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Abstract

Public transport users depend on a reliable level of service on a daily basis. But system disruptions,
caused by infrastructure problems, passenger events, and crew duty constraints, can result in
reduced reliability for users. Understanding the impacts of those disruptions on customers is vital to
evaluating the performance of the system and appropriately communicating delays to passengers.

The goal of this thesis is to investigate the impact of certain disruptions on passenger journey
times using several new metrics. The thesis has three primary components: First, a description and
categorization of incidents that occur on a urban rail transport line over the course of 29 days with
some degree of disruption; second, the development of a new measure of impacts on passengers
resulting from those incidents using automated fare collection (AFC) data; and third, an exploration of
the potential use of AFC data in real-time applications to monitor service.

The proposed approach is applied to the Piccadilly Line, one of the London Underground's major
rail lines. The line suffers from instances of significant disruption caused by aging technology and
infrastructure, but it will not be upgraded for more than a decade. Therefore, insights from existing
automated data sources, such as AFC, could play an important role in improving service without
capital-intensive improvements.

The passenger impact analysis method developed in the thesis relies on dividing the line into
sections and aggregating all AFC transactions on all origin-destination (OD) pairs within each
section. The resulting disruption impact index summarizes the effects of a disruption on the average
passenger for each section of the line. In addition, the accumulation of passengers on a line is
introduced as an indicator of delays relating to a disruption. These metrics are each compared with
information provided by train-tracking information systems.

The methods developed in the thesis were compared with actual passenger notifications on several
study days. The results indicate that, despite the methods' limitations, there is potential for using AFC
data, along with operational data, to provide more accurate and timely information to the users of the
line. The application also leads to recommendations for how the method described for disruptions
analysis could be extended to other types of analysis.
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Introduction

This thesis describes research conducted on evaluating passenger response to disruptions and cus-

tomer-facing communications on the London Underground Piccadilly Line. The aim of the research is

to show how understanding incidents from a variety of perspectives offers potential for better under-

standing disruption impacts and improving information provided to customers in the short term and is

a first step toward establishing a framework for increasing reliability of transit service in the long term.

In particular, it focuses on using data sources currently available-both automatically and manually

generated-in order to show what insights are, and potentially can be gained from each type of data. It

demonstrates several measures that can be used by transit agencies to better understand disruptions

occurring on their lines and recommends a path forward for further research on the subject.

1.1 MOTIVATION

Disruptions frustrate riders, leading some to choose other modes of travel. They increase operating

costs for transit agencies, which have to plan for unusual situations. Improving the quality of service

on an existingtransit line has the potential to bring significant benefits both to passengers-who desire

more reliable service and more accurate real-time information about conditions-and to transit system

managers, who want to minimize the length and cost of disruptions. Improvements may come in the
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form of a significant renovation of the line, but capital projects are very expensive, take years to imple-

ment, and make assumptions about post-expenditure improvements that may not be realized. On

the other hand, the effective use of automated data already collected by most large transit agencies

presents a far less expensive and easier-to-implement model for understanding disruptions and better

informing customers about them.

By their very nature, train service incidents are unpredictable and difficult to respond to. They

cause passenger delays and complicate crew assignments, but they are hard to plan for. Yet analyzing

them can be quite beneficial. By reviewing the types of incidents that occur, a transit system's vulner-

abilities can be identified. If certain problems occur repeatedly, a change in operations strategy may be

necessary. If certain responses to incidents are more successful than others, these can be identified

as best practices. Systems currently used to keep track of trains and to charge passengers the correct

fare also can be used to assess reliability of service during disruptions. If transit agencies become

more expert in using the data they are already generating, they have the opportunity to communicate

more effectively with both service managers and passengers, enabling both to make better decisions

as a result. The question is how assessments of automated data can be made, and what information

about disruptions can be derived.

Incidents pose major challenges for rail transit systems. Part of the explanation is that they simply

represent the inevitable, occasional failures of the transportation system. But it is also true that there

are sources of information already available that could aid in the response to problems on the line, but

currently are not readily accessible to service controllers. Within the transit agency itself, differences in

approaches between departments can limit the degree to which data is shared, thus true data integra-

tion rarely exists. Additionally, transit systems often place emphasis on average service quality, rather

than the impacts of specific incidents, limiting the lessons that can be learned from case-by-case

analysis. In some cases, riders are sometimes provided incorrect information about service status.

This research identifies what kinds of incidents occur and examines how automated data collection

offers an opportunity for improved response and passenger information.
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This thesis suggests that proper analysis of automated farecard data can offer significant insight

into the effects of disruptions on passenger service, for examples, by providing information about

changes in journey times experienced by riders. Using aggregate metrics of disruption impacts on

passengers, the overall effect on passengers of a disruption can be measured and compared with

estimates derived from analysis of train-tracking data. This can broaden our understanding of which

passengers were impacted by delays, in a retrospective analysis of data.

In addition, by offering insight into what kinds of conclusions can be made by evaluating real time

data about disruptions, this research points to potential improvements in passenger communications.

Rather than simply point to successes and failures in disruption response in retrospect, as is currently

done to review the transit network's difficulties, it would be advantageous to develop techniques to

understand disruptions as they occur. The advent of widely available real-time communication tools,

from Twitter to electronic signboards at stations to email alerts, only raises the importance of ensuring

the accuracy of whatever information is provided to customers in the event of a disruption.

Previous research has described the decision environment in which service managers determine

how to alter operations in unexpected circumstances (Carrel 2009). Automated data collection offers a

potential avenue towards significantly improving the information managers rely upon to make such de-

cisions, and advanced techniques can be used to measure reliability of service (Frumin 2010; Hickey

2011; Uniman 2009). Efforts have been made to combine passenger-generated and train-generated

data sources for the purpose of "assigning" passengers to trains (Paul 2010). However, these efforts

have not examined how different sources of data provide alternative perspectives on the environment

in the transit system before, during, and following a disruption.

This research is a step towards increasing the value of the automated data already available

within the transit system. By offering a description of the service environment before, during, and after

incidents, it offers insight into the types of information that might be easily derived from automated

data but which would be of value to transit users and service managers. It integrates available data

sources with the purpose of understanding impacts on passenger travel during disruptions.
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1.2 OBJECTIVES

This research has three principal objectives, designed specifically to address concerns on the London

Underground Piccadilly Line but in many cases these are broadly applicable to many metro rail sys-

tems.

1. To categorize incidents on the Piccadilly Line. While there are existing tools used to make

such classifications, they are flawed from two perspectives. One, they are done retrospectively, not

based on what service controllers know when they are making decisions. Controllers may have

incorrect information about an incidentthat nonetheless is whatthey must use to respond to prob-

lems on the line. Two, they estimate the severity of an incident based on estimates of passenger

travel, despite the fact that information about actual travel patterns using smartcard technology

is available. An improved incident categorization system should not only reflect train movements,

as does the current system, but also incorporate information about actual passenger movements

where possible. This objective recognizes that actions controllers take in response to incidents

affect outcomes.

2. To integrate data sources available for analysis of disruptions on the system. Though the Pic-

cadilly Line has a plethora of data currently available, full integration of varying types of data has

not yet occurred. Using archived information about performance on specific days, this analysis of-

fers a reconstruction of operations and show how different sources of data provide different sorts

of information, with varying degrees of accuracy. This analysis focuses on the use of automated

fare collection (AFC) data to analyze the impact of individual disruptions on the journey times of

riders and the accumulation of passengers in the system. In addition, analyzing the AFC data spe-

cifically on disrupted days may offer insight into customer route patterns, adding to the survey data

currently used. If this data is currently not available to all interested staff of the transit system, the

research indicates how the information should be passed on and who should have access to it and

use it.
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3. To use data integration to provide customers better information about the current service

status on the line. The research shows how real-time information from a variety of data sources

can be used to help guide what information is communicated to customers, and how different

sources of data offer varying insight about conditions. The analysis demonstrates how variability in

journey time and accumulation of passengers may be used as metrics for evaluating the onset and

severity of incidents on the line. As such, the research concludes that using AFC data in a real-time

context offers significant promise for monitoring the system state.

1.3 RESEARCH APPROACH

Though the conclusions of this research are broadly applicable to many transit systems due to the simi-

larities in data available across many systems, this research focuses on the London Underground and

specifically the Piccadilly Line. This case study provides a particularly informative example as it is an

aging transit line that will not undergo significant upgrades for a decade or more. The central question

is whether taking advantage of automatic data more effectively can produce improvements to service

in the short term without the benefit of major line upgrades.

The research was conducted in three modes: observation of existing conditions, review of data,

and analysis. Eleven weeks of on-the-ground presence in London provided the opportunity to conduct

interviews, attend meetings, and watch a wide variety of personnel in the transit system conducting

their daily activity. This qualitative review provided the chance to see how decisions are currently made

when disruptions occur and question controllers on the best methods currently used. In addition, this

review offered a view of how the transit agency interacts with customers during disruptions.

Once certain observations were made on the conditions on the line, a review of data available on

the service was conducted. The data include that supplied by the smartcards with which passengers

tap in and out to pay fares on the transit system, and the location of trains in the system at all times

of the day. In addition, non-automated sources of data were compiled to provide a view of how opera-

tional response currently occurs. These latter data include reports written by service controllers about

the decisions they made in response to incidents and processed information on the causes and effects
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of disruptions compiled post-event by management.

The bulk of the research is the analysis that attempts to integrate the sources of data described

above, keeping in mind the operational constraints in the system, as established in the observation

period. The analysis was constrained to a specific period (three months in spring 2012). Within that

period, a sample of days with "good" performance and a selection of days with minor and major inci-

dents were selected. For each of these days, the automated and non-automated data were compiled

to examine retrospectively how circumstances occurred. First, the incidents that occurred were catego-

rized based on several criteria, and those categorizations were compared with the incident analysis

methods currently used by the Underground (Objective 1).

Then, using a new approach, the data were analyzed to determine the changes in performance of

groups of passengers traveling between various origin-destination pairs. The comparison of the two au-

tomated data sources with the non-automated sources provided insight into the different conclusions

that might be made by reviewing data independently and indicated how two sources of data could be

integrated to offer a more informed view of what is occurring in a disrupted situation. In addition, a

method was developed to estimate the accumulation of passengers in the system to demonstrate that

disrupted conditions result in more passengers on the line than under normal circumstances. The dis-

rupted days information was used to evaluate existing assumptions about patterns of travel between

specific origin-destination pairs (Objective 2).

Finally, the analysis method was used to describe how AFC data might be used in a real-time en-

vironment. Journey time variation and passenger accumulation metrics were evaluated as potential

sources of information about service disruptions. These were then compared with train-tracking data,

in the interest of demonstrating the comparative advantages of the different sorts of data (Objective

3).

A similar approach could be undertaken by other transit systems to understand how they currently

respond to disruptions and what kinds of improvements they could make by using their data more ef-

fectively.
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1.4 THESIS ORGANIZATION

- Chapter 2 comprises a review of the literature and demonstrates what gaps the research aims at

filling. In addition, this chapter offers an introduction to the issues of service control and manage-

ment in transit systems in general.

- Chapter 3 introduces the London Underground and the Piccadilly Line, describing the agency's ob-

jectives, decision factors, and constraints. This section provides a detailed description of the data

sources used in the research and the manner in which information flows between departments of

Transport for London.

- Chapter 4 describes the case study period used for the majority of the research. It then categoriz-

es incidents during that period, in terms of location, duration, type, impact, and frequency, among

other concerns. Finally, it offers a comparison between the findings here and the disruptions infor-

mation provided by an existing automated disruption evaluation tool.

- Chapter 5 introduces the approach used in the research to integrate large amounts of automati-

cally generated Oyster data. It defines a metric and baskets of origin-destination pairs to measure

variability in journey times in order to better assess overall trends in passenger movement. It also

shows how passengers accumulate over the course of a disrupted period. The chapter examines

a set of disrupted days to show how these data compare with both manual and train-tracking data

and illustrates how retrospective comparisons can be made. In addition, it documents how Oyster

data from disrupted days provide the potential to enhance understanding of customer path choice,

currently based only on passenger surveys.

- Chapter 6 shows how the approaches in Chapter 5 can be used on a real-time basis to better in-

form customers of the disruptions occurring in the system. It provides an analysis of the compara-

tive benefits of different sources of data available in real-time. It also offers potential guidelines

for providing customer information, laying out when and how passengers could be notified of prob-

lems occurring on the line based on inputs from farecard transaction data.
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Chapter 7 summarizes the findings of the research and notes the limitations of the methods de-

scribed. It provides a set of recommendations to Transport for London and London Underground

based on the research results. It also suggests potential avenues for future research.



2

Literature
review

Disruptions are an important matter of concern to urban rail system managers around the globe be-

cause they affect reliability. A number of studies have assessed the occurrence of disruptions and

provided analytical methods to examine disruption impacts. This chapter examines the literature re-

lated to incidents and their impacts and describes how the literature informs the research conducted

for the rest of the thesis. In Section 2.1, studies related to customer response to disruptions on rail

transit systems are reviewed. The studies show that while customers respond negatively to delays, they

benefit from comprehensive passenger notifications and information. In Section 2.2, research on the

use of automatic fare collection (AFC) smartcard data is reviewed to illustrate what information can be

derived from AFC data and what techniques are used to do so.

Section 2.3 focuses on studies conducted on the reliability of rail systems. In particular, the review

highlights metrics that have been developed to identify the overall reliability of transit lines using AFC

and train tracking data. In addition, it provides a review of how such reliability statistics could be used

for passenger information. Section 2.4 continues this discussion with a brief look at studies on control-

ler approaches to disruption response. Though controller response is not a focus of this thesis, this

section provides context for the work of service controllers in responding to incidents with changes in

train and crew assignment. Finally, Section 2.5 suggests how this thesis extends the literature.
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2.1 CUSTOMER RESPONSE TO DISRUPTIONS

Public transport, like most transportation systems, suffers from occasional incidents that impair the

ability of customers to complete their journeys in the conditions and time indicated by the timetable.

The resulting inconvenience may result in reduced ridership, which is contrary to the broad public

policy goal of encouraging greater use of public transport. This section reviews several studies that

discuss the impact of disruptions on the travelling public, and addresses the question of customer

perceptions of quality specifically for Transport for London's passengers.

