUEEZ

hart

SET UP NETWORK ARCS

ALTER MIN AND
MAX Ercp FOR

REJECTED PERIODS



Table F.2

SYSOPT Error Messages Printed by OPERR

Action
after Printing

Terminate

Number*

1

2

3

4

5

6

7

8

9

Source

RDPERS

PDCALC
SUBPLT

RDSTRG

SETUPT

NEWMRG

SYSOPT( RDOPTN
WTPERS

CONVRG

SYSOPT

CONVRG

*The error number initiating the OPERR print appears as the rightmost digit
in the accumulated ERRCOD (which is printed as part of the message).

Terminate

Terminate

Terminate

RETURN

Terminate

RETURN

Terminate

RETURN

Error

PROB Data inconsistent

Nuclear upper increment not consecutive or
unit capacity > minimum load

Reactor or Strategy IDNO's do not agree

Number of arcs input to 0-0-K and equation
in Figure F.2 do not agree

Incremental cost curve not monotonically
increasing

Improper input sequence and/or card;
Input option outside limits

MXITER reached without complete convergence

"STOP" Card 10 encountered in input or other
severe error

TC converged within TH$CON

00



Table F.2--Continued

Action
Source after Printing

A(=10)

B (=11)

CONVRG

ARCPRT

C(=12) , RDSTRG
RDPERS
WTPERS

D (=13) NEWMRG

Terminate

Terminate

Terminate

RETURN

INCORE and SYSOPT using different present value
rates

No feasible solution to 0-0-K problem

Premature end to SYSINT data; some periods
not read in

Cycle energy greater than its upper stretchout
limit

Number* Error

CO



Figure F.2

I AUX"

TOTAL:

ARCS = RC(I+I) + Z((J+I)R+I) + R+3

NODES 2RC + Z (R+I) +4

Nuclear Energy Network Structure

"JFRWRD"

R rcc RrP p Pp

ITYPE 4 
TYPE 7

"JBKWRD" ITYPE 6
EACH REACTOR TO
EACH PERIOD + HLDOVR DEMAND

-EACH REACTOR-CYCLE EACH PERIOD

FINAL CYCLE OF

EACH REACTOR

HLD0VR (--Pp+1)LEND
LEGEND:

Z = NUMBER OF PER IODS
TYPE 5 R = NUMBER OF REACTORS

I = IAUX
J = JFRWRD + JBKWRD

DUMMY RC = TOTAL NUMBER OF
REACTOR-CYCLES

0

I
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Relative to INCORE interfacing, only four distinct

points of SYSOPT-INCORE contact are necessary to ensure

compatibility with general CORSOM's:

(1) SYSOPT itself calls ICNPUT [if an "INCORE INPUT"

Control Card 1 is encountered (See Section F.2)]

to permit an INCORE Model to read any data re-

quired by it (e.g., core initial conditions and

cost parameters),

(2) Subroutine CONVRG calls INCORE subroutine with

the arguments specified in Table F.3. This call

is executed many times as this is the actual

inner iteration. The important results are TC
r

(returned as RTC) and the X rc (appearing "sand-

wiched" between the pertinent E rc and Erc +A in

array ELAME as in Section H.l.3.

(3) Subroutine OPTIMUM also calls INCORE subroutine

per Table F.3, but only to evaluate the final

optimum reload designs in more detail. COMMON

area /PRINTS/ is used for passing any print options

or dataset reference numbers.

(4) Finally, subroutine OPERR calls INCORE error sub-

routine ICERRS to permit printing final edit of

any INCORE Model errors encountered during the

SYSOPT optimization.

When SYSOPT and 0-0-K have been link-edited with the

particular simulator QKCORE, core storage requirements (See

Section 4.6) can be reduced by 125 K bytes of storage or



Table F.3

Interfacing of SYSOPT and an INCORE Model

(SYSOPT)
Variable Supplied By Description

IDNUM

NCYCIN

NCYCXS

NCYCTO

TSY (l) to
TSY (NCYCTO)

TEY(l) to
TEY(NCYCTO)

NECBAL(1) to
NE BAL(NCYCTO)

ELAME(1,1) to
ELAME (2n +l,NCYCTO)

MXESX2

SYSOPT

SYSOPT

SYSOPT

SYSOPT

SYSOPT

SYSOPT

SYSOPT

E by SYSOPT
X by INCORE

SYSOPT

Unit IDNO

Number of cycles at least partially within horizon

Number of whole cycles specified beyond horizon

=NCYCIN + NCYCXS = total

Calendar time at start of cycle, years

Calendar time at end of cycle, years

Position of key E within ELAME representing Etrc rc
(See Section H.l.3)

co

E rccycle energy and X rcincremental costs (See Section H.1.3)

n number of A stair-steps in each Arc incremental

cost curve

ECHDOV SYSOPT Holdover energy, GWHe



Table F.3--Continued

(SYSOPT)
Variable

RTC

PVR

YBS

ECUPLM(l) to
ECUPLM (NCYCTO)

TOY(1) to
TOY(NCYCTO)

Supplied By

INCORE

INCORE

INCORE

INCORE

SYSOPT

Description

Total nuclear fuel cost including appropriate fraction
of cost of cycle split by horizon, 103 dollars

x, present value rate used by INCORE, fraction per year

Calendar time base date of present valuing in INCORE,
years

Upper limit of energy extractable from each cycle that
has reload enrichment fixed, GWHe

Length of time that unit is operating during cycle,
years

'.0
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one-third of total (with negligible increase in computing

time) by using the overlay structure of Figure F.3.

F.l.3 Altering Dataset Reference Numbers

Table F.4 presents the dataset reference numbers for

each input/output device, their meaning and instructions

for altering them for other computer installations.



Figure F.3

"SYSOPT + Out of Kilter + QKCORE" Overlay Structure

NOTE: EITHER SEGMENT 4 OR 8

DETERMINES MAXIMUM

STORAGE REQUIREMENT.

SEGMENT I
Subrs.
MAIN(SYSOPT)
LOC
OPERR
CMPTIM
INCORE
UNTCOS
UF6VAL
ICERRS
PVPER$[SYSTEMS
ROUTINESJ

Comons
/OPTLIM/
/RCRDAT/
/FINALS/
/PDPERM/
/KC/
/KU/
/KL/
/OOKCOM/
/FXDDAT/
/ARDATA/
/PRINTS/
/,CHKSHP/

SEGMENT 2
RDOPTN
RDSTRG
REDCOR

SEGMENT 3

/PDTEMP/

SEGMENT 4
RDPERS
PDCALC
SUBPLT
GWHNRG
PROBX
/PRO B

SEGMENT 5
ASMTYS
WTPERS
SETUPN
SETUPT

Subrs.
CONVRG
CALSHP
ARCPRT
SETELE
NEWMRG
SQUEEZ
FULSIM
CONSTS
NXTIRR
IRRDAT
CSTBAT
PRTTOP
EMPRCL
MA INE
PREDAT
ASSEM1
ASSEM2

SEGMENT 6
Commons
/KX/ /LC/
/NL/ /KA/
/NN/ /IFIN/
/NP/ /KI/
/lJ/* /KO/
/IL/* /KQ/
/JL/* /K/
/JI/ /SHPINF/
/M/
/N/
/LER/
/KAT/
/KOR/
/KTER/
/MINE/

SEGMENT 7

ARCASY
MAKEJL
NODASY

SEGMENT 8
READER
TRANSL
KILTER
OUTPUT

SEGMENT 9
EDTSHP
OPTMUM

~3

* COMMON AREAS /IJ/, /IL/. /JL/ MUST OCCUPY

,,CONSECUTIVE CORE STORAGE (SEE SECTION G.2)

fj,
k

I-ph,



Meaning

Card Reader

Output Printer

SYSINT-to-SYSO
Output

Table F.4

SYSOPT Dataset Reference Numbers

Current
Value Instruc

5 See BLO

6 See BLO

PT 8 Input C
Data De
F.4)

tions for Altering

CK DATA subroutine

CK DATA subroutine

ard 4 and any //G.FT08FOO1
finition Cards (see Figure

Network Program Input

Network Program Output

9 Input Card 4 and any //G.FT09FOO1
Data Definition Cards (see Figure
F.4)

Input Card 4 and any //G.FTl0F001
Data Definition Cards (see Figure
F.4)

10

Fortran

SYmbol

RD

WT

SIOT

NPIN

NPOT
'.0
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F.2 SYSOPT Input Specifications

Table F.5 presents complete SYSOPT input specifications.

"NEW" Card 1 signals a call to ICNPUT to read the INCORE Model

data module. After the INCORE input, "STRATEGY" Card 2

heads the SYSOPT input data module (Cards 3-8). The next

module read is SYSINT-to-SYSOPT output whether on disk,

tape or card. A "COMPUTE" Card 9 initiates the optimization.

If no other modules are to be input and/or executed, a

"STOP" Card 10 terminates SYSOPT execution.
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Table F.5

SYSOPT Input Specifications

Variable Columns Format Description

Card 1

1-12 ... "INCORE INPUT" Control card
signifies following group
of cards intended as input
to INCORE Model

Note: Input deck for INCORE Model is inserted here.

Card 2

1-8 ... "STRATEGY" Control Card sig-
nifies SYSOPT input to follow

Card 3

NPM 3 2X,Ll Nuclear power management
strategy? (See Card 22 of
SYSINT Input Specifications,
Table E.5)

IDSTRG 4-10 17 IPLACE *10 + IDSTRG of SYSINT
(See Card 22 of SYSINT Input
Specifications, Table E.5)

Note: These 8 alphameric characters must match member-
name of SYSINT-to-SYSOPT output which, likewise,
must match membername on SIOT Data Definition
Card (See Figure F.4).

NRCRS 11-15 15 Number of reactors in SYSINT
strategy, < 15

Card 4

SIOT 1-5 15 Dataset reference number for
SYSINT-to-SYSOPT output, 0 WT

NPIN 6-10 15 Dataset reference number for
0-0-K Network Program input,
3 RD or WT

NPOT 11-15 15 Dataset reference number for
0-0-K Network Program output
:RD
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Variable

PARCAL

PARCON

PARCOP

CORDTL

Columns

16-20

21-25

26-30

31-35

OPRCOR(l) 36-41
to OPRCOR(6)

Format

15

i5

15

15

6L1

Description

Last arc type printed for all
inner SYSOPT iterations (See
Figure F.2), > 0

Last arc type printed for con-
verged inner iteration (See
Figure F.2), > 0

Last arc type printed for
accepted global optimum
(See Figure F.2),> 0

INCORE detailed output desired
for accepted global optimum?
0 = No
1 = Yes

INCORE print parameters for
use by OPTMUM (See Card 2,
QKCORE Input Specifications,
Table H.6)
F = No
T = Yes

Fortran symbol in

SYSOPT, QKCORE

OPRCOR(l)
OPRCOR(2)
OPRCOR(3)
OPRCORM(4)
OPRCOR(5)
OPRCOR(6)

= RELCST
= INCCST
= BALCST
= NBLCST
= PIRDAT
= PBATCS

x, present value rate,
tion per year

frac-

Calendar time base date for
present valuing, years

Calendar time at start of
Period 1, years

100* Et+l - E / 6 / <PCONVG,I0* rc rc E t
cycle energy convergence
criteria, per cent

Card 5

PVRATE

YBASE

YSTART

PCONVG

1-7

8-14

15-21

22-28

F7.0

F7.0

F7.0

F7.0
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Variable Columns Format Description

TH$CON 29-35 F7.0 TCt - TCt+1 < TH$CON, total
nuclear fuel cost conver-
gence criterion, 103$

PCDELA 36-42 F7.0 (, fraction of estimated
correction applied to reactor
production limits, per cent

REJLVL 43-50 F8.0 V2 shape rejection cri-REJ' pe reetonci
terion for S2 -W

NPERS 51-55 15 Z, number of periods of
SYSINT strategy to be included
in horizon,< NPERS < 100

in SYSINT

GESFRS 56-60 15 Initial guess option for start-
ing optimization:

=0, No guess at all (No
Card 6's)

=1, Use SYSINT output E
(No Card 6's) rcp

=2, A entered on Card 6'src

=3, Estimated Erc entered on
Card 6's

=4, Previous E* solutionrc
entered on Card 6's

MXITER 61-65 15 Maximum total number of inner
iterations to be allowed,
<100

IAUX 66-70 15 Total number of auxiliary arcs
(Types 2 and 3 of Figure F.2)
per reactor-cycle, used to
form stair-step A curve,
3 < IAUX < 19 rc

JFRWRD 71-75 15 Number of forward arcs (part
of Type 7) per reactor per
period, 2 < JFRWRD < 6
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Variable Columns Format

JBKWRD .76-80 I5

Description

Number of backward arcs (rest
of Type 7) per reactor per
period, For balance, JBKWRD=
JFRWRD-1 is best, 1 < JBKWRD
< 6

Note: Total number of network arcs (See Figure F.2)
cannot exceed MXARCS (=3500). Total number of net-
work nodes cannot exceed MXNODS (=700).

Note: If GESFRS > 2, there must be NRCRS of Card 6.
one for each reactor.

Card 6 (if GESFRS = 2)

ELAME(NR,1) 1-80
to ELAME
(NR,NCYCIN)

20F4.0 Arc, incremental cost guess,

$/GWH = $/MWH x 103

Card 6 (if GESFRS > 2)

ELAME(NR,1) 1-80
to ELAME
(NRNCYCIN)

Card 7

NMESH 1-5

MESH(1) 6-80
to MESH(NMESH)

Note: There mu
reactor.

2014

15

Erc cycle energy guess or

solution, GWH

Number of different A energy
increment (step size)hto be
used in approaching TC*,O
1 < NMESH < 15

A energy increment (step size),
largest first, GWH

1515

st be NRCRS of Card 8, one for each

Card 8

Reactor IDNO, must agree with
SYSINT's IDNO for same unit.

Initial state of unit, i.e.,
maintenance status during
"period" immediately preceding
first period of strategy

=0 , did not exist
=1 , down for refueling
=2 , on-line

IDNO

INSTAT

1-4

5-7

14

13



-498-

Variable

CYCXS

GWHOLD

DYHOLD

DYDWN

DYUP

GWHKS

Note:

Columns

8-10

11-15

16-22

Format

13

15

F7.4

F6.4

F6.4

16

Description

Number of excess cycles in-
cluded beyond horizon

Er,CZ+l Cycle energy held

over beyond horizon for
split cycle, GWH

T'+1 Time remaining to next

refueling beyond horizon
for split cycle, years

Downtime between excess
cycles, years

Uptime for this excess cycle,
years

Er,C+l Excess cycle energy,

GWH

Continue until CYCXS number of excess cycles
have been specified.

Note: SYSINT-to-SYSOPT output is inserted here if
SIOT = RD = 5 at MIT (See Section E.1.3).

Note: "COMPUTE" Control Card 9 may be omitted to
only check input of strategy or obtain present
value of SYSINT cost results.

Card 9

1-7 "COMPUTE" Control Card ini-
tiates optimization

Note: Next card may be "INCORE INPUT" Card 1,
"STRATEGY" Card 2 or "STOP" Card 10 with input
sequence reverting to appropriate point in
card sequence.

Card 10

1-4 "STOP" Control Card to ter-
minate execution of SYSOPT
for this computer run.

.. 0
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F. 3 SYSOPT Sample Problem

Figure F.4 presents the input deck used for opti-

mizing Strategy 2 in Case I of Chapter 5. SYSINT-to-

SYSOPT output is provided on Disk.
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Figure F.4
SYSOPT Sample Problem Input Deck

#.*36l LihE5.?4).13.E=5
*563 L~lo
ICALCG EAEC F0R6e0fd0=$u5EFitL.M7P94.694#.L0AD.5yS0PI 60) 4

f/6.rFIgerogl 00 (0gj-VU5F#F ILE .00 194.6948.WE50)LYS.5Y1-A'N i tid450021
/r,r1 0.F001 (D tl5N'.'.OTUu%3y~Su,ACLs(80o.(3000.300,3.
/ OCaetQECFM0r.4sLECLzv.HtLlts/',000)

OL3 (4ECF 43F"L WECL= I43. t I/f1 3]?-,)
//,.5y5I4 Wi *'JC4=.DEC1O4FfLtCL .. ' ./'=000
4EW 11NCONE UalA
INC04E NPEtP

3 6 3
TYPICAL SET o

.00711 .0025
64.00
P. 30

32.00
70.00
35.00
5.60
7.50

100 %K-A 1050

3.3 1.5
3.3 11.5
3.3 2u.5
280 W4-2 3050

I 3..
3.4 9.0
3.? 1.0
3.? 20.0
300 66-3 1050
1 3.6
3.3 30.0
3.3 20,0
.9223 .0000nl
4.00 W-4 1050

1 3.2
3.2 7.0
3.2 17.0
3.? 27.0
SOO o.R-5 1050
1 3.2
2.7 .000001
2.2 .000001
.92?3 *000001
600 N6-6 1050

1 3.?
2.7 .000001
2.2 .000001
.9223 .000001
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.141076 .0001
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00.00
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0.0001 500.
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-17.7720 .000106261 KANEW
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560075007500 750075007'0o 7?00715.
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.50075007500750075007500750075.3

? 100 20
100 2 2 500 .d33 .lal 1.'
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COMP3Tf
STOP
4*

ITTITI
25. 0.0E-03 72

7000
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.367 3.00
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. ,%47 1.00
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7000
.00

1000
7000
7000

0
0
0
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F.4 SYSOPT Source Listing

The following is a Fortran IV source listing of

the SYSOPT code (included only in MIT library copies).
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APPENDIX G
Out of Kilter Network Program

G.l Out of Kilter Discussion

The complete Out of Kilter Network Program was

graciously provided to the author by the Flight Transpor-

tation Laboratory at MIT. Only minor modifications were

made to the program to facilitate on-line merging with

SYSOPT. These modifications are transparent to any user

interested only in the Out of Kilter Program itself, i.e.,

for solving network programming problems in other con-

texts. Figure G.1 is provided as a guide to the computer

storage requirements necessary to run the progam for

various size problems (see Sub-section 13 of Section G.2).

Because of the program's generality, the original

input manual (45) is included here with only minor

editorial revisions.
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Figure G.1

Core Storage Requirements for Out-of-Kilter bietwork Program

6253-98

REGARDLESS OF NODES AND ARCS,
APPROXIMATELY 45K ADDITIONAL

BYTES REQUIRED FOR PROGRAM

LOGIC AND COMPUTER SUPERVISOR

200K BYTES OF CORE STORAGE
FOR ARRAYS ONLY

0 1 2 3 4 5 6

THOUSANDS OF NODES

9

8

7

6

C>,

.4

C,,

CO

5

LI

3

2

0

0
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G.2 Out of Kilter Input Specifications

IBM /360 OUT OF KILTER NETWORK FLOW ROUTINE

DESCRIPTION FOR THE USER

Table of Contents

Section

1.

2.

3.

4.

6.

7.

S.

9.

10.

11.

12.

13.

Introductory Notes

Formulation

Data

Control Cards for Standard Run

Exarple

Jobs with More Than One Run

Save and Alter Run

Other Program Options

Output

Program Messages

Program Operation Notes

Structure of the Program

Compiling the Program
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1. Introductorv Notes

This writeup is intended for the user of the "Out of Kilter"

program which has been written for the IBM system 360 model 65.

-The program has been successfully run at the MIT Computation

Center.

Both the program and the writeup are based on the SHARE

routine RS OKF1 and its corresponding writeup.

The FORTRAN subprograms are written in FORTRAN IV ( G level ).

The assembly language subprograms use the extended mnemonic

branching instruction codes and the macros SAVE and RETURN.

The program and this writeup were prepared by Amos Levin,

Flight Transportation Laboratory, MIT, August 1967.
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2. Formulation

A Computer routine for the solution of "network flow"

programs -- problems of finding those flows of an homogeneous

commodity through a capacitated network minimizing the sum of

the linear costs of flow through each arc -- is herein described.

The computational algorithm employed is described in the book

"Flows in Networks",L.R. Ford and D.R. Fulkerson, Princeton

University Press, 1962, pp.162-169.

The network in question consists of nodes designated by

i or j, and a certain collection of arcs joining pairs of

nodes. The arc ij is thought of as directed from i to j.

With each arc in the network is associated the following

four integer quantities.

C the cost of one unit of flow from i to i along

arc 13;

uji the upper bound on the amount of flow along the

arc ij;

Iij the lower bound on the amount of flow along the

arc ij;

Xjj the quantity of flow along the arc ij

The network flow problem is that of determining x. . (for all

are' ij -of the network) such that

(1) .f . x. u. . (all arcs ij),

(2) the net flow into any node (generally zero)-remains

fixed throughout the solution of the problem, and

(3). c ..x.. is minimized

1 I
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Data

Data Format

A node may be represented by any combination of six Hollerith

characters (at least one of which is neither zero nor blank);

i and j below are such combinations. ( Note that for node names

a blank is a character, and different from a zero.) The numerical

data above are represented as right-justified integers in the

appropriate fields. All data pertaining to one arc are entered

gn one card as follows:

1..6 7..12 13. .18 19,20 21. .30 31. .40 41..50 51. .60 61. .80

blank i j free c.. u.. .. x.. free
to use ' J 13 to use

Leading zeros in the numeric fields need not be entdred, nor

need any figures where zero is desired.

Of course, fields 7-50 contain constants for the stated problem.

Entry of the "x.," is optionalconstituting only an initial guess
1)

at the solution.

An optional initial set of node prices 1i may be entered. These

are entered one per card as follows:

1 .. 6 7 .. 12 13 ... 20 21 ... 30 31 ..... 80

blank i free to 7f. free to use
use

Assembly of Data

The data just described is put together in the following way:

1) All arcs 13 having a given first node i must be

adjacent in the deck. (No other requirement on their order

is made.)
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2) The arc cards are preceded by two cards, the first

being the title card and the second bearing the word "ARCS"

in the field 1-4. The title card should be blank in column

1 and may have any Hollerith punches in columns 2-80.

3) If no node prices are given, the arc cards are followed

by a card bearing "END" in 1-3.

4) If node prices are given,the arcs are followed by a

card bearing "NODES" in 1-5; the node cards follow this, and

all the cards are followed by the END card of (3).
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4. Control Cards for Standard Run

Input, computation, and output are effected by control

cards whose punching in the field 1-12 controls the operation

of the routine. Punching always begins in column 1, and there

is one blank between English words. The first card of the

deck which follows the program deck must be the control card

READY

Following the "READY" card must be one of the two control

cards

CARDS or TAPE

If "TAPE". the assembled data described in the previous section

should be on the reserved input tape. If "CARDS", the

assembled data should innediately follow this control card.

Next may be placed any combination of the three output

control cards

OUTPUT TARE

(U1rPUT PRINTER

OUTPUT PUNCH

which will cause the types of output described in Section 8. At

least one OUTPUT control card must be included in the data set.

Next is placed the card

COMPUTE

which causes computation Lo begin.

The last card in the deck must be the control card

PAUSE

which terminates the job.
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5. Example

The example which follows is a modification of the one given

in the book " Flows In Networks", L.R. Ford and D.R. Fulkerson,

Princeton University Press, 1962, pp.123-127. Costs and bounds

for the arcs can be found in the data listing on the next page.

Since the cost on the arc T S is very low (negative) compared

to the costs on the other arcs, the routine finds the maximal

flow that minimizes costs.from S to T.



READY
CARDS

F.
ARCS

AND F. -EXAMPLE 1

S
S
S
X1
x1
X2
X2
X2
X2
X3
X3
X4
X4
X5
X6
X6
X7
X7
x8
X8
X9
T

x1
X2
X3
X2
X4

X3
X4
X5
X 7
x5
X8
X6
X 7
X 7
X7
T
X9
T
X7
X9
T
S

END
OUTPUT PRINTER
OUTPUT TAPE
COMPUT E
PAUSE
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3
6
8
2
2
2
1
3
8
1
3
9
8
5
1
2
1
4
2
3
3

-10000

50
30
15
50
25
15
45.
10
15
10
20
90
10
60
10
10
10
80
20
10
10
85

35
0
0
0
0
0
0

10
0
0
0
0
0
0
7
0
0
0
0
0
0

25
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6. Jobs with More than One Run.

The control card setup described in Section 3 applies to

jobs with only one run. By a " job", we mean all that is

done in one pass at the computer; that is, any work that

can be done without manual interference with the computer

and, in addition, without inputting the program instructions

into the computer more than once. By a "run", we mean that

which is involved in the solution of one problem.

For multiple run jobs, the standard input for each run

is as described in Section 3 with the "PAUSE" card removed.

Runs may be stacked one after another. Only one "PAUSE" card

may be used, and it is always placed after the "COMPUTE" card

of the final run.

Each run begins with a "READY" card or a "SAVI" card as

described in Section 6. Each run ends with a "COMPUTE" card.

The job ends with a "PAUSE" card.
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7. Save and Alter Run

In Section 3, the standard run beginning with the " READY"

card was described. In Section 5, it was noted that these

runs may be stacked, one after another. Frequently it is

desired to execute a run in which only relatively few c..,

u. . or are chaiqed, but in which the arc configuration

remains the same. In this event, a "Save and Alter" procedure

may be followed. A "Save and Alter" run may be any run except

the first. The control card setup for this type of run is as

follows.

The first card of the run must be the control card

SAVE

which initiates a now run without destroying the results

of the previous run.

The second card is the title card, which may have any Hollerith

punches in it, except that column . should be blank.

Next are placed tuu "OUTPUT" cards as' mentioned in Section 3

and described in Scction 8.

Next are placed any number of "ALTER' cards. Each "ALTER"

card has the following format:

1..6 7..12 13..-18 1 19,20 21. .301 31L..40 41. .50 51..60 61..80

ALTER i j n.. c.. u.. I.. of.. free to
1 13 13 13 use
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i and j are the source and sink nodes of an arc which is in

core storage; that is, one which was used on the preceding

"READY" run. n. . may be left blank if there is only one arc

ij. If there is more than one arc ij, then n. . gives the number

of this arc as to whether it was the 1st, 2nd, 3rd, etc. arc ij

which was read into memory in the applicible "READY" run c. ., U..
,J 1D

and f.. are the new values of these same quantities for this arc.

'af i usually zero (or blank). It is the change in the flow

out of node i and into node j. Note that inputting a new x.. is

meaningless, since x.. on input is a guess, and guessing a

value of x. . on an alter run would only upset the conservation of

flow from the nodes. Hence inputting a non-zero Af. . is a means
13

of deliberately upsetting the flow conservation. It will change

x. . to X. . +Af.
1J 13 1)

The last card of the run must be the control card

COMPUTE

which causes computation to begin.

Note that any number of "Save and Alter" runs may follow

one "READY" run. The effects of each "Save and Alter" are

cumulative.

The program also allows "ALTER" cards to be placed after

the "OUTPUT" cards and before the "COMPUTE" card on a "READY"

run. This "Ready and Alter" run is useful when data is on

tape and a few changes in the value of c, u, and. Z are needed

before the run is to be executed.
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8. Other Program Options

In the standard run, the program requires that every

node be a first node for some arc and be a second node for

some other arc. This is the standard network problem. An-

other type of problem allows arcs to end at nodes at which

no arcs begin. These sinks are designated by the program as

"dead end arcs." There may also be source nodes at which no

arc terminates. This type of problem is designated a "trans-

portation" problem and the requirement that at least one arc

begin at each node and end at each node is ignored by the pro-

gram.

The reserved input tape may have data for several jobs

stacked on it. There are no ends of file on this tape ex-

cept at the end of all data; the program knows when it is at

the end of the data for one run by sensing the "END" card

record. In certain cases, it may be desirable to pass over

some data packages while processing a job. In this event,

the control card "SKIP" is used.

The general "READY" type run is now described.

The first card must be the control card

READY

An optional card which must follow the "READY" card if

this is a transportation problem, is the control card

TRANSPORTATION

Also optional is the control card

SKIP

which is used to cause the reserved input tape to skip one

package of assembled data. As many "SKIP" cards are used as

are needed to skip the desired number of packages of assem-

bled data. The "SKIP" cards and the "TRANSPORTATION" card

may be in any order immediately following the "READY" card.



-516-

Following the above cards must be one of the two control cards

CARDS or TAPE

These cards are as described in Section 3.

The data package follows the "CARDS" control card. Following

the data package, or the control card "TAPE" where there is

no data 'package with the control cards, may be an optional title

card. 'If this is included, it supersedes the title card on -the

data package.

Next may be placed any number of "OUTPUT" cards as described

in Section 8.

Next may be placed any number of "ALTER" cards as described

in Section 6.

The last card in the run must be the control card

COMPUTE

which causes computation to begin.
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9. Outnut

The type of output is controlled by one or more of four control

cards. The four control cards are

a) OUTPUT PRINTER
b) OUTPUT TAPE
c) OUTPUT PUNCH
d) OUTPUT NODES

The "OUTPUT PRINTER" control card causes output to be written

on the system output device.This output is written for printing

on the peripheral printer under program control. The system

output device is denoted in the program by the symbol "KO", and

KO has the value 6 in the version of the program submitted.

The data for each arc are printed horizontally on the page. The

data for one arc, ij, are printed in the following order:

1) node name i

2) node name j

3) c.., the unit cost of arc 1

4) u.., the upper bound of the quantity of flow

through arc 1

5) Iii.the lower bound of the qunatity of flow

through arc ij

6) x.., the quantity of flow in the arc 1)

7) "FLOW" =c. . x. ., the total cost of x. . units
1) 13 13

at the cost c..
-)) 1

8) fr, the node price of node i

J- 9) 17 j, the node price of- node j

10) 'c~j, the quantity T.+ c. . -7
1 1) 3.

11) The letter "K", the letter "N" or nothing.

The letter "K" is printed if all the arcs

are in kilter. The letter "N" is printed

if this arc could not be brought into kilter,
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indicating that the problem has

no feasible solution. Nothing is

printed in all other cases.

The "OUTPUT TAPE" control card causes output to be written

on the reserved output tape. This output may be printed

peripherally using single space ( or double space ) control.

It may also be punched peripherally, and the cards gotten

thereby will be substantially the same as the cards gotten

from the "OUTPUT PUNCH" option described below. The information

from the "OUTPUT TAPE" option is the same as that from the "OUTPUT

PRINTER" option, except that items 8), 9), and 10), are not output.

This output is compatible with the input "TAPE" option.

The "OUTPUT PUNCH" option gives items 1) through 7) on the

on-line punch. This option is generally very time consuming

cxcept on short problems.

Any of the above three options may be used in combination

on any one problem. At least one OUTPUT control card must be

included in each data set.

The "OUTPUT NODES" option will output a list of node prices

in addition to the arc information on the tape or punch options.

This option will have no effect on the printer output option.

All of the output on the reserved output tape and on the

punch is compatible with the input to the problem. The "OUTPUT

PRINTER" output is not compatible with the input.

In addition to the above, all control card information is

written on the peripheral printer device, with the execption of the
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"COMPUTE" control card for which is substituted a count of

the arcs and the nodes. The messages in Section 9 are all

written on the system output device also.

On the following two pages are shown the "OUTPUT PRINTER" results

of the example given in Section 4. "Flow" is c.. x... "Total system

contribution" is the optimal value of the objective function.

1c. x. . Note that the first page contains information

that would be on the system output device regardless of whether

"OUTPUT PRINTER" is requested.
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READY

CARDS

F. AND F. EXAMPLE 1

ARCS

OUTrUT PINTER

OUTPUT TAPE

NO OF ARCS= 22 NO OF NODES= 11

THIS RUN OUTPUT TO TAPE



AND 3-. EXAMPLE 1
COST

X 1
X2
X3
X2
X4
X3
X4
X5
X 7
X 5
x 8
X 6
X 7
X 7
X 7
T
X9
T
K 7
X9
T
S

UPPtR

3
6
8
2
2
2
1
3
8
1
3
9
8
5
1
2
1
4
2
3
3

-10000

50
30
15)
50
2!)
15
45
10
115
10
20

0 )
10
bO
IC
10
10
80
20
10
10
85

LUWK

35
0
0
0
0
0
0
10
0
0
0
0
0
0
7
0
0
0
0
0
0

25

X FLOW Pit

50
20
15
25
25
15

5
10
15
10
20
20
10
20
10
10
0

75
20
0
0

85

150
120
120
50
50
30
5

30
120
10
60

180
80

100
10
20
0

300
40
0
0

-850000

13
13
13
17
17
19
19
19
19
24
24
20
20
25
29
29
30
30
28
28
31
34

P12 CBAR

17
19
24
19
20
24
20
25
30
25
28
29
30
30
30
34
31
34
30
31
34
13

-1
0
-3
0
-1
-3
0
-3
-3
0
-3
0
-2
0
0
-3

0
0
0
C
0

-9919

TOTAL. SYSTEM CONTRIBUTION =

NU OF BREAKTHRUS= - 12, NO OF NON*(EAKTHRUS
NO OF NUDES FROM WHICH LABELING WAS DUNE= 131

11, NO OF X CHANGFS=

PAUSE

RESERVED TAPE HAS bEEN wRITTEN

F.
ARCS

S

5 1S

X2
A

X2
X 2
X3
X3
X i
X4
X5
X 6
X6
X 7
x7l
X a
X8
X9
T

ENO

U,IJ

-848525

67
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10. Program Messages

One exception to the previous formats is permitted. If

the "READY" of "SAVE" card is not the first card in a run

this is not considered to be an error, but it is assumed

that these are comment cards. The contents of columns 7-72

of all cards in a run ( if any ) which precede the "READY" or

"SAVE" card plus columns 7-72 of the "READY" or "SAVE" card

itself are written on the system output device.Thus only columns

1-6 of the "READY" and the "SAVE" card are fixed in format, the

rest of the card may be used for comments. The above is also

applicable. to the "PAUSE" card.

Below is given a list of comments which may be written on

the system output device.

Comments 3) ,4) , 5), 6) , 7), 8), 9) , 12) , and 13) , denote

errors in data set-up that were caught by the pre-processing

routines. Conditions 10) and 11) are considered to be errors

only if no "TRANSPORTATION" control card was present. Whenever

any of the above error conditions are present, the run is

terminated.

Comment 18) is given to convey information but is not regarded

as an error.

Cor.mnent 17) denotes a trivial infeasibility--in this case

the algorithm is not executed.

Comment 2) is written if the algorithm computation was started

but not finished. Comment 1) will be present when comment 2)

is written.
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OFF LINE PROGPAM COMMFNTS

1) OVERFLOW IN NODE PRICES

2) RUN TERMINATED AT ARC_

3) RUN TERMINATED DUE TO
ERRORS IN THE DATA

4) TOO MANY NODES IN THIS RUN

5) TOO MANY ARCS IN THIS RUN

6) CARD PUNCHING ERROR IN ARC
CARD NO.

7) CARD PUNCHING ERROR IN NODE
CARD NO.

8) THE ARC IN THE ABOVE ALTER
CARD IS NOT IN CORE

9) SOURCE NODES ARE NOT ADJACENT,
ARC

10) ARC IS A DEAD END ARC

11) NO ARC ENDS AT NODE

12) CARD NODE NOT IN ARCS

13) ILLEGAL CONTROL CARD(_
)

A node price is greater than
100,000,000. Costs should
be rescaled to run job.

Gives the arc at which run
was terminated due to the
reason stated above the
comment.

Self - explanatory

These comments aie self-
explanatory

All arcs having similar first
nodes must be adjacent. This
comment gives an arc which is
separated from another arc
having the same first node.

The second node of this arc
does not appear anywhere as
a first node.

Self-explanatory

A node card appears on which
the node is not represented
in any arc.

The control card just read
into core is not able to be
interpreted by the program.
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14) OUTPUT CONTROL CARD MISSING
OR OUR OF SEQUENCE

15) RESERVED TAPE HAS BEEN WRITTEN

16) NO RESERVED TAPE HAS BEEN
WRITTEN

17) ARC - HAS LOWER BOUND GREAT-
ER THAN UPPER BOUND

18) NODE NON-CONSERVATIVE, NET
FLOW=

19) THIS RUN OUTPUT TO TAPE

20) THIS RUN OUTPUT PUNCH

21) ARCS ARE OUT OF KILTER

Self - explanatory

This comment states whether
an output has been written on
a tape other than the system

device(cls requested by an
" OUTPUT TAPE" control card).

Self-explanatory

Node has a finite net flow.
Negative flow denotes
source node.

These comments state where
the output to this run may
be found.

This run was completed, but
there is no feasible solution.
As many as 100 arcs are marked
with an "N" on the output.

'N" denotes that these arcs
are not in kilter.
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11. Program Operation Notes

The I/O device reference numbers the program uses are

given below. Since these numbers vary from installation

to installation, they can be changed as indicated in Sec-

tion 13.

I/O Device

System input device--
all control cards and data
packages of the "CARDS" variety

System output device--
general editing output and
"OUTPUT PRINTER" option

Card punch--
"OUTPUT CARD" output

Reserved output tape--
"OUTPUT TAPE" output

Reserved input tape--
data packages of "TAPE" variety

Fortram,
Symbol

KI

KO

KQ(l)

KQ(2)

KQ(3)

Reference
Numbers

5

6

7

3

2

System control cards must be included in the deck when-

ever the reserved tapes are used. The reference numbers 2

and 3 for the reserved input and output tapes, respectively,

were arbitrarily chosen. These numbers can be changed, but

they must correspond to the tape numbers specified on the

system control cards.

For a reserved output tape the following two control

cards must be included:
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//G.FT03Fool DD UNIT=TAPE9,LAB3EL=(l,NL), X

// VOLUME=SER=tapeid,DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000)

These cards should immediately precede the data. When the

job is run under the ASP system (at the MIT Computation Center),

the following card must also be included:

/*SETUP DDNAME=FT03FOO1,DEVICE=2400-9,ID=(tapeid,RING,SAVE,NL)

This card should immediately follow the job card. Note that

tapeid is an identification number assigned to the tape by

the MIT Computation Center. Three similar control cards must

be included whenever a reserved input tape is used, but FTO3

should be changed to FTO2. The OS/360 user's manual contains

more details concerning the use of reserved tapes.

The sequence of operations by the computer when it is

doing one problem is as follows:

First the "READY" card is looked for.

Next the data package is read.

Next comes the generation of the output. When outputting

is finished, the next run (if any) will be started.

The running time for this program, of course, varies con-

siderably from problem to problem. The input ahd output time

will be roughly proportional to the number of arcs. The

execution of the algorithm is the most variable part of the

problem, and its duration will depend on the type of problem

considered. At the end of "PRINTER" output, the numbar of
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non-breakthroughs that were obtained are written. Also it

writes the "number of X changes," which is the sum of the

number of arcs in each breakthrough chain, and "number. of

nodes from which labeling was done," which is the sum of the

number of nodes scanned on each labeling operation.

As an example, a problem was run that gave the following

statistics:

Number of arcs 414

Number of nodes 348

Number of breakthroughs 40

Number of non-breakthroughs 179

Number of X-changes 1915

Number of nodes from which 7550

labeling was done

The upper bounds on the elapsed times were:

Program compilation 2.2 min.

Data preprocessing 3.3 sec.

Algorithm computations 3.6 sec.
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12. Structure of the Program

A. Main Program

1) Sets up I/O device numbers and dimensions

2) Calls MAINE

B. Subroutine MAINE (with ENTRY OOKMAN for on-line link-

ing and execution)

1) Calls the preprocessing routines

PREDAT
ARCASY
MAKEJL
NODASY
READER
TRANSL

2) Calls the subroutine KILTER once for each arc.

3) Calls the postprocessing routine OUTPUT.

The routine also processes certain error and infeasi-

bility conditions.

C. Subroutine PREDAT looks for a control card of the type

"READY", "SAVE", or "PAUSE". If it finds a "READY"

card, core is cleared and it looks f.or a control card

of the type "CARDS", "TAPE", "SKIP", or "TRANSPORTA-

TION". After it finds a "CARD" or "TAPE" control card,

it then looks for the control card "ARCS" on the

appropriate input device.

If a "SAVE" card is found the program returns control

to the main program and control is passed next to the

subroutine READER.

If a "PAUSE" card is found, the end-of-job instruc-

tions are executed.

D. Subroutine ARCASY reads arc record after arc record

into storage until it comes to a record with "END"

or one with "NODES"

The ti., u.., c.., and x. . information is stored in

the KL, KU, KC, and KX blocks, respectively. 
The BCD

names of the first nodes are stored in NN, and 
the

BCD names of the second nodes are stored in IJ.

E. Subroutine MAKEJL sets up lists in IL and JL storage.

These lists are cumulative counts of the arcs begin-

ning and ending at the nodes. The subroutine also

replaces the IJ names by numbers.
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F. Subroutine NODASY reads in the node prices, if any.

G. Subroutine READER reads the OUTPUT, ALTER, and
COMPUTE control cards.

H. Subroutine TRANSL performs the final operations
before going to the Out of Kilter algorithm.

I. Subroutine KILTER tests the arc presented to see if
it is in kilter. If it is not in kilter, the assem-
bly language subroutine LABELN is called. Depending
on a flag set in LABELN, the KILTER subroutine then
calls either UPNOPR or BREAKT. When the arc has
been brought into kilter or when it is determined
that the arc cannot be brought into kilter, the
control passes back to MAINE.

J. Subroutine OUTPUT generates the output required
for the run.

K. ASSEM1 routine includes:

1) Assembly language subroutine LABELN performs the
labeling operation. If a breakthrough results,
the next subroutine called by KILTER will be
BREAKT. If a non-breakthrough results, the next
subroutine called by KILTER will be UPNOPR.

2) Assembly language subroutine BREAKT alters the
quantities of flow in the cycle generated by
LABELN.

3) Assembly language subroutine UPNOPR raises the
node prices of the labeled nodes by the appro-
priate amount.

4) Assembly language function NODENO returns the
number of the node that has the name presented.

L. ASSEM2 routine includes:

1) Assembly language function LADDR returns the
rightmost 16 bits of the word presented as a
32-bits FORTRAN integer.

2) Assembly language function LDECR returns the
leftmost 16 bits of the word presented as a 32-
bits FORTRAN integer.

3) Assembly language subroutine PLACE stores the
rightmost 16 bits of the first full-word argument
in the leftmost 16 bits of the second full-word
argument.
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13. Compiling the Program

In order to change the 1/0 device numbers of the pro-

gram, only the MAIN program need be compiled. The I/O

device numbers are the first items to be defined by the

program. The symbols assigned to the devices are as

follows:

KI = System input device

KO = System output device

KQ(l) = Punch card device

KQ(2) = Reserved output tape

KQ(3) = Reserved input tape

In order to change the dimensions of the program, it

is necessary to change the dimensions of all the FORTRAN

subprograms and also the numeric values of the symbols

KQ(4) and KQ(5). The assembly language subprograms need

not be changed since they do not contain dimensions infor-

mation.

Let "a" be the maximum number of arcs allowed in the

program and "n" the maximum number of nodes allowed. Then,

KQ(4) = a, and KQ(5) = n in the main routine. The

storage which must be allocated for each symbol is as

follows:



DIMENSION

KL
KC
KU
KX
NL
NN
NP

Must occupy at least IJ
"a" words of conse- IL
cutive storage JL

JI

a
a
a
a
n

2n
n
n
n+ 1

n +l
maximum a:2:i)

a

Total storage for above symbols = 5a + 4n + max (a,3n+2)

A total of 108,000 four-byte words were available

for dimensions when the program was tested on the

IBM 360 model 65 computer. One can choose a and n to be

any positive integers as long as

5a + 4n + max (a,3n+2) < full-word storage available
for dimensions.

-531-

SYMBOL
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G.3 Out of Kilter Sample Problem

Sub-section 5 of Section G.2 contains a sample

problem input listing.

G.4 Out of Kilter Source Listing

The following is a source listing of the Out of

Kilter Network Program (included only in MIT library

copies).
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APPENDIX H
Q K C O R E

H.1 QKCORE Discussion

H.1.1 Introduction

As was pointed out in Section 5.2, development of

QKCORE, a QuicK in-CORE empirical fuel cost simulator

(See Figure H.1)was undertaken to allow completion and

evaluation of the nuclear power management model of

Figure 2.21. To provide maximum flexibility, QKCORE is

programmed as a separate "stand-alone" code suitable for

independent fuel management studies.

A pseudo-lD nodal model of LWR reactor core physics

is used (See Section H.1.2). Each cycle of a multi-

cycle planning horizon may operate in one of three modes:

(1) With reload (i.e., freshly fabricated) enrich-

ment 6 specified, irradiate to reactivity-

limited cycle energy Erc. This mode is repre-

sentative of normal fuel-depletion code opera-

tion.

(2) With cycle energy Erc specified, determine re-

load enrichment 6 required at start of cycle

to generate reactivity-limited E rc This mode

is required by SYSOPT.

Notation in this Appendix is defined specifi-
cally in context rather than in Nomer lature of Appen-
dix I.
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Figure H.1

Compatibility of the Fuel Cost Simulator

CORE SIMULATION AND
OPTIMIZATION MODEL
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(3) If both 6 and Erc specified, determine amount

of early shutdown or stretchout required. This

model represents a compromise where first few

cycles of horizon have enrichment fixed and

specific cycle energy required.

Total and incremental fuel costs for each cycle are

determined on-line as indicated in Section H.1.2.

The limitations of the code are as follows:

(1) modified-scatter refueling with fixed number of

zones (1 < NOZONE < 10),

(2) no plutonium recycle,

(3) up to 20 cycles considered,

(4) up to 15 different sets of nuclear generating

unit characteristics may be retained simultane-

ously,

(5) each nuclear unit may have a different set of

empirical core physics constants,

(6) up to 5 different sets of empirical fuel con-

stants and

(7) the cost of each operation in the nuclear fuel

cycle may be escalated using an input quadratic

equation.

H.l.2 Computational Model

The computational model is based on (1) empirical

fuel equations (See Table H.1) which represent homog-

enized unit fuel cell data as a functiLon of fabricated
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Table H.1

QKCORE Empirical Fuel Simulator Equations

I. k, = K8 = (F + F2 f + F3E 2)

+ (F4 + F5 f + F6 c f
2 B

+ (F7 + F8 f + F9 f 2) B2

II. KGU (F1 0 + F 1 1 Ef + F 1 2 Ef2

+ (F1 3 + F 1 4 f + F 1 5 f) B

+ (F1 6 + F 7 Ef + F 1 8 f ) B

III. £ = ENRICH = f .e-aiB

where

a1 = (F 1 9 + F2 0 f + F 2 1 f2

+ (F2 2 + F 2 3 Ef + F2 4 f2) B

+ (F2 5 + F 2 6 f + F 2 7 f) B2

IV. KGPU = a 2 (e-a3B _ -a 4 B

where

a2 = (F2 8 + F 2 9 -f + F30 f

+ (F + F e + F E B

+ (F + F35 f + F36 f2 B2

3 = F 37 + F 38 f + F39 f

a4 = F40 + F E + F42 sf
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Table H.1--Continued

V. a= SIGA = F + F 4a 43 44 f

Units:

F. = FULCON(I)

f = as-fabricated enrichment, w/o U-235

c = current (i.e., at burnup B) enrichment, w/o U-235

B = average zone burnup, MWD/kg

KGU = uranium inventory, kg U/kg U fab.

KGPU = fissile plutonium inventory, kg fissile Pu/kg U fab

-1
= macroscopic absorption cross section, cm
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enrichment 6 and current burnup B and (2) empirical

reactor equations (See Table H.2) which mockup zone-

by-zone irradiation during each cycle.

To facilitate explanation of the model, assume

that all the required coefficients in Tables H.1 and

H.2 are known a priori. In the first operating mode

(See Section H.1.1), the purpose of the model is to

answer the following question:

Given the as-fabricated enrichments C , and average

zone burnups B for non-fresh fuel (i=2 to n) in an n-

zone core, what must be the fresh fuel (i.e., B1 =O),

enrichment 6 1 loaded to give a cycle electrical energy

production of E c

First, the electrical energy production E must beC

converted to thermal energy Oc. Using a previous

assumption (See Section 2.4.2) of constant nuclear in-

cremental efficiency ninc, Equation (2.52) yields

Oc = H T + Ec (H.1)

inc

where

H* = fixed heat consumption rate during operation

T = time of operation

The next step is the determination of kw INNER as

an index of the reactivity remaining in the core.

Assuming three-zone modified-scatter refueling,
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Table H.2

QKCORE Reactor Irradiation Empirical Equations

VI. koNEW = K8NEW = 1 + R1 + R2c + R3c 2

+ (R4 + R5 
6kINNER + R6 c) 6kINNER

where 6kINNER = koINNER -1

n

21 k (C , B)
kooINNER = i=2 00

n-l

VII. = 1

1 + R7+ R8f+ R9Sf 2+ R1Qe f 3+ R 1 1 6k INR+ R16k 2 INE

Units:

R. = RCRCON(I)
1

19= Cycle thermal energy, GWHt

n = n-zone core (NOZONE)

= w/o U-235 as-fabricatedE f
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koINNER =

km(C 2, B 2) + km (6 3, B3)

22

Using this index and 0c the required energy produc-

tion, Equation VI of Figure H.2 gives the fresh fuel

km needed,

koNEW 
- koNEW ( c , koINNER) (H. 3)

The fresh (B1 =0) fuel enrichment is then determined

by applying the quadratic equation to

k"NEW 
koo (E;

NEW
SO) = F1 + F2 /NEW + F3  NENEW

(H.4)

and solving for E (W )'
/NEW 1fi

Burnup increments for each zone mustnow be cal-

culated by predicting power-sharing.

Since,

a f
If c( (E akoo (H.5)

a

where v = average number of neutrons per fission

E = macroscopic fission cross section,

-1
Cm

then

(H.6)AB i (E f .t r(00E akoo).
Ia i

(H.2)
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Since inner zones 2 and 3 see the same flux(O,~ +3),

a single fit of outer zone 1 flux normalized to that

of the inner zones suffices to allow a determination of

power sharing:

Fraction of Cycle (Ea km).
EnergyQ supplied akm (H.7)

by ith zone a i a2 2 a3 3

where

01 = ( NEW k"INNER) of Equation VII

02 3

After the burnup increments are determined for each

zone, simulation of one irradiation is complete. Refuel-

ing is then represented by discharging zone 3 and re-

numbering zones 1 and 2 to 2 and 3, respectively.

Clearly, the next irradiation can now be simulated by

repeating all of the above steps. And so on, for all

the cycles of interests. (The other operating cycle

modes of Section H.l.1 are easily handled within this

framework.)

When all fed and discharged fuel characteristics

(Ef,BFINAL) have been determined, application of the

uranium inventory Equation II (See Table H.1), current

enrichment Equation III, and fissile plutonium inven-

tory Equation IV provides pertinent mass balance data.
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Reload batch fuel cost is then calculated using the

simple, straightforward, but approximate equation:

Batch Revenue Requirement Batch Initial
Present Valued to Investment +y Tr

Middle of Irradiation Cost / 2

Batch
- Salvage -y T +

Value (T

(H.8)

where y = average cost of money
per year

x = present value rate, per year

I= income tax rate, fraction of

T = total in-core time, years

T = pre-irradiation lead time
pre chases, years

T = post-irradiation lag time
pst fuel credit, years

(before taxes),

taxable income

for fuel pur-

for receipt of

All batches are then present-valued to the study's base

date to yield T-C, the total nuclear fuel revenue re-r

quirement for the "path" p of cycle energies

(Erl, Er2, E r3, ) to the horizon. A second path p',

equal to the first in all but one cycle (Erl, Er 2 +A

Er3,...), can also be evaluated. Then, the Xr2 incre-

mental cost for that cycle becomes simply

(H.9)A TCr TC
3Er2 t
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Returning to the question of determining the proper

empirical coefficients, data points can be easily gener-

ated by a suitable physics-depletion code set such as

CELL-CORE (40,41) or even LASER-FLARE (25,50). Multiple

regression techniques (15) can be applied directly to the

unit fuel cell data with a minimum of pre-fit data hand-

ling. On the other hand, the reactor irradiation data

is best utilized in terms of the parameters of interest

(e.g., power-sharing) as opposed to the physics quan-

tities represented (e.g., flux ratios). In other words,

the interpretation of is qualitatively based on a

flux ratio, but the actual (to be used as input to

any data-fitting package) is more appropriately backed-

out of the actual power-sharing data using the empirical

value of km and Ea. calculated for the same reactor core

conditions.

Sample results for a Zion class 1100 MW PWR are shown

in Figure H.2. Coefficients were fitted to Zion data out-

put by CELL-CORE. Cost calculations are all based on

annual refuelings with four week outages using unit

costs representative of 1975 startup (46).

As an indication (See Table H.3) of simulator

accuracy, in attempting to reproduce one of the fitted

data points, QKCORE end of cycle burnups were in error

by less than 0.6 per cent compared to CORE results (118

out of 19149 MWD/T at the end of second irradiation);
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Figure H.2

QKCORE Fuel Simulator Results for 1100 MWe PWR at Steady-State
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Table H.3

Comparison of QKCORE versus CORE results
for 3.2% U-235 at Steady-state

NOTE: All burnups in WD/T
30.1 Metric tonnes loaded at each refueling

Average Zone Burnup

CORE

0.0

QKCORE

0.0

ERROR: QKCORE vs. CORE

End of Cycle
Absolute Percent

Cycle Increment
Absolute Percent

Increment 9173 9200 27 .294

At End of Cycle 1 9173 9200 27 .294

Increment 9976 10067 91 .912

At End of Cycle 2 19149 19267 118 .616

Increment 9294 9163 -131 1.410

At End of Cycle 3 28443 28430 -13 .046

(Discharge)

Initial

C,,
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errors in cycle incremental burnups were higher but

still less than 1.5 per cent (131 out of 9294 MWD/T).

Programming the empirical model and its associ-

ated cost calculations resulted in the 1300 card Fortran

IV program QKCORE which requires 80K bytes of computer

memory (plus 26 K for computer supervisor). Less than

0.2 sec of CPU time on an IBM 370 model 155 is tequired

to simulate ten irradiation cycles including costing for

each batch.

H.l.3 Code Structure and Mode of Operation

Table H4 presents a summary of QKCORE subroutines

while Figure H.3 portrays the general sequence of oper-

ations occurring in a QKCORE production run. (Table

H.5 presents information relative to possible error

messages printed by subroutine ICERRS.)

In order to calculate incremental costs (3TCr/Erc ')

an ELAME table (See Figure H.4) is passed to INCORE.

The key path p of cycle energies is evaluated first.

Then, each cycle, in turn, (last cycle first) is al-

tered to a p' with a non-key E rc, holding all others

constant at their key value. Equation (H.9) is then

used to determine A which is then "sandwiched" be-
rc

tween the two pertinent cycle energies that differ

(See Figure H.4).



Table H.4

Summary of QKCORE Subroutines

Purpose

Reads QKCORE input, then calls INCORE (see
Table F.3)

Supervises in-core simulation;
Has ENTRY ICNPUT to initiate reading of input
data by subroutine REDCOR

C",

Reads input data for INCORE

Supervises fuel irradiation simulation for all
E's

Name
Called

BY

QKCORE
(Main)

Calls

INCORE
ICNPUT
ICERRS
ERASE

INCORE
(ICNPUT)

REDCOR

QKCORE
(Main)

ICNPUT

REDCOR
FULSIM
INIT3
EMPRCL
ICERRS

INIT2
UF6VAL
SETUVL
PVINIT
ICERRS
ERASE

FULSIM INCORE CONSTS
NXTIRR
FRSIRR
CSTBAT
PRTTOP
PRTBTM
ERASE



Table H.4--Continued

Called
By

FULSIM

Calls

UNTCOS
PVPER$

Purpose

Supervises calculation of unit ($/Kg) cost for
all batches

NXTIRR FULSIM FK8 Performs simulations of next irradiation;
(FRSIRR) FSIGA Has ENTRY FRSIRR for initial split cycle

FEPF
FK8NEW
FPHI
FECOUT
ICERRS

CSTBAT INCORE FKGUR Calculates cost of batch of fuel;
(INIT3) FULSIM FEPB Has ENTRY INIT3 for initialization

FKGPU
UF6VAL
PVPER$
ERASE

FULSIM

L,

Prints top of FULSIM result table;
Has ENTRY PRTBTM to print bottom of table

Name

CONSTS

PRTTOP
(PRTBTM)



Table H.4--Continued

Name

EMPRCL
(FK8, FKGUR,
FEPB, FKGPU
FSIGA, FEPF,
FK8NEW, FPHI,
FECOUT)

Called
By

INCORE
NXTIRR
FRSIRR
CSTBAT

Calls Purpose

Initializes empirical equations;
Has multiple ENTRY points for each equation

UNTCOS REDCOR ------ Calculates escalated unit ($/Kg) costs;
(INIT2) CONSTS Has ENTRY INIT2 to initialize excalation

constants

UF6VAL REDCOR PVPER$ Calculates value of enriched uranium ($/Kg UF)
(SETUVL) CSTBAT Has ENTRY SETUVL to pre-calculate constants i

value equation

P PER$ REDCOR ------ Calculates present (at base date) value of one
(PVINIT) CONSTS dollar;

CSTBAT Has ENTRY PVINIT to initialize present value
SETUVL rate;

Identical to SYSOPT version (see Appendix F)

ICERRS

L"
42 -

Prints error messages and choses to terminate
execution if severe error occurs (see Table H.2)

QKCORE
(Main)
INCORE
REDCOR
NXTIRR
FRSIRR



Table H.4--Continued

Purpose

MIT Assembler Language program that sets arrays
to zeroes rapidly

Note: Computer installation-dependent dataset reference numbers for RD and WT may be
altered in ICNPUT.

(JnC)3
I

Name

ERASE

Calls
Called

By

QKCORE
(Ma in)
REDCOR
FULSIM
CSTBAT



Figure H.3

QKCORE Flowchart

INPUT CALCULATIONS & OUTPUT

START

QKCORE INCORE

ENTRY ICNPUT FULSIM

].c REDCOR

RETURNPRTTOP
RETURN(PRTBTM)

RETURN



Table H.5

QKCORE Error Messages Printed by ICERRS

Action
after Printing

RETURN

RETURN

QKCORE (MAIN) TerminateLREDCOR
Terminate

Terminate

RETURN

2

3

4

5

6

7

8

9

*The error number initiating the
the accumulated ERRCOD (which is printed

Source

NXTIRR,

NXTIRR

Number*

1

Error

Cycle energy stretched-out more than 25% of
reactivity-limited energy

Cycle energy less than 75% of reactivity-
limited energy

Input deck has improper sequence and/or card

Array G in subroutine INCORE too small for
problem

One or more inputs are outside permissible limits u

NCYCTO /' NCYCIN + NCYCXS when subroutine INCORE
entered

Data for unit IDNUM not read in

"Stop" Card 27 or severe error encountered

Power-sharing fractions (see Card 15 of Section
H.2) do not sum within 1 ± 10-!

Too many cycle-energies being investigated

Needs reload enrichment < 1.5 w/o U-235 or
> 5.0 w/o U-235

NXTIRR improperly called instead of FRSIRR

ICERR print appears as the rightmost digit in
as part of the message) .

Terminate

Terminate

RETURN

Terminate

RETURN

Terminate

A(=10)

B (=11)

C (=12)

INCORE

L INCORE
REDCOR

INCORE

INCORE

QKCORE

REDCOR

QKCORE

NXTIRR

NXTIRR



Figure H.4

ELAME Table

CYCLE c

PATH P'

C = CYCLE c

ELAME (I.C) = E-rc+[(I-I)/2]*A IF I ODD

|IF I EVEN

H
w

(3,
(3,
(A3

X rc
CLn
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H.2 QKCORE Input Specifications

Table H.6 presents the complete input specifications

for QKCORE. "INCORE" Card 1 initiates reading of INCORE

input data. Card 2 indicates the amount of input data

and print options desired. A single set of economic

parameters (with quadratic escalation permitted) are in-

put on Cards 3-11. Reactor unit initial conditions and

thermal efficiencies appear on Cards 12-15. Card 16-17

contain sets of reactor empirical constants while sets of

fuel empirical constants are input on Cards 18-19. "END

Card 20 indicates end of INCORE input. Then, Card 21

"CASE" enters case data on Cards 22-25. Another"CASE"

can then be entered, or a "NEW " Card 26 enters any new

INCORE data (back to Card 1). Finally a "STOP" Card 27

terminates QKCORE execution.
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Table H.6

QKCORE Input Specifications

Variable Columns Format Description

Card 1

1-12 *.. "INCORE INPUT" Control Card
initiates input of INCOREdata

13-80 17A4 Free for comments

Card 2

NUECON 1-5 15 Control parameter for new
economic data:
if: =0 , Cards 3 to 11

not to be read in

=1 , Cards 3 to 11
to be read in

NURCRS 6-10 15 Number of individual reactors
(i.e., nuclear units) for

which data to be read in,
0 < NURCRS < MXRCRS (=15)

NURCRK 11-15 15 Number of sets of reactor em-
pirical constants for which
data to be read in,
0 < NURCRK < MXRCRK (=15)

NUFULK 16-20 15 Number of sets of fuel em-
pirical constants for which
data to be read in,
0 < NUFULK < MXFULK (=5)

RELCST 21 Ll Print option for relative

cost results (TC - FC)in
in ELAME table, r r

F = No

T = Yes

INCCST 22 Ll Print option for incremental
cost Xrc results in ELAME

table,

F = No

T = Yes
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Table H.6--Continued

Variable Columns Format

BALCST 23 Ll

Description

Print option for batch costs
of key cycle energy path p

F = No

T = Yes

NBLCST 24 Ll Print option for batch costs
at all cycle energy paths p'

F = No

T = Yes

Print option for irradiation
data of all paths,

F = No

T = Yes

Print option for detailed
batch cost data of all paths,

F = No

T = Yes

Note: Cards 3 to 11 may be omitted from subsequent
INCORE INPUT blocks if no changes in previous
economic data read in. Then,NUECON = 0. If
QKCORE used in SYSOPT overlay structure (See
Section F.1.2), always use NUECON = 1.

Card 3

20A4

F10.3

F10.3

F1O.3

Title for economic data

Enrichment of diffusion plant
feed material (yellowcake),
weight fraction U-235

Enrichment of diffusion plant
tails, weight fraction U-235

'r, income tax rate, fraction
of taxable income

PIRDAT 25 Ll

PBATCS 26 Ll

ECTITL 1-80

Card 4

XF

XW

TXRATE

1-10

11-20

21-30
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Table H.6--Continued

Variable Columns Format Description

PVRATE 31-40 F10.3 x, present value rate, frac-
tion per year

TBASE 41-50 FlO.3 Calendar base data for pre-
sent valuing, years

DTPRE 51-60 F10.3 Tpre, pre-irradiation lead

time for fuel purchases,
years

DTPST 61-70 F10.3 Tpst, post-irradiation lag

time for receipt of fuel
credit, years

DTY2F6 71-80 F10.3 Effective delay time from
yellowcake to UF 61 years

Card 5

AO(l) 1-10 F10.3 Constant term in yellowcake
unit cost escalation,
$/lb U3 08

Al(l) 11-20 F10.3 Linear coefficient in yellow-
cake unit cost escalation,
$/lb U3 0 8 /year

A2(l) 21-30 F10.3 Quadratic coefficient in
yellowcake unit cost escala-
tion, $ /lb U 3 0 8 /year

2

Card 6

AO(2) 1-10 F10.3 Constant term in uranium con-
version unit cost escalation,
$/kgU

Al(2) 11-20 F10.3 Linear coefficient,
$/kgU/year

A2(2) 21-30 F10.3 Quadratic coefficient,
$/kgU/year 2

FCOR 31-40 F10.3 Yield in uranium conversion
step, fraction



-558-

Table H.6--Continued

Variable Columns Format Description

Card 7

AO(3) 1-10 F10.3 Constant term in separative
work unit cost escalation,
$/kg SWU

Al(3) 11-20 F10.3 Linear coefficient,
$/kg SWU/year

A2(3) 21-30 F10.3 Quadratic coefficient,
$/kg SWU/year 2

Card 8

AO(4) 1-10 F10.3 Constant term in fabrication
unit cost escalation,
$/kg Fab.

Al(4) 11-20 F10.3 Linear coefficient,
$/kg Fab./year

A2(4) 21-30 F10.3 Quadratic coefficient,
$/kg Fab./year 2

FFAB 31-40 F10.3 Yield in fabrication step,
fraction

Card 9

AO(5) 1-10 F10.3 Constant term in shipping
and reprocessing unit cost
e.scalation, $/kg S&R (U+Pu)

A1(5) 11-20 F10.3 Linear Coefficient,
$/kg S&R (U+Pu)/year

A2(5) 21-30 F10.3 Quadratic Coefficient,
$/kg S&R(U+Pu)/year 2

FSAR 31-40 F10.3 Yield in reprocessing step,
fraction

Card 10

AO(6) 1-10 F10.3 Constant term in uranium
reconversion unit cost
escalation, $/kg U.

A1(6) 11-20 F10.3 Linear coefficient,
$/kg U/year
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Table H.6--Continued

Variable Columns Format Description

A2(6) 21-30 F10.3 Quadratic coefficient,
$/kg U/year 2

FCRE 31-40 F10.3 Yield in uranium reconversion
step, fraction

Card 11

AO(7) 1-10 F10.3 Constant term in fissile
plutonium value escalation,
$/gm fis.Pu

Al(7) 11-20 F10.3 Linear Coefficient,
$ /gm fis. Pu/year

A2(7) 21-30 F10.3 Quadratic coefficient,
$ /gm fis.Pu/year2

Note: There must be NURCRS sets of Cards 12 to 15,
one for each nuclear unit. If no change in
previous NRCRS (nuclear unit data read in
previously), NURCRS may equal zero. However,
if QKCORE used in SYSOPT overlay structure
(See Section F.1.2), always use NURCRS > 0

Card 12

IDNO 2-5 lXI4 Unique unit identification
number

NAME 7-10 lX,A4 Unit name

MWCAP 11-15 15 Unit net capacity, MW

IRCRKA 16-20 15 Pointer to set of reactor
empirical constants to be used
for unit, lSIRCRKA s NRCRK

IFULKA 21-25 15 Pointer to set of fuel empir-
ical constants to be used for
unit, 1 . IFULKA $ NFULK

NOZONE 26-30 15 n, number of refueling zones
in units' fuel management
scheme, 1 i NOZONE < 10

ZONKG 31-40 F10.2 Mass of uranium fabricated for
placement in units' outer
zone, kg
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Table H.6--Continued

Variable Columns Format Description

EFFNET 41-50 F10.2 Average net thermal effi-
ciency for unitfraction

DECRIT 51-60 F10.2 Energy remaining in split
cycle (at start of simulation)
until reactivity-limited
burnup reached, GWHe

DESTCH 61-70 F10.2 Maximum stretchout permitted
in cycle with fixed reload
enrichment, GWHS

EFFINC 71-80 F10.2 Incremental net thermal
efficiency for unitfraction

If = 0 or blank, EFFINC set
equal to EFFNET internally.

Card 13

N 1-2 12 Number of entries to follow
for EPFFX 0<N<MXCYTO (=20)
- NCYCXS

EPFFX(l) 3-80 F8.3, rRefueling enrichment already
to 7F10.3 ordered for reactor, w/o

EPFFX(8) U-235

if < 0, 1Ef is enrichment
loaded at that refueling

with reactivity-limited
energy to be determined.

if =0 (or blank), enrichment
not ordered; free to choose
reload enrichment to give
reactivity-limited energy
desired.

if > 0, Ef enrichment ordered,
extract cycle energy (re-
gardless of reactivity-limited
energy).

Note: If N >8, there must be [(N-1)/8] Card 14's
for remaining EPFFX
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Table H.6--Continued

Variable Columns Format Description

Card 14

EPFFX(9) 1-80 8F10.3 Remaining EPFFX (see Card
to 13)

EPFFX(N)

Note: There must be NOZONE Card 15, one for each zone
of the reactor. First Card 15 is for Zone 1

(freshest fuel), while last Card 15 is for Zone
NOZONE (about to be discharged).

Card 15

EPFSRT 1-10 F10.3 E . As-fabricated enrichment
w/o U-235

BSRT 11-20 F10.3 Bi Current average burnup at
start of simulation, MWD/kg
U fab.

FABINV 21-30 F10.3 Remaining book value of
fabrication to be depreciated
before discharge, $/kg U fab.

SRCINV 31-40 F10.3 Current book value of shipping,
reprocessing and reconversion
(to be appreciated before
discharge), $/kg (U+Pu) disch.

POWFRC 41-50 FlO.3 Power-sharing for this zone
during this initial split
cycle, fraction of total core
output

INOZONE

POWFRC - must be <10-5

i=1

Note: If simulation does not start with split cycle,
zone parameters for last Card 15 should be
chosen judiciously since instantaneous deprecia-
tion of FABINV and appreciation of SRCINV can
result in error in total cost (incremental costs
are not affected). (Subroutine CSTBAT currently
assumes the initial cycle is a split cycle.) Try
EPFSRT = 1.0, FABINV = 0.0 and SRCINV = AO(5)
+ AO(6) to net error to zerc.
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Table H.6--Continued

Variable Columns Format Description

Note: There must be NURCRK sets of Cards 16 and 17,
one set for each set of reactor empirical
constants. If no change in NRCRK sets of
constants read in previously, NURCRK may eaual
zero. However, if QKCORE used in SYSOPT
overlay structure (see Section F.1.2), always
use NURCRK >0.

Card 16

RCRKTL 1-80 20A4 Title card for set of
reactor empirical constants

Note: There must be three Card 17's to accommodate
the 18 constants in each set.

Card 17

RCRCON(l) 1-80 3(6E12.6) R., Reactor empirical con-
to s ants, 12 constants

RCRCON(18) currently used (see Table
H.2)

Note: There must be NUFULK sets of Cards 18 and 19,
one set for each set of fuel empirical con-
stants. If no change in NFULK sets of constants
read in previously, NUFULK may eaual zero. How-
ever, if QKCORE used in SYSOPT overlay structure
(see Section F.l.2), alway use NUFULK >0.

Card 18

FULKTL 1-80 20A4 Title card for set of fuel
empirical constants

Note: There must be eight Card 19's to accommodate the
48 constants in each set.

Card 19

FULCON(l) 1-80 8(6El2.6) F., Fuel empirical constants,
to1

FULCON(48) 44 currently used (see Table
H.l)

Card 20

1-4 . . . "END "Control card signifying
end of REDCOR input.
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Table H.6--Continued

Variable Columns Format Description

. . 5-80 19A4 Free for comments

Card 21

. . .1-4 . . "CASE" Control card indi-
cating case data to be read
by QKCORE

. . . 5-80 19A4 Free for comments

Card 22

CATITL 1-80 20A4 Case title card

Card 23

NCYCIN 1-10 110 Number of cycles involved
in horizon (initial cycle
assumed split and final
cycle may be split)

NCYCXS 11-20 110 Number of complete extra
(excess) cycles beyond
horizon (=NOZONE-1)

Note: NCYCTO = NCYCIN + NCYCXS <MXCYTO (=20)

IDNUM 27-30 6XI4 IDNO of unit being input
(used to retrieve unit data
input by REDCOR)

ECHDOV 31-40 F10.2 Energy held over beyond
horizon in split cycle,
0 , ECHDOV, GWHe

Note: There must be NCYCTO sets of Card 24 and 25,
one set for each cycle in simulation.

Card 24

I 1-10 110 Cycle number, 1 < I < NCYCTO

NECBAL 11-20 110 Position of key cycle energy
on Card 25, 1 $ NECBAL 4 NES

TS 21-30 F10.4 Calendar time at start of
irradiation cycle, years

TE 31-40 F10.4 Calendar time at end of
irradiation cycle, years
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Table H.6--Continued

Variable Columns Format Description

NES 41-50 110 Number of cycle energies to
be read in on Card 25,
1 < NES < [(MXESX2+1)/2]=25

TO 51-60 F10.4 Length of time unit operated
during cycleyears

TO < TE-TS

Note: There must be [(NES + 7)/8] of Card 25 to
accommodate the NES cycle energies.

Card 25

ERC(1) 1-80 8F10.4 Alternative cycle energies for
to cycle I, GWHe [If I=1 and not

ERC(NES) split cycle, ERC(l) = 0.03]

Note: Next card may be "NEW" Card 26, "CASE" Card 21 or
"STOP" Card 27 with input seauence reverting to
appropriate point.

Card 26

. . .1-4 . . . "NEW "Control card initiates
input of new INCORE data.
Revert to Card 1 in input
sequence.

. . . 5-80 19A4 Free for comments

Card 27

. . . 1-4 . . . "STOP" Control card to termi-
nate execution of QKCORE for
this computer run.

5-80 19A4 Free for comments
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H. 3 QKCORE Sample Problem

Figure H.5 presents a QKCORE Sample Problem input

deck which is, in fact, part of (i.e., Reactor 2) the

SYSOPT Sample Problem in Figure F.4. Figure H.6 presents

a summary of QKCORE output for the Sample Problem.
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FIGURE H.5

_QKCORE SAMPLE PROBLEM [NPUT DECK

// #DEATONf'CL.ASS=HqHEGIUN=a6K
/*MITIO UJSL= ('47A4,6948)
/*MAIN LINES=20,CA1US=30,TIME=e
/*SRI LUW
//CALCGC EALC FOGPROG='USEF FILF.M7b94.6948.LOAD.0KCORE(GO)I
//G.SYSIN D1) *DCA=(RECFM=>,LNLCL=8O,8LKSIZE=2000)
INCOE INPU(

I 1 2 2TTTTTT
TYPICAL SET OF ECONOMIC CAFA kEF: MH(22.27 NOTES) 6 EAM (NN 2/71)

.00711 .002 .50 .U7 0.0 .329 .60
8.00
2.52 ,997
28.70
70.00 .998
45.00 *99
3.00 ,997
7.50

* 200 NK-2 1050 1 1 3 28300. .316 700. 500.
1 3.4
-3.4 9.0 48.80 12.00 .3282
3.2 10.0 . 24.40 25.00 .3519
3.2 28.0 2.68 31.00 .3199

REACTOR DATA FOR 1100 MWE ZICN CLASS; 3 ZONEI NO PU RECYCLE COMPUT
.141076 .00C0218686 -. 3435/4E-09-1.70111 -17.7720 .000106261
5.69086 -4.58587 1.13417 -. 0967594 8.52622 -17.8407

0.123

ER VERS.
KSNEW
PHI

REACTOR DATA FOR 1100 MwE ZION CLASS; 3 ZONE; NO PU RECYCLE
.20943 .006017424 -2.8845
2.570870 -1.465217 .17826J9 0.0 4.34783 0.0

SLIDE RULE VERS.
K8NEW

PHI

FUEL DATA FOR 1100 MWE ZICN CLASS; 3 ZONE: NO PU RECYCLE COMPUTER VERS.
.805642E 00 .195080E 00-.1535ulE-01-.148402E-01 .162489E-02-.257056E-03Al&A2 K

8

.?06350E-03-,rA2r;4 -n4 *1122,.0E-04 1.00 A3K8AIUR
-.189080E-02 .217089E-03-.3329>dE-U4 .180377E-04-.724569E-0S .100522E-05A?&A3 UR
.114056E 00-.3959sbE-01 .42S0lJE-U2-.128230E-0? .644474E-03-.858913E-04A1&A2 WO
.31190oE-04-.147186E-04 .19;8q3E-05 .322341E-02 .173157E-02-.577577E-04A3wOAlPU
-.384453E-04 .463313E-04-.5e42/5E-05 .165077E-05-.165659E-05 .252965E-06A26A3 PU
.112485E-02-.205317E-03 .22093JE-04 .228005E 00-.703667L-01 .773171E-02UL&PL PU
.053238 .017860 SIGA

FUEL DATA FUR 1100 MWE LICN CLASS$ 3 ZONE; NO PU RECYCLE SLIDE RULE VERS.
.955 .090 -.00897 AI6A2 K8

1.0 A3K8 A1U
-.00137 A26A3 UR
.0652 -. 0100 80. E-06 A1&A2 WO

.00365 .00156 A3URA1PU
A2bA3 PU

.00071 0.0872 UL&PL PU

.0532 .0179 SIGA
END OF INCOOE INPUT
CASE

REACTOR
6
1

500.
2

7200.
3

7400.
4

7500.
5

7700.
6

7500.
7

7000.
8

7000.
STOP

2 UNDER STRATEGY 2
2 200
3 0.0000

600. 700.
1 0.2500

2 1.2500
7500. 7600.

1 2.4167

AT A FEW REPRESENTATIVE CYCLE ENERGIES
11b0.00
0.0833 3 0.0792

1.0833

2.2500

3.6667

1 3.8333 5.0000

1 5.1667 6.1667

1 6.3333 7.3333

1 7.5001 8.5001

1 0.7916

3 0.9500

1 1.1875

1 1.1083

1 0.9500

1 0.9500

1 0.9500



Figure H.6

QKCORE Sample Problem Output

IND& X- I I Dt0N 200 * * * * * INCREMFNTAL REACTOR TOTAL COST (PTV.$/MWHE) * * * * *

REALT0Q TCTAL CCST FCR ?ALANCED EC'S (ECBAL) a 52762.571 10**3P.V.$

ELBAL IUo.0 T?00.C 7500.C 7500.0 7700.0 7500.0

E-UPLP 12U0.0 7310.0 0.0 0.0 0.0 C.C

LYLLt L 2 1 4 5 6

L 50u0.30 7200.00 7400.CO 7500.00 7700.00 75C0.00
INLLSI u.6354********* 1.68C5***********************
tiL. IUO0.03 C.C 75C0.CC 0.0 0.0 0.0

0.db1A 0.0 1.7834 0.0 0.0 C.0
fu..00 0.0 r6CO.CO 0.0 0.0 0.0

********* o.0 ********* 0.0 0.0 0.0

43
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H.4 QKCORE Source Listing

The following is a Fortran IV source listing

of the QKCORE code (included only in MIT library

copies).
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APPENDIX

NOMENCLATURE AND ACRONYMS

Symbol Description Dimension'

A Area under fractional load- MW
duration curve

a Coefficient of cycle energy in $
linear approximation to A 2(MWH)

AH Available Hours, those during hours
which a unIt is available (7)

b Constant term in linear $
approximation to A H

C (See Subscripts)

c Numerical constant

CORSOM CORe Simulation and Optimization
Model

D Customer electric energy demand MWH

d Duration of load, amount of time hours
that load > specified power level

DM Equivalent load spacing along F MW
curves

E Electric energy produced MWH

Set of all Ercp or {ErcpI MWH

e Electric energy unit cost $ mills
MWH "kwhe

F Fractional load-duration, fraction of
probability that load > period
specified power level at
random instant

1The symbol $ represents present-valued or discounted
dollars while |$| represents absolute-value or non-
discounted dollars. All MW are in net megawatts electric.
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Symbol Description Dimension1

fG Probability density function of per MW
unit performing (capable of PG MW)

f0 Probability density function of per MW
unit not performing (derated
P0 MW)

Forced-outage importance, fraction (None)
of FOH actually affecting system
generating operations

FOH Forced-Outage Hours, those during hours
which a unit was unavailable due
to a forced-outage (7)

FOR Forced-Outage Rate (7), See (None)
Equation (2.6)

FORH Forced-Outage Reserve Hours, hours
those during which a unit was
unavailable due to a forced-
outage, but would have been in
reserve shutdown status if
available.

FOSH Forced-Outage Service Hours, hours
those during which a unit was
unavailable due to a forced-
outage, but would have been in
service status if available

g (See Subscripts)

H Heat input rate MegaBTU
hour

h Heat rate MegaBTU
MWH

I (See Subscripts)

K Unit capacity MW

k Unit capacity above minimum MW

L Capacity factor (None)
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Symbol Description Dimensioni

21 Increment capacity factor, i.e., (None)
above minimum

LIFO Last-In, First-Out inventory
accounting

LOLP Loss-Of-Load Probability fraction of
period

LP Linear Programming

M Misfit potential, objective "misfits"
function for outer shape
iterations

m Misfit forcing function "misfits"
MWH

MOH Maintenance Outage Hours, those hours
Juring which-a unit is un-
available due to a postponed
repair maintenance outage (7)

N Nuclear Potential MWH

NP Network Programming

0-0-K Out-Of-Kilter Network Program

ORR Operating Revenue Requirement $
to the horizon

P Power or load level MW

G- Probability unit capable of (None)
generating PG MW or more when
called upon

p Performance probability, (None)
probability unit capable of
generating K MW when called
upon

PH Period Hours, total hours in hours
the period (7)

POH Planned Outage Hours, those hours
luring which a unit is unavail-
able due to a planned preventive
maintenance outage (7)
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Symbol Description Dimension

PV Present Value of stream of $
expenditures within horizon

Q Quantity of equivalent thermal MegaBTU
energy input during a startup-
shutdown sequence

q Non-performance probability, (None)
probability unit will not perform
when called upon

QKCORE QuicK in-CORE nuclear reactor
Fore simulator and cost accounting
computer code

QP Quadratic Programming

R (See Subscripts)

R' (See Subscripts)

RAMM Refueling And Maintenance Model

RR Revenue Requirement to the horizon $
associatgd with a direct expense

RSH Reserve Shutdown Hours, those hours
auring wFich a unIt is off-line
due to economy or similar reasons
but is available as reserves (7)

S Strategy or schedule of system re-
fueling and maintenance outages

S2 Variance of Fe equivalent load- (None)
duration shape (Nuclear upper
increments only)

SH Service Hours, those during which hours
a unit i9 "actually operated with
breakers closed to station bus" (7)

SIM System Integration Model

SOH Scheduled Outage Hours, those hours
auring whi~h a unIt is unavailable
due to mainetnance and planned
outages (7)
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Symbol Description Dimension

SOM System Optimization Model

SYSINT SYStem INTegration model computer
code.

SYSOPT SYStem OPTimization model
computer code

T Duration of a time interval ex- hours
tending over several time periods

T' Duration of a time period hours

t Time, calendar time hours

TC Total Cost (i.e., revenue require- $
ment) To horizon

V2 Total internal variance of mean (None)
availability-based increment
capacity factors (Nuclear upper
increments only)

W2 Weighted sum of squares reactor (None)
average versus system
average availability-based
increment capacity factors
(Nuclear upper increments only)

X Expenditures during period |$|

x Present value rate E discount fraction
rate E effective cost of money year

Z Time at end of planning horizon hours
(See also Subscripts)

a Coefficient of E in Equation fraction
(4.36) MWH

S Constant term in Equation (4.36) (None)

Fraction of a applied to limits (None)
on availability-based increment
capacity factors

A Energy step size for segmenting MWH
incremental cost curves

Capacity of Increment MWAK
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Symbol

6

6K

0

Description

Error in estimated objective
function for next SOM iteration

Power level within AK capacity
increment

Energy conversion efficiency

Thermal energy consumption

Incremental energy cost

Change in ORR at next trial
solution

a Average reduction in k'-2' required
to pass shape test r

Time at end of cycle

Incremental fossil thermal energy
cost during the period

Levelized incremental fossil
thermal energy unit cost

Lagrangian auxiliary function

0 Frequency of startup-shutdown

sequence

$ Same as RR; the units of present-
valued or discounted dollars

($| The units of absolute value or
non-discounted dollars

{...} Set of all ...

Dimension

$

MW

MW (e)
mWrt

MegaBTU

$ -mills
M~IH kwhe

$

(None)

hours

MegaBTU

$
MegaBTU

$

per day

$

1$'
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Subscripts

ACT ACTual

C Cycle number at end of planning horizon

c Cycle or contract

D Direct demand

e Equivalent or expected

EST ESTimated

F Fossil

G Generating mode

g Ordered sub-group of unit increments

H Hydro

I Indirect demand

I Total number of capacity increments for unit

Total number of capacity increments currently
being considered for unit

i Increment of unit capacity

inc incremental

N Nuclear

0 Outage

P Pumped-hydro or pumping mode

p Period number

R Number of reactors or generating units

R' Number of on-line reactors

r Reactor or generating unit

REJ REJection level

S Startup-shutdown



-576-

Subscripts

T Total for utility system

U Unserved (energy), urgent or emergency
(purchases)

Z Total number of periods in planning
horizon

Z+1 Fictitious holdover period beyond planning
horizon
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Superscripts

max maximum

min minimum

o Out, as in without

s Shape interation

t Trial or inner total cost iteration

w With

wo without

Average; levelized

*
At the optimum

At the acceptable optimum

* At zero; is invariant

Availability-based
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C *** ***************** ********** ** ******* **** ************ **** ** ****** ****
C*
C* S Y S I N T : AN ELECTRIC UTILITY SYSTEM INTEGRATICN MODEL

WRITTEN BY PAUL F. DEATON
M.I.T. DOCTORAL THESIS, MARCH 1973

*
*
*
*
*

C MAIN PROGRAM
C SYSINT VERSION 1-01-73

COMMON/ INTEGR/RDWT
INTEGER RDWT
CALL STRTIM
WRITE(WT,900)
CALL SUPSIM
STOP

900 FORMAT(T31,72('*)/T31,'*',T102,'*'/T31,'*',T37,'S Y S I NT :
$ AN ELECTRIC UTILITY SYSTEM INTEGRATION MODEL',T102,'*'/
$T31,'**,T64,'WRITTEN BY PAUL F. DEATON',T102,'**'/
$T31,'*',T58,'M.I.T. DOCTORAL THESIS, MARCH 1973',T102,*/
$T31,'*',T102,'*'/T31,72('*')//
$T56,'VERSION 1-01-73')
END
BLCCK DATA

C SYSINT VERSION 10-15-71
C INITIALIZES CONSTANT DATA IN COMMON AREAS
C *************************************************************

IMPLICIT REAL*8 (A-HO-$)
C CCMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

COMMON/PLTDAT/IDNO(100),NAME(100),TYPE(100),SUSDHT(100),PNCM(100),
$NPTS(100),MWPT(5,100),HTRAT(5,100)
COMMON/PERDAT/AVLBTY(100),CSTBTU(100),STATUS(100),EXPHRS(100),
$EXPBTU(100),EXPGWH(100),NORDER(500), COST(100),ENERGY(100),
$SUPCST(100),MRGCST(5,100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
CCMMON/PROB/DM,DTGWHPERDAYS,IEMIN,IEMAXPEMI N,PEMAXPROB(500)

SINT0001
SINT0002
SINT0003
SINT0004
SINT0005
SINT0006
SINT0007
SINT0008
SINT0009
SINT0010
SINT0011
SINT0012
SINT0013
SINT0014
SINT0015
SINT0016
SINT001T
SINT0018
SINT0019
SINTO020
SINT0021
SINT0022
SINT0023
SINT0024
SINT0025
SINT0026
SINT0027
SINT0028
SINTO029
SINTO030
SINT0031
SINT0032
SINT0033
SINT0034
SINT0035
SINT0036
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COMMON/FLOAT/EPSTRACEPKMWSPNRESCSTEMR
CCMMON/TITLE/SGTITL(10),PDTITL( 10)
COMMON/INTEGR/RD,WTPUNCHCARDTAPE,ERRCOD,NOSTNSNPER,NPERSNPER1

$,IDSTRGPCHMINPCHMAX,MBRNUM
CCMMON/LDGNFO/LDTYPELDTYPS,LOAD(50,25),NORDOP,NOENTYNOBASE,
$NOPEAKNNORD
COMMON/MAXMUM/IDIMENMAXPLTMAXPER,MAXNPT
COMMON/CONSTS/ZEROONETWOHALFTENTENTHHUNDRDCENTITHOUSMILLI
COMMON/LOGICL/MINIMIDIMAXINPMPCHING
COMMON/SUSDF/F (20)
COMMON/MAINT/MAINT( 100,20)

C MAINT IS DIMENSIONED (MAXPLT,MAXPER/5) THE 5 IS 511/INTEGER*2
COMMON/MURGER/CTEMP500),NEWCOD(5),NEWCST(5),MPTSIFRSTILAST

C NEWCST & NEWCOD ARE DIMENSIONED MAXNPT;CTEMP (MAXPLT*MAXNPT)
REAL*4 SUSDHT, PNOMHTRAT
REAL*4 SUPCSTMRGCST
REAL*4 CTEMPNEWCST
REAL*8 MILLI
INTEGER RDWTPUNCHCARDTAPEERRCCOPCHMINPCHMAX
INTEGER*4 NEWCOD
INTEGER*2 IDNOTYPENPTS,MWPTNORDERSTATUSMAINTLOAD
LOGICAL*1 MINIMIDIMAXINPMPCHING

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
REAL*8 EPS/1.D-3/
REAL*8 TRACE/I.D-10/
INTEGER RD/5/,WT/6/,CARD/7/,TAPE/8/
INTEGER IDIMEN/500/
INTEGER MAXPLT/100/
INTEGER MAXPER/100/
INTEGER MAXNPT/5/
INTEGER NPERI/1/
REAL*8 ZERO/0.000/,0NE/1.ODO/,TWO/2.0DO/,HALF/0.5D0/,TEN/1.Dl/,
$TENTH/1.D-1/,HUNDRD/1.D2/,CENTI/1.D-2/, THOUS/1.03/, MILLI/1.D-3/

END
SUBROUTINE SUPSIM

C SUPERVISOR OF ENTIRE SYSINT SIMULATION
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C
C
C

SYSINT VERSION 11-2-71

DEFINITION OF IMPORTANT VARIABLES *
AVLBTY = PERFORMANCE PROBABILITY (PER CENT)
CARD = UNIT NUMBER FOR COMPUTER CARD PUNCH DEVICE
COST = EXPECTED COST (DOLLARS)
CSTBTU = COST OF FUEL (CENTS/MEGABTU)
CSTEMR = COST OF EMERGENCY ENERGY PURCHASES ($/MWH)
DAYS = DURATION OF PERIOD (DAYS)
oM = EQUIVALENT LOAD CURVE SPACING (MW)
DT = DURATION OF PERIOD (HOURS)
EMRP$ = TOTAL COST OF EMERGENCY ENERGY PURCHASES (DOLLARS)
ENERGY = ENERGY AVAILABLE AS A SCARCE RESOURCE (GWH)
EPS = MINIMUM SEPARATION OF IEMAX*DM AND PEMAX (MW)
ERRCOD = ACCUMULATED ERROR CODE
EXPBTU = EXPECTED FUEL CONSUMPTION (MEGABTU)
EXPDEM = EXPECTED ENERGY DEMAND (GWH)
EXPEMR = EXPECTED EMERGENCY ENERGY PURCHASES (GWH)
EXPGEN = EXPECTED SYSTEM GENERATION (GWH)
EXPGWH = EXPECTED PLANT GENERATION (GWH)
EXPHRS = EXPECTED HOURS OF OPERATION
F = NORMALIZED STARTUP-SHUTDOWN FREQUENCY FUNCTION (PER DAY)
GWHPER = ENERGY PER UNIT AREA UNDER LOAD CURVE (GWH) = DM*DT/1000
HTRAT = INCREMENTAL HEAT RATE (BTU/KWH)
IDIMEN = MAXIMUM NUMBER OF POINTS ALLOWED IN PROB ARRAY
IDNO = PLANT IDENTIFICATION NUMBER
IDSTRG = STRATEGY ID
IEMAX = PROB ARRAY LOCATION OF MAXIMUM LOAD
IEMIN = PROB ARRAY LOCATION OF MINIMUM LOAD
INDEX = SEQUENTIAL ORDER OF PLANT AS READ IN
LDTYPE = TYPE OF LOAD CURVE TO BE USED IN THIS PERIOD
LDTYPS = TOTAL NUMBER OF LOAD CURVES INPUT
LOAD = NORMALIZED LOAD-DURATION CURVES (10**-4)
MAINT = NUMERICALLY-PACKED MAINTENANCE STATUS
MAXI = OPTION FOR MAXIMUM PRINTOUT
MAXNPT = MAXIMUM NUMBER OF VALVE PCINTS ALLOWED
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MAXPER = MAXIMUM NUMBER OF PERIODS ALLOWED
MAXPLT = MAXIMUM NUMBER OF PLANTS ALLOWED
MIDI = OPTION FOR MEDIUM VOLUME PRINTOUT
MINI = OPTION FOR MINIMUM PRINTOUT
MRGCST = MARGINAL COST ($/MWH)
MWPT = VALVE POINT RATING (MW)
NAME = PLANT NAME
NNORD = NUMBER OF VALVE POINTS USED IN NORDER
NOBASE = NUMBER OF ENTRIES IN NORDER IN BASE PORTION
NOENTY = NUMBER OF ENTRIES TO NORDER
NOPEAK = NUMBER OF ENTRIES IN NORDER TREATED AS PEAKERS
NORDER = LOADING ORDER CODED AS 1000*NPT+INDEX
NORDOP = STARTUP ORDER OPTION DESIRED
NOSTNS = NUMBER OF STATIONS FOR WHICH DATA READ IN
NPER = NUMBER OF THIS PERIOD
NPERS = TOTAL NUMBER OF PERIODS READ IN
NPER1 = ASSOCIATED VARIABLE FOR DIRECT ACCESS DEVICE; NPER1=NPER
NPM = NUCLEAR POWER MANAGEMENT CPTION

= (.TRUE.=N.P.M. PROBLEM, .FALSE.=SIMULATION ONLY)
NPTS = NUMBER OF VALVE POINTS OR CAPACITY INCREMENTS
PCHMAX = NORDER POINT WHEN PROB PUNCHED AT MAX.NUKES
PCHMIN = NORDER POINT WHEN PROB PUNCHED AT MIN.NUKES
PDTITL = PERIOD TITLE
PEMAX = MAXIMUM EQUIVALENT LOAD (MW)
PEMIN = MINIMUM EQUIVALENT LOAD (MW)
PKMW = FORECAST PEAK LOAD FOR THE PERIOD (MW)
PNCM = PLANT NOMINAL AVAILABILITY FRACTION
PROB = EQUIVALENT LOAD CDF
PROD$ = TOTAL SYSTEM PRODUCTION FUEL COST (DOLLARS)
PUNCH = OUTPUT DEVICE TO BE USED FOR PUNCHED OUTPUT
RD = UNIT NUMBER OF COMPUTER INPUT READING DEVICE
SGTITL = STRATEGY TITLE
SPNRES = SPINNING RESERVE REQUIREMENT (MW)
STATUS = MAINTENANCE STATUS

= (O=NON-EXISTENT,1=DOWN,2=ON-LINE)
SUPCST = STARTUP-SHUTDOWN COST (DOLLARS)
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C SUSDHT = PLANT STARTUP & SHUTDOWN HEAT REQUIREMENT (MEGABTU)
C SUSD$ = TOTAL SYSTEM STARTUP-SHUTDOWN COST (DOLLARS)
C TAPE = UNIT NUMBER FOR COMPUTER TAPE DEVICE
C TOTAL$ = TOTAL SYSTEM COST (DOLLARS)
C TRACE = LOWER LIMIT OF PROB PROCESSING
C TYPE = PLANT TYPE
C = (F=FOSSIL, H=HYDR0,N=NUCLEARP=PEAKING,S=PUMPED-STORAGE)
C WT = UNIT NUMBER OF COMPUTER OUTPUT PRINTING DEVICE
C END OF DEFINITIONS ****************************************** *

IMPLICIT REAL*8 (A-H,O-$)
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

COMMON/PLTDAT/IDNO(100),NAME(100),TYPE(100),SUSDHT(100),PNCM(100),
$NPTS(100),MWPT(5,100),HTRAT(5,100)
COMMON/PERDAT/AVLBTY(100),CSTBTU(100),STATUS(100),EXPHRS(100),
$EXPBTU(100),EXPGWH(100),NORDER(500),COST(100),ENERGY(1O0),
$SUPCST (100) ,MRGCST (5,100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
CCMMON/PROB/DMDTGWHPERDAYSIEMIN,IEMAXPEMINPEMAXPRCB(500)
COMMCN/FLOAT/FPS,TRACEPKMWSPNRES,CSTEMR
COMMON/TITLE/SGTITL(10),PDTITL(10)
CCMMON/ INTEGR/RDWTPUNCHCARD,TAPEERRCODNOSTNSNPER,NPERSNPER1

$,IDSTRGPCHI'INPCHMAXMBRNUM
COMMON/LDGNFO/LDTYPELDTYPS.LOAD(50,25),NORDOPNOENTY,NOBASE,

$NOPEAKNNORD
COMMON/MAXMUM/IDIMENMAXPLTMAXPER,MAXNPT
CCMMON/CONSTS/ZEROONETWOHALFTENTENTHHUNDRDCENTI ,THOUSMILLI
COMMON/LOGICL/MINIMIDIMAXINPMPCHING
COMMON/SUSDF/F( 20)
CCMMON/MAINT/MAINT( 100,20)

C MAINT IS DIMENSIONED (MAXPLTMAXPER/5) THE 5 IS 511/INTEGER*2
CCMPMON/MURGER/CTEMP(500),NEWCOD(5),NEWCST(5),MPTS, IFRSTILAST

C NEWCST & NEWCOD ARE DIMENSIONED MAXNPT;CTEMP (MAXPLT*MAXNPT)
REAL*4 SUSDHTPNOMHTRAT
REAL*4 SUPCSTMRGCST
REAL*4 CTEMPNEWCST
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REAL*8 MILLI
INTEGER RDWTPUNCHCARDJTAPEERRCOD,PCHMINPCHMAX
INTEGER*4 NEWCOD
INTEGER*2 IDNOTYPENPTSMWPTNORDER,STATUSMAINTLOAD
LOGICAL*1 MINIMIDI,MAXINPMPCHING

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
DATA $SUPSI/'SUPSIM'/
INTEGER KEYWRD(7)/'STAR','SAVE','OUTP','PERI','STRA','CCMP','STOP'
$/,$PRIN$/'PRIN'/,$CARD$/'CARD'/,$TAPE$/TAPE'/,$MINI$/'MINI'/,
$$MIDI$/'MIDI'/,$MAXI$/'MAX['/,$BSOM$/' SOM'/
LOGICAL*1 DOPERD(100)

C DOPERD DIMENSIONED BY MAXPER
DEFINE FILE 9(100,1000,U,NPERl)

C IN DEFINE FILE STATEMENT, 100 IS MAXPER & 1000 IS 10*MAXPLT
MINI=.TRUE.
ASSIGN 10 TO NEXT
ERRCOD=O

10 MIDI=.TRUE.
15 KEY=O
20 KEY=KEY+1
30 READ(RD,900) KEY1I,,KEY2,JKEY3

WRITE(WT,910) $SUPSIKEY1,1,KEY2,J,KEY3
40 IF(KEY1.EQ.KEYWRD(KEY)) GO TO (50,20,60,80,90,100,140),KEY

KEY=KEY+1
IF(KEY.GE.8) CALL ERRMSG('SUPSIM',6)
GO TO 40

C START CONTROL CARD READ
50 ERRCOD=0

CALL CMPTIM('SUPSIM','BASIC ')
CALL BASIC
CALL CMPTIM('BASIC ','SUPSIMI)
GO TO 20

60 IF(KEY2.EQ.$PRIN$) GO TO 70
C OUTPUT TAPE OR OUTPUT CARD CONTROL CARD READ

PUNCH= 0
IF(KEY2.EQ.$TAPE$) PUNCH=TAPE
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IF(KEY2.EQ.$CARD$) PUNCH=CARD
PCHING=PUNCH4.GT.0
GO TO 30

C OUTPUT PRINT CONTROL CARD READ
70 MIDI=.FALSE.

MAXI=.FALSE.
IF(KEY3.EQ.$MAXI$.OR.KEY3.EQ.$MIDIS) MIDI=.TRUE,
IF(KEY3.EQ.$MAXI$) MAXI=.TRUE.
GO TO 30

C PERIOD CCNTROL CARD READ
80 DO 85 I=1,NCSTNS
85 AVLBTY( I)=HUNDRD*PNOM( I)

CALL ERASE(CSTBTU,2*MAXPLTENERGY,2*MAXPLTNORDERMAXPLT*MAXNPT/2)
IF(MIDI) CALL CMPTIM('SUPSIM*,'PERIOD')
CALL PERIOD
IF(MIDI) CALL CMPTIM('PERIOD','SUPSIM')

C STRATEGY CONTROL CARD READ
90 IF(MIDI) CALL CMPTIM('SUPSIM','STRATGI)

CALL STRATG
IF(MIDI) CALL CMPTIM('STRATGl,*SUPSIM)
GO TO 20

C COMPUTE CONTROL CARD READ
100 IF(KEY2.NE.$BSOMS) GO TO 104

REAC(RD,915) (DOPERD(J) ,J=1,NPERS)
DO 102 N=1,NPERS
IF(DOPERD(N)) WRITE(WT,916) N

102 CONTINUE
GO TO 108

104 DO 106 N=1,NPERS
106 DOPERD(N)=.TRUE.
108 KEY2=ERRCOD

CALL CMPTIM(* ','COMPUT')
C WRITE BASIC PLANT INFO FOR THIS STRATEGY

WRITE(WT,920)
WRITE(WT,930) IDSTRGSGTITLNPMMBRNUM
IF(NPM) WRITE(WT,935)
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IF(PCHING) CALL PUNCHR(1)
WRITE(WT,940) NOSTNS,
WRITE(WT,950)(J,IDNO(J),NAME(J),MWPT(NPTS(J),J),TYPE(J),SUSDHT(J),
$PNCM(J),NPTS(J),(MWPT(I,J),HTRAT(I,J),I=1,MAXNPT),J=1,NOSTNS)
WRITE(WT,970)(1,1=1,9)
KEY1=(NPERS+4) /5
DO 110 I=1,NOSTNS

110 WRITE(WT,971) IIDNO(I),(MAINT(I,J),J=1,KEY1)
WRITE(WT,960) F
IF(PUNCH.LT.O) GO TO 130
ASSIGN 120 TO NEXT
DO 120 N=1,NPERS,
IF(.NOT.DOPERD(N)) GO TO 120
NPER=N
NPER1=NPER
ERRCOD=KEY2
IF(MIDI) CALL CMPTIM('SUPSIMe,'PRESIM')
CALL PRESIM
IF(MIDI) CALL CMPTIM('PRESIM'O'SUPSIM)
IF(PCHING) CALL PUNCHR(5)
IF(.NOT.MINI) GO TO 135

120 CONTINUE
ASSIGN 10 TO NEXT
ERRCOD=KEY2

130 CALL CMPTIM('COMPUT')
GO TO 15
ENTRY QUIT

135 IF(PCHING) CALL PUNCHR(6)
GO TO NEXT,(10,120)

C STOP CCNTROL CARD READ
140 CALL ERRMSG('SUPSIM',8)

RETURN
900 FORMAT(2(A4,A3),3A4)
910 FORMAT(/T12,'KEY1 KEY2 KEY3'/2XA6,' : ',2(A4,A3),3A4)
915 FCRMAT(80L1)
916 FORMAT(I SIMULATE PERIODI14)
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920 FORMAT(l'/30('O'/),4(' ',132('O')/+',132(*)/)
$ /30('0'/):6(' l,132('0')/*+',132('*v)/))

930 FCRMAT('OSTRATEGY ID ',I6,5X,'TITLE :"',10A7,'"',3X,
$'PUNCH NAME=',L1,17)

935 FORMAT('0',T25,'* * * * * N U C L E A R P 0 W E R M A N
$1 E M E N T S T U D Y * * * * *2)

940 FORMAT('O',' PLANT DATA FOR',14,' STATICNS'/
$' INDEX IDNO NAME MAXMW TYPE SUSDHT(MEGABTU) PNOM NPTS
$ ' MWPT(IINDEX),HTRAT(IINDEX),1=1,NPTS e,

$'MWPT IN MW & HTRAT IN BTU/KWH'/)
950 FORMAT((14,I8.A6,16,5XALF14.2,F11.5,13,5(2X,14,F7.0)))
960 FORMAT(//' NORMALIZED STARTUP & SHUTDOWN',

$' FUNCTION :'/(8F10.6))
970 FORMAT(//,T20,' MAINTENANCE STRATEGY BY PERIOD AND INDEX',

$' (0=NON-EXISTENT;1=DOWN;2=ON-LINE)'//T115,'1',T62,'PERIOD'/
$15X,9110,9X,'0'/' INDEX IDNO',4X,1C(*1234567890')/)

971 FCRMAT(14,I7,4X,2015)
END
SUBROUTINE EASIC
SYSINT VERSION 10-31-71
READS BASIC SYSTEM INFORMATION

A G',

/
3,

IMPLICIT REAL*8 (A-HO-$)
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

COMMON/PLTDAT/ IDNO ( 100,NAME( 100),TYPE( 100) ,SUSDHT ( 100) , PNCM(100),
$NPTS(100),MWPT(5,100),HTRAT(5,100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/ PROB/DM , DT , GWHPERDAYS, IEMIN, IEMAX, PEMIN,PEMAX, PROB (500)
COMMON/INTEGR/RDWT,PUNCHCARD, TAPE, ERRCOD,NOSTNS, NPERNPERSNPERI
$, IDSTRGPCHMINPCHMAXMBRNUM
COMMON/LDGNFO/LDTYPELDTYPSLOAD(50,25),NORDOP,NOENTY,NOBASE,

SNOPEAKNNORD
CCMMON/MAXMUM/IDIMENMAXPLTMAXPERMAXNPT
COMMON/CONSTS/ZEROONETWOHALFTEN,TENTHHUNDRD,CENTITHOUSMILLI
CCMMON/SUSDF/F(20)

SINT0289
SINT0290
SINT0291
SINT0292
SINT0293
SINT0294
SINT0295
SINT0296
SINT0297
SINT0298
SINT0299
SINTO300
SINTO301
SINT0302
SINT0303
SINTO304
SINTO305
SINT0306
SINT0307
SINT0308
SINT0309
SINTO310
SINTO311
SINT0312
SINT0313
SINTO314
SINT0315
SINT0316
SINT0317
SINT0318
SINT0319
SINT0320
SINT0321
SINT0322
SINT0323
SINT0324

PAGE 9

C
C
C

Ln



REAL*4 SUSDHTPNOMHTRAT
REAL*8 MILLI
INTEGER RDWTPUNCHCARDTAPEERRCODPCHMIN,PCHMAX
INTEGER*2 IDNO,TYPENPTSMWPTNORDERSTATUSMAINTLOAD

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
DATA $BASIC/I BASIC'/
INTEGER $PLAN$/'PLAN'/,$NORM$/NORM'/, $LOAD$/'LOAD'/,

$ $SAVE$/#SAVE#/
10 REAC(RC,900) KEYL, (PROB(I), 1=1,6)

WRITE(WT,910) $BASICKEY1,(PROB(I),1=1,6)
IF(KEY1.EQ.$PLAN$) GO TO 20
IF(KEYI.EQ.$NORM$) GO TO 50
IF(KEY1.EQ.$LOAD$) GO TO 60
IF(KEY1.EQ.$SAVE$) RETURN
CALL ERRMSG(l BASIC',6)

C READ PLANT DATA
20 READ (RD,920) NOSTNS

WRITE(WT,930) NOSTNS
REAC (RD,940)(IDNO(J),NAME(J),TYPE(J),SUSDHT(J),PNOM(J),NPTS(J),
$(MWPT(I,J),HTRATilJ),I=1,MAXNPT),J=1,NOSTNS)
DO 40 J=1,NCSTNS
I=NPTS(J)

30 IF(I.EQ.MAXNPT) GO TO 40
1=1+1
MWPT(I ,J)=30000
HTRAT( I,J)=1.E20
GO TO 30

40 CONTINUE
W RITE(WT, 950)(J,IDNO(J),NAME(J),MWPT(NPTS(J),J),TYPE(J),SUSDHT(J),
$PNCM(J) ,NPTS(J), (MWPT( I,J),HTRAT( I ,J), 1=1, MAXNPT),J=1, NOSTNS)
I=PRPNDX(J)
GXO TO 10

C READ NORMALIZED STARTUP & SHUTDOWN FUNCTION
50 READ(RD,960) F

WRITE(WT,970) F
GO TO 10
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C READ LOAD TYPES
60 TEMP=TEN**4

REAC(RD,920) LDTYPS
WRITE(WT,980) LDTYPS
IF(LDTYPS.GT.25) CALL ERRMSG('BAS.IC',6)
DO 90 I=1,LDTYPS
REAC(RD,920) LOTYPENUMONE
WRITE(WT,921) LDTYPENUMONE
IF(NUMONE.LE.0) GO TO 75
DO 70 J=1,NUMONE

70 PROB(J)=ONE
75 KEY1=NUMONE+1

READ(RD,960) (PROB(J) ,J=KEY1, 50)
WRITE(WT,990)(PROB(J),J=1,50)
IF(PROB(50).GT.ZERO) WRITE(WT,991)

C STORE LOAD TYPES IN UNITS OF 10**-4 (SAVES STORAGE)
DO 80 J=1,50

80 LOAD(J,LDTYPE)=PROB(J)*TEMP+HALF
90 CONTINUE

GO TO 10
900 FORMAT(2(A4,A3),3A4)
910 FORMAT(//T12,'KEYI KEY2 KEY3'/2XA6,' : ',2(A4,A3),3A4)
920 FORMAT(1615)
921 FORMAT(/,215)
930 FORMAT(1','BASIC NOW READING PLANT DATA FOR',14,' STATICNS'//

$' INDEX IDNO NAME MAXMW TYPE SUSDHT(MEGABTU) PNOM NPTS',
$ ' MWPT(IINDEX).HTRAT(IINDEX),I=1,NPTS ',

$'MWPT IN MW & HTRAT IN BTU/KWH'/)
940 FORMAT((14,A4,1X,AIF.0.,F9.5,1,5(14,F6.0)))
950 FORMAT((14,18,A6,16,5X,A1,F14.2,F11.5,13,5(2X,14,F7.0)))
960 FORMAT (8F10.4)
970 FORMAT (/' BASIC NOW READING NORMALIZED STARTUP & SHUTDOWN',

$' FUNCTION :'/(8F10.6))
980 FORMAT (/' EASIC NOW READING',13,' LOAC TYPES'/' LDTYPE NUMONES'/)
990 FORMAT( 1OF 10.4)
991 FORMAT('+',T104,'<--- PRESIM WILL LINEARIZE'/
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$ T110,'THIS NON-ZERO END POINT')
END
SUBROUTINE PERIOD

C SYSINT VERSION 10-29-71
C READS PERIOD DATA AND STORES IT ON DIRECT ACCESS DEVICE
C

IMPLICIT REAL*8 (A-HO-$)
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

CCMMON/PLTDAT/IDNiIlOO),NAME(100),TYPE(100),SUSDHT(100),PNCM(100),
$NPTS(100),MWPT(5,1O0),HTRAT(5,100)
COMMON/PERDAT/AVLBTY(100) ,CSTBTU(100),STATUS(100),EXPHRS(100),
$EXPBTU(100),EXPGWH(100),NORDER(500),COST(100),ENERGY(100),
$SUPCST(100),MRGCST(5,100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
CCMMON/PROB/DM ,DTGWHPERDAYS, IEMIN, IEMAX, PEMI N,PEMAX, PROB (500)
COMMON/FLOAT/EPSTRACEPKMWSPNRESCSTEMR
CCMMON/TITLE/SGTITL(10),PDTITL(10)
COMMON/INTEGR/RD.WTPUNCHCARDTAPEERRCOD,NOSTNS,NPER,NPERSNPERI
S IDSTRGPCHMINPCHMAXMBRNUM
CCMMON/LDGNFO/LDTYPE.LDTYPSLOAD(50,25),NORDOPNOENTYNOBASE,
$NOPEAKNNORD
COMMON/CONSTS/ZERO,ONETWOHALFTENTENTHHUNDRDCENTITHOUSMILLI
REAL*4 SUSDHTPNOMHTRAT
REAL*4 SUPCSTMRGCST
REAL*8 MILLI
INTEGER RDWTPUNCHCARDTAPEERRCOD,PCHMIN,PCHMAX
INTEGER*2 IDNOTYPE ,NPTSMWPT ,NORDERSTATUSMA INTLOAD

C END OF STATEMENTS COMMCN TO SEVERAL SUBROUTINES
REAL*8 BTUCST(3)
INTEGER*2 TEST(3)/'F','N','P'/
LOGICAL*1 CHGCST(3),CHGAVL
EQUIVALENCE (BTUCSTCSTFOS),(BTUCST(2),CSTNUK),(BTUCST(3),CSTPKG)
DATA SSTRAT,$PERIO,$SUSDB,$ALTER/'STRAT','PERIO','SUSD ','ALTER'/
DATA STARS/1.D50/
WRITE(WT,900)
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NPERS=0
C PERIOD CONTROL CARD READ

10 REAC(RD,910) PDTITL
READ(RD,920) NPERLDTYPEPKMWSPNRESDM,DTCSTEMRCSTFOSCSTNUK,

$CSTPKG.AVLALL
NPERS=NPERS+1
IF(SPNRES.LT.ZERO) SPNRES=ZERO
DO 12 K=1,3
CHGCST( K)=BTUCST(K) .GT.ZERO
IF(.NOT.CHGCST(K)) BTUCST(K)=STARS

12 CONTINUE
CHGAVL=AVLALL.GT.ZERO.AND.AVLALL.LT.HUNDRD+ONE
IF(.NOT.CHGAVL) AVLALL=STARS
WRITE(WT,930) PDTITLNPERLDTYPE.PKMW,SPNRESDMDTCSTEMRCSTFOS,

$CSTNUK,CSTPKGAVLALL
IF(.NOT.CHGAVL) GO TO 16
DO 14 I=1,NOSTNS

14 AVLBTY(C )=AVLALL
16 DO 20 K=1,3

IF(.NOT.CHGCST(K)) GO TO 20
DO 18 I=1,NOSTNS
IF(TYPE(I).EQ.TEST(K)) CSTBTU(I)=BTUCST(K)

18 CONTINUE
20 CONTINUE
30 READ(RD,940)$KEY1,$KEY2,IDCST.AVLENER

IF($KEYL.EQ,$STRAT.OR.$KEYI.EQ.$PERIO) GO TO 50
IF($KEY1.EQ.$SUSDB) GO TO 40
IF($KEY1.EQ.$ALTER) GO TO 31
WRITE(WT,950) $KEYI,$KEY2,ID,CSTAVLENER
CALL ERRMSG('PERIOD',6)

C ALTER CARD WAS READ
31 I NDEX= INNDEX(ID)

IF(CST.NE.ZERO) GO TO 32
CST=STARS
GO TO 33

32 CSTBTU( INDEX)=CST
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33 IF(AVL.GT.ZERO) GO TO 34
AVL=STARS
GO TO 35

34 AVLBTY( INDEX)=AVL
35 IF(ENER.GT.ZERO)GO TO 36

ENER=STARS
GO TO 37

36 ENERGY(INDEX)=ENER
37 WRITE(WT,950) $KEY1,$KEY2,IDCSTAVL*ENER

GO TO 30
C SUSD DATA CONTROL CARD READ

40 WRITE(WT,951)$KEY1,$KEY2
REAC(RD,970) NORDOP,NOENTYNOBASENOPEAK
WRITE(WT,960) NORDOPNOENTYNOBASENOPEAK
REAC(RC,970) (NCRDER(I),I=lNOENTY)
WRI TE(WT,970)(NORDER(I).1=1,NOENTY)
GO TO 30

50 WRITE(WT,980)(I,IDNO(I),NAME(I),CSTBTU(I),AVLBTY(I),ENERGY(I),
$I=1,NOSTNS)

WRITE(WT,951)$KEY1,$KEY2
NPER1=NPER
WRITE(9'NPER1)PDTITLNPER,LDTYPEPKMWSPNRESDMDTCSTEMRNORDOP,

SNOENTY, NOBASENOPEAKCSTBTUAVL8TY,NORDERENERGY
IF($KEY1.EQ.$PERIO) GO TO 10

C STRATEGY CONTROL CARD READ
RETURN

900 FORMAT('OPERIOD NOW READING PER PERIOD DATA & STORING ON DIRECT'
$,' ACCESS DEVICE'/)

910 FORMAT(10A8)
920 FORMAT(2I4,9F8.0)
930 FORMAT(IIPERIOD TITLE :"',10A8,'"'/T83,'(CENTS PER MEGABTU)'/

S' NPER LDTYPE PKMW(MW) SPNRES(MW) DM(MW) DT(HRS)',
$T63,'CSTEMR(S/MWH) CSTFOS CSTNUK CSTPKG AVLALL()'/
$16,18,F12.0,F11.0,F12.2,F9.2,F13.3,8X,3(F6.3,3X),F9.4/
$'OSPECIFIC CHANGES INPUT ON ALTER CARDS :'
$/T18,'IDNO CSTBTU AVLBTY ENERGY')
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940 FORMAT(2A5,I10,3F10.4)
950 FORMAT( 3 ',2A5,I10,3F10.4)
951 FORMAT(//T12,'$KEYI$KEY2/I PERIOD : ',2A5/)
960 FCRMAT(

$' STARTUP ORDER OPTION = NORDOP =',15/

$' NUMBER OF ENTRIES IN NORDER = NOENTY =',15/
$' NUMBER OF ENTRIES IN BASE PORTION = NOBASE =',15/
$' NUMBER OF ENTRIES IN PEAK PORTION = NOPEAK =',15/
$' NORDER(I),I1,NOENTY :')

970 FORMAT(1615)
980 FORMAT(//' FINAL KEY PERIOD INFO:'/

$' INDEX IDNO NAME CSTBTU AVLBTY ENERGY'/
$(14,I8,A6,2X,3F10.4))
END
FUNCTION INNDEX(ID)
SYSINT VERSION 1-01-73
FINDS INDEX CORRESPONDING TO A PARTICULAR IDNO
****************************************************** *******

IMPLICIT REAL*8 (A-HO-S)
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

COMMON/PLTDAT/IDNO(100),NAME(100),TYPE(100),SUSDHT(100),PNCM(100),
$NPTS(100),MWPT(5,100),HTRAT(5,100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/INTEGR/RDWTPUNCH,CARDTAPEERRCODNOSTNSNPERNPERSNPER1

$,IDSTRG,PCHlINPCHMAX,MBRNUM
REAL*4 SUSDHTPNOMHTRAT
INTEGER RD,WT,PUNCHCARD,TAPEERRCODPCHMINPCHMAX
INTEGER*2 IDNOTYPENPTSMWPT,NORDERSTATUS,MAINTLOAD

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
INTEGER*2 ID2NDX(100)

C DIMENSION 100 ALLOWS FOR ALL TWO-DIGIT NUMBERS
IF(ID.LT.0.OR.ID.GT.9999) GO TO 20
IONO(NOSTNS+1)=ID
I=ID2NDX(ID/100+1)-1

10 1=1+1
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IF(ID.EQ.IDNO(1)) GO TO 30
GO TO 10

20 I=NOSTNS+1
30 IF(I.GT.NOSTNS) GO TO 50

INNDEX=I
RETURN

C PREPARES 12NDX FOR FASTER SEARCH BY LATER CALLS TO INNDEX
ENTRY PRPNDX(JDUMMY)
PRPNDX=JDUMMY
CALL ERASE(ID2NDX,10012)
DO 40 I=1,NCSTNS
KEYID=IDNO( 1)/100+1
IF(ID2NOX(KEYID).EQ.0) ID2NDX(KEYID)=I

40 CONTINUE
RETURN

50 WRITE (WT,900) ID
CALL ERRMSG(INNDEX',7)
INNOEX=I
RETURN

900 FORMAT(T10,'INVALID IDNO = ',110)
END
SUBROUTINE STRATG

C SYSINT VERSION 10-15-71
C READS STRATEGY INPUT AND FORMS MAINTENANCE CODE
C

IMPLICIT REAL*8 (A-HO-$)
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

COMMON/PLTDAT/IDNO(100),NAME(100),TYPE(100),SUSDHT(100),PNOM(100),
$NPTS(100),MWPT(5,100),HTRAT(5,100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
CCMMON/TITLE/SGTITL(10),PDTITL(10)
COMMON/INTEGR/RDWTPUNCH,CARDTAPEERRCODNOSTNSNPERNPERSNPER1

$,IDSTRG.PCHIN,PCHMAX,MBRNUM
COMMON/MAXMUM/IDIMENMAXPLTMAXPERMAXNPT
LOGICAL*1 MINI,MIDI,MAXINPMPCHING
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COMMON/MAI NT/MAINT (100,20)
C MAINT IS DIMENSIONED (MAXPLT,MAXPER/5) THE 5 IS 511/INTEGER*2

REAL*4 SUSDHTPNOM,HTRAT
INTEGER RDWTPUNCHCARDTAPEERRCOD,PCHMINPCHMAX
INTEGER*2 IDNO,TYPENPTSMWPTNORDERSTATUSMAINTLOAD
CCMMCN/LOGICL/MINI ,MIDI,MAXINPMPCHING

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
INTEGER*2 M(100),NOTZRC(2),NDOWN(20)

C DIMENSION M(MAXPER)
INTEGER $MAIN$/'MAIN'/,$BLANK/I '/,NOT/VNOT 'I/
READ(RD,910) NPMIPLACEIDSTRGSGTITL
WRITE(WT,920)IDSTRGSGTITL
IF(IPLACE.LE.0) IPLACE=9
MBRNUM=1000000*IPLACE+IDSTRG
IF(IDSTRG.LT.0) MBRNUM=9999999
KEYl=NCT
IF(NPM) KEYI=$BLANK
WRITE(WT,925) KEYiNPM.MBRNUM
READ(RD,930) KEY1,KEY2,KEY3
WRITE(WT,940)KEY1,KEY2,KEY3
IF(KEY1.NE.$MAIN$) CALL ERRMSG("STRATG',6)
LMAX=(NPERS+4) /5
CALL ERASE(MAINTMAXPLT*MAXPER/10)
DO 50 I=1,NCSTNS
READ(RD,950) IDNAMNOTZRO,NDOWN
INOEX=INNDEX(ID)
IF(NAM.NE.NAME(INDEX).AND.NAM.NE.$BLANK) CALL ERRMSG('STRATG1,7)
IF(NOTZRO(1).LE.0) NOTZRO(1)=1
IF(NOTZRO(2).LE.O.OR.NOTZRO(2).GT.NPERS) NOTZRO(2)=NPERS
WRITE(WT,960) INDEXIDNO(INDEX),NAME(INDEX),NOTZRO,NDOWN
CALL ERASE(M,MAXPER/2)
NOT1=NCTZRO(1)
NOT2=NOTZRO(2)
DO 10 L=NOT1,NOT2

10 M(L)=2
DO 20 L=1,20
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IF(NDOWN(L).LT.NOT1.OR.NDOWN(L).GT.NOT2) GO TO 30
20 M(NDOWN(L))=1
30 DO 40 N=1,NPERS,5
40 MAINT(INDEX,(N+4)/5)=

$M(N+4)+10*(M(N+3)+10*(M(N+2)+10*(M(N+1)+10*M(N))))
50 CONTINUE

WRITE(WT,970)(II=1,9)
DO 60 I=1,NOSTNS

60 WRITE(WT,971) IIDNO(I),(MAINT(I,J),J=1,LMAX)
RETURN

910 FORMAT(L3,,II6,p10A7)
920 FORMAT('l STRATG NOW PROCESSING STRATEGY DATA FOR IDSTRG =Oil

$'0 STRATEGY TITLE :"',1CA7,""//)
925 FORMAT('0******,A6,'A NUCLEAR POWER MANAGEMENT STRATEGY *****

$* NAME=',L1,I7,U FOR PUNCH OPTION *****I//)
930 FORMAT(3A4)
940 FORMAT(# KEY1'/' l,3A4//

$' INDEX IDNO NAME STARTUP RETIRE DOWN FOR REFUELING
$,' MAINTENANCE'/T29,'AFTER')

950 FCRMAT(14,A4,2X,2I5,2013)
960 FORMAT(14,18,A6,I5,I8,6X,20I4)
970 FORMAT(//,T20,' MAINTENANCE STRATEGY BY PERIOD AND INDEX',

$' (0=NON-EXISTENT;1=DOWN;2=ON-LINE)'//T115,'1',T62,'PERIOD'/
$15X.9I10,9X,'0'/$ INDEX IDNO',4X,10(*1234567890')/)

971 FCRMAT(14,17,4X,2015)
END
SUBROUTINE PRESIM
SYSINT VERSION 1-01-73
PERFORMS PRE-SIMULATION DATA MANIPULATION FOR EACH PERIOD

10/

1,

E/OR'

IMPLICIT REAL*8 (A-HO-$)
COMMCN VARIABLES
VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS
COMMON/PLTDAT/IDNO(100),NAME(100),TYPE(100),SUSDHT(100),PNCM(100),

$NPTS(100),MWPT(5,100), HTRAT(5,100)
COMMON/PEROAT/AVLBTY(100),CSTBTU(100),STATUS(100),EXPHRS(100),
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$EXPBTU(100),EXPGWH{100),NORDER(500),COST(100),ENERGY(1CO),
$SUPCST(100) ,MRGCST(5,100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/PROB/DMDTGWHPERDAYSIEMINIEMAX,PEMINPEMAXPROB(50

0 )

COMMON/FLOAT/EPSTRACEPKMWSPNRES,CSTEMR
CCMMON/TITLE/SGTITL (10) ,PDTITL(10 )
COMMON/INTEGR/RDWT,PUNCH,CARD,TAPEERRCODNOSTNSNPERNPERSNPER1

$, IDSTRGPCHMINPCHMAXMBRNUM
COMMON/LDGNFO/LDTYPELDTYPS.LOAD(50,25),NORDOPNOENTYNOBASE,

$NOPEAK, NNORD
COMMON/MAXMUM/IDIMENMAXPLTMAXPERMAXNPT
COMMON/CONSTS/ZERO,ONE,TWOHALFTENTENTHHUNDRDCENTI,THOUSMILLI
COMMON/LOGICL/MINIMIDI,MAXINPMPCHING
CCMMON/MAINT/MAINT(100,20)

C MAINT IS DIMENSIONED (MAXPLTMAXPER/5) THE 5 IS 511/INTEGER*2
REAL*4 SUSDHTPNOMHTRAT
REAL*4 SUPCSTMRGCST
REAL*8 MILLI
INTEGER RDWTPUNCHCARDTAPEERRCOD,PCHMINPCHMAX
INTEGER*2 IDNOTYPENPTSMWPTNORDERSTATUSMAINTLOAD
LOGICAL*1 MINI,MIDI,MAXINPMPCHING

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
LOGICAL*1 PRINT
EQUIVALENCE (PRINTMIDI)
REAL*4 TEMP4
FIND(9'NPER1)

C TRANSLATE MAINTENANCE CODE INTO STATUS
J=(NPER+4)/5
I=NPER+5-J*5
IDUM=10**(5-I)
DO 110 K=1,NOSTNS

110 STATUS(K)=MOD(MAINT(KJ)/IDUM, 10)
C RETRIEVE PERIOD INFO FROM DIRECT ACCESS DEVICE

READ (9'NPER1)PDTITLNPER,LDTYPEPKMWSPNRESDMDTCSTEMRNORDOP,
$NOENTYNOBASE,NOPEAKCSTBTUAVLBTYNORDERENERGY

C RESCALE LOAD-DURATION CURVE & CONVERT FROM DL SPACING (2% PKMW)
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C TO DESIRED DM
CALL ERASE(PROB,2*IDIMEN)
TEMP=1.0-4
IEMIN=0
DO 10 J=1,50
PROB (J)=LOAD(J ,LDTYPE)*TEMP
IF(PROB(J).GT.ONE-TRACE) IEMIN=J
IF(PROB(J).LE.ZERO) GO TO 20

10 CCNTINUE
J=50

20 IEMAX=J
DL=PKMW*ONE/IEMAX
PEMAX=IEMAX*DL+EPS
PEMIN= IEMIN*DL
GWHPER=DL*DT*MILLI
DAYS=DT/24.DO
DMTEMP=DM
DM=DL
IF(.NOT.PRINT) GO TO 30
WRITE(WT,930) IDSTRGSGTITL
WRITE(WT,940) NPER,PDTITL
WRITE(WT,920) DM,IEMAXPEMAX,(PROB(K),K=1,IEMAX)
TEMP=GWHNRG (ZERO .PEMAX)
WRITE(WT,901) TEMP

30 CALL NUSCAL(DLDMTEMP)
C ADJUST FINAL POINT SO LATER LINEAR INTERPOLATION GIVES PROPER
C AREA UNDER THE CURVE (1.E., EXPECTED VALUE)

PROB(IEMAX)=PROB(IEMAX)*HALF*(ONE+PEMAX/DM-IEMAX)
PROB (I EMAX+1)=ZERO
IEMAX=IEMAX+1
PEMAX=IEMAX*DM+EPS
IF(.NOT.PRINT) GO TO 40
WRITE(WT,920) DMIEMAXPEMAX,(PROB(K),K=1,IEMAX)
TEMP=GWHNRG(ZERO,PEMAX)
WRITE(WT,902) TEMP

40 DO 50 I=1,NCSTNS
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TEMP4=CSTBTU(I)*CENTI
SUPCST ( I)=SUSDHT( I )*TEMP4
DO 50 J=1iMAXNPT

50 MRGCST(J,I )=HTRAT(J, 1)*.001*TEMP4
C WRITE FINAL PERIOD CONFIGURATION

WRITE(WT,930) IDSTRGSGTITL
WRITE(WT,940) NPERPDTITL
IF(NORDOP.EQ.1) SPNRES=-2.D9
WRITE(WT,950) PKMW*SPNRESDT,LDTYPE
WRITE(WT,920) DMIEMAXPEMAXd(PROB(K),K=IIEMAX)
WRITE(WT,960) CSTEMR
WRITE(WT,970) (I,IDNO(I),NAME(I),MWPT(NPTS(I),I),TYPE(I),STATUS(I)
$,AVLBTY(I),CSTBTU(I),SUPCST(I),ENERGY(I),NPTS(I),(MWPT(JI),
$MRGCST(J,I),J=1,MAXNPT),I,I=1,NOSTNS)
IF(MIDI) CALL CMPTIM('PRESIM','LDGORD')
CALL LOGORD
IF(MIDI) CALL CMPTIM('LDGORD','PRESIMI)
IF(PCHING) CALL PUNCHR(2)
CALL CMPTIM(PPRESIM','SYSGEN')
CALL SYSGEN
CALL CMPTIM('SYSGEN%',PRESIM')
RETURN