Andreassen (1995) examined the performance of public transport systems and demonstrates

that repeated delays result in a decrease in demand. Bernal et al (2009) undertook a similar study

on customers on Chicago's Blue Line rail service to document the impact of delays on riders. Using

a comparison between ridership and "slow zones" traveled by trains in the system, the study demon-

strates that increasing delays are strongly correlated with reduced ridership. The authors argue that

this shows that as customers experienced increasing delays, they decreased their use of the rail sys-

tem. That said, the slowdowns documented by Bernal are somewhat different from those described

by Andreassen, since the former analyzes "planned" delays (regular customers knew about the "slow

zones"), whereas the latter considers unplanned delays. Nonetheless, in both situations, disruptions

clearly have negative effects on passenger use of the system.

Fonseca et al (2010) argue that for passengers, the concept of "quality" is correlated to customer

satisfaction in terms of the services provided by public transport. They claim that the perceived qual-

ity of public transport services is defined by relatively objective measures such as reliability, security,

speed, comfort, and punctuality. This indicates that the best way to encourage use of a transit service

is to improve performance on these metrics.

Transport for London (TfL), which is the focus of this thesis, undertook a major study to determine

how its riders assessed the reliability of its services, and what they perceived the primary components

of reliability to be (TfL, 2011a). The study quotes customers who shared their views about the definition

of reliability, such as:
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"A reliable someone/something is dependable and trustworthy."

"Reliable is... something that's dependable, trustworthy, honest, reassuring, and something
you can count on."

The study notes that customers value the predictability and dependability of services they receive.

They feel more confident when they are provided additional information about their journeys, but they

are not satisfied by line or system performance averages. Rather, customers say that they want per-

sonalized metrics that reflect specific information about the journeys they are likely to take. In the case

of disrupted situations, this means that they want information about how a disruption will affect the

specific services they are likely to use, not just any line on the system.

These studies imply that passengers are significantly negatively impacted by disruptions and that

they are less likely to use transit systems if service quality declines. This is particularly true when there

are either short- or long-term disruptions affecting operations. In addition, there are customer-friendly

ways in which to improve the perception of a "quality" service. Customers are interested in speedier,

more reliable transit; if the transit system can show that it has improved on these metrics, it is likely to

improve rider satisfaction.

The ability of a system to respond to disruptions in a manner that is beneficial to customers, how-

ever, depends on the management of the line, and the degree to which incidents affect overall service.

Vald6s-Diaz et al (2005) conduct a review of disruptions to compare the causes and effects of inci-

dents on the train service. They determine relationships between time between disruptions; disruption

durations; and delay/headway ratio. They also document that disruptions affecting one section of the

system (even just one line) may propogate throughout the entire system.

Vald6s-Diaz et al's analysis approach is largely controller-dominated, with little consideration of

the passenger impacts of disruptions on a rapid transit line. Jiang et al (2012), however, offer more

insight into how a disruption might affect passenger flow by developing a simulation model to estimate

the impact of train delays on passenger movements on a rail system. Their study shows that some

short train delays may actually not result in any passenger delay and may improve conditions for cer-
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tain passengers. This is because almost all passengers on an urban rail system take the first train

that arrives, not the scheduled train, so a service with trains and crew out of place may not affect pas-

sengers (though it will of course affect crew management). That said, longer train delays may result in

significant passenger delays and knock-on effects over the course of the day. In addition, disruptions

affecting riders on one line are likely to spread to other parts of the system.

The conclusions produced by Jiang et al provide an interesting view into the customer impact of

disruptions, rather than simply the effects on train service, which are those that are typically measured

in the literature. The Jiang et al study, in particular, provides an important demonstration of how train

service delays may not directly reflect passenger service delays. This has significant implications for

studying the impact of disruptions.

2.2 USES OF SMARTCARD DATA FOR DATA ANALYSIS

Since the 1990s, public transport networks around the world have widely adopted automatic fare col-

lection (AFC) technologies to improve their passenger revenue systems. AFC smartcards, such as the

Oyster card in London, allow customers to store money or travel passes on a single card, which is then

tapped on fare gates at the entrance and (sometimes) exits of transit stations (or on transit vehicles,

in the case of buses). AFC technology facilitates transit systems charging fares based on travel dis-

tance or time of entry, as is the case in London. Smartcards have the added benefit of offering transit

analysts more data than is possible with predecessor fare technologies, such as magnetic stripe paper

cards, particularly when customers are required to "tap" out of the system (as is the case on the Lon-

don Underground). This section provides an overview of several studies that describe how AFC data

may be used to analyze performance on a transit system and document the movements of riders.

Bryan and Blythe (2007) note that analysis of smartcard data offers the potential to better un-

derstand passenger demand. Rather than rely on vehicle load estimates, AFC data show the exact

number of people who have boarded at individual stations or onto individual vehicles. Smartcards also

allow passenger journey histories and behavior patterns to be accumulated, since individual riders can

be tracked using their unique smartcard numbers. Given the value of understanding how passengers
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change their journeys over time and in response to incidents, this feature of AFC data is particularly

useful-assuming that riders retain their cards.

Tr6panier et al (2009) show that smartcard transactions allow continuous data collection over a

long period of time, with transactions recording spatial and temporal details. Van der Hurk et al (2012)

show that examination of AFC data can document changes in passenger demand over time. This dem-

onstrates the value of using smartcards for panel studies that consider the actions taken by individual

passengers in response to changes to transit service offered.

Wonjae (2010) evaluated smartcard data on the Seoul transport system for their potential to

support transportation planning applications. Wonjae demonstrates that AFC data provide a far more

comprehensive look at actual customer journeys than available through manual surveys. This expands

the array of potential research into virtually any time period, at any date, and significantly reduces the

cost of undertaking research, since data is recorded automatically. His research demonstrates how

AFC information might be used for bus applications to identify customer travel times. This may offer an

opportunity to improve planning, because if transfer points are identified through customer data, spe-

cific problem locations (for instance, those marked by long transfer times) can be targeted for improve-

ment. Nassier et al (2011) have completed similar work that combines AFC data with transit schedule

information to provide broad estimates of passenger origins and destinations.

Paul (2010) analyzes how AFC data can be compared to train arrivals and departures informa-

tion on the London Underground. She considers whether it is possible to assign passengers moving

through the system to individual trains. By cross-checking AFC records for passengers entering and

leaving stations with train movement information, she makes several assumptions about how passen-

gers choose to board trains (such as usually boarding the first train to arrive). She shows that connect-

ing this information would be feasible with perfect data integrity and she develops a method by which

this information might be used to estimate train loads and the number of passengers left behind at

stations because of overloaded trains. But TfL's existing data, especially its train-tracking system, is

insufficiently accurate and incomplete. These deficiencies limit the ability to determine the trains pas-
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sengers take.

As the aforementioned studies demonstrate, the use of AFC data for an analysis of passenger

flows on a public transport network offers considerable potential for further understanding the impact

of disruptions on system customers. Much of the rest of this chapter describes studies that also use

AFC data to analyze reliability, as does the thesis in general.

2.3 UNDERSTANDING RELIABILITY IN URBAN RAIL SYSTEMS

As discussed in Section 2.1, customers strongly value a reliable public transport system. Reliability, in

turn, is often affected by disruptions on a particular transit line. Several studies, including a number

that reference the London Underground specifically, review the value customers place on reliability

and the ways in which transport systems might seek to improve customer views of reliability. These are

described at the beginning of this section. Later, several metrics that attempt to measure the reliability

of transit service using AFC and train-tracking data, are reviewed.

Bates et al (2001) conduct an extensive review of passenger views of rail travel. Their study shows

that riders place a high value on punctuality of services. In particular, longer wait times (particularly

compared to normal for regular passengers) increase stress. This provides empirical support for the

notion that reliable transport services with useful information about the status of operations are likely

to be preferred by passengers using the system. Thus there is a business case for improving reliability

or at least improving the communications to customers about disruptions.

Nonetheless, customers are decision makers who frame their decisions within the framework of

a wide array of options. As such, to assert that reliability "matters" to customers, one must put that

value within the context of other potential travel options, which have different levels of reliability. Bates

et al use the Expected UtilityTheory, introduced by Von Neumann and Morgenstern (1944), to describe

the relative utilities of different choices within the set of options provided to a decision-maker. Von

Neumann and Morgenstern assert that the utility of an action is the sum of all utilities of potential

outcomes, multiplied by their respective probabilities.
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EU = 1 0 (U- a) (2-)

Where,
EU is the expected utility of course of action a;
U is the utility of outcome o of action a; and
P is the probability of outcome o of action a.

This would imply that, in the case of a transit system, customers simply include the lack of reliability

of a line, for example, in their personal utility calculations and adjust their decisions according to the

reliability of different options. Bates et al, however, argue that this model does not account for the emo-

tional element of a decision-maker's thinking process and implies that people are indifferent to risk.

Bates et al argue that this is not reflective of the way typical people make choices, since most people

do in fact have quite visceral responses to the idea of risk.

Indeed, as noted by Kahneman and Tversky (1979), people encountering situations with out-

comes that might involve losses are likely to increase their willingness to accept risk. In situations with

outcomes that involve gains, on the other hand, people are likely to increase their proclivities toward

risk aversion. The authors' Prospect Theory suggest that there are five strategies for people to mini-

mize risk:

1. Seeking to reduce the uncertainty by accessing additional information;
2. Seeking to reduce the uncertainty by advance planning;
3. Seeking to reduce the consequences of the uncertainty;
4. Accepting the uncertainty and seeking to make the best decision in light of it; and
5. Seeking to capitalize on the uncertainty.

For transit systems, there are clear ways to aid people in undertaking these strategies. Better schedule

and real-time information allow customers to make decisions in advance and en route. Improved com-

munications provide the potential of reducing uncertainty and limiting the consequences of a disrup-

tion by informing customers about alternatives given the circumstances.

Chan (2007) shows how AFC data from London can be used to measure the compactness of the

journey time distribution for individual origin-destination (OD) pairs. She compares the data available

from Oyster smartcard data and the information provided by train arrivals and departures. She dem-

onstrates that AFC data provides a clearer look at actual journey times than estimations made using
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the train travel information, and is able to use that insight to produce an improved OD flow matrix for

Underground system use.

Uniman (2009) expands on Chan's method, developing a measure of reliability for a rail transit

system by examining operations on the London Underground. He documents how the reliability of jour-

neys on a specific OD pair diverges from the schedule in order to clarify the degree to which services

were being delivered as planned. To do so, he compares Oyster data across the Underground's most-

traveled 800 OD pairs and compares the 95th percentile of journey times to the median, as shown in

Equation 2-2. Uniman defines the "reliability buffer time" (RBT) here as the "amount of extra time that

passengers must budget above the typical journey time in order to arrive on time at their destination

with a specified level of certainty."

JRD (TT 5  - TTS )D (2-2)RBOD - T95%~ 50%00D $

Where,
1T, and TTr, are the median and 95th percentile journey times, at OD pair level, for a time interval of 15
minutes to a full day, for a period of 1to 20 days.

In order to measure the reliability of a line as a whole, Uniman proposes weighing the reliability of

each OD pari within the line by the flow along that OD pair (for all OD pairs on the line), as shown in

Equation 2-3.

RBTOD r line fOD OD

RBTline = () line OD

Where,
fO, is the passenger flow on the respective OD pairs; and
RBTOD is the reliability buffer time for that respective OD, as established in Equation 2-2.
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As an example of results from this analysis, Uniman finds that passengers on the Victoria Line of the

London Underground had a median total travel time of 16.71 minutes with an RBT of 8.55 minutes,

producing a total travel time of 25.26 minutes for a particular study period.

Schil (2012) extends Uniman's method and demonstrates how RBT information could be com-

municated to customers using, as an example, web-based travel planning software already available

from many publictransport systems, includingTfL. Schil demonstrates that, in orderto be utilized most

effectively, AFC data should be aggregated spatially and temporally. When providing riders "maximum"

potential journey times, Schil notes that these should reflect the time of day travelers are intending to

make their journeys.

Hickey (2011) takes a somewhat different approach to Uniman and Schil, using train-tracking data

to determine an improved estimate of platform waiting time for passengers at London Underground

stations. Though TfL currently uses headway data to estimate the amount of time passengers wait

at stations to board trains, Hickey argues that deficiencies in the available train tracking information

make using headways problematic. As an alternative, he suggests using the count of trains arriving

and departing from stations to make an assessment of how long passengers waited for trains.

This review of the literature on reliability indicates that since reliability is a heavily valued aspect of

a typical customer's experience on public transport, system managers should place a high priority on

improving the reliability of their systems. In addition, as highlighted by Kahneman and Tversky, there

are customer-friendly ways to improve information provision to reduce the stress resulting from unreli-

able service. Finally, Uniman, Schil, and Hickey provide useful measures for assessing the reliability of

transport systems using available AFC and train-tracking data.

2.4 RESPONDING TO INCIDENTS

The focus of this thesis is on understanding the customer impacts of disruptions, but the impact of

incidents on riders must be seen in the context of the decisions made by transport system personnel

on how to respond to those incidents. This section describes how service managers use train-tracking
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information to alter the services provided to restore services to normal.

Pender et al (2012) compare disruption response management across 48 international rail transit

agencies, with a particular focus on Australian agencies. They compare disruption responses on differ-

ent systems by undertaking interviews with staff on response to service outages and changes required

to the train service to respond to problems. Jesperson-Growth et al (2007) perform a similar analysis

on the Dutch Railways and Copenhagen suburban commuter rail network. Their study notes that there

are several specific ways to handle the impacts of disruptions, including timetable adjustment, rolling

stock re-scheduling, and crew re-scheduling.

Carrel (2009) analyzes the manner in which line service controllers manage disruptions on the

London Underground system, with a particular focus on the Central Line, one of the major Underground

lines. He performs a qualitative study of train control decision making by visiting control centers and

taking into account the decision environment of those determining what changes to operations should

be made in response to specific disruptions on the line. He then uses signaling data to reconstruct

train operators' interventions and proposed a measure for assessing the impact of those interventions

on train operations.