901 FORMAT
902 FORMAT
920 FORMAT

$F12.4,
930 FORMAT
940 FORMAT
950 FORMAT

$F15.2,
960 FORMAT
970 FORMAT

C
/
(
(
(
7
(
C

(//1OX,'GWHNRG(OPEMAX) AT POINT 1=',F15.8)
(//1OX,'GWHNRG(OPEMAX) AT POINT 2=',F15.8)
00 ,1OX,'DM = ',F10.4,1OX,IEMAX = ',I5,1OX,'PEMAX = I,

/,10X,'PROB(K),K=1,IEMAX ',/,(1X,10F13.9))
'1'/1OSTRATEGY ID = ',I1,10X,TITLE :"',10A7,'")
'OPERIOD NUMBER =',19,1OX,'TITLE :"',10A8,"")
'0',T10,'PKMW',T22,'SPNRES(MW)',T39,'DT(HRS)',T54,'LDTYPE'/
XF7.2,F15.2,I13)
IOCOST OF EMERGENCY POWER =',F8.4,' $/MWH')
/'OINDEX IDNO NAME MAXMW TYPE STAT.AVLBTY CSTBTU SUPCST',

$' ENERGY NPTS',T68,'(MWPTMRGCST)
$T129,'INDEX'//(14,I7,A5,15,3X,Al,
$,4(2XI4,F7.3),I4))

END

IN UNITS OF (MW,$/MWH)',
I6,F8.3,F7.3,F6.0,F8.1,3,15,F7.3
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SUBROUTINE NUSCAL(DMOLODMNEW)
C SYSINT VERSION 10-15-T1
C CHANGES SPACING OF PROB FROM DMOLD TO DMNEW
C

IMPLICIT REAL*8 (A-HO-$)
C COMMON VARIABLES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES

COMMON/PROB/DMDTGWHPERDAYS,[EMINIEMAXPEMINPEMAX, PROB(500)
COMMON/FLOAT/EPSTRACE,PKMWSPNRESCSTEMR
CCMMON/INTEGR/RDWTPUNCHCARDTAPEERRCOD,NOSTNS,NPERNPERS,NPER1
$,IDSTRGPCHMINPCHMAXMBRNUM
COMMON/MAXMUM/IDIMENMAXPLTMAXPERMAXNPT
COMMON/CONSTS/ZEROONETWOHALF,TEN,TENTHHUNDRDCENTI,THOUSMILLI
COMMON/LOGICL/MINIMIDIMAXINPMPCHING
REAL*8 MILLI
INTEGER RDWTPUNCHCARDTAPEERRCODPCHMINPCHMAX
LOGICAL* MINI,MIDI,MAXINPMPCHING

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
IF(DMOLD.EQ.DMNEW) RETURN
PDUM=PEMAX
IDUI#=IEMAX+1
GOAL=GWHNRG (ZERO.PE MAX)

C GOAL = EXPECTED DEMAND UNDER PROB VS DMOLD
IF(.NOT.MIDI) GO TO 5
WRITE(WT,1)
WRITE(WT,910) GOAL
WRITE(WT,920) DMIEMAXPEMAX,(PROB(I),I=1,IEMAX)

5 DM=DMNEW
GWHPER=DM*DT*MILLI
IEMAX=PEMAX/DM
IF(IEMAX+ICUM.GT.IDIMEN) CALL ERRMSG('NUSCAL',1)
TEMP=IEMAX*DM+EPS
IF(TEMP.GT.PEMAX)PEMAX=TEMP
IEMIN=IEMIN*DMOLD/DMNEW+EPS
PEMIN=IEMIN*DM
00 10 I=iIEMIN
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10 PROBtI+IDUM)=ONE
JLOW=IEMIN+1
TEMP=( I DUM-1)*DMOLD
JHI=TEMP/DM+ONE
IF(JHI.GT.IEMAX) GO TO 30
TEMP=PROB( IDUM-1)/ (PDUM-TEMP)
00 20 I=JHI,IEMAX

20 PROB(I+IDUM)=TEMP*( PDUM-I*DM)
30 JHI=JHI-1

C FIRST APPROX : PROB(INEW)=LINEAR INTERPOLATION
C AT INEW*DMNEW

TEMP=DMNEW/DMOLD
DO 40 I=JLOW,JHI
FB=I*TEMP
ILO=FB
FB=FB-ILO
IHI=ILO+1

40 PROBII+IDUM)=PROB(ILO)+FB*(PROB(IHI)-PRCB(ILO))
00 50 1=1,IEMAX

50 PROB(I)=PROB(I+IDUM)
I=IEMAX
IF(PROB(I).GT.ZERO) GO TO 59
1=1-1
IF(PROB(I).GT.ZERO) GO TO 58

51 1=1-1
IF(PROB(I).LE.ZERO) GO TO 51
IEMAX=I+1

58 PEMAX=IEMAX*DM+EPS
59 TEST=GWHNRG(ZEROPEMAX)

C TEST = EXPECTED DEMAND UNDER FIRST APPROX
TRUERR=GOAL-TE ST
RELERR= DABS (TRUERR ) /GOAL
IF(RELERR.LT.TRACE) GO TO 100
IF(RELERR.GT.MILLI) CALL ERRMSG('NUSCAL*,3)
IF(.NOT.MAXI) GO TO 60
WRITE(WT,910) GOAL.TESTTRUERRRELERR

OF OLD PROB
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WRITE(WT,920) DM.IEMAXPEMAX,(PROB(I), I=1,IEMAX)
C SECCND APPROX : ADJUST INTERIOR POINTS UP OR DOWN EQUAL AMCUNT DP

60 ILO=IEMIN+2
IHI=IEMAX-1
DP=TRUERR/(GWHPER*(IHI-ILO+1))
IF(CABS(DP).GT.MILLI) CALL ERRMSG('NUSCAL',3)
DO 70 I=ILO,IHI

70 PROB(I )=PROB(I )+DP
IF(.NOT.MAXI) GO TO 75
TE ST=GWHNRG ( ZEROPEMAX)
WRITE(WT,910) GOALTEST
WRITE(WT,930) DP
WRITE(WT,920) DMIEMAXPEMAX,(PRO8(I),I=1,IEMAX)

C C5-ECK TO SEE IF VIOLATE CDF PROPERTIES AT ENDS
C THIRD APPROX : AVERAGE POINTS IN VIOLATION AND CHECK TO SEE THAT
C THEY ARE LESS THAN 1 AND GREATER THAN 0

75 IF(PROB(ILO).LE.PROB(ILO-1)) GO TO 90
PROB(ILO)=HALF*(PROB(ILC)+PROB(ILO-1))
PROB(ILO-1)=PROB(ILO)
IF(PROB(ILO).LT.ONE) GO TO 100

80 CALL ERRMSG('NUSCAL',4)
WRITE(WT,920) DMIEMAXPEMAX,(PROB(I),I=1,IEMAX)
RETURN

90 IF(PROB(IHI).GT.PROB(IEMAX)) GO TO 100
PROB(IHI)=HALF*(PROB(IH[)+PROB(IEMAX))
PROB(IEMAX)=PROB(IHI)
IF(PROB(IHI).LE.ZERO) GO TO 80

C EXIT IF REASONABLE NEW PROB OBTAINED
100 IF(.NOT.MIDI) RETURN

TEST=GWHNRG(ZERO,PEMAX)
WRITE(WT,910) GOALTEST
WRITE(WT,920) DMIEMAXPEMAX,( PROB(I),I=1,IEMAX)
RETURN

1 FORMAT('I NUSCAL ENTERED TO CHANGE SPACING OF PROB')
910 FORMAT(5(/),T7, 'GOAL',T22, 'TEST',T37,'TRUERR',T52,'RELERR' ,/,

$3F15.6,E15.6)
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920 FORMAT(/,10X,'DM = ',F10.4,10X,'IEMAX = *,15I1OX,*PEMAX = ',t
$F12.4,//,1OX,'PROB(I),I=1,IEMAX %*/,(lX,10F13.9))

930 FORMAT(/,T11,'DP = 1,F12.10,//)
END
SUBROUTINE LDGORD

C SYSINT VERSION 11-2-71
C SETS UP NORDER FOR THE SPECIFIED OPTION NORDOP
C *************************************************************

IMPLICIT REAL*8 (A-Ho-$)
C CCMMCN VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

COMMON/PLTCAT/IDNO(100),NAME(100),TYPE(100),SUSDHT(100),PNOM(100),
$NPTS(100),MWPT(5,100),HTRAT(5,100)
COMMON/PERDAT/AVLBTY(100),CSTBTU(100),STATUS(100),EXPHRS(100),
$EXPBTU(100),EXPGWH(100),NORDER(500),COST(100),ENERGY(100),
$SUPCST(100),MRGCST(5,100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/FLOAT/EPS,TRACEPKMWSPNRESCSTEMR
COMMON/INTEGR/RD,WTPUNCHCARDTAPEERRCODNOSTNSNPERNPERSNPERI

$,IDSTRG.PCHMINPCHMAXMBRNUM
COMMON/LDGNFO/LDTYPELDTYPS.LOAD(50,25),NORDOPNOENTY,NOBASE,

$NOPEAK, NNORD
CCMMON/MAXMUM/IDIMEN, MAXPLTMAXPERMAXNPT
COMMON/CONSTS/ZEROONE, TWOHALFTEN,TENTHHUNORDCENT[ ,THOUSMILLI
COMMON/LOGICL/MINIMIDIMAXINPMPCHING
CCMMGN/MURGER/CTEMP(500),NEWCOD(5),NEWCST(5),MPTSIFRSTILAST

C NEWCST & NEWCOD ARE DIMENSIONED MAXNPT;CTEMP (MAXPLT*MAXNPT)
REAL*4 SUSDHTPNOMHTRAT
REAL*4 SUPCSTMRGCST
REAL*4 CTEMPNEWCST
REAL*8 MILLI
INTEGER RDWTPUNCHCARDTAPEERRCODPCHMINPCHMAX
INTEGER*4 NEWCOD
INTEGER*2 IDNO,TYPENPTSMWPTNORDERSTATUSMAINT,LOAD
LOGICAL*1 MINI,MIDI,MAXINPMPCHING

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
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DATA $ONLY/1.DO/
INTEGER*2 NTEMP(500),MWSPIN(500)

C NTEMP AND MWSPIN ARE DIPENSIONED MAXPLT*MAXNPT
NAMELIST/ERRDAT/NORDOPNOENTY,NOBASENOPEAK,IFRST, ILAS'TINDEXNPT,

$MPTSIDISPINNORDERNTEMP
CALL COMPRS(NTEMP)
WRITE(WT,940) NORDOP,NOENTY,NOBASE,NOPEAK,(NTEMP(I),[=1,NOENTY)

C ENCCDE THOSE VALVE POINTS IN BASE PORTION
I SWTCH=NOE NTY-NOPE AK+ 1
NOBASP=NOBASE+1
IFRST=NOBASP
ILAST=NOBASE
CTEMP(ILAST+1)=1.E50
NORDER( ILAST+1 )=1001
SPINXS=-SPNRES
DO 120 INDEX=1,NOSTNS
NPT=O
ID=IDNC(INDEX)
DO 70 NORD=1,NOBASE
IF(NTEMP(NORD).NE.ID) GO TO 70
NPT=NPT+1
NORDER(NORD)=1000*NPT+INDEX
CTEMP(NCRD)=MRGCST(NPT, INDEX)

70 CCNTINUE
IF(NPT.EQ.0) GO TO 120
MPTS=NPTS( INDEX)-NPT
IF(MPTS) 80,105,90

C ANY ONE OF SEVERAL ERRORS
80 WRITE(WTERRDAT)

CALL ERRMSG('LDGORD',9)
90 SPINXS=SPINXS+

$CENTI*AVLBTY(INDEX)*(MWPT( NPTS (INDEX), INDEX)-MWPT(NPT, INDEX))
DO 100 I=1,MPTS
MPT=NPT+I
NEWCOD( I)=1000*MPT +INDEX

100 NEWCST(I)=MRGCST(MPT.INDEX)
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ILAST= ILAST+MPTS
CTEMP( ILAST+I)=1.E50
NORDER( ILAST+1)=1001
CALL MERGER

105 IF(NOBASE.EQ.NOENTY) GO TO 120
DO 110 I=NCBASP,NOENTY
IF(NTEMP(I).EQ.ID) GO TO 80

110 CONTINUE
120 CONTINUE

IF(NOBASE.EQ.NOENTY) GO TO 205
C STARTUP INTERMEDIATE PLANTS ACCORDING TO SPINNING RESERVE REQ.
C OR ECONOMICS

IPTR=NOBASP
NEXTID=NTEMP(I PTR)
NXTNDX=INNDEX(NEXTID)
REASON=ZERC
K=0

140 IF(ILAST-IFRST+i) 80,141,142
141 K=1
142 NPT=NORDER ( IFRST)/ 1000

INDEX=NCRDER(IFRST )-NPT*1000
DSPIN=CENTI*AVLBTY(INDEX)*(MWPT(NPT,INDEX)-MWPT(NPT-1,INDEX))
IF(DSPIN.GT.SPINXS+HALF) GO TO 150

C SPINNING RESERVE OK WITH PLANTS ALREADY STARTED
IF(MRGCST(1,NXTNDX).LT.CTEMP(IFRST)) GO TO 150

C NEXT VALVE POINT LESS EXPENSIVE THAN NEXT PLANT
SPINXS=SPI NXS-DSPIN
IFRST=IFRST+.
GO TO 140

C START UP NEXT PLANT
150 IF(IPTR.NE.ISWTCH) GO TO 170

C FIRST PEAKING PLANT ABOUT TO BE STARTED
IF(NOPEAK.EQ.0) GO TO 205
IF(REASON.EQ.$ONLY) GO TO 170
SPINXS=10.D6
REASCN=$ONLY
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C
C
C
C

IF(NORDOP.EQ.4) GO TO 140
NORDOP=4 PEAKERS COMMITTED ECONOMICALLY AFTER LAST INTERMEDIATE
PLANT STARTED
NORDOP<4 PEAKERS COMMITTED ECONOMICALLY AFTER ALL INTERMEDIATE
EQUIPMENT
I FRST= I LAST+1l
K=1

170 IF(IPTR.GT.NOENTY) GO TO 205
CTEMP(IFRST)=CTEMP(IFRST)-2.E-5
ID=NTEMP(IPTR)
NEXTID=NTEMP(IPTR+1)
NXTNDX=INNDEX( NEXT ID)
IPTR=IPTR+1
INDEX=INNDEX( ID)
MPTS=NPTS( INDEX)
SPINXS=SPINXS+

$CENTI*AVLBTY(INDEX) *(MWPT( MPTS, INDEX)-MWPT 1,INDEX)
1=2
IF(MPTS.EQ.1) GO TO 200
DO 180 1=2,MPTS
NEWCOD(I-K)=1000*I+INDEX

180 NEWCST(I-K)=MRGCST(I,INDEX)
IF(K.EQ.1) GO TO 202
DO 190 1=2,MPTS
NEWCOD( 1-1 )=NEWCOD( I)
NEWCST( I-1)=NEWCST(I)
IFINEWCST(I).GE.CTEMP(IFRST)) GO TO 200

190 CONTINUE
I=MPTS+1

200 NEWCST(I-1)=CTEMP( IFRST)
NEWCOD( 1-1)=NORDER( IFRST)

202 NORDER(IFRST)= 1000+INDEX
CTEMP( IFRST)=MRGCST(1, INDEX)
IFRST= I FRST+1
ILAST=ILAST+MPTS
CTEMP( ILAST+1)=1.E50
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NORDER ( ILA ST+1)=1001
MPTS=MPTS-K
CALL MERGER
IF(MPTS.GT.0) K=0
GO TO 140

205 NNORD=ILAST
CALL RETMRG
SPIN=ZERO
CALL ERASE(NTEMPMAXPLT*MAXNPT/2)
DO 230 I=1,NNORD
[F(NORDER(1).LE.1000) GO TO 80
NPT=NORDER (1)/ 1000
INDEX=NCRDER(I)-NPT*1000
IF(NPT-l.NE.NTEMP(INDEX)) GO TO 80
NTEMP(INDEX)=NPT
IF(NPT.EQ.1) GO TO 220
SPIN=SPIN-
$CENTI*AVLBTY(INDEX)*(MWPT(NPTINDEX)-MWPT(NPT-1,INDEX))
GO TO 230

220 SPIN=SPIN+
$CENTI*AVLBTY(INDEX)*(MWPT(NPTS(INDEX), INDEX)-MWPT(1,INDEX))

230 MWSPIN(I)=SPIN
JJ=(NNORD+4)/5
I=JJ*5-NNORD
IF(I.EQO.0) GO TO 250
DO 240 J=,I
NORDJ=NNORD+J
NORDER(NORDJ)=0
MWSPIN(NORDJ)=-10000

240 CTEMP(NORDJ)=-1.E30
250 JJ5=JJ*5

DO 255 J=1.JJ5
255 NTEMP(J)=J

WRITE(WT,920) NNORD
WRITE(WT,930)(JNORDER (J),CTEMP(J),MWSPIN(J),(NTEMP(J+I*JJ),
$NORDER(J+I*JJ),CTEMP(J+I*JJ),MWSPIN(J+I*JJ),I=1,4),J=1,JJ)
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IF(CABS(SPIN).GT.HALF) GO TO 80
RETURN

920 FORMAT(/'OLCADING ORDER (NORDER) AS (1000*NPT + INDEX) :',1X,15
$,' VALID ENTRIES'//IX,5('l J NORDER MRGCST MWSPNI),'lf)

930 FORMAT (( u,5( l',15,I6,F9.4,15), '1'))
940 FORMAT(//'OSTARTUP ORDER :',10X,'WITH NORDOP=',2,6X,'NOENTY=',14,

$6X,'NOBASE=',I3,6X,'NOPEAK=',I3/(2CI5))
END
SUBROUTINE COMPRS(NTEMP)

C SYSINT VERSION 10-31-71
C PERFORM STATUS:IDNO CHECK AND THEN COMPRESS AND TRANSFER NORDER
C INTO NTEMP; ALTER MARGINAL COST CURVES AND OPTIMIZE STARTUP ORDER
C *************************************************************

IMPLICIT REAL*8 (A-HO-$)
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

COMMON/PLTOAT/IDNO(100) ,NAME(100),TYPE(100),SUSDHT(100),PNCM(100),
$NPTS(100),MWPT(5,100),HTRAT(5, 100)
COMMON/PERDAT/AVLBTY(100),CSTBTU(100),STATUS(100),EXPHRS(100),
$EXPBTU(100).EXPGWH(100),NORDER(500),COST(100),ENERGY(100),
$SUPCST (100) ,MRGCST (5,100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/INTEGR/RDWTPUNCHCARDTAPEERRCODNOSTNSNPERNPERSNPERI

$.IDSTRG,PCHMIN,PCHMAXMBRNUM
COMMON/LDGNFO/LDTYPELDTYPS,LOAD(50,25),NORDOP,NOENTYNOBASE,

$NOPEAKNNORD
COMMON/MAXMUM/IDIMENMAXPLTMAXPERMAXNPT
COMMON/CONSTS/ZEROONE,TWO,HALFTEN,TENTHHUNDRD,CENTI,THOUSMILLI
COMMON/LOGICL/MINI,MIDI,MAXINPMPCHING
REAL*4 SUSDHTPNOMHTRAT
REAL*4 SUPCSTMRGCST
REAL*8 MILLI
INTEGER RDWT,PUNCH,CARDTAPEERRCCD,PCHMINPCHMAX
INTEGER*2 IDNO,TYPENPTS,MWPT,NORDER,STATUSMAINTLOAD
LOGICAL*1 MINIMIDIMAXINPMPCHING

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
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REAL*4 TEMP4
INTEGER*2 NTEMP(1),[PJ(3)

C CIECK CCNSISTENCY OF NOBASENOPEAK & NOENTY
5 IF(NORDOP.EQ.1.OR.NOBASE.GT.NOENTY) NOBASE=NOENTY

IF(NOBASE.LE.O) NUBASE=1
NOPEAK=MINO(NOPEAKNOENTY-NOBASE)
NTEMP(NOENTY+I)=IDNO( 1)
IF(NORDER(1).EQ.0) GO TO 80
CALL ERASE(NTEMPMAXPLT*MAXNPT/2)

C FLAG OFF-LINE PLANTS & CHECK THAT EACH ON-LINE PLANT MENTICNED
DO 8 I=1,NOSTNS
ID=IDNO(I)
IS=STATUS( I)
IF(IS.NE.2) IS=1
DO 7 J=1,NOENTY
IF(ID.EQ.NORDER(J)) GO TO (6,8),IS
GO TO 7

6 NORDER(J)=O
7 CONTINUE

IF(IS.EQ.2) WRITE(WT,911)ID
IF(IS.EQ.2) CALL ERRMSG(*COMPRS',9)

8 CONTINUE
C CONTROL SEGMENT OF NORDER COMPRESSED INTO NTEMP

IP=0
J=1

10 GO TO (20,30,40,45),J
20 IL=1

IHI=NOBASE
GO TO 50

30 ILO=IHI+1
IHI=NOENTY-NOPEAK
IF(IHI.LT.ILO) GO TO 70
GO TO 50

40 ILO=IHI+1
IHI=NOENTY
GO TO 50
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45 NOBASE=IPJ(l)
NOPEAK=IPJ (3)-I PJ(2)
NOENTY= IPJ (3)
NORDER(1)=0
GO TO 5

C PERFORM COMPRESSION AND TRANSFER OF A SEGMENT
50 IF(ILO.GT.NCENTY) GO TO 70

DO 60 I=ILOHI
IF(NORDER(I).EQ.0) GO TO 60
IP=IP+1
NTEMP( IP)=NORDER( I)

60 CONTINUE
70 IPJ(J)=IP

J=J+1
GO TO 10

C ALTER MARGINAL COST CURVES
80 IF(MIDI) WRITE(WT,901)

00 61 I=1,NCSTNS
JJ=NPTS(I)

C PUT MINIMUM AVERAGE COST IN MRGCST(1,I)
TEMP4= MRGCST(1, I )*MWPT( 1,1)
IF (JJ.EQ.1) GO TO 61
DO 1 J=2,JJ
TEMP4=TEMP4+MRGCST(JI)*(MWPT(JI)-MWPT(J-1,))

I MRGCST(1,I)=AMIN1(MRGCST(1,I),TEMP4/MWPT(JI))
SUM=ZERO

C LEVELIZE DECREASING MARGINAL COST CURVES
11 IF(JJ.LT.3) GO TO 55

DO 51 J=3,JJ
IF(MRGCST(JI).GE.MRGCST(J-1,1)) GO TO 51
SUM=ZERO
DO 31 K=2,J

31 SUP=SUM+MRGCST(K,I )*(MWPT(KI)-MWPT(K-1, I))/(MWPT(J,I)-MWPT(1, I))
DO 41 K=2,J

41 MRGCST(KI)=SUM
GO TO 11
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51 CONTINUE
55 IF(MINI) GC TO 61

WRITE(WT,910) IIDNO(I),NAME(I),(MWPT(K,I),MRGCST(KI),K=1,JJ)
IF(SUM.NE.ZERO) WRITE(WT,920)

61 CONTINUE
IF(NORDOP.LT.3) GO TO 170

C OPTIMIZE STARTUP ORDER
NO=NOENTY-(NOBASE+NOPEAK)
IDUM=NOBASE
IPJ(3)=2
IF(NO.NE.O) GO TO 100

90 NC=NOPEAK
IDUM=NOENTY-NOPEAK
IPJ(3)=3
IF(NO.EQ.O) GO TO 150

100 DO 110 J=1,NO
ID=NTEMP(IDUM+J)
NORDER(J)=INNDEX(ID)

110 NORDER(NO+J)=ID
C START UP UNITS IN ORDER OF INCREASING MINIMUM AVERAGE COST

IF(NO.EQ.1) GO TO 150
DO 140 J=2,NO
IPJ(1)=NORDER(J)
IPJ(2)=NORDER(NO+J)
IP=J

120 IP=IP-1
IF(IP.EQ.0) GO TO 130
IF(MRGCST(1,IPJ(1)).GE.MRGCST(I1,NORDER(IP))) GO TO 130
NORDER( IP+1 )=NORDER(IP)
NORDER(NO+IP+1)=NORDER(NO+IP)
GO TO 120

130 NORDER(IP+1)=IPJ(1)
NORDER(NO+IP+1)=IPJ(2)

140 CONTINUE
150 DO 160 J=1,NO
160 NTEMP( IDUM+J)=NORDER(NO+J)

SINT1153
SINT1154
SINT1155
SINT1156
SINT1157
SINT1158
SINT1159
SINT1160
SINT1161
SINT1162
SINT1163
SINT1164
SINT1165
SINT1166
SINT1167
SINT1168
SINT1169
SINT1170
SINT 1171
SINT1172
SINT1173
SINT1174
SINT1175
SINT1176
SINT1177
SINT1178
SINT1179
S INTI 180
SINT1181
SINT1182
SINT1183
SINT1184
SINT1185
SINT1186
SINT1187
SINT1188

PAGE 33

m
-a



IF(IPJ(3).NE.3) GO TO 90
170 CALL ERASE(NORDERMAXPLT*MAXNPT/2)

RETURN
C RETURN MARGINAL COST CURVES TO ORIGINAL VALUES

ENTRY RETMRG
DO 210 I=1,NOSTNS
TEMP4=CSTBTU(I)*1.E-5
DO 210 J=1,MAXNPT

210 MRGCST(JI)=HTRAT(JI)*TEMP4
RETURN

901 FORMAT('Il CCMPRS WILL TEMPORARILY LEVELIZE DECREASING MARGINAL',
$' COST CURVES TO ALLOW PROPER INCREMENTAL LOADING.'/' IN ADDITION
$, MINIMUM AVERAGE COST WILL BE PLACED IN MRGCST(1,i). THUS,'//
$T5,I' ,T8,'IDN0',T14,'NAME',T21,' ( MWPTMINAVGCST)' ,T50,'INCREASING
$ MARGINAL COST CURVE#)

910 FORMAT (15,16,A6,5(' (',14,',',F9.5,')'))
911 FORMAT(///,' UNLISTED IDNO OF CN-LINE PLANT=',15)
920 FORMAT('+',T122,'LEVELIZED')

END
SUBROUTINE MERGER

C SYSINT VERSION 10-31-71
C MERGES NEWLY STARTED PLANT WITH PREVIOUSLY STARTED ONES
C *************************************************************

IMPLICIT REAL*8 (A-HO-$)
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

CCMMON/PERCAT/AVLBTY(100),CSTBTU(100),STATUS(100),EXPHRS(100),
$EXPBTU(100),EXPGWH(100),NORDER(500),COST(100),ENERGY(100),
$SUPCST(100) ,MRGCST(5,100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/MAXMUM/IDIMENMAXPLTMAXPERMAXNPT
CCMMON/MURGER/CTEMP(500),NEWCOD(5),NEWCST(5),MPTS,IFRST,ILAST

C NEWCST & NEWCOD ARE DIMENSIONED MAXNPT;CTEMP (MAXPLT*MAXNPT)
REAL*4 SUPCSTMRGCST
REAL*4 CTEMPNEWCST
INTEGER*4 NEWCOD
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INTEGER*2 IDNO,TYPENPTSMWPTNORDERSTATUSMAINTLOAD
C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES

IF(MPTS.EQ.0) RETURN
I=ILAST+1-MPTS

10 1=1-1
IP=I+MPTS
NORDER( IP)=NORDER( I)
CTEMP(IP)=CTEMP(I)
IF(I.GT.IFRST) GO TO 10
CTEMP( ILAST+1)=1.E50
NORDER ( ILAST+ )=1001
IF(ILAST.GE.MAXPLT*MAXNPT) CALL ERRMSG('MERGER',9)
IP=IFRST
I=IFRST+MPTS
DO 40 M=1,MPTS

20 IF(NEWCST(M).LT.CTEMP(I)) GO TO 30
CTEMP( I P)=CTEMP( I)
NORDER( IP)=NORDER( I)
1=1+1
IP=IP+1
GO TO 20

30 CTEMP(IP)=NEWCST(M)
NORDER ( IP) =NEWCOD(M)

40 IP=IP+1
RETURN
END
SUBROUTINE SYSGEN

C SYSINT VERSION 1-01-73
C SIMULATES SYSTEM GENERATION FOR ONE TIME PERIOD
C *************************************************************

IMPLICIT REAL*8 (A-HO-$)
C COMMCN VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

COMMON/PLTDAT/IDNO(100),NAME(100),TYPE(100),SUSDHT(100),FNCM(100),
$NPTS (100) , MWPT ( 5,100) , HTRAT (5, 100)
COMMON/PERDAT/AVLBTY(100),CSTBTU(100),STATUS(100),EXPHRS(100),
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SEXPBTU(100),EXPGWH(100),NORDER(500),COST(100),ENERGY(100),
$SUPCST( 100),MRGCST(5, 100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
CCMMON/PROB/DMDTGWHPERDAYSIEMINIEMAXPEMINPEMAXPROB(500)
CCMMON/FLOAT/EPSTRACEPKMWSPNRESCSTEMR
CCMMON/TITLE/SGTITL(10),PDTITL(10)
COMMON/INTEGR/RDWTPUNCHCARD,TAPE,ERRCO0,NOSTNSNPERNPERSNPER1
$, IDSTRG,PCHMINPCHMAXMBRNUM
COMMON/LDGNFO/LDTYPELDTYPSLOAD(50,25),NORDOP,NOENTY,NOBASE,

$NOPEAKNNORD
COMMON/MAXMUM/IDIMENMAXPLTMAXPERMAXNPT
CCMMON/CONSTS/ZERO,ONETWOHALF,TENTENTHHUNDRDCENTI.THOUSMILLI
COMMON/LOGICL/MINIMIDIMAXINPMPCHING
REAL*4 SUSDHTPNOM,HTRAT
REAL*4 SUPCSTMRGCST
REAL*8 MILLI
INTEGER RDWTPUNCHCARDTAPEERRCCD,PCHMINPCHMAX
INTEGER*2 IDNOTYPENPTSMWPTNORDERSTATUSMAINTLOAD
LOGICAL*1 MINIMIDI,MAXINPMPCHING

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
C IDUM'S USED TO MAKE NAMELIST OUTPUT MORE READABLE

NAMELIST /FNLTOT/MWINSTMWONLN.MWPEAKMWMRGNMWSPIN,PLOFL,
$EXPDEM,EXPGENXNKGENIDUMI ,XNNGENEXPEMRIDUM2 ,UNSRVDPROD$,
SIDUM3 ,$NKPRD,$NNPRD,IDUM4 ,SUSD$,$NKSUSIDUM5 ,$NNSUS,$SBTOT,
$IDUM6 ,$NKTOT,$NNTOT.IDUM7 ,EMRP$,TOTAL$
INTEGER*2 IDUMl,IDUM2,[DUM3,IDUM4,IDUM5,IDUM6,IDUM7
DATA IDUM1,IDUM2,IDUM3,IDUM4,IDUM5,IDUM6,1DUM7/7*0/
INTEGER*2 NUCL/fN'/
REAL*4 PLOFL

C IDSTRG.LT.0 IS OPTIONAL RETURN TO CHECK INPUT
IF(IDSTRG.LT.0) RETURN
IF(MIDI) WRITE(WT,930)
CALL ERASE(EXPBTU,2*MAXPLTEXPGWH,2*MAXPLTEXPHRS,2*MAXPLT)
EXPDEM=GWHNRG(ZERO,PEMAX)
PE=ZERO
EXPOUT=ZERO
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C DOUBLE CHECK TO AVOID INADVERTENT PUNCHING
IF(NPM.AND.PCHING) GO TO 40
PCHMIN=-1
PCHMAX=-1

C DO LOOP TO BUILD UP EQUIVALENT LOAD CDF
40 00 50 J=1,NNORD

Ll=NCRDER(J)
NPT=L1/1000
L=L1-NPT*1000
IF(STATUS(L).LE.1) GO TO 50
P=AVLBTY(L)*1.D-2
MWIN=0
IF(NPT.GT.1)MWIN=MWPT(NPT-1,L)
MWTOT=MWPT(NPTL)
HTRATE=HTRAT(NPTL)
MWADD=MWTOT-MWI N
EXPCUT=EXPOUT+ (ONE-P)*MWADD

C SUBTRACT PLANT OF INTEREST
CALL SUBPLT(MWINP)
IF(MAXI) WRITE(WT#921) DM,IEMAXPEMAX,(PROBIK),K=1, IEMAX)
TEMP= PE+MWADD

C EVALUATES INCREMENT OF EXPECTED PRODUCTION
ENERGE=P*GWHNRG(PE,TEMP)
PE=TEMP

C ADD THE PLANT OF INTEREST BACK IN
CALL ADDPLT(MWTOTP)

C EVALUATE & ACCUMULATE IMPORTANT PRCDUCTION INFO
IF(NPT.EQ.1) EXPHRS(L)=ENERGE*THOUS/MWPT(1,L)
EXPBTU(L)=EXPBTU(L)+ENERGE*HTRATE
EXPGWH(L)=EXPGWH(L)+ENERGE
IF(J.EQ.PCHMIN.OR.J.EQ.PCHMAX) CALL PUNCHR(IDINT(PE))
IF(.NOT.MIDI) GO TO 50
AVPROB=1.D20
IF(MWADD.GT.0) AVPROB=ENERGE*THOUS/(P*DT*MWADD)
IF(MAXI) WRITE(WT,931)
WRITE(WT,940)LIDNO(L),PEMWIN,MWADDMWTOT.AVPROB.ENERGE,
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$EXPGWH(L),L
IF(MAXI) WRITE(WT,922) DM,IEMAXPEMAX,(PROB(K),K=1,IEMAX)

50 CONTINUE
TEMP=GWHNRG (ZERO,PEMAX)
TEMP=TEMP-EXPDEM
APXOUT=TEMP*THOUS/DT
TEMP=(EXPOUT-APXOUT)*HUNDRD/(EXPOUT+1.D-20)
IF(DABS(TEMP).GT.CENTI) CALL ERRMSG(*SYSGEN',5)
IF( .NOT.MIDI) GO TO 60
WRITE(WT,910) EXPOUTAPXOUTTEMP
WRITE(WT,920) DM,IEMAXPEMAX,(PROB(K),K=1,IEMAX)

60 UNSRVD=GWHNRG(PEPEMAX)
PLOFL=PROBX(PE)
MWONLN=PE+EPS
MWPEAK=PKMW
MWMRGN=MWONLN-MWPEAK
MWSPIN=SPNRES
MWINST=O
PROD$=ZERO
EXPGEN=ZERO
SUSD$=ZERO
XNNGEN=ZERO
$NNPRD=ZERO
$NNSUS=ZERO
TEMP=HUNDRD/DT
WRITE (WT,950) IDSTRGSGTITLNPERPDTITL

C EVALUATE AND PRINT FINAL PER PLANT RESULTS
DO 10 J=1,NOSTNS
IF(STATUS(J).GE.1) MWINST=MWINST+MWPT(NPTS(J),J)
FACT=EXPGWH(J)*THOUS/(MWPT(NPTS(J), J)*DT)
SUSDS=SUSDNO(EXPHRS(J)*TEMP/AVLBTY(J))
SUBTU-=SUSDS*SUSDHT(J)
$SUSD=SUBTU*CSTBTU(J)*1.D-2
SUSD$=SUSD$+$SUSD
PRDBTU=EXPBTU(J)
EXPBTU(J)=EXPBTU(J)+SUBTU
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SPROD=PRDBTU*CSTBTU(J)*1.D-2
COST(J)=$PROD+$SUSD
PROD$= PRODS +$PROD
EXPGEN= EXPGEN+EXPGWH (J)
IF(TYPE(J).EQ.NUCL) GO TO 65
XNNGEN=XNNGEN+EXPGWH(J)
$NNPRD= $NNPRD+$PROD
$NNSUS=$NNSUS+$SUSD

65 WRITE (WT,960) JIDNO(J),NAME(J),FACTEXPHRS(J),SUSDSSUBTU,$SUSD,
$EXPGWH(J), PRDBTU,$PRODEXPBTU(J) ,CCST( J) ,J

70 CONTINUE
C EVALUATE AND PRINT FINAL SYSTEM RESULTS

XNKGEN=EXPGEN-XNNGEN
$NK PRD= PROD$-$ NNPRD
$NKSUS=SUSD$-$NNSUS
$NKTOT=$NKPRD+$NKSUS
$NNTOT=$NNPRD+$NNSUS
SSBTOT=SNKTOT+$NNTOT
EXPEMR=EXPDEM-EXPGEN
EMRPS=EXPEMR*THOUS*CSTEMR
TOTAL$=PROD$+SUSD$+EMRP$
WRITE(WT,970) MWINSTMWONLN,MWPEAKMWMRGNMWSPINPLOFL
WRITE(WT,980) EXPDEMEXPGEN,XNKGENXNNGENEXPEMRUNSRVD
WRITE(WT,990) PROD$,$NKPRD,$NNPRDSUSD$,$NKSUSSNNSUS,
$$SBTOT,$NKTOT,$NNTOTCSTEMREMRP$,TCTAL$

IF(PCHING) WRITE(PUNCHFNLTOT)
RETURN

910 FORMAT(//T10,'TRUE EXP. OUTAGE =',F8.2,9 MW'/
$T10,'APPROX. EXP. OUTAGE =8,F8.2, MW'/
$T0I,'ERROR IN APPROX. =',F9.5, %'//
$' FINAL EQUIVALENT LOAD CDF:')

920 FORMAT (/10X,'DM = ',F10.4,10X,'IEMAX ',15,1OX,'PEMAX =,
$F12.4,//,10X,'PROB(K),K=1,IEMAX ',/,(1X,10F13.9))

921 FORMAT('0',132('* )/
$ 'OWITHOUT PLANT OF INTEREST PROB(K),K=1,IEMAX

$ DM = ',F8.2,5X,'IEMAX = ',15,5X,'PEMAX = ',F12.4/(10F13.9))
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922 FORMAT('OWITH PLANT OF INTEREST PROB(K),K=1,IEMAX :
$ DM = ',F8.2,5X,'IEMAX = ',15,5X,'PEMAX = ',F12.4/(10F13.9))

930 FORMAT('1',T5,'L IDNO PE MWIN MWADD MWTOT AVPROB',
$T54,'DELGWH EXPGWH L)

931 FORMAT('O',T5,'L IDNO PE MWIN MWADD MWTOT AVPROB',
$T54,'DELGWH EXPGWH L1)

940 FORMATCI5,I6,F7.0,316,F12.8,2F12.6.15)
950 FORMAT('1'1'0STRATEGY ID = ',I10,1OX,'TITLE :"',10A7,'"'/

$ 'OPERIOD NUMBER =',I19,1X,'TITLE :",10A8,""'///
$T45,'STARTUPS & SHUTDOWNS',T75,'EXFECTED PRODUCTION',T112,'TOTALS'
$,/,' INDEX IDNO NAME LD FACT OPER HRS NUMBER MEGABTU',
$T60,'COST($)',T7O,' ELECT(GWH) MEGABTU COST($)',
$T108,'MEGABTU COST(S) INDEX'/)

960 FORMAT(14, I8,A6,F10.6,2F10.4,F10.0,F8.0,F14.5,2F10.0,4X.2F1.OI 6)
970 FORMAT(////,T22,'P O W E R :',T59,'MEGAWATTS',/

$T26,' INSTALLED CAPACITY',T56,I110,/
$T26,' ON-LINE CAPACITY',T56,110,/
$T26,' PEAK LOAD FORECAST',T56,I10,/
$T26,' ON-LINE MARGIN @ PEAK',T56,Il0,/
$T26,' SPINNING RESERVE' ,T56,110,/
$T26,'LOSS-OF-LOAD PROBABILITY' ,T56,F10.6)

980 FORMAT(//T22,'E N E R G Y :,T60,'GWH',/
$T30, 'EXPECTED DEMAND' , T54,F12.4,/
$T30,'EXPECTED PRODUCTION', T54,F12.4,/
$T38,'( NUCLEAR ',T54,F12.4,')l/
$T38,'(NON-NUCLEAR',T54,F12.4,' )'/
$T30,'EXPECTED EMERG PURCH',T54,F12.4,/
$T30,'(UNSERVED BY DIRECT CALC',T54,F12.4,')')

990 FORMAT(//,T22,'D 0 L L A R C 0 S T :',T59,'SYSTEM',T74,'NUCLEAR'
$,T86,' NCN-NUCLEAR' /
$T31,'PRODUCTION FUEL',T54,F12.0,2F15.0/
$T31,'STARTUPS & SHUTDOWNS',T54,F12.0,2F15.0/
$'+',T56,10('-'),T71,10('_'),T86,10('_')/
$T31,' SUB-TOTALS' ,T54,F12.0,2F15.0/
$T31,'EMERG.PURCH.@',F6.2, ' $/MWH',T56,F1O.0,/'+',
$T56, '---_--_-----',/,T36,'TOTAL',T54,F12.0)
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END
SUBROUTINE SUBPLT(MWP)

C SYSINT VERSION 1-01-73
C SUBTRACTS PLANT OF MW MEGAWATTS AND P FRACTIONAL AVAILABILITY
C FRCM PROB, THE EQUIVALENT LOAD CDF
C NOTE: MW MUST BE LESS THAN OR EQUAL TO PEMIN
C ************************************************************

IMPLICIT REAL*8 (A-HO-$)
C COMMON VARIABLES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES

COMMON/PROB/DMDT,GWHPERDAYS,IEMINIEMAX,PEMINPEMAXPROB(500)
COMMON/FLOAT/EPSTRACEPKMWSPNRES,CSTEMR,
CCMMON/CONSTS/ZEROCNETWOHALFTEN,TENTHHUNDRDCENTITHOUSMILLI
REAL*8 MILLI

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
IF(MW.LE.0) RETURN
IF(MW.LE.PEMIN) GO TO 10
CALL ERRMSG('SUBPLT',2)
RETURN

10 ILOW=IEMIN+1
FB=MW/DM
INT=FB
FB=FB-INT
OVP=ONE/P
Q=ONE-p
QFB=Q*FB
GAMMA=ONE/ (ONE-QFB)
IF(INT.GT.0) GO TO 60

C LOOP TO UNCCNVOLVE PLANT IF MW.LT.CM
DO 20 J=ILOW,IEMAX

20 PROB(J)=GAMMA*(PROB(J)-QFB*PROB(J-1))
C FIND NEW PEMAX AND IEMAX

30 J=IEMAX
40 IF(PROB(J).GT.TRACE) GO TO 50t

PROB(J)=ZERO
J=J-1
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GO TO 40
50 IF(IEMAX.EQ.J) RETURN

I EMAX=J+1
PEMAX=IEMAX*DM+EPS
RETURN

C LOOP TO UNCONVOLVE PLANT IF MW.GE.DM
60 00 70 J=ILOW,IEMAX

JINT=J-INT
70 PROB(J)=OVP*(PROB(J)-O*(PROB(JINT)+FB*(PROB(JINT-1)-PROB(JINT))))

GO TO 30
END
FUNCTION GWHNRG(XLOWERXUPPER)

C SYSINT VERSION 10-15-71
C CALCULATES GWH OF ENERGY UNDER PORTION OF PROB, THE CDF OF
C EQUIVALENT LOAD, BY INTEGRATING FROM XLOWER TO XUPPER ASSUMING
C LINEAR INTERPOLATION BETWEEN ARRAY POINTS
C *************************************************************

IMPLICIT REAL*8 (A-H.O-S)
C COMMON VARIABLES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES

COMMON/PROB/DMDTGWHPERDAYS,IEMIN,IEMAXPEMINPEMAXPROB(500)
COMMON/CONSTS/ZERO,ONETWOHALFTEN.TENTHHUNDRDCENTITHOUS,MILLI
REAL*8 MILLI

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
XLO=XLOWER
XUP=XUPPER
GWHNRG=ZERO
SUM=ZERO
IF(XLO.GE.XUP) RETURN
IBELO=XLO/DM
ILAST=XUP/DM
IF(IBELO.LE.0.OR.ILAST.GE.IEMAX) GO TO 50

C STANDARD CASE WITH BOTH POINTS WITHIN NON-ZERO ARRAY POINTS
5 IFRST=IBELO+1

I ABOV=I LAST+1
IFRSTP=IFRST+l
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ILASTM=ILAST-1
ICASE= IABOV-IBELO
RLC=IFRST-XLO/DM
RUP=XUP/DM-ILAST
PLO=PROB(IFRST)+(PROB(IBELC)-PROB(IFRST))*RLO
PUP=PROB(IABOV)+(PROB(ILAST)-PROB(IABOV))*(ONE-RUP)
GO TO (10,20,30,40),ICASE

40 00 35 I=IFRSTP,ILASTM
35 SUP=SUM+PROB(I)
30 SUM=SUM+HALF*(PROB(IFRST)+PROB(ILAST))
20 SUM=SUM+HALF*(RLO*(PLO+PROB(IFRST))+RUP*(PUP+PROB(ILAST)))
15 GWHNRG=SUM*GWHPER

RETURN
10 SUM=SUM+(XUP-XLO)*(PLO+PUP)*HALF/CM

GO TO 15
C SPECIAL CASES INVOLVING ONE OR BOTH END POINTS

50 IF(XUP.LE.ZERO.OR.XLO.GE.PEMAX) -RETURN
IF(XLO.LT.ZERO) XLO=ZERO
IF(XUP.GT.PEMAX) XUP=PEMAX
IBELO=XLO/DM
ILAST=XUP/DM
JCASE=1
IF(ILAST.GT.0) JCASE=JCASE+1
IF(ILAST.EQ.IEMAX) JCASE=JCASE+1
IF(IBELO.GT.O) JCASE=JCASE+1
IF(IBELO.EQ.IEMAX) JCASE=JCASE+1
GO TO (101,102,102,104,105),JCASE

101 GWHNRG=(XUP-XLO)*GWHPER/DM
RETURN

102 SUP=ONE-XLC/DM
XLO=DM
IBELO=1
IF(JCASE.EQ.2) GO TO 5

104 XO=IEMAX*DM
PUP=PROB(IEMAX)*(ONE-(XUP-XO)/(PEMAX-XO))
SUM=SUM+(XUP-XO)*HALF*(PUP+PROB(I EMAX))/DM
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XUP=XO
ILAST=I EMAX-1
GO TO 5

105 XO=IEMAX*DM
PUP=PROB(IEMAX)*(ONE-(XUP-XO)/(PEMAX-XO))
PLC=PROB( I EMAX )*(ONE-(XLO-XO)/(PEMAX-XO))
GWHNRG=(XUP-XLO)*( PLO+PUP)*HALF*GWHPER/DM
RETURN
END
SUBROUTINE ADDPLT(MWP)

C SYSINT VERSION 1-01-73
C ADDS PLANT OF MW MEGAWATTS AND P FRACTIONAL AVAILABILITY TO PROB,
C THE EQUIVALENT LOAD CDF
C NOTE: MW MUST BE LESS THAN OR EQUAL TO PEMIN
C *************************************************************

IMPLICIT REAL*8 (A-HO-$)
C COMMON VARIABLES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES

COMMON/PROB/DM,DTGWHPERDAYSIEMIN,IEMAXPE4INPEMAXPROB(500)
COMMCN/FLOAT/EPS,TRACEPKMW ,SPNRES,CSTEMR
CCMMON/MAXMUM/IDIMENMAXPLTMAXPERMAXNPT
COMMON/CONSTS/ZERO,ONETWO,HALF,TENTENTHHUNDRDCENTITHOUS,MILLI
REAL*8 MILLI

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
IF(MW.LE.0) RETURN
IF(MW.LE.PEMIN) GO TO 5
CALL ERRMSG('ADDPLT',2)
RETURN

5 TEMP=PEMAX
PRTEMP=PROB (IEMAX)
IDUX=IEMAX
IDUM=IEMAX+1
Q=CNE-P
FB=MW/DM
INT=FB
FB=FB-INT
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C CALCULATE NEW VALUES AT POINTS ON UPPER END OF PROB AND
C FIND NEW PEMAX AND IEMAX

PEMAX=PEMAX+MW
IEMAX=PEMAX/DM
DO 20 J=IDUXIEMAX
JINT=J-INT
IF(JINT.EQ.IDUM) GO TO 10
PRJINT=PROB(JINT)
IF(JINT.EQ.IDUX) PRJINT=PRTEMP
PROB(J)=PROB(J)+Q*(PRJINT-PROB(J)+FB*(PROB(JINT-1)-PRJINT))
GO TO 15

10 PROB(J)=Q*PRTEMP*(TEMP/DM-IDUM+FB)/(TEMP/DM-IDUM+ONE)
15 IF(J.LT.IEMAX) PROB(J+1)=ZERO

IF(PROB(J).LE.TRACE) GO TO 30
20 CGNTINUE

TEMP=IEMAX*DM+EPS
IF(TEMP.GT.PEMAX) PEMAX=TEMP
GO TO 40

30 PROB(J)=ZERO
IEMAX=J
PEMAX=IEMAX*DM+EPS

40 IF(IEMAX.GT.IDIMEN) CALL ERRMSG('ADDPLT',1)
J=I0UX
JINT=J-INT

C LOOP TO CONVOLVE IN NEW PLANT
50 J=J-1

IF(J.LE.IEMIN) RETURN
JINT=JINT-1
PROB(J)=PROB(J) +

$ Q*(PROB(JINT)-PROB(J)+FB*(PROB(JINT-1)-PROB(JINT)))
GO TO 50
END
FUNCTION PROBX(X)
SYSINT VERSION 10-15-71
EVALUATES PROB AT A PARTICULAR VALUE OF X MW
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C COMMON VARIABLES
IMPLICIT REAL*8 (A-HO-$)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/PROB/DMDTGWHPERDAYS,IEMIN,IEMAXPEMINPEMAXPRCB(500)
COMMON/CONSTS/ZERO,ONETWO, HALF,T EN, TENTH, HUNDRD,CENTI ,THOUSMILLI

REAL*8 MILLI
C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES

PROBX=ONE
IF(X.LE.PEMIN) RETURN
PROBX=ZERO
IF(X.GE.PEMAX) RETURN
FB=X/DM
ILO=FB
FB=FB-ILO
IF(ILO.GE.IEMAX) GO TO 10
PROBX=PROB(ILO)+FB*(PROB(ILO+1)-PRCB(ILO))
RETURN

10 PROBX=PROB(IEMAX)*(PEMAX-X)/(PEMAX-IEMAX*DM)
RETURN
END
FUNCTION SUSDNO(AVBSLF)

C SYSINT VERSION 10-15-71
C APPROXIMATES NUMBER OF STARTUPS AND SHUTDOWNS DURING THE PERIOD
C AS A FUNCTION OF THE AVAILABILITY-BASED LOAD FACTOR, AVBSLF

C *************************************************************
IMPLICIT REAL*8 (A-HO-S)

C COMMON VARIABLES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES

COMMCN/PROB/DMDTGWHPERDAYS.[EMIN, IEMAXPEMIN,PEMAX, PROB(500)
COMMON/CONSTS/ZERO,ONE,TWOHALFTENTENTHHUNDRD.CENTITHOUSMILLI
CCMMON/SUSDF/F(20)
REAL*8 MILLI

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
IF(AVBSLF.GE.ONE) AVBSLF=ONE-1.D-1C
FB=20. DO*AVBSLF
ILO=FB
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FB=FB-I LO
IF(AVBSLF.LT.O.05D0) GO TO 10
SUSDNO=DAYS*(F(ILO)+FB*(F(ILO+1)-F(ILO)))
RETURN

10 SUSDNO=DAYS*FB*F(1)
RETURN
END
SUBROUTINE PUNCHR(MODE)

C SYSINT VERSION 11-2-71
C PERFORMS PUNCHING OPERATIONS
C
C NOTE THAT:
C 1. FOR PROGRAMMING MODULARITY, THIS SUBROUTINE PERFORMS PUNCHING
C OF OUTPUT, WHETHER ON CARDS, TAPE OR DIRECT ACCESS DEVICE.
C THE ONLY EXCEPTION IS THE FINAL TOTALS NAMELIST /FNLTOT/
C PUNCHED BY THE SYSGEN SUBROUTINE.
C 2. THIS SUBROUTINE IS DEPENDENT UPON THE IBM/360 UTILITY PROGRAM
C "IEBUPDTE" (RELEASE 20).
C
C *************************************************************

IMPLICIT REAL*8 (A-HO-$)
C COMMON VARIABLES
C VARIABLES DIMENSIONED IN MULTIPLES OF MAXPLT, MAX.NO. OF STATIONS

COMMON/PLTDAT/IDNO(100),NAME(100),TYPE(100),SUSDHT(100),PNCM(100),
$NPTS(100) ,MWPT(5,100),HTRAT(5,100)
COMMON/PERDAT/AVLBTY(100),CSTBTU(100),STATUS(100),EXPHRS(100),
$EXPBTU(100),EXPGWH(100).NORDER(500),COST(100),ENERGY(100),
$SUPCST( 100) ,MRGCST(5, 100)

C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES
COMMON/PROB/DMDTGWHPERDAYS,IEMIN,IEMAXPEMINPEMAX,PROB(500)
COMMON/FLOAT/EPS,TRACEPKMWSPNRESCSTEMR
CCMMON/TITLE/SGT ITL(10) ,PDT ITL( 10)
COMMON/INTEGR/RDWTPUNCH,CARDTAPEERRCOD,NOSTNSNPERNPERSNPER1

$, IDSTRG,PCHMINPCHMAXMBRNUM
CCMMCN/LDGNFO/LDTYPELDTYPSLOAD(50,25),NORDOP,NOENTYNOBASE,

$NOPEAK, NNORD
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COMMON/CONSTS/ZEROONETWOHALF,TENTENTH.HUNDRDCENTITHOUS,MILLI
COMMON/LOG ICL/MINI ,MIDI ,MAXI ,NPM.PCHING
COMMON/MAINT/MAINT(100,20)

C MAINT IS DIMENSIONED (MAXPLT,MAXPER/5) THE 5 IS 511/INTEGER*2
REAL*4 SUSDHTPNOMHTRAT
REAL*4 SUPCSTMRGCST
REAL*8 MILLI
INTEGER RDWTPUNCHCARDTAPEERRCCD.PCHMIN,PCHMAX
INTEGER*2 IDNO,TYPENPTSMWPTNORDERSTATUSMAINTLOAD
LOGICAL*l MIN1,MIDIMAXINPMPCHING

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
INTEGER*2 NTEST(100),NDXS(100),$N$/'N'/,LSTMOD/0/

C NTEST & NDXS DIMENSIONED MAXPLT
REAL*4 A(5)
IF(.NOT.PCHING) RETURN
MOD=MODE
IF(MOD.LE.6) GO TO 10
IF(LSTMOD.NE.2.AND.LSTMOD.NE.3) GO TO 10
MW=MODE
MOD=LSTMOD+1

10 GO TO (100,200,300,400,500,600),MOD
C STRATEGY INFORMATION

100 NUKES=O
DO 110 N=1,NOSTNS
IF(TYPE(N).NE.$N$) GO TO 110
NUKE S=NUKES+1
NDXS(NUKES)=N

110 CGNTINUE
IF(NUKES.GT.0) GO TO 130

C SINCE NO NUKES, PUNCH ALL PLANTS
DO 120 N=1,NOSTNS

120 NDXS(N)=N
NUKES=NOSTNS
NPM=.FALSE.

130 JMAINT=(NPERS+4)/5
CALL WHEN(A)
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CALL DAYTIM
N I
IPLACE=MBRNUM/1000000
WRITE(PUNCH,911) NPMMBRNUM,N,NPMMBRNUM,A
WRITE(PUNCH,912) NPMIPLACEIDSTRGSGTITLNUKES
WRITE(PUNCH,913) (IDNO(NDXS(l)),NAME(NDXS(I)),MWPT(1,NDXS(I)),

$MWPT(NPTS(NDXS(I)),NDXS(I)),NDXS(I),1=1,NUKES)
WRITE(PUNCH,914) NPERSJMAINT
DO 140 N=1,NUKES

140 WRITE(PUNCH,915) (MAINT(NDXS(N),J),J=1,JMAINT)
GO TO 800
PERIOD INFORMATION
N.P.M. CHECK OF NORDER AND SET PCHPIN AND PCHMAX

200 PCHMIN=-1
PCHMAX=-l
IF(.NOT.NPM) GO TO 260
NSUM=O
MSUM=0
DO 210 NK=1,NUKES
NDX=NDXS(NK)
NTEST(NK)=1000*NPTS(NOX)+NDX
IF(STATUS(NOX).NE.2) GO TO 210
IF(NTEST(NK).GT.2000) NSUM=NSUM+NTEST(NK)
MSUM=MSUM+1000+NDX

210 CONTINUE
NPMFAL=O
NPMDEL=0
DO 220 J=1,NNORD
N=NORDER(J)
IF(N.GT.2000) GO TO 230
IF(TYPE(N-1000).EQ.$N$) MSUM=MSUM-N

220 CONTINUE
230 JLOW=J

J=J- 1
IF(MSUM.NE.0)
IF(NSUM.EQ.0 )

NPMFAL=100
GO TO 250
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00 240 J=JLCW,NNORD
N=NCRDER(J)
M=N-(N/ 1000)*1000
IF(TYPE(M).NE.SNS) NPMDEL=20
DO 240 NK=1,NUKES
IF(N.EQ.NTEST(NK)) NSUM=NSUM-NTEST(NK)
IF(NSUM.EQ.0) GO TO 250

240 CONTINUE
CALL ERRMSG(*PUNCHR#,9)

250 PCHMAX=J
PCHMIN=JLOW-1
NPMFAL=NPMFAL+NPMDEL
IF(NPMFAL.EQ.0) GO TO 260
WRITE(WT,921) NPMFAL
CALL ERRMSG('PUNCHR',1l)

260 WRITE(PUNCH,922) NPERA,PDTITLNPER,DM,DTCSTEMR
IF(.NOT.NPM) MOD=4
GO TO 800

C PROB AT NUCLEAR MINIMUMS
300 M=MW

NTBSLD=0
DO 310 NK=1,NUKES
N=NDXS(NK)
IF(EXPHRS(N)+MILLI.LT.DT*CENTI*AVLBTY(N)) NTBSLD=NTBSLD+1

310 M=M+MWPT(NPTS(N),N)-MWPT(1,N)
LPTS=MAXO(IDINT(M/DM)-IEMIN+2,1)
LPTS=MINO(LPTS.IEMAX-IEMIN)
IF(NTBSLD.EQ.0OR.MW.LE.PEMIN) GO TO 320
NPMFAL=NPMFAL+3
WRITE(WT,932) NPMFALNTBSLD,(EXPHRS(NDXS(NK)),NK=1,NUKES)
CALL ERRMSGI'PUNCHR*,12)

320 WRITE(PUNCH,931) MW,IEMINLPTS,(PROB(IEMIN+1),I=1,LPTS)
WRITE(PUNCH,933)NPMFALNTBSLD,(EXPt-RS(NDXS(NK)),NK=1,NUKES)
GO TO 800

C PROB AT NUCLEAR MAXIMUMS
400 LPTS=MAXO(IDINT(MW/DM)-IEMIN+2,1)
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LPTS=MINO(LPTS,IEMAX-IEMIN)
WRITE(PUNCH,941) MWIEMINLPTS,(PRCB(IEMIN+I),I=1,LPTS)
GO TO 800

C FINAL PERIOD RESULTS
C
C NOTE SUBROUTINE SYSGEN HAS ALREADY PUNCHED THE FINAL TOTALS
C

500 WRITE(PUNCH,951) (CSTBTU(NDXS(I)),AVLBTY(NDXS(I)),ENERGY(NDXS(I)),
$EXPHRS(NDXS(I)), EXPGWH(NDXS(I)),EXPBTU(NDXS(I)),COST(NDXS(I)),
$I=1,NUKES)
MOD=1
IF(NPER.LT.NPERS) GO TO 800
WRITE(PUNCH,952) NPMMBRNUM,A
GO TO 700

C ABORT CAUSED BY DETECTION OF SEVERE ERROR
600 IF(LSTMOD.GT.0) WRITE(PUNCH,961)NPMMBRNUM,A

PUNCH=PUNCH-1000
PCHING=.FALSE.

700 LSTMCD=0
RETURN

800 LSTMOD=MOD
RETURN

911 FORMAT('./ ADD NAME=',L,I7,',LEVEL=',Z2,*,LIST=ALL'/
$'---------8EGIN STRATEGY WITH NAME=ItL1,17,' ON ',2A4,' AT I,
$3A4,9 - - - - - )

912 FORMAT(L3,I116,10A7/I5)
913 FORMAT( ISA5,215,110)
914 FORMAT('NUKES'' MAINT.DATA FOR',T22,14,' PERIODS (',T41,I3,

$1 VALUES)')
915 FORMAT(1615)
921 FORMAT('ONPMFAL='*,13,4X,'(100=FIRST REASON, 20=SECCND REASCN,',

$' OR 120=BOTH REASONS FOR ERROR 11 (HEXADECIMAL B)1)
922 FORMAT(13('*),13.'TH PERICD TO FOLLOW SIMULATED ',5A4,13('.')/

$10A8/I10,3F10.4)
931 FORMAT('MIN ',315,6F10.9/f8F10.9))
932 FORMAT('ONPMFAL=',13,6X,NTBSLD= ,13/
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$' EXPHRSLNK),NK=1,NUKES AT CALL TO PCHMIN :',8F10.4/(12F10.4))
933 FORMATt2I5,(7Fl0.4))
941 FORMAT('MAX ',315,6F10.9/(8F10.9))
951 FORMAT(* CSTBTU AVLBTY ENERGY EXPHRS',T42,'EXPGWH',T58,'EXPBTU

$' ,T?5,'COST'/(2F8.4,F8.2,F10.3,Fi6.5,2F15.0))
952 FORMAT(

$'-----END OF STRATEGY WITH NAME=',LL,17,' ON ',2A4,' AT ',
-3A4----------'//)

961 FORMAT(
$'-------ABORT STRATEGY WITH NAME=',LI,17,' ON '.2A4,' AT li
$3 A 4,'---- - - '/ )
END
SUBROUTINE ERRMSG(SUBRJERR)

C SYSINT VERSION 1-01-73
C WRITES OUT ALL ERROR MESSAGES
C

IMPLICIT REAL*8 (A-HO-$)
C COMMON VARIABLES
C OTHER VARIABLES COMMON TO SEVERAL SUBROUTINES

COMMON/INTEGR/RD,WT,PUNCHCARD,TAPEERRCODNOSTNSNPER,NPERSNPERI
S, IDSTRGPCHMINPCHMAXMBRNUM
INTEGER RDWTPUNCHCARDTAPEERRCOD,PCHMINPCHMAX

C END OF STATEMENTS COMMON TO SEVERAL SUBROUTINES
DATA NPRINT/0/,$QUIT$/' QUIT'/
IERR=JERR

100 ERRCOD=16*ERRCOD+IERR
IF(ERRCOD.GT.8*16**6) IERR=8
NPRINT=NPRINT+l
GO TO (1,2,3,4,5,6,7,8,9,1O,11,12),IERR

I WRITE(WT,901) SUBRERRCODNPRINT
GO TO 1000

2 WRITE(WT,902) SUBRERRCODNPRINT
GO TO 1000

3 WRITE(WT,903) SUBRERRCODNPRINT
RETURN

4 WRITE(WT,904) SUBRERRCODNPRINT
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GO TO 1000
5 WRITE(WT,905)
RETURN

6 WRITE(WT,906)
GO TO 1000

7 WRITE(WT,9C7)
GO TO 1000

8 WRITE(WT,908)
STOP

9 WRITE(WT,9C9)
GO TO 1000

10 WRITE(WT,910)
IERR=8
GO TO 100

11 WRITE(WT,911)
RETURN

12 WRITE(WT,912)
RETURN

SUBRERRCCONPRINT

SUBRERRCODNPRINT

SUBRERRCODNPRINT

SUBR.ERRCODNPRINTNPRINT

SUBRERRCCDNPRINT

SUBR, ERRCODNPRINT

SUBRERRCCDNPRINT

SUBR, ERRCOD, NPRINT

1000 NPRINT=NPRINT+1
WRITE(WT,999) NPRINT
CALL QUIT
SUBR=$QUIT $
IERR=10
GO TO 100

901 FORMAT(/I ',130('*')/,' * SUBR. ',A6,' HAS ERRCOD =
$' IEMAX GREATER THAN DIMENSION OF PROB ARRAY I,
$T131,'*I,/,' ',130('*),12)

902 FORMAT(/' ',130('*')/,' * SUBR. 0,A6, HAS ERRCOD =
$' CAPACITY OF A PLANT GREATER THAN I,
$'MINIMUM LOAD',
$T131,'*',/,' ',130('*'),12)

903 FORMAT/' *,130('**)/,' * SUBR. ',A6,' HAS ERRCOD =
$'WARNING - RELERR &/OR IDPI GREATER THAN 0.001',
$T131,'*',/,' ',130('*'),12)

904 FORMAT(/I $,130('*')/,' * SUBR. IA6,' HAS ERRCOD =
$' NEW PROB VIOLATES PFOPERTIES OF A CDF o,

ItZ8,e : I,

ItZ8,e : I,

',Z8,' :

',Z8,' :
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$T131,'**9/9' ', 130( '*),12)
905 FORMATI/' ',130('*)/,' * SUBR. ',A6,' HAS ERRCOD =

$' WARNING : ERROR IN EXPECTED MW OUTAGES GREATER',
$' THAN 0.012 ',
$T131,'*',/,

906 FORMAT(/'
$'INPUT DECK
$T 13 1,' * * , /,

907 FORMAT(/*'
$'INVALID OR
$T 131,'1* 1,/,

' ',130('*'),12)
,130('*')/,' * SUBR.
HAS IMPROPER SEQUENCE
* ',130('*'),12)
,130(**')/,' * SUBR.

INCONSISTENT IDNO ENC
' ',130('*1),12)

908 FORMATI/* ',130('*)/,
$'SUPSIM ENCOUNTERED ST
$'THER FATAL ERROR', T
$' PRINTED A TOTAL OF '
$'INCLUDING) THIS ONE@,
$T131,'*',/,' ',130('**

909 FORMAT(/* ',130(***)/,
$'INPUT NORDER ERROR SU
$' POINTS, BAD IDNO OR
$T131,'* ',/,' ',130('**

910 FORMAT(/' ',130(1*)/,
$' "QUIT" EXECUTED A R
$T131,'*,/,' ' , 130('*'

911 FORMAT(/' ',130('*)/,
$'BASE NUCL. W/IN NUCL.
$'IMUM NON-NUCL.V.PTS.
$T131,'**,/,' ',130('*'

912 FORMAT(/ ',130('*')/,
$'MINIMUM LOAD TOO LOW
$T131,'**,/,' #,130('*'

999 FORMAT(/' ',130('*)/,
$' INVALIDATE
$' CCNTRCL TC
$T131*,/v'

END

I * SUBR.
OP CARD,
131, *1/I
,139' ERR

,A6,' HAS ERRCOD =
&/OR CARD 1,

,A6,' HAS ERRCOD =
OUNTERED e,

#,Z8,' :

1,

I

',A6,' HAS ERRCOD = ',Z8,' : ',

ERRPSG CALLED ONCE TOO OFTEN OR 0',
* DURING THIS ENTIRE RUN, ERRMSG',

OR MESSAGES JUST LIKE (AND 1,

),12)
' * SUBR. ',A6,' HAS ERRCOD
CH AS TOO FEW/MANY VALVE',
UNLISTED ON-LINE PLANT',
) ,12)
' * SUBR. ',A6,' HAS ERRCOD
ETURN TO "ERRMSG" I,
),12)
' * SUBR. ',A6,' HAS ERRCOD

NON-MINIMUMS OR NON-MIN',
PRECEDE SOME NUCL.V.PTS.',
),12)
I * SUBR. ',A6,' HAS ERRCOD
TO KEEP NUKES ON ALL THE TI
),12)
' * PREVIOUS

FURTHER COMPUTATIONS.
SUPSIM.',
',130('*) ,12)

= IZ8,I : , 9

= ',28,' : ,

= ',Z8,' :

= ',Z8,'
ME , I

ERROR SEVERE ENOUGH TO',
THEREFORERETURNING',

',Z8,I : It
SINT1909
SINT1910
SINT1911
SINT1912
SINT1913
SINT1914
SINT1915
SINT1916
SINT1917
SINT1918
SINT1919
SINT1920
SINT1921
SINT1922
SINT1923
SINT1924
SINT1925
SINT1926
SINT1927
SINT1928
SINT1929
SINT1930
SINT1931
SINT1932
SINT1933
SINT1934
SINT1935
SINT1936
SINT1937
SINT1938
SINT1939
SINT1940
SINT1941
SINT1942
SINT1943
SINT1944
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SUBROUTINE CMPTIM(LVENT) SINT1945
C SYSINT VERSION 10-15-71 SINT1946
C PRINTS TIME OF INTRA-SUBROUTINE TRANSFERS OR DATECTIME SINT1947

C "TIMING" IS AN M.I.T. INTERNAL SUBROUTINE THAT RETURNS THE CPU TIME SINT1948

C IN HUNDREDTHS OF SECONDS. SINT1949

C "WHEN" IS AN M.I.T. INTERNAL SUBROUTINE THAT RETURNS THE CATE AND SINT1950

C TIME IN THE FOLLOWING 5A4 FORMAT: MM/DD/YY HR*MI*SS.FF SINT1951

COMMCN/INTEGR/RDWT SINT1952

INTEGER RDWT SINT1953

DIMENSION A(5) SINT1954
DOUBLE PRECISION LVENT SINT1955
INTEGER TNOWTSTARTTREL SINT1956
CALL TIMING(TNOW) SINT1957

TREL=TNOW-T START SINT1958
IF(TREL.LT.0) TREL=TREL+8640000 SINT1959
TI=TREL/100. SINT1960

WRITE(WT,10)LVENTTI SINT1961
RETURN SINT1962

ENTRY STRTIM SINT1963

CALL TIMING(TSTART) SINT1964 w
ENTRY DAYTIM SINT1965
CALL WHEN(A) SINT1966
WRITE(WT,20) A SINT1967
RETURN SINT1968

10 FORMAT(/,T103,29('*),/,T103,'* LV. ',A6,T131,'*,/, SINT1969
$T103,'* ENT. ',A6,' @',F7.2,' SEC. *',/,T103,29('**),/) SINT1970

20 FORMAT(/T103,29(*)/T103,'* DATE = ',2A4,T131,'**/ SINT1971
$T103,'* TIME = ', 3A4,T131,'*'/T103,29('*')/) SINT1972
END SINT1973

********************************************************************* 00000000 SINT1974
* * 00000010 SINT1975
* ASSEMBLER LANGUAGE SUEROUTINE ERASE * 00000C11 SINT1976
* WRITTEN BY JOHN W. KIDSON * 00000012 SINT1977
* MIT DEPARTMENT OF METEOROLOGY * 00000014 SINT1978
* * 00000016 SINT1979
* TO SET ELEMENTS OF REAL OR INTEGER ARRAYS TO ZERO. AlA2,... * 00000020 SINT1980
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* ARE ARRAY NAMES AND NIN2,... ARE INTEGER VALUES OR *
* EXPRESSIONS GIVING THE ARRAY SIZES. *
** I.E. - CALL ERASE(C,26*31,N,7*31,E,254) **
* *
************************************************************** *********

START 0
SAVE (14,12),,*
EALR 12,0
USING *,12
SR 0,0
SR 2,2
L 6,=F4'
L 3,0(2,1)
L 4,4(2,1)
L 7,0(4)
SLA 7,2
SR 7,6
SR 5,5
ST 0,0(5,3)
BXLE 5,6,E2
LTR 4,4
8M RETN
A 2,=F'8'
B El
RETURN (14,12),T
END

ERASE

El

E2

RE TN

00000030
00000040
00000050
00000060

o0o0 n
C0000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280

** 00000290

PAGE 56

PARAMETER LIST INDEX=0

LOAD 3 WITH ARRAY ADDRESS
LOAD 4 WITH ADDRESS OF ARRAY LENGTH
LOAD 7 WITH ARRAY LENGTH-1 TIMES 4

STORE ZERO

TEST FOR LAST ARGUMENT IN LIST

PICK UP NEXT ARGUMENT PAIR

SINT1981
SINT1982
SINT1983
SINT1984
SINT1985
SINT1986
SINT1987
SINT1988
SINT189
SINT1990
SINT1991
SINT1992
SINT1993
SINT1994
SINT1995
SINT1996
SINT1997
SINT1998
SINT1999 b

SINT2000 0
S INT2001
SINT2002
SINT2003
SINT2004
SINT2005
SINT2006
SINT2007



*

AN ELECTRIC UTILITY SYSTEM CPTIMIZATION MODEL *
WRITTEN BY PALL F. DEATCN *

P.I.T. DOCTORAL THESIS, MARCH 1973 *
*

C SYSOPT MAIN PROGRAM
C SYSOPT VERSION 12-16-72
C********* CEFINITIONS CF IMPORTANT VARIABLES **44*****************

$NKPRD =
INKSUS =
$NKTCT =
$NNPRD =
$NNSLS =
INNTOT =
$SBTOT =
ALPHA =
AVL =
eASCFA =
BASVAR =
EETAP =
CAVG
CCFAVG =
CDFMAX =
CDFMIN =
CORDTL =
CYCNUM =
CYCRMX =
CYCPNG =
CYCXS =
CELTAL =
CM =
CMW =
CT =
DTH =

DIRECT NUCLEAR PRODUCTION FUEL CCST (10**3 $)
NUCLEAR STARTUP & SHUTDOWN COST (10**3 $)
TOTAL COST OF NUCLEAR PRODUCTICN =$NKPRD+$NKSUS (10**3 $)
DIRECT NON-NUCL. PRODUCTION FUEL COST (10**3 $)
NON-NUCL. STARTUP & SHUTDOWN COST (10**3 $)
TOTAL COST CF NCN-NUCL. PROD. = $NNPRC + $NNSUS (10**3 $)
PROD$ + SUSC$ , TOTAL COST OF PRODUCTION h/IN SYSTEM
LINEAR SOLUTICN VARIANCE PARAMETER (PER GWHE)
REACTOR PERFORMANCE PROBABILITY (PER CENT)
AVAIL.-BASEC CAP. FACTOR FOR REACTOR BASE PORTION ( % )
BASE VARIANCE FOR SOLUTICN COMPARISCN
CONSTANT SOLUTION VARIANCE PARAMETER
AVERAGE C.D.F. VALUE FOR PERICD
AVERAGE C.D.F.
C.D.F. AT LVLMAX
C.D.F. AT LVLMIN
OPTIMUM IN-CORE DETAIL PRINT OPTION (O=NOL=YES)
CUMULATIVE CYCLE NUMBER FOR GIVEN R-C
MAXIMUM R-C FOR REACTOR
RANGE OF PERIODS COVERED BY EACH R-C
NUMBER OF EXCESS CYCLES BEYCND f-CRIZCN OF INTEREST
DELTA CAPACITY FACTOR LIMITS = SQRT(-SLNCRT)
cMw
EQUIVALENT LCAD STEP SIZE (MW)
DT H
PERIOD DURATICN (HOURS)

C:- S Y S O0 P T

SOPT000l
SOPT0002
SOPT0003
SOPT0004
SOPT0005
SOPT0006
SOPT0007
SOPT0008
SOPT0009
SOPT0010
SOPTO011
SOPT0012
SOPT0013
SOPT0014
SOPTOJ15
SOPT0016
SOPT0017
SOPT0018
SOPT0019 H
SOPT0020
SOPT0021
SOPT0022
SOPT0023
SOPT0024
SOPTJ025
SOPT0026
SOPT0027
SOPT0028
SOPT0029
SOPT0030
SOPT0031
SOPT0032
SOPT0033
SOPT0034
SOPT0035
SOPT0036
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CYCWN
CYHOLD

ECS
ECUPLM
ELAME
EMRP $
EXPCEM
EXPEMR
EX PG EN
EXPGWH
FINTST
FINVAR
GESFRS
CMESH
GWHOLD
CWFPER
CW FXS
IAUX
IAUXM
IDNC
IDSTRG
IEMAX
IEMI N
INS TAT
ITER
JBKWRD
JFRPBK
JFRWRD
KC
KL
KU
KX
LVLMIN
LVLMN

C LVLMAX = LVLMX

COWN TIME FCR EXCESS CYCLE (YEARS)
POST-HORIZON TIME UNTIL END OF SPLIT CYCLE (YEARS)
UP TIME FOR EXCESS CYCLE (YEARS)
EMERGENCY PCWER COST ($/MWHE)
UPPER LIMIT CN EC'S IMPOSED BY IN-CORE MODEL (GWHE)
SANDWICHEC TABLE CF EC*S, LAMBCAS & EC'S (GWHE,$/MWHE)
COST OF EMERGENCY POWER PURCHASES (10**3 $)

EXP. CUSTCMER ENERGY DEMAND (GWI-E)
EXP. EMERGENCY ENERGY PURCHASED (GWIE)
EXP. UTILITY TOTAL GENERATION (GWHE)
SYSINT EXPECTED GENERATION BY EACH REACTOR (GWHE)
FINE-GRAINED SHAPE TEST FOR THE PERICC
FINE-GRAINEC VARIANCE FOR THE PERIOD (THESIS S**2)
FIRST GUESS CPTION(0=NONE,1=SYSINT,2=MRGCST,3=CA.EC,4=EC)
INCREMENTAL SPACING USED FOR ARC TYPES 2 & 3 (GWHE)
GWHE HELD OVER FOR LATER PRODUCTION IN SPLIT CYCLE
GWHE PER UNIT OM UNDER CDF
EC FOR EXCESS CYCLE (GWHE)
TOTAL NUMEER OF ARCS TO AUXILIARY R-C NODE
IAUX-1
REACTOR 1.0. NUMBER
STRATEGY I.D. NUMBER
PEMAX/DM
PEMIN/DM
INITIAL STATE OF REACTOR AT START OF PERICD 1 (CF. 'S' )
INNER COST ITERATION NUMBER
NUMBER OF BACKWARD ARCS OF TYPE 7
JFRWRD + JBKWRD
NUMBER CF FCRWARD ARCS OF TYPE 7
UNIT TRANSPCRTATION COST ACROSS ARC ($/GWHE)
ARC CAPACITY LOWER LIMIT (GWHE)
ARC CAPACITY UPPER LIMIT (GWHE)
ARC CAPACITY LSED (GWHE)
LVLMN
POWER LEVEL AT END OF MINIMUMS

SOPT0037
SOPT0038
SOPT0039
SOPT040
SOPT0041
SOPTO)42
SOPT0043
SOPT0044
SOPTIJ45
SOPT0046
SOPT004T
SOPT0048
SOPT0049
SOPTOJ50
SOPT0051
SOPT0052
SOPT0053
SOPT0054
SOPT0055

0ll
SOPT0056 O.
SOPT0057 "
SOPT0058
SOPT0059
SOPT0063
SOPT0061
SOPT0062
SOPT0063
SOPT0064
SOPT0065
SOPT0066
SOPT006T
SOPT0068
SOPT0069
SOPTOOTO
SOPT0071
SOPT0072
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LVLMX
MAx
MA XT ST
MAXVAR
MESH
MIDCYC
tIN
MWD
MW INST
MWMAX
MWMIN
tIWMRGN
PWCNLN
MW PEAK
PWSPIN
MXARCS
PXESX2
MXI TER
MXNODS
tXAPER
MXRCRS
MX RCYC
NCYCT
AMESH
AP
NPERIN
N PERS
NPERSP
NP IN
APM
NP MF AL
\PCT
NR
NR CR S
ATBSLD
OPHRS

POWER LEVEL AT END OF MAXIMUMS
REACTOR-TO-PERIOD MAX. GWHE CONTRIB. TO NUCL. POTENTIAL
MAXIMUM POSSIBLE SHAPE TEST FCR THE PERIOC
MAXIMUM POSSIBLE VARIANCE FOR THE PERIOD
SEQUENCE CF GMESH VALUES TO BE USED IN CONVERGENCE (GWHE)
REACTOR IN MID-CYCLE AT START OF PERICD I ?
REACTOR-TO-PERIOD MIN. GWHE CONTRIB. TO NUCL. POTENTIAL
INCREMENT OF CAPACITY AVAILABLE FOR LCAD FOLLOWING (MW)
UTILITY INSTALLED CAPACITY (MW)
REACTOR MAXIMUM LOAD (MW)
REACTOR MINIMUM LOAD (MW)
ON-LINE CAPACITY MARGIN ABOVE FORECAST PEAK (MW)

LTILITY ON-LINE CAPACITY (MW)
FORECAST PEAK CUSTOMER DEMAND (MW)
SPINNING RESEFVE REQUIREMENT (MW)
MAXIMUM ALLOWED NUMBER OF ARCS IN 0-C-K
FIRST DIMENSION OF ELAME = (MAX.NO.EC'S IN COL.) * 2
MAXIMUM ITERATICNS TO BE ATTEMPTED
MAXIMUM ALLOWED NUMBER OF NODES IN C-C-K
MAXIMUM ALLOWED NUMBER OF PERIOCS IN SYSOPT STUCY
MAXIMUM ALLCWED NUMBER OF REACTCRS IN STRATEGY
MAXIMUM ALLOWED CYCLES FOR A SINGLE REACTCR
CUMULATIVE NLMBER OF R-C'S
NUMBER OF MESHES TO BE READ IN
PERIOD INDEX
NUMBER OF PERIODS IN SYSINT SIMLLATICN OUTPUT
NUMBER OF CYCLES COMPRISING TIME HORIZON OF INTEREST
NPERS + 1
COMPUTER DEVICE NUMBER FOR NET.PROG. INPUT
NUCLEAR POWER PANAGEMENT STUDY ?
SYSINT ERROR INDICATION THAT SYSOPT N.P.M. MAY FAIL
COMPUTER CEVICE NUMBER FOR NET.PROG. OUTPUT
REACTCR INDEX
NUMBER OF REACTCRS IN THE STRATEGY
NUMBER OF REACTCRS NOT BASE-LOACED IN THE PERIOD
SYSINT OPERATING HOURS FOR REACTCR

SOPT0073
SOPTOO74
SOPT0075
SOPT0076
SOPT007T
SOPT0078
SOPT0079
SOPT0080
SOPT0081
SOPT0082
SOPT0083
SOPT0084
SOPT0085
SOPT0086
SOPTJ087
SOPT0088
SOPT0089
SOPT0090
SOPT0091
SOPT0092
SOPT0093
SOPT0094
SOPT3095
SOPT0096
SOPT0397
SOPT0098
SOPT0099
SOPT0100
SOPT0101
SOPTJl12
SOPT0103
SOPT0104
SOPT0105
SOPT0106
SOPT0137
SOPT0108
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CPPCCR
PAP C AL
PARCON
PARCOP
PC C N VG
FCCELA
PDEL I4
PDT ITL
PEMAX
PEMIN
FLCFL
PROB
PRO C
PVFACT
PVRATE
PC
RD
RDFACT
REJLVL

SGT I TL
SI CT
SL NCRT
SLNISR
SP E
SUSD$
TEY
TH$CON
TOTAL$
TOY
ISY
LNSRVD
WT
XN KG EN
XNNGEN
YBASE

IN-CORE PRINT OPT IONS TO RE USED FOR OPTIMUM SOLUTION
ARC TYPES PRINTED FOR ALL 0-0-K SOLUTIONS
ARC TYPES PRINTED FOR CONVERGED 0-0-K SOLUTIONS
ARC TYPES PRINTED FCR OPTIMUM 0-C-K SCLUTION
PER CENT GMESH USED FOR CONVERGENCE TEST
PERIOD CAP. FACT. RANGE CORRECTION (PER CENT DELTAL)
PERIOD DELIMITING CARD
PERIOD TITLE CARD
MAXIMUM ECUIVALENT LOAD CONSIDERED (MW)
MINIMUM EQUIVALENT LOAD (MW)
PROBABILITY CF LOSS OF LOAD (FRACTION)
CUMULATIVE DENSITY FUNCTION (C.C.F.) FOR EQUIVALENT LOAC
CIRECT PRODUCTION FUEL COST (10**3 $)

VID-PERIOD PRESENT VALUE FACTOR (FRACTION)
PRESENT VALUE RATE (FRACTION PER YEAR)
REACTOR-CYCLE (R-C) INDEX
COMPUTER DEVICE NUMBER FOR CARD REACER
ROUND-OFF CORRECTION FACTOR FOR 0-0-K 'S INTEGER EC'S
REJECTICN LEVEL FOR FINVAR-SLNWSR
REACTOR STATLS DURING PERIOD (0=NONE,1=DOWN,2=UP)
STRATEGY TITLE
COMPUTER CEVICE NUMBER FOR SYSINT OUTPUT
SOLUTION SHAPE CRITERION = FINVAR-SLNWSR-REJLVL (.GE.0)

SOLUTICN WTD. SUM OF SQUARES OF RESICUALS (THESIS W**2)
PRESENT VALUE SUMS OF VARIOUS PERIOC COSTS
SYSTEM STARTUP & SHUTDOWN COST (10**3 $)

TIME AT END CF CYCLE (YEARS)
CONVERGENCE CRITERION ON SYSTEM NUCLEAR CCST (10**3 $)
TOTAL SYSTEM COST = $NKTOT + $NNTOT + EMRP$ (10**3 $)
OPERATING TIME OF CYCLE (YEARS)
TIME AT START OF CYCLE (YEARS)
SECOND ESTIMATE OF UNSERVED ENERGYEXPEMR (GWHE)
COMPUTER DEVICE NUMBER FOR PRINTER
EXP. NUCLEAR GENERATION (GWHE)
EXP. NON-NUCL. GENERATION (GWHE)
BASE YEAR FCR PRESENT VALUING

SOPT )109
SOPT0110
SOPT0111
SOPT01 12
SOPT0 113
SOPT0114
SOPT0115
S OPT 0116
SOPT011T
SOPT0118
SOPT01 19
SOPT0120
SOPT0121
SOPT0122
SOPTO,123
SOPT0124
SOPT0125
SOPT0126
SOPT0127
SOPT0128
SOPT0129
SOPT0130
SOPT0131
SOPTO,132
SOPT0133
SOPT0134
SOPT0135
SOPT0136
SOPT0137
SOPT0138
SOPT0139
SOPT0140
SOPT0141
SOPT0142
SOPT0143
SOPT0144
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C YEND = END POINT OF PERIOD (YEARS)
C YMIC = MID-POINT OF PERIOD (YEARS)
C 'START = YEAR OF START OF FIRST PERIOD IN THE STRATEGY

C END OF DEF INIT IONS ************************************
IMPLICIT INTEGER(C,G)
REAL*8 RDFACTSGTITL
CCMMCN/OPTL IM/RDFACTSGTITL(10),ELAME(40,18),PVRATEYBASEYSTART,

$IAUX,IAUXMNRCRSNCYCT,I\PERS,NPERSPNPERIN,ITEPRMXESX2,MXRCYC,
$IPXNPER,MXRCPS,MXN)OS,MXARCSSIOTNPINNPCT,RRDWT,PARCAL,PARCON,
$PARCOP, PCCNVG, NPM, IDST RG,J FRWRD, JBKWRD,NMESH,MESH( 15) ,MXI TER
$,GESFRS,ECUPLM(18),CORDTL,OPRCOR(6),REJLVLPCDELATH$CONJFRPBK
INTEGER SIOT,RC,WT,PARCAL,PARCONPARCOP
LOGICAL APMOPRCOR
LOGICAL OPTRCHSHPSOK
REAL*3 $NKPRD
DIMENSION X(2J)
CATA $STOP$, $STRA$,$NEWB$,$COMP$/'STOP','STRA',NEi W *,'COMP'/

%RITE(WT,903)
wRITE(WT,900)

10 CALL STRTIM(WT)
20 REAC(RD,S1) X

WRITE(WT,902)X
IF(X(1).EQ.$STOP$) CALL CPERR('SYSOPT',8)

IF(X(1).EQ.$STRA$) GC TO 30
IF(X(1).EC.$COMP$) GO TO 40
IF(X(l).NE.$NEWB$) CALL CPERR('SYSOPT',6)
CALL CMPTIM('SYSOPT','ICNPUT')
CALL ICNFUT
CALL CMPTIM('ICNPUT','SYSOPT')
CO TO 20

30 CALL CMPTIM(l ','INFUT ')
CALL RDOPTN
CALL RDSTRG
X( 1)=LOC(10,0,0,0)
CALL RDPERS
CALL ASMTYS

SOPT0 145
SOPT0.146
SOPT0147
50PT0148
SOPT0149
SOPT0150
SOPT0151
SOPT0152
SOPT0153
SOPT 0154
SOPT0155
SOPT0156
SOPT0157
SOPT0158
SOPT 0159
SOPT0160
SOPT0161
SOPT0162
SOPT0163
SOPT0164
SOPT0165
SOPT0166
SOPT0167
SOPT0168
SOPT0169
SOPT0170
SOPT0171
SOPT0172
SOPT0173
SOPT0174
SOPT0175
SOPT0176
SOPT017T
SOPT0178
SOPT0179
SOPT0180
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CALL WTPERS
CALL SETUPN
CALL SETLPT
CO TO 20

40 CALL CMPTIM('INPUT ','CALCS ')
INKPRD=. CDO

50 CALL CONVRG(OPTRCH,$NKPRC)
CALL CHKSHP(SHPSCK)
IF( ITER. LT. MXI TER.AND.OPTPCH .AND.. NOT. SHPSOK) GO TC 50
CALL EDTSIP(SHPSOK)
CALL OFTMUM(CPTRCH,$NKPRC)
CALL CMPTIM('CALCS ',, I)
IF(.TRUE.) GO TO 10
STOP

900 FOPMAT (T31,72(1*")/T31,I*I,T102,'*/T31,'*1, T37,'S Y S 0 P T

$ AN ELECTRIC UTILITY SYSTEM OPTIMIZATICN MODEL 1,T102,'*'/
$T31, *,T64, 'WRITTEN BY PAUL F. DEATON',1.02,'**/

$T31,'',T58,'M.I.T. DCCTORAL THESIS, MARCH 1973 ',T102,'**/

$T56,'VERSION 12-16-72')
901 FORMAT(2CA4)
902 FORMAT( OSYSOPT READ ' ,1H',20A4,lH')

903 FORMAT('0'/'0'/'0')
END
ELCCK CATA
INITIALIZES COMMON BLOCKS AND DIMENSIONS 0-0-K ARRAYS
SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(C,G)
REAL*8 REFACTSGTITL
CCMMON/OPTL IM/RDFAC T, SGTITL( 10) ,ELAME(40 ,18) ,PVRAT E,YBASE,YST ART ,
$ IAUX ,IAUXM, NRCRSNCYCT , NPERS ,NPERSP, NPER INITER, MXESX2,MXRCYC,
$MXNPER ,MXRCR S, MXNOD S , MXA RC S, SI OT , NPI N, NP CT , R D, WT , P ARCAL , PARCON,
$PARCOP P CONVGNPM, IDSTRG,JFR WRD, JBKWRONMESH ,MESH( 15) ,MXITER

$,GESFRS,ECUPLM(18),CCRCTL,CPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK
INTEGER SIOT,R),WTPARCALPARCONPARCOP
LOGICAL APMCPRCOR

SOPT0181
SOPT0182
SOPT0183
SOPT0184
SOPT0185
SOPT0186
SOPT0187
SOPT0188
SOPT0 189
SOPT0190
SOPT0191
SOPT0192
SOPT0193
SOPT0194
SOPT0195
SOPT 0196
SOPTO 197
SOPT0198
SOPT0199
SOPT0200
SOPT0201
SOPTO202
SOPT0203
SOPT0204
SOPT0205
SOPT0206
SOPT0207
SOPTO208
SOPT0209
SOPT0210
SOPT0211
SOPT 0212
SOPT0213
SOPT0214
SOPT0215
SOPTO216
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LOGICAL MIDCYC,
INTEGERI2 CYCNUMCYCRNGCYCXSCYCRMX
COMMOi/RCRODAT/DYDWN(3,15),DYUP(3,15),GWHXS(3,15),CYCXS(15),

$CYCRMX (15), CYCNUM( 18, 15) ,CYCRNG( 2, 270) ,IDNO( 15) ,GWHOLD(15) ,MWD(15)
$,TSY(18,15), TEY(l8,15),ItASTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
lDYHCLD(15),TOY(18,15)
CCMMCN/OCKCCM/KIX,KOX,KQ1X,KQ2XKQ3X,KQ4XKQ5X
COMMCN /KL/KL/KC/KC/KL/KU/KX/KX/NL/N/NN/NN/NP/NP/IJ/IJ/IL/IL
COMMCN /JL/JL/JI/JI
CIfMENSION KL(3500),KC(3500),KU(3500),KX(3500),NL( 70)

DIMENSION NN(1400),NP( 700),IJ(2100),IL( 701),JL( 701),JI(3500)
CCVMCN/PDPERM/S(10f0,15),ALPHA(100,15),BETAP(100,15),FINVAR(10O)
INTEGER*2 S
COMMON/PCTEMP/NPMFAL ( 100

$LVL MX( 100) , PDELIM(20,100
$ ) ,R4( 13, 100) ,R8( 12, 100) ,
$15) ,EXPGWH(100,15),CAVG(
$MA xT ST (100) ,MIN(100k'j,15) ,

REAL MAXVARMAXTSTCAVG
REAL*8 PVFACT,R8
COMMON/PROB /DM, DT, GWHPER

),NTBSLD( 100)iOPHRS(
) , PDT ITL (20, 100), CMW
YM ID ( 100) ,YEND( 100) ,
100) ,BASVAR( 100) ,FIN
MAX(1J,15) ,BASCFA(1

,D AYS, I EMIN, IE MAX,PE
N, LVLMAX
DMDT,GWHPERDAYS ,PEMIN,PEMAXPRCE

/F INALS/S4, SA4, SP4,SL4,SP8
REAL*8 S4(13),SA4(13
COMMON/PRINTS/RELCST
LOGICAL RELCSTINCCS
COMCN/SHPI NF/SLNCRT
LOGICAL PDWSBD
CATA MXESX2/40/
CATA MXRCYC/18/
CATA MIXNPER/100/
DATA MXRCPS/15/
CATA MXARCS/3500/
CATA MXNCCS/ 700/
CATA RD/5/

),SP4(13),SL4(13),SP8(13
,INCCST, BALCSTNBLCSTPI
T,BALCST ,NBLCST, PIRDAT,P
(1)0 ) , SLNWSR (100), ITPSHP

100, 15) ,LVLMN( 100) ,
(l100 ) , DTH(100) ,ECS( 100
PVFACT (100) , AVL ( 100 ,
TST( 100) ,MAXVAR( 100) ,
00 ,15)

MIN, PEIAX , PRGB (500)

)
RDAT,PPATCSKRDKWT
BA TC S
,PCWSBC( 100)

SOPTO217
SOPTO218
SOPT0219
SOPT0220
SOPT0221
SOPT0222
SOPT0223
SOPT0224
SOPT0225
SOPT0226
SOPT0227
SOPT0228
SOPT0229
SOPT0230
SOPT0231
SOP T0232
SOPT0233
SOPT0234
SOPT0235
SDPT0236
SOPT0237
SOPT0238
SOPT0239
SOPT0240
SOPT0241
SOPT0242
SOPT0243
SOPT0244
SOPT0245
SOPTO246
SOPT0247
SOPT0248
SOPT0249
SOPT0250
SOPT0251
SOPT0252
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$ ,LVLlvI
RE AL*8
COMMON



CATA WT/6/
END
SUBRCUTINE RDOPTN
READS IN DATA PERTINENT CIRECTLY TO SYSOPT
SYSOPT VERSION 12-16-12
IMPLICIT INTEGER(CG)
REAL*3 RCFACTSGTITL
CCMMON/OPTLIM/RDFACT,SGTITL( 10),ELAME(40,18),PVRATEYBASEYSTART,

$IAUX,IAUXP , NRCRS ,NCYCT, NPERS ,NPERSP, NPER IN, ITER, MXESX2,MXRCYC,
$MXNPER,MXRCRSMXNODSMXARCSSICTNPIN,NPCT,RD,WTPARCAL ,PARCON,
$FAPCCPPCONVGNPM, IOSTRG,JFRWRD,JBKWRD,NMESHMESH(15),MXITER
$,GESFRSECUPLM(18),CORDTLCPRCOR(6),REJLVLPCCELATH$CONJFRPBK

INTEGER SIOTRD,WTPARCAL,PARCONPARCOP
LOGICAL NPMOPRCOR
LOGICAL MIDCYC
INTEGER*2 CYCNUMCYCRNG,CYCXSCYCRMX
COMMON/RCRDAT/DYDWN(3,15),DYUP(3,15),GWHXS(3,'15),CYCXS(15),
$CYCRMX(15),CYCNUM(I8,15),CYCRNG(2,270),ICNO(15),GWHOLD(15),MWO(15
$,TSY(18,15),TEY(18,15),[NSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
$,DYHOLD( 15) ,TOY(18,15)

REAC (RD,901) NPM, IDSTRGNRCRS
iRITE(WT,911) NPM,IDSTRG,NRCRS
READ (RD,907) SIUT,NPINNPOTPARCALPARCCNPARCOPCOROTL,CPRCOR
IRITE(WT,912) SIOT,NPINNPOT,PARCAL,PARCCN,PARCOPCORDTLOPRCOR
READ (RD,9)3) PVRATEyPASEYSTARTPCCNVG

$APERSGESFRSMXITER, IAUX,JFRWROJBKWRD
CALL PVINIT(PVRATE)
WRITE(WT,9J13) PVRATEvYBASE ,YSTART,PCONVG

$NPERSGESFRSMXITER, IAUXJFRWRO,JBKWRO
JFRPBK=JFRWRD+JBKWRD
IF(CESFRS-2) 20,5,12

5 WRITE(WT,916) (I,I=2,MXRCYC)
CO 10 NR=1,NRCRS
REAC(RD,906) (ELAME(NPI),I=1,MXRCYC)

10 aRITE(WTS17) NR,(ELAME(NR,I),I=1,MXRCYC
CO TO 20

,TH$CCN, PCCELA, REJLVL,

)

,TH$CCN, PCCELA, REJLVL,

)

C
C

SOPT0253
SOPT0254
SOPT0255
SOPT0256
SOPT0257
SOPT0258
SOPT0259
SOPT0260
SOPT0261
SOPT0262
SOPT0263
SOPT0264
SOPT0265
SOPT0266
SOPT0267
SOPT0268
SOPT:)269
SOPTO270
SOPT0271
SOPT0272
SOPT0273
SOPT0274
SOPT0275
SOPT0276
SOPT0277
SOPT0278
SOPT0279
SOPT0280
SOPT0281
SOPT0282
SOPT0283
SOPT0284
SOPT0285
SOPT0286
SOPT0287
SOPT0288
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12 WRITE(WT,918) (I,I=2,MXRCYC)
E0 15 NR=1,NRCRS
READ(RD,906) (ELAME(NI,I),I1,MXRCYC)

15 tiRITE(WT,919) NR,(ELAME(NRI),I=1,MXRCYC)
20 REAC (RC,902) NMESH,(MESH(N),N=1,NMESH)

WRITE(WT,914) NMESH,(MESH(N),N=1,NMESH)
REAC (RD,905)(IONO(NR),INSTAT(NR),CYCXS(NR),GWHOLD(NR),DYHOLD(NR),
$(DYDWN(CNR),DYUP(C,NR),G wHXS(CNR),C=1,3),NR=1,NRCRS)
WRITE(WT,915)(NR,IDNO(NR),INSTAT(NR),CYCXS(NR),GWHCLD(NR),DYHCLD
$(NR),(DYDWN(CNR),DYUP(CNR),GWHXS(C,NR),C=1,3),NR=1,NRCRS)

IAUXM=IALX-1
NPERSP=NPERS+1
IF(NRCRS.GT.MXRCRS.OR.NPERS.GT.MXNPER.OR.IAUX.GT.(MXESX2/2-1).OR.

$IAUX.LT.3.OR.JFRWRD.GT.6.OR.JFRWRD.LT.2.CR.JBKhRD.GT.5.OR.
$JBKWRD.LT.1.CR.N
RE TURN
FORMAT (L3,17,15)
FCRt"AT(1615)
FORMAT(6F7. 0,F8.
FORMAT(( 14,213,1

MESI.CT.15) CALL OPERR('RDOPTN',6)

),61 5)
5, F7.4, 3(2F6.4,16)))

906 FORMAT(20F4.0)
907 FORMAT(715,6L1)
911 FORMAT('1',10X,'SYSOPT INPUT READ BY ROOPTN :'/

$'O NPM IDSTRG NRCRS'/9X,L1,7,16)

912 FORMAT(O SIOT NPIN NPOT PAR
$PCCP CCRDTL CPRCOR'/7110,6X,6L1)

913 FORMAT('O PVRATE YBASE YSTART

$
$ GESFR
$F10.2,F8

914 FORMAT('
915 FORMAT('

$CYUPl
$HXS3'/(I

916 FOPMAT(0
$' NR R

CAL PARCON

PCCNVG',
I TH$CON PCOELA REJLVL

S MXITER IAUX JFRWRD JBKWRD'/F13
.3,F7.0,PE10.1,6I 10)
ONMESH',9X,'MESH(I),I=1,NMESH'/I5,5X,2415)
0 NR IDNO INSTAT CYCXS GWiHCLD DYHOLD
GWHXSl' ,6X,'CYDWN2 DYUP2 GWHXS2',6X,'DYDWN3
5,2I6,I8,I9,FS.4,3(F13.4,F8.4,1T)))
0 INITIAL GUESS OF REACTOR-CYCLE MARGINAL C
C: 1' ,(1717)/ (4X, 1817))

PA

NPERS
.6 ,2F1 .4,

DY CWN1
DYUP3

SOPT0289
SOPT0290
SOPTO291
SOPT0292
SOPT0293
SOPT0294
SOPT0295
SOPT0296
SOPT0297
SOPT0298
SOPT0299
SOPTO300
SOPTO301
SOPT0302
SOPTO303
SOPTO304
SOPT0305
SOPT0306
SOPT0307
SOPT0308
SOPT0309
SOPTO310
SOPT0311
SOPTO312
SOPTO313
SOPT0314
SOPTO315
SOPT0316
SOPT0317
SOPT0318
SOPT0319
SOPTO32O
SOPT0321
SOPT0322
SOPT0323
SOPT0324
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917 FOPMAT(14,3X,-3P18F7
918 FORMAT(O INITIAL

91

C
C

.3/(5X,-3P18F7.3))
GUESS OF REACTOR-CYCLE ENERGIES, EC''S :'/

$' NR RC: i',(1717)/(4),1817))
9 FORMAT(I4,3X,18F7.0/(5X,18F7.0))

END
SUBPCUTINE RDSTRG
READS STRATEGY INFC. CUTPUT BY SYSINT
SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(CG)
REAL*8 RCFACT,SGTITL
CCMMCN/OPTLIM/RDFACTSGTITL( 10),ELAME(40,18),PVRATE,YBASEYSTART,

$IAUXIAUXM, NRCRS,NCYCT,NFERS,NPERSPNPERIN,ITER,MXESX2,MXRCYC,
IPXNPER ,M XRCRS, MXNODS , MXARC S, SI OT, NPIN, NPCT ,RD, WT , PARCAL, PARCCN,
$PARCCPPCCNVG,NPM, ICSTRC,JFRWRDJBKWRDNMESHMESH(15),MXITER
$,GESFRS,ECUPLM(18),COPDTLCPRCOR(6),REJLVL,PCDELA,TH$CON,JFRPBK

INTEGER SIOTRDWTPARCALPARCONPARCOP
LCGICAL NPMCPRCOR
LOGICAL MIDCYC
INTECER*2 CYCNUMCYCRNGCYCXSCYCRMX
COMMON/RCRDAT/DYDWN(3,15),DYJP(3,15),GWHXS(3,15), CYCXS(15),

$CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),ICNO(15),GWHOLD(15),MWD(15)
$,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
$,DYHOLD(15),TOY(18,15)
CCMMON/PDPERM/S(100,15),ALPHA(100,15),BETAP(1CC,15),FINVAR(100)
INTEGER*2 S
CIMENSICN IDNUM(15),NAME(15),INDEX(15)
LCGICAL*1 AL(26)/'A','B','C' ,'D','E','F','G','H', '','J','K' ,'L',

$ 'M' , 'N , fO , 'P ,' , 'RP , 'S , T','U', 'V ,'W ,'X','Y','Z'/,NPM I
REAL*8 DASHES/' - - - - - - - - 'I/

5 REAC(SIOT,901,END=9) SGTITL
WRITE(WT,902) SGTITL
IF(SGTITL(1).NE.CASHES) GO TO 5
REAC(SIOT,903,END=9) APM1,IDSTGISGTITL
WRITE(WT,904) NPMI, IDSTG1,SGTITL
IF((NPM.AND..NCT.NPM1).CR.(.NOT.NPM.AND.NPM1).OR.

$(ICSTRG.NE.IDSTG1)) CALL OPERR(IRDSTRG',3)

SOPT0325
SOPT9326
SOPT0327
SOPT0328
SOPT0329
SOPT0330
SOPTO331
SOPT0332
SOPT0333
SOPT0334
S0PT0335
SOPT0336
SOPTO337
SOPT0338
SOPT0339
SOPTO340
SOPTQ)341
SOPT0342
SOPT0343
SOPT0344
SOPT0345
SOPT0346
SOPT0347
SOPT0348
SOPT0349
SOPT0350
SOPT0351
SOPT0352
SOPTO353
SOPT0354
SOPT0355
SOPT0356
SOPT0357
SOPT0358
SOPT0359
SOPT0360
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REAC(SIOT,905,END=9) NRCRS,(IDNUM(I) ,NAME(I),tMWMIN(1),
$WM AX ( I), IN DEX( 1), = 1,NRCR S)

IPI T E (WT ,906 ) NRCRS, ( IA L( 1),p IONUM( I ), NA ME( I ), MWM IN( I ),v
$MWMAX( I) ,INDEX( I) ,[=1,NRCPS)
PEAC(SIOT,907,END=9) NPERIN
RI TE( WT ,970) (Iv,=1,9)

CALL ERASE(CYCNUMMXRCYC*NRCRS/2,CYCRNG,PXRCYC*NRCRS)
CTCT=0
tXRCMX=0
CO 30 NR=1,NRCRS
IF(ICNO(NR).NE.IDNUM(NR) ) CALL OPERR('RDSTRG',3)

MW WD(NR)=MWMAX(NR)-MWMIN(NR)
REAC (S IOT ,908, END=9 ) (S ( I, NR), I=1, NP ER IN)
IRITE(WT,9J9) NR,IDNC(NR) ,(S(I ,NR) ,I=1,NPERIN)

M ICCYC (NR)= .FALS E.
IF(INSTAT(NR)+S(1,NR).EQ.4) MIDCYC(NR)=.TRUE.

J= 1

INIFLG=3
CTOT=CTOT+1
CYCNLM(1 ,NR)=CTOT
CYCPNG( I ,CTOT) =1
CO 20 I=1,NPERS
IF(K.EQ.2.OR.S(INR).NE.2)
INIFLG=INIFLG-1
IF(INIFLG.EC.2) GO TO 10

SOPT0361
SOPT0362
SOP T0363
SOPT0364
SOPT0365
SOPT0366
SOPT0367
SOPT0368
SOPT0369
SOPTO370
SOPT0371
SOPT0372
SOPTO373
SOPT0374
SOPT0375
SOPT0376
SOPT0377
SOPTO378
SOPT 0379
SOPT0380
SOPT0381
SOPTO382
SOPT0383
SOPT0384
SOPT0385
SOPT0386
SOPT0387
SOPT0388
SOPT0389
SOPT0390
SOPTO391
SOPT0392
SOPT0393
SOPT0394
SOPT0395
SOPT0396
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GO TO 10

J=J+1
CTOT=CTOT+1
CYCNUM(J,NR)=CTOT
CYCRNG( 1,CTOT)=

10 CYCFNG(2,CTOT)1=I
20 K=S(I,NR)

PXRCMX=MAXO (MXRCMX,J)
30 CYCPMX(NR)=J

NCYCT=CTOT
WRITE(WT,910) (1,I=1,NRCRS)

m
L,
HJ



CO 40 IC=1,AXRCMX
40 WRITE(WT,911) IC,(CYCNUM(IC, IP),IR=1,NRCRS)

WRITEWT,912) (CYCRMI(IP) ,IR=1,NRCRS)
WRITE(WT,913) (ICCYCRNG(1,IC),CYCRNG(2,IC),IC=1,NCYCT)
GC TC 50

9 CALL OPERR( 'RDSTRG',12)
50 FETURN

931 FORM AT(ICA8)
902 FCPMAT(' 1RDSTRG READ : ',1H',10A8,1H')
903 FOPMAT(L3,17,1OA7)
904 FORMAT('0',10X,'NPfP+IDSTRG =',L2,17,5X,

$'STRATFGY TITLE : ',1H',10A7,lHe)
905 FO FMAT (15/ (IS151XIA4,12ISIl110) )
906 FORMAT('OCATA FOR T1-E 1,13,' REACTORS :'/' NR AL IDNO NAME MhM

$IN MWMAX INDEX IN SYSINT'/(I5,4X,A1,I5,A5,I5,I6,I1C))
907 FOPMAT(21X,14)
908 FOPMAT(8011)
909 FORMAT(I
910 FORMAT('

$' INDEX
911 FORMAT('
912 FORMAT('
913 FORMAT('

$(lx,10(*
970 FOPMAT(/

5,16,4X,10IlJI1/(15X,10JII))
0 CYCNUM(RC,NR) :'/'OR.CYCLE',T19,'NR
',3014/(9X,30 14)
C', I4,3X, 3J14/( 1OX ,3014)
OCYCRMX ',3014/(10X,30I4))
OCYCRNG AS (CYCNUMFRSPRDLSTPRD) :'/

(, I3, M214,'E )SR )) Y
/,T20,' MAINTENANCE STRATEGY BY PERIOD A

REACTOR INCEX'/

ND INDEX',
$' (J=NJN-EXISTENT;1=DOWN;2=0N-LINE)'//T115,'1',T62,'PERIOD/
$15X,9Il0,9X,'0'/' NR IDNO',4X,10('1234567890')/)

END
SUBROUTINE RDPERS
PEADS PERIOD INFO OUTPUT BY SYSINT
SYSOPT VERSION 12-16-72
IDUM'S USED TO MAKE NAMELIST OUTPUT MORE REACABLE
IMPLICIT INTEGER(CG)
REAL*8 RDFACT,SGTITL
CCMMCN/OPTLIM/RDFACT,SGTITL(10),ELAME(40,18),PVRATE,YBASEYSTART,

$IAUX,IAUXMNRCRSNCYCTIPERSNPERSP,NPERIN,ITER,MXESX2,MXRCYC,

SOPT0397
SOPT0398
SOPT0399
SOPTO400
SOPT3401
SOPTO402
SOPT0403
SOPT404
SOPTO405
SOPTD406
SOPT0407
SOPT0408
SOPTO409
SOPTO410
SOPT0411
SOPT0412
SOPT0413
SOPT0414
SOPT0415
SOPT0416
SOPT0417
SOPT0418
SOPT3419
SOPT0420
SOPTO421
SOPT0422
SOPT0423
SOPT0424
S0PT0425
SOPT0426
SOPT0427
SOPT0428
SOPT0429
SOPTO430
SOPT0431
SOPT0432
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$PXNPERMXRCRSMXNJDS,MXARCS,SIOTNPIN,NPCTRDWTPARCALPARCON,
$PARCOPPCONVGNPMIDSTRGJFRWRDJBKWRD,NMESHtMESH(15),MXITER

$,GESFRSECUPLM(18),CORDTL,CPRCOR(6),REJLVLPCDELA, TH$CONJFRPBK
INTEGER SIOTRCWTPAPCALPARCON,PARCOP
LOGICAL NPMOPRCOR
CC1PMCN/PDTEMP/NPMFAL(100),NTBSLD(100),OPHRS(100,15),LVLMN(100),
$LVLMX(1)0),PDELIM(20,1lGO)PDTITL(20,100),DMW(100),DTH(100),ECS(OO
$),R4 (13,100),R8(12,100),YMID(100),YEND(ICO)PVFACT(100),AVL(100,
$15),EXPGWH(100,15),CAVG(10),BASVAR(100),FINTST(100),MAXVAR(100),
$MAXTST(100),MIN( 100, 15),MAX(100,15),BASCFA(100,15)

REAL MAXVARMAXTST,CAVG
PEAL*8 PVFACTR8
COMMON/PROB/DM,DT,GWHPER,0)AYS,I EMIN, IEMAX,PEMIN,PEPAXPROB(500)
$,LVL VI N,LVL IVAX
REAL*8 D,DT,GWHPERCAYSPEMIN,PEMAXPROe
tAMELIST /FNLTOT/MWINSTMWONLNMWPEAKMWMRGNMWSPINPLOFL,
$EXPDEM,EXPGENXNKGENIDUP' ,XNNGENEXPEPR,IDUtM2 ,UNSRVD,PROD$,
$IDUM3 , $NKPRD,$NNPRD,1DUM4 ,SUSD$,$NKSLSIDUM5 ,$NNSUS,$SBTOT,

$IDUM6 ,$NKTOT,$NNTOT,IOUM7 ,EMRP$,TOTAL$

REAL*8 PROD$,$NKPRD, $NNPRDSUSD$,$NKSUS,$NNSL5,$SBTOT,$NKTCT,
$$NNTOT,EVRP$,TOTAL$

DATA $DASH$,$DOTS$/'----',
REAL*8 CCFMIN(500),CDFMAX(500)
CIMENSION X(20),Y(20)

1) REAC(SIOT,901,END=9) X
IF(X(1).EQ.$CASH$) GO TO 100
IF(X(1).NE.$DOTS$) GO TO 10

PEAC(SIOT,902,END=9) VNPER,DMDTDC

IF(NPER.GT.NPERS) CC TC 10
IF(.NOT.NPM) GO TO 20
FEAC(SIOT,903,END=9) LVLMN(NPER),N1,L1,(CDFMIN(N1+I),I=1,L1)
READ(SIOT,904,END=9) NPMFAL(NPER),NTBSLD(NPER),(OPHRS(NPERI),
$I=1,NRCRS)

LPTS=L1
AUMONE=N1
FEAC(SIOT,903,END=9) LVLMX(NPER),N1,L1,(CDFMAX(N1+I),I=1,L1)

SOPT0433
SOPT0434
SOPT0435
SOPT0436
SOPTO437
SOPT0438
SOPT0439
SOPT0440
SOPT0441
SOPT0442
SOPTJ443
SOPT0444
SOPT0445
SOPT3446
SOPT0447
SOPT0448
SOPT0449
SOPTO450
SOPT0451
SOPT0452
SOPT0453
SOPT0454
SOPT0455
SOPT0456
SOPTO457
SOPT0458
SOPT0459
SOPTO460
SOPT)461
SOPT0462
SOPT0463
SOPT0464
SOPT0465
SOPT0466
SOPT0467
SOPT0468
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IF(N1.NE.NUMCNE.OR.LPTS.LT.L1.OR.LVLMN(NPER).GE.LVLMX(NPER))
$ CALL OPEPR('RCPERS',1 )

2) READ(SIOT,FNLTOT,END=9)
REAC(SIOT,905,END=9) (AVL(NPER,I),EXPGWH(NPER,1),I=1,NRCRS)
00 30 1=1,20
PDELIM(I,NPER)=X(I)

30 FDTITL(INPEP)=Y(I)
DMW(NPER)=DM
CTF(NPER)=DT
ECS(NPER )=DC
CW HP ER =D MD T*1.D-3
IEv IN=NUMONE
IE MAX= NUMCNE+L 1
PEM IN= NUMON E*DM
FEPIAX= IEl IvAX*DM+1 .D-3
LVLMIN=L VLMN(NPER)
LVLMAX=L VLMX(NPER)
CO 40 I=1,NUMCNE
CDEMIN(I )=1.000

40 CDFMAX(I )=1.000
R4( 1,NPER)=NPER
R4( 2,NPER)=MWINST
94( 3, NP ER) =MWCNLN
R4( 4,NPER)=MWPEAK
R4( 5,NPER)=MWMRGN
R4( 6,NPER)=MWSPIN
R4( 7,NPER)=PLOFL
P4( 8, NP ER) =FX POEM
R4( SNPER)=EXPGEN
R4( 10, NP ER)=XNKGEN
R4(11, NPER)=XNNGEN
R4( 12, NP ER)=EXPEMR
R4(13,NPEP)=UNSRVD
R8( 1,NPER)=NPER
R8( 2,NPER)=PRCD$
R8( 3,NPER)=$NKPRD

SOPT0469
SOPT0470
SOPTO471
SOPT0472
SOPT0473
SOPT0474
SOPT0475
SOPT0476
SOPT0477
SOPT0478
SOPTO479
SOPT0480
SOPT 0481
SOPT0482
SOPT0483
SOPT0484
SOPT0485
SOPT0486
SOPT0487
SOPT0488
SOPT0489
SOPT0490
SOPT 0491
SOPT0492
SOPT 0493
SOP T0494
SOPT0495
SOPT0496
SOPT0497
SOPT0498
SOPT3499
SOPT0500
SOPT0501
SOPTJ502
SOPT0503
SOPT0504
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R8( 4,NPER)=$NNPRD
R8( 5,NPEP)=SUSC$
P8( 6,NPER)=$NKSUS
R8( 7,NPER)=$NNSUS
R8( 8, NPER) =$SBTOT
R8( ;,NPER)=$NKTOT
P8(10, NP ER)= $NNTOT
R3(11,NPER) =EMRP$
R8(12,NPER)=TOTAL$
CALL PDCALC(NPERCCFMIN,CCFMAX)
GO TO 10
REAC (S lOT,906, END=50)
CALL OPER ('ROPERS',12)
RETURN
FORMAT (2OA4)
FORMAT(20A4/Il10,3F1).4)
FORMAT (3X,I17,215, 6FIC.9/(8F10.9))
FORMAT (215, (7F10.4))
FORMAT(/(8X,F8.4,18X,F16.5))
FOPMAT(//)
END
SUBROUTINE PDCALC(NPCDFMINCDFMAX)
FERFCRMS VARIOUS PRE-CALCS. FOR EACH PERIOD
SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(CG)
REAL*8 RCFACTSGTITL
CCMMON/OPTLIM/RDFACTSGTITL(10),ELAME(40,18) ,PVRATE,YBASEYSTART,

$IAUXIAUXMNRCRSNCYCTNPERSNPERSP,NPERIN, ITERMXESX2,MXRCYC,
$MXNPER,MXRCRS,MXNODSMXARCS,SIOTNPIN,NPCTRC, WTPARCAL, PARCON,

$PARCCP,PCONVG, NPM, ISTRG,J FRWRD, JBKWRD,NMESH ,MESH( 15) ,MXI TER

$,GESFRS,ECUPLM(18),CORTL, CPRCOR(6),REJLVLPCDELATH$CON,JFRPBK
INTEGER SIOT,RD,WT, PARCAL,PARCONPARCOP
LOGICAL AFM,OPRCOR
LOGICAL MIOCYC
INTEGER*2 CYCNUM,CYCRAG,CYCXSCYCRMX
CCMMON/RCRDAT/DYDWN(3 ,15 ), DYUP (3,15) ,GWHXS(3, 15) , CYCXS ( 15),

SOPT0505
SOPT0506
SOPT0507
SOPT0508
SOPT0509
SOPT0510
SOPT0511
SOPT0512
SOPT0513
SOPT0514
SOPT0515
SOPT0516
SOPT0517
SOPT0518
SOPT0519
SOP TOS20
SOPT0521
SOPT3522
SOPT0523
SOPT0524
SOPT0525
SOPT0526
SOPT0527
SOPT0528
SOPT0529
SOP T 0530
SOPT0531
SOPT0532
SOPT0533
SOPT0534
SOPT0535
SOPT0536
SOPT0537
SOPT0538
SOPT0539
SOPTJ540
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$CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),ICNO(15) ,GWHOLD(15),MWD(15)
$,TSY(18,15),TEY(18, 15),INSTAT(15),MWMIN(15),MWMAX(15),MICCYC(15)
$,OYHOLD( 15) ,TOY( 18,15)
CCMMON/PDPERM/S (100,15), ALPHA( 100, 15), BETAP( 100, 15), FINVAR(.100)
INTEGER*2 S

COMMCN/PCTEMP/NPMFAL (100 ),NTBSLO(100) ,OPHRS( 1C, 15),
$LVLMX( 100), PDELIM(20,10)0),PTITL(20, 100) ,DMW( 103 ) ,DT
$),R4(13,100),R8(12,lC),YMID(100),YEND(100),PVFACT(1
$15),EXPGWH(100,15),CAVG(100),BASVAR(100),FINTST(100)
$MAXTST(100) ,MIN(1JC,15),XPAX(1J),15), BASCFA(100,15)
REAL MAXVARMAXTSTCAVG
REAL*8 PVFACT,R8
COMMON/PROB /DM, DT,GWHPER ,DAY S, I EMIN, I EMAX, PE IA, PEPA
$,LVLIN,LVLMAX
REAL*8 DMDT,GWHPERCAYS,PEMIN,PEMAX ,PRCE
REAL*8 CCFLPR(1),CCFMIN(1),CDFMAX(1)
FE AL*8 CAVECMIN, CMAXGWHBAS ,CI, GWH, GWHNRG,F, TEMP
EQUIVALENCE (CDFLPR ( 1) , PRCB (1) )
CWH (MW LO,MWHI)=GWHNRG(DFLOAT(MWLO),DFLOAT(MWHI))

C 1I N & MAX REACTOR CCNTRIBUTIONS TO NUCLEAR PCTENTIAL
ARCN=0
PWCMIN=100000
PWDTGT=0
IMX=0
IMN=0
SPMX=0.0
SPMN=0 .0
00 30 NR=1,NRCRS
IF(S(NP,NR).NE.2) GO TO 20
NRCt=NRON+1
MWDTOT=MWDTOT+MWD( NR)
YX=MWMAX(NR)
YN=PIWMIN(NR)
P=AVL(NP,NR)*-0.01
IMX= IMX+fMX
IMN=IMN+A t

LVLMN( 100) ,
H(.100) ,ECS( 100
00) ,AVL(100,
,MAXVAR( 100),

XPRCB(500)

SOPT0541
SOPT0542
SOPT0543
SOPT0544
SOPT0545
SOPT 0546
SOPT0547
SOPT0548
SOPT0549
SOPT 0550
SOPT0551
SOPT0552
SOPT0553
SOPT0554
SOPT0555
SOPT0556
SOPT0557
SOPT 0558
SOPT0559
SOPT0560
SOPT0561
SOPT0562
SOPT0563
SOPT0564
SOPT0565
SOPT0566
SOPT0567
SOPT0568
SOPT0569
SOPT0570
SOPT0571
SOPT0572
SOPT' )573
SOPT0574
SOPT 05 75
SOPT0576

PAGE 16

m0'UN



SPNX=SPMX+P*MX
SPMN=SPMN+P*MN
1WCMIN=MINO (MW(CMIN,MWD(NR)
GWHBAS=OPHRS(NPNR)*NA*) .J001
BASCFA(NP,NR)=100.*PHRS(NPNR)/(DT*P)
ALFHA(NP,NR)=1000./(WC(NR)P*DT)
BETAP(NP ,NR )=GWHBAS*ALPHA(NP ,NR)
CALL SUBPLT(MN,P,CDFMIN)
vAX(NP,NR)=GWHBAS+F*GWH(LVLMIN,LVLMIN+MWC(NR))+0.5
CALL SUBPLT(MX,P,CDFMAX)
tIN(NP,NR)=GWHBAS+P*GWH(LVLMAX-MW(NR),LVLMAX)+0.5
GO TO 30

20 MIN(NP,NR)=O
fvAX(NP,NR)=0
BASCFA(NP,NR)=-100.

30 CCNTINUE
IF(MWDTOT.NE.LVLMAX-L\LVIN) CALL OPERR(PCCALC',2)

C CALCULATE CDFLPR AND CAVG
IF(PWDTCT.LE.0) GO TC 36
P$MX=SPMX/IMX
F$MN=SPMN/ IMN
NXRAR=FLCAT( I PX)/NRCN+O.5
MNBA R=FLOAT (IMN) /NRON+0.5
CALL SUBPLT(MNEAR,P$MN,CEFMIN)
DO 32 1=1,IEMAX

32 CDFMIN(I)=PROB(I)
CALL SUBPLT(MXPARP$PX,CCFMAX)
DO 34 I=1,IEMAX

34 CCFMAX (I )=PROB ()
36 ILO=(LVLMIN-.01)/Ct'

IF(ILO.LE.IEMIN) ILO=IEMIN+.
IH I= (LVLPMAX+.01 )/ DP+1
TEMP=1./MWOTOT
Co 38 I=ILD,IHI
F=( I*DM-LVLMIN)*TENP

38 CDFLPR(I )=CDFMIN( I )+F*(CDFMAX( I )-CDFMIN( I))
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CAVE=G WH(LVLMINLVLMAX)/(MWDTOT*DT*O.001)
CAVG(NP)=CAVE
CMAX=PROBX(DFLOAT(LVLMIN))
CMIN=PROBX(DFLOAT(LVLMAX))
IF(NRN.LE.O.OR.CMIN.CE.1.CO) GO TO 60

C EASVAR
VAR=0.0
LVL=LVLAMIN
K8LKS=(MiotDTOT-1)/MWDPIN+I1
TEMP=1000./ (MWDMIN*CT)
CO 40 K=1,KBLKS
CI=CWH(LVL,LVL+MWDMIN)*TEMP
LVL=LVL+MWDMIN

4) lVAR=AR+(CI-CAVE)**2
BASVAR (NP )=VAR/KBLKS

C ?AXVAR
F= (CAVE-CMI N) /(CMAX-CMIN)
NAXVAR(NP)=F*(CMAX-CAVE)**2+(1.-F)*
?AXTST(NP)=MAXVAR(NP)/BASVAR(NP)

C FINVAR
CJ 50 I=IEM[N,IEMAX

5) CDFLPR(I)=CDFLPR(I)**2
F INVAR (NP)=GWH(LVL \ IN, LVLMAX )/(MWDT
FINTST(NP)=FINVAR(NP)/BASVAR(NP)
CO TO 70

60 PAXVAR(NP)=0.0
I'AXTST(NP)=0.0
FINVAR(NP)=0.0
FINTST (NP) =0.0
BASVAR(NP)=i.E15

70 FETUFN
END
SUBROUTINE SUBPLT(MW,P,CDF)

C SUBTRACTS PLANT OF MW MECAWATTS AND
C FROM PROB, THE EQUI VALENT LOAD COF
C SYSOPT VERSION 03-06-72

(CAVE-CMIN)**2

OT*DT*0.001)-CA VE**2

P FRACTIONAL AVAILABILITY
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C NOTE: MW MUST BE LESS THAN PEMIN
IMFLICIT REAL*8 (A-HC-$)
COMMON/PROB /DM,DT,GWHPER ,DAYS,IEMIN, IEMAXPEMIN, PEMAX, PROB(500)

$ ,LVLMIiN,LVLMAX
REAL*8 ZERO/0.ODO/ICNE/1.000/,TWO/2.000/,HAL F/).500/,TEN/1.D1/,

$TENTH/.D-1/,HUNDRD/.D2/,CENTI/1.D-2/,THCUS/1.D3/,MILLI/I.D-3/
CIMENSION CDF(1)
CATA EPS,TRACE/I.L-3,1.D-10/
C0 10 J=1,IEMAX

10 PRC3(J)=CCF(J)
IF(MW.LE.0) RETURN
IF(MW.GE.PEMIN) CALL CPERP('SUBPLT',2)
ILOW=IEMIN+1
FB=Pw/DM
INT=FB
FB=FB-INT
CVP=ONE/P
C=CNE-P
QFB=Q*FB
CAt4MA=CNE/ (CNE-QFB)
IF(INT.GT.0) GC TO 60

C LOCP TO UNCONVOLVE PLANT IF MW.LT.DM
CO 20 J=ILCW,IEMAX

20 PROb(J)=GAMMA*(PROB(J)-QFB*'PROB(J-1))
C FIND NEW PEMAX AND IEMAX

3J J=IEMAX
40 IF(PROB(J).GT.TRACE) GO TO 50

FRCB (J) =ZERO
J=J- I
CO TC 40

50 IF(IEMAX.EQ.J) RETURN
IEMAX=J+ I
FEMAX= IE?AX*DM+EPS
RETURN

C LOOP TO UNCONVOLVE PLANT
60 D0 70 J=ILOW,IEMAX

IF MW.GE.DM
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JINT=J-I NT
70 PROe (J)=CVP*(PROB(J)-C*(PROB (J INT)+FB*(PROB( JINT-1)-PROB (J INT))

GO TO 30
END
FUNCTION GWHNRG(XLOWERXUPPER)

C CALCULATES GWH OF ENERGY UNDER PORTION OF PRCB, THE CDF OF
C EQUIVALENT LOAD, BY INTEGRATING FROM XLOWER TO XUPPER ASSUMING
C LINEAR INTERPOLATICN BETWFEN ARRAY POINTS
C SYSOPT VERSION 03-C6-12

IMPLICIT REAL*8 (A-HO-$)
CO)MMON/PROB /DM ,DT ,G WHPER ,DAY S, I1E MI N, IE MAX, PE lvIN, P EMAX , PROB(500 )
$,LVLMIN, LVLMAX
REAL*8 ZERO/0. JD3/,CNE/1.0 D )/, TWO/2.000/ ,HALF/0.500/,TEN/1.01/,
$TENTH/1.D-1/,HUNDRD/1.02/,CENTI/1.D-2/,THCUS/1.D3/,MILLI/1.D-3/
XLC=XLOWER
XUP= XUPP ER
GW HNRG=Z ERO
SUM=ZERO
IF(XLO.GE.XUP) RETURN
IBELC=XLO/DM
ILAST= XUP/DM
IF(IBELO.LE.0.OR.ILAST.GE.IEMAX) GO TO 5C

C STANDARD CASE WITH BCTH POINTS WITHIN NON-ZERC ARRAY POINTS
5 IFRST=IBELO+1.