2.5 EXTENDING THE LITERATURE: IMPROVING UNDERSTANDING OF
CUSTOMER RESPONSE TO DISRUPTIONS
The literature review offered in this chapter provides an overview of the studies that have been per-

formed on rail transport network reliability and disruption response, in addition to the use of smartcard

technologies to better analyze available information. The literature indicates that there are significant

advantages in using AFC data, as it provides a large amount of information that describes customer

travel patterns at all points of the day on systems outfitted with the technology, such as the London

Underground. Several of the studies in Section 2.3 note that AFC data can be used to assess the reli-

ability of public transport lines. In the context of customer desire for better service reliability, as shown

in Section 2.1, expanding our understanding of reliability may be particularly useful.

The literature provides a look at the manner in which rail service controllers choose to respond to
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disruptions on the line, but it is less comprehensive in describing the actual effects of disruptions on

passengers. Though Uniman and Schil, among others, show how reliability of a rail transport line can

be measured using smartcard data, they do not detail how the specific effects of a disruption can be

evaluated using that data. Because disruptions can reduce reliability significantly, this is a gap in our

current understanding of the way public transport works and how customers can be betterserved by it.

This thesis extends the literature by using smartcard data to evaluate the impact of disruptions on

customers. Rather than focusing on line reliability as a whole, the thesis identifies specific disruptions

and then identifies what information is offered by smartcard data about impacts on customers. Though

the thesis does not identify specific ways in which controllers can use this additional information to

improve response to incidents, the literature indicates that current controller response focuses on

information provided by train tracking data, not AFC data. Thus there is a gap in controller knowledge

that could be expanded with more analysis of AFC data. If controllers want to adapt their response

strategies to minimize customer impacts, this could be a useful direction for study.





3
Transport for London, the Underground
and the Piccadilly Line

This chapter introduces the transport system in London in order to provide context for the services

and data sources analyzed in the remainder of this thesis. Section 3.1 describes the transport system,

emphasizing its extent and usage, focusing on the London Underground in particular. Section 3.2

describes the Piccadilly Line, one of the main Underground services and the focus of this research.

Section 3.3 introduces the main data sources available for research on the transport system in Lon-

don, which will be described in more detail in the following chapters in this thesis. Finally, Section 3.4

provides an overview of planning and analytical methods currently used in London to evaluate the

performance of the transport network.

3.1 TRANSPORT FOR LONDON AND THE UNDERGROUND

Transportation in Greater London, an 8.2 million-person metropolitan area, is overseen by Transport

for London (TfL), a public agency created in 2000 and overseen by the Mayor of London (TfL, 2013).

TfL manages the region's arterial road network and sets budget and fare policies for the operation

of most public transport services. It oversees local buses, the London Underground (LU), the London

Overground rail line, the Tramlink light rail line, the Docklands Light Railway (DLR), the Barclays Bike

Share network, and the Emirates Air Line aerial tramway, but does not manage operations on most of
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the national rail lines serving the region, which are the responsibility of the national Department for

Transport. TfL contracts out the operation of most of its services, with the major exception of the Un-

derground, which is operated by London Underground Ltd. (LU), a subsidiary of TfL. LU is the world's

oldest urban rail transit system, opening its first subway service in 1863. It is now one of the planet's

largest urban transport systems, serving 270 stations, 11 lines, 402 line-kilometers, and about 3.7

million daily journeys. TfL has an annual budget of almost £10 billion and roughly 30,000 employees

(TfL, 2012a).

Figure 3-1 illustrates TfL's rail network, which consists primarily of Underground lines. The Over-

ground network is shown as dotted orange lines; Tramlink, which serves the southern part of the re-

gion, is shown as a dotted green line; and the DLR is shown as a dotted aqua line. The National Rail

network, not managed by TfL, is shown as a series of gray lines. The Piccadilly Line, which is the focus

of this research, is shown in dark blue. Altogether, the network is large, complex, and highly intercon-

nected.

Under the leadership of the Mayor of London,TfL has substantially expanded and improved the re-

gion's public transportation network. Since 2000, several Underground lines have been upgraded, the

Overground network has been created, and DLR has been substantially extended. Bus services have

been expanded with increased operating hours and more frequent services. At the same time, the

regional government, working with local councils, has expanded the number of available bike lanes,

improved the walking environment, and introduced a congestion charge in central London.

These initiatives have contributed to significant changes in the commute patterns of residents of

Greater London. As shown in Figure 3-2A, and documented in the Travel in London report, the pub-

lic transport mode share of all journeys in the region has increased substantially over the past two

decades (TfL, 2012c). The overall public transport mode share, including rail, bus, and Underground

journeys, increased from 24% in 1993 to 35% in 2011, while that of private motorized vehicles (motor

cycles, automobiles, and taxis) declined from 51% to 40% over the same period. The share for non-

motorized modes, including walking and cycling, remained steady at around 25%. Figure 3-2B shows
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that while the number of trips made by public transport modes has expanded by more than 50% since

1993 and the number of walking trips has increased by about 20%, overall use of private vehicles has

declined slightly. In this period, about I million more people have been added to the region's popula-

tion. By 2031, the population is expected to increase by 1.25 million (Mayor of London, 2010).
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The increased use of the public transport network can also be quantified in terms of passenger en-

tries into the system. In 2011, the TfL system provided more than 3.5 billion rides, of which 63% were

provided by bus and 31% by the Underground (see Figure 3-3). 2011 was a record year for the Under-

ground in particular, with more than 1.1 billion rides. Current estimates are that annual ridership will

increase to 1.3 billion by 2015 (TfL, 2012d). London's continued population growth and increasing use

of the public transport network demonstrates the vital importance of providing efficient and compre-

hensive transportation services throughout the region.

Tramlink Overground
1% 3%

DLR
2%

Underground Buses
31% 63%

Figure 3-3: Distribution of ridership on TFL-managed transport modes. (Adapted from TfL, 2012e)

The distribution of ridership on the TfL network, however, is not even, either spatially or temporally. Rid-

ership of the public transport network is highest in London's central area (TfL, 2012c). Weekday rider-

ship is considerably higher across the TfL system at peak hours (roughly 7:00-9:00 and 16:00-18:00),

than during the early morning, midday, or evening periods, as shown in Figure 3-4 (Hickey, 2011). The

transit system must handle a heavy influx of passengers and very crowded conditions at these times.
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In order to respond to the transport demands of the citizens of London, the Mayor has established a

Transport Strategy (Mayor of London, 2010). This document, last updated in 2010, highlights six pri-

mary goals the transport network should address:

- Support economic development and population growth;
- Enhance the quality of life for all Londoners;
- Improve the safety and security of all Londoners;
- Improve transport opportunities for all Londoners;
- Reduce transport's contribution to climate change and improve its resilience; and
- Support the delivery of the London 2012 Olympic and Paralympic Games and its legacy.

These goals remain relevant. TfL's management, which is appointed by the Mayor, organizes transport

policy to reflect the intentions of that office. Its 2012 business plan identifies three major goals that

correspond to the Mayor's overarching policy objectives:

1. Driving London's employment and population growth;
2. Putting customers at the heart of the business; and
3. Making life in London better for all.
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The focus of this thesis is on examining the effects of disruptions on LU customers. From this perspec-

tive, TfL's second goal is particularly relevant. Indeed, the Business Plan argues that "the projects laid

out in this plan demonstrate a commitment to support customers when things go wrong. They are de-

signed to keep customers up to date during planned or unplanned disruption, and ensure that they can

make informed journey decisions" (TfL, 2012d, 29). This thesis responds to this objective and seeks to

contribute to TfL's efforts to improve customer service.

3.2 THE PICCADILLY LINE

Though many of the methods discussed in the thesis are applicable throughout the London Under-

ground, and, in the longer term, to other rail transit lines with AFC data, the focus throughout this

research is the Piccadilly Line. This rapid transit service is 71 kilometers in length, the second longest

in the system (after the Central Line), and serves 52 stations. As shown in Figure 3-5, a spatial repre-

sentation of the system, the line runs from Cockfosters in North London, through the center of London,

and then to two western branches-one service to Heathrow Airport and the other to Uxbridge. Along

the way, the line serves many important stations, including King's Cross-St. Pancras, Piccadilly Circus,

and South Kensington. The central section of the line is in a deep tube that first opened in 1869, but

most of the branch sections run on the surface or on embankments.

As Figure 3-5 shows, LU provides a range of service at rush hour to different parts of the line. The

central section, from Acton Town to Arnos Grove, is scheduled for up to 24 trains per hour. Other sec-

tions of the line see less service. Heathrow Airport stations, for example, see between 6 and 12 trains

per hour during the rush period. At Uxbridge, there are only 3 trains scheduled per hour. One expla-

nation for the reduced service to stations between Rayners Lane and Uxbridge is that this two-track

section of the line is shared with the Metropolitan Line, which offers more direct-and more frequent-

service to central London. The four-track section of the line between Ealing Common and Earl's Court

is shared with the District Line, which operates as a "local" service to the "express" Piccadilly Line (the

two services are on separate, but adjacent tracks), which serve fewer stations. Service is generally

operated from 5:30 to 0:30, with 894 scheduled one-way trips on the line. As illustrated in Figure 3-5,
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There are four crew depots on the line, located near Northfields, Acton Town, Arnos Grove, and

Cockfosters. Although each of these depots allow for trains to be reversed and have facilities for staff,

only the Arnos Grove and Acton Town depots are currently used. There are sidings for trains to be re-

versed at Uxbridge, South Harrow, Acton Town, and Arnos Grove. The main maintenance base for train

upkeep is located at Acton Town. Finally, the line operations control facility is located at Earl's Court.

The Piccadilly Line, which runs through some of London's most popular residential districts as well

as many of its major destinations, serves more than 210 million annual journeys, making it the fourth-

busiest line on the LU network. Congestion, as on the TfL system in general, is heavily concentrated at
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peak times and in the central area. In the morning peak, for example, eastbound trains between Acton

Town and Knightsbridge operate at or above nominal capacity; westbound trains from Finsbury Park to

Holborn operate at more than 4 standing passengers per square meter, This means that passengers

are often crowded into trains or left waiting on platforms (Ravichandran, 2012; London First, 2012).

This thesis focuses on the Piccadilly Line in part because the service is one of TfL's most popular.

Its ridership is likely to increase over the next decade as London's population continues to increase

and Heathrow Airport and King's Cross-St. Pancras are expected to become even more popular than

they are today. But just as important to the selection of the Piccadilly Line as the subject of this in-

depth analysis is the fact that the line is years away from a major upgrade. Though the service has

been maintained well for decades, it is handicapped by having some of the oldest trains in the system

(they date from 1973), an antiquated signaling technology, and decaying capital infrastructure result-

ing from the line's age.

The TfL business plan suggests that capital improvements are many years off, though the Mayor's

Transport Strategy notes that there is an effort to provide the Piccadilly Line "new trains, more capac-

ity and quicker journeys" (Mayor of London, 2010, 10). Upgrades for the Piccadilly Line are expected

in the "2020-30s" period. Moreover, any alternative investments that will lead to reduced stress on

the line are unlikely in the medium term. The Victoria Line, which parallels the Piccadilly Line for much

of its route, is often even more crowded. And the proposed "Crossrail 2"-a new service mentioned in

the Mayor's Transport Strategy that would run between Chelsea and Hackney (and could parallel the

Piccadilly Line from Wood Green and King's Cross to Piccadilly Circus)-has yet to be funded, let alone

begun construction (London First, 2012).

These conditions-rising use of the London Underground and a wait of a decade or more before

a major line upgrade-make the Piccadilly Line an especially important case study. This is particularly

true in fulfilling TfL's objective to "put customers at the heart of the business" (TfL, 2012d, 28). If there

are better ways to evaluate the effects of disruptions and to communicate that information to riders,

the service provided byTfL will be improved, even if physical upgrades remain far off. The remainder of
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the thesis explores methods by which such an evaluation might be undertaken.

3.3 DATA SOURCES

In order to conduct such an evaluation, it is necessary to understand and utilize the data sources that

are available to TfL. Thanks to major advances in data collection and access, public transport agencies

such as TfL are able to monitor the movement of customers and vehicles much more effectively, and

sometimes even in real time. The datasets available at TfL, and used in this thesis, are introduced in

this section.

Oyster data

At the heart of the thesis are the data collected about passenger journeys using automatic fare collec-

tion (AFC) devices. In London, an AFC system was introduced in 2003 under the name Oyster, which

provides customers smartcards, which they then use to tap in and out of the transit system. All sta-

tions on the Piccadilly Line, and the vast majority of LU stations, require customers to pass through

fare gates to enter and exit stations, and most riders now use Oyster cards to do so, though a magnetic

strip card (for which TfL cannot access individual origin-destination journey data) is also used for some

trips. Because of the widespread availability and use of Oyster, the resulting data can be viewed as

representative of the overall users of the line, even including those that still use magnetic cards. Oyster

allows TfL to account for journey distance and time of day, both of which affect customer fares.

Table 3-1 provides a sample of records produced by Oyster. In this case, a query was made for

journeys between Cockfosters and Holborn stations on September 23, 2011 (this table shows just a

portion of all of the trips between those stations on that day). Only completed Oyster journeys-those

where customers tap in and out-are included. There is a small number of cases where customers

either did not tap in or tap out, but those do not have any evaluative potential since their origins, des-

tinations, and journey times cannot be fully accounted for.

Oyster provides a wide range of data, mostly about fare payment, but for this research only a sub-

sample is used, including those noted in Table 3-1:
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Table 3-1: Sample Oyster records.

PID_ENCRVP
30164031
41537433

18969761

38317266

47107984

41513646
44759809

45585510

20458144

45962166

STARILOC
580
580
580
580
580
580
580
580
580
580

ENDLOC TC: TCEX
607 430
607 432
607 440
607 454
607 465
607 463
607 465
607 466
607 470
607 470

* DAYKEY: The date;
* PIDENCRYPT: An encrypted version of each individual's Oyster smartcard number;
* STARTLOC: The starting station of the customer's journey (a 3-digit code is assigned to each

station, including Network Rail stations that accept Oyster cards);
e ENDLOC: The ending station of the customer's journey;
* TCEN: The time that the customer passes through the fare gate at the origin station

(measured in minutes after midnight of the travel day; journeys after midnight but before the
close of service retain the same travel day designation and thus date or DAYKEY);

* TCEX: The time that the customer passes through the fare gate at the destination station;
and

e JNYTYP: Ticket type, where TKT is a pay-as-you-go ticket where the customer is charged per
trip and PPY is a pass where the customer has unlimited use of the system for a day, week, or
month.