IABOV=ILAST+1
IFRSTP=IFRST+1
ILASTM=ILAST-1
ICASE= IABOV-IBELO
RLC=IF RS T-XLO/DM
RUP=XUP/ CM-ILAST
FLC=PROB(IFRST)+(PROE(IBELO)-PROB(IFRST))*RLO
PUP=PROB(IABOV)+(PRB(ILAST)-PROB(IABOV))*(ONE-RUP)
CO TO (10,20,30,40),ICASE

40 DO 35 I=IFRSTPILASTM
35 SUM=SUM+PROB(I)
30 SUI=SUM+HALFv (PROP(IFRST )+PROB( ILAST))

SOPT0685
SOPT0686
SOPT0687
SOPT0688
SOPT0689
SOPT0690
SOPT0691
SOP T0692
SOPT0693
SOPT0694
SOPT 0695
SOPT0696
SOP T0697
SOPT0698
SOPT0699
SOPT0700
SOPT0701
SOPT0702
SOPT0703
SOPT0704
SOPT0705
SOPT0706
SOPT3707
SOPT0708
SOPT0709
SOPT0710
SOPT0711
SOPT0712
SOP T0713
SOPT0714
SOPT0715
SOPT0716
SOPT0717
SOPT0718
SOPT0719
SOPT0720

PAGE 20

o01

0



20 SUM= SUM+ ALF*( RLC* ( PLO+PRO I( IFR ST) )+RUP* (PUP +PRO B (ILAST) ))

15 GWHNRG=SUM*GWHPER
RETURN

10 SUP=SUM+(XUP-XLO)*(PLC+PUP)*HALF/DM
GO TO 15

C SPECIAL CASES INVOLVING ONE OR BOTH END POINTS
50 IF(XLP.LE.LERP.OR.XLC.GE.PEMAX) RETURN

IF(XLO.LT.ZERO) XLC=ZERC
IF(XUP.GT.PEMAX) XUP=PEMAX
IBELC=XL0/DM
IL AST= XUP/DM
JCASE=1
IF( ILAST.GT.0O) JCASE=JCASE+1
IF( ILAST .EQ. IEMAX ) JCASE=JCASE+1.
IF(IBELO.GT.0) JCASE=JCASE+1
IF(IBEL0.EQ.IEMAX) JCASE=JCASE+1
GO TO (101,102,102,104,105),JCASE

IJ1 CWHNRG=( XUP-XLO)*GiHPER/M
1ETURN

102 SUM=ONE-XLO/DM
XLO=DM
IBELC=1
IF(JCASE.EQ.2) GO TO 5

104 XO=IEMAX*DM
FUP=PROB(IEMAX)*()NE-(XUP-XO)/(PEMAX-XO))
SUM=SUM+(XUP-XO) *HALF*( FUP+PROB(IEMAX) )/EM
XUP=XO
ILAST=IEIMAX-1
GO TO 5

105 X0=IEMAX*DM
PUP=PROB (IEMAX)*(0NE-( XUP-XJ) /(PEMAX-X 0)
FLO=PROB (I EMAX )*(INE-(XLC-XO )/(PEMAX-XO)
GWHNRG=( XUJP-XLC)*,( FLC+PUP)*HALF*GWHPEP/DM
RETURN
END
FUNCTION PROBX(X)
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EVALUATES PROB AT A PART ICULAR VALUE OF X MW
SYSOPT VERSION 03-06-12
IMPLICIT REAL*8 (A-H,O-$)
CCMMCN/PROB/DMDT,GWHPEP ,DAYS, EMIN, IEMAX, PEMIN, PEMAX, PROB(500)

$,LVLMINLVLMAX
CATA ZERO,0NE/.0DO, 1.0C0/
PRCBX=ONE
IF(X.LE.PEMIN) RETURN
PRCBX=ZERO
IF(X.GE.PEMAX) RETURN
FB=X/DM
ILC=FB
FB=FB-ILO
IF(ILO.GE.IEMAX) GO TC 10
PROBX=PROB(ILO)+FB*(PROB(ILO+1I)-PROB(ILO))
RE TURN

10 PRCBX=PRCB(IEMAX)*(PEPAX-X)/ (PEMAX-IEMAX*CM)
RETURN
ENC
SUBROUTINE ASMTYS
ASSEMBLES TSY'S AND TEY'S
SYSCPT VERSION 12-16-72
IMPLICIT INTEGER(CG)
REAL*8 RCFACTSGTITL
CCMMCN/OPTLIM/RDFACT,SGTITL(10),ELAME(40,18),PVRATE,YBASEYSTART,

$IAUXIAUXMNRCRSNCYCTNPERS ,NPERSPNPERIN,I TERMXESX2,MXRCYC,
$/XNPERMXRCRSMXNOCSMXARCS,SIOT,NPINNPCTRDWTPARCALPARCON,
$PARCOPPCONVGNPMIDSTRGJFRWRDJBKWRONtESHMESH(15),MXITER
$,GESFRS,ECUPLM(18),CORDTL,OPRCOR(6),REJLVLPCDELA,TH$CONJFRPBK
INTEGER SIOTRD,WT ,PAPCAL, PARCONPARCOP
LOGICAL NPMOPRCOR
LCGICAL MIDCYC
INTEGER*2 CYCNUMCYCRNG,CYCXSCYCRMX
COMMON/RCRDAT/CYOWN( 3, 15 ),DYUP( 3,15) ,GWH)S(3, 15) ,CYCXS(15),
$CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),IENO(15),GWHOLD(15),MWD(15)
$,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MwIAX(15),MIDCYC(15)
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$,DYHCLD(15) ,TOY(18,15)
CJMMON/PDPERM/S( 100, 15) ,ALPHA( 100,15) ,BETAP(100,15 ),FINVAR(100)

INTECER*2 S
CC MCN/PDTE MP/NPMFAL (100 ), NTBSLD(100 ),OPHRS ( 100, 15 ),LVLMN( 100),
$LVLMX(100), PDELIM(20,100),PDTITL(20,100),DMW(ICO),OTH(100),ECS(100
4),R4(13,100) ,R8(12, 100 ),YM ID (100 ),YEND(100), PVFACT(100) ,AVL( 100,

$15),EXPGWH(100Q,15),CAG(100) ,BASVAR(100),FINTST(100),MAXVAR(100),
$PAXTST(100) ,MIN (100, 15) , MAX( 100, 15), BASCFA(100,15)
REAL MAXVARMAXTST,CAVG
REAL*3 PVFACT,R8
LOGICAL WASUP,DWNUW
INTEGER RC
PVP(Y)=PVPER$(Y,YBASE)
TE MP=0.5/8760.
YEN0(1)=YSTART+DTH(1)/8760.
YMIC(1)=(YSTART+YENC(1))*0.5
PVFACT(1)=PVP(YMID(1))
C0 10 NP=2,NPERS
X=TEMP*DTH(NP)
YMID(NP)=YEND(NP-1)+X
YENE(NP)=YMIC(NP)+X

1) PVFACT(NP)=PVP(YMID(NP))
CO 50 NR=1,NRCRS
IC=1
TOY(IC,NR)=0.0
IF(MIDCYC(NR)) IC=0
CLI f=CYCRM-X (NR)
CO 30 RC=1,CLIM
CYC=CYCNUM (RC,Np)
A PF=CYCRNG( I ,CYC)
NPL=CYCRNG( 2,CYC)
IC=IC+l
TOY( IC,NR)=O.0
'ASUP=.FALSE.
D 20 NP=NPF,NPL
TOY(ICNR)=TOY(IC,NP)+OPHRS(NP,NR)/8760.
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CWNCW=S( NP, NR) .NE.2
IF(WAASUP.AND.DWNOW) GO TO 30
IF(WASUP.AND..NOT.DWNCW) GO TO 20
IF(.NJT.ASUP.AND.DWNCW) GO TO 20
MASUP=.TRUE.
ISY(ICNR)=YEND(NP-1)
IF(NP.EQ.1) TSY(ICNR)=YSTAR T

20 1EY(ICNR)=YENG(NP)
3) CONTINUE

TEY IC,NR)=TEY IC,NR)+DYHOLD(NR)
TOY( IC ,NR)=TOY( IC ,NR)+DIYHOLiD(NR)*AVL (NPEFS,NR)*0) .01
IF(MIOCYC(NR)) GO TO 35
TEY(1,NR)=TSY(2,NR)
ISY( 1,NR)=TSY(2,NR)-1.E-4

35 NCYCXS=CYCXS(NR)
IF(NCYCXS.LT.1) GO TC 50
CO 40 I=1,NCYCXS
IC=IC+l
TSY(IC,NR)=TEY(IC-1,NP)+0YDWN(I,NR)
TOY( IC ,NR)=DYUP( I, I NR )'AVL(NP ERS, NR )* 0. 01

40 TEY(ICNR)=TSY(ICNR)+CYUP(I,NR)
50 CONTINUE

FETURN
END
SUBPOUTINE WTPERS
)ARITES INFO. FGR THE VARIOUS PERIODS
SYSOPT VERSION 12-16-12
IMPLICIT INTEGER(CG)
REAL*8 REFACT,SGTITL
CCMMCN/OPTLIM/RDFACTSGTITL( 10),ELAME(40,18),PVRATE,YBASE,YSTART,

$IAUX,IAUXMINRCRSNCYCTrPERSNPERSPNPERIN,ITER,MXESX2,MXRCYC,
$MXNPERMXRCRS,MXNODSMXARCSSIOTNPINNPCT,RCWT,PARCALPARCON,
$PARCCPPCONVG,NPM, ICSTRC,JFRWRD,JBKWRD,NMESHMESH(15),MXITER
$,GESFRSECUPLM(18),CCROTL,CPRCOR(6),REJLVLPCOELATH$CONJFRPBK

INTEGER SIOT,RDWTPARCALPARCONPARCOP
LOGICAL NPMOPRCOR
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LOGICAL MIDCYC
INTEGER*2 CYCNUMCYCRNG,CYCXS,CYCRMX
COMMON/RCRDAT/OYDWN ( 3,15 ),DYUP( 3,15) ,GWHXS(3 , 15) ,CYCXS ( 15)

$CYCPMX(15),CYCNUM(18,15),CYCRNG(2,270),IDNO(15),GWHOLD(15),MWD(
$,TSY(18,15),TEY(18,15),UISTAT(15),MWMIN(15),MWMAX(15),M[CYC(15
$,DY-OLD(15),TOY(18,15)
CCNMON/PDPEPM/S(110, 15), ALPHA(.100,15 ),BETAP( 100, 15 ), FINV AR( 100)
INTEGER*2 S
CCPCN/PDTEMP/NPMFAL(100),NTBSLD(100),OPFRS( 100,15),LVLMN(100),
$LVLMX(1)3),PDELIM(20,100),PDTITL(2),1U0),cMW(100),CTH(100),ECS(
$),R4(13,100),R8(12,100),YMID
$15),EXPGWH(100,15),CAVG(10J)
$tAXTST( 100) ,MIN( 100, 15) ,MAX(

REAL MAXVAR,MAXTSTCAVC
COMMON/FINALS/S4,SA4,SP4,SL4
REAL*8 S4(13),SA4(13),SP4(13
REAL*8 S8(13),SA8(13),SL8(13
LOGICAL*l AL(26)/'A','B' ,CO

$ M , 'N' , '0' ,' Ps,'Q','R', IS ,
CALL ERASE(S4,26,SA4,26,SP4,
SPV=0.0DO
00 20 I=1,NPERS
IF(R4(1,I).NE.L) CALL OPERR(
PV=PVFACT(U)
SPV=SPV+ PV
CO 10 J=2,12
S4(J)=S4(J)+R4(J,I)
l8(J)=S8(J)+R8(J,I)
SP4(J)=SP4(J)+PV*R4(JI)

10 SPE(J)=SP8(J)+PV*R8(JT)
S4(13)=S4(13)+R4(13, I)

20 SP4(13)=SP4(13)+PV*R4(13,I)
CO 3C J=2,12
SA4(J)=S4(J )/NPERS
SL4(J)=SP4(J)/SPV
SA8(J)=S8(J )/NPERS

(100),YEND(CO),
,BASVAR(100),FIN
100,15) ,BASCFA(1

,SP8
),SL4(
),SPV,

I TD1 9 1
'T','U
26 , SL4

13), SPE(,13
PVPVFACT,
E','F',2

,26,S8 ,26,

15)
)

100
PVFACT(100) ,AVL(100,
TST(1J),MAXVAR(100),
00,15)

I)

R8

SX*,'Y,, 'Z'/
SA8, 26 ,SP8, 26, SL 8,26 )

'WTPERS' ,12)
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30 SLE(J)=SP8(J)/SPV
SA4(13)=S4( 13)/NPERS
EL4(13)=SP4(13)/SPV
eR I TE(WT,9901) ( ,( POELI M J, I ),J=l,20),I 1=1
WRITE(WT ,902) (I, (POTITL (JI),YpJ= 1,20),9I= 1
WRI TE(WT,903) (IDMW(I),ECS( I),DTH(I ),YMI

$fPMFAL(I),NTBSLC(I),LVLMN(1),LVLMX(I),I1
RITE(wT,915) SPV,(1,I=1,MXRCYC)

CO 35 NR=1,NRCRS
CLIM=CYCPPX(NR)+CYCXS(NR)
IF(.NOT.IVIDCYC(NR)) CLIM=CLIM+1
IF(CLIM.GT.MXRCYC) CALL OPERR('WTPERS',6)
tRITE(WT,916) NR,(TSY(INR), I=1,CLIM)
)ARI TE( WT ,919) ( TOY( I ,NR) ,I =1,CLI M)

35 WRITE(WT,917) (TEY(INR),I=1,CLIM)
RITE(WT,911)
WRITE(WT,904) (1,I=1,NRCRS)
iRITE(WT,905) (AL(I),I=1,NRCRS)
CO 4') I=1,NPERS

40 WRITE(WT,9O6) I,(AVL (I,NR),NR=1,NRCRS)
hRITE( WT ,912)
WRITE(WT,904) (1,1=1,NRCRS)
WRITE(WT,905) (AL( I), I=1,NRCRS)
CO 5C 1=1,NPERS

50 WRITE(WT,906) I,(OPHRS (INR),NR=1,NRCRS)
RI TE( WT ,918)
iRITE(WT,904) (I,I=1,NRCRS)
WNRITE(WT,905) (AL(I),I=1,NRCRS)
00 55 I=1,NPERS

55 WRITE(WT,906) I,(BASCFA(INR),NR=1,NRCRS)
VRITEMAT,913)
NR ITE (WT , 904) (I ,1=1, ARC RS)
iRITE(WT,905 ) (AL( I) ,I=1,NRCRS)
CO 60 1=1,NPERS

60 WRITE(WT,906) I,(EXPGhH(I,NR),NR=1,NRCRS)
ifRI THE(WT0,07) ( (R4( IiJ)tI=1,13) ,J=1,NP ER S

,NP ERS)
,NPERS)
C(I ),YENC(I),PVFACT ( I),
,NPERS)

SOPT0901
SOPTO902
SOPTO903
SOPT0904
SOPT0905
SOPT0906
SOPT0907
SOPT0908
SOPT0909
SOPT0910
SOPTO911
SOPT 0912
SOPTJ913
SOPTO914
SOPT0915
SOPT0916
SOPT0917
SOPT0918
SOPTO919
SOPT0920
SOPT0921
SOPT0922
SOPT0923
SOPT0924
SOPT0925
SOPT0926
SOPT0927
SOPT0928
SOPT0929
SOPT0930
SOPT0931
SOPT0932
SOPT0933
SOPT0934
SOPT0935
SOPT0936
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WRITE(WT
$(SL4(I),

WRITE(WT
WRITE(WT

$(SL8(I ) ,

WRITE(WT
$lvAXTST(I
RETURN

901 FORMAT('
9J2 FORMAT('
903 FORMAT

$ P MF AL
$16, 17,

904 FORMAT
9J5 FORMAT
906 FORMAT
907 FORMAT

,908) (S4(I), I=2,13) ,(SA4(I),I=2,13)
1=2 ,13)
,909) ((R8(IJ),I=1,12),J=1,NPERc)
,910) (S8( [),I=2,12),(SA8(I),I=2,12)
1=2,12)
,914) (IBASVAR(I),FINVAR(I),FINTST(
),CAVG(I),I=1,ANPERS)

1
lI

PERIOC',40X, 'DELIMITER
PERIOD',40X,'PD. TITLE

CARD'/(
CARC'I (

('IPERIOD DMW ECS 0TH YMID
NTBSLD LVLMN LVLMX'/(I5,F8.1,F8.3,

110,17))
(T8,' NR: '11,1418/(1OX, 1518))
( NP AL: $,Al,14(7X,Al)/(10X,15(7X
(15,1X,15F8.2)
('1 --------- M E G A W A T T

$4X, '------------------ GEGAWATT-HOURS ELECTR
$ /' PERIOD MW INST MWONLN MWPEAK MW
$4X,'EXPDEM EXPGEN XNKGEN XNNGEN
$ / ( F6 .0, 2X, 5F8.0, F8.4,6F 11.2))

908 FORMAT('0TOTAL :',5F8.0,F8.4,6F1 .2/

$
$

909 FORMAT
$I00'/'
SLS
$L$'

91J FORMAT
$

911 FORMAT
912 FORMAT
913 FORMAT
914 FORMAT

$10 PER

'OAVG. :', 5F8.C,F8.4,6F11.2/
'OPVTOTL:',5F8.C,FS.4,6Fi1.2/
'OLVAVG.:',5F8.kF8.4,6Fil.2/)

('1',T30,'ALL CCSTS IN THOUSANDS OF DO
PERIOD PRCC$ $NKPRD INNP
$NNSUS $SBTCT $NKTOT $NNT

/(OPF6.0,2X,-3PilFil.2))
('OTOTAL :',-3PIlFil.2/'0AVG. :',-3P1
'OPVTOTL:',-3P11Fll.2/'OLVAVG.:',-3PI
('1',T20,'AVAILABILITY (PER CENT)'/)
('1',T20,'OPERATIANG HOURS'/)
('1',T20,'EXP. PPCDUCTION (GWHE) FROM
(I1',T20,'SHAPE VARIANCES AND TESTS'/
IOD BASVAR',IOX,'FINVAR',9X,'FINTS

,(SP4(I),I=2,13),

,(SP8(I),I=2,12),

I),MAXVAR(I) I

110, 1OX, IH' ,20A4, 1H' ))
110, 1OX, 1H', 20A4,1 H'))

YEND PVFACT
F7.1, F9.4,F9.4,F 10.6,

,Al)

S FRACT.',
IC ------------------
MRGN MWSPIN PLOFL',

EXPEMR UNSRVC'

LLARS
RD
CT

AT MIDDLE
SUSo I
EMRP$

OF PER
$NKS
TOTA

lF1l.2/
IFIl. 2/)

SYSINT'/)

T',9X,'MAXVAR',9X,

SOPT0937
SOPT0938
SOPT0939
SOPT0940
SOPT0941
SOPT0942
SOPT0943
SOPT0944
SOPT0945
SOPT0946
SOPT0947
SOPT0948
SOPT0949
SOPT0950
SOPT0951
SOPT0952
SOPT0953
SOPT0954
SOPT0955
SOPT0956
SOPT0957
SOPT0958
SOPT0959
SOPT0960
SOPT0961
SOPT0962
SOPTJ963
SOPT0964
SOPT0965
SOPT0966
SOPT0967
SOPT0968
SOPT0969
SOPT0970
SOPT0971
SOPT0972
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$'MAXTST
915 FORMAT(

$ ENCING
$'0 RC:

916 FORMAT(
$

917 FORMAT(
'18 FORMAT(

$IL ITY-B
919 FORMAT(

I, 8X,'C AVG'/( 16,4X,E12.6, E15.,F14.6, E19.6, FlI. 6, F
'O',T24, 'SUMMATION OF PVFACT =',F 12.6/'1 ', TIO,' STA

TIMES OF REACTCR CYCLES AS PASSEC TO IN-CORE MODE
15, 1717/( 1E,1717) )

'0',I3,1 = REACTOR INDEX, NR'I/
' TSY :',18F7.3/(F8.3,17F7.3))
I TEY :',1EF7.3/(F8.3,17F7.3))
1l',T20,'PER CENT CAPACITY FACTOR FOR BASE PORTION
ASED)'/)
I TOY :',18F7.3/(FE.3,T17F7.3))

13.6))
RTI NG AND
L : l/

(AVAILAB

END
SUBROUTINE SETUPN
SETS UP COSTS AND LIPITS OF REMAINING ARCS IN THE NETWORK
SYSOPT VERSION 12-16-72
IlvPLICIT INTEGER(CG)
REAL*8 RCFACTSGTITL
CCMM3N/OPTL IM/RDFACTSGTITL( 10),ELAME(40,18) ,PVRATE,YBASEYSTART,

$IAUX,IAUXtlNRCRSNCYCTNPERSNPERSPNPERIN,ITER,MXESX2,MXRCYC,
$MXNPER ,MXRCRS,MXNODS,XARCS,SI CT ,NPI N,NPCTRCWT ,PARCALPARCON,
IPARCCPPCONVGNPM, ICSTRG,J FRWRO, JBKWRD,NPESH ,MESH( 15) ,MXITER
$,GESFRS,ECtPLM(18),CCRDTL,CPRCOR(6), REJLVLPCDELA,TH$CONJFRPBK

INTEGER SIOTRCWTPARCALPARCONPARCOP
LOGICAL APM,OPRCOR
LOGICAL MIDCYC
INTEGER*2 CYCNUMCYCRNGCYCXS,CYCRMX
COMCN/RCRDAT/DYDWN(3,15),CYUP(3,15),GWHXS(3,15),CYCXS(15),

$CYCRMX( 15), CYCNUM( 18,15) ,C YCRNG( 2,270) IICNO(15) ,GWHOLD(15) ,MWD(15

$,TSY(18, 15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
$,DYHOLD(15),TOY(18,15)
CCMMON/PDPERM/S(100,15),ALPHA(100,15),8ETAP(.100, 15),FINVAR(100)
INTEGER*2 S
COMMON/KC/KC( 1) /KU/KU( 1) /KL/KL( 1)

CGMMON/PCTEMP/NPMFAL (100 ), NTBSLD(100 ),OPHRS( 100, 15),LVLMN( 100) ,
$LVLMX( 100) , PDELIM(20,100) ,PDTI TL(20 ,100) ,DMW (10) , CTH(100),ECS(10
$),R4(13,1O0),R8(12,100),YMID(100),YFNO(1C0),PVFACT(100),AVL(100,
$15),EXPGWH(100,15),CAVG(100),BASVAR(100 ),FINTST(100),MAXVAR(100),

SOPT0973
SOPT0974
SOPTO975
SOPT0976
SOPT0977
SOPT0978
SOPT0979
SOPT3980
SOPT0981
SOPT0982
SOPT0983
SOPT0984
SOPT0985
SOPT0986
SOPT0987
SOPT0988
SOPT0989
SOPT0990
SOPT 0991
SOPT0992
SOPTJ993
SOPT0994
SOPT0995
SOPT0996
SOPT 0997
SOPT0998
SOPT0999
SOPT1000
SOPT1001
SOPT1002
SOPT1003
SOPT.1004
SOPT1005
SOPT 1006
SOPT1007
SOPT1008
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$MAXTST (100) ,MIN( I0C, 15 ), MAX( 100, 15) BASCFA( 100 ,15)
REAL MAXVAR,MAXTST,CAVC
REAL*8 PVFACTR8
INTEGER RC
CATA LARGE/2C(30000 00.))0/
REAL*8 SUMD
LOGICAL GESEQIGESEQ2,CESGT2
CALL ERASE(KCMXARCSKUMXARCSKLMXAPCS)
SUmC=0.0CO
K S UP = )
L=L0C(6,0,0,1)-I
CC 6 NP=1,NPERS
LSUM=0
CO 4 NR=1,NRCRS

4 LStP=LSUM+MAX(NP,NR)
TYPE 6
t=L+NP
KU(N)=R4(1jNP)+0.5
IF(KU(N) .GT.LSUM) KU(N)=LSUM
KL(N)=KU(N)
KSUM=KSUM+KU(N)

6 SUMD=SUM+R4(10,NP)
RODFACT=SUMD/KSUM
RITE(WT,900) RDFACT

CDEL=10
IF(GESFRS.EQ.4) G)EL=0
CESEQ1=GESFRS.EQ.]1
GESEQ2=GESFRS.EQ.2
CESGT2=GESFPS.GT.2
[0 30 NR=1,NRCRS
L=LOC(4,NR,0,NPERSP)
TYPE 4 HLOOVR.
KU(L)=GWHDLD(NR)
KL(L)=KU(L)
L=LCC(4,NR,1,1)-I
CLIN=CYCRMX(NR)

SOPT1009
SOPT 1010
SOPT 1011
SOPT1012
SOPT 1013
SOPT1014
SOPT 1015
SOPT 1016
SOPT1017
SOPT 1018
SOPT 1019
SOPT1020
SOPT 1021
SOPT1022
SOPTl123
SOPT1024
SOPT1025
SOPT1026
SOPT 1027
SOPTI28
SOPT1029
SOPT1030
SOPT 1031
SOPT 1032
SOPT1033
SOPT1034
SOPT1035
SOPT1036
SOPT1037
S0PT1038
SOPT1039
SOPT1040
SOPT1041
SOPT1042
SOPT1043
SOPT1044
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CO 30 RC=1,
C=CYCNUM(RC
ILO=CYCRNG(
IHI=CYCRNG(
CMI N=0
CMID=0
CMAX=0
CO 10 J= ILO

C TYPE 4 P

CLIM
,NR)
1,C)
2,C)

,IHI
ERIODS

N=L+J
KL(N)=MIN(J,NR)
NU(N)=MAX(J,NR)
CMID=CMID+EXPGWH(J ,NR)+0.5
CM IN=CMIN+KL(N)

10 CMAX=CMAX+KU(N)
IF( IHI .NE.NPERS) GO TO 20
CMIN=CMIl\-+KL(L+NPERSP)
CMID=C MID+KU(L+NPERSP)
CMAX=CMA X+K U(L +NPER SP
TYPE 1

2) KL(C)=CMIN
KU(C)=CMAX
lYPE 2
IF(GESGT2) CO TO 26
IF(GESEQ1) GO TO 25
IF (GESEQ2) KC (C+NCYC T)=E LAME (NRRC)
KL (C+NCYCT )=CM IN/1O*10
KU(C+NCYCT)=(9+CMAX)/10*10
GO TO 30

25 KL(C+NCYCT)=CMIC-5
KU(C+NCYCT) =CMI D+5
CO TO 30

26 KU(C+NCYCT)=ELAME(NR,PC)4GDEL
KL(C+NCYCT)=ELAME(NRPC)-GDEL
LAUX=LOC(3,NR,RC,O)
f<C ( LAUX) =10000

SOPT1045
SOPT1046
SOPT 1047
SOPT1048
SOPT1049
SOPT1050
SOPT1051
SOPT1052
SOPT1053
SOPT1054
SOPT1055
SOPT1056
SOPT 1057
SOPT1058
SOPT1059
SOPT 1060
SOPTIO61
SOPT 1062
SOPT 1063
SOPT1064
SOPT1065
SOPT1066
SOPT1067
SOPT1068
SOPTI069
SOPT 1070
SOPT 1071
SOPT1072
SOPT1073
SOPT1074
SOPT 1075
SOPT 1076
SOPT.1077
SOPT1078
SOPT1079
SOPT 1080
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KU (LAUX) =100000
LAUX=LAUX+1
KC(LAUX)=-10000
IL(LAUX)=-100000

30 CONTINUE
L=LOC(5,0,0,0)

C TYPE 5
KU(L)=LARGE
KU(L+1)=LARGE
KU(L+2)=LARGE
CO 60 NR=1,NRCRS
CO 60 NP=1,NPERS
L=LOC( 4,NR,0,NP)
PCN=KL(L)
IOX=KU(L)
IF(MCX.L.E.0) GO TO 60
PAV=(CAVG(NP)+BETAP(NPNR) )/ALPHA(NPNR)40.5
MDX=(MOX-MAV)/(JFRWRD-1)+1
MON=(MAV-MON)/JBKWRD+1
L=LOC(7,ANR,0,NP)-1

C TYPE 7
KU(L+I)=PAV
KL (L+1) =KL( L+1)
CO 40 J=2,JFRWRD
KC (L+J )= (J-1)**4

40 KU(L+J)=MDX
L=L+JFRWRC
IF(JBKWRC.LE.0) GO TO 6J
EO 50 J= 1, J BK WP 0
KC (L+J) =-J**4

5) KL(L+J)=-IMDN
60 CONTINUE

CALL CNLY$$
RETURN

900 FORMAT('0,T6, F12.8, ' = RDFACT, NUCL.GEN.ROUND-OFF CORRECTION FACT

ICRe)

SOPT1081
SOPT 10 82
SOPT1083
SOPT1084
SOPT1085
SOPT1086
SOPT1087
SOPT1088
SOPT1089
SOPT1090
SOPT 1091
SOPT1392
SOPT 1093
SOPT 1094
SOPT1095
SOPT1096
SOPT1)97
SOPT 1098
SOPT1399
SOPT1100
SOPT 1101
SOPT1102
SOPT 1103
SOPT 1104
SOPT1105
SOPT 1106
SOPT1107
SOPT.1108
SOPT 1109
SOPT1110
SOPT 1111
SOPT 1112
SOPT1113
SOPT 1114
SOPT 1115
SOPT1116
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END
SUBROUTINE SETLPT
SETS UP INPUT TAPE FCR 0-0-K
SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(CG)
FEAL*8 RCFACTSGTITL
CCMMON/OPTL IM/RDFAC T, SGT I TL(10) , ELAME (40.,18) , PVR AT E,Y BAS E,YS TART ,

$IAUX, IAUXMNRCRSNCYCTNPERSNPERSPNPERIN,I TERMXESX2,MXRCYC,
$tXNPERMXRCRS,MXNODSMVXARCS,SIOTNPINNPCTRCWTPARCAL,PARCON,
$PARCOP,PCONVGNPMIDSTRG,JFRWRDJBKWRD,NNESHvMESH(15),MXITER
$,GESFRS, ECUPLM(18),CORCTL, OPRCOR (6),REJLVLPCDELA,TH$CON,JFRPBK

INTEGER SIOTRD ,WT,PARCALPAPCONPARCCP
LOGICAL NPM,OPRCOR
LOGICAL MIDCYC
INTEGER*2 CYCNUMCYCRNGCYCXS,CYCRMX
CCMfON/RCRDAT/CYCWN

$CYCRMX( 1 5) ,CYCNUM( I
1,TSY(18,15),TEY(18,
$,DYHCLO(15) ,TOY(18,

CiMMON/KC/KC ( 1) /KU/I
LOGICAL*1 AL(26)/'A

$ 'M' , 'Ne,' ,'P' ,i ' * '

INTEGER RC
REWIA) NFIN
iRITE(NPIN,931)SGTI
L=O

C TYPE 1
00 101 NR=1,NRCRS
CLIIP=CYCRMX (NR)
AR=AL(NR)
CO 101 RC=1, CLIM
L=L+1

101 WRITE(NPIN,901) AR,
C TYPE 2

DCO 102 NR=1,NRCRS
CL IM=CYCRMX (NR)

),DYUP(3,15),GWHXS(3,15)
,CYCRNG(2,270) ,I ENO( 15),
NSTAT( 15),MWMIN( 15),M4WMA

,CYCXS( 15),
GWIOLD( 15),MWD( 15)
X( 15) ,MIDCYC(15)

/KL/KL( 1)

, 'C','D','E','F',G','H','I' , j ,'K' ,'L',
I Se , ' T' ,U* ,V , 'W'I, IXV, IY I I / , AR

RC,Ak,RCKC(L),KU(L), L(L)

C
C

SOPT 1117
SOPT 1118
SOPT 1119
SOPT1l20
SOPT 1121
SOPT 1122
SOPT 1123
SOPT1124
SOPT1125
SOPT 1126
SOPT1127
SOPT 1128
SOPT1129
SOPT 1130
SOPT 1131
SOPT1132
SOPT1133
SOPT1134
SOPT1135
SOPT 1136
SOPTI37
SOPT 1138
SOPT 1139
SOPT1140
SOPT 1141
SOPT1142
SOPT 1143
SOPT 1144
SOPT1145
SOPT 1146
S OPT 1147
SOPTl48
SOPT 1149
SOPT1150
SOPT1151
SOPT1152
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AR=AL(NR)
[FJ 102 RC=1,CLIM
L=L+1

102 WRITE(NPIN,902) AR

C TYFE 3
DO 103 NR=1,NRCRS
CL IM=CYCPMX (NR)
AR=AL(NR)
CO 1C3 RC=1,CLIM
EO 103 I=1, IAUXM
L=L+1

103 WRITE(NPIN,902) AR
C TYPE 4

CO 114 NR=1,NRCRS
CL IM=CYCRMX (NR)
AR=AL(NR)
DO 1C4 RC=1,CLIM
CYC=CYCNUM(RC,NR)
ILC=CYCRNG(1,CYC)
IHI=CYCRNG( 2,CYC)
CO 104 NP=ILO,IHI
L=L+1

104 WRITE(NP IN,904) AR
L=L+1

114 WRITE(NPIN,914) AR
C TYPE 5

L=L+1
LP2=L+2
kRITE(NPIN,905) (K
L=LP2

C TYPE 6
WRITE(NPIN,906) (N
L=L+NPERS

C TYPE 7
JTGTAL=JFRWPD+JBKW
C00 107 NP=1,NPERS

,RCKC(L),KU(L),KL(L)

,RC,KC(L),KU(L),KL(L)

SOPT 1153
S OPT 1154
SOPT1 155
SOPT 1156
SOPT1157
SOPT1158
SOPT 1159
SOPT1160
SOPT 1161
SOPT 1162
SOPT1163
SOPT 1164
SOPT1165
SOPT1166
SOPT 1167
SOPT1168
SOPT1169
SOPT1170
SOPT 1171
SOPT1172
SOPT1173
SOPT1174
SOPT 1175
SOPT 1176
SOPT1177
S OPT 1178
SOPT1179
SOPT 1180
SOPT1181
SOP T 1182
SOPT 1183
SOPT1184
SOPT 1185
SOPT 1186
SOPT 1187
SOPT 1188
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DO lC7 NR=1,NRCRS
AR=AL(NR)
CC 107 J=1,JTOTAL
L=L+ 1

107 WRITE(NPIN,907) ARNPNPKC(L),KU(L),KL(L)
CUMARC=NCYC T* ( I AUX+l)+NPERS* ( (JFRWRD+J BKWRD+1)*NRCRS+1) +NRCRS+ 3

IF(L.NE.CUMARC) CALL OPERR('SETUPT',4)
ARITE (NP IN, 932)
J=2+MXITEP
WRITE(NP IN,933) (I,SGTITL, I=2,J)
END FILE NPIN
REWIND NPIN
PETURN
FORMAT (6X, R' ,Al ,' C'
FORMAT (6X,'NUKFUL' ,
FCRMAT(6X,'R' ,Al,'C'
FORMAT (6X, ' DEMAND' ,

6X,'HLDOVR'
6X,'DUMMY '

FORMAT(6X,2X,'P',1I3
FORMAT (6X ,' p' , Al,' P'
FORMAT(6X,2X,'P',I3
FORM AT (6X,' R' , Al,' C'

FORMAT (' READY' /I TAPE
FORMAT ( ' END '/'OUTPUT
FORMAT (' SAVE' /12,10A

,12,' A' ,' R' ,Al ,' C'
'R',A1,'C',I2,'A',
,12, ' ' ,#R',Al,'PI
'DUMMY ,
'CUMMY ',

' NUKFUL'
, 'DEMAND',
,13 ,2X,'P',13,
,IR' ,Al,'I Pq ,13,
,12, * * ,'HLDOVRo,
'1/1 l',10A7/'ARCS'

PR INTER '/'COMPUTE'
7/'CUTPUT PRINTER'/

, 12,0

, 13,

',T21,3110 )
T21,3 110)
T21,3110)
T21 ,3110/
T21,31 10/
T 21, 3110 )
T21,3110)
T21,3I 10)
T21 ,3110)
T21,31 10)

/'PAUSE' )
'COMPUTE' /'PAUSE

END
SUBROUTINE CONVRG(OPTRCH,$LAST)
SUPERVISES CCNVERGENCE BETWEEN 0-0-K AND IN-CORE MODEL

SYSOPT VERSION 12-16-12
IMPLICIT INTEGER(C,G)
REAL*8 RCFACTSGTITL
CCMMCN/OPTL IM/RDFACTSGTITL( 10),ELAME(40,18) ,PVRATE, YBASE,YSTART ,

$IAUX,IAUXM,NRCRS,NCYCT,AFERSNPERSP,NPERIN,ITER,MXESX2,MXRCYC,
$MXNPER ,MXRCRS,MXNODS,MXARCS,SIOTNPINNPCT,RC,WT, PARCALPARCCN,
$PARCCPPCCNVGNPM, IDSTPC,J FRWRDJBKWRD,NMESHMESH(15),MXITER

SOPT 1189
SOPT1190
SOPT1191
SOPT 1192
SOPT1193
SOP T 1194
SOPT1195
SOPT1196
SOPT 1197
SOPT1198
SOPT1199
SOPT1200
SOPT1201
SOPT1202
SOPT1203
SOPT1204
SOPT1205
SOPT1206
SOPT 120T
SOPT1208
SOPT1209
SOPT 1210
SOPT1211
SOPT 1212
SOPT 1213
SOPT1214
SOPT 12 15
SOPT1216
SOPT1217
SOPT1218
SOPT.1219
SOPT1220
SOPT 1221
SOPT1222
SOPT 1223
SOPT1224
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$,GESFRSECUPLM(18),CORDTL,GPRCOR(6),REJLVLPCDELA,TH$CONJFRPBK
INTEGER SIOT,RCWTPARCALPARCONPARCOP
LOGICAL NPMOPRCOR
LOGICAL MIDCYC
INTEGER-2 CYCNUICYCPIG,CYCXSCYCRMX
COMMN/RCRDAT/DYDWN(3,15),DYUP(3,15),GWHXS(3,15),CYCXS(15),

$CYCRMX (15) , CYCNUM( 18,15) ,CYCRNG(2,270) ,ICNO( 15), GWHOLD(.15) ,MWD(15)
$,TSY(18,15),TEY(18,15),INSTAT(15), MWMIN(15)," W AX(15),MICCYC(15)
$,DYHO0LD(15),TOY(18,15)
CCMMCN/GCKCCM/KIXKCXKQ1X,KQ2X,KQ3X,KQ4X,KQ5X
COMMON/KC/KC()/KU/KU(1)/KL/KL(l)
CCMMCN/KX/KX (1)
INTEGER*2 LSTIM(270)
REAL*8 $,$LAST,$NUCL(1CO),RTC,$IMPLS,$IMP,$CRIT
LOGICAL CNVCD,OPTRCH
INTEGER NEC3AL( 18)/ 1*1/
IF( $LAST .GT .0.0D) GO TO 5
KIX=APIN
KOX=NPOT
KQIX=7
KQ2X=NPOT
KQ3X=NPIN
KQ4X=MXARCS
KQ5X=MXNODS
IT E P TO=0
PE SH NO=0
CMESH=-1
GWHC NV =- 1
$CRIT=1.E3*TH$CON
CALL ERASE(LSTIM,NCYCT/2)

5 $LAST=1.050
IIMPLS=$LAST
CPTPCH=. FALSE.

10 CALL
CALL
CALL

0CKMAN
ARCPRT(0)
CALSHP
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ITEPTO=ITERTO+1
ITER=MOD(ITERTO-1,100)+1
$NUCL( ITEP)=1.C50
CNVGC=.TRUE.
00 20 C=1,NCYCT
IF (IABS(KX(C)-LSTIM(C)).GT.GWHCNV) CNVGD=.FALSE.

20 LSTIM(C)=KX(C)
NARCTP=PARCAL
IF(.NOT.CNVCC.AND.GMES-.CT.0 ) GO TO 50

25 NARCTP=PARCCN
IF(MESHNO.LT.NMESH) GO TO 40
CPTRCH=.TRUE.
RITE(WT,902)

30 $NUCL(ITER)=-$NUCL(ITER)
hRITE(WT,901) (I,$NUCL(I),I=1,ITER)
CALL ARCPRT(PARCON)
RETLRN

4J MESHNO=MESHNO+1
CMES H= ME SH( MESHNO
GWHCNV=( PCONVG+0.001 )*CPESH*0.01
ILAST= 1.050
$I PPLS=$LAST

5J CALL ARCPRT(NARCTP)
$=0.000

C ERASE OLE MARGINAL CCSTS
LFRS=LOC(2,1,1,1)
NZEPC= IAUX*NCYCT
CALL ERASE(KC(LFRS),NZERCKU(LFRS),NZERCKL(LFRS),NZERO)
CO 60 NR=1,NRCRS
CALL SETELE(NRGMESH)
IDNUM=IDNO(NR)
NCYC IN=CYCRMX (NR)
IF(.NOT.MI DCYC(NR)) ACYCIN=NCYCIN+1
NCYCXS=C YCXS(NR)
ECHCV=GWHOLC(NR)
CALL INCCRE(IDNUMNCYCINNCYCXSNCYCIN+NCYCXS, TSY(1,NR), TEY(1,NR),
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$rECEALELAMEMXESX2,ECFDCVRTC,PVRYBSECUPLMTOY(1,NR))
$= $+RTC

60 (ALL NEWMRG(NR,GMESH)
IF(PVR.NE.PVRATE) CALL CPERR'CONVRG',10)
IF (YBS .NE.YBAS E) $=$*PVP ER $( YBA SE , YB S)
$NUCL( ITER)=$*1.03*RCFACT
kRITE(WT,930) ITER,$NLCL(ITER)
$IMP=$LAST-$NUCL( ITER)
IF(($IMP.GT.$CRIT.OR.$IMPLS.GT.$CRIT).ANC.$IMP.GT.0.OD)
CALL OPERR('CUNVRG',S)
$LAST=$NUCL(ITER)+0.01CO
$1MPLS=$IMP
CO TO 25

70 $LAS T=$NUCL (ITER)
$IMPLS=$IMP
IF(ITERTC.LT.MXITER) CC TO 10
CALL OPERR( 'CONVRG' ,7)

C FAKE 'IF' AND 'RETURN' TO AVOID COMPILATION WARNING MESS
IF(.TRUE.) GO TO 30
RETURN

900 FOF8AT('0SYSTEM NUCLEAR COST AT ',13,' TF ITERATION =',

$' THOUS. P.V.DCLLARS')
901 FORMAT0( SYSTEM NUCLEAR COST AT ',13,' TH ITERATION ',

$' THOUS. P.V.DCLLARS')
902 FORMAT(11'/'O',T20,'* v * * * TRUE OPTIMUM REACHED FOR

$CCNSTRAINTS ** * *

END
SUBRGUTINE CALSHP
CALCULATES SHAPE PARAMETERS F
SYSJPT VERSION 12-16-72
IMPLICIT INTEGER(CG)
REAL*8 RDFACTSGTITL
CCMMON/OPTL IM/RDFACTSGTITL( 1

$IAUXIAUXM,NRCRS,NCYCTNPERS,
$tXNPER ,MXRC RS,MXNJDS,ISXARCS,S
$PARCOP, PCCNVG, NPM, I CSTRG,J FRW

GO TO 7 C

AGE

3PF15. 3,

3PF15.3,

GIVEN ARC

OR EACH PERIOD

0) ,ELAME (40,18) ,PVRAT E,YBASEYSTART,
NPERSPNPERIN,ITER,MXESX2,MXRCYC,
I OT , NPI N, NPCT, RC, WT , PARCAL , PARCON,
RD, JBKWRDNMESH ,MESH ( 15) ,MXITER
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$,GESFRS,ECUPLM(18),CORDTLCPRCOR(6),REJL VLPCDELATH$CON,JFRPBK
INTEGER SIOTRDWT,PARCAL, PARCONPARCOP
LOGICAL NPMOPRCOR
LOGICAL MIDCYC
INTEGER*2 CYCNUM,CYCR NG,CYCXS,CYCRMX
COMMON/RCRDAT/DYDWN( 3,15 ),DYUP( 3,15) ,GWHXS(3 ,15) ,CYCXS(15),

$CYCPMX (15) , CYCNUM( 18, 15) ,CYCRNG( 2,270
$,TSY( 18, 15) , TEY( 18,15) ,I NSTAT(15) , MWM
$,DYHOLD( 15),TOY( 13, 15)
CCMMCN/KX/KX(1)
COMMCN/PDPERM/S( 100, 15) ,ALPHA(100,15)
INTEGER*2 S
CONMCN/SHPINF/SLNCRT(1), SLNWSR (100)
LOGICAL PCWSBD
REAL LR
REAL*8 SKLSKL2
L=LOC(4, 1,1, 1)-I
DO 40 NP=1,NPERS

) , I CNO(
IN(15),

15),GWHOLD( 15) ,MWD( 15)
MWMAX (15),MICCYC(15)

,BFTAP( 100,15),FINVAR (100)

, I TRSHP, Ecwsec( i0 )

L=L+ 1
LCK=L-NPEPSP
SK L =0. )
SKL 2=0.0
PhDTCT=0
00 20 NR=1,NRCRS
LCK=LOK+NPERSP
IF(S(NP\R).NE.2) GC TC 20
KR=MWD(NR)
PWDTCT=MWOTCT+KR
LR=KX(LOK)*ALPHA(NP,NP)-EETAP(NP,NR)
SKL=SKL+KR*LR
SKL2=SKL2+KP*LRzLR

2) CON T INUE
SLNWSR(NP)=SKL2/MWCTCT-(SKL/MWDTOT)**2

40 SLNCRT (NP) =FINVAR(NP)-SL AWSR (NP)-REJLVL
RETURN
END
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SUBROUTINE ARCPRT(ITYPE)
PRINTS ARCS THROUGF TYPE ITYPE
SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(C,G)
REAL*8 RDFACT,SGTITL
CCMMON/OPTLIM/RDFACTSGTITL(10),ELAME(40,18),PVRATEYBASEYSTART,
$IAUXIAUXM, NRCRS,NCYCTNPERSNPERSPNPERIN,ITER, MXESX2,MXRCYC,
$MXNPERMXPCRSMXNODStXARCSSIOTNPIN,NPCT,RDWT,PARCALPARCON,
$PARCUP,PCONVG,NPM, IDSTRGJFRWRD,JBKWRDNMESHMESH(15),MXITER
$,GESFRSECUPLM(18),CCRCTL,CPRCUR(6),REJLVLPCDELATH$CON,JFRPBK

INTEGER SIOT,RD,WTPARCALPARCON,PARCOP
LOGICAL AFM,OPRCOR
COIMCN/SHPINF/SLNCRT(100),SLNWSR(100),ITPSHPPCWSBC(100)
LOGICAL POWSBD
LCGICAL COK
CIMENSION DUM1(33),DU'10(33,10),DUM2(17)
EQUIVALENCE (DUMI(1),CUM10(1),DUM2(1))
REAL*8 $PARC$/'ARCS l/,$RCSB$/'CS ARE O'/,DUM2
REAL*8 $COST$/' COST'/
REWINO NFOT
IF(ITYPE.LL.)) RETLPN
COK=.FALSE.
WRITE(WT,900) ITER,NPICSTRGSGTITL

10 READ(NPOT,903) DUM2
WRITE(WT,903) DUM2
IF(DUM2( 1).EQ.$BARC$.AND.DUM2(3).EQ.$CCST$) GC TO 2J
IF(DUM2(2).EQ.$RCSB$) COK=.TRUE.

GO TC 10
2J READ(NPOT,901) DUMl

WRITE(WT,901) DUMI
LLST=LOC(ITYPE+I,1,1,1)-1
IF(OCK) LLST=LOC(9,CCC)-1
NPPNT=LLST
NEXT=1
IF(LLST.LT.LOC(6,0,0,1)) GO TO 28
LTEMP=LLST
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LLST=LJC (6,0,0, 1)- I
NPRNT=LLST
NEXT=0
CC TC 28

22 WRITE(WT,904)
CO 26 NP=1,NPERS
FEAD(NPOT,901) CUMI.

26 WRITE(WT,905) (DUM1(I),1:,27),SLNCRT(NP),SLNWSR(NP)
NPPNT=LT EMP-( LLST+NPERS)
LLST=LTEMP
NEXT=1

28 \10=NPRNT/10
A1=NPRNT-NlU*10)
IF(NI.LT.1) GO TO 4C
CO 30 N=1,N1
READ(NPOT,901) DUML

30 VNRITE(WT,901) DUMI
40 IF(N1O.LT.1) GO TO 60

C 50 N=1,N1O
FEAD(NPOT,901) CUM10

5.) WRITE(WT ,9J1) DUM10
60 IF(NEXT.EQ.0) GO TO 22

LLSTX=L0C(9 ,0,0,0)-1
NSKIP=LLSTX-LL ST
IF(NSKIP.GT.0) RFAC(NPOT,902) (X,I=1,NSKIP)

70 READ(NPOT,901,END=80) DUN1
WRITE(WT,901) DUMI
GO TO 70

80 IF(OOK) CALL OPERR('ARCPRT',11)
REWIND NPCT
RETURN

900 FORMAT('1/1OITER =',14,5X,'NPM+IDSTRG =',L2,17,5X,
$'STRATEGY TITLE : ',1H',10A7,1He )

91 FORMAT(IX,33A4)
902 FOPMATLA4)
903 FORlIAT(lX,16A8,A4)
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04 FCRMAT('I+',Tl14,'SLNCRT',5X,'SLNWSR')
SJ5 FORMAT(lX,27A4,Fil.6,F12.6)

ENC
SLBRCUTINE SETELE(NRCGESH)
SETS UP NEW ELAME FCR INPUT TO INCORE
SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(CG)
REAL*8 RCFACT,SGTITL
CCMMON/OPTLIM/RDFACT,SGTITL(10),ELAME(40,18),PVRATEYBASE,YSTART,
$IAUXIAUXM,NRCRSNCYCTNPERS,NPERSPNPERIN,ITER,MXESX2,MXRCYC,
$tXNPER,MXRCRS,MXNODS,MXARCSSIOT,NPINNPOTRD,WTPARCALPARCON,
$PARCOPPCONVGNPMIDSTRGJFRWRDJBKWRD,NPESHMESH(15),MXITER
$,GESFRS,ECUPLM(18),COROTLCPRCOR(6),REJLVLPCDELA,TH$CONJFRPBK

INTEGER SIOT,RD,WT,PARCAL,PARCONPARCOP
LOGICAL NPM,OPRCOR
LCGICAL MIOCYC
INTEGER*2 CYCNUMCYCRNGCYCXSCYCRMX
CIMMON/RCRDAT/DYDWN(3,15),DYUP(3,15),GWHXS(3,15),CYCXS(15),

$CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),ICNO(15),GWHOLD(15),MWD(15)
$,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
$,DYHCLD(15),TOY(13,15)
CCIPCN/KC/KC(1)/KU/KU(I)/KL/KL(1)
COMMCN/KX/KX( 1)
CATA FAKE/0.03/
INTEGER RC
CALL ERASE(ELAMEMXESX2*MXRCYC)
IC=0
IF(MIDCYC(NR)) GO
IC=1
ELAME( 1, 1)=FAKE

10 CLIM=CYCRMX(NR)
CC 20 RC=1,CLIM
CYC=CYCNLM( RCNR)
GBAL=KX(CYC)
MIN =KL(CYC)
MAX =KU(CYC)

TO 10

C
C
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IGtI N=Gf3AL/GMESH-I AUXM/2
ILO=MAXO(MIN/GMESH, IGM IN 1)
IHI=MI NO I (MAX-1 ) /GMESI-+1, I GM IN+IAUXM)
IC= IC+1
ELAME(1, IC)=GBAL
00 20 I=ILUlHI

20 ELAME(2* ( I-ILO )+3, IC )=I*GMESH
ACYCXS=CYCXS(NR)
IF (NCYCXS.L T.1) GO TO 4J
CO 30 I=1,NCYCXS
IC=IC+1

30 ELAME(1, IC)=GWHXS( I,NR)
40 PETUPN

END
SUBROUTINE NEWMPG(NRGMESH)
ALTERS NETWORK ARCS CF TYPE 2 & 3 FOR NEW SET OF MARGINAL COSTS
SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(CG)
REAL*8 RDFACTSGTTTL
CCMMCN/OPTL IM/RDFACT, SGTITL( 10)ELAME(409,18) ,PVRATEYBASEYSTART,

$IAUX,IAUXlM,NRCRS,NCYCT,fNPERSNPERSP, NPERINITERMXESX2,MXRCYC,
$MXNPER, MXRCRS,MXNOt)S,tMXARCS,SICT,NPIN,NPCTRDWT,PARCALPARCON,
$PARCCPPCONVGNPM, ICSTRG,JFRWRDJBKWRD,NMESHMESH(15),MXITER

$,GESFRS,ECUPLM(18),CCRDTLCPRCOR(6),REJLVLPCDELATH$CON,JFRPBK
INTEGER SIOTRDWTPARCAL,PARCONPARCOP
LOGICAL NPM,OPRCOR
LOGICAL MIDCYC
INTECER*2 CYCNUMCYCRNGCYCXSCYCRMX
COMM ON/RCRAT/DYDWN(3,15),DYUP(3,15),GWHXS(3,15),CYCXS(15),
$CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),ICNO(15),GWHOLD(15),MWO(15)
$,TSY(18,15),TEY(18 ,15), INSTAT(15), MWMIN(15), MWMAX(15) ,MIDCYC (15)
$,)YHOLD(15),TOY(18,15)
COMMCN/KC/KC(1)/KU/KU( 1)/KL/KL( 1)
INTEGER RC
IC= I
IF(IDCYC(NR)) IC=0
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CL IM=CYCRKMX(NR)
DC 60 RC=1,CLIM
IC=I C+l
L=LCC(2, N.R, RC, 0
IYPE 2 BASE P
CBAL=ELAME( 1,IC
KU(L)=GBAL
KL(L)=KU(L)
KCC=-10300
lYPE 3 INCREM

)
CINT
)

ENTS
L=LCC( 3,NR,RC,0)-1
LIM=ECUPLM(IC)
IF(LIM.LE.0) L I M=100J00 J
IF(GBAL.GT.LIM) CALL OPERR('NEWMRG',13)
AARC=-1
CO 10 L=3,MXESX2,2
C=ELAME( I,IC)
IF(G.LE.0) GO TO 30
NARC=NARC+l
IF(LIM.LE.G) GO TO 20

1) CONTINUE
CO TO 30

20 ELAME(I,IC)=LIM
30 DO 60 I=1,NARC

ILAP=I+1+2
LI=L+1
KC(LI)=1000.*ELAME(ILAM, IC)+0.5
IF(KC(LI).LT.KCC) CALL CPERR('NEWMRG',5)
KCO=KC(LI)
CLC=ELAME( ILAM-1, IC)
GUP=ELAME(ILAM+1,IC)
CDEL=GUP-GL0
IF(GBAL.CT.GUP) GO TO 50
IF(GBAL.LT.GLO) GO TO 40
KU (L I )=GUP-GBAL
KL(LI)=GLC-GBAL

C

SOPT 15 13
SOPT1514
SOPT 15 15
SOPT 1516
SOPT1517
SOPT 1518
SOPT1519
SOPT1520
SOPT 1521
SOPT1522
SOPT1523
SOPT1524
SOPT1525
SOPT1526
SOPT1527
SOPT1528
SOPT1529
SOPT1530
SOPT 1531
SOPT1532
SOPT1533
SOPT1534
SOPT1535
SOPT1536
SOPT1537
SOPT1538
SOPT1539
SOPT1540
SOPT 1541
SOPT1542
SOPT1543
SOPT1544
SOPT1545
SOPT1546
SOPT1547
SOPT1548

PAGE 43

C

m
00



CO TO 60
40 KU(LI)=GDEL

GO TC 60
50 KL(LI)=-CCEL
6) CONTINUE

RETURN
END
FUNCTION PVPER$(TTBASE)

C CALCULATE PRESENT VALUE AT TIME T OF 1$ AT TIME TBASE
C SYSGPT VERSICN 12-16-72

REAL*3 PVPER$,LN1PX
FVPER$=DEXP (-LN1PX*(T-TBAS E))
RE TURN
ENTRY PVINIT(PVRATE)

C PRE-CALCULATE LOG CF (1+X) IN UNITS OF INVERSE YEARS
LNIPX=DLOG( 1.DO+PVRATE)
FVINIT=LN1PX
RETURN
END
SUBRCUTINE CHKSHP(SHPSCK)

C CHECKS SHAPE CRITERIA TO EVALUATE FEASIBILITY
C SYSOPT VERSION 12-16-72

IMPLICIT INTEGER(C,G)
REAL*3 RDFACT,SGTITL
CCMMCN/OPTLIM/RDFACT,SGTITL(10),ELAME(40,18),PVRATE,YBASE,YSTART,

$IAUX,IAUXMINRCRS,NCYCTNPERSNPERSP, NPERINITERMXESX2,MXRCYC,
$tXNPERMXRCRSMXNODSMXARCS,SIOTNPINNPCT,RDWT ,PARCALPARCON,
$PARCCPPCONVG,NPM,ICSTRG,JFRWRD,JBKWRD,NMESHMESH(15),MXITER
$,GESFRS,ECUPLM(18),CORDTLOPRCOR(6),REJLVLPCDELATH$CON,JFRPBK

INTEGER SIOTRCWTPARCALPARCONPARCOP
LOGICAL NPMUPRCOR
COMMON/KC/KC(1)/KU/KU( 1)/KL/KL( 1)
COM'IPCN/KX/KX(f1)
COMMON/SHPI NF/SLNCRT( 100), SLNWSR(100) , I TRSHP , PCWSBC( 100)
LOGICAL PCWSED
D1PENSION DELTAL(100)
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LOGICAL SHPSOKPCDCK
INTEGER KSTHLD(20)
PC)CK=PCDEL A.GT.l.
LFRS=LOC(3, 1,1,1)
LJFRS=LOC(7,1,1,1)
NZERO=IAUXM*NCYCT
CALL ERASE(KC(LFRS),NZERCKU(LFRS),NZERO,KL(LFRS),NZERO)
SET UP ARCS TO ATTEMPT MINIMIZING SHAPE CRITERIA
LAUX=LFRS-IAUXM
CO 10 NC=1,NCYCT
LAUX=LAUX+I AUXM
KL(NCYCT+NC)=KX(NC)
KU ( NCYCT+NC ) =KX (NC)
KC(LAUX)=10000
KU (LAUX) =100000
KC (LAUX+ 1)=-10J)00

10 KL (LAUX+1)=-100000
t.ALX=LJFRS-1
D0 15 NP=1,NPERS
CD 15 NR=1,NRCRS
DO 15 J=1,JFRPBK
LAUX=L AUX+1

15 KC(LAUX)=KSTHLC(J)
ITRSHP=I TRSHP+1
WRITE(WT,905) ITRSHP
CALL OCKPAN
CALL ARCPRT(0)
CALL CALSEP
SHPSCK=. TRUE.
CC 20 NP=1,NPERS
CELTAL(NP)=1.E50
IF(SLNCRT(NP).GE.O. 0) GC TO 20
SHPSCK=.FALSE.
PDWSBD(NP)=.TRUE.
DELTAL(NP)=SQRT(-SLNCRT(NP))
IF(PCDOK) CALL SCUFEZ(NPPCDELA*DELTAL(NP)*0.01)
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20 CONTINUE
IFIPARCOP.GE.4) CALL ARCPRT
WRITE(WT,936) IIRSHP
WRITE(WT,910) (SLNCRT(N),N=
IF(SHPSOK) GO TO 40
WRITE(WT,920) (DELTAL(N),N=
RITE(WT,930)

IF(PCDCK) GO TO 40
WRITE(WT,940) PCDELA
GC TC 40
ENTRY ONLY$$
ITRSFP=0
LJFRS=LOC(7 ,1,1,1)
LAUX=LJFRS-1
CO 30 J=1,J FRP8K

30 KSTHLD(J)=KC(LALX+J)
CO 35 NP=1,NPERS

35 PDWSBD(NP)=.FALSE.
40 NZERO=JFRPBK*NRCRS*NPERS

CALL ERASE(KC(LJFRS),NZERO)
RE TURN

905 FORMAT('1'/'2',T20,'* * *

$ 14,' * * * * *1 )
906 FORMAT( 1'/'2',T20,'** * *

$ ,14,' ** * ')
91) FORAT('G'/'0 SLNCRT(NP), N
920 FORMAT('C'/'0 DELTAL(NP), N

PAR COP)

1,NPERS)

I ,NPERS)

* ENTERING SHAPE ITERATION NUMBER',

RESULTS FCR SHAPE ITERATICN NUMBER'

P=1, NPERS
P=1,NPERS

:'/ (13F10.6) )
:'I /( 1OF

930 FORMAT('C'/'0',T20,'SHAPE CRITERION REQUIRES
ICN')

940 FOPMAT('',IOX,'EXCEPT THAT
$LIRED IMPROVEMENT')
ENC
SUBROUTINE SQUEEZ(NPCEL)
SQUEEZES PERIOD CAPACITY FAC
SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(CG)

PCOELA =',

10.6))
ANOTHER OUTER I TERA TI

F7.2,' PERCENT PREVENTS REQ

TOR RANGE BY CEL CN BOTH ENDS

SOPT 1621
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REAL*8 RCFACTSGTITL
CCMMCN/0PTLIM/ROFACT,SGTITL(10),ELAME(40,18),PVRATE,YBASEYSTART,

$ IAUX,I AUXM,NRCRS,NCYCT,NPERSNPERSP,NPER IN,I TERMXESX2,MXRCYC,
$PXNPERMXRC
PARCOP , PCON
$,GESFRS, ECU

INTEGER SIO
LCGICAL NPM
CCMPCN/KC/K

PS,MXNUtDS,I4XARCS, S IOT, NPIN, NPCT,RDWTPAR
VGNPMIDSTRGJFRWRDJBKWRO,NNESHMESH(15
PLM ( 18 ) , CORCT L, OP RCOR (6) ,RE JL VL ,PCDELA, TH
T,RD,WT,PARCALPARCONPARCOP
,OPRCOR
C(1)/KU/KU(I)/KL/KL(1)

CAL, PARC ON,
) ,MX IT ER
$CONIJFRPBK

COMMN/PDPEPM/S(100,15) ,ALPHA(100,15),BETAP(100,15),FINVAR(100)
INTECER*2 S
CCtMCN/SHPINF/SLNCRT(100),SLNWSR(100),ITSHP,PCWSC(10 0)
LOGICAL PCWSBD
REAL LMAXLMIN
00 62 NR=1,NRCRS
A=ALPHA(NPNR)
B=BETAP(NP,NR)
LJFRS=LOC(7,NR,0,NP)
IF(KU(LJFRS).LE.0) GO TO 60
LAUX=LJFRS-1
KFM IN= 0
KFVAX=0
C 20 J=1,JFRPBK
L AUX=L AUX+l1
KFM I =KF MI N+KL (LAUX)

20 KFMAX=KFMAX+KU(LAUX)
LI NIT=LOC (4,NR,0, NP)
KI MI N=KL (LI NI T)
KIMAX=KU(LINIT)
KA? I N=MAXO (KFMI N ,K IM IA)t
KA MA X=MINO( KFMAX,K I MAX)
LMAX=A*KAMAX-8
LMI t =A*KAMI N-B
CEL= AM IN 1(DEL, (LMA X-LM IN )/3.)
LMAX=LMAX-DEL
LMIN=LMIN+DFL
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FLACE NEW CCNSTRAINTS CN ARCS
MOX=(LMAX+B) /A
PON= (LMIN+B )/A+0.5
tXD=KF MAX-MOX
MND=MON-KFMIN
LFRS=LOC(7,NR,0,NP)
LAUX=LFR S
JF=1

30 JF=JF+1
IF(JF.GT.JFRWRD) GC TC 40
LAUX=LAUX+1
NW=KL( LAUX)
IF(MXD.LT.MW) GO TC 35
KU (L AUX) =0
tXD=MXD-Mi%
CO TO 30

35 KU(LAUX)=MW-MXC
4) LA LX=L FR S+JFRPBK

JB=JBKWRD+1
50 JB=JB-1

IF(JB.LT.1) GO TO 60
LAUX=L AUX-1
PW=-KL (LAUX)
IF(MND.LT.MW) GO TO 55
I<L(LAUX) =0
ND=MND-M%

CO TO 50
55 KL( LAUX) =-(MW-MND)
60 CONTINUE

RETURN
END
SUBROUTINE EDTSFP(SHPSOK)
EDITS SHAPE INFO. ANC PRINTS FINAL ALTERED ENERGY LIMITS
SYSOPT VERSION 12-16-12
IMPLICIT INTEGER(C,G)
REAL*8 RCFACT,SGTITL
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COMMON/OPTL IM/R CFACT, SGT ITL( 10), ELAME(40, 18) ,PVRATEYBASEYSTART,
$IAUX,IAUXtNRCRS,NCYCT,rNPERSNPERSP,NPERINITERMXESX2,MXRCYC,
$MXNPER ,MXRCRS,MXNODS,MXARC S, SIOTNPI N,NPCT,RDvWTPARCAL, PARCON,
$PAPCOP,PCCNVGNPM,ICSTRG,JFRWRDJBKWRD,NMESHMESH(15),MXITER
$vGESFRS,ECUPLM( 18) ,CCRDTLCPRCOR(6),REJLVLPCDELA,TH$CONJFRPBK

INTEGER SIOTRD,WTPARCAL,PARCONPARCOP
LOGICAL NPMCPRCOR
COMM,,N/KC /KC(1) /KU/KU( 1) /KL/KL(.1)
CCMMCN/SHPINF/SLNCRT(100),SLNWSR(100),ITRSHPPDWSBD(100)
LOGICAL PDWSBD
LOGICAL SHPSOK
CATA STAR/' * '/,$NCT/'NCT I/
WORD=STAR
IF(.NOT.SHPSOK) WORC=$NOT
KEY=0
IF(ITRSHP.LE.1) KEY=2
RITE(WT,910) KEYITPSHP
IF(KEY.EQ.2) WRITE( T,920)
WNR IT E(WT , 911 ) WORD
IF(KEY.EC.2) RETURN
RITE( WT ,930)

CO 80 NP=1,NPEPS
IF(.NOT.PDlwSBD(NP)) GC TC 8)
WRITE( WT,900)
CO 60 NR=1,NRCRS
LJFR S= LOC ( 7, NR , 0, NP)
LAUX=LJFRS-1
KFMI=0 O
KFMAX=0
CC 20 J=1,JFRPBK
LAUX=LAUX+1
KFM IN=KFMIN+KL (LAUX)

20 iF'AX=KFPAX+KU(LAUX)
LINIT=LOC(4,NR,0,NP)
KI IAA=KL(LINIT)
KIMAX=KU(LINIT)
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tFtPI N=MAXO (KFMIN,K IM IA)
KFMAX=MINC( KFMAX,KI MAX)
IFCEL=KFPAX-KFMIN
KIDEL=KIM IAX-KI MIN
FCDEL=KFDEL*100./(KIDEL+1.E-20)
IF(KU(LJFRS).LE.0) PCCEL=O.0

6. WRITE( WT,940)NPNR,KI PAX,KIMINKIDELKFMAX,KFMIN,KFDELPCDEL
80 CCNTINUE

RETURN
900 FORMAT('O')
910 FORM AT(''/IIT20,'* * * * ,14,' SHAPE ITERATIONS WERE REQUIR

$ED * * * * *)
911 FORMAT('C',T20,'* * * * * ',A4,' ALL FINAL SHAPES MET SHAPE CRITE

$RICN v * * * ')
921) FORMAT('0T40,'THEREFCRE, NC PERIODS WERE ALTERED * * * * **)

930 FORMAT('0'/'O,10X,'ALTERED PERIOD ENERGY RANGE LIMITS ( G W H E
$)'/'.;PERICD REACTOR INIT.MAX INIT.MIN INIT.DEL FINL.MAX F

$INL.MIN FINL.DEL % INIT.DEL'/)
;40 FORMAT(15,8,31l0,3X,31l0,F12.1)

END
SUBRCUTINE OPTMUM(CPTRCH,$NKPRD)
SUPERVISES PRINTING CF CPTIMUM SOLUTION
SYSOPT VERSION 12-16-72
IMPLICIT INTEGER(CG)
REAL*8 RDFACTSGTITL
CCMMON/OPTLIM/RDFACTSGTITL(10),ELAME(40,18),PVRATEYBASEYSTART,

$IAUX,IAUXMNRCRSNCYCTtPERSNPERSP,NPERIN,ITER,MXESX2,MXRCYC,
$MXNPERMXRCPS,MXNODS,MXARCSSIOTNPIN,NPCT,RCWTPARCALPARCON,
$FARCOPPCCNVG,NFM,IDSTRG,JFRWRDJBKWRD,NMESHMESH(15),MXITER
$,GESFRS, ECUPLM(18) ,CCRDTLCPRCOR(6),REJLVLPCDELATH$CONJFRPBK
INTEGER SIOTRC,WTPARCALPARCON,PARCOP
LOGICAL NPMOPRCOR
LOGICAL MIOCYC
INTEGER*2 CYCNUMCYCRAG,CYCXSCYCRMX
COIMMON/RCRDAT/DYDWN(3,15),DYUP(3,15),GWHXS(3,15),CYCXS(15),
$CYCRMX(15),CYCNUM(18l,15),CYCRNG(2,270),ICNO(15),GWHOLD(15),MWD(15)
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$,TSY(18,15),TEY(18,15),INSTAT(15),MWMIN(15),MWMAX(15),MIDCYC(15)
$,DYHOLD(15),TOY(18,15)
COMMON/FINALS/S4,SA4,SPP4,SL4,SP8
REAL*8 S4(13),SA4(13),SP4(13),SL4(13),SPE(13)
COMMCN/PRINTS/RELCSTINCCST, BALCSTNBLCST,PIRCAT,PBATCSKRDKWT
LOGICAL RELCST, INCCSTBALCST,NBLCSTPIRDAT,PBATCS
INTEGER NECIAL(18)/18*1/
REAL*8 $NKPRD,$DELWORD,$FRC$/'FORCED'/,$TRUE$/' TRUE'/,$,RTC
LOGICAL OPTRCHSTORE(6),USE( 6)
EQUIVALENCE (USE(l),RELCST)
CO 10 I=1,6
STGRE(I)=USE(I)

12) LSE(I)=OPRCOR(I)
IF(CORDTL.LE.0) GO TO 30
IF(OPPCOP(3).OR.OPRCOR(4).OR.OPRCOR(5).OP.OPRCOR(6)) GO TO 20
GO TO 30

20 CHUCE=10**6
$=0.000
CO 28 NR=1,NRCRS
CALL SET ELE(NRGHUGE)
00 26 1=1,MXRCYC

26 ELAME(3, 1)=O.0
IDt\UM=IDNC(NR)
NCYCIN=CYCRMX(NR)
IF(.NOT.MIDCYC(NR)) NCYCIN=NCYCIN+1
NCYCXS=C YCXS(NR)
ECHDOV=GWHOLD(NR)
CALL INCCRE(IDNUM,NCYCINNCYCXSNCYCIN+NCYCXSTSY( 1,NR),TEY(1,NR),

$NECPALELAMEMXESX2,ECHDOVRTCPVR,YBS,ECUPLMTOY(1,NR))
28 $=$+RTC

$NKPRD=$*1. C3*RCFACT
3) CO 40 I=1,6
40 LSE(I)=STORE(1)

IF($NKPRD.GE.1.D2l) GC TO 2)
i0EL=$NKPRD-SP8(3)
SP8 (2) =SP8 (2) +$DEL
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SP8(3)=SP8( 3)+$DEL
SP8( 8) =SP8( 8)+$DEL
SP8( 9)=SP8( 9)+ $DEL
SP8(12)=SP8(12)+$DEL
WORD=$FORC$
IF(OPTRCH) WORC=$TRUE$
RITE(WT,904) NPMIDSTRG,SGTITL

hRITE(WT,901) WORD,$NKPRD
WIRITE(WT ,907)
ImRITE(WT,90'8) (S4( I),I1=2,13),t(SA4(I),I1=2,13),(SP4(I1),1=2,13),

$(SL4(I ), 1=2,13)
6RI TE(WT,909) YBASE
WRITE(WT,910) (SP8(I),I=2,12)
WPRITE(WT ,902) WCRDSP8(12)
RETURN

901 FORMAT('O'/'0',T20,'AT ',A6,' OPTIMUM, $NKPRD = *,-3PF15.3,
$' THCUS. P.V. DOLLARS'/'O')

902 FURMAT('0'/ '0,T20, 'A*T ' ,A6,' OPTIMUM, TCTAL
$-3PF15.3,' THOUS. P.V. DOLLARS'/'O')

9J4 FORMAT( 1'/'O'/,1.)X,,'r\PM+IDSTRG =',L2,T5X,
$'STRATEGY TITLE: ',1-', 10A7,1H')

907 FORMAT('O --------- M E G A W A T T
$4X, '-------------------G EGAWA TT-HOUR S EL ECTR
$ /' PERIOC MWINST MWONLN MWPEAK MW
$4X,'EXPDEM EXPGEN XNKGEN XNNGEN
1)

908 FORMAT' OTOTAL
$ 'OAVG.
$ 'OPVTOTL
$ 'OLVAVG.

909 FORMAT('O'/'0',
$ED TC YBASE =I,
$ ' PERIOD
$US $NNSUS
$L$I)

910 FORMAT ('CPVTOTL

:',5F8.0,F8.4,6F11.2/
:',5FE.CF8.4,6F11.2/
:',5F8.0, F8.4, 6F 11.2/
:' ,5F8.0, F8.4 ,6F11.2/)
T20,'ALL COSTS IN THOUSANDS 0
F9.4,' YEARS'/

PRC)$ $NKPRD $NNP
$SBTCT $NKTOT $NNT

SYSTEP COST ='

S ---------- FRACT. ',
IC-------------------
MRGN MWSPIN PLOFL',

EXPEMR UNSRVD'

F DOLLARS PRESENT VALU

PC
OT

SUSD$
EMRP$

$NKS
TCTA

* ',- 3P1lF 11.2)
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C
C

2 LOC=LOClX+CYCNUM(CR)
PETURN

3 LCC=LOC2 X+(CYCNUM(C,R)-1
RE T URN

4 IF(P.GT.NPERS) GO TO 44
L'JC=LOC3X+ (P-i)*NPERSP+P
RETURN

44 LCC=LOC3X+RvNPERSP
RE TURN

5 LCC=LOC4X+1
RET URN

6 LJC=LJC5X+P
RETURN

)*IAUXM+1

END
FUNCTION LOC(ITYPE,R,C,P)
CALCULATES LOC AS PCINTER TO DESIRED ARC
SYSOPT VERSION 12-16-72
IMFLICIT INTEGER(C,G)
PEAL*8 ROFACTSGTITL
CCMMOfN/OPTLIM/RDFACT,SGTITL(10),ELAME(40,18) ,PVRATE,YBASEYSTART,

$IAUX,I AUXM,NRCRSNCYCT, NPERS ,NPERSP, NPERIN, I TER, MXESX2,MXRCYC,
$MXNPERMXRCRS,MXNODSXARCSSIOTNPINNPCT,RC,WTPARCALPARCON,
$PARCCPPCONVG,NPM,ICSTRC,JFRWRDJBKWRD, NPESHMESH(15),MXITER
$,GESFRS,ECUPLM(18),CORDTL,CPRCOR(6),REJLVLPCDELATH$CONJFRPBK

INTEGER SIOT,RDWTPARCAL, PARCONPARCOP
LOGICAL NPMOPRCOR
LOGICAL MIDCYC
INTEGER*2 CYCNUMCYCRNG,CYCXS,CYCRMX
COMMN/RCRDAT/DYOWN (3,15 ), CYUP(3,15) ,GWHXS(3, 15) , CYCXS ( 15),
$CYCRMX(15),CYCNUM(18,15),CYCRNG(2,270),ICNO(15),GWHOLD(15),MWD(15)
I,T SY(18,.15) ,TEY (18,.15), INSTA T(15), MWMIN( 15), MWMAX (15) ,MI DCYC (15)
$,DYHOLD( 15) ,TOY(18,15)
INTEGER R,C,P
GO TO (1,2,3,4,5,6,7,8,9,1J), ITYPE

1 LOC=CYCNUM(C,R)
RETURN
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7 LIC=LOC6X+( (P-1)*NPCRS+R-1)*JTOTAL+1
PFTURN

3 CONTINUE
9 LOC=LOC9X

RE TUPN
C INITIALIZATION

10 JTOTAL=JFRWRD+JBKWRC
LOClX=NCYCT
LOC 2X=LOC IX+NC YC T
LOC3X=LOC2X+IAUXM*NCYCT
LOC 4X= L CC3 X+NPE R SP*NR C R S
LOC5X=LOC4X+3
LCC6X=LOC5X+NPERS
LOC7X=LOC6X+JTOTAL*NRCRS*NPERS
LOC9X=LOC7X+1
LOC=C
RETURN
END
SUBRCUTINE OPERR(SUEFJERR)

C WRITES OUT ALL ERROR MESSAGES FOR SYSOPT
C SYSCPT VERSIGN 12-16-72

IMPLICIT INTEGER(CG)
REAL*8 RCFACTSGTITL
COMMCN/PTLIM/RDFACTSGTITL(10),ELAME(4J,18),PVRATE,YBASEYSTART,

IIAUXIAUXMNRCRSNCYCTNPERSNPERSPNPERIN,ITER,MXESX2,MXRCYC,
$8XNPEPMXRCRSMXNOS,MXARCSSIOTNPIN,NPCT,RDWTPARCALPARCON,
$PARCCPPCONVGNPMIDSTRGJFRWRDJBKWRC,NMESHMESH(15),MXITER
$,GESFRSECUPLM(18),COROTLCPRCOR(6),REJLVLPCDELATH$CONJFRPBK

INTEGER SIO TRDWTPARCAL,PARCONPARCOP
LOGICAL NPMOPRCOR
INTFGER ERRCOD
REAL*8 SLBR,$QLIT$
CATA NPR INT/0/,$QUIT$/' QUIT'/,ERRCOD/O/,MAXERR/16777216/

C PAXERR=16**6
REAL*8 CCl(11)/'C)FMIN AND CDFMAX DATA APE INCCNSISTENT IN SOME SE

$NSF I/
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REAL *8 C02( 11) /'M WDTOT.NE.LVLMAX-L VLMI N . CR. MW. GE. PEM IN
'/

RE AL*8 C03( 11) /'REAC TCR CR STRATEGY ID'' S DJ NCT AGREE
$ '/I

PEAL*8 C04(11)/'NtJMBER OF ARCS INPUT TO 0-0-K AND ARC EQ. DO NOT A
$CREE '/

REAL*8 C05(11)/#MARGINAL COST CURVE NOT MONOTCNICALLY DECREASING
$

REAL*8
$LTS ICE

RE AL*8
$

I/
C06( 11)/'IMPROPER INPUT SEQUENCE C/OR CARD; INPUT OPTICNS
CURRENT LIMITS 'I/
C07(11)/'MXITER REACHED WITHOUT CCMPLETE CCNVERGENCE

I/
REAL*8 C09(11)/'$NUCL NCT CONVERGING RAPIDLY TC MINIMUM ;

$UME COST HAS CONVERGED FOR THIS GMESH '/
FEAL*8 C10(11)/'INCORE AND SYSOPT USING DIFFERENT P.V.RATES

$ I/

REAL*8 C11(11)/'O-C-K NETWORK SOLUTION IS TRULY OUT-OF-KILTER
$ I/

RE AL *8
$tD IN

REAL*8
$

C12(11)/'PREMATURE END TO SYSINT DATA ;
'I/

C13(11)/' CYCLE ENERGY GREATER THAN I
'/

IFRP=JERR
109 ERRCCD=MCD(ERRCOD,MAXERR)

ERRCCD=16*ERRCOC+IERR
APRI NT=NPRI NT+1
CO TO ( 1,2, 3,4,5,6, 7,E,, 10,11, 12,13) ,IERR

1 WRIPTE(WT,900)
GO TO 1100

2 vNRITE(WT,90)
GO TO 1000

3 WR I T E ( WT , 900)
GO TO 1000

4 WRITE(WT,900)
CO TO 1000

5 WRITE(WT,900)

SUBR ,ERRCOC,CO 1,NPRINT

SUBR ,ERRCOD,C02,NPRINT

SUBR, ERRCOD,C03,NPRINT

SUBRERRCOCC,C4,NPRINT

SUFR,ERPCOCC05,NPRINT

SOME PERICDS

TS UPPER

O

ASS

NOT R E

LIMIT

$
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RETURN
6 WRI TE( WT ,90J)

GO TO 1000
7 WRITE(WT,900)

RET RN
8 WRITE(WT,908)

CALL ICERRS('
STOP

9 WRITE(WT,900)
RE TLRN

10 WRITE(WT,900)
GC TC 1000

11 WRITE(WT,900)
CC TC 1000

12 1RITE(WT,900)
CO TC 10O

13 hRITE(WT,900)
RE TURN

1000 IPRINT=NPRINT+1
ARITE(WT,999) NPRIT
SUBR=$QUIT$
IERP=8
GO TO 100

900 FORMAT(/'
$11A8,T131,'

908 FORMAT(/' '
$'RCCPTN ENC
$'THER FATAL
$' PRINTEC A
$'INCLUDING)
$T131.,'I',/

999 FORMAT(/' '
$' INVALICAT
4' TERMINATI
$T131,' ' ,/,

END

SUBR, EPRCOC, C36, NPRINT

SUPR, ERRCCC, C07,NPRINT

SUBR
OPERR

,ERRCOD,NPRINT,NPRINT
',8)

SUER, ERRCOC,C09,NPRINT

SUBRERRCOD,ClONPRINT

SUBR,ERRCCD,CilNPRINT

SLBR, ERPCOCC12,NPRINT

SUER,ERPCCC,Cl3,NPRINT

,130('-')/,' 1 S
|',/,' ',130('-'
,130('-')/,' S
OUNTEREC STCP CA

ERROR' , T131,'
TOTAL OF ',1,'

THIS CNE',
' ',130('-'),02)

,130('-')/,' I P
E FURTHER CCMPUT

UBR. ',

),12)
UBR. ',

RD, OP
1'/' 1

ERROR

A6,' HAS ERRCOD = ',Z8,#

A6,' HAS ERRCOD
ERR CALLED ONCE
DURING THIS ENT
MESSAGES JUST L

REVIOUS ERROR SEVERE
ATIONS. THEREFORE,',

= '

TOO
IRE
I KE

: I

,Z8,' : ,
OFTEN OR 0',

RUN, OPERR',
(AND ',

ENOUGH TO',

EXECUTION.',
,130 ('-' ) , 12

SOPT1981
SOPT1982
SOPT1983
SOPT 1984
SOPT1985
SOPT1986
SOPT1987
SOPT1988
SOPT1989
SOPT1990
SOPT 1991
SOPT1992
SOPT1993
SOPT1994
SOPT1995
SOPT1996
SOPT1997
SOPT1998
SOPT 1999
SOPT2300
SOPT2001
SOPT2002
SOPT2003
SOPT2004
SOPT2005
SOPT2006
SOPT2007
SOPT2008
SOPT2009
SOPT2010
SOPT2011
S0PT2012
SOPT2013
SOPT2014
SOPT2015
SOPT2016
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C;
C
C
C
C.
C

** ** * * **** *4C)~***** **** **** * *******

* *

ASSEMBLER LANGUAGE SUBRCUTINE ERASE
WRITTEN BY JOHN W. KICSON

MIT DEPARTMENT OF METEOROLOGY

TC SET ELEMENTS
ARE ARRAY NAMES
EXPRESSICNS GIV

OF REAL OR INTEGER ARRAYS
AND NI,N2,... ARE INTEGER
ING THE ARRAY SIZES.

TO ZERO. AlA2,...
VALUES OR

0
0

* 0
*0
* 0
*0
*0
*0

*0

SUPFCUTINE CMPTIM(LVENT)
PRINTS TIME OF INTRA-SUBROUTINE TRANSFERS OR CATE&TIME
SYSOPT VERSION 03-06-72
"TIMING" IS AN P.I.T. INTERNAL SUBROUTINE THAT RETURNS THE CPU TIME
IN HUNDRECTHS OF SECONDS.
"WHEN" IS AN M.I.T. INTERNAL SUBROUTINE THAT RETURNS THE DATE AND
TIME IN THE FOLLOWING 5A4 FORMAT: MM/DD/YY HR*MI*SS.FF
CIP'ENS ION A()
DOUBLE PRECISION LV,EAT
INTEGER TNOWTSTARTTREL
INTEGER kT
CALL TIMING(TNOk)
TREL=TNOW-T START
IF(TREL.LT.0) TREL=TREL+8640)000
TI=TREL/100.
WRITE(WT,10)LV,ENT,TI
RETURN
ENTRY STRTIM(WT)
CALL TIMING(TSTART)
CALL WHEN(A)
IARITE(WT ,20) A
RETLRN

10 FORMAT(/,T103,29(*'),/, T103,* LV. ',AtT131,'*' ,/,
$T103,'l* ENT. ',jA6,' @1',F7.2,' SEC. **,/,T103,29('1**),/)

2.) FORMAT(/T103,29('*') /T103,'* DATE = ',2A4,Tl31,'*'/
$T103,'* TIME = ', 3A4,T131, '*'/T103,2s('*') /)

END

SOPT2017
SOPT2018
SOPT2019
SOPT2020
SOPT2021
SOPT2022
SOPT2023
SOPT2024
SOPT2025
SOPT2026
SOPT2027
SOPT2028
SOPT2029
SOPT2030
SOPT2031
SOPT2032
SOPT2033
SOPT2034
SOPT2035
SOPT2036
SOPT2037
SOPT2038
SOPT2039
SOPT2040
SOPT2041
SOPT2042
SOPT2043

0000000 SOPT2044
0000010 SOPT2045
0000011 SOPT2046
0000012 SOPT2047
0000014 SOPT2048
0000016 SOPT2049
0000020 SOPT2050
0000030 SOPT2051
0000040 SOPT2052
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I.E. - CALL ERASE(C,26*31,N,7*31,E,254)

***

ERASE

El

E2

RETN

START 0
SAVE (14,12),,*
BALR 12,0
USING *,12
SR 0,0
SR 2,2
L 6,=F'41
L 3,0(2,1)
L 4,4(2,1)
L 7,0(4)
SLA 7,2
SR 7,6
SR 5,5
ST 0,0(5,3)
BXLE 5,6,E2
LTR 4,4
Bm, RETN
A 2,=F'81
c El
RETURN (14,12),T
END

* *;* 4 ***********************

** 00000050
* 00000060

** 00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280

** 00000290

SOPT2053
SOPT2054
SOPT2055
SOPT2056
SOPT2057
SOPT2058
SOPT2059
SOPT2060
SOPT2061
SOPT2062
SOPT2063
SOPT2064
SOPT2065
SOPT2066
SOPT2067
SOPT2068
SOPT2069
SOPT2070
SOPT2071
SOPT2072
SOPT2073
SOPT2074
SOPT2075
SOPT2076
SOPT2077
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PARAMETER LIST INCEX=0

LCAD 3 WITH ARRAY ADDRESS
LOAD 4 WITH ADDRESS OF ARRAY LENGTH
LCAD 7 WITH ARRAY LENGTF-1 TIMES 4

STORE ZERO

TEST FOR LAST ARGUMENT IN LIST

PICK UP NEXT ARGU'ENT PAIR

ON

02



C CUT-CF-KILTER MAIN PRCGRAM
C CNLY DIMENSION STATEMENTS IN THIS PROGRAM NEED BE CHANGED TO
C ALTER MAXIMUM ARCS OR PAXIMUM NODES ALLCWABLE

C IF A = MAXIMUM ARCS AND N = MAXIMUM NODES ,
C KLKCKUKX, AND JI ARE DIMENSIONED PY 'A'
C NL(N),NN(2*N),NP(N),IJ(OAX(NA-2*(N+1))),IL(N+1),JL(N+1)

CIMENSION KL(2000),KC(2000),KU(2000),KX(2000),NL(1000)
DIMENSION NN(2000),NP(1000), IJ(1000),IL(1001),JL(1001),JI(2000)
CIMENSION LC(9),KA(18,2),KQ(9)
CCMMCN /KL/KL/KC/KC/KU/KU/KX/KX/NL/NL/NN/NN/NP/NP/IJ/IJ/IL/IL
COMMON /JL/JL/JI/JI
COMMCN /M/M/N/N/LER/LER/KAT/KAT/KOR/KOR/KTER/KTER
COMMCN /MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K

C SYSTEM INPUT DEVICE
KI=5

C S'STEM OUTPUT DEVICE
KO=6

C CARD PUNCH
KQ(l)=7

C RESERVED OUTPUT TAPE
<Q(2)=3

C RESERVED INPUT TAPE
K0(3)=2

C MAXIMLM ARCS
KQ(4)=2000

C MAXIvLM NODES
KQ(5)=1000
KQ(6)=
KQ ( S)=:)
IFIN=32767
CALL MAINE
STOP
ENO
SLBROUTINE MAINE
CIMENSION LC(9),KA(18,2),KQ(9)
COMMCN/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)

OKFOO060
OKF00080

OKFOO100
OKF00110
OKFOO120
OKFOO130
OKFOO140
OKF00150
OKFOO160
OKFOO170
OKFOO180
OKFOO190
OKFOO200
OKF00210

OKF00230

OKF00250
0KF00260
OKF00270
OKF11030
OKF11040
OKF11050
OKFOO030
OKF10990
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00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

0001
0002
0003
0004
0005
0006
0307
0)08
0009
0010
0011
0012
Of)13
0014
0015
0016
0017
01)18
0019
0020
0021
0022
0023
0024
0025
0326
0027
0328
0029
0030
0031
0032
0033
0034
0035
036



COPPCN/NA/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)./JI/JI(l)
CCMMCN /M/M/N/N/LER/LER/KAT/KAT/KCP/KOR/KTER/KTER
COMMON /MIN E/M INE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KC/KQ/KC/K/K
CIMEASION KE(101)
CALL STRTIM(KO)

100 CALL CMPTIM(' ','DATAIN')
CALL PRECAT(KS)
IF(KS.EQ.-1) RETURN
IF(KS.NE.0) GO TO 1
CALL ARCASY(L)
CALL MAKEJL
IF(LER.GE.KQ(4)) GO TO 88
LER=LER*KQ(8)
IF(L.EQ.0) GO TO 1
CALL NODASY

I CALL REACER
CALL TRANSL
IF(LER.NE.0) GO TO 88
CALL CMPTIM('CATAIN','ALGOR.')
I=c
KUP=1
KE(IC1 )=C
CO 26 K=1,N
IF(K.LT.KUP) GO TO 38
I=I+1
KUP=LDECR(IL(I+1))

38 CALL KILTER(I )
IF(LER.EQ.)) GO TO 26
IF(LER.NE.107) GO TO 24
KE(101)=KE(101)+1
KF=KE(101)
IF(KE(101).GT.100) GO TO 26
KE(KF)=K

26 CONTINUE
C CCMPLETED CHECKING ALL ARCS

LER=0

OKF11020
OKF00070

OKF00290
OKF00300
OKF00310
OKF00320
OKF00330
OKF00340
OKF00350
OKF00360
OKF00370
OKF00380

OKF00390
OKFOO400
OKF00410
OKF00420
OKF00430
OKF00440
OKF00450
OKF00460
OKF00470
OKF00480
OKF00490
OKFOO500
OKF00510
0KF00520
OKF00530
OKF00540
OKFOO550

PAGE

00K
0K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
053

0054
0055
0056
0057
9358
0059
0060
0061
0062
0063
0064
0065
0366
0067
0068
0069
0070
0J71
0072

-4
0
0

2



99 CALL CMPTIM('ALGOR.','CUTPUTI) 00K 0073
CALL QUTPUT(KE) 00K 0074

CALL CMPTIM'0OUTPUT',' 00K 0075

C CYCLE BACK FOR ANOTHER RUN OKF00570 00K 0076

GO TO 100 OKF00580 00K 0077

24 IRITE(KO,54) OKF 0590 00K 0078

LL=LADDR IJ (K)) OKFOO600 00K 0079

WRITE(KO,55) NN(2*1I-1),NN(2*I),NN(2*LL-1),NN(2*LL) OKFOO610 00K 0080
GO TO 99 OKF00620 00K 0081

88 %RITE(KO,56) OKF00630 00K 0082
STOP OKF00640 00K 0083
ENTRY OOKMAN 00K 0084

C ENTRY TO OCK FROM CTI-ER CODES (WHICH HAVE ALREADY CALLED STRTIM) 00K 0085

CCMMON/OCKCCM/KIX,KCX,KQIX,KQ2X,KQ3X,KQ4X,KQ5X 00K 0086

KI=KIX 00K 0087

IKO=KCX 00K 0088
KQ(I)=KQlX 00K 0089
KQ(2)=KC2X OOK 0090
KQ(3)=KQ3X 00K 0091
KQ(4)=KQ4X 00K 0092 0

KQ(5)=KQ5X 00K 0093
KQ(6)=0J 00K 0094
KQ(9)=O 00K 0095
IFIN=32767 00K 0096
IF(.TRUE.) GO TO 100 00K 0097

STCP 00K 0098
51 FORMAT(A4) OKF00650 00K 0099
54 FORMAT(24HOOVERFLOW IN NODE PRICES) OKF00660 00K 0100
55 FORMAT(23HORUN TERMINATED AT ARC ,4A4) OKF00670 00K 0101
56 FORMAT(37HORUN TERMINATED DUE TO ERRCRS IN DATA) OKF00680 00K 0102

ENE OKF00690 00K 0103
C*********** 00K 0104

SUERCUTINE PREDAT(KS) OKFOO73O 00K 0105
CI PENS ION LC (9) ,KA(18,2) ,KQ(9) OKFOO760 00K 0106
COMMON/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1) 00K 0107

CCMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(1)/[L/IL(1)/JL/JL(1)/JI/JI(1) 00K 0108
PAGE 3



COMMON /M/M/N/N/LER/LER/ KAT/KAT/KCR/KOR/KTER/KTER
CCMMCN /MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K

INTEGER PALSE , SAVE ,READYCARDS, TAPE ,SKI F,TRANSP, ARCS, ENC
CATA PAUSE, SAVE,READY/4HPAUS,4HSAVE,4HREAD/
EATA CARDSTAPESKIP,TFANSP/4HCARD,4HTAPE,4HSKIP,4HTRAN/
CATA ARCS/4HARCS/
CATA END/4HEND /
WRITECKO ,3)
CALL ERASE(LC,9)
KOR=KQ(3)
KQ(7)= O
I<S=

21 READ(KISC) (KA(I,1)
WRITE(KO,91) (KA(I,1
IF(KA(1,1).EQ.PAUSE)
IF (KA( 1, 1) . EQ. SAVE)
IF(KA(1, 1).EQ.REACY)
GO TO 21

C END JOB
180 IF(KQ(6).EQ.0) GO TC

K2=KQ(2)
%RITE(KO,98)
END FILE K2
C0 TO 183

182 hRITE(KO,99)
183 KS=-1

FETURN
SAVE

KS= I
FETLPN

,I=1 ,18)
),I=1, 18)

GO TO 180
GO TO 50
CO TO 100

182

READY
100 IEA=KQ(4)

IEN=KQ(5)
IEJL=MAXO(IFN+1, IEA-2*IEN- 1)
CALL ERASE (KL, IEA,KC, IEA,KU, IE A,KX, I EA, IJ, IE A,JI, IEA,

INL , IENNN, 2*IENNP ,ENI L , IE N+l .JL, I EJL )

OKF00790
OKF00800
OKF00810
OKF00820
OKF00830
OKF00840

OKF00870
OKF00880
0KF00890
OKF00900
OKFOO910
OKF00920
OKF00930
OKF00940
OKF00950
OKF00960
OKF00970
OKF00980
OKF00990
OKF01000
OKFO1010
OKF01020

OKFO1040
OKFO1050
OKF01060
OKFO1070
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C

C

50
8

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
J143
0144

0j



N~= 0,

LER=0
KQ( 8)=1

3 REAC (K I, 90) (KA( I, 1), I=1,18)

%R IT E(KO,91 ) ( 1),I 1 8)
IF(KA(1,1).EQ.CARDS) GO TO 1
IF(KA(1,1).EQ.TAPE) GO TO 6
IF(KA(1,1).EQ.SKIP) GC TO 6
IF(KA(1,1).EQ.TRANSP) GO TO 1
GO TO 3

14 KQ(8)=0
CO TO 3

6 IF(KQ(9). NE.0) GO TO 7
KQ(9)= 1
REWIND KCR

7 IF(KA(1,1).EQ.TAPE) GC TC 4
CO TO 13

1 KOR=KI
4 RE AD(OR1,90 ) (K A ( I , ),I= , 18)

4RITE(KO,91) (KA(I,1),I=1,18)
IF(KA(1,1).EQ.ARCS) GC TO 8

TITL E
00 10 I=1,18

13 KA( I ,2)=KA( I, 1)
CO TC 4

13 PEAD(KOR,92) KA(l,1
IF (K A ( l, 1) . EQ. END )
GO TC 13

9) FORMAT(18A4)
91 FORMAT(IF018A4)
92 FORMAT(A4)
93 FORMAT (1IH1)
93 FORMAT (31HORESERVEC
99 FOPMAT(34HONO RESER

ENC

)
GO TO 3

4

OKFO1099
OK F01 100
OKFO1 101
OKFO1110
OKFO1120
OKF 01130
OKFO1140
OKFO1150
OKFOI160
OKFO1170
OKF01180
OKFO1190
OKFO1200
OKF01210
OKF01220
OKF01230
OKFO1240
OKF01250
OKF01260
OKF01270
OKF01280
OKF01290
OKFO1300
OKF01310
OK FO1320
OKFO1330
OKF01340
OKFO1350
OKF01360
OK FO1370
OKF01380
OKF01390

OKF01400
OKFO1410
OKF01420

PAG

TAPE HAS BEEN WRITTEN/// HO)
VED TAPE HAS BEEN WRITTEN)

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
OOK
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

5

0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180

0

C

E



SUBROUTINE ARCASY(LL)
DIMENSION LC(S),KA(18,2),KQ(9)
[IMENS ION KE(2),KF(2),KD(2)
COMMDN/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)
COMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(I)/IL/IL(1)/JL/JL(1)/JI/JI(1)
CCMMGN /M/M/N/N/LER/LER/KAT/KAT/KOR/KOR/KTER/KTER
COMMON /MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K

INTEGER END,NODESBLANK
DATA END,NODESPLANK/4HEND ,4HNODE,4H /
LER=0
<Ft1)=0

KF (2)=0)
IV= 0
6=1

6 READ(OR,90)
11,4)
IF (KD( 1)
IF(KD( 1)
IF (KO 1)

GO TO 4

.EQ.FND) GC TO I

.EQ.NODES) GO TO
.EQ.BLANK) GO TO

2
3

NO NCDES TO 00
I LL=0

GO TO 5
NODES TC DO

2 LL=2
WRITE(KO,94) K(1),KD(2)

5 N=N-1
99 IF(LER.EQ.0) GO TO 101

9Q(8)=2
101 RETURN

3 IF(
KC
IU
KL

ARC TO FILE
KE(1) .EQ.BLANK
N)=KA( 1,1)
N)=KA (2, 1)
N)=KA(3,1)

.AND.KE (2). EQ. BLANK) GO TO 6

OKF01460
OKF01490
OKFO1500

OKF01530
OKF01540
OKF01550
OKF01560
OKF01570
OKF01580
OKF01590
OKF01600

I=0KF01610
OKF01620
OKF01630
OKF01640
OKF01650
OKFO1660
OKFO1670
OKF01680
OKF01690
OKF01700
OKFO1710
OKFO1720
OKF01730
OKF01740
OKF01750
OKF01760
OKF01770
OKF01780
OK FO 1790
OKF01800
OKF01810

PAGE

C *-4*-,t*U***************************************

C

C

C

6

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
OOK
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
OOK
00K

0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216

-4
Q

KD(1),KD(2),KE(1),KE(2),IJ(2*N-1),IJ(2*N),(KA(I,1),



KX(N)=KA (4,1) OKF01820

IF(KE(1).FQ.KF(1).AND.KE(2).EQ.KF(2)) GO TO 9 OKF01830

IF(NCDENC(KE(1),KE(2)).EQ.M+1) GO TO 11 OKF01840
WRITE(KO,91) KE(1),KE(2),IJ(2*N-1),IJ(2*N) OKF01850

GO TO 12 OKF01860

11 KF(1)=KE(l) OKF01870
KF(2)=KE(2) OKF01880

IF(U.GT.KQ(5)) GO TO 23 OKF01890
P= F+1 OKFO1900

NN (2*M-1) =K E ( 1) OK F01910
NN(2*M)=KE(2) OKF01920
NL(M)=N OKF01930

9 IF(N.GT.KQ(4)) GO TO 20 OKF01940

N=N+ 1 OKF01950
GO TO 6 OKF01960

4 WRITE(KO,92) N OKFO1970

12 WRITE(KO,93) KD(1),KD(2),KE(l),KE(2),IJ(2*N-1),IJ(2*N),(KA(I,1),I=0KF01980
11,4) OKF01990

LER=LER+ 1 OKFO2000
GO TO 6 OKFO2010

20 WRITE(KO,89) OKF02020
25 LER=100)C OKF02030

GO TO 99 OKF02040
23 WRITE(KO,88) OKF02050

GO TO 25 OK F02060
88 FORMAT(27HOTOO MANY NCDES IN THIS RUN) OKF02070
89 FORMAT(26HJTOO MANY ARCS IN THIS RUN) OKF02080

90 FORMAT(3(A4,A2),2X,4110) OKF02090

91 FORMAT(36HOSOURCE NODES ARE NOT ADJACENT, ARC 4A4) OKFO2100
92 FORMAT(36HOCARD PUNCHING ERROR IN ARC CARD NC.,16) OKFO2110
93 FO FM AT (1H03 ( A4, A2) , 2X, 4110) OKF02120
94 FORMAT(1HCA4,A2) OKF02130

END OKF02140
C ***************************************************************

SUBROUTINE MAKEJL OKF02180

CIMENS ION LC(9 ),KA( 18,2) ,KQ(9) OKF02210
PAG

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
OOK
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

E

0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252

7

0



COMMON/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(l)
CCPMMN/NN\/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI(1)
COMMON /M/M/N/N/LER/LER/KAT/KAT/KOF/KOR/KTER/KTER
COMMON /MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K

NUMBERS TO IJ LIST
1=1
00 1 L=1,N

3 K=NODENO(IJ(2*L-1),IJ(2*L))
IF(K.LE.M) GO TO 6
IF(M.GE.KQ(5)) GO TO 9
M=M+1
NN (2*M-1)=I J (2*L-1)
NN(2*M)=IJ( 2*L)
IJ (L )=K
NL (l)=N+1 I
LER=LER+ 1

19 IF(NL(I+1).GT.L) GO TO
I=I+1
IF(I.LT.M) GO TO 19

18 WRITE(KO,90) NN(2*1-1)
GO TO 1

6 IJ(L)=K
1 CCNTINUE

C FIX IL LIST
CC 8 I=1,MP
CALL PLACE(NL(I),IL(I)

8 NL ( I )=0
CALL PLACE(N+1,IL(P+1)

C COUNT J-S
CO 10 J=1,N
I=LACDR( IJ(J))

10 NL(I)=NL (I)+1
FORM JL LIST

KK= 1
CALL PLACE(KKJL(1))
CO 20 I=1,M

,NN(2* 1 ),NN(2*M- 1),NN( 2*M)

C

00K
00K
00K

OKF02240 00K
OKF02250 00K
OKF02260 00K
OKF02270 00K
OKF02280 00K
OKF02290 00K
OKF02300 00K
OKF02310 00K
OKF02320 00K
OKF02330 00K

00K
OKF02350 00K
OKF02360 00K
OKF02370 00K
OKF02380 00K
OKF02390 00K
OKF02400 00K
OKF02410 00K

00K
OKF02430 00K
OKF02460 00K
OKF02470 00K
OKF02480 00K
OKF02490 00K
OKF02500 00K
OKF02510 00K
OKF02520 00K
OKF02530 00K
OKF02540 00K
OKF02550 00K
OKF02560 00K
OKF02570 00K
OKF02580 00K

PAGE

0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288

8

O

C



IF (NL(I). NE.0) GO TO 23
mR I TE( KOv91) NN (2*I1- 1),vNN( 2*I 1
LER=1

23 KK=KK+NL (1)
NL (I)=LDECR (JL (I))

20 CALL PLACE(KKJL(I+1))
NL(M+1)=LDECR(JL(M+1))

START OF JL LIST SEGMENT MO
CCMPTE JI LISTS

1=0
LUP=1
DO 22 L=1,N
IF(L.LT.LUP) GO TO 25
I=I+1
LUP=LDECR(IL(I+1))

25 I=LACDR(IJ(L))
J=NL (K)
JI (j )= I
CALL PLACE(L,JI(J))

22 NL(K)=NL(K)+1
END OF JL LIST SEGMENT mc

VED TO MAKEJL

VED TO MAKEJL

FRCM TRANSL

OKF02590
OKF02600
OKF02610
OKF02620

OKF02630

OKF04350
OKF04360
OKF04370
OKF04380
OKF04390
OKF04400
OKF04410
OKF04420
OKF04430
OKF 04440
OKF04450
OKF04460

FRCM TRANSL
100 RETLRN OKF02640

9 LER=100000 OKF02650
iRITE(KO,92) OKF02660

GO TO 100 OKF02670
90 FORMAT(51-OARC ,4A4t,18 IS A DEAD END ARC) OKF02680

91 FORMAT(21HONO ARC ENDS AT NODE ,2A4) OKF02690
92 FORMAT(27HOTOO MANY NODES IN THIS RUN) OKFO2700

END OKF02710

SUBR CUTINE NODASY OKF02750
DIVENSION LC(9),KA(18,2),KQ(9) OKF0780
DIMENSION KE(2),KD(2) OKF02790
CC!0MCN/KL/KL(1)/K
COMMON/NN/NN(1)/N
CCMM ON

P
/KC (1 )/KU/
/NP(,1)/IJ/

/M/M/N/N/

KU(1)/KX/KX(1)/NL/NL(1)
IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI(1)
LER/LER/KAT/KAT/KOR/KOR/KTER/KTER

PAGE 9

C

C

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
3315
0316
3317
0318
0319
0320
0321
0322
0323
0324

0



COMMON /MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/I<1/KI/KO/KC/KQ/KQ/K/K OKF02820
INTEGER ENC,BLANK OKF02830

EATA END,BLANK/4HEND ,4H / OKF02840

1=0 OKF02850
3 I=I+1 OKF02860

REAO(KOR,90) KD(l),KD(2),KE(1),KE(2),KA(1,1) OKF02870

IF(KC(1).EQ.END) GO TO 99 OKF02880
IF(KD(1).NE.BLANK) GO TO 2 OKF02890

IF(KE(1).EQ.BLANK) GO TO 3 OKF02900
K=NCDEN0(KE(1),KE(2)) OKF02910
IF(K.GT.M) GO TO 6 OKF02920

NP(K)=KA (1,1) OKF02930

GO TO 3 OKF02940
6 WRITE(KO,91) IKE(1),KE(2) OKF02950

10 LER=LER+1 OKF02960

GO TO 3 OKF02970
2 %RITE (K,92) IKD(1),KC(2),KE(1),KE(2),KA(1,1) OKF02980

GO TO 10 OKF02990
99 RETURN OKFO3000
90 FORMAT(2(A4,A2),8X,Il0) OKFO3010
91 FORMAT(5HOCARD 16,6H NODE A4,A2,12H NOT IN ARCS) OKF03020
92 FORMAT(37HOCARC PUNCHING ERROR IN NODE CARD NO.I6/1H 2(A4,A2),8X,1OKF03030

110) OKF03040
END OKF03050

C*****-3******4 ****-*,*****,**********.****************4****************************
SUBROUTINE READER
CIMENS ION LC(9),KA(18,
COMMON/KL/KL(1)
COMMON/NN/NN(l)
CCMMYCN
COMMON /MINE/MI

INTEGER TAPEI,

2) ,KQ( 9)
/KC/KC(1)/KU/KU(1)/KX/KX( 1)/NL/NL(1)
/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI()

/M/I/A/N/LER/LER/KAT/KAT/KOR/KOR/KTER/KTER
NE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KC/KQ/KC/K/K
PUNCH1,NODES1, PRINT1

INTEGER AL TEROUTPUTCCM#PUT ,TAPEPUNCHNODESPRINT
CATA TAPE1,PUNCH1,NODESIPRINT1/4HAPE ,4FUNCH,4HODES,4HRINT/
CATA ALTEROUTPUT,CCMPUT/4HALTE,4HOUTP,4-COMP/
DATA TAPEPUNCHNODES,PRINT/4H TAP,4H PUf',4H NCD,4- PRI/

OKF03090
OKF03120

OKF03150
OKF03160
OKF03170
OKFO3180
OKF03190
OKF03200

PAG

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
OOK
00K
00K
00K
OOK
00K
00K

E 10

0325
)326
)327
0328
)329
)330
)331
)332
)333
)334
)335
)336
)337
)338
)339
)340
3341
3342
)343
3344
)345
3346
3347
)348
0349
3350
3351
3352
3353
0354
3355
0356
0357
0358
3359
0360

0



5 FEAC(KI,95) (KA(I,1)
IF(KA( 1, 1).EQ.ALTER)
IF(KA(1, 1).EQ.OUTPUT
IF(KA(1, 1). EQ.CCMPUT
WRITE(KO,96) (KA(I,1

CO 15 I=1,18
15 KA(I,2)=KA(T,1)

CC TO 5
18 4fRITE(KO,97)

INRITE(KO,96) (KA(I,1
LER=1
IF(KA(1,1).EQ.CCMPLT

20 REA(KI,90) (KA(I,1)
IF(KA(1,1).EQ.ALTER)
IF(KA(1, 1).EQ.OUTPLT
IF(KACl1,1).EQ.CCMPUT
GO TO 200

C COMPUTE
111 RITE(KO,93) N,M,KQ
999 RETURN

,1=1 ,18)
GC TO 18

GO TO 119
GC TO 18

),I =1,18)

), I= 1, 18)

GO TO 111
,I=1,11)
GC TO 140

GO TO 121
GO TO 111

(4) ,KQ(5)

SET CUTPUT CONTROL
119 hRITE(KO,96) (KA(I,1),I=1,18)

L=5
IF(KA(3,1).EQ.TAPEl) L=1
IF(KA(3,1).EQ.PUNCHI) L=2
IF(KA(3,1).EQ.NCDESI) L=3
IF(KA(3,1).EQ.PRINTI) L=4
GO TO 80

121 %RITE(KO,88) (KA(I,1),I=1,6)

12) L=5
IF(KA(3,1).EQ.TAPE) L=1
IF(KA(3,1).EQ.PUNCH) L=2
IF(KA(3,1).EQ.NODES) L=3
IF(KA(3,1).EQ.PRINT) L=4

8J IF(L-4) 81,86,200
81 LC(L)=l

OKF03210
OKF03220
OKF03230
OKF03240
OKF03250
OKF03260
OKF03270
OKF03280
OKF03290
OKF03300
OKF03310
OKF03320
OKF03330
OKF03340
OKF03350
OKF03360
OKF03370
OKF03380
OKF03390
OKF03400
OKF03410
OKF03420
OKF03430
OKF03440
OKF03450
OKF03460
OKF03470
OKF03480
OKF03490
OK F03500
OKF03510
OKF03520
OKF03530
OKF03540
OKF03550
OKF03560

PAGE

30K
30K
00K
30K
00K
30K
00K
00K
30K

OK
30K
30K
00K
30K
00K
00K
00K
00K
0K
00K
00K
OOK
00K
00K
00K
00K
00K
00K
00K
OOK
00K
00K
OOK
OOK
00K
00K

1

C

0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396

L

o



GW TO 20
86 KQ(7)=1

GO TO 20
C ALTER

140 IF(KA(7,1).GT.0) GO TC 142
KA ( 7, 1)= 1

142 WRITE(KO,91) (KA(Il),I=1,11)
Nl=ACDENC(KA(3,1),KA(4,1))
A2=NODEN0(KA(5,1),KA(6,1))
IF(N1.GT.fv) GO TO 144
IF(N2.LE.M) GO TO 145

144 WRITE(KO,92)
LE R= 1
GO TO 20

145 LI=LDECR (IL (NI))
L2=LDECR( IL(N1+1) )-1
IF(L2.LT.Ll) GO TO 144
00 147 LL=LL2
IF (L ADR ( I J (LL ) ) .N E.N2) GO TO 147
KA(7,1 )=KA(7,1)-1
If:(KA( 7, 1).EQ.0) GO TO 149

147 CONTINUE
GO TO 144

149 KC(LL)=KA(8,1)
KU(LL)=KA(9,1)
KL(LL)=KA(10,1)
KX(LL)=KX(LL )+KA(11, 1)
GO TO 20

C CARD PUNCHING ERROR
200 LER=1

WRITE(KOe7) (KA(I,1),I=1,6)
CO TO 20

87 FORMAT(23H ILLEGAL CCATRCL CARD
88 FORMAT( 1H03(A4,A2) )
90 FORMAT (3 (A4,A2), 12,4110)
91 FORMAT (lH, 3(A4 ,A2) ,12 ,4110)

OKF03570 00K 0397
OKF03580 OOK 0398
OKF03590 OOK 0399
OKF03600 OOK 0400
OKF03610 00K 0401
OKF03620 OOK 0402
OKF03630 00K 0403
OKF03640 OOK 0404
OKF03650 00K 0405
OKF03660 00K 0406
OKF03670 OOK 0407
OKF03680 OOK 0408
OKF03690 OOK 0409
OKF03700 00K 0410
OKF03710 OOK 0411
OKF03720 OOK 0412
OKF03730 OOK 0413
OKF03740 OOK 3414
OKF03750 00K 0415
OKF03760 OOK 0416
OKF03770 00K 0417
OKF03780 OOK 0418
OKF03790 00K 0419
OKF03800 OOK 0420
OKF03810 OOK 0421
OKF03820 00K 0422
OKF03830 OOK 0423
OKF03840 OOK 0424
OKF03850 00K 0425
OKF03860 00K 0426
OKF03870 00K 0427
OKF03880 00K 0428
OKF03890 OOK 0429
OKF03900 OOK 0430
OKF03910 00K 0431
OKF03920 OOK 0432

PAGE 12
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92 FOPMAT(47HOTHE ARC ON THE ABOVE
93 FORMAT(12HONO.0F ARCS=15,2X,13H

$THIS VERSION :,15,' ARCS AND
95 FORMAT(18A4)
96 FORMAT(IH018A4)
97 FOPPAT(47HOOUTPUT CCNTRCL CARD

END

ALTER
NO. OF

',15,

CARD IS NOT IN CORE)
NOCES=,15,6X,' (MAXIMUMS
NODES)')

FOR

MISSING OR OUT OF SEQUENCE)

SUBROUTINE TRANSL
DIMENSION LC(9),KA(18,2),KQ(9)
CCPMCN/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX(1)/NL/NL(1)
COMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/JI/JI(1)
COMMON /M/M/N/N/LER/LER/KAT/KAT/KOR/KOR/KTER/KTER
CCMMON /MINL/MINE/LC/LC/KA/KA/IFIN/ IFIN/KI/KI/KO/KO/KQ/KQ/K/K

C CLEAR NL STORAGE
CALL ERASE(NLM)

C CALCULATE CIRCULATICN AND C-3AR
I=0
LUP=1
DO 2 L=1,N
IF(L.LT.LUP) GO TO 13
I=I+1
LUP=LDECR(IL( 1+1))

13 LU=LADDR(IJ(L))
NL(I)=NL(I)-KX(L)
AL (LU) =NL (LU) +KX (L)

2 KC(L)=KC(L)+NP(I)-NP(LU)
CIRCULATION MESSAGE FOR NON-ZERO

CLEAR NL STORAGE
DO 5 I=1,M
IF(NL(I).EQ
WRI TE(KO ,90
AL ( I )= 0

5 COTINUE
C CGMPUTE EXCES

CO 1 J=1,N

CIRCULATION AND MOVE JL

.0) GO TO 5
) NN(2*I-1),NN(2*I),NL( I)

S OF X AND UPPER BOUND OVER

LIST

LCWER BCUND

OKF03930

OKF03950
OKF03960
OKFO3970
OKF03980

OKF04020
OKF04050

OKF04080
OKF04090

OKFO4120
OKF04130
OKF04140
OKF04150
OKF04160
OKFO4170
OKF04180
OKF04190
OKF04200
OKF04210
OKFO4220
OKF04230
OKF04470
OKF04240
OKF04250
OKF04260

OKF04280
OKF04290

PAG

C
C

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

E 13

0433
3434
3435
0436
3437
3438
0439
3440
0441
0442
0443
0444
0445
0446
044T
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
046?
0468

H



KU(J)=KU(J)-KL(J) OKF04300
IF(KU(J).GE.0) GO TO 1 OKF04310
RITE(KO,51) J OKF04320
LER=LER+1 OKF04330

1 KX(J)=KX(J)-KL(J) 0KF04340
C JL LIST SEGMENT MOVED FROM TRANSL TO NAKEJL

RETURN 0KF04500
51 FORMAT (4HOARC,16q42H HAS LOWER BOUND GREATER THAN UPPER BOUND.) OKF04510

90 FORMAT(6HONODE 2A4,28H NON-CONSERVATIVE, NET FLOW=II2) OKF04520
END OKF04530

C 4 **~* * ***** ***4********** ************ **************** **************

SUBPCUTINE KILTER(I)
DIENSION LC(9),KA(18,2),KQ(9)
CCMMON/KL/KL(1)/KC/KC(1)/KU/KU(1)/KX/KX( I)/NL/NL(i)

COMMON/NN/NN(1) /NP/NP (1) / I J/ IJ ( 1 )/ IL/ IL ( I )/J L/JL ( 1)/J I/J I ( 1)
COMMON /M/P/t//N/LER/LER/KAT/KAT/KGR/KOR/KTER/KTER
CCMMCN /MINE/MINE/LC/LC/KA/KA/IFIN/IFIN/KI/KI/KO/KO/KQ/KQ/K/K
IF(LDECR(IJ(1)).EQ.J) GO TO 70
CALL PLACE(0,IJ(1))
CALL ERASE(NLM)

70 LER=0
5 IF(KC(K)) 10,20,30

10 IF(KX(K)-KU(K)) 13,40,14
13 M INE=-KX (K)+KU(K)

GO TC 50
14 MINE=KX(K)-KU(K)

CO TC 60
20 IF(KX(K).LT.0) GO TO 13

IF(KX(K)-KU(K)) 40,40,35
30 IF (KX(K) ) 32 ,40,35
32 MINE=-KX(K)

GO TO 50
35 MI NE=KX(K)

GO TO 60
50 KOR=LADDR(IJ(K))

KAT=C

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

OKF04570 00K
OKF04600 00K

00K
00K
00K

OKF04630 00K
OKF04640 00K
OKF04650 00K

00K
OKF04680 00K
OKF04690 00K
OKF04700 00K
OKFO4710 00K
OKF04720 00K
OKF04730 00K
OKF04740 00K
OKF04750 00K
OKF04760 00K
OKF04770 00K
OKF04780 00K
OKFO4790 00K
OKF04800 00K
0KF04810 00K
OKF04820 00K
OKF04830 00K

PAGE 14

0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479

H

0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
3493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504



I<TER=I OKF48 40
GO TO 65 OKF04850

60 KOR=1 OKF04860
KAT=13 OKF04870

KTER=LADCR( IJ(K)) OKF04880
65 CALL LABELN(KBR) OKF04890

IF(KBR.EQ.0) GO TO 68 OKF04900
CALL BREAKT OKF04910
GO TO 5 OKF04920

68 CALL UPNOPR OKF04930
IF(LER.EQ.0) GO TO 5 OKF04940

40 RETLRN OKF04950
END OKF04960

C*****4**************** *********************************************************

SUBROUTINE OUTPUT(KZ)
CIMENSION LC(9),KA(18,2),KQ(9)
DIMENSION KZ(101)
CCMMON/KL/KL(1)/KC/KC( 1)/KU/KU(1)/KX/KX( 1)/NL/NL(1)
CCMMON/NN/NN(1)/NP/NP(1)/IJ/IJ(1)/IL/IL(1)/JL/JL(1)/
COMMON /M/M/N/N/LER/LER/KAT/KAT/KCR/KOR/
CCMMvON /MINE/MINE/LC/LC/KA/KA/ IFIN/ I FIN/KI/K I/KO/KO/
CATA KILT,BLANKIEN/lHK,1H ,1HN/

INTEGER OUT(9)
LOGICAL CUTTAP,CUTPRTCIJTPCH
DOUBLE PRECISION KCUM
iQC=KQ(1)
KCU M=)
IF(KZ(101).NE.0) GO TO 10
IF(LER.NE.0) GC TO 30
YZ=KILT
0 TC 100

10 IF(LER.NE.0) GO TO 18
WRITE(KO,99) KZ(101)

18 KZ(101)=MIN0(KZ(101),100)
30 MZ=BLANK

100 K2=KQ(2)

JI/JI1(l)
KTER/KTER
KQ/KQ/K/K

OKFO5000 00K
OKF05030 00K
OKF05040 00K

00K
00K
00K

OKF05070 00K
OKF05080 00K

00K
00K
00K

OKF05090 00K
OKFO5100 00K
OKFO5110 00K
OKF05120 00K
OKF05130 00K
OKFO5140 00K
OKF05150 00K
OKF05160 00K
OKF0517 00K
OKF05180 00K
OKFO5190 00K

PAGE 15

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
1528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540

H



IF(LC( 2) .EQ.0
WRITE(KQ1,90)
kRI TE( KO ,89)

12 IF(LC(1).EQ.0
IF(KC(6) .NE.0
KQ(6)=1
REWIND K2

24 WRITE(K2,90)
WRITE(KO,88)

41 IF(KQ(7).EQ.0
WRITE(KO,91)

GO TO 12
(KA( 1,2), I=1,18)

GO TO 41
GO TO 24

(KA(I ,2) ,=1,18

) GO TO 7
(KA(I ,2),

OKF05
OKF05
OKFO5
OKF05
OKFO5
OK F05
OKFO5
OKFO5
OKFO5
OKF05
OKF05
OKF05
OKF05

I=1,18)
7 L=1

LL= 1
CUTT AP=LC (1) .NE.0
CUTPRT=KQ(7 ) .NE.0
CUTPCH=LC(2).NE.O
00 3 I=1,M
LUP=LDECR(I L(1+1))

302 IF(L.GE.LUP) GO TO 3
LU=LADDR ( IJ (L))
LLC=KC(L)
KC(L)=KC(L)-NP( I )+NP(LU)
KX L)=KX(L)+KL (L)
KU(L )=KU(L)+KL(L)
LZ=KX( L) *KC (L)
KCUM=KCUM+LZ
PX=MZ
I1=1+1
LU2=LU+LL
CUT ( 1)=NN( Ii)-1
CUT(2)=NN(II)
CUT( 3)=NN(LU2- 1)
CUT(4)=NN(LU2)
OUT(5)=KC(L)
CUT (6) =KU(L)
CUT(7)=KL(L)

OKF05
OKFO5
OKF05
OKF05
OKF05
OKFO5
OKFO5
OKFO5
OKFO5
OKF05
OKF05

200 00K
210 OOK
220 00K
230 00K
24) 00K
250 00K
260 00K
270 00K
280 00K
290 00K
300 00K
310 00K
323 00K

00K
00K
00K

330 00K
340 00K
350 00K
360 00K
370 00K
380 00K
390 00K
400 00K
410 00K
420 00K
430 00K

00K
00K
00K
00K
00K
OOK
00K
00K
00K

PAGE 16

0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576

H



CUT (8)=KX(L)
CUT(9) =LZ
IF(KZ(101).LE.0) Gd TO 16
IF(KZ(LL).NE.L) GO TO 16
KZ( 121)=KZ( 11)-1
LL=LL+1
PX=I EN

16 IF(OLTTAP)
IF(CUTPRT)
IF(CUTPCH)

OKF05440
OKF05450
OKF05460
OKF05470
OKF05480

WRITE(K2,93) CUT,MX
WRITE(KC,94) CUTNP(I),NP(LU),LLCMX
WRITE(KQL,93) OUT

333 L=L+1
GO TC 302

3 CONTINUE
IF(LC(3).EQ.0) GO TO 15
IF(LC(1)+LC(2).EQ.J) GO
IF(LC( 1).EQ.0) GO TO 2C3
hRITE(K2,96)

203 IFILC(2).EQ.0) GO TO 115
ipRITE(KQI,96)

115 CO 200 I=11,M
IF(LC(1).EQ.0) GO TO E5
RITEK2,95) NN(2-*I-1),N

85 IF(LC(2).EQ.0) GO TO 200
InRITE(KQ1,95) NN(2*I-1),

200 CONTINUE
15 IF(LC(1).EQ.0) GO TO 27

IRITE(K2,97)
27 IF(KQ(7).EQ.0) GO TO 57

%RITE(KO,98)
hRITE(KO,999) KCUM

57 IF(LC(2).EQ.0) GO TO 77
WRITE(KQ1,97)

77 IRITE(KO,92) (LC(I),I=5
RETURN

88 FORMAT(24HOTHIS RUN CUTP
89 FOFMAT(25HOTHIS RUN OLTP

TO 27

N(2*I),NP(I)

NN (2*I ),NP( I)

OKF05580
OKF05590
OKF05600
OKF05610
OKF05620
OKF05630
OKF05640
OKF05650
OKF05660
OKF05670
OKF05680
OKF05690
OKFO5700
OKF05710
OKF05720
OKF05730
OKF05740
OKF05750
OKF05760
OKF05770
OKFO5780
OKF05790
OKF05800
OKFO5810
OKF05820
OKF05830

PAGE

,8)

UT TO TAPE )
LT TO PUNCH)

00K
0OK
00K
00K
00K
00K
00K
00K
030K
0K
00K
OK
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
0K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

17-

0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612

-4
U,



90 FORMAT(18A4/4HARCS22X,4HCOST5X,5HUPPER5X,5HLCWER9XlHX8X,4HFLOW) OKF05840

91 FORMAT(lH118A4/5H ARCS16X,4iCOST6X,5HUPPER6X,5HLOWER10X,IHX8X, OKF05850

1 4HFLOW9X,3HPI9X,3HP128X,4HCBAR/lX) OKF05860

92 FORMAT(18HONO OF BREAKTHRUS= I2,22H, NO CF NCNBREAKTHRUS=IL2,18H, OKF05870

1NO CF X CHANGES=112,/42H NO OF NODES FROM WHICH LABELING WAS D0NE=0KFO5880
2112) OKF05890

93 FORMAT(6X,2(A4,A2),2X,4I10,I12,1X,A1) OKF05900
94 FORMAT(2(IX,A4,A2),4(1X,I10),4I12,lX,AI) OKF05910
95 FORMAT(6XA4,A2,6X,I 12) OKF05920

96 FOPMAT(6HNODES ) OKF05930
97 FORMAT(3HEND) OKF05940

98 FORMAT(4HOEND) OKF05950
99 FCRMAT(IHOIL5,23H ARCS ARE CUT OF KILTER) OKF05960

999 FORMAT(29H(TOTAL SYSTEM CONTRIBUTION = F20.0)
ENC OKF05980

SUEROUTINE CMPTIM(LVENT)
C FRINTS TIME OF INTRA-SUBROUTINE TRANSFERS OR DATE&TIME
C "TIMING" IS AN M.I.T. INTERNAL SUBROUTINE THAT RETURNS THE CPU TIME
C IN HUNDREDTHS OF SECCNDS.
C "WHEN" IS AN M.I.T. INTERNAL SUBROUTINE THAT RETURNS THE DATE AND
C TIME IN THE FOLLOW ING 5A4 FORMAT: MM/DD/YY HR*MI*SS.FF

CIPENSION A(5)
COUBLE PRECISION LVENT
INTEGER TNOW,TSTARTTREL
INTEGER IAT
CALL TIMING(TNOW)
TREL=TNOW-T START
IF (TREL. LT. 0) TREL=TREL+8640000
TI=TREL/100.