It is straight forward to measure a customer's journey time by subtracting the entry time from the exit

time. It needs to be emphasized that the "journey time" discussed here is defined as the time between

passing through the faregate at the entry station and passing through the faregate at the exit station,

not the travel time on the train itself. In the case of the sample data shown in Table 3-1, the median

journey time for customers traveling between the Cockfosters and Holborn was 17 minutes; the aver-

age was 17.2 minutes; the minimum was 15 minutes; and the maximum was 19 minutes (times are

truncated to the minute, as described further below). This is a small sample, but it demonstrates both
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the reliability of the Oyster data in documenting journeys and the variability in customer journey times.

Figure 3-6 provides a clear illustration of the variability in Oyster journey times. Though train

travel time accounts for the majority of the average customer's journey time, platform wait time (the

time spent waiting for the train) and access and egress times between the faregates and the platforms

collectively account for a third of customer journey time. In the example presented in Table 3-1, cus-

tomers 44759809 and 45585510 almost certainly took the same train, as they exited the station at

the same time (483, or 8:03). But the first customer arrived at the station one minute earlier and thus

had a journey time that was one minute longer (18 vs. 17 minutes, respectively, though these figures

are truncated to the minute, as described below). This customer either took longer to get from the gate

to the platform and/or waited longer for the train. The Oyster journey time therefore does not directly

measure the time for a train to travel from one station to the next.

It is reasonable to assume that certain components of the Oyster journey are more relevant to

understanding journey time than others. Access, egress, and interchange time account for an average

of 21% of customer journey times, but they are relatively invariable en masse. While certain customers

may take longer to get from the faregate to the platform, the average customer given a large enough

Closures

Ticket

Time
1%

Figure 3-6: Components of an Oyster journey record. (Source: Schil, 2012, based on Tft JTM reports)
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sample size will take a consistent amount of time, no matter the train service being provided. This is

not true of the on train time or platform wait time, which are heavily reliant on the train service itself.

From the point of view of Oyster, a longer journey generally means slower trains (more on train time)

or fewer trains (longer platform wait time). In disrupted conditions, these two features frequently come

together, but they cannot be differentiated without evaluating train movement data.

Oyster records suffer from an additional issue: They are recorded only to the minute, providing

no information about the second at which customers enter and exit faregates. As a result, customers

44759809 and 45585510 may in fact have entered Holborn only one second apart, not one minute

as reported. As Figure 3-7 shows, this can inflate or deflate journey times significantly. An Oyster record

showing passengers entering at 7:00 and exiting at 7:30, a 30-minute trip, may in fact refer to a cus-

tomer taking just over a 29-minute trip (the shortest-possible journey time) or a customer taking just

less than a 31-minute trip (the longest-possible journey time). This almost two-minute difference must

be recognized in analyzing Oyster data.

En"u Exit
7:00:00 am 7:30:00 am

(30-min)Oyster Jeo~e : 3-m
Joury Tme

Sost Poi Enhy Eliead Pomil Edii
7:00:59 am 7:30:00 am

(29-min, 01-sec)
Shores POWal U
Journeyrwie

i EW Ps" .ayLogd PoWitA E:xWi

Long Pe 7:00:00 Em (30-min, 59-sec) 7:30:59 m I

Jouney ibme

Figure 3-7: Variations in Oyster journey times. (Source: Uniman, 2009, Figure 3-5)
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Finally, Oyster provides no accounting for unusual passenger behavior. Certain customers may choose,

for instance, to take a roundabout route between two stations or not board the first train to arrive.

Their longer journey times may indicate to an analyst a disruption in train service when there is none.

Fortunately, these customers represent only a small percentage of the overall ridership, since most

people want to complete their journeys as quickly as possible. With a large-enough sample, the effects

of these unusual passengers can be minimized. It is necessary to produce an adequate sample when

analyzing a dataset of Oyster records. In previous research, such as Uniman (2009), a set of 20 rid-

ers with the same origin and destination has been used as the minimum sample size to estimate the

mean journey time between two stations.

Train-movement data

At LU, information about the location of trains is provided through a system called NetMIS, whose data

can be interpreted as a reasonable proxy of an automated vehicle location (AVL) system. This data is

derived in the following sequence. First, track circuits indicate the presence of a train within a spe-

cific track circuit. This data is sent to a local signaling computer that in turn sends the train location

information to the TrackerNet database, which indicates the location of a train. Because track circuit

locations do not directly match the locations of stations, adjustments are made automatically to the

TrackerNet data before it is communicated to the NetMIS system. NetMIS can then be used to deter-

mine the status of service on a line.

When queried for a particular station, NetMIS produces a dataset similar to that shown in Table

3-2, which shows the arrival and departure times for eastbound Piccadilly Line trains at Acton Town

on September 19, 2011. NetMIS can also be used to track specific trains along their journeys, but this

thesis concentrates on station-based information such as that found in Table 3-2.

Table 3-2 illustrates what information can be gleaned from NetMIS data. Train numbers, track

locations, and destinations are indicated. The train number indicated in the leftmost column is the

scheduled trip number and the LCN in the rightmost column is the number assigned to the actual

vehicle. By subtracting the arrival or destination time of one train from the previous one, the headway
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Table 3-2: Sample NetMIS record.

2to 01: PM4: Mia:17 CMe. Ccat Us25"

000/0 00:36 00:00 MUM 1 0:16 10f:30 Cadm CSE.2 C&A*CT 128206 0

275/0 00 00:00 OFIM0 rM:17 ir0716 Cocddosr CXSEL.1 CSACr 1250W15 147

34310 01.13 00:00 010:5 02111 07:1: 0 AnmOQM C1012 CSACT 12410 n 123

00010 ("011 000 07:== MnM:4 WM07 OoddicSs CXS2. CSACT 0

260/0 003a 00:00 rz06 Mraos Or Cad7OMr CxsEL..1 CSAC 125=S1 M

272/0 00:33 00:00 0r2rer Pr2rAO 0 4 cxBEdm2 CACT 12217 a"

00010 00:00 D2:31 0M3 DMACTi 1262500 0

3410 00:4 00:00 0r23:4 Pr0:3 Praas knom e ex8EL_2 COACT aW124074

between trains at a specific location can be determined. Counting the number of trains arriving during

a specific period indicates train frequency.

In some important respects, NetMIS data are less complete than Oyster. In Table 3-2, the trains

that departed the station at 7:16:16, 7:23:41, and 7:27:31 have no train number or LCN associated

with them. In addition, the train that departed at 7:27:31 does not have an arrival time, passenger

destination, or track name associated with it. These gaps in data are a result of aging physical in-

frastructure that was not designed for modern computing. On the Piccadilly Line, track circuit data

are transmitted to small servers along the line in seven separate segments. At the junction of these

segments, information about trains is passed between servers, but small differences in information

between two servers can lead to information loss. As a result, certain train IDs are erased (leading to

"000" train numbers). This makes tracking trains more difficult (Paul 2010). Similarly, there are cir-

cumstances in which the status of a train is unclear. The train that departed at 7:27:31 did not "arrive,"

which may indicate that it is a "ghost" train, or that it is the same as another train on the track. These



48 Freemark

conditions make relying solely on NetMIS to understand the extent and impact of disruptions on the

line somewhat problematic.

Train controller log

Combined with other sources of data, however, NetMIS' utility is expanded. For instance, the log of

incidents recorded by service controllers offers important information about issues occurring on the

line. Throughout the day, controllers write short summaries of the condition of train service on the line.

This information generally includes notes about the start time and location of incidents. In addition,

they list the (reported) cause of each incident. A sample from a train controller log, from the morning

of May 16, 2012, is shown in Figure 3-8.

Controllers, who are the most knowledgeable staff in terms of conditions on the line at any given

time, communicate information about delays to their staff and the Network Operations Center, which

informs customers about disruptions on the line (this is further described in Chapter 6). The controller

Daily renmentury

05:0 SOT No ismes to report at stat oftuffic. (Pat Horkan)

08:15 PTI Indent

A report was received of a group of four children becoming separated from their mother. It is alleged the Train
Operator of eastbound train 314 closed the saloon doors too quickly, thus seperating the group.

In the initial panic, it is believed the moder caled the police however, local station staff and those at Ruislip,
liased to allow everyone to be reunited at Ruisip.

The =&ed Duty RiabMility Manager will be investigating this matter futher.

(Day 4 Mis,) (Mark Cherrie)

09:13 SignalRmning at Danger.

Hamm.Mksa
Eastbomd train 317 was delayed departing the platform due to signal number WD10a remaining at danger.
This was due to the train's description becoming lost.

The rogramme machine conerned was cleared in.mnu mode.

Job number 1195516 rer. (Delay 4 Mhis.) Further, the same siuation arose at 09,30Hr, with eastbound
train 273 being delayed departing the platrm (Delay 3 Min.) (Mark Cherrie)

Figure 3-8: Sample train controller log.
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log information is available on the TfL server the following day, when it is reviewed by other LU staff.

They use the controller logs to input information into the CuPID disruptions database, which is used to

monitor impacts on train service resulting from incidents (see Chapter 5).

3.4 LU SERVICE PLANNING AND ANALYSIS METHODS

In order to plan for and review operations on the network, LU uses several standard methods. The

Route Choice Model (RCM), the Train Service Model (TSM), and the Journey Time Metric (JTM) are

three of the most important (see Uniman, 2009; Hickey, 2011; and Schil, 2012). They are discussed

in this section.

The RCM estimates route choices for customers travelling between stations. Using passenger re-

sponses from TfL's Rolling Origin-Destination Survey (RODS), RCM provides probabilities that custom-

ers will take each alternative route. For example, customers boarding at Chancery Lane on the Central

Line travelling to Leicester Square, on the Piccadilly and Northern Lines, have two similar-length op-

tions: Take the Central Line and transfer to the Piccadilly Line at Holborn; or take the Central Line and

transfer to the Northern Line at Tottenham Court Road. Since Oyster does not provide any information

about the route taken (since it only provides entry and exit information), the RCM can be used to esti-

mate likely rider route patterns.

The TSM takes advantage of the data provided by the RCM, in addition to historic and projected

Oyster and gateline data, to estimate how passengers move throughout the system as a whole by

simulating train movement. This information can then be used to determine train load density at dif-

ferent points of the service day and at various locations; these estimates are used as an input into

train scheduling. TSM is used principally when service plans are being developed and is not frequently

updated.

Finally, the JTM, which has been used by TfL since 1997, is LU's most-frequently used assessment

tool for estimating the quality of service for passengers on the line. The JTM is an analysis tool used

by line managers to determine what aspects of the service need to be improved, and is updated every

four weeks (this is LU's standard "period" of analysis). The JTM uses NetMIS and maintenance records
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to compare actual and desired service quality. In the JTM method, the passengers' travel times are

made up of five components:

- Ticket purchase time;
- Access, egress, and interchange time;
- Platform wait time;
- On train time; and
- Unplanned and planned closures.

JTM uses NetMIS data about train headways and combines it with other data, including stations clo-

sures, elevator outages, and track interruptions. Longer-than-expected (or more-crowded-than-expect-

ed) travel time data is weighted by a value of time, so the JTM is not a literal representation of extra

time on the system experienced by customers. As shown in Figure 3-9, the JTM total travel time for an

individual moving through the system is similar to the Oyster journey time, though the latter includes

less access and egress time (because it offers no information about customer in-station time outside

the faregates).

Comparison of Totl (non-nterchange) Travel Time: JTM vs. Oyster
Skoron Esdy Saon Exit

ATM Total Trvel Time

Oyster Total Travei Time

Goln ErmyGakllbE

Figure 3-9: Comparison of total (non-interchange) travel time: JTM vs. Oyster. (Source: Uniman, 2009,
pp. 53)
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JTM is an important tool, but it has several limitations. AJTM assessment cannot be calculated for

an individual journey (unlike Oyster), meaning that it does not directly represent the impacts of a dis-

ruption on any rider; the metric attributes station performance to individual lines, so the performance

of an individual station, even if shared by multiple lines, is attributed to just one of them; it assumes

riders take the first train that arrives, which may not be true if trains are particularly crowded; it pro-

vides no information about variation in travel times; and relies on a fixed demand matrix (Chan, 2007).

Moreover, because it relies on surveys and models, it suffers from small sample sizes, infrequent up-

dates, and costly data collection (Schil, 2012).





4
Categorizing incidents on the
Piccadilly Line

This chapter defines the study period for this research and provides an overview of the types of disrup-

tions that occur on the Piccadilly Line. A sample of 29 disrupted days in a normal operations period

were selected for in-depth analysis using LU's existing method for identifying poor-performing days.

Incidents during the study period were then categorized by location, duration, and effects on passen-

gers. In total, the analysis offers greater insight into incident impacts, but does not attempt to provide

further information about incident cause.

This view is designed to supplement the organization's existing CuPID disruptions database, with

which a comparison is made. The goal of the chapter is to highlight the sources of information cur-

rently available within LU. This approach could be replicated for any period on any Underground line to

develop a more comprehensive understanding of the characteristics of incidents. In the context of this

thesis, the motivation is to lay the groundwork for further use of Oyster data in Chapters 5 and 6 for the

purposes of improving our understanding of the impacts of disruptions on passengers and developing

potential improvements to the customer notifications system.
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4.1 LONDON UNDERGROUND APPROACH TO INCIDENT CHARACTERIZATION

The provision of information about what services are available or are expected to be available at any

given time by public transport agencies is an important function, as transit is a customer service. Pas-

sengers should be provided clear relevant information about frequency of service and travel times

from one station to another, at all times of the day, on both weekdays and weekends. Based on this

standard information, customers might expect that service on weekday mornings should be similar

across days, weeks, and months.

Of course, variation in service is endemic to transit operations. While in a perfect world trains

would operate like clockwork, the reality is that a typical transit system incorporates a wide variety of

moving parts, all of which must function normally for service to operate according to plan on any given

day. For a perfect service day to occur, the number of passengers arriving at stations must be lower

than platform capacity, and riders must enter and exit trains quickly, do nothing to block the doors,

and remain healthy. Trains must never fail, switches must always operate correctly, and track fires

never happen. Drivers must show up to work on time and react precisely to any changes in information

provided to them.

It is not surprising that a "perfect" operational day rarely occurs on most heavily used rail transit

lines. All days on most transit lines, such as the Piccadilly Line, will experience some degree of disrup-

tion, which in this context may be described as divergence from the operations plan. Carrel (2009)

defines a disruption as "a single, unforeseen event that causes one or more trains to be unable to

complete their trip as scheduled." To be as precise as possible, two separate terms will be used in this

document in referring to delay on the transit line. The singular "event" that Carrel describes will be re-

ferred to as an Incident. The primary emphasis of this document, however, is on the larger impacts of

that event, particularly on customers. Thus, when describing the cumulative problems that result from

the incident, the word disruption is used. In this case, the definition of disruptions is extended to any

circumstances on the transit line that result in a customer being unable to complete his or her trip as
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planned." It is almost always possible to look at data representing a variety of aspects of service quality

on any individual day and identify times and places where service was less effective than it "should"

have been.

Some disruptions, without a doubt, matter more than others. A train arriving one minute later than

scheduled may not be noticed by any customer, but a train arriving fifteen minutes late will impact

many customers. The second situation would produce significantly longer journey times for travelers

and likely require a reworking of crew schedules, while the first may not even be apparent in a statisti-

cal method that allows for normal variability in operations. LU currently uses an incident identification

and tracking system called the Contract Performance Information Database (CuPID) to record the ef-

fects of incidents on the line.2

The principal measure used by TfL to characterize disruption severity is the Lost Customer Hours

(LCH) metric.3 After a service manager reports an incident of more than two minutes in duration, staff

use a set of estimates of passenger flow based on the incident type; the specific time (15-minute

intervals) and date it occurred; and the affected section of the line. These are used to estimate how

many riders were inconvenienced by the problem, and for how long. The LCH figure includes a calcula-

tion of estimated "knock-on" effects, or delays that last longer than the incident itself, though it is not

adjusted based on controller actions. The LCH figure may also be multiplied by a value of time (VoT) in

UK Pounds to determine the "social" impact of an incident and incorporate other measures that also

affect the experience of passengers on the line. If an incident results in a passenger having to stand

instead of sit as he or she normally would, the LCH reflects this, even if the travel time of that pas-

1 Why differentiate between trains and customers? The evidence suggests that problems affecting train service and customer
service may occur at different times. As such, what is a disruption to the train service may not be one for customers if
other trains fill the gap of trains that were supposed to be completing trips then. In other words, if trains are off schedule
but nonetheless maintain even headways, passenger joumey times would remain normal but crew would have to be
reassigned to deal with changed train arrival times.

2 CuPID was originally developed to monitor the performance of the public-private partnership (PPP) entities that maintained
the LU network between 2000 and 2010.Though the PPP system has been replaced with an entirely in-house system,
CuPID continues to be used to monitor incidents.

3 Lost Customer Hours are known internally as Nominally Accumulated Customer Hours (NaCHs). The unit of passenger
impact is one NAX, which equals 100 LCHs.
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senger does not change. Other categories of inconvenience include having to take stairs instead of an

escalator or elevator.

The LCH measure is thus a representation of not only the total increased journey time customers

are presumed to have experienced because of the disruption, but also the increased inconvenience

they encounter-even if their travel times are the same. Two incidents with the same effects on train

service could result in very different LCH scores, since an incident occurring at rush hour will affect far

more people than one occurring in the late evening, for example. In addition, the LCH score for a sig-

nal failure is different than that for a train failure, for instance, because they have different estimated

"knock-on" effects. If trains begin to queue behind a disabled train-producing secondary effects-the

delays that they cause are in theory calculated directly into the LCH score for the primary disruption,

and are not logged separately in the CuPID system.

LCH estimates are recalibrated roughly every decade to reflect current demand and based on the

LU Train Service Model (TSM). The most recent update was completed in 2011 and is referred to as the

"2014" sample (the previous version was modeled in 1999 for "2006," and remained in effect until

2011) (TfL, 2011b). Disruptions caused by planned maintenance work are evaluated separately and

are not considered in this analysis.

Each incident and its associated LCH score are logged in the CuPID database. The categorization

system used by London Underground to record disrupted events features more than 300 categories,

or "cause codes." As shown in Table 4-1 and Figure 4-1, London Underground staff currently rely on

a comprehensive set of disruption categories in assigning delays to specific causes. The specificity of

this data makes it possible to focus on the most significant causes of problems on the line. There are

ten broad groups (on the left side of Figure 4-1). For each category a number of sub-categories and

sub-sub-categories are defined. Further detail is provided for two example categories, Customers and

Signals.
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Table 4-1: TfL disruption cause code categories. (Source: TfL, 2011b)

Principal grouping Description
Setting off alarms (malicious or spurious), robbery/theft, accidental track obstruction,

Customers & Public suicide attempt, trespass on railway, vandalism, drunks, lost children, crowding,
altercations/fights between customers, customers holding doors open, customer
injury, boarding/alighting trains, person ill on train.

Incidents caused by external parties or factors outside LUs control, including for
External Factors example bridge strikes, fire in premises adjacent to the railway, local power supply

failure, police request etc.

Reet Trains defective in service or which are not available to enter service from the depot when
required.
Fire and security alerts (e.g. unattended bags, fire alarms set off) station evacuations

Safety & Security including exercises. Note that defects of Fire/Safety equipment are included under Stations
Infrastructure.

Signals Failures of signal equipment, control systems for signals and points, tunnel telephones, and
tripcock testers, including overruns of works to these assets.

Staff Absence, shortage, illness, accident, errors, staff taxi delays, refusal to work on health and
safety grounds, industrial action.

Stations Infrastructure Failure of stations equipment (e.g. escalators, lifts, lighting, fire equipment etc), also overrun
of stations project works.

Track & Civils Defects of Track, Bridges and Earth Structures and Drainage, Track fires, Track obstructions
and vegetation impacts, overruns of Track/Civils work.

Other Any other causes not included above.

CuPID is an assessment tool that provides extensive information about the disruptions that occur on

the Underground. It is the primary method by which TfL staff estimate the effects of disruptions. Yet

there are several ways in which it could be supplemented to improve its accuracy and value. LCH val-

ues are based on a number of projections, including how many people are using the line at any time;

how long delays will continue after the incident has ended; and what kind of inconveniences riders will

experience when service is delayed. In addition, the estimates do not reflect any live information about

service control actions, which could play an important role in moderating the effects of an incident,

though previous actions are used to estimate the likely knock-on effects of disruptions (Carrel, 2009).

Those projections are based on a detailed analysis of past incidents and are likely to come close to

reflecting actual customer effects of disruptions.
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Figure 4-1: London Underground's disruption categorization system.

But TfL does have additional information available that can improve our understanding of the effects

of incidents on passengers. This chapter evaluates the information recorded by line service managers

to aid in the interpretation of disruption effects. By examining a period of time and classifying incidents

in terms of their effects on operations and customers, the information currently provided through the

CuPID system can be augmented. Chapter 5 extends this process further, describing how Oyster AFC

data can be used to offer additional insight into disruption effects by examining actual variation in pas-
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4.2 SELECTING CASE STUDY SAMPLE DAYS

A three-month period, from April to June 2012, was selected for analysis of incidents. It was limited

to three months of retrospective analysis because of limited data availability and quality for previous

months. With the exception of the Queen's Jubilee weekend (June 2-5), these months experienced no

major abnormalities compared to typical years. These months had normal temperatures and precipita-

tion; by selecting from days in the spring, the best-possible service environment was available for study

and the number of incidents caused by issues external to the transit system was minimized. Ridership

on the Transport for London network grew during this period compared to previous years, but the sys-

tem's passenger load has been growing for many years, as described in Chapter 3, and 2012 proved

to be no exception.

Perhaps most importantly, the Piccadilly Line did not undergo any major upgrades or renovations

during the study period. No sections of the line were shut for any extended period; train availability was

normal; and staffing was regular. As a result, the line's operations were not affected by any abnormal

service patterns. Thus this period provides a reasonable basis to draw conclusions about how inci-

dents occur on the line in a generally "normal" service environment. From the start, it is worth noting

that this study makes no attempt to identify all incidents, nor does it claim to provide a universal ac-

counting of the workings of the transit line.

To narrow the focus to the most disrupted situations, not all days within the study period were ana-

lyzed. London Underground has a general policy of determining the degree of disruption on a service

over a full day. This is measured by the Excess Platform Wait Time (PWT), which attempts to calculate

the degree of extra wait on the platform (as compared to schedule) each passenger experienced, in

seconds. PWT is roughly, though not exactly, inversely related to the London Underground's headway

proxy score, which measures the percent of scheduled headways achieved. The PWT is calculated as

shown in Equation 4-1.
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{ 2 2~E
Excess PWT = I - 1 . (4-1)

2-iH 2-X E

Where,
PWT is the average passenger wait time;
His the observed individual vehicle headway during a specific period; and
E is the expected individual vehicle headway based on scheduled service during the same period.
Adapted from Uniman (2009), 54.

The headway proxy calculation is based on Equation 4-2.

Headway Proxy W-M (4-2)
W

Where,
wis the scheduled count of headways during a particular period; and
Mis the count of missed headways during that period.
According toTfL,"If a gap [in arriving trains] is between 2 and 3 times the planned headway, one headway is counted
as missed; if between 3 and 4 times two headways are counted as missed," and so on. (Source: TfL Heartbeat)

These figures are derived using data from NetMIS, which records the arrival and departure of trains

from select stations and thus can be used to calculate headways and frequencies. These data are

compared to the expected, or scheduled, service. PWT and Headway Proxy can be defined for a period

of any length, but the scores are generally used for an entire day's worth of service.

Based on interviews with London Underground personnel, the PWT provides a better description

of service quality, generalized across a day, than the Headways Proxy Score. Operators use PWT to ex-

amine performance on the line retrospectively and consider the figure as the single most important in-

dicator of the status of the line. Because of different sampling protocols (sampling points, for instance,

may not be on all sections on the line), PWT data is not consistent across lines; a "good" score on one

line might be mediocre on another. In general, however, scores under 20 seconds are normal and

under 10 seconds are excellent. Based on interviews with staff, the Piccadilly Line's operators use a

standard of 26 seconds as the nominal target. Days with higher PWT values are considered disrupted.

Twenty-nine weekdays were selected as the case study sample days over the three-month study

period with PWT values of 20 seconds or above (there were 65 total weekdays during the period). This

allowed the study to focus on the top half of the distribution of disrupted days. Of these days, 18 (62%)
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had PWT scores of 26 seconds or above, making them definitively "poor" service days according to

the service managers. Table 4-2 summarizes the basic statistics for these study days, and Figure 4-2

illustrates the corresponding PWT scores.

Table 4-2: Basic statistics for selected study days.

Median Excess PWT 30 seconds
Maximum Excess PWT 111 seconds (April 3, 2012)

Median Headway Proxy Score 95.8%
Minimum Headway Proxy Score 80.5% (April 3,2012)
Maximum Headway Proxy Score 97.6% (June 12,2012)
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As Table 4-2 and Figure 4-2 show, the case study days performed poorly compared to a "normal" day

according to their PWT scores. However, the Headway Proxy Scores provide somewhat different infor-

mation, in some cases showing quite good performance (as in the case of June 12). As noted, however,

service managers on the line do not usually rely on the Headway Proxy Score as an overall measure

of performance, so it is not discussed further here and the selection of days was made using the PWT

alone.

However, the PWT calculation is not representative of any single incident. If there are multiple

incidents in one day, the PWT fails to show how much of the overall delay was caused by each of

those problems. Moreover, the fact that the PWT is computed across an entire day means that it has

a tendency to wash out the effects of shorter, but still severe, problems on the line. As such, this study

endeavors to analyze these incidents in more detail to ascertain whether there are other indicators

that show their effects more clearly. This does not mean that the use of the PWT score should be elimi-

nated, but rather that its results could be supplemented with other information to form a fuller picture

of incidents on the line.

4.3 INCIDENTS DURING THE ANALYSIS PERIOD

As noted at the beginning of this chapter, incidents come in all shapes and forms-some minor and

some very significant. How can we identify where and when problems occurred? One approach is to

use automated data on transit system performance (in the case of London, Oyster and NetMIS) to

identify and analyze incidents and one potential method to examine their impacts-the resulting dis-

ruptions-is discussed in Chapters 5 and 6. But we can also use the information already provided by

service controllers to begin analyzing these incidents.

As described in detail in Chapter 3, the service controllers on the Piccadilly Line write summaries

at the conclusion of each duty period that describe what incidents occurred when, and where. These

summaries are based on information about incidents noted as they were occurring. Though this data

entry is open-ended, these logs generally provide the following information about incidents:
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- Time of commencement;
- Time of termination (problem solved, or at least remediated enough for service to resume);
- Duration (usually consistent with the above two figures, sometimes differs by a few minutes

once event is reexamined at the end of the day);
- Location, generally expressed in terms of nearest station or switch; and
- Presumed problem.

During the 29 case study days, controllers noted 116 incidents that had disrupted periods following

them of at least 5 minutes in duration. These totaled 2,901 minutes of incident duration (of 34,800

total minutes of service during the period). This amounts to an average of about 4 events and 100

minutes of incidents per day on the Piccadilly Line.

Several points should be noted about these data. First, these data overestimate incidents com-

pared to a "normal" day on the Piccadilly Line. That is because the days for which controller notes were

reviewed were those in the top half of the incidents distribution, using the PWT metric. Second, these

data do not include incidents whose duration was less than 5 minutes. No doubt there were many

such cases, but they were less disruptive to passengers and all were very short. Third, the "minutes"

recorded per incident are not weighted by passengers affected, unlike the CuPID system used by LU

to describe problems, as will be discussed in detail in Section 4.5. These are the actual number of

minutes during which an incident was recorded by controllers on the line.

4.4 INCIDENT CHARACTERIZATION

Using the comments by service controllers, the incidents were characterized into 11 basic types. These

reflect the controller's understanding of what occurred. These categories were compiled using a quali-

tative review of the comments, not a formal system, since controllers are not required to input problem

characteristics into any specific pre-defined categories.4

The eleven categories chosen for this analysis are documented in Table 4-3.

4 It should be noted, however, that discussions with staff members at LU suggest that there is room for improvement in
this approach. In interviews, some staff argued that it would be more efficient for controllers to be provided a set list of
possible types of incidents from which they could choose when writing their reports. This would reduce analysis time and
ensure that similar incidents are categorized consistently.
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Table 4-3: Service disruption categories.

Category Description or examples

Customer problem A sick passenger or a person committing suicide

Station problem* Escalator malfunctions or a lack of station staff

Train operator issue Generally resulting from a staff member not being available on time or needing to be
relieved from duty

Heavy traffic Resulting from higher than expected passenger loads, which may then mean blocked doors
and boarding or alighting delays

Signal or track failure A mechanical failure of the signal or track system

Points failure A mechanical failure of a track point, where tracks join

SPAD The acronym for a signal passed at danger, or a train running a red light

in which a change in operations plans requires a train to be tumed around before originally
planned

Fire A fire on the tracks often caused by trash
Train problem A mechanical problem with the train itself

Other

* This category is not likely to affect train service. Nonetheless, station problems can be associated with significant
recorded incidents by controllers and thus are included in this analysis.

These categories are similar to, but not identical, to the cause codes used by TfL to characterize inci-

dents, as described in Section 4.1. The causes described here were determined based solely on con-

troller comments, not on later analysis. This method was used to emphasize the information known

by the service manager at the time of the incident, or just after, rather than in retrospective review. A

comparison with results provided by CuPID is provided in Section 4.5.

The categories identified in Table 4-3 were plotted by time and date, as shown in Figure 4-3. This

plot shows no clear pattern of when incidents occurred. Incidents are scattered throughout the day,

with no period of the day appearingto have significantly more incidents than others. It should be noted,

however, that this chart does show a somewhat lower number of incidents between 8:00 and 10:00

and 20:00 and 22:30, compared to other periods of the day.
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Figure 4-3: Distribution of incidents by time and date, categorized by type.

Different types of incidents had significantly different impacts on passenger service. In total, as Figure

4-4 shows, signal malfunctions were associated with 28% of all incidents and 45% of the total incident

duration time. Signal failure was the most common type of incident on the Piccadilly Line during the

study period, according to service managers. Other issues, such as points failures, station problems,

customer problems, fires, and train problems all contributed to more than 5% of total incident duration

time on the line.

Figure 4.44 shows that the distribution of duration by incident type varied tremendously. Train

malfunctions were all resolved within 23 minutes and on average lasted only 9 minutes. On the other

hand, signal problems lasted up to 187 minutes and took 41 minutes to resolve on average. These

data indicate that a large percentage of the signal problems on the Piccadilly Line result in long peri-

ods of service delays. Other incident categories are less common, and if they do, often have shorter

durations.
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Incidents are distributed across the day on the Piccadilly Line as indicated in Figure 4-3, but total inci-

dent duration is concentrated outside the peak periods, as shown in Table 4-4. The periods in the table

were defined by identifying time periods of most concentrated passenger travel. This is good news from

the perspective of delaying smaller numbers of riders, as ridership is obviously heaviest in the AM and

PM peak periods.

Table 4-4: Operational periods and incidents for weekdays.

Percent of total Hourly percentage of total Percent of total
Perod Time daily ridership* daily ridership in period (flow) disrupted time

Ear 5:00-7:29 3.0 1.2 20.7
Morning I
AM Peak 7:30-9:29 17.7 8.9 5.2

Midday 9:30-15:29 30.1 5.0 42.7

PM Peak 15:30-18:59 26.7 7.6 12.7

Evening 19:00-24:30 22.6 4.1 18.8

* Defined as the percentage of trips occurring per period at the mid-point of the trip. For example, if a customer
taps his or her card at 7:15 and the trip takes one hour, the trip is counted as occurring during the AM Peak
because its mid-point, 7:45, is during the AM Peak. Based on an analysis of Oyster entry data for trips on the
Piccadilly Line on three weekdays in April. This figure is not a complete reflection of ridership since it only includes
trips that begin and end on the Piccadilly Line and only accounts for riders using Oyster cards (who nonetheless
account for the vast majority of ridership).

As shown in Figure 4-6, when split into the five periods of analysis, the highest levels of incident dura-

tion (total incident duration over the course of the 29 study days) were in the early morning and mid-

day periods. On the study days, there was on average about 8 minutes of incident duration per hour in

the early morning period and about 7 minutes of incident duration per hour during the midday period.

There were far fewer incidents and far shorter disrupted periods per hour during the AM and PM peak

periods. Figure 4-6 also shows the average duration time for the individual incidents that occurred in

each period. This chart indicates that incidents were resolved most quickly-or were most minor-in the

AM and PM peak periods, compared with the early morning and midday periods.
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Figure 4-6: Incident duration by time period.

As shown in Table 4-4, passenger loads are concentrated in the AM Peak, midday, and PM peak peri-

ods. As a result, despite the fact that a significant percentage of the incident duration occurred in the

early morning, these incidents affected relatively few passengers. In fact, despite the lower average

incident duration during the AM and PM peaks these incidents likely affected more riders. On the other

hand, the high level of incident duration during the midday, when there are many riders using the sys-

tem, affected many more people.

The incident periods, aggregated over the entire 29-day study period, were concentrated in the

Piccadilly Line's North section (north of King's Cross) and the Trunk section (from Acton Town to King's

Cross), as shown in Figure 4-7. Data for incidents on each of the branches include incidents that oc-

cur at the corresponding stations. For instance, if a problem occurs at Arnos Grove, the incident delay

that results from it is included in the total North Branch incident duration period. This does not apply
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to Rayners Lane and Acton Town, which both accounted for significant incident durations but are at

the confluence of two or more branches (Uxbridge and Rayners Lane branches for the first; Heathrow,

Rayners Lane, and Trunk for the second). King's Cross-St. Pancras station, also at the confluence of

two branches, did not account for any specific incidents.

Cf~

'4% Trunk: 641 min

Heathr~ow Section: 231 minl

Figure 4-7: Spatial distribution of incident duration across the Piccadilly Une.

When computed by station, as shown in Table 4-5, Acton Town, Ealing Common, Arnos Grove, Uxbridge,

and Rayners Lane were the most disrupted locations in terms of total incident duration. This is likely

a consequence of the fact that these stations are either crew bases (Acton Town and Arnos Grove), or

train turn-around points (the other three stations). Though certain types of incidents can occur any-

where in the system (such as a sick passenger), other problems, such as signal or points failure, are

most likely to occur where trains switch tracks, which occur at crew bases and at train reversal loca-

tions.

Uxbrid]ge Section: 272 mm11
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Table 4-5: Top stations for cumulative incident duration.*

Station Cumulative disruption duration (total minutes)
Acton Town 333

Ealing Common 270
Arnos Grove 263

Uxbridge 234
Rayners Land 203

Leicester Square 159
South Kensington 156

South Harrow 114
Cockfosters 114

* All stations not included saw less than 100 minutes in cumulative incident duration during the study period.

4.5 COMPARISON WITH THE CUPID DISRUPTIONS DATABASE

The manner in which the incidents were characterized in Section 4.4 is not completely consistent with

LU's current approach. As shown previously in Table 4-6, information provided by service controllers is

not always consistent with the information included in the CuPID database. Of a sample of 20 incidents

for which both controller and CuPID information is available, the service controller reported different

types of incidents compared with those reported by CuPID twice (these cases are highlighted). This is

a small proportion of the total, indicating that generally, service controllers have a good sense of the

type of incident when it occurs. However, in a small percentage of situations, later investigations show

that the understanding that service controllers had about the incident was not completely accurate.

As shown in Table 4-6, incident duration in minutes is distinct from lost customer hours (LCHs),

since the LCH figure is calculated by multiplying the incident duration by the estimated number of

passengers using the affected part of the line and by the estimated knock-on effects of that type of

incident. The rank of the incident durations and LCH figures noted in Table 4-6 demonstrates the lack

of direct correlation between these two figures. But these estimates may not reflect actual passenger

impacts, since the number of riders inconvenienced and the length of the disruption have not been

recorded using passenger data. Nor do they reflect different types of controller response strategies,

which may affect the length and severity of disruptions significantly. Chapter 5 explores the possibility
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Table 4-6: Comparing service controller information with CuPID data.

Incident Service LCH
Date Time duration (min), controller CuPID cause (hours),

with rank cause with rank
13.04.12 5:04 18 (8) Signal Signals-Lineside 195 (13)

16.04.12 11:49 6 (15) Train Fleet-Defective in Service- 557 (10)
____ _ _ ___ ____ ___ __ ____ ___ ___ Traction

18.04.12 5:10 171(1) Signal Signals-Lineside-Points 2175 (6)
24.04.12 10:56 7 (14) Operator Staff-Error-Staff Not in Position 248(11)
26.04.12 5:40 10(12) Operator Staff-Absence or Shortage 73 (15)
4.05.12 20:39 5 (19) Train Fleet-Defective in Service-Batteries 240 (12)

22.05.12 9:14 28 (6) Signal Signals-Lineside 67 (17)

24.05.12 5:32 56 (5) Station Staff-Absence or Shortage-Stations 23 (20)
____ ____ ___ _ __ ___ ____ ___ Staff

25.05.12 5:05 16(9) Signal Signals-Lineside 27 (19)
4.06.12 12:19 10 (12) Customer Customers & Public-Criminal 2675 (4)
6.06.12 10:53 71(3) Signal Signals-Lineside 4176 (2)
8.06.12 6:46 6 (15) Train Fleet-Defective in Service-Traction 69 (16)

11.06.12 8:47 62 (4) Signal Signals-Lineside 14573 (1)

15.06.12 7:49 6 (15) Operator Staff-Error-Failure to Shut Rear Cab 1193 (7)

15.06.12 21:52 23(7) Fire Track & Civils-Track-Fire 2529 (5)
15.06.12 0:51 127 (2) Signal Signals-Lineside 156 (14)
18.06.12 5:30 6(15) Other Signals-Uneside 66(18)
18.06.12 7:03 11(10) Signal Signals-ineside 3262 (3)
18.06.12 11:57 11(10) Operator Staff-Working/Error-Manager Error 789 (9)

18.06.12 16:39 5 (19) Customer leet-Decv in Service-Saloon 859 (8)
__________________ Equipment______

of using Oyster data to analyze those impacts directly. With increased use of Oyster data to demon-

strate actual passenger impacts of a line disruption, the LCH estimates may be significantly improved.
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As described in Chapter 4, TfL maintains an extensive database of incidents categorized by type in

the CuPID system. This database includes information about the severity of disruptions associated

with incidents, as estimated in terms of LCHs, which are estimates of passenger delay and inconve-

nience. These methods, however, do not use Oyster data to examine the actual experience of riders

in the time following any incident on the line. The goal of this chapter is to use Oyster data to provide

a new method to assess the actual impact of disruptions on passengers, with the intention of provid-

ing supplementary information to that already provided by CuPID. This chapter proposes one method

by which variations in journey times recorded by Oyster could be used retrospectively to examine the

effects of disruptions on customers, and it describes how passenger accumulation can be monitored

with Oyster tap data.

The chapter begins with a review of TfL's existing methods to analyze the impacts of disruptions

in Section 5.1. It then describes how an index of disruption based on journey time variation can be

constructed in Section 5.2 and offers a series of case studies on the Piccadilly Line to show how that

index might be implemented to measure the passenger impact of a disruption in Section 5.3. Section

5.4 examines how Oyster-based information about passenger accumulation could be used to identify

periods of disruption on the line. Section 5.5 compares the Oyster-based methods with existing mea-
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sures of disruption severity. Finally, Section 5.6 explores the potential use of Oyster journey time data

during disruptions to improve the agency's understanding of customer route choice.

5.1 CURRENT APPROACHES TO ANALYZING DISRUPTION IMPACTS

Service analysts at Transport for London currently use information provided by the agency's smartcard

system, Oyster, to understand customer journey patterns on the Underground. By examining records of

Oyster taps-both into and out of the system-the performance of the system can be analyzed. Specifi-

cally, the time it takes a passenger to move from one station to another can be computed. When there

is a disruption, Oyster provides one means, at least for ex post analysis, to examine how customers

were affected.

Figure 5-1 shows how journey times can change significantly during disruptions. This chart shows

the journey times for all Underground journeys between Knightsbridge and Covent Garden on Septem-

ber 22, 2011. The vast majority of, if not all, of these journeys, can be assumed to have been made

on the eastbound Piccadilly Line. The results show that journey times between 6:00 and 16:30 were

stable in a range of 10-20 minutes, but by 18:00 travel times had increased to a range of 30-45 min-

utes. The effects of the disruption are very clear.

50

45 -

40 -3-* * - -4*

25 - - 7-

20

15

0

5 8 -, 0 4 .4 4

0
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Trip departure time

Figure 5-1: Example of Oyster journey times from Knightsbridge to Covent Garden.
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Figure 5-2 puts the disruptions experienced on September 22 in the context of travel in the PM peak

by passengers on other days in the same week. The mode of the distribution of journey time for cus-

tomers traveling from Covent Garden to Finsbury Park (eastbound) was far higher than for any of the

other days of the week, which recorded normal journey times and did not experience any disruptions.

The riders from Covent Garden to Finsbury Park were essentially continuing the path of those who had

taken the train from Knightsbridge to Covent Garden, as shown in Figure 5-1, so this distribution is not

unexpected.

These increased journey times, however, did not apply to the entire Piccadilly Line, as is also illus-

trated in Figure 5-2. Riders from Acton Town to Hounslow West, traveling westbound on the Heathrow

Branch, had a generally similar distribution of travel times between those destinations during the PM

Peak on September 22, as on other days of that week. This reflects the fact that disruptions resulting

from the earlier incident were confined to only parts of the line and one direction of service. Compara-

tive analyses such as these offer an effective retrospective look into the circumstances affecting par-

ticular travelers on specific route segments during specific periods.
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Figure 5-2: Journey time distributions during PM Peak (September 2011).
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This analysis of Oyster journeys, however, has several limitations. First, Oyster data for the Under-

ground do not track customers as they travel, but rather show only start and end points. On journeys

where there is only one option for direct travel (only one line connects two stations, for example), it is

reasonable to conclude that virtually all customers chose the direct route. On the other hand, for many

journeys through Central London, customers have several options. Customers travellingfrom St. Paul's

Station to Green Park, for example, have three roughly equivalent ways to make the journey, and Oyster

offers little insight into which route they took.1 As such, in terms of considering impacts on a specific

line, any analysis of Oyster data must be limited to journeys that can be safely assigned to that route.

This eliminates millions of journeys daily from potential evaluation. TfL's Rolling Origin-Destination Sur-

vey (RODS) provides one way to address this issue, which will be addressed in Section 5.6.

Second, Oyster data provide journey time from faregate to faregate, not actual time riding a

train (the latter can be estimated by examining NetMIS track-circuit information). If journeys recorded

by farecard data take longer than typical, there are a number of possible explanations. Perhaps a

group of tourists heading from one station to another got lost in one of the major stations; perhaps a

broken elevator left a person with limited mobility with fewer options; or perhaps the train simply did

not show up as expected. Moreover, Oyster journey time data does not clearly differentiate between

segments of the journey unless carefully examined. For example, a group of customers who take a

significantly longer-than-normal time to travel between Manor House and Northfields may have been

affected by a disruption in the northern section of the Piccadilly Line, in the trunk through the center

of the city, in the Heathrow Branch, or in all three. Whatever the cause of the delay, Oyster records by

themselves are not enough to make a full diagnosis.

Third, while sampling origin-destination pairs may provide some insight into line conditions, ex-

amining every origin-destination pair to attempt to identify problems is at best a laborious task. There

are 53 stations on the Piccadilly Line and a total of 1,378 potential origin-destination pairs in each

1 Between those stations, customers can take the Central Line heading west from St. Paul's and
connect to the Piccadilly, Victoria, or Jubilee Lines, all of which provide one-transfer service to Green
Park.
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direction. It would be difficult for any analysis of a single origin-destination pair to represent the overall

impact of a disruption. Nor is it clear that examining one origin-destination pair necessarily describes

performance in the section of the line being considered, let alone the line as a whole. Moreover, ex-

amining Oyster data in terms of individual origin-destination pairs can be effective for heavily traveled

routes because of the large number of passengers getting on and off trains throughout the day, but for

parts of the system there may be only a few riders and Oyster data can be heavily affected by outliers

if the sample size is too small. This is particularly true for periods of the day with low ridership. In sum,

this suggests that to use Oyster to help understand disruption impacts retrospectively requires a new

method, and that is what is proposed in this chapter.

The limitations of Oyster data underscore the fact that the most valuable type of analysis is one

that incorporates different types of data, including Oyster data, train arrivals, and controller reports.

The automated fare data by itself cannot fully describe what occurred during a disruption. Indeed,

analysis of train movement data available through NetMIS can also provide insight into the state of

passenger travel during disruptions.

Figure 5-1 shows that customers took much longer than normal to travel between Knightsbridge

and Covent Garden, but it does not provide information about other parts of the line since it is based

on Oyster journeys for just that single origin-destination pair. Rather than examine a whole host of

potential travel pairs, train travel times can provide a bigger picture of events, as shown in Figure 5-3.

They can be tracked live through LU's TrackerNet system (which is accessible in the control room) and

recorded in NetMIS. Figure 5-3 confirms the finding from the Oyster origin-destination analysis, show-

ing that there was a significant increase in travel time in the central section of the Piccadilly line on the

disrupted day (September 22, 2011, from 18:00 to 19:00). The slope of the lines (each of which rep-

resents a train) on the space-time diagram indicates the speed of trains; the faster the train, the flatter

the slope. Thus a review of this figure indicates clearly that the travel times between Knightsbridge and

King's Cross, and between all the intermediate stations, increased significantly during this period on

the disrupted day compared to normal.



78 Freemark

21/9/2011

A K - m6 mn esI
- CTK8KmN8--10(

22/9/2011 9mts:.
1minutes

ACT-KNB
37 minutes

- KNB-KXX

FIgure 5-3: Space-time ("waterfall") diagram for eastbound Piccadilly LUne trains.

Figure 5-4 demonstrates how NetMIS data provide an indication of changes in train travel time. This

figure shows the travel time for all eastbound Piccadilly Line trains running from Hammersmith to

King's Cross on September 22, 2011, demonstrating how travel times increased significantly begin-

ning at around 17:30.

NetMIS also provides information about the headways of arriving trains. For example, Figure 5-5

shows how headways at Leicester Square, a representative station, changed over the course of Sep-

tember 22, 2011. These data show increases similar to the travel times data in Figure 5-4, beginning

at 18:00, but by 19:00, headways at Leicester Square have largely returned to normal. The discrepan-

cies between the information available from Figures 5-4 and 5-5 provides a clear indication that head-

ways only provide a partial view of the overall impact of a disruption on passengers.

As described in Chapter 3, analysts at London Underground take advantage of this information

about train movements to determine the extent of disruptions on the line. However, the reliance on

train-tracking information has its limitations. First, while it keeps service managers aware of when
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trains arrive (compared with their schedule), it provides no direct information on customer impacts.

While it may be intuitive to posit that increased train headways result in increased passenger delays, a

doubling of headway in a heavily served section of the line may have little effect on the journey time of

the average passenger using the line. As such, even when trains are quite delayed, a disrupted situa-

tion may have been "resolved" in terms of passenger journey impacts. This is particularly problematic

because the LU's primary instrument for measuring disruption impact, the LCH metric, relies on aver-

age headways over specific period to be calculated.2

Transport for London is developing a new system to describe disruption impacts with the goal

of determining the recovery time and recovery rate for incidents. Agency staff have defined recovery

rate as the amount of time it takes trains to return to normal service after an incident has been re-

solved. Analysts have calculated Excess Platform Wait Time (PWT) figures in 15-minute increments and

then tracked how long it takes for service to return to normal (or the PWT proxy target), using a 7-period

moving average of the PWT (7 15-minute periods). This method is illustrated in Figure 5-6. It shows

the PWT figure for each 15-minute period as a blue bar and the moving PWT figure (which averages

the seven previous PWT scores, or 1h45 of service), as the red line. The method calculates the time

between the end of the incident (shown in red at the bottom of the graph) and the end of the recovery,

when the 7-point moving PWT average falls below the daily target. This method makes it possible to

compare different types of disruptions and the recovery rate.

This approach is promising, but it also relies on the NetMIS data to determine the disruption im-

pacts. This makes sense when the primary goal is to analyze how to get trains back to the operations

plan as quickly as possible. Yet it may be is less effective in terms of determining the true effects on

passengers. For that type of analysis, it is necessary to compare train recovery data jointly with pas-

senger journey time information. This chapter posits that it is feasible to use Oyster data to develop

2 It is true, of course, that a service with longer headways (and thus lower frequencies) necessarily
results in more crowded trains, assuming constant passenger demand. If trains become so crowded
as to force passengers to wait for the next train to board, Oyster travel time variations will reflect the
problem, but if trains are simply more crowded than normal, Oyster provides no information. This
demonstrates one of the significant benefits of using a system such as LCH and the JTM, whose
premises are that effects such as passenger crowding can be estimated during disruptions.
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Figure 5-6: Service recovery time and recovery rate chart, showing calculations, for Jubilee Une ser-
vice on June 6, 2012. Source: Harper (2012)

an aggregate measure of passenger delay over short periods for entire line sections; this method is

described in the following section.

5.2 DEVELOPING AN AGGREGATE MEASURE OF JOURNEY TIME VARIATION

As described in Section 5.1, there are significant limitations to the use of individual origin-destination

pairs for an analysis of Oyster data. As shown in Figure 5-7, even the most-traveled origin-destination

pairs on the London Piccadilly Line saw fewer than 20 individuals in 15-minute periods during much of

a sample day (April 24, 2012). An analysis of Oyster records should incorporate a reasonable sample

to prevent conclusions from being affected by outliers, but Figure 5-7 shows that this is not possible

for short periods of time for individual origin-destination pairs for most of the day.

This research thus proposes to extend the value of the Oyster AFC data source by suggesting a

new tool to examine a much larger dataset and combine relevant information in order to assess the im-

pacts of disruptions on passengers. The key insight is to aggregate Oyster smartcard data beyond the



82 | Freemark

30-

20-- -- - - - -

E
u 15-

0-
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Passenger entry time
"'""eicester Square-Kings Cross - Piccadilly Cxcus-Anrg Cmss -- "King CrosHolbiom -Kings Cmss-Piccadilly Cercus
""""Holbom-4Kangs Cross -""ings Cmss-Leicester Square ''"""King Citnss-Coivenyt Garden '""""Covent Garden-King Cross
~~~South Kenisingon-Piccadilly Circus -""""Southn Kensmngton -Kingp Cross -""Knightbridge-Picadilly Circus Kings Cmss-South Kensington

-- Piccaddly Circus--South Kensington - Sout Kensmigion -Green Park Wood Green -Ansbury Park --- iccadilly Circus-Knightsbige

--- Green Park--South Kensingon -- Holloway Road-Kings Cross South Kensington-ticester Square 'insbusy Park-Wood Green

Figure 5-7: Entres by 15-minute bucket on Piccadilly Line top 20 origin-destination pairs.

origi n-desti nation level. This analysis uses a "basket"I of journeys across a section of a line to evaluate

the degree to which journey times are varying from the norm. The basket consists of all journeys occur-

ring within a specific line section, but excluding journeys that extend beyond the segment of interest.

This method ensures the following:

- A larger sample, even during short time periods, since multiple origi n-desti nation pairs are

considered, not just one;
- Reduced sensitivity to outliers through the use of large samples and a focus on the mean

variation from the norm; and
- A focus on section-level problems, not difficulties with any specific origi n-desti nation pair.

The first step is the selection of the baskets for meaningful analysis; because the Piccadilly Line is

quite lengthy, it is necessary to divide the line into a number of sections in order to perform an analysis.

The Piccadilly Line was divided into five separate sections, as shown in Figure 5-8. The choice of the

sections was based on two criteria. First, the location of reversing tracks was noted, as shown in this

figure. If sections of the line are to be studied "independently," trains must be able to turn around at

the ends of such sections in the case of a disruption. A reversing track allows controllers to keep ser-



Disruption impact assessment 83

vices running normally on one part of the line even when there are major problems elsewhere. Second,

service managers were interviewed in order to determine their typical actions when disruptions occur.

Based on those conversations, Acton Town and King's Cross were identified as common locations for

train reversal during disruptions. Thus these locations provide natural boundaries for the sections.

The result of this division is illustrated in Figure 5-8 and documented in Tables 5-1 and 5-2. The

North section runs from Cockfosters (CFS) to King's Cross (KXX); the Trunk runs from King's Cross to

Acton Town; the Heathrow section runs from Acton Town to Heathrow (H123/H4/H5); and the Rayners

Lane section runs from Acton Town to Rayners Lane. The section of the line from Rayners Lane to Ux-

bridge (which we will call here the Uxbridge section) is excluded in this analysis. This section of the cor-

ridor is shared with the Metropolitan Line, and so even if the Piccadilly Line suffers significant delays

in this area, customers have an easy alternative service available to them. As shown in Table 5-1, the

line sections are of similar length; travel time from end to end on each section is between 20 and 32

minutes. Service is provided more frequently for the North and Trunk sections, and significantly less

frequently to Rayners Lane.

It should be noted that while these four sections do provide a useful way of understanding perfor-

mance on the Piccadilly Line, it would be reasonable to increase the number of sections so as to have

a finer-grain level of detail about performance in each of the sections. For example, Arnos Grove (AGR)

is a crew depot and often the site of train reversals; the same could be said for Northfields (NFS) on

the Heathrow Branch. In most cases, increasing the number of sections will decrease the statistical

reliability of the results, but as long as there are a reasonable number of origin-destination pairs within

the section (to ensure that representative Oyster results can be produced for small time periods), the

results will be representative of the conditions within these segments and provide even more accu-

rate information about disruptions than broader section selections. However, smaller line sections are

more likely to be influenced by problems occurring at a specific station (such as an escalator malfunc-

tion) that would increase total journey time but not the time on the train itself, which is what is of most

interest here. In a larger sample, such problems would be averaged out.
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Figure 5-8: Study sections for Piccadilly Une service, showing reversing track locations.

Table 5-1: Piccadilly Une section characteristics.

Length, km End-to-end Stations
Section rounded) scheduled train (Including end Peak trains per hour

travel time (min)* points)

North 16 32 13 24 KXX-AGR; 18 AGR-CFS

Trunk 14 32 16 24

Heathrow 19 22 12 18 ACT-NFS; 12-NFS-Heath.

Rayners Lane 11 20 9 6

* Source: TfL Journey Planner, leaving at 8:00 on a weekday morning.

cockters
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All of the journeys with origins and destinations on the Piccadilly Line within each of the sections were

analyzed (about 185,000 trips a day), with several important exceptions. Because the sections are

being analyzed independently, trips that span sections (such as from a station in the North section to

one in the Trunk) are not considered. Trips where passengers had a direct line alternative for the whole

trip (such as between Finsbury Park and Green Park, which is also served by the Victoria Line) were

excluded. Trips where only Piccadilly Line service is available directly but easy transfers from other

lines are possible (such as from Hammersmith to Leicester Square, where customers may use the Dis-

trict Line from Hammersmith to South Kensington before transferring to the Piccadilly Line) were also

excluded. In total, as shown in Table 5-2, the included trips account for about 30% of all daily Oyster

trips that begin and end on the Piccadilly Line. Most of the riders considered took trains in the North or

Trunk sections, with smaller numbers on the Heathrow and Rayners Lane sections.

We can be relatively confident that these trips represent trips that were taken entirely on the

Piccadilly Line and therefore that journey time variation in the Oyster sample is a direct reflection of

service on the line. It is possible, however, that certain of these trips occurred at least partially outside

the Piccadilly Line if passengers made "irrational" journey decisions. For example, a rider could travel

from Green Park to Holborn by taking the Jubilee Line to Oxford Circus and then transfer to the Central

Table 5-2: Piccadilly Line section passenger and OD-pair characteristics.

Sample OD pairs In Number of excluded
Section daily Oyster analysis per OD pairs (duplicated

journeys direction* by other lines)

North 18,867 (10%) 69 9
Trunk 21,012 (11%) 44 76

Heathrow 9,894 (5%) 63 0

Rayners Lane 5,313 (3%) 34 1

Other sections (including Uxbridge 130,242 (70%) 1082 n/a
section) and cross-sectional trips '

* Source: Oyster records for April 16, 2012 (sample day). Only trips with both origins and destinations on fthe
Piccadilly Line are included in the analysis.
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Line. This, however, is out of the way and quite inconvenient compared to the direct Piccadilly Line

journey and thus unlikely.

The validity of the selected sections from an analytical perspective is demonstrated in Figure

5-9, which documents the number of Oyster records for each of the Piccadilly Line sections and direc-

tions across the course of the day. The figure demonstrates that, with the exception of the westbound

Rayners Lane section, all of the sections feature sample sizes of 20 Oyster records or more for 15-min-

ute sample periods throughout the day, from around 7:00 to 20:00. Higher ridership on the Trunk and

North sections of the line produce sample sizes available from Oyster records of greater than 80 per

15 minute bucket for most of the day. The figure indicates that conclusions from a study of Rayners

Lane section records will be less reliable than those from a study of records from the Trunk and North

sections (and the Heathrow section to a lesser extent). In future analyses that require creating poten-

tial line sections, examining the size of the sample of records derived from each is an important step.
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12x 1-station journey
SIx 2-station journey
10x 3-station journey
8x 4-station journey
7x 5-station journey
6x 6-station journey
5x 7-station journey
4x 8-station journey
3x 9-station journey
2x 10-station journey
2 x I1-station journey

Excluded journeys include all trips from King's Cross to stations from Finsbury Park north, since passengers on
those journeys may be taking the Victoria Line for at least part of their journeys

Figure 5-10: Origin-destinaton Joumey basket for the North section of the Piccadilly Une.

For each of the sections, all origin-destination pairs where direct Piccadilly Line trips were possible and

no alternative route was available (even for a part of the journey) were selected. As shown in Figure

5-10, this produced a total of 69 origin-destination pairs for the North section-in each direction. This

very large sample ensures that estimates of journey times on the Piccadilly Line can be reliably derived

for even short periods of time.

In order to evaluate the impact of a disruption on passengers moving along a line, individual pas-

senger journey time records were compared with expected journey times. The goal of this analysis is to

provide an overall estimate of average change in journey time from what would be expected for all rid-

ers on a particular section and direction in order to indicate the severity of the disruption at a specific

point on a specific day. Equation 5-1 is used to calculate the relative variability v in passenger journey

time for a given section. The equation requires the following information:
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- All Oyster records for representative origin-destination pairs in each direction in each line
section, including trip start and end times, with the actual trip time for each journey ( t. ); and

- "Normal" Oyster travel time for all possible origin-destination pairs, differentiated by hour
T.). This hour-by-hour differentiation is necessary because of significant changes in normal
journey times depending on the period of the day. This data has been compiled from median
travel times on origin-destination pairs over the course of 5 weekdays with "normal" service
(with PWT scores of less than 20).

Once the actual and normal travel times for all trips in the line section have been compiled, the normal

travel time is subtracted from the actual travel time to find the variation from the norm, as shown in

Equation 5-1. The variation of each trip is calculated separately. These variations are averaged across

all trips ( n ) and across all minutes ( m ) in the sample period. This equation offers a reliable estimate

of the variation in travel time for passengers on a section of the line. The result is a percent difference

from the norm; in other words, it indicates average variation in travel time in a specific line section.

Note that it should not be assumed that such variations apply to every origin-destination pair within

the section and period.

In this analysis, a period (m) of 15 minutes is used because this corresponds with the minimal

sample size necessary for analyzing the journey time patterns on the Rayners Lane section of the line.

This period could be shortened for a larger sample or expanded for a smaller one. Note, however, that

the relative variability is re-calculated every minute and thus provides a rolling estimate of journey time

variability, rather than one confined to individual 15-minute periods.

X" (t. - T)/T)
v = Relative variability for trips t in line section = { x [ / vn (5-1)

Where,
m is the number of minutes during the representative sample period;
n is the number of sample trips;
t, is the actual journey time for tripj; and
T is the normal journey time for tripj (characteristic of the OD pair of the trip).
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Table 5-3 demonstrates how this measure of variability can be implemented. Each individual trip's

Oyster journey time is compared with its normal journey time, producingan individual variation. Subse-

quently, all variations within the time period and line segment are averaged to indicate the overall level

of passenger journey time variation on the line section. It is important to note that negative variation

is possible because the "normal" reference point does not represent the journey time on a perfect day

but rather a normal day, so it is possible for passengers to move through the system faster than "nor-

mally." In this hypothetical example, all journeys between stations "A", "B", "C", and "D" are analyzed in

the Ato D direction. The overall variation v is in effect weighted by the segments with more passengers,

so the measure is reflective of the average passenger.

This approach offers the analyst the ability to assess how customer journey times diverge from

the norm during disruptions. The information may be useful in determining when disruptions begin

and end in terms of customer impacts. However, it should be noted that there are several limitations

of this method. First, the only source of data used is Oyster. Currently, the data is provided in 1-minute

increments (not seconds), meaning that very short trips may show high variability even if they diverge

Table 5-3: Hypothetical dataset of travel within line section from 8:00 to 8:05.

Actual Normal
Passenger OD pair Departure journey time journey time Variation (%)time (min) (min)

1 A-B 8:00 9 10 -10
2 A-B 8:01 13 10 30
3 A-B 8:02 15 10 50
4 A-C 8:01 18 15 20
5 B-C 8:00 11 12 -8
6 B-C 8:00 13 12 8
7 B-C 8:05 16 12 33
8 A-D 8:03 27 26 4
9 A-D 8:04 26 26 0

10 C-D 8:00 5 5 0
11 C-D 8:05 5 5 0

All passengers n/a n/a n/a n/a v = +12%
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by only a minute or two. Second, the method does not highlight performance for particular origin-des-

tination pairs. If there is a specific problem occurring at an individual station or in a subsection of the

line section selected, it will not necessarily affect the overall level of variation for the line. Finally, the

data become available only at the end of passenger journeys, when they tap out. Thus the beginning

(and end) of a disruption is delayed in terms of when the data presents it, which is a concern for real

time use of this system, as will be discussed in Chapter 6. However, for this analysis, it is reasonable

to use this data in the context of retrospective analysis of incidents.

5.3 ANALYSIS RESULTS AND DEVELOPMENT OF A MEASURE OF DISRUPTION
IMPACT

Figure 5-11 shows the variability analysis results for two disrupted days, May 14 and 15, 2012. The

source of data for these charts is variation in journey time for each section and direction during the

sample time period. At time t, the relative variation v is calculated for the period over the previous fif-

teen minutes. Using a rolling view of the sample prevents major minute-to-minute shifts in travel time

variation and illustrates the trend, not the moment-to-moment performance. The chart provides infor-

mation in terms of passenger entry time. As was shown in Figure 4-2, the two sample days recorded

Excess Platform Wait Times (PWT) of 20 and 34 seconds, respectively, indicating that the first day was

mildly disrupted and the second more severely disrupted. These indicators are borne out in Figure

5-11, as May 15 shows significantly higher values of travel time variation than the previous day.

A close look at the figures provides an overview of the troubled line sections during differenttimes

of the day. Figure 5-12 shows the westbound progression of journey time variation on different sec-

tions of the Piccadilly Line from 8:30 to 11:00 on May 14, 2012. This chart shows that average journey

time variations never exceeded 30% in this period. This indicates that while passengers did see higher-

than-normal journey times during this period, the impacts never became extreme.

A look at the variation on the line on this day provides some insight into the manner in which dis-

ruptions move through the system. The disruption appears to commence in the North section, move

into the Trunk, and then shift to the Heathrow and Rayners Lane sections. This is as expected, since
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A. 14 May, 2012
westbound.

B. 14 May, 2012
eastbound.

C. 15 May, 2012
westbound.

D. 15 May, 2012
eastbound.
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Figure 5-11: Journey time variation Index throughout day and line section.
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westbound service begins in the North section and then extends throughout the line; what is being

shown on the chart is a propagation of passenger delays from one section to another, following the

trains.

40%

30% -

0%

-10%- --
E

0%

-20%--*

-30%

Time
- North - Trunk - Heathrow - Rayners Ln

Figure 5-12: Journey time variation westbound from 8:30 to 11:00 (May 14, 2012).

Results from May 15 indicate a far more severe disruption, beginning on the westbound Heathrow

Branch at around 12:30, as shown in Figure 5-13. Passenger delays spread to eastbound service by

13:05, when difficulties westbound begin to affect eastbound operations. Westbound passengers saw

increases in journey times of around 80% at the height of the disruption; eastbound they saw increas-

es of up to 105%. These problems, however, did not propagate to the Trunk eastbound, indicating that

while certain projections might be made about where problems are likely to occur, one cannot simply

assume that variation in passenger journey times will propagate from one section of the line to the

next. Similar trends are evident in Figure 5-14, which illustrates the occurrence of a major disruption

on the Rayners Lane Branch between 21:00 and 24:00.
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Figure 5-13:
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It should be emphasized that the results of the analysis include more than just the direct effects of

the incident itself. Rather, the metric v computes all passenger delay compared to that occurring on a

regular day of service and thus provides insight into the "knock-on" effects that are also estimated in

the LCH calculation, as well as the potential impact of controller actions. In addition, the propagation

of disruptions depends directly on the decisions controllers have made about how to respond to the

incident. However, as both Figure 5-13 and 5-14 illustrate, the propagation of delay throughout the

system cannot easily differentiate between "direct" effects and knock-on effects. In the case of east-

bound Rayners Lane services, problems on the line continued from 21:20 until 23:40, long after the

actual incident had been resolved. No matter whether direct or indirect, however, this mechanism does

demonstrate when and in what section of the line passengers experienced increased journey times.
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Journey time variation by line section from 12:00 to 14:30 (May 15,2012).
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Figure 5-14: Journey time variation by line section from 21:00 to 24:00 (May 15,2012).

A review of several days of data indicates a ±20% margin of journey time variability for "normal" ser-

vice. When variability exceeds 20%, conditions on the line are not normal. This margin is used for the

calculation of total variability resulting from a disruption (see below) and the discussion of real-time

use of Oyster data (see Chapter 6). It should be noted that this baseline may be worth reexamining

based on additional data and further analysis.

The minute-by-minute variations in journey times clearly indicate which parts of the day saw the

most disrupted service, but they can also be used to provide an overall estimate of disruption impacts

on passengers. This thesis proposes a method to incorporate Oyster data into the retrospective analy-

sis of disruptions and monitor the degree to which passengers were affected by a specific disruption.

As shown in Equation 5-2, the total disruption impact V is measured retrospectively by calculat-

ing the integral of the variability curve v above the baseline 20% variability, for disruptions where the

v curve rises above 20% for five minutes or more. This integral is an indicator of the degree to which

passenger service has been disrupted and suggests the severity of the disruption in terms of customer

impact. This integral allows a direct comparison between different disruptions. Note that because the
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integral is simply the area under the curve, not the height or breadth of the curve, a long, minor disrup-

tion could produce a V score similar to that for a short but severe disruption. Dividing V by the affected

time period, as documented in Equation 5-3, provides an indication of the intensity I of the problem.

V = Total disruption impact = { jabv dt } - 0.2(b - a) , for periods where v > 0.2 (5-2)

Where,
a is the commencement of the disrupted period in minutes (when v first reaches 0.2);
b is the end of the disrupted period in minutes (when v drops below 0.2); and
v is the variability measure as defined in Equation 5-1.

V
I = Disruption intensity = (b - a) , for periods where v > 0.2 (5-3)

Where,
a is the commencement of the disrupted period in minutes (when v first reaches 0.2);
b is the end of the disrupted period in minutes (when v drops below 0.2); and
Vis the total disruption variability measure as defined in Equation 5-2.

V and I are both relative metrics that allow the effects of disruptions to be compared, but they do not

"represent" anything, unlike the LCH metric, for example. Figure 5-15 provides information about the

relative scales for the V and I metrics. A disruption with a V value of 5 would be relatively minor while

one with a value of 20 would be major. A disruption with an I value of 0.5 would be "sharp," meaning

that it would affect passengers significantly over a short period of time, whereas one with a value of

0.1 would be "slow," meaning that it would affect passengers over a long period of time.

Scale for V Scale for I
0 5 2 9 0.1 PA

lb t l lb
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Figure 5-15: Scales for Vand I metrics.



96 1 Freemark

The V metric is not comparable directly across sections because the number of passengers affected

will be different. One way to increase the utility of the V scale would be to multiply it by the number of

users on the relevant section of the line during the affected period; this would allow for a direct com-

parison between sections. One problem, however, is that reliable estimates of passenger flow on the

Piccadilly Line are not yet fully developed. That said, Ravichandran (2012) has developed a method by

which to do so, and once results are available for the line throughout the day, these could be multiplied

by the V value for useful analysis. In turn, the overall disruption impacts along the line could be derived

by summing the values for each section. This would provide a useful indicator of the full impacts of a

disruption and provide a comparison with the LCH values calculated from NetMIS data.

In the meantime, the disruption impact metric remains valuable even if the results it produced

may not be directly comparable between lines. Figure 5-16 illustrates how V may be calculated based

on v, the relative disruption variability curve, for a hypothetical four-section line. The graph shows the

journey time variability for each of those sections on one day, between 15:00 and 17:00. As the figure

demonstrates, the Green section of this line had the most significant disruption, occurring between

16:10 and 16:50, and its integral (1) is calculated above the 20% margin to produce the V score. The

Yellow section had a relatively minor disruption between 15:50 and 16:10, but it stayed above 20% for

more than five minutes, so its integral (2) is also calculated. The Green section also had a disruption

that reached a 20% variation between 15:45 and 15:50 (3), but because this disruption lasted less

than 5 minutes, its integral is not calculated and it is not considered a disruption worth reporting under

this metric. These short disruptions can be overlooked as they have minimal effect on passengers.

V does not differentiate between the initial effects of the disruption and the propagation of prob-

lems that may follow. In Figure 5-16, problems may have begun on the Yellow section but then propa-

gated over to the Green section. By examining service manager logs and NetMIS records, it may be

possible to identify