RITE(WT,10)LVENT,TI
RETURN
ENTRY STRTIM(WT)
CALL TIMING(TSTART)
CALL WHEN(A)

RITE(WT,20) A
PAG

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00 K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K

E 18

)613
)614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648

ON



RETURN
10 FOPMAT(/,T103,29('*'),/,T103

$Tl03,'* ENT. I ,A6,' @# ,F7.2,
20 FORMAT (/T103,29('*')/T103,'*

$T103,'* TIME = ', 3 A4, T1
END

//STEP EXEC ASMC,PARM.C='LCAC,DECK
//C.SYSIN DD *
ASSEMI START 0

ENTRY LABELNBREAKT,UFNCPR,
SPACE 5

LAEELN SAVE (14,12),,*
BALR 12,9
USING *,12
LA 1lSAVER
ST 13,4(0,111)
ST 11,8( 0,13)
L 11,IJAD
S 11,FOUR
L 10,NLAD
S 1CFOUR
L 13,KCAD
S 13,FOUR
L 14,K XAD
S 14,FCUR
L 15,KUAD
S 15,FOUR
L 1,0(0,11)
S R 2,2
ST 2,3(0,1)
ST 1,SAVER
L 1,JIAD
S 1,FOUR
L 2,KORAD
L 2,0(0,2)
ST 2, 1

,** LV.
SEC. *

DATE
31,'*' /T

',/ ,T103,29('**'),/)
,2A4,T131,'*'/

103,29('*' )/)

NODENO

SUBROUTINE LABELN(KBR)

(R12 IS BASE FOR THIS PROGRAM)

( R 11 HAS ADDRESS OF IJ-4)

(R10 HAS ACCRESS OF NL-4)

(R13 HAS ADDRESS OF KC-4)

(R14 HAS ADDRESS OF KX-4)

(R15 HAS ADDRESS OF KU-4)

KBR= 0

(R1 HAS ADDRESS OF JI-4)

I=KOR

00K 0649
00K 0650
00K 0651
00K 0652
00K )653
00K 0654
00K 0655

OKF 10550 00K 0656
OKF06020 00K 0657
OKF06030 00K 0658
OKF06040 00K 0659
OKF06050 00K 0660
OKF06060 00K 0661
OKF06070 00K 0662
OKF06080 00K 0663
OKF06090 00K 0664
OKFO6100 00K 0665
OKF06110 00K 0666
OKF06120 00K 0667
OKF06130 00K 0668
OKFO6140 00K 0669
OKF06150 00K 0670
OKF06160 00K 0671
OKFO6170 00K 0672
OKF06180 00K 0673
OKF06190 00K 0674
OKF06200 00K 0675
OKF06210 00K 0676
OKF06220 00K 0677
0KF06230 OOK 0678
OKF06240 00K 0679
OKF06250 00K 0680
OKF06260 00K 0681
OKF06270 00K 0682
OKF06280 OOK 0683
OKF06290 00K 0684

PAGE 19
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SLL
L
L
SR
CH
BNE
L
L
STH
L
STH
L

L14 L
S
LH
BCTR
SLL
LH
SLL

L16 CR
BL
LH
SLL
SR
C
BNE
C
8L
L
C
BL
B

L21 SR
C
BNH

L22 L

2,2
3 ,El GHT
4,NUP
7,7
7,4(0','t11)
L 14
7 ,IF INAD
7,0(0,7)
7,2(2,10)
7,1
7,4(0,11)
4 ,EIGHT
9, ILAD
9,FOUR
5,4(2,9)
5,0
5 ,2
6,0(2,9)
6,2
5,6
L 28
8,2(6,11)
8,2
7,7
7,0(8,10)
L 27
7,0(6,13)
L21
7,0(6,14)
7,0(6,15)
L 22
L27
7,7
7,0(6,14)
L27
7,1

(R2 HAS 1*4)
NU=2

(R3 HAS NU*4)
(R4 HAS NUP*4)

IF(LDECR(IJ(1)).NE.0)

NL(I)=IFIN

CALL PLACE(I,IJ(1))
NU P=2

(R9 HAS ADDRESS
14 L2=LDECR(IL(l+1))-1

(R5 HAS L2*4)
(R6 HAS L*4)

L=LDECR(IL( 1))
16 IF(L2.LT.L) GO TO 28

J=LADDR(IJ (L))
(R8 HAS J*4)

IF(NL(J).NE.0) GO TO

GO TO 14

OF IL-4)

27

IF(KC(L).GT.0) GO TO 21

IF(KX(L)-KU(L)i 22,27,27

21 IF(KX(L).GE.0) GO TO 27

OKF06300
OKF06310
OKF06320
OKF06330
0KF06340
OKF06350
OKF06360
OKF06370
OKF06380
OKF06390
OKF06400
OKF06410
OKF06420
OKF06430
OKF06440
OKF06450
OKF06460
OKF06470
OKF06480
OKF06490
OKF06500
OKF06510
OKF06520
OKF06530
OKF06540
OKF06550
OKF06560
OKF06570
OKF06580
OKF06590
OKF06600
OKF06610
OKF06620
OKF06630
OKF06640
OKF06650

PAGE

00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
00K
0OK
00K
00K
00K

20

0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
0710
0711
0712
0713
0714
0715
0716
0717
0718
0719
0720

co



ST 7,.J(8,10)
SRL 6,2
STH 6,0(8,10)
SLL 6,2
SRL 8,2
STH 8,J(4,11)
A 4,FOUR
L 7,KTERAC
L 7,J(0,7)
CR 7,8
B3E L47
A 6,FOUR
B L16
L 9,JLAD
S 9,FOUR
LH 5,4(2,9)
BCTR 5,0
SLL 5,2
LH 6,3(2,9)
SLL 6,2
CR 5,6
BL L43
LH 8,2(6,1)
SLL 8,2
SR 7,7
C 7,0(8,10)
BNE L42
LH 9,0(6,1)
SLL 9,2
C 7,0(9,13)
B NH L36
L 7,0(9,14)
C 7,0(9,15)
BH L37
B L42
SR 7,7

22 NL(J)=I

CALL PLACE(LNL(J))

CALL PLACE(
NUP=NUP+1

J, IJ (NUP))

IF(J.EQ.KTER) GO TO 47

27 L=L+i
GO TO 16

(R9 HAS ADDRESS OF
28 L2=LDECR(JL(I+1))-1

L=LDECR(JL( I))

33 IF(L2.LT.L) GO TO 43

J=LADDR(JI(L))

IF(NL(J)) .NE.0)

KR=LDECR(
(R9

IF(KC(KR)

JL-4)

GO TO 42

JIM(L))
HAS KR*4)
.GE.0) GO TO

L27

L 2

L30

L 36

IF(KX(KR)-KU(KR)) 42,42,37

OKF06660 00K 0721
OKF06670 00K 0722
OKF06680 00K 0723
OKF06690 00K 0724
OKF06700 00K 0725
OKF06710 00K 0726
OKF06720 00K 0727
0KF06730 00K 728
OKF06740 00K 0729
OKF06750 00K 0730
OKF06760 00K 0731
OKF06770 00K 0732
OKF06780 00K 0733
OKF06790 OOK 0734
OKF06800 OOK 0735
OKF06810 OK 0736
OKF06820 00K 0737
OKF06830 00K 0738
OKF06840 OOK 0739
OKF06850 00K 0740
OKF06860 00K 0741
OKF06870 00K 0742
OKF06880 00K 0743
OKF06890 OOK 0744
OKF06900 00K 0745
OKF06910 00K 0746
OKF06920 OOK 0747
OKF06930 00K 0748
OKF06940 00K 0749
OKF06950 OOK 0750
OKF06960 00K 0751
OKF06970 OOK 0752
OKF06980 00K 0753
OKF06990 00K 0754
OKFO7000 OOK 0755
OKF07010 00K 0756

PAGE 21
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C 7,0(9,14)
BNL L42

L37 L 7,I
LCR 7,7
ST 7,G(8,1J)
SRL 9,2
STH 9,0(8,10)
SRL 8,2
STH 8,0(4,11)
A 4,FOUR
L 7,KTERAD
L 7,0(0,7)
CR 7,8
BE L47

L42 A 6,FOUR
B L30

L43 CR 3,4
BNL L48
LH 2,0(3,11)
A 3,FOUR
ST 2,1
SLL 2,2
B L14

L47 L 1,SAVER
L 7,CNE
ST 7,0(0,1)

L48 SRL 3,2
BCTR 3,J
L 7,LCAD
A 3,28(0,7)
ST 3,28(0,7)
ST 4,NUP
L 13,SAVER+4
RETURN (14,12),T
EJECT

BREAKT SAVE 14,12),,*

36 IF(KX(KR).LE.0) GO TO 42

37 NL(J)=-I

CALL PLACE(KRNL(J))

CALL PLACE(JIJ(NUP))
NUP=NUP+1

IF(J.EQ.KTER) GO TO 47

42 L=L+1
GO TO 30

43 IF(NU.GE.NUP) GO TO

I=LDECR(IJ(NU))
NU=NU+1

GO TO 14

47 KBR=1

48 NU=NU-1

LC(8)=LC(8 ) +NU

RETURN
END

SUBROUTINE BREAKT

48

OKF07020 00K 0757
OKFO7030 00K 0758
OKF07040 00K 0759
OKF07050 00K 0760
OKF07060 OOK 0761
OKF07070 00K 0762
OKF07080 00K 0763
OKF07090 00K 0764
OKF07100 00K 0765
OKF07110 00K 0766
OKF07120 00K 0767
OKF07130 00K 0768
OKF07140 00K 0769
OKF07150 00K 0770
OKF07160 00K 0771
OKF07170 00K 0772
OKF07180 00K 0773
OKF07190 00K 0774
OKF07200 00K 0775
OKF07210 OOK 0776
OKF07220 00K 0777
OKF07230 00K 0778
OKF07240 00K 0779
OKF07250 00K 0780
OKF07260 00K 0781
OKF07270 00K 0782
OKF07280 OOK 0783
OKF07290 00K 0784
OKF07300 00K 0785
OKF07310 00K 0786
OKF07320 00K 0787
OKF07330 00K 0788
OKF07340 00K 0789
OKF07350 00K 0790
OKF07360 00K 0791
OKF07370 00K 0792

PAGE 22
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BAL R
USING
LA
ST
ST
L
S
L
S
L
S
L
S
L
S
L
L
L
L
A
ST
L
SR
ST
L
L
SLL
L
LR
L
L
SLL
L -
L H
SLL
L

12, J
* , 12
11,SAVER
13,4(0,11)
11,8(0,13)
1C, NLAD
10, FOUR
11 ,I JAD
I I,F OUR
13,KCAD
13 , F OUR
14,KXAD
14,FOUR
15,KUAD
15,FOUR
8 ,MI NEAD
8,0(0,8)
7, LCAC
9,16(0,7)
9 ,0NE
9,16(0,7)
1,LERAD
7,7
7,0( 0J,1)
4,KTERAD
4,0(0,4)
4,2
2 ,FOUR
1,2
3,MAD
3,0(0,3)
3,2
5,2(4,10)
6,C( 4,10)
6,2
7, IFINAD

(R12 IS BASE FOR THIS PROGRAM)

(R10 HAS ADDRESS OF NL-4)

(Rl HAS ACCRESS OF IJ-4)

(R13 HAS ADCRESS OF KC-4)

(R14 HAS ACORESS OF KX-4)

(R15 HAS ADDRESS OF KU-4)

(R8 HAS MINE)

LC( 5)=LC( 5)+1

LER=O

KT=KTER
(R4 HAS KT*4)
(R2 HAS 4)
(RI HAS J*4)
(R3 HAS M*4)

DO 29 J=1,M

KP=LADDR(NL(KT)
KK=LDECR(NL(KT)

(R5 HAS KP)
(R6 HAS KK*4)

OKF07380 00K 0793
OKF07390 OOK 0794
OKFO7400 00K 0795
OKF07410 00K 0796
OKF07420 00K 0797
OKF07430 00K 0798
OKF07440 00K 0799
OKFO7450 00K 1800
OKF07460 00K 0801
OKF07470 00K 0802
OKF07480 00K 0803
OKF07490 00K 0804
OKF07500 OOK 0805
OKF07510 00K 0806
OKF07520 00K 0807
OKF07530 00K 0808
OKF07540 00K 0809
OKF07550 00K 0810
OKF07560 00K 0811
OKF07570 OOK 0812
OKF07580 00K 0813
OKF07590 00K 0814
OKF07600 OOK 0815
OKF07610 00K 0816
OKF07620 00K 0817
OKF07630 00K 0818
OKF07640 00K 0819
OKF07650 00K 0820
OKF07660 00K 0821
OKF07670 00K 0822
OKF07680 00K 0823
OKF07690 00K 0824
OKFO7700 00K 0825
OKF07710 00K 0826
OKF07720 00K 0827
OKF07730 00K 0828
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LH
CR
BE
LTR
BP
SR
C
BNH
L
S
CR
BNH
LR
8

B19 L
CR
BNH
LR

821 SRL
LCR
STH
B

B23 SR
C
BL
L
S
CR
BNH
LR
B

826 S
CR
BNH
LR

B28 SRL

7,2(0,7)
5,7
B31
5,5
B23
7,7
7,0(6,13)
B 1
7,0(6,14)
7, (6,15)
8,7
B21
8,7
B21
7,0( 6,14)
8,7
B21
8,7
6,2
6,6
6,0(1,11)
829
7,7
7,0(6,13)
B26
7,0(6, 15)
7,0(6,14)
8,7
B28
8,7
B28
7,0(6,14)
8,7
828
8,7
6,2

IF(KP.EQ.IFIN) GC TO 31

IF(KP.GT.0) GO TO 23

IF(KC(KK).GE.0) GO TO 19

MINE=MINO(MINEKX(KK)-KU(KK))

GO TO 21

19 MINE=MINO(MINEKX(KK))

21 KK=-KK
CALL PLACE(
GO TO 29

KK,lIJ(J))

23 IF(KC(KK).GT.0) GO TO 26

MINE=MINO(MINE,KU(KK)-KX(KK))

GO TO 28

26 MINE=MINO(MINE,-KX(KK))

OKF07740 00K 0829
OKF07750 00K 0830
OKF07760 00K 0831
OKF07770 00K 0832
OKF07780 00K 0833
OKF07790 00K 0834
OKF07800 00K 0835
OKF07810 00K 0836
OKF07820 00K 0837
OKF07830 00K 0838
OKF07840 00K 0839
OKF07850 00K 0840
OKF07860 00K 0841
OKF07870 00K 0842
OKF07880 00K 0843
OKF07890 00K 0844
OKF07900 00K 0845
OKF07910 00K 0846
OKF07920 00K 0847
OKF07930 00K 0848
OKF07940 00K 0849
OKF07950 00K 0850
OKF07960 00K 0851
OKF07970 00K 0852
OKF07980 00K 0853
OKF07990 00K 0854
OKFO8000 00K 0855
OKFO8010 00K 0856
OKF08020 00K 0857
OKF08030 00K 0858
OKF08040 00K 0859
OKF08050 00K 0860
OKF08060 00K 0861
OKF08070 00K 0862
OKF08080 OOK 0863
OKF08090 OOK 0864
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829

831

B34

B35

B36

B42

STH
LPR
SLL
BXLE
L
L
SLL
L
L
L
S
BP
AR
ST
B
SR
ST
S
LR
SRL
L
L
AR
A
ST
LR
SR
A H
BP
LCR
SLL
L
SR
ST
B
SLL

6,0'(1, 111)
4,5
4,2
1,2,B11
9,KAD
9, ( ,9)
9,2
7,0(9,14)
5,KATAD
5,0(0,5)
5 ,FOUR
B34
7,8
7,0(9,14)
B35
7,8
7,0(9, 14)
1,FOUR
3,1
1,2
7,LCAD
9,24(0,7)
9,1
9,CNE
9,24(0,7)
1,2
6,6
6,0(1,11)
B42
6,6
6,2
7,C(6,14)
7,8
7,0(6,14)
843
6,2

28 CALL PLACE(KKIJ(J))
29 KT=IABS(KP)

(R9 HAS K*4)

(R5 HAS KAT)
31 IF(KAT.GT.4) GO TO 34

KX(K)=KX(K)+MINE
GO TO 35

34 KX(K)=KX(K)-MINE

35 LC(7)=LC(7)+J
(R3 HAS JJ*4)

JJ=J- 1

00 43 J=1,JJ

KK=LDECR(IJ(J))
IF(KK.GT.0) GO TC 42
KK=-KK

KX(KK)=KX(KK)-MINE

GO TO 43

OKFO8100 00K 0865
OKFO8110 00K 0866
OKF08120 00K 0867
OKF08130 00K 0868
OKF08140 00K 0869
OKF08150 00K 0870
OKF08160 00K 0871
OKF08170 00K 0872
OKF08180 00K 0873
OKFO8190 00K 0874
OKF08200 00K 0875
OKF08210 OOK 0876
OKF08220 00K 0877
OKF08230 00K 0878
OKF08240 00K 0879
OKF08250 00K 0880
OKF08260 00K 0881
OKF08270 00K 0882
OKF08280 00K 0883
OKF08290 00K 0884
OKF08300 00K 0885
OKF08310 00K 0886
OKF08320 00K 0887
OKF08330 00K 0888
OKF08340 00K 0889
OKF08350 OOK 0890
OKF08360 00K 0891
OKF08370 00K 0892
OKF08380 00K 0893
OKF08390 00K 0894
OKF08400 00K 0895
OKF08410 00K 0896
OKF08420 OOK 0897
OKF08430 00K 0898
OKF08440 00K 0899
OKF08450 00K 0900
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B43

L 7,0(6,14)
AR 7,8
ST 7,0(6,14)
BXLE 1,2,836
LR 1,2
L 3,MAD
L 3,0(0,3)
SLL 3,2
SR 7,7

B44 ST 7,.(1,10)
BXLE 1,2,B44
STH 7,4(0,11)
L 13,SAVER+4
RETURN (14,12),T
EJECT

UPNOPR SAVE (14,12),,*
BALR 12,0
USING *,12
LA 11t,SAVER
ST 13,4(0,11)
ST 11,8(0, 13)
L 9,ILAD
S 9,FOUR
L 11, IJAD
S II,FtOUR
L 10,NLAD

S 10,FOUR
L 14,KXAD
S 14,FOUR
L 15,KUAD
S 15,FOUR
L 13,KCAD
S 13,FOUR
L 7,LCAD
L 6,20(0,7)
A 6,ONfE

42 KX(KK)=KX(KK)+MINE

43 CONTINUE

00 45 J=1,M

45 NL(J)=0)

CALL PLACE(CIJ(1))
RETURN
END

SUBROUTINE UPNOPR

(R12 IS BASE FOR THIS PROGRAM)

(R9 HAS ADDRESS OF IL-4)

(Rll HAS ADDRESS OF IJ-4)

(R10 HAS ADDRESS OF NL-4)

(R14 HAS ADDRESS OF KX-4)

(R15 HAS

(R13 HAS

ADDRESS OF KU-4)

ADDRESS OF KC-4)

LC(6)=LC(6)+1

OKF08460 00K 0901
OKF08470 OK 0902
OKF08480 00K 0903
OKF08490 00K 0904
OKF08500 00K 0905
OKF08510 00K 0906
OKF08520 00K 0907
OKF08530 00K 0908
OKF08540 00K 0909
OKF08550 00K 0910
OKF08560 00K 0911
OKF08570 00K 0912
OKF08580 00K 0913
OKF08590 00K 0914
OKF08600 00K 0915
OKF08610 OOK 0916
OKF08620 00K 0917
OKF08630 OOK 0918
OKF08640 00K 0919
OKF08650 00K 0920
OKF08660 00K 0921
OKF08670 00K 0922
OKF08680 OOK 0923
OKF08690 00K 0924
OKF08700 00K 0925
OKF08710 00K 0926
OKF08720 00K 0927
OKF08730 00K 3928
OKF08740 OOK 0929
OKF08750 00K 0930
OKF08760 00K 0931
OKF08770 OOK 0932
OKF08780 00K 0933
OKF08790 00K 0934
OKF08800 00K 0935
OKF08810 00K 0936
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ST
L
L
SR
SR
L
L P
L
L
SLL

U12 CR
BNH
A
LH
BCTR
SLL

U16 LH
SLL
SR
C
BE
C
BNE
L
C
BL
B

U20 C
BE
C
BAL

U22 L
LPR
CR
BNH
LP

6,20(0,7)
8,IF INAD
8,0(0,8)
4,4
5,5
2,FOUR
1,2
3,NA C
3,.) (0,3)
3,2
1 ,5
U16
4, FOUR
5,4( 4,9)
5,0
5,2
6,2( 1,11)
6,2
7,7
7,0(4, 10)
U20
7,0( 6,13)
U24
7,0(1,14)
7,0( 1,15)
U22
U24
7,0(6,10)
U24
7,0( 1,14)
U24
7,0( 1,13)
7,7
8,7
U24
8,7

(R8 HAS NOELTA)
NDELTA=IFIN
I=0
KUP= 0

(R4 HAS 1*4)
(R5 HAS KUP*4)
(R3 HAS N*4)

DO 24 L=1,N
(R2 HAS 4)

IF(L.LE.KUP) GO TO 16
(R6 HAS J*4)

1=1 -
(Ri HAS L*4)

KUP=LDECR(IL(I1+ 1) )-1

16 J=LADDR(lJ(L))

IF(NL(I).EQ.0)

IF( NL( J). NE.0)

IF(KX(L)-KU(L))

20 IF(NL(J).EQ.0)

IF(KX(L).LE.0)

OKF08820 00K )937
OKF08830 00K 0938
OKF08840 00K 0939
OKF08850 00K 0940
OKF08860 00K 0941
OKF08870 00K 0942
OKF08880 00K 0943
OKF08890 00K 0944
OKF0890) 00K 0945
OKF08910 00K 0946
OKF08920 00K 0947
OKF08930 00K 0948
OKF08940 00K 0949
OKF08950 00K 0950
OKF08960 00K 0951
OKF08970 00K 0952
OKF08980 00K 0953
OKF08990 00K 0954
OKFO9000 00K 0955
OKFO9010 00K 0956
OKF09020 00K 0957
OKF09030 00K 0958
OKF09040 00K 0959
OKFO9050 00K 0960
OKF09060 00K 0961
OKF09070 00K 0962
OKF09080 00K 0963
OKF09090 00K 0964
OKFO9100 00K 0965
OKFO9110 00K 0966
OKFO9120 00K 0967
OKFO9130 00K 0968
OKF09140 00K 0969
OKF09150 00K 0970
OKF09160 00K 0971
OKF09170 00K 0972
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GO TO 20

GO TO 24

22,24,24

GO TO 24

GO TO 24

22 LL=IABS(KC(L))

NDELTA=MINO(LLNDELTA)

Ln.



U 24

U28

U3 I

U32

U 36

24 CONTINUE

IF( NDELTA.LT.IF IN) GO TO 31

BXLE
L
L
CR
BL
L
L
SLL
SR
A
BZ
C
BNE
L
LPR
L
S
LR
L
L
SLL
L -
BCTR
SLL
LH
SLL
SR
C
BN E
L
AR
ST
C
BH
CR
BL

1,2, U12
7, IFINAC
7,C( C,7)
8,7
U31
5,KAD
5,0(0,5)
5,2
7,7
7,0(5,14)
U28
7,0(5,15)
U51
8,0(5,13)
8,8
15, NPAD
15,FOUR
1,2
3,MAD
3,0(0,3)
3,2
4,4( 1,9)
4, f
4,2
5,0(1,9)
5,2
7,7
7 , I (1 , 10)
U41
7,0(1,15)
7,8
7,0(1,15)
7 ,=F 100000 )0'
U49
4,5
U47

28 NOELTA=IABS(KC(K))

(R15 HAS ADDRESS OF NP-4)
(R3 HAS M*4)

31 DO 47 I=1,M
(RI HAS 1*4)

L2=LDECR( IL(I+1 ) )-1
(R4 HAS L2*4)

L=LDECR(IL( ))
(R5 HAS L*4)

IF(NL(I).NE.0) GOC TO

NP( I) =NP( I) +NDELTA

41

IF(NP(I).GT.100000000) GO TO

36 IF(L2.LT.L) GO TO 47

OKF09180
OKFO9190
OKF09200
OKF09210
OKF09220
OKF09230
OKF09240
OKF09250
OKF09260
OKF09270
OKF09280
OKF09290
OKF09300
OKF09310
OKF09320
OKF09330
OKF09340
OKF09350
OKF09360
OKF09370
OKF09380
OKF09390
0KF09400
OKF09410
OKF09420
OKF09430
OKF09440
OKF09450
0KF09460
OKF09470
OKF09480
OKF09490
OKF09500
OKF09510
OKF09520
OKF09530

PAGE

49

)0K
30K
00K
00K
00K
00K
00K
00K
00K
00K
]OK
30K
00K
30K
30K
30K
30K
00K
00K
00K
00K
00K
00K
00K
00K
0K
00K
00K
00K
00K
00K
00K
0K
00K
00K
00K

28

(R5 HAS K*4)

IF(KX(K).EQ.0) GO TO 28

IF(KX(K).NE.KU(K)) GO TO 51

0973
0974
0975
0976
0977
0978
0979
0980
0981
0982
0983
0984
0985
0986
0987
0988
0989
0990
0991
0992
0993
0994
0995
0996
0997
0998
0999
1000
1001
1002
1003
1004
1005
1006
1007
1008

-1

01



LH
SLL
SR
C
BE
L
AR
ST

U4C A
B

U41 CR
BL
L H
SLL
SR
C
BNE
L
SR
ST

U46 A
B

U47 BXLE
B

U49 L
L
ST

U50 L
RETUR

U51 L
L
ST
B
E J E CT

NOCENO SAVE
BALR

6,2(5,11)
6,2
7,7
7,0(6,10)
U40
7,0(5,13)
7,8
7,0(5,13)
5 ,FOUR
U 3 6
4,5
U47
6,2(5,11)
6,2
7,7
7,0(6,10)
U46
7,0(5,13)
7,8
7,0( 5,13)
5,FOUR
U41
1,2,U32
U50
7,LERAD
8 ,=F '404'
8 ,0( C,7)
13,SAVER+4

N (14,12),T
7,LERAD
8,=F'107'
8,0(0,7)
U50

(14,12),,*
12,0

J=LADDR( IJ (L))

IF(NL(J).EQ.0) GO TO 4)

KC(L)=KC(L)+NDELTA

4J L=L+1
GO TO 36

41 IF(L2.LT.L) GO

J=LADDR(IJ(L))

TO 47

IF(NL(J).NE.0) GO TO 46

KC(L)=KC(L )-NDELTA

46 L=L+1
GO TO 41

47 CONTINUE
GO TO 50

49 LER=404

50 RETURN

51 LER=107
GO TO 50
END

FUNCTION NOCENO(IN,1IN2)

OKF09540 00K 1009
OKF09550 00K 1010
OKF09560 00K 1011
OKF09570 00K 10.12
OKF09580 00K 1013
OKF09590 00K 1014
OKF09600 00K 1015
OKF09610 00K 1016
OKF09620 00K 1017
OKF09630 00K 1018
OKF09640 00K 1019
OKF09650 00K 1020
OKF09660 00K 1021
OKF09670 00K 1022
OKF09680 00K 1023
OKF09690 00K 1024
OKF09700 00K 1025
OKF09710 00K 1026
OKF09720 00K 1027
OKF09730 00K 1028
OKF09740 00K 1029
OKF09750 00K 1030
OKF09760 00K 1031
OKF09770 00K 1032
OKF09780 00K 1033
OKF09790 00K 1034
OKF09800 00K 1035
OKF09810 00K 1036
OKF09820 00K 1037
OKF09830 00K 1038
OKF09840 00K 1039
OKF09850 00K 1040
OKF09860 00K 1041
OKF09870 00K 1042
OKF09880 00K 1043
OKFO9890 00K 1044
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USING *,12 (R12 IS BASE FOR THIS P
LA 11,SAVER
ST 13,4(0,11)
ST 11,8(0,13)
L 10,NNAD
S 10,FUUR (RIO HAS ADDRESS OF NN-
L 7,0(0,1)
L 7,0(0,7) (R7 HAS IN1)
L 8,4(0,1)
L 8,0(0,8) (R8 HAS IN2)
L 2,EIGHT (R2 HAS 8)
LR 1,2
L 3,MAC
L 3,0(0,3) DO 9 K=1,M
SLL 3,3 (R3 HAS M*8)
L 4,FOUR (R1 HAS K*8)

N3 C 7,0(4,10) (R4 HAS 4)
BNE N9 IF(IN1.EQ.NN(2*K-1).AND.IN2.EQ.NN(2*K)) GO TO
C 8,0(1,10)
BE N12

N'9 A 4,EIGHT
BXLE 1,2,N3 9 CONTINUE
SRL 3,3
A 3,0NE NODENO=M+1
ST 3,20(0,13)
8 N13 GO TO 13

N12 SRL 1,3 12 NODENO=K
ST 1,20(0,13) 13 RETURN

N13 RETURN (14,12),T END
SPACE 2

FOUR DC F'41
EIGHT DC F'8'
ONE DC Fill
I DS IF
NUP CS IF
SAVER DS 18F

ROGRAM)

4t)

12

OKF09900 00K 1045
OKF09910 00K 1046
OKF09920 00K 1047
OKF09930 00K 1048
OKF09940 00K 1049
OKF09950 00K 1050
OKF09960 00K 1051
OKF09970 00K 1052
OKF09980 00K 1053
OKF09990 00K 1054
OKF10000 00K 1055
OKF10010 00K 1056
OKF10020 00K 1057
OKF10030 00K 1058
OKF 10040 00K 1059
OKFI0050 00K 1060
OKF10060 00K 1061
OKF10070 00K 1062
OKFI0080 00K 1063
OKF10090 00K 1064
OKFOIOO 00K 1065
OKF1I1 00K 1066
OKF10120 00K 1367
OKFI0130 00K 1068
OKFI0140 00K 1369
OKF10150 00K 1070
OKFI0160 00K 1071
OKFI0170 00K 1072
OKFI0180 00K 1073
OKF10190 00K 1074
OKF10200 00K 1075
OKFI0210 00K 1076
OKF10220 00K 1077
OKF10230 00K 1078
OKF10240 00K 1079
OKF10250 00K 1080
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KL AD
KCAE
KUAD
KXAC
NLAC
NNAD
NP A C
IJAD
ILAD
JLAD
J IAD
MAC
NAD
L ERAD
KATAD
KORAD
KTERAC
MINEAD
LCAD
KAAC
IF INAD
KIAC
KDAD
KOAC
KAC

//STEP EXEC ASMC,PARtv.C='LCACDECK'
//C.SYSIN DD *
ASSEM2 START 0

ENTRY PLACELADDR,LCECR
SPACE 2

PLACE SAVE (14,12),,*
BALP 12,0
USING *,12

SPACE
DC
DC
DC
Cc

DC,
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC,
DC,
C c

DC,
DC
DC
END

2
V(KL)
V (KC)
V(KU)
V (KX)
V (NL)
V(NN)
V (NP)
V(IJ)
V (IL)
V (JL)
V(JI
V iM)
V (N)
V(LER)
V (KAT)
V (KOR)
V (KT ER)
V(MI NE)
V ( LC)
V (KA)
V( IFIN)
V(KI)
V(KO)
V(KQ)
V (K)

OKF10260 OOK 1381
OKF10270 00K 1082
OKF10280 00K 1083
OKF10290 00K 1084
OKF10300 00K 1085
OKF10310 00K 1086
OKF10320 00K 1087
OKF10330 OOK 1088
OKF10340 00K 1089
OKF10350 OOK 1090
OKF10360 00K 1091
OKF10370 00K 1092
OKF10380 00K 1093
OKF10390 00K 1094
OKF10400 OOK 1095
OKF10410 00K 1096
OKF10420 00K 1097
OKF10430 00K 1098
OKF10440 00K 1099
OKF10450 00K 1100
OKF10460 00K 1101
OKF10470 00K 1102
OKF10480 00K 1103
OKF10490 00K 1104
OKF10500 00K 1105
OKF10510 00K 1106
OKF10520 00K 1107
OKF10530 00K 1108

00K 1109
OKFO6010 00K 1110
OKF10560 00K 1111
OKFI057O 00K 1112
OKFI0580 00K 1113
OKF10590 00K 1114
OKFI0600 00K 1115
OKF10610 00K 1116
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LA 11,SAVER
ST 13,4(11)
ST 11,8(13)
L 6,0( 1)
L 7,4(1)
MVC 0(2,7),2(6
RETURN (14,12),T

SPACE 2
LACOR SAVE ( 14,12),,*

BALR 12,0
USING *,12
LA 11,SAVER
ST 13,4(11)
ST 11,8(13)
L 6,0(1)
LH 6,2(6)
ST 6,20(13)
RETURN (14,12),T
SPACE 2

LCECR SAVE (14,12),,*
BALR 12,0
USING *,12
LA 11,SAVER
ST 13,4(11)
ST 11,8(13)
L 6,0(1)
LH 6,0(6)
ST 6,20(13)
RETURN (14,12),T
SPACE 2

SAVER DS 1
END

/1*

)

CALL PLACE(AB)
PLACES THE RIGHTMOST 16
IN THE LEFTPOST 16 BITS

THE FUNCTION LADOR(A) R
RIGHTMOST 16 BITS OF A
FORTRAN INTEGER.

THE FUNCTION LDECR(A) R
LEFTMOST 16 BITS CF A A
FORTRAN INTEGER

8F

*
ASSEMBLER L ANGUAGE SUBROUTINE ERASE

BITS OF
OF B

ETURNS TH
AS A 32-B

ETURNS TH
S A 32-BI

OKF10620 00K
OKF10630 00K
OKF10643 00K
OKF10650 00K

A OKF10660 00K
OKF10670 00K
OKFI0680 00K
OKF10690 00K
OKFI0700 00K
OKF10710 00K
OKF10720 00K
OKF10730 00K
OKF10740 00K
OKF10750 00K

E OKF10760 00K
ITS OKF10770 00K

OKF10780 00K
OKF10790 00K
OKFI0800 00K
OKFI0810 00K
OKF10820 00K
OKF10830 00K
OKF10840 00K
OKF10850 00K
OKF10860 00K

E OKF10870 00K
TS OKF10880 00K

OKF10890 00K
OKF10900 00K
OKFI0910 00K
OKF10920 00K
OKF10930 00K
OKF10940 00K
00000003 00K

* 00000010 00K
* 00000011 00K
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1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
115,)
1151
1152



WRITTEN BY JOHN W. KIDSON
MIT CEPARTMENT OF METEOROLOGY

TO SET ELEMENTS OF REAL OR INTEGER ARRAYS TO ZERO. AIA2,...
ARE ARRAY NAMES AND N1,N2,... ARE INTEGER VALUES OR
EXPRESSIONS GIVING THE ARRAY SIZES.
I.E. - CALL ERASE(C,26*31,N,7*31,E,254)

*
*
*

*
*
*
*
*

ERASE START 0
SAVE (14,12),,*
EALR 12,0
LSING *,12
SR 0,0
SR 2,2 PARAMETER LIST INCEX=0
L 6,=F4'

El L 3,0(2,1) LOAD 3 WITH ARRAY ADDRESS
L 4,4(2,1) LCAD 4 WITH ADDRESS OF ARRAY LENGTH
L 7,0(4) LOAD 7 WITH ARRAY LENGTH-1 TIMES 4
SLA 7,2
SR 7,6
SR 5,5

E2 ST 0,0(5,3) STORE ZERO
BXL E 5,6,E2
LTR 4,4 TEST FOR LAST ARGUMENT IN LIST
BM RETN
A 2,=F'8'
B El PICK UP NEXT ARGUMENT PAIR

RETN RETURN (14,12),T
END

***** *** *********************************************************

*

*
*

*

**
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00000012 00K
00000014 00K
00000016 00K
00000020 00K
00000030 00K
00000040 00K
00000050 00K
00000060 00K
00000070 00K
00000080 00K
00000090 00K
00000100 00K
00000110 00K
00000120 00K
00000130 00K
00000140 00K
00000150 00K
00000160 00K
00000170 00K
00000180 00K
00000190 00K
00000200 00K
00000210 00K
00000220 00K
0000023J 00K
00000240 00K
00000250 00K
10000260 00K
00000270 00K
00000280 00K
00000290 00K

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183



Q K C 0 P E

C

C
C

A QUICK IN-CORE MODEL WITH COST ING INCLUDED
WRITTEN BY PAUL F. DEATCN

M.I.T. DOCTORAL THESIS, MARCH 1973

*
*
*

*

CKCCRE MAIN PROGRA1'
CKCORE VERSION 12-15-72
REAL*8 RTC
CCMtCN/FXDDAT/MXLONE,MXCYTO,MXRCRSMXRCRKMXFULKIRCRSIRCRKIFULK

$,NRCRSNRCRK,NFULKEFFXFXW,TXRATEPVRATETBASE,DTPREDTPST,
$CTY2F6,CCRATEFCOR,FFARFSARFCRE,NCYCINNCYCXS,NCYCTONZONENZP,
$ZONEKG,ECHD0V,EFFAVMWS
CCMPCN/PRINTS/RELCSTINCCSTBALCST,NBLCSTPIRDATPBATCSRDWT
LOGICAL RELCST,INCCST,BALCST ,NBLCSTPIRDAT,PEATCS
INTEGER RCWT
DIPENSION EL AME(50,20),NECBAL(20 ),TF(20),TS( 20),CATITL(20)
CIMENSION ECUPLM(20) ,TC(20)
EATA $NEWB$,$CASE$,$STOP$/'NEW ',"CASE*,'STOP'/
NXESX2=50
FRINT 900

10 CALL ICNPUT
2) READ (RD,920) CATITL

WRITE(WT,921J CATITL
IF(CATITL(1).E.Q.$NEWB$) GC TO 1)
IF(CATITL (1) .EQ. $STOP$) CALL ICERRS('QKCCRE',8)
IF(CATITL(1).NE.$CASE$) CALL ICERRS('QKCCRE',3)
READ (RDS20) CATITL
WRITE(WT,922) CATITL
READ (RD,923) NCYCIN,I\CYCXS,IDNUMECHDOV
WR ITE(WT,924) NCYCIN,NCYCXS,IDNUMECHDOV
NCYCT(=NCYC IN+NCYCXS
CALL FRASE( ELAMEMXESX2*PXCYTOTS,MXCYTOTE, ?XCYTO ,NECBALMXCYTO)
VXNES=0
CCi 30 IDUM=1,NCYCTC

QKCR0001
QKCROO02
QKCR003
QKCROO04
QKCROO05
QKCROO06
QKCROO07
QKCRO308
QKCROO09
QKCR0010
QKCR0011
QKCROO12
QKCR0013
QKCR0014
QKCR0015
QKCR0016
QKCROO17
QKCRO0)18
QKCROO19
QKCR0020
QKCRJ021
QKCR0022
QKCR0023
QKCROO24
QKCROO25
QKCR0026
QK CR0027
QKCR0028
QKCR0029
QKCR0030
QKCR0031
QKCR0032
QKCR0033
QKCR 0034
QKCR0035
QKCR 01036
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FEAC(D0,925) INECBAL(I)
$N=1,NES)

30 MXNES=MAX0(MXNESNES)
MXE2=(MXESX2+1)/2
IF(MXNES.GT.MXE2) CALL I
RITE(WT,908)
WRITE(WT,903) (1
WRITE(WT,904) C TS(I)
INRITE(WT,910) ( TC(I)
WRITE(WT,905) ( TE(I)
%RITEWT,906) (NECBAL(I)
WRI TE( WT ,909)
CO 40 N=1,MXNES
=2*A-1

40 WRI TE(WT,907) (ELAME(M,I
INCCST=.TRUE.

,TS(I),TE(I),NES,TO( 1),(ELAME(2*N-1,1 ),

CERRS('QKCORE' ,10)

,I=1,NCYCTO)
,I=1,NCYCTO)
,I1=1 ,NCYCTO)
,1=1 ,NCYCTO)
,I=1,NCYCTO)

),I=1,NCYCTO)

CALL INCCRE(IDNUMNCYCIN,NCYCXS,NCYCTOTS,TENECBALELAMEMXESX2,
IECHDOV RTC, PVRATBASETMEC UPLM, TO)
WRI TE (WT ,926) RTC, BASETMPVRAT
IRITE(rT,S.27) CATITL
IF ( INC CS T ) GO TO 20
STCP

90) FORMAT(T31,72(1'*) /T31,'*,T102,'*'/T31,'*1, T37,'Q K C 0 R E
$ A QUICK IN-CORE MODEL WITH COSTING INCLUDED ',T102,'*'/
$T3I,'*',T64,'WRITTEN EY PAUL F. DEATON',T102,'**/
$T31,*', T58,'M.I.T. DCCTORAL THESIS, MARCH 1973 ',T102,'*/
$131 ,'' ,
$T56,'VER

903 FORMAT('
904 FORMAT ('
905 FORMAT('
906 FOR M AT ('
907 FORMAT('
903 FORMAT('
909 FOMAT('
910 FCRMAT(*

T102,'*'/T31,72('*')//
SION 12-15-72')
0 CYCLE', 14(16, 3X) /( 12X, 12(16,3X)))
OTSTART' ,14F9.4/(12X,12F9.4))

TEND ', 14FS.4/(12X,12F9.4) )
NECBAL',14( 16,3X)/(12X,12(16,3X)))

',14F9.2/(12X,12F9.2))
01/10 CASE INPUT DATA :')
0',T7 ,'TABLE CF EC''S TO BE INVESTIGATED

TOPR ',14F9.4/(12X,12F9.4))

:' )

QKCR0037
QKCR0038
QKCR0039
QKCR0040
QKCR0041
QKCR0042
QKCR0043
QKCR0044
QKCR0045
QKCR0046
QKCR0047
QKCR0048
QKCR0049
QKCR 0050
QKCR0051
QKCR0052
QKCR J053
QKCR0054
QKCR0055
QKCR0056
QKCR0057
QKCR0058
QKCR0059
QKCR0060
QKCR 0061
QKCR0062
QKCR0063
QKCR0064
QKCR0065
QKCR0066
QKCR0067
QKCR0068
OKCR0069
QKCR0070
QKCR0071
QKCR0072
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920 FORMAT(20A4)
921 FORMAT('O QKCORE REAC CARD :',2H ',20A4,1H')
922 FORMAT('1',T15,'QKCCRE CASE TITLE :',2H ',20A4,1IH')
923 FORMAT(3110,F10.2)
924 FORMAT('0',T7,'NCYCIN NCYCXS IDNUM ECHDOV'/3110,F10.2)
925 FORMAT (2 110,2F 10.4,110, F10i).4 /(8F1J.4 ) )
926 FORMAT(C //',INCORE RETURNED THE FOLLOW ING VALUES TO QKCORE

$ :'/ '0 REACTOR TOTAL COST =',-3PF15.6,' MILLION DOLLA
$RS PRESENT VALUED TO YEAR ',0PF8.4,' AT THE RATE OF ',2PF6.3,' PER
$ CENT PER YEAR'/'O'/'O'/)

927 FORMAT('C'/'J'/'0 END OF QKCORE CASE TITLE :',2H ',20A4,1H')
END
SLBRCUTINE INCORE( ICAUM,NCYClN,NCYCXSNCYCTOTSTENECBALELAME,

$MXESX2,ECHDOV,PPVRTC ,PVRATBASETMECUPLMTC)
C PAIN SUBRCUTINE OF IN-CORE FUEL SIMULATOR
C CKCCRE VERSION 12-15-72
C*********** DEF INITIONS OF IMPORTANT VARIABLES *********************

ACCYC
ACEOCD
E
BALCST
EASETM
EATCST
BSRT
C
CCRATE
CECRIT
SES TCH

CTC
CTPRE
DTPST
CTY2F6
EC
EC HDOV
ECUPLM
EFF

AVERAGE CYCLE CCST AT IT'S MIC-PT. ($/MWHE)
AVERAGE CCST CF BATCH DISCHARGEE AT END OF CYCLE ($/MWI-E)
BUPNUP (MWC/KG)
PRINT DETAILEC COST TABLES FOR BALANCED EC'S ?
BASE TIME FOR PRESENT VALUING (VEARS)
TOTAL BATCH COST (10**3 $)
ZONE BURNLPS OF FUELS AT START CF SIMULATION (MWD/KG)
UNIT BATCH COST ($/KG)
CARRYING CHARGE RATE (FRACTION)
FIRST CYCLE ENERGY AVAILABLE BEFORE BARELY CRITICAL (GWEE)
UPPER LIMIT CN STRETCHOUT ENERGY (GWHE)
ON-LINE CYCLE LENGTH (YEARS)
EFFECTIVE DELAY TIME FOR PRE-REACTOR PAYMENTS (YEARS)
EFFECTIVE DELAY TIME FOR POST-REACTCR RECEIPTS (YEARS)
EFFECTIVE DELAY TIME FROM YELLOiCAKE TO UF6 (YEARS)
ELECTRICAL ENERGY PRODUCED IN THE CYCLE (GWHE)
GWHE HELD OVER FOR PROD. BEYOND FORIZON IN SPLIT CYCLE
UPPER LIMIT CN CYCLE PRODUCTION (GWHE)
EFFINC

QKCR 0073
QKCR0074
QKCRO075
QKCR0076
QKCROO77
QKCR0078
QKCR0079
QKCR0080
QKCROO81
QKCROO82
QKCR083
QKCROO84
QKCR0085
QKCROO86
QKCR0087
QKCR0088
QKCROO89
QKCR0090
QKCROO91
QKCR0092 *

QKCR)0093
QKCR0094
QKCR0095
QKCR0096
QKCR0097
QKCR 0098
QKCR0099
QKCR0100
QKCR0101
QKCRO102
QKCR0103
QKCR0104
QKCRO105
QKCRO106
QKCRO107
QKCRO108

PAGE 3



EFFAV
EFF I NC
EFFNET
ELAPE
EPF
EP FFX
EPFSRT
ERRCOD
FAB I NV
FCCR
FCRE
FFAB
FSAR
EULCON
IDNO
IDNUM
IFULK
IFULKA
INCCST
IRCRK
IRCRKA
IRCPS
MODIRR
PWCAP
IXcY T3
MXESX2
MXFULK
MXRCRK
I XRC RS
PXZCNE
NAME
NBLCST
NCYCFX
NCYC IN
NC YC TO
NCYCXS

EFFNET
REACTOR INCREMENTAL EFFICIENCY (FRACTION)
REACTOR NET THERMAL EFFICIENCY (FRACTION)
SANDWICHEC MATRIX OF EC'S, LAMBCAS AND EC'S (GWHE,$/MWHE)
ENRICHMENT AS-FABRICATED (W/O U-235)
FIXED ENRICHMENTS OF INITIAL CYCLES (W/O U-235)
AS-FAB. ENRICHMENT OF INITIALLY PRESENT FUELS (W/O U-235)
ACCUMULATED ERROR CODE
UN-DEPREC. FAB. INVENTORY FOR STARTING FUELS ($/KG-FAB)
YIELD IN CCNVERSICN STEP OF FUEL CYCLE (FRACTION)
YIELD IN RECYCLE CONVERSION STEP OF FUEL CYCLE (FRACTION)
YIELD IN FAERICATION STEP OF FUEL CYCLE (FRACTION)
YIELD IN SHIP.&REPROC. STEP OF FUEL CYCLE (FRACTION)
SETS OF EMPIRICAL FUEL CONSTANTS
REACTOR 1.0. NUMBER
I.D. NUM3ER OF REACTOR TO BE SIMULATED
FUEL CCNSTANTS INDEX
POINTER TO SET OF FUEL CONSTANTS TO BE USED
PRINT INCREMENTAL COST TABLE ?
REACTOR CCNSTANTS INDEX
POINTER TO SET OF REACTOR CONSTANTS TO BE USED
REACTOR INDEX
MODE OF IRRADIATION
REACTOR RATEC CAPACITY (MWE)
MAXIMUM ALLCiED VALUE OF NCYCTO
FIRST DIMENSION OF ELAME = MAX.NO. EC'S * 2
MAXIMUM NUMBER CF ALLOWABLE SETS OF FUEL CONSTANTS
MAXIMUM NUMBER OF ALLOWABLE SETS OF REACTCR CONSTANTS
MAXIMUM NUMBER OF ALLOWABLE SFTS OF REACTOR SPECS.
MAXIMUM NUMBFR CF ZCNES
REACTOR NAME
PRINT DETAILED COST TABLE FOR UNBALANCED EC'S ?
NUMBER OF INITIAL CYCLES WITH ENRICHMENT FIXED
NUMBER OF CYCLES INVOLVED IN HORIZON
TOTAL NUMBER OF CYCLES = NCYCIN + NCYCXS
NUMBER OF EXCESS CYCLES BEYOND HORIZCN

QKCRO109
QKCR 0110
QKCRO 111
QKCRO112
QKCRO113
QKCR01 14
QKCR)115
QKCR01 16
QKCR0117
QKCR0118
QKCR01 19
QKCR3120
QKCRO 121
QKCR0122
QKCR0123
QKCRO124
QKCR0125
QKCRO126
QKCRO127 %

QKCR0128 L
QKCRO129
QKCR 013)
QKCRO13.1
QKCR0132
QKCR0133
QKCRO134
QKCRO135
QKCRO136
QKCR0137
QKCR0138
QKCRQ139
QKCRO140
OKCR0141
QKCRO142
QKCRO143
QKCRO144

PAGE 4



NECBAL
NFULK
AO E S X2
NOZONE
ARCRK
NRCRS
NZONE
NZF
PBATCS
FI REAT
FOWFRC
FV FACT
PVRAT
PVRATE
PVRTC
PVTCYC
RCRC ON
RD
RELCST
SRC INV
TBASE
TCCYC
TCEOCD
TE
TMID
TO
TREFUL
TS
1XRATE
LNTCOR
LNTCRE
LNTFAB
LNTPUV
LN TSAR
LNTSWU
LNTYEL

POSITION OF ECBAL WITHIN A CCLU'N OF EC'S OF ELAME
NUMBER OF SETS OF FUEL CONSTANTS READ IN
(NUMBER OF EC'S)*2 IN EACH CYCLE OF THE SIMULATION
NUMBER OF ZCNES IN FUEL MANAGEMENT SCHEME
NUMBER OF SETS OF REACTOR CONSTANTS READ IN
NUMBER OF SETS CF REACTOR SPECS. READ IN
NOZONE
AOZCNE + 1
PRINT DETAILED COST FOR ALL BATCHES ?
PRINT CATA FCR EACH IRRADIATION CYCLE ?
ZONE PCWER-SHARING FRACTIONS OF STARTING CYCLE
PRESENT VALUE OF 1$ AT MID-PT. CF CYCLE
PRESENT VALUE RATE (FRACTION PER YEAR)

PVRAT
PRESENT VALUE OF REACTOR TOTAL COST (10**3 S)
PRESENT VALUE OF CYCLE COST (10**3 S)
SETS OF EMPIRICAL REACTOR CONSTANTS
UNIT NUMBER CF COMPUTER INPUT READING DEVICE
PRINT RELATIVE COST TABLE ?

UN-DEPREC. SRC. INVENTORY OF STARTING FUELS ($/KG-FAB)
BASE TIME FCP PRESENT VALUING (YEARS)
TOTAL CYCLE COST AT IT'S MID-PT. (10**3 $)
TOTAL COST OF BATCH DISCHARGED AT END OF CYCLE (10**3 $)
ENDING CYCLE DATES (YEARS)
MID-POINT OF CYCLE (YEARS)
CYCLE CPERATING TIME (YEARS)
REFUELING DATE (YEARS)
STARTING CYCLE CATES (YEARS)
INCOME TAX RATE (FRACTION)
UNIT CONVERSION COST ($/KG-U CONV)
UNIT RECYCLE CCNVERSION COST ($/KG-U CONV)
UNIT FABRICATION COST ($/KG-FAB)
UNIT PLUTCNIUM VALUE ($/GM-FIS.PU)
UNIT SHIP.&REPRCC. COST ($/KG-SAR)
UNIT SEPARATIVE WORK COST ($/KG-SWU)
UNIT YELLCWCAKE COST ($/LB-U308)

QKCRO145
QKCRO146
QKCRI147
QKCR0148
QKCRO149
QKCR0150
QKCRO151
QKCR0152
QKCRO153
QKCRO154
QKCR3155
QKCRO156
QKCRO157
QKCRO158
QKCR0159
QKCRO160
QKCRO161
QKCRO162
QKCRO163
QKCR0164
QKCRO165
QKCRO166
QKCRO167
QKCR0168
QKCRO169
QKCR3170
QKCRO171
QKCRO172
QKCR0173
QKCRO174
QKCR 0175
QKCRO176
QKCR0177
QKCRO178
QKCRO179
QKCRO180
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C WT = UNIT NUMBER CF COMPUTER OUTPUT WRITING DEVICE
C XF = ENRICHMENT OF YELLOWCAKE (WT.FR. U-235)
C XW = ENRICHMENT OF DIFFUSION PLANT TAILS (WT.FR. U-235)
C ZEROHT = TOTAL HEAT REQT. FOR ZERO POWER DURING TO (GWHTH)
C ZONEKG = ZONKG
C ZCNKG = MASS RELOADED AT EACH REFUELING (KILOGRAMS)
C********** END OF DEFINITIONS *************************************

REAL*8 PVRTC
CIMENSION G(1000)
DIMENSION TS(NCYCTO),TE(NCYCTO),NECBAL(NCYCTC),TO(NCYCTO),

$ELAME(MXESX2,NCYCTC), ECUPLM(NCYCTO)
COMMCN/APDATA/IDNO(15),NAME(15),MWCAP(15),EFFNET(15),IRCRKA(15),
$IFULKA(15),NOZONE(15),ZONKG(15),DECRIT(15),DESTCH(15),NCYCFX(15),
$EPFFX(20,15),EPFSRT(10,15),BSRT(10,15),FABINV(10,15),SRCINV(10,15)
$,POWFRC(1J,15),RCRCC(A(18 ,15),FULCCN(48,5),EFFINC(15)

CIMENSION NOESX2(20)
COMMON/FXDDAT/MXZONEMXCYTCMXRCRSMXRCRKMXFULKIRCRSIRCRKIFULK

$,NRCRSNRCRKNFULKEFFXFXW,TXRATEPVRATE,TBASEDTPRE,DTPST,
$CTY2F6,CCRATEFCORFFABFSARFCREOUMMYLDUMMY2,DUMMY3,NZONE,NZP,
$ZONEKG,DLMMY4,EFFAV,MiS
COMMON/PRINTS/RELCSTINCCSTBALCST,NBLCSTPIRDAT,PBATCSRDWT
LOGICAL RELCSTINCCST,BALCSTNBLCSTPIRDATPBATCS
INTEGER RD,WT
INTEGER CUMMYIDUMvY2,DUMMY3
CUMMYl=NCYC IN
CUMMY2=NCYCXS
CUMMY3=NCYCTO
CUMMY4=ECHDCV
GO TC 5

C
C

ENTRY ICNPUT
C ENTRY POINT TO INCORE AS SIGNAL TO PREPAFE FOR SIMULATION BY
C PEACING PERTINENT INPUT CARDS
C
C SET VERS ION MAXIMUMS

QKCR0181
QKCRO182
QKCR0183
QKCR0184
QKCRO185
QKCRO186
QKCR 0187
QKCRO188
QKCR0189
QKCR0190
QKCRO191
QKCR0192
QKCRO193
QKCR0194
QKCRO195
QKCRO196
QKCR0197
QKCR0198
QKCRO199
QKCR0200
QKCRO201
QKCR0202
QK CR0203
QKCR0204
QKCR0205
QKCR0206
QKCR0207
QKCR0208
QKCR0209
QKCRO210
QKCR0211
QKCR3212
QKCR0213
QKCRO214
QKCR0215
QKCRO216
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NXL A ST=1 )
PXZCNE=1O
fXCYTO=2 0
MXRCRS=1.5
fvXRC9K=1 5
MXFULK=5
P0=5
ST=6
CALL REDCOR
FETURN

C
C

5 IF (NCYCI N+NCYCXS.NE.NCYCTOJ
NCYCTO=NCYCIN+NCYCXS
IF(NCYCTC.GT.MXCYTO) CALL
PVRAT=PVPATE
BASE TM=T BA SE
CO 10 I=1,NPCRS
IF(IONfJ(I).EQ.IDNUM) GO TO

10 CONTINUE
CALL ICEFRS V INCORE' ,7)

20 IRCRS=I
AZCNE=NOZONE( IRCRS)
hZP=NZONE+1
ZONEKG=ZCNKG (I RCR S)
IRCRK=IRCRKA(IRCRS)
IFULK=IFLLKA( IRCRS)
EFF=EFFINC(IRCRS)
EFFAV=EFFNET(IRCRS)
MWS=MWCAP(IRCRS)
ECR.ITI=DECR IT( IRCRS)
STCHLM=DESTCH(IRCRS)

C SETUP POINTERS AND INITIAL
NCYC TP=NCYCTO+1I
LTREFU=1
LTMID =LTREFU+NCYCTP

) CALL ICERR S( 'INCORE' , 6)

ICERRS( 'INCORE ',5)

20

QKCRO217
QKCRO218
QKCR3219
QKCRO220
QKCRO221
QKCR0222
QKCR0223
QKCR0224
QKCR0225
QKCR0226
QKCR0227
QKCR0228
QKCR0229
QKCR0230
QKCR0231
QKCR0232
QKCR0233
QKCR0234
QKCR0235
QKCR0236
QKCR0237
QKCR0238
QKCR0239
QKCR0240
QK CR0241
QKCR0242
QKCR0243
QKCR0244
QKCR0245
QKCR0246
QKCR0247
QKCR0248
QKCR0249
QKCR 0250
QKCR0251
QKCR0252
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LDTC =LTMID +NCYCTP
LMCDIR=LETC +NCYCTP
LUNTYE=LMODIR+NCYCTP
LUNTCO=L UNT YE+NCYC TP
LLtNT SW=LLNTCC+NCYCTP
LUNTFA=LUNT SW+NCYCTP
LUNT SA=L UNT FA+NCYCT P
LUNTCR=LUNTSA+NCYCTP
LUNTPU=LUNTCR+NCYC TP
LPVFAC=LUNT PU+NCYCTP
LEC =LPVFAC+NCYCTP
LPVTCY=L EC +NCYCTP
LTCCYC=L PVTCY+NCYCTP*2
LACCYC=L TCCYC+NCYCTP*2
LTCEOC=LACCYC+NCYCTP
LACECC=LTCECC+NCYCTP
LZEROH=LACEOC+NCYCTP
LEPF =LZERCH+NCYCTP
LB =LEPF +NZP*NCYCTP
LBATCS=L R +NZP*NCYCTP
LA =LBATCS+NZP*NCYCTP
LBC =LA +NZP
LCBC =LBC +N2P
LDT =LCBC +NZP
LKGU =LOT +NZP
LEPNCW=LKGU +NZP
LUVALU=LEPNOW+NZP
LGMP =LUVALU+NZP
LIUF6 =LGMP +NZP
LIFAB =LIUF6 +NZP
LISRC =LIFAB +NZP
LIPUV =LISRC +NZP
LITOT =LIPUV +NZP
LTCST =LITOT +NZP
LACST =LTCST +NZP
LNEXT =LACST +NZP

QKCR0253
QKCR0254
QKCR0255
QKCR0256
QKCR 3257
QKCR0258
QKCRO259
QKCRO260
QKCRO261
QKCR0262
QKCR0263
QKCR0264
QKCRO265
QKCR0266
QKCRO267
QKCR0268
QKCRO269
QKCR0270
QKCR0271
QKCR0272
QKCRO273
QKCRO274
QKCR02'75
QKCR0276
QKCR0277
QKCR0278
QKCR0279
QKCR0280
QKCR0281
QKCR0282
QKCRO283
QKCR0284
QKCR0285
QKCRU286
QKCR0287
QKCR0288
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LLAST=LN EXT-1
LLAST=21*NCYCT P+3*VNZP*NCYCTP +15*NZP
IF(LLAST.GT.MXLAST) WRITE(WT,9J0) LLASTIXLAST

IF(LLAST.GT.MXLAST) CALL ICERRS('INCORE',4)
CUMMY=EMPRCL(FULCCN (1,IFULK), RCRCON(1,IRCRK))

CALL INIT3(FABINV(1,IRCR S),SRCINV(1,IRCRS),
$G(LEPF ),G(LDTC ),G(LB ),G(LUNTYE),G(LUNTCO)
$G(LUNTFA ) ,G (LUNTSA ) ,G( LUNTCR) ,G( LUNT PU) ,C(LTCECC)
$C(LA ),G(LBC ),G(LDBC ),G(LDT ),G(LKGU
$G(LUVALU),G(LGMP ),G(LIUF6 ),G(LIFAB ),C(LISRC

$G(LITOT ),G(LTCST ),G(LACST ))

PX2EUS=0
CO 45 N=1,NCYCTO
CO 30 I=1,MXESX2,2
IF(ELAME(IN).EQ.0.0) GO TO

30 CONTINUE
I=MXESX2/2*2+1

40 NOES X2(N)=I-1
45 PX2EUS=MAX0(MX2EUSNOESX2(N)

CALL FULSIM(MXESX2,NCESX2,EL
$EPFFX( 1, IRCRS) ,BSRT( 1,IRCRS)
$C(LOTC ),G(LMCDIR),G(LUNTYE
$G(LUNTSA) ,G(LUNTCR) ,G(LUNTPU
$C(LTCCYC ),G (LACCYC) , G(LTCEOC
$G(LEATCS),G(LTCST ),G(LTREFU
$STCHLM,IONUMTO,G(LZERCH))
IF(tX2EUS.LT.4) GO TO 110

C PRINT ELAME TABLE IN LNITS 0

,G(LUNTSW),
,G(LACEOC),
,G(LEPNCW),
,G(LIPUV ),

AME,NECBAL, EPFSRT(1, IRCRS),
,POWFRC(1,IRCRS) ,TS,TE,
),G(LUNTCO),G(LUNTSW) ,G(LUNTFA) ,

),G(LPVFAC),C(LEC ),C(LPVTCY),
),G(LACEOC) ,G(LEPF ) ,G(LB ) ,
),G(LTMID ), ECRIT1,PVRTCECUPLM,

F $ S/OR $/MWHE
L=LEC-1
IF(.NOT.RELCST) GO TO 80
RITE(WT,9-01)

WARITE(WT,919) IRCRS, IDNUM
iRI TE(WT,902) PVRTC,(G(L+J),J=1,NCYCIN)
WRIT E(WT ,918) (ECUPLM(J) ,J=1,NCYCIN)

RI TE (WT ,903) (J,J=1,NCYCIN)
WRITE(WT,904) ( ELAME (1,J) , J=1,NCYCI N)

C
QKCR0289
QKCRO290
QKCR 0291
QKCR0292
QKCR0293
QKCR0294
QKCR0295
QKCR0296
QKCRO297
QKCR0298
QKCRO299
QKCR0300
QKCR0301
QKCR0302
QKCR0303
QKCRO304
QKCRO305
QKCR 0306
QKCRO307
QKCRO308
QKCR0309
QKCR0310
QKCR0311
QKCR03.12
QKCR0313
QKCR0314
QKCRO3 15
QKCR0316
QKCR031T
QKCRQ318
QKCRO319
QKCR0320
QKCR0321
QKCR0322
QKCR0323
QKCR0324
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6RITE(WT,905)
WRITE(WT,906)
WRITE(WT,907)
00 50 K=6,MX2E
WRITE(WT, 906)

50 fRITE(WT,907)

(ELAME(2,J
(ELAME(3,J
(ELAME(4,J
LS,2
(ELAME(K-1
(ELAME (K

),J=1,NCYCIN)
),J=1,NCYCIN)
),J=1,NCYCIN)

,J),J=1,NCYCIN)
,J),J=1,NCYCIN)

8) D 100 N=1,NCYCIN
rE2=NOESX2(N)

DO 9C I=4,NE2,2
90 ELAME(I-2,N)=(ELAME(I-2,N)-ELAME(I,N))/(

$ + 1.E-20)
1)- ELAME(NE2,N)=1.E20

IF(.NOT.INCCST) GO TO 110
WRITE(WTS11)
WRITE(WT ,919)
RI ITE( WT,902)
IRITE(WTS18)
fRITE(WT ,903)
WRI TE(WT,904)
WR ITE(WT ,915)
1RRITE(WT ,916)
WRITE(WT,917)
CO 60 K=6,MX2E
WRITE(WT,907)

60 WRITE(WT,917)
110 CONTINUE

RETURN
900 FORMAT('1/*

$' CCMPAR
901 FORMAT('

$,' FCR E
902 FORMAT('

$F12.3,'
903 FORMAT('
<04 FORMAT('
905 FORMAT (I

IRCRS, IDNUM
PVRTC, (G(L+J),J=1,NCYCI
(ECUPLM(J) ,J=1,NCYCIN)
(J,J= 1,NCYCIN)
(ELA IE (1 ,J) ,J=1,NCYCIN)
(ELAME( 2,J ),J=1,NCYCIN)
(ELAME(3,J ),J=1,NCYCIN)
(ELAME(4,J) ,J=1,NCYCIN)
US,2
(ELAME (K-1 ,J ), J=1 ,NCYC I
(ELAME(K ,J),J=1,NCYCI

THIS ITERATION

ELAME(I-3,N)-ELAME(I-1,N)

N)

N)
N)

USES' ,I 5,' LOCATICNS IN
ED TO THE' ,15,' AVAILABLE' /'0')
1',T25,'* * * * * REACTOR TOTAL COSTS RELATIV

CPAL (1000 P.V.$) * * * * *3)

',T1J,'REACTCR TOTAL COST FOR BALANCEC EC''S
10**r3P.V.$'/'O ECBAL',14F9. 1/(12X,12F9. 1))

O CYCLE',l4( 6,3X)/(12X,12(16,3X)))
C EC ',14F9.2/(12X,12F9.2))
CELRTC',14F9.2/(12X,12F9.2))

G ARRAY',

E TO R.T.C.'

(ECBAL ) = I

QKCR0325
QKCR0326
QKCR0327
QKCR0328
QKCRO329
QKCR0330
QKCRO331
QKCRO332
QKCR0333
QKCR0334
QKCR,3335
QKCR0336
QKCR0337
QKCR0338
QKCR0339
QKCR0340
QKCR0341
QKCR0342
QKCR0343
QKCR0344
QKCR0345
QKCR0346
QKCR0347
QKCR0348
QKCR0349
QKCR0350
QKCR0351
QKCR0352
QKCR0353
QKCR0354
QKCRO355
QKCR0356
QKCRO357
QKCR0358
QKCR0359
QKCR0360
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906 FORMAT('O ETC. ',14FS.2/(12X,12F9.2))
907 FORMAT
911 FORMAT

$1 (P.l

915 FORMAT
916 FORMAT
917 FORMAT
S18 FORMAT
919 FORMAT

',14F9.2/(12X
1',T25,'* * * * * IN
$/MWHE) * * * * * ')

INCCST' ,14F9.4/ (12X
ETC. ',14F9.2/(12X

1 1 cc AI ?

(' 0ECUPL A'
(' +INDEX='

, 12F9.2))
CREMENTAL REACTOR TOTAL COST',

,12F9.4))
,12F9.2) )

1 2F9 4I I, . , .
,14F9.1/(12X,12F9.1)
,13,' IDNO=',15)

END
SUBROUTINE REDCOR
READ INPUT CATA FOR INCORE
CKCCRE VERSION 12-15-72
CCMMCN/ARDATA/IDNO( 15),NAME(
$IFULKA(15),NOZCNE(15),ZCNKG(
$EPFFX(20,15),EPFSRT(10,15),B
$,POWFRC(10,15),RCRCCN(18,15)
CCfMlMCN/FXCDAT/MXZONEqXCYTC,

$,NRCRSNRCRKNFULKEFFXF,XW
$ETY2F6,CCRATEFCORFFAB,FSAR

15) ,MWCAP( 15),EFFNET( 15) ,IRCRKA( 15),
15), DECRIT(15),DESTCH( 15 ),NCYCFX( 15),
SRT(10,15) ,FABINV(10,15) ,SRC INV( 10, 15)
,FULCON(48,5),EFFINC( 15)
MXRCRSMXRCR F,MXFULK, IRCRS, IRCRK,IFULK
,TXRATEPVRATE,TBASE ,DTPRE,DTPST,
,FCRENCYCINNCYCXSNCYCTO,NZONE ,NZP,

$ZONEKG,ECHDOV,EFFAV, "mS
CCMICN/PRINTS/RELCST, INCCST, BALCSTNBLCST,PIRDAT,PBATCSRDWT
LOGICAL RELCSTINCCST,EALCST ,NBLCSTPIRCATPEATCS
INTEGER ROWT
CCMPLEX*16 HD(7)/' $/LB U308 ',' $/KG U CONV',' $/KG SWU ',

1' $/KG FAB ',' $/KG SHSREP',' $/KG U CCNV',' $/GP FIS.PU'/

[ATA $INCO$,$ENCB$/'INCO', 'END 'I/
DIMENSION RCRKTL(20,15) ,FULKTL(2-,5)
CIMENS ION X(20),ECTITL(2C),AO(7),A1(7),A2(7),XX(20)
REtC(RD,903) XX
6RITE(WT,931) XX
IF(XX(1).NE.$INCO$) CALL ICERRS('REDCOR',3)
READ (RD,901) NUECON,AURCRS,NURCRKNUFULK,RELCSTINCCST,BALCST,

$NBLCSTP IRDAT,PBATCS
aRITE(WT,902) NUECON,NURCRSNURCRKNUFULKRELCSTINCCSTBALCST,

$NlBLCST,PIRDATPBATCS

QKCR0361
QKCR0362
QKCRO363
QKCR0364
QKCR0365
QKCR0366
QKCR036T
QKCR0368
QKCR0369
QKCR370
QKCR0371
QKCR0372
QKCR0373
QKCR0374
QKCR0375
QKCRO376
QKCR0377
QKCR0378
QKCRO379
QKCRJ380
QKCR0381
QKCRO382
QKCR0383
QKCR0384
QKCR0385
QKCR0386
QKCRO387
QKCRJ388
QKCR0389
QKCR-3390
QKCR0391
QKCR0392
QKCR0393
QKCR0394
QKCR0395
QKCR0396
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IF (NURCRS.GT.MXRCRS.CR.NURCRK.GT .MXRCRK.CR.NUFULK .GT.MXFULK)
I CALL ICERRS('REDCOR',5)

IF(NUECON.LE.0) GO TC 20
C READ ECONCMIC DATA

REAC(PD,903) ECTITL
FEAC(RD,908) XFXWTXRATEPVRATETBASEDTPREDTPST,DTY2F46
Y(8)=DTPRE*365.
X(9)=DTPST*365.
(10)=DTY2F6*365.

CCRATE=PVRATE/( 1.-TXRATE)
CC 10 I=1,7
PEAD(RD,9S 8) AO(I),Al(I),A2( 1),F
IF(I.EQ.2) FCOR=F
IF(I.EQ.4) FFAB=F
IF(I.EQ.5) FSAR=F
IF(I.EQ.6) FCRE=F

1) CONTINUE
X(11)= 100.v:XF

C INITIALIZE & SET PCINTEPS WHERE POSSIBLE
DUMMY=PVINIT(PVRATE)
CALL INIT2(AOAIA2,DTPREDTPSTTBASEX)
DUMMY= SE TUVL (DTY2F6 ,FCCR ,XF, XW)
X(12)=UF6VAL(X(11),X(1), X(2),X('3))

20 WRITE(WT,905) ECTITL
1tRITE(WT,'97) XF,X ,TXRATEPVRATE,TBASECTPREDTPSTDTY2F6,

1CCRATE,X(8),X(9),X(10)
RITE(HWT,909) FCORFFAB,FSAR,FCRE,(AO(I),Al(I),A2(I),X(I),

$ID(I ), I= I,7),X( 12)
IF(tURCRS.LE.0) GO TO 40

C READ REACTOR PHYSICAL INFO.
NRCRS=NURCPS
CALL ERASE(EPFFX,20*15)
DO 30 1=1,NRCRS
FEACRO,910) IDN ( I),NAME(I)

$\OZCNE(I),ZONKG(I) ,FFFNET( I)
IF(EFFINC(I).LT.0.2) EFFINC(

,MWCAP( I), IRCRKA( I), IFULKA( I),
,DECRIT(I),DESTCH(I),EFFINC(I)
I)=EFFNET( I)

QKCR J397
QKCRO398
QKCR0399
QKCRJ400
QKCR0401
QKCRO402
QKCR0403
QKCRO404
QKCR0405
QKCR0406
QKCR0407
QKCR0408
QKCRO409
QKCR0410
QKCR0411
QKCR0412
QKCR0413
QKCR0414
QKCR0415
QKCRO416
QKCR0417
QKCR3418
QKCR0419
QKCRO420
QKCRO421
QKCRO422
QKCR0423
QKCR0424
QKCR0425
QKCR0426
QKCRO427
QKCR0428
QKCRO429
QKCRO430
QKCRO431
QKCRO432
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REAC(RD,91SI) N, (EPFFX
NCYCFX (I )=N
N=NCZONE (I)
IF(N.GT.MXZONE) CALL

30 REAC(RO,912) (EPFSRT(

(1+J, I),9J-lN)

ICERRS( 'REDCOR
J,I),8SRT(JI)

$POWFRC(J,I),J=1,N)
40 wRITE(WT,913) NRCRS

DO 64 I=1,NRCRS
WR-ITE(WT, 914) I, IDNI( I) ,NAME( I) ,MWCA

$NOZCNE (I) ,ZCNKG( I), EFFNET (I) ,DECRIT
N=NCYCFX(I)
RITE (WT ,915)N, (EPFFX( 1+J, I) ,J=1,N)

N=NGZONE (I)
WRITE(WT,916)(J,EPFSRT(JI ),BSRT(J,
$FOWFRC(J,I),J=1,N)

SUM= 0. )
CO 50 J=1,N

50 SUM= SUM+ POW FRC ( J, I)
IF(ABS(SUM-1.).GT.l.E-5) CALL ICERR

60 CCNTINUE
IF(NURCRK.LE.0) GO TC 70

C READ REACTOR EMPIRICAL CONSTANTS
IARCRK=NJURCRK
READ (RD,917) ((RCRKTL(K ,I),K=1,2
$1=1,NRCRK)

70 IRI TE(WT,918) (I,(RCRKTL(K,I),K=.,2
$I=I,NRCRK)
IF(NUFULK.LE.0) GO

C READ FUEL EMPIRICAL
NFULK=NUFULK
READ (RD,919) ((F

11=1, NFULK)
80 )RITE(WT,920) I,(F

$I=1,NFULK)
PEAC(RD,903) XX
WRITE(WT,932) XX

TC 80
CC S TA NT S

4,5)
,FABINV(J,1),SRCINV(J,I),

P(I), IRCRKA (1), IFULKA (I),
SI), DESTCH( I), EFFINC( I)

I),FABINV(J,I),SRCINV(JI),

S 'REDCOR' ,9)

0), (RCRCON(J, 1) ,J=I,18),

0), (RCPCON(J, I ),J=1, 18),

ULKTL (K ,I ) ,K=1 ,20), (FULCON (J, I) ,J=1,48),

ULKTL (K, I ),K=1,20), ( FULCON (J, I ),J=1,48) ,

QKCR0433
QKCR0434
QKCR0435
QKCRO436
QKCRO437
QKCRO438
QKCR0439
QKCR0440
QKCRO441
QKCR0442
QKCR0443
QKCR0444
QKCR0445
QKCRO446
QKCR0447
QKCR 0448
QKCR0449
QKCR 0450
QKCRO451
QKCR0452
QKCR0453
QKCRO454
QKCR0455
QKCR0456
QKCR0457
QKCR0458
QKCR0459
QKCR0460
QKCRO461
QKCR0462
QKCR0463
QKCRO464
QKCR0465
QKCRO466
QKCR0467
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IF(XX(f).NE.$ENDB$) CALL ICERRS('REDCOR',3)
RETURN

901 FORMAT(415,6L1)
902 FCPMAT(P ** * * * INCORE HAS BEEN ENTERED THRU ICNPUT TO READ',

$' CORE INPUT DATA * * * * *0 /''/'0 NUECCN NURCRS NURCRK

$ NUFULK RELCST INCCST BALCST NBLCST PIRDAT',
$1 PBATCS'/4110,9L10)

903 FORMAT(20A4)
905 FCPMAT('O'/'0',T35,' * * * * ECONOMIC CATA * * * * *'//

$110,1H',2A4,1H')
907 FORMAT('0 XF XW TXRATE PVRATE TBASE

$1 DTPRE DTPST DTY2F6'/8F10.5,' YEARS'/T22,'CC
$F10.5,T51,3F10.2,' CAYS')

908 FOFMAT(8F10.3)
909 FORMAT('J REPROCESSING YIELDS:',T51,'UNIT COST ESCALATION

$,' COST = AO + Al*TPAY + A2*TPAY**2'/T6,'FCCR FFAB
$ FCRE',T67,'AO Al A2 COST @ TRE
$'/4F1).4,7(T61,F1J.3,FiO.4,FIO.5,Fi5.3,A8,A4/),
$'OCCST OF NAT. UF6 AT ,

$'TREFUL=TBASE (.E., TPAY=TREFUL-DTPRE) :',F10.3,' $/KG U
910 FORMAT(15, lX,A4,415,5F10.2)
911 FORMAT(I2,F8.3,T7F10.3/(8F10.3))
912 FORMAT(5F10.3)
913 FORMAT('l' /*0',T20,'* * * * * REACTOR ENGINEERING D

$' THE' ,13,' REACTORS * * * * **/)
914 FORMAT('0'/'0 REACTOR DATA FOR IRCRS =',13/T7,'IDNC

$T27,'MWCAP IRCRK IFULK NOZONE ZONEKG EFFNE
$' DECRIT DESTCH EFF INC'/I13,A10,4Il0,F1O.2,F1O.5
$F10.5)

915 FORMAT('0 NCYCFX =',13,' EPFFX =',(lX,12(F7.4,','))
916 FORMAT('O CONDITION OF CORE WHEN SIMULATION CCMMEACES AT

$,' :'/T8,'ZCNE EPF B FABINV SRCINV
$(I10),F10..4t,1.1,2F10.2,F10'.4))

917 FOMAT((2A4,3(/6E12.6)))
918 FORMAT('l' /'0',T30,'* * * * * REACTOR EMPIRICAL DAT

4'* : * * **/'O'/('0 TYPE ',I13,OX,20A4/3(lP6E15.6/)))

I,
RATE =',

COEFFS:'
FSAR

FUL=TBASE

AS UF6')

ATA FOR',

NAME',

,2F10.2,

CYCLE 1'
POWFRC'/

A

QKCR0469
QKCR0470
QKCRO471
QKCRO472
QKCRO473
QKCRQ474
QKCR J475
QKCRO476
QKCR0477
QKCR0478
QKCRO479
QKCRO480
QKCR0481
QKCRO482
QKCRJ483
QKCRO484
QKCR0485
QKCR0486
QKCRO487
QKCRO488
QKCRO489
QKCRO490
QKCRO491
QKCRO492
QKCR0493
QKCRO494
QKCR0495
QKCR0496
QKCRO497
QKCRG498
QKCRO499
QKCR0500
QKCR0501
QKCR0502
QKCR0503
QKCR0504
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919 FORMAT(2A4,8(/6E12.6)))
920 FORMAT(' 1' /'0',T3C,'* * * * * FUEL EMPIRICAL DATA * * * * **

$/'0'/('0 TYPE ',I3,10X,20A4/8(1P6E15.6/)
931 FORMAT('l FIRST INCCRE CATA CARD :',2H ',20A4,1Hf)

932 FOFMAT[' LAST INCORE DATA CARD :',2H ',20A4,Hf)

END
SUBROUTINE FULSIM(MXESX2,NJESX2,ELAME,NECBAL,EPFSRT,EPFFXBSRT,

$FOWFRC,TS,TEDTC,MCDIRRUNTYEL,UNTCORUNTSWU,UNTFAB,UNTSARUNTCRE,
$LNTPUV,PVFACTECPVTCYCITCCYC,ACCYCTCEOCD,ACECCD,EPF,B,BATCST,C,
$TREFULTM TO,ECE1A1,BALRTC,ECUPLM,STCHLM, IDNUM,TOZEROHT)
PERFCRMS FUEL IRRAC. SIMUL. FOR ALL SETS OF E'S

CKCORE VERSION 12-15-12
CCIJPCN/FXDDAT/MXLONE,PXCYTO,MXRCRSMXRCRKMXFULKIRCRSIRCRKIFULK

$,NRCRSNRCRK,NFULKEFFXFXWTXRATE,PVRATE,TBASE,DTPREDTPST,
$ETY2F6,CCRATEFCOR, FFAB,FSARFCRENCYCINNCYCXSNCVCTO,NZONENZP,
$ZONEKG,ECHDOV,EFFAIV, MbvS
COMMON/PRINTS/RELCSTINCCSTBALCST,NBLCSTPIRDAT, PBATCSRDWT

LOGICAL RELCSTINCCSTBALCST,NBLCSTPIRDAT,PBATCS
INTEGER RDOT
CIMENSION NOESX2(NCYCTO),ELAME(MXESX2,NCYCTO),NECBAL(NCYCTO) ,

$EPFSRT(NZONE),EPFFX(NCYCTO),BSRT(NZONE),POWFRC(NZONE),TS(NCYCTO),
$TE(NCYCTO),DTC(NCYCTO),MODIRR(NCYCTO),UNTYEL(ACYCTC),UNTCOR(NCYCTO
$),UNTSWU (NCYCTO) ,UNTFAL3(NCYCTO),UNTSAR(NCYCTO),UNTCRE(NCYCTO),
$LNTPUV(NCYCTO),PVFACT(NCYCTO),EC(NCYCT0),TCCYC(NCYCTO),
$ACCYC(NCYCTO),TCEOJCD(NCYCTO),ACEOCD(NCYCTO),EPF(NZP,NCYCTO),
$B(NZP,NCYCTO),BATCST(\ZP,NCYCTO),PVTCYC(NCYCTC),C(NZP)

CIMENSION TO(NCYCTU),LEROHT(NCYCTO)
CIMENSION TREFUL(NCYCTO),TMID(NCYCTO),ECUPLM(NCYCTO)
REAL*8 TCCYC,PVTCYC,SUM,RTCBALRTC
INTEGER CYCFRSCYCFRSBATBAT
ZTCN=ZCNEKG*0.001
2ALRTC=0.000
CALL CCNSTS (NCYCTOTSTEUNTYELUNTCORUNTSWUUNTFABUNTSARUNTCRE

$,UNTPUV,DTC ,PVFACTTBASETREFULTMID)
FRSCYC=1
LSTCYC=NCYCTO

QKCR0505
QKCRO506
QKCR0507
QKCR0508
QKCR0509
QKCR0510
QKCR0511
QKCR0512
QKCRO513
QKCR0514
QKCR0515
QKCR0516
QKCR0517
QKCR0518
QKCR0519
QKCR0520
QKCR0521
QKCR0522
QKCR0523
QKCR0524
QKCR0525
QKCR0526
QKCR0527
QKCR0528
QKCR0529
QKCR0530
QKCR0531
QKCR0532
QKCR0533
QKCR0534
QKCR0535
QKCR0536
QKCR0537
QKCR0538
QKCRO539
QKCRO540
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FRS E AT =1
LSTBAT=NCYCIN+M IN0 (NZCNE,NCYCXS)
CALL ERASE(ECUPLMNCYCTO)
ECUPLM(1)=ECE1Al+STCFLM
CO 1J CYC=1,NCYCTO
ZEROHT(CYC)=MWS*(1./EFFAV-1./EFF)*TO(CYC)*8.760
IF(EPFFX(CYC)) 2,1,3

1 MODIRR(CYCL)=1
GC TC 10

2 PODIRR(CYC)=2
CO TO 10

3 PCOIPR(CYC)=3
SEC(C'C)=ELAME(2*NECBAL(CYC)-1,CYC)

PODIRR(1)=0
IF(NCYCXS.EQ.j) GO TC 2)
1=1.E20
NCP=NCYCIN+1
DO 15 I=NCP,NCYCTO
PVTCYC(I )=$
ICCYCI)=$
ACCYC(I)=$
D 15 N=1,NZP

5 BATCST(N,I)=$
0 CO 50 CYC=FRSCYC,LSTCYC

IF(PIRCAT.ANC.CYC.EQ.FRSCYC) WRITE(WT,901) IRCRS
MODE=MOD IRR (CYC)
ECESPC=EC(CYC)
ECTSPC=ECESPC/EFF+ZEPCHT(CYC)
EPFSPC=ABS(EPFFX(CYC))
IF(PIRDAT) WRITE(WT,900) CYC,ECTSPCECESPC
IF(CYC.EQ.1) GO TO 30
CALL NXTIRR(MODEECTSPCEPFSPC,ZONEKG,NZCNEEPF(

$E(2,CYC+1),PIRl0ATWT,ECTCRT)
IF (BALRTC.EQ.0.ODO.ANC.MODE.NE.L.AND.ECLPLM(CYC

$ ECUPLM(CYC)=EFF*(ECTCRT-LEROHT(CYC))+STCHLM
IF(MODE.EQ.2) EC(CYC)=EFF*(ECTSPC-ZEROHT(CYC))

,IDNUM

1,CYC) ,8(1,CYC),

). EQ.0.0)

QKCR0541
QKCRJ542
QKCR0543
QKCR0544
QKCR0545
QKCR0546
QKCR0547
QKCR0548
QKCR0549
QKCR0550
QKCR0551
QKCR0552
QKCR0553
QKCR0554
QKCR0555
QKCR0556
QKCR0557
QKCRO558
QKCR0559
QKCR0560
QKCR0561
QKCR0562
QKCR0563
QKCR0564
QKCR0565
QKCR0566
QKCR0567
QKCR0568
QKCR0569
QKCR0570
QKCR0571
QKCRO572
QKCR0573
QKCR0574
QKCR0575
QKCR0576
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22 E(1,CYC+1)=.0
DO 25 I=1,NZONE

25 EPF(I+1,CYC+1)=EPF(I,CYC)
GO TC 50J

30 CO 40 I=1,NZONE
EPF(I,1)=EPFSRT(I)

4) B(I,1)=BSRT(I)
EPF(NZP,1)=l.E20
B(AZP,1)=1.E20
CALL FRSIRR(MUDEECTSPCZONEKGECElAI/EFF+ZERCHT(CYC),NZCNE,
$EPF(1,CYC),B(ICYC),B(2,CYC+1),PIRDAT,WT,POWFRC)

GO TO 22
50 CONTINUE

IF(PBATCS) WRITE(WT,902) IRCRSIDNUM
CO 70 BAT=FRSBAT,LSTBAT
ANIRRAD=MIN0(NZCNE, BAT)
CALL CSTBAT(BATNIRRAC)
NI P=NI RR ACC+l
P1=MAX0(0,NZONE-BAT)
M2=MAXO( BAT-NZONE,C)
[C 60 I=1,NIP

60) BA TC ST ( I +MI, I+M2)=C ( I)*Z TON
70 TCEOCD(BAT)=TCEOCD(BAT)*ZTON

EATCST (N2P,1 )=0.0
CO E5 CYC=1,NCYCIN
SUY=0.0DO
00 80 I=1,NZP

80 SUM=SUM+BATCST(I,CYC)
TCCYC(CYC)=SUM

85 ACCYC(CYC)= SUM/EC(CYC)
IF ( FRS BAT .L E.NCYC IN.AND.LSTB AT.GE.NCYC IN)

$ TCCYC(NCYCIN)=TCCYC(NCYCIN)*(1.-ECHDOV/EC(NCYCIN))
RTC=0.000
DO 90 CYC=1,NCYCIN
PVTCYC(CYC) =TCCYC(CYC)*PVFACT(CYC)

90 RTC=RTC+PVTCYC(CYC)

QKCRi577
QKCR0578
QKCR0579
QKCR0580
QKCR0581
QKCRO582
QKCR0583
QKCR0584
QKCR 0585
QKCR0586
OKCR0587
QKCR0588
QKCRO589
QKCR0590
QKCRO591
QKCR0592
QKCR0593
QKCR0594
QKCR0595
QKCR0596
QKCR0597
QKCR 0598
QKCR0599
QKCR 2600
QKCR0601
QKCR0602
QKCR0603
QKCR0604
QKCR0605
QKCR0606
QKCR0607
QKCR0608
QKCR0609
QKCR0610
QKCR0611
QKCR0612
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IF(BALRTC.GT.iJ.JD)) GO TC 100
IF(.NOT.BALCST.AND..NGT.NBLCST) GO TO 150
CALL PRTTOP(NZPNCYCTCWTTSTEDTCMODIRRUNTYELUNTCORUNTSWU,

$UNTFABUNTSARUNTCRELNTPUVPVFACTEC,PVTCYCTCCYCACCYC,TCECCD,
$ACEOCD,EPF,P,BATCSTTREFUL,TMID,NCYCINECHDOVIRCRS,IDNUM)
GO TO 110

100 IF(.NOT.NBLCST) GO TO 20C
110 CALL PRTBTM(RTC)

IF(BALRTC.GT.U0 .JD)) GC TO 2,00
150 EALRTC=RTC

00 180 N=1,NCYC.IN
NCYC=NCYC IN-N+1I
ECFAL=EC (NCYC)
IF(MODIRR(NCYC).EQ.2) GO TO 180
NE2=NOESX2(NCYC)
FRSCYC=NCYC
LSTCYC=NCYCTO
FRSB AT=FRSCYC
LSTBAT=NCYCIN+MINO(NZCNENCYCXS)
CO 170 J=1,NE2,2
EC(NCYC)=ELAME(J,NCYC)
RTC=BALR TC
IF(EC(NCYC).EQ.ECBAL) GO TO 160
GO TO 190

160 ELAME(J+1,NCYC)=RTC-BALR*TC
170 CONTINUE
18) EC(NCYC)=ECBAL

PETURN
190 GO 10 20
200 GO TO 160
900 FORIAT('C'/'OCYCLE ',12, 9X,'ECTSPC =',F1O.2,' GWHTH',10X,

$'ECESPC =',FI0.2,' GWHE ')
901 FORMAT1''/10CYCLE IRRADIATION DATA FOR ',13,' TH REACTOR (IDNO

$2 ,15, ) :1'/)C
90)2 FORMAT("*1'/'0B3ATCH COSTS FCR ' ,13,1 TH REACTOR (IDNO

$',I5,') :'/)

QKCR0613
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QKCR 0617
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QKCR0619
QKCR0620
QKCR0621
QKCR0622
QKCR0623
QKCR0624
QKCR0625
QKCR0626
QKCR0627
QKCR0628
QKCR0629
QKCR0630
QKCR0631
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QKCR0635
QKCR0636
QKCR0637
QKCR0638
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QKCR0640
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C

END
SUBROUTINE CONSTS(NCYCTOTS,TEUNTYELUNTCORUNTSWUUNTFAB,

$LNT SAR ,UNTCRE ,UNTPUV ,DTC ,PVF ACT ,TBAS E,T REFUL ,TMID)
CALCULATE CONSTANT CATA FOR THIS ITERATION THRU INCORE
QKCCRE VERSION 3-04-72
OIMENSION TS(NCYCTO) ,TE(NCYCTO) ,COST(7)
CIPENSION DTC (NCYCTO) , PV FACT (NCYCTO) ,UNTYEL(NCYC TO),UNTCOR(NCYCTO)
$,UNTSWU(NCYCTO),UNTFAB(NCYCTO),UNTSAR(NCYCTO),UNTCRE(NCYCTO),
$LNTPUV(NCYCTO),TR EFUL(NCYCTO),TMID(NCYCTO)
REAL*8 PVPER$
TEMP=TS(NCYCTO+1)
TS(NCYCTC+1)=TE(NCYCTC)+TS(NCYCTO)-TE(NCYCTO-1)
1=1
TSRT=TS(1)

100 CALL UNTCCS(TSRTCCST)
LNTYEL(I )=COST(1)
LNTCCR(I )=CCST (2)
LNTSiU(I )=CCST(3)
LNTFAB(I)=COST(4)
LNTSAR(I )=COST(5)
LNTCRE(I )=COST(6)
LNTPUV(I )=COST(7)
1SR TNX=0.5* (TE (I)+T S (1+1))
ETC( I)=TSRTNX-TSRT
TMD=TSRT+0.5*DTC( I)
PVFACT(I )=PVPER$(TMC,T3ASE)
TREFUL (I )=TSRT
IMIC(I)=TMD
TSRT=TSRTNX
I=1+1
IF(I.LE.NCYCTO) GO TC 100
TS(NCYCTO+l )=TEMP
FETURN
END
SUBROUT INE NXTIRR (MODE, ECSPC ,EPFSPC ,ZONEKGNZCNE, EPF, BGI N, BFNL,

$ PRINTNPRNTRECTCRT)

QKCR0649
OKCR0650
QKCR 0651
QKCR0652
QKCR0653
QK CR0654
QKCR0655
QKCR0656
QKCR0657
QKCR0658
QKCR0659
QKCR0660
QKCR0661
QKCR0662
QKCRO663
QKCR0664
QKCR0665
QKCR0666
QKCR0667
QKCR0668
QKCR0669
QKCR0670
QKCR 0671
QKCR0672
QKCR0673
QKCR0674
QKCR0675
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QKCR0681
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C
C
C
C
C
C
C
C

CO 20 N=2,NLONE
E=EPF(N)
B=BG IN (N)
K8(N)= FK8(E,B)
S I GA (N) = F SI GA (E)
F(N)=SIGA(N )*K8(N)
FSUM=FSUM+F(N)

20 IEMP=TEMP+K8(N)
K8INR=TEMP/ (NZONE-1)

30 IF(MCDE.GT.1) GO TO 80
K81=FK8NEW(ECSPCK8INR)
K8(1)=K81
EPFI=FEPF(K81)
IF(EPFl.GT.EPFMAX.OR.EPFl.LT.EPFMIN)
EPF(1)=EPF1
ECOLT=EC SPC

GO TC 100

FERFCRMS SIMULATION OF NEXT IRRADIATION
CKCORE VERSICN 3-)4-72
ALL EC*S IN UNITS OF GWHTH FROM THE ENTIRE REACTOR
NODE = 0 FIRST CYCLE WHICH IS ALREADY UNDERGOING IRRADIATION

THEREFORE CNLY FRSIRR CAN BE CALLED
= 1 EC SPECIFIED; EPFNEW TO BE DETERMINED
= 2 EPFNEW SPECIFIED; EC TO BE DETERMINED
= 3 EC & EPFNEW SPECIFIED (STRETCHCUT OR EARLY REFUELING)

IMPLICIT REAL (K)
LCGICAL PRINT
CIMENS I1N EPF(NZONE),BGIN(NZONE),BFNL(NZCNE)
CIMENSION K8(10),SIGA(10),DB(10),F(10)
CCMMON/IRRDAT/K8NRECOUTECRITUTILEC$24ZK8,SIGAD8,F
CATA EPFMINEPFMAX/1.5,5.0/
IF(MODE.EQ.0) CALL ICERRS('NXTIRR*,12)
1<8INR=0.0
LTIL=1.0
FSUM=).D
IF(NZONE.EQ.1) GO TO 30
TEMP=0.0
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ECPIT=ECSPC
40 EPFl=EPF(l)

FHI=FPHI(EPFlK8INR)
SIGA(1)=FSIGA(EPFI)
F( 1)=S IGA( 1) *K8( 1) *PHI
TEMF=1./(FSUM+F(1))

5J EC$24Z=ECOUT/( 24.*ZCNEKG*0.001)
CC 7C t=1,NZCNE
F( N) =F (N)*TEMP
CB (N )=F( N)*EC$24Z

70 EFNL(N)= BGIN(N)+DB(N)
ECTCRT=ECRIT
IF(.N0T.PRINT) RETURN
1 Z= N ZONE
VRITE(NPRNTR,9900) MODEECSPC,EP

$T,UT IL , ( N ,EPF (N), BGI N (N) ,DB(N
RETURN

80 EPF(1)=EPFSPC
E=EPF( 1)
B=BG IN( 1)
K81=FK8( E,B)
l<8(1)=K81
ECR IT=FECOUT(K81 ,KEINR)
IF(MCDE.GT.2) GO TO 85
ECOUT=ECRIT
ECSPC=ECOUT
GO TO 40

85 ECOUT=EC SPC
LTIL=ECOUT/ECRIT

C CHECK FOR WARNING OF TOO MUCH
IF(UTIL.GT.1.25) CALL ICERRS('

C CHECK FOR WARNING CF VERY LITT

IF(UTIL.LT.0.75) CALL ICERRS('
GC TO 40

C COMPLETE FIRST CYCLE IRRADIATI
ENTRY FRSIR R(MODE, ECSPCZONEKG

FSPC, ZCNEKG,K8 INR, EC$24Z, ECOUT,ECRI
BFNL(N) ,KE(N) ,SI[GA( N) ,F(N),N=1,NZ)

STRETCHOUT
NXTIRR',1)
LE IRRADIATION
NXTIRR',2)

3N
,EKRITNZONE,EPF,BGINBFNL,PRINT,
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$NPRNTR ,POWFRC)
CIMENSION POWFRC(NLONE)
ECRIT=EKRIT
EPFSPC=0.C
KS INR=0.0
ECCt T=ECSPC
UTIL=ECOUT/ECRIT
TEIvF=1 .0
CO SO N=1,NZONE
F (N )=POW FRC (N)
K8 (N)=0. 0

9) SIGA(N)=C.J
CO TO 50

100 PODE=3
EPFSPC=EPFM IN
IF(EPFl.GT.LPFMAX) EPFSPC=EPFMAX
CALL ICERRS ('NXTIRR' ,111)
CO TO 80

900 FORMAT( '0MODE =',12,l0X,'ECSPC =',F1O.2,' GWHTH
$',IOX,'EPFSPC =',F10.5,1CX,'ZONEKG =',F10.1/'0 K8INR =',F1O.6,5X,
$'EC$24Z =",F10.4,5X,'ECOUT =',F10.2,5X,'ECRIT =',F10.2,5X,'UTIL ='
$,FIJ.6/'C N EPF BGIN DB BFNL K8,
$6X,' SIGA F'/(13,Fl0.6,3F10.4,3F10.6))

END
SUBROUTINE CSTBAT(LSTIRRNIRRAD)
CALCULATE CCST CF BATCH DISCHARGED AT END OF LSTIRR AND WHICH WAS
IRRADIATEC NIRRAD TIMES WITHIN THE SIMULATION
CKCORE VERSION 12-15-72
IMPLICIT REAL (K)
COMMON/FXDDAT/MXZOJNEMXCYTO, IXRCPS,MXRCRKMXFULK, IRCRS, IRCRKIFULK

$,NRCRSNRCRKNFULKEFFXFXWTXRATEPVRATETBASEDTPREDTPST,
$CTY2F6,CCRATEFCORFFAtBFSARFCRENCYCINNCYCXSNCYCT0,NZONENZP,
$ZNEKG, ECIDOV, EFFAV,MWS

COMMCN/PRINTS/RFLCST , INCCST, BALCST ,NBLCS T, PIRC AT PRATCS, RDWT
LOGICAL RELCST, INCCST,BALCST ,NBLCSTPIRDAT,PEATCS
INTEGER RCWT
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INTEGER FRSIRR
REAL IUF6,IFABISRC, IPUVITOT

REAL*8 PVPER$
LOGICAL NEWFUL
GO TO 5
ENTRY INIT3(FABINV, SRCINV,EPF,DTC,B,UNTYELUNTCORUNTSWU ,UNTFA8,

$LNTSAR,UNTCREUNTPUVTCEOCDACEOCD,A,BC,CBC,DT,KGU,EPNOWUVALUE,
$GMP,IUF6,IFAB,ISRC,IPUV,ITOTC,AC)

CIMENSION FABINV(NZONE),SRCINV(NZONE)
CIPENSION EPF(NZP,NCYCTC),CTC(NCYCTO), B(NZPNCYCTO ),UNTYEL(NCYCTO)

$,UNTCOR(NCYCTO),UNTSW (NCYCTO),UNTFA B(NCYCTO),UNTSAR(NCYCTO),
$LNTCRE(NCYCTO),UNTPUV(NCYCTO ),TCEOCD(NCYCTO),ACEOCD(NCYCTO)
CIMENSION A(NZP,15),BC(NZP),DBC(NZP),DT(AZP),KCJ(NZP),
$EPNOW(NZP),UVALUE(NZP),GMP(NZP),IUF6(NZP),IFAB(NZP),1SRC(NZP),
$IPUV(NLP),ITOT(NZP),C(NZF),AC(NZP)

CCPRE=DTPRE *CCRATE
CCPST=DT PSTw-CCRAT E
FABLCS=( 1.-FFAB) /FFAB
SARLOS=1.-FSAP
CRELCS=FSAR*(1 .- FCRE)
RETURN

5 CALL ERASE(A,15*NZP)
AI=NIRRAD
NIP=NIRRAD+1
IIM=NIRRAD-1
NEWFUL=*TRUE.
FRSIRR=LSTIRR-NZONE+1
IF(FRSIRR.GT.1) GO TC 10
FRSIRR=l
NEWFUL=.FALSE.

10 EPFAB=EPF(NZONELSTIRR)
JCYCL=FRSIRR-1
JZCNE=NZCNE -NI
CO 20 I=1,NI
A( 1,1)=1
JCYCL=JCYCL+1
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JZCNE=JZCAE+1
CT(I)=DTC(JCYCL)
BC(I)=B(JZCNE+IJCYCL+1)-B(JZONE,JCYCL)

20 BC(I)=B(JZONEJCYCL)
BC (NIP)=BC( NI)+OBC (NI)
[BC(NIP)=0.0

CT (NIP)=0.0
CO 30 I=1,NIP
FURN=BC(I)
KGU( I )=FKGUR(EPFAB ,BUPN)
EPNOW( I) =FEPB( EPFAB,BURN)
GMP(I)=FKGPU(EPFAB,BURN)*10)0.
LVALUE(I)=UF6VAL(EPNOW(I),UNTYEL(FRSIRR),UNTCCR(FRSIRR),UNTSWU(FRS
$IPR))
IUF6(I)=UVALUE(I)*KGU(I)

30 IPUV(I)=UNTPUV(LSTIRR)*GMP(I)
IFAR (1 )=UNTFAB8(FRS IRR )+FABLJS*IUF6 ()
ISRC(1)=C.0
IF(NEWFUL) GO TO 40
JZCNE=NZCNt-NI+1
IFAB( 1)=FAB INV(JZUNE)
ISRC (1 )=SRCINV (JZONE)

4) ISRC(NIP)=UNTSAR(LSTIRR)*(KGU(NIP) +0.001*GMP(NIP))
$ + SARLOSi(IUF6(NIP)+IPUV(NIP))
$ + UNTCRE(LSTIRR)*KC-U(NIP)*FSAR+CRELOS*IUF6(NIP)
CISRC=ISRC(NIP)-ISRC( 1)
CVDB=1./ (BC(NIP)-BC(1))
CO 5' I=1,NIP
F=(BC( I)-BC(1))*0VCB
IFAE(I= IFA1)M*(1.-F)
ISRC (I )= ISRC ( 1)+DI SRC*F

50 ITOT(I)=IUF6(I)+IFAB(I)-ISRC(I)+IPUV(I)
CC 6C I=1,NI

60 C(I)=ITOT(I)-ITOT(+1)+(ITOT(I)+ITOT(1+1))*0.5*DT(I)*CCRATE
IF(LSTIRR.GT.NIPRAC) C(M)=C(I)+ITOT(1)*CCPRE
C(NIP)=ITOT(NIP)*CCPST
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TWCTFV=0.0
N= 1

70 IF(N.EQ.NI) GO TO 80
N=N+ 1
TWOTPV=TWOTPV+DT( ( N+1)/2)
GO TC 70

8J TC8A T=). O
PVERN=0.0
C0 90 I=1,NI
FVPER=PVPER$(-0.5*TWOTPV ,0.0)
TCBAT=TCEAT +C( I)*PVPER
FVBRN=PVFRN + CBC (I) *PVPER
AC ( I )= C( 1)/ (24.*EFFAV*OBC( I)

90 T WC T PV=T WOT PV-DT ( I ) -DT (1+1)
ICBAT=TCBAT+C(NIP)*PVFER$(-0.5*TWOTPV,0.0)
AC(A\IP)=1.E20
PVE L EC =P V BR N*24.*E FF AV
AC EOCD (L ST IPR )=TCBAT /PVELEC
TCECCD (LSTI RR )=TCBAT
LST=LSTIRR
IF(PBATCS) WRITE(WT,900) LSTIRR,NIRRADTCBATPVELECACEOCD(LST),

$((A(I,J) ,J=1,15) ,I=1,NIP)
RETURN

900 FOFMAT '0'/10X,'COST CF BATCH DISCH. AT END OF CYCLE',13,
$' WHICH WAS IRRADIATED FOR',13, CYCLES CF THE SIMULATION :'/
$1 TOTAL COST OF DISCHARGED BATCH (P.V. AT MID-PT. CF MIDDLE',
$' IRRAD.) =',F8.2,' $/KGFAB'/ ' AVERAGE COST FOR THE',F8.2,
$' MWHE/KGFAB (ALSO P.V.)",T70 ,'=',F8.4,' $/MWHE'/
$' I BC CBC DT KGUR ENRICH UF6VAL GMSPU',
$1X,'UF6 FAB SPC PUV TOTINV CCST AVGCST'/
$' MWD/KGFAB MWD/KGFAB YRS KG/KGFAB W/0235 $/KGUF6 GM/KGFAB'
$,T67,'----- DOLLARS PER KILOGRAM FABRICATEC ----- $/MWHE'/
$(F4.0,F8.4,FS.4,F8.4,FS.6,F8.4,F8.2,F7.3,3X,6F8.2,F8.4))

END
SUBRCUTINE PRTTOP( AZPt\CYCTOWTTS,TE,DTC,MODIRRUNTYELUNTCOR,
$LNTSWU,UNTFABUNTSAR,UNTCRE,UNTPUVPVFACT,ECPVTCYC,TCCYCACCYC,
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$TCEOCD,ACEOC), EPF, PBATCST ,TREFULTMIDNCYC IN, ECHDCV, IRCRS, I NUM)
PRINT TOP OF FULSIM RESULT TABLE
CKCORE VERSION 3-04-72
REAL*8 TCCYCPVTCYCRTC
CIMENS ION TS(NCYCTG),
$TE(NCYCTC),DTC(NCYCTC),MCDIRR(NCYCTO),UNTYEL(NCYCTC),UNTCOR(NCYCTO
I),UNTSWU(NCYCTO),UNTFAB(NCYCTO),UNTSAR(NCYCTO),UNTCRE(NCYCTO),
$LNTPUV(NCYCTO),PVFACT(NCYCTO),EC(NCYCTO),TCCYC(NCYCTO),
$ACCYC(NCYCTC),TCEOCD(NCYCTr),ACEOCD(NCYCTO),EPF(NZPNCYCTO),
$E(NZPNCYCTI,BATCST(NZPNCYCTO),PVTCYC(NCYCTO),TREFUL(NCYCTC),
$1MIC (NCYCTO)

CCMPLEX*16 HD(60),BLANK,ElNP1,B 1,$1
INTEGER WTFRS
CATA HD/I CYCLE',' TIRSRT YRS','

$' MCDIRR',' UNTYEL $/LBIY',' UNTCO
$' UNTFAB $/KGFe ,' UNTSAR $/KGS',' UN
i' PVFACT @TM MID',I0EC GWHE',' PVTCYC
$I'WH ,' TCEOCO K$',' iACECCD $/MWH',

CATA BLANK,E1,81,$1,NPl/ ',' EPF(1)
$' (N+1)'/

FRS=22
LST=FRS+ 3=N LP- 1
NZ=NZP-1
CO 10 I=FRSLST

10 IC(I)=BLANK
[D(FRS)=El
[D(FRS+NZ )=NPI
FO (FRS+NZP) =81
HD(LST-NZP) =NP1
IC(LST-NZ )=$1
HD(LST)=NP1
WRITE(WT,930) IRCRS,ICNU,
WR IT E(WT , 90 1) FD ( 1), ( II= 1,NCYC TO)
WRITE(WT,914) HD(20),TREFUL
WRITE(WTSl4) HD( 4),CTC

RITE(WT,914) HD( 2),TS

TIREND YRS'
R $/KGC' ,' UN
TCRE $/KGC','
K$',' TCCYC

OTREFUL YRS'
',' EGIN(1)'

,' DTREF. YRS',
TSWU $/KGS'
UNTPUV $/GMP',
KS',' ACCYC $/

,' TMID YRS'/
BATCST(1)',

C
C
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iNRITE(WT,914) HD(
'RITE(WT,901) HD(
WRITE(WT,914) HD(
WRITE(WT,915) FD(
iRITE(WT,902)
WRITE(WT,912) HD(
WRITE(WT,912) HD(
WRITE(WT,912) HD(
WRITE(WT,912) hD(
nRITE(WT,912) HD(
WRITE(WT,912) HD(
RITE(WT,912) HDI

RETURN
ENTRY PRTBTM(RTC)
FRINT BOTTOM OF FU
WRITE(WT ,931)
RITE(WT,901)
WRITE(WT,912)
WRITE(WT,912)
RI TE WT ,912)
WRITE(WT,914)
PI TE(WT ,912)

WR ITE(WT,914)
IX=FRS-1
RITE(WT,900)

C0 20 M=1,NZP
20 WRITE(WT,914)

IX=I X+NZP
P IT E(WT ,900)

CO 30 M=1,NZP
30 WRITE(WT,914)

IX=IX+NZP
MiRITE(WT,900)
CO 40 M= 1,NZP

40 IsRITE(WT,912)
RE T URN

IRC
HD(
HD(
HD(
HD(
HD(
HD(
HD(

3),TE
5)vMCCIRR

21), TM ID
1.3), PVFACT

6),UNTYEL
7),UNTCCR
8),LNISWU
9),UNTFAB

10),LNTSAR
ll),UNTCRE
12),UNTPUV

LSI RESULT TABLE
RS, IDNLM,R
1), (II=1

14) ,EC
15),PVTCYC
16),TCCYC
17),ACCYC
18),TCECCD
19),ACECCD

HD(ti+ IX),

HD(M+ IX),

TC ,NCYCIN,ECHDOV
,NCYCTO)
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900
90 1
902
912
913
914
915
930

FCFMAT
FORMAT
FCRAT
FORMAT
FORMAT
FCRMAT
FORMAT
FORMAT

$

('0')
(A 8,A5,12(17,3X) /(30X,10(17,3X)))
(S UNIT COSTS CA. TREFUL')
(A 8,A5,12F10.2/(3JX,10 F10.2) )
(A 8, A5,12F10.3/( 30X, 1OF10.3))
(A8,A5,12F10.4/(30X,10F1O.4))
(AE,A5,12F10.5/(30X, 1JF10 .5))
(11'/'0'/'0'/T35,'INDEX = 13,10X,IDNO =',15/

'0',T20,' * * * * * FULSIM RESULT TABLE FOR BALANCE
$C SET OF EC''S * * * * **/'0'/'0l)

931 FOFMT('1' /'0'/T35,'INDEX = ',13,10X,'IDNO =',15/
$ 'Oj* :* * REACTOR TOTAL COST TC HORIZON CF INTEREST :',

$F12.3,' (10**3 DOLLARS P.V. TO TBASE) * * * '/ # ( HORIZON IS IN

$ CYCLE ',12,# WITH ',F10.2,' GWHE HELDOVER FOR POST-HORIZON PRODUC

$TION IN THAT CYCLE ) '/)
END
FUNCTION EMPRCL(FR)

C INITIALIZE EMPIRICAL EQUATI]NS
C CKCCRE VERSION 3-04-72

IMPLICIT REAL(K)
CIVENSION F(100),R(25)

C EVALLATE QUADRATIC Q=C) + Cl*X + C2*X**2
C(CO,C1, C2,X)=(C2*X+C1)*X+CO

C LNIT FUEL SIMULATICN ECUATIONS
C SETUP INVERSION OF K86EW TO GET EPFNEW

EMFRCL=0.0
IF(F(3).EQ.J.J) GO TO 10
CEFI=-0.5*:F(2) /F(3)
CEF2=(F(2)**2-4.*F(3)*F(1))/(4.*F(3)**2)
CE F 3=1 . / F ( 3)
CEF4=0.0
K 8VAX=Q(F(1),F(2),F(3),CEF1)-1.E-5
RETURN

10 CEF=-F(1)/F(2)
CEF2=0.0
CEF3=0.0

QKCRO973
QKCR0974
QKCRO975
QKCR )976
QKCR0977
QKCR0978
QKCR0979
QKCRO980
QKCR2981
QKCR0982
QKCR0983
QKCR0984
QKCR0985
QKCRO986
QKCRO987
QKCR0988
QKCR0989
QKCR0990
QKCR0991
QKCR0992
QKCR0993
QKCR0994
QKCR0995
QKCR0996
QKCR0997
QKCRO998
QKCR0999
QKCR1000
QKCR1001
QKCR 1002
QKCR1003
QKCR1004
QKCR1005
QKCR1006
QKCR1007
QKCRIO08

PAGE 28

U,



CEF4=1/F(2)
K8MAX= 130.
RETURN

ENTRY FK8(EPFB)
FKE=Q(Q(F(I),F(2),F(3),EPF),Q(F(4),F(5) ,F(6),EPF),
$C(F(7),F(8),F(9),EPF),B)
RETURN

ENTRY FKGUR(FPF,B)
FKGUR=Q(Q(F(10),F(ll),F(12),EPF),Q(F(13),F(14),F(15),EPF),

$C(F(16), F(17),F(18), EPF),B)
RE TURN

C** 4******k********
ENTRY FEPB(EPFB)
DUM=Q(Q(F(19),F(2c),F(21),EPF),Q(F(22),F(23),F(24),EPF),
$C(F(25),F(26),F(27),EPF),B)

FEPB=E PF*EX P ( -B*DlUM)
RETURN

ENTRY FKGPU(EPFB)
CUM=Q(Q(F(28), F( 29 ), F( 30 ), EPF) ,Q(F( 31) ,F (32) ,F(33) ,EPF),
$C(F(34),F(35),F(36),EPF),B)
LLAM4=Q(F(37),F(38),F(39),EPF)
FLAt=Q(F(40),F(41),F(42),EPF)
FKGPU=DUM*(EXP(-B*ULAM)-EXP(-B*PLAM))
RETURN

C ******** ****** *******

ENTRY FSIGA(EPF)
FS IC-A=F(43)+F(44)*EPF
FETURN

ENTRY FEPF(K8NEW)
FEPF=100.
IF(K8NEW.GT.K8MAX) RETURN
FEPF=CEFI-SQRT(CEF2+CEF3*K8NEW)+CEF4*K8NEW

QKCR 1009
QKCR1010
QKCR 1011
QKCR 10 12
QKCR1013
QKCR 1014
QKCR1015
QKCR 1016
QKCRIO17
QKCRlJ18
QKCR 1019
QKCR1020
QKCR,1021
QKCR1022
QKCR1023
QKCR1024
QKCR1025
QKCR 1026
QKCR1027
QKCR1O28
QKCR1029
QKCR1030
QKCR1031
QKCR1032
QKCR1033
QKCR1034
QKCR1035
QKCR1036
QKCR1037
QKCR1038
QKCR1039
QK CR1040
QKCR1041
QKCR1042
QKCR,1043
QKCR1044
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RETURN
C * **** *
C REACTOR IRRADIATION SIMULATION EQUATIONS

ENTRY FK8NEW(ECK8 INR)
DK=K81 NR-1.
FK8NEW=1.+Q(R(1),R(2),R(3),EC)+Q(0.0,R(4)+R(6)*EC,R(5),DK)
RETURN

C**4 *****: ***************

ENTRY FPHI(EPF,K8INR)
CK=KEI NR-i.
FPFI=1./(1.+EPF*Q(R(8),R(9),R(10),EPF)
FETLRN

C** *************

+Q(R(7),R(11),R(12),DK))

ENTRY FECOUT(K8NEWK8INR)
C REWRITE K8NEW AS AA*EC**2 +BB*EC+CC=0 ANC SOLVE FOR EC

CK=KEINR-1.
AA=R (3)
BB=R(2)+R(6)*DK
CC=Q(1.+P(1)-K8NEW,R(4),R(5),DK)
IF(AA.EQ.0.0) GC TO 20
F ECOUT=BB*( SQRT(1.-4.*AA*CC/BB**2)-1.) /(AA+AA)
RETURN

20 FECOUT=-CC/3B
F ETU RN
END
SUBROUTINE UNTCOS( TREFUL ,COST)

C CALCULATE ESCALATEE UNIT COSTS
C CKCCRE VERSION 3-Y4-72

CIMENS ION COST(7) ,A (7),Al(7 ),A2(7),B0(7),BI(7),82(7)
GO TC 10
ENTRY INIT2(BOBIB2,CTPREDTPSTTREFULCOST)

C INITIALIZE POINTERS ANC [ATA
DO 5 1=1,7
tO(I)=80(I)
Al(I)=Bl(I)

5 A2(I)=B2(I)

QKCR1045
QKCR1046
QKCR1047
QKCR1048
QKCR1049
QKCR1050
QKCR 1051
QKCR1052
QKCR1053
QKCR 1054
QKCR1055
QKCR1056
QKCR1057
QKCR1058
QKCR1059
QKCR1060
QKCR 1061
QKCR1062
QKCR1063
QKCR1064
QKCR1065
QKCR1066
QKCR 1067
QKCR1068
QKCR1069
QKCR1070
QKCR1071
QKCR1072
QKCR1073
QKCR1074
QKCR 1075
QKCR1076
QKCR1077
QKCR1078
QKCR1079
QKCR1080
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10 TPRE=TREFUL-DTPRE
TPST=TREFUL +DTPST
CO 20 1=1,4

2) COST(I)=(TPRE*A2(I)+A1(I))*TPRE+A0(I)
CO 30 1=5,7

30 COST(I)=(TPST* A2(I )+Al(I))*TPST+AO(I)
RETURN
END
FUNCTION UF6VAL(/EP/,/LNTYEL/,/UNTCOR/,

C CALCULATES VALUE OF ENRICHED URANIUM AS
C CKCCRE VERSICN 3-04-72

PEAL*8 PVPER$
PH I ( X)=( X+X-1. )*AL OG (X/ ( .- X ) )
SOVP(X)=PHI(X)+A+B*X
FOVP(XP)=(XP-XW)*UVOX
CF=C1*UNTYEL+UNTCOR
XP=0.01*EP
UF6VAL=CF*FOVP(XP)+UNTSWU*SQVP(XP)
RETLRN
ENTRY SETUVL(DTY2F6,FCORXFXW)

C SETUP URAN. VALUE EQUATICN
C1=2.599E5*PVPER$( -0TY2F6, 0.0) /FCOR
CVDX=1./ (XF-XW)
PHI XF=PH I (XF)
FHIXW=PHI(XW)
A=(-XF*PHIXW + XW*PHIXF)*CVDX
8=(PHIXW-PHIXF)*OVDX
SETUVL=0 .0
RETUPN
END
FUNCTION PVPER$(T,TBASE)

C CALCULATE PRESENT VALUE AT TIME T OF 1$
C CKCCRE VERSION 3-04-72

REAL*8 PVPEP$,LN1PX
PVPER$=DEXP(-LN1PX*(T-TBASE)
RETURN

/LNTShU/)
$/KG LF6

QKCR 1081
QKCR1082
QKCR1083
QKCR1084
QKCR1085
QKCR 1)86
QKCR1087
QKCRl88
QKCR 1089
QKCR1090
QKCR 1091
QKCR1092
QKCR 1093
OKCR1094
QKCR1095
QKCR1)96
QKCR1097
QKCR1098
QKCR1099
QKCR1100
QKCR 1101
QKCR 1102
QKCR1103
QKCR 1104
QKCR 1105
QKCR1106
QKCR 1107
QKCR1108
QKCR 1109
QKCR1110
QKCR1111
QKCR 1112
QKCR1l13
QKCR1114
QKCR 1115
QKCR 1116

PAGE 31

AT TIME TBASE



1 iR I TE(WT,90 1)
RETLRN

2 iRITE(WT,902)
FETURN

3 WRITE(WT,903)
CO TO 1000

4 WRITE(WT,904)
GO TO 10C0

5 tRITE(WT,905)
GO TO 130

6 WRITE(WT,906)
RETURN

7 WRITE(WT,907)
CO TO 1000

3 WRITE(WT,908)

SUBR, ERRCODNPRINT

ENTRY PVINIT(PVRATE)
C PRE-CALCULATE LCG OF (1+X) IN UNITS

LN1PX=DLOG( 1.DO+PVRATE)
PVINIT=LNIPX
RETLRN
END
SUBPOUTINE ICFRRS(SUER,JERR)

C WRI TES OUT ALL ERROR VESSAGES FOR I
C CKCORE VERSION 3-04-72

COMMGN/PRINTS/RELCST, INCCST, BALCST,
LOGICAL RELCSTINCCST,BALCST ,NBLCST
INTEGER RCWT
INTEGER ERRC00
REAL*8 SUB.R,$QUIT$
CATA NPRINT/0/,$QUIT$/' CUIT'/,ERRC

C MAXERR=16**6
IERP=JERR

100 ERRCCD=MCD(ERRCCDMAXERR)
ERRCCD= 16*EPRCOD+I ERR
NPRINT=NFRINT+1
GO TO (1,2,3,4,5,6,7,8,9,10, 11,12),

OF INVERSE YEARS

NBL CS TPIRDATvPBA TCS, RW T
,PI RDAT,PEATCS

OC/0/,MAXERR/16777216/

I ERR

SUBR, ERRCODNPRINT

SUBR , EPRCCC, NPRINT

SUBR, ERRCOD, NPRINT

SUeR, ERRCOONPRINT

SUBR , ERRCOD,NPRINT

SLBR ,ERRCCD, NPRINT

SUBRERRCODNPRINTNPRINT

QKCR 1117
QKCR 1118
QKCR 1119
QKCR1120
QKCR 1121
QKCR1122
QKCR1123
QKCR 1124
QKCR1125
QKCR1126
QKCR 1127
QKCR1128
QKCR 1129
QKCR1130
QKCR1131
QKCR1132
QKCR 1133
QKCR 1134
QKCR1135
QKCR1136
QKCR 1137
QKCR1138
QKCR 1139
QKCR 1140
QKCR1141
QKCR 1142
QKCR1143
QKCR1144
QKCR 1145
QKCR1146
QKCR 1147
QKCR 1148
QKCR1149
QKCR 1150
QKCRI151
QKCR 1152
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STCP
9 mRITE(WT,909)

RETURN
10 hRITE(WT,910)

GO TO 1000
11 WRITE(WT,911)

PETLPN
12 WRITE(WT,912)

CO TO 1000

SUBR, ERRCCD, NPR INT

SUBR, ERRCOC,NPRINT

SUBR, ERRCOD, NPR INT

SUBR,ERRCODNPRI NT

IC0O APRINT=NPRINT+1
WRITE(WT,999) NPRINT
SUBR=$QUIT$
IERR=8
GO TO 100

901 FORMAT(/'
$' UTIL.GT
$T31,'*',/,

902 FORMAT(/' 1
$' UTIL.L
$T131 ,' *' /,

903 FORMAT(/' I
$'INPUT DECK
$T1311,'*',p/,

904 FORMAT(/' I

$'ARRAY G IN

,130( '*

. 1.25
' ',130(
, 130 (3*3

T.0.75
I ',130(
130('*'
HAS IMP

' ',13*(
,130('*
THIS VE

VER
'**

V ER
'*'

' * SUBR. ',A6,' HAS ERRCOD =
"Y LcNG STRETCHOUT ',
),12)
' * SUBR. ',A6,' HAS EPPCOD =
Y EARLY REFUELING o,
),12)
' * SUBR. ',A6,' HAS ERRCOD =

ROPER
'*'),
)/,'

RSICN

SEQUENCE /OR CARD
12)
* SUBR. ',A6,' HAS ERRCOD

IS TOO SMALL FOR THIS',
$' PRCBLEM
$T131,'*',/,' ',130('*'),12)

905 FORMAT(/' ',13J('** )/,' * SUBR. ',A6,'
$'TOO MANY ZONES, REACTORS, OR SETS OF
$'&/CR FUEL CCNSTANTS FCR THIS V
$131,'*',/,' 1,130('*'),12)

906 FOPMAT(/' ',130('*)/,* * SUBR.
$' WARNING : NCYCTC WAS NOT
$'+NCYCXS WHEN INCORE ENTERED
$T131 ,'*' ,/,' ',130('*'), 12)

907 FORMAT(/' ',130('**)/,' * SUBR.

ERS ION

EQA6 T
EQUAL TC

HAS ERRCOD
REACTOR ',

: 3,

I

, 1Z8 ,
I

= ,Z8,3

= ', 8 '

QKCRI 153
QKCR1154
QKCR 1155
QKCR1156
QKCR 1157
QKCRi158
QKCR1159
QKCR 1160
QKCRi161
QKCR 1162
QKCR1163
QKCRI164
QKCR 1165
QKCR 1166
QKCRI167
QKCR 1168
QKCR1169
QKCR 1170
QKCRI1.71
QKCRIl72
QKCR 1173
QKCR1174
QKCR 1175
QKCR 1176
QKCRI177
QKCR 1178
QKCR1179
QKCR 1180
QKCR1181
QKCR1182
QKCR 1183
QKCRI184
QKCR 1185
QKCR1186
QKCR1187
QKCR 1188
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: 3,

: 3,

: ',

1

HAS ERRCOD
KCYCIN',

o,

',A6,' HAS ERRCOD

: ',= 'Z8,'

= ,Z8,' : ,

-.1

I ,Z 8, 1

fZ8,' :



$'REACTOR FOR
$T131,'*',/,'

908 FORMAT(/' 1,
$'QKCCRE ENCO

1'THER FATAL
$' PRINTEC A
$'INCLUDING)
$T13.1,'** ,/,'

909 FORMAT(/' ',
$'SUMMATION )
$'THAN 10**-5
$T13 1,'** ,

910 FORMAT(/'
$'ELAME TA
$T131, '*1,

911 FCFMAT(/'
$'FEED ENR
$1 MODE 1,
$113 1,'* ,

912 FORMAT(/*
$'NXTIRR C
$1)

/,

BLE

CASE IDN
1,130('*

130( '*1/
UNTEREC S

ERROR.',
TOTAL CF

UM NOT READ IN BY ICNPUT ',

*),I2)
, * SUBR. ',A6,' HAS ERRCOD
TCP CARD, ICERRS CALLED CNCE
1131, '*/' * DURING THI S ENTI
',13,' ERROR MESSAGES JUST LI

THIS ONE',
',130(* ),12)

13J('*'J/,' * SUBR, ',A6,' HAS ERRCOD
F POWFRC DIFFERS FROM 1.0 BY MORE ',

',1J30('*' ),12)
130('*')/,' * SUBR. ',A6,' HAS ERRCOD

IS TOC LARGE FOR THIS VERSICN. ',

/,' ',It130('*)
I',130(**)/ '
ICHMENT AS DETE
OUTSIDE PRESCR

L, 130('* ),
ALLED WHEN MODE

12)
* SUBR. ',A6,' HAS ERRCOD
RMINED IN NXTIRR UNDER',
IBED LIMITS ',

12)
* SUBR. ',A6,' HAS ERRCOD
=0

,130('*' ),12)

(SHOULD

999 FORMAT(/' ',130(*)/,' * PREVIOUS
$' INVALICATE FURTHER COMPUTATIONS.
$' TERMINATING EXECUTICN.',
$T131,'*,/,' ',13('*' ),12)
END

= ',Z8, : '1,
TOO OFTEN OR O',
RE RUN, ICERRS',
KE (AND #,

= ',Z8,, *

= ',1Z8,' : I,

= ',Z8, :

= ' ,Z8, :

CALL FRSIRR',
I,

ERROR SEVERE ENOUGH TO',
THEREFORE,',

**************************************

* *

ASSEMBLER LANGUAGE SUBROUTINE ERASE *
WRITTEN BY JOHN W. KICSON *

MIT DEPARTMENT OF METEOROLOGY *

TO SET ELEMENTS OF REAL OR INTEGER ARRAYS
ARE ARRAY NAMES AND N1,N2,... ARE INTEGER

TC ZERO. AlA2,...
VALUES OR

*

*

*

I,

QKCR1189
QKCR.1190
OKCRI191
QKCR 1192
QKCR1193
QKCR.1194
QKCR 1195
QKCR1196
QKCR 119;7
QKCR1198
QKCR 1199
QKCR1200
QKCR1201
QKCR1202
QKCR1203
QKCR1204
QKCR1205
QKCR1206
QKCR1207
QKCR1208
QKCR1209
QKCR 1210
QKCR1211
QKCR 1212
QKCR1213
QKCR1214
QKCR 1215
QKCR1216

00000000 QKCR1217
00000010 QKCRI218
00000011 QKCR1219
00000012 QKCR1220
00000014 QKCR1221
00000016 QKCR1222
00000020 QKCR1223
00000030 QKCR1224
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EXPRESSICNS GIVING THE ARRAY SIZES.
I.E. - CALL ERASE(C,26*3l,N,7*31,E,254)

~* *~ k*4~*~A******~~& ~

* 00000040
** 000C0050

*
*

ERASE START 0
SAVE (14,12),,*
EALR 12,0
LSING *,12
SR 0,0
SR 2,2 PARAMETER LIST INEEX=0
L 6,=F'4'

El L 3,0(2,1) LOAD 3 WITH ARRAY ADDRESS
L 4,4(2,1) LCAD 4 WITH ADDRESS OF ARRAY LENGTH
L 7,0(4) LOAD 7 WITH ARRAY LENGTH-1 TIMES 4
SLA 7,2
SR 7,6
SR 5,5

E2 ST ),0(5,3) STORE ZERO
BXL E 5, 6, E2
LTR 4,4 TEST FOR LAST ARGUMENT IN LIST
BM RETN
A 2,=F'8'
B El PICK UP NEXT ARGUMENT PAIR

RETN RETURN (14,12),T
END

**4*****************************~**************4** **

00000060
00000070
00000080
00000090
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
0000180
00000190
00000200
00000210
00000220
00900230
00000240
00000250
00 )00 260
00000270
00000280
00000290

*
**
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QKCR.1225
QKCRI226
QKCR1227
QKCR1228
QKCR1229
QKCR1230
QKCR1231
QKCR1232
OKCR1233
QKCR1234
QKCR 1235
QKCR1236
QKCR1237
QKCR1238
QKCR1239
QKCR1240
QKCR1241
QKCR1242
QKCR1243
QKCR1244
QKCR1245
QKCR1246
QKCR1247
QKCR1248
QKCR1249
QKCR1250
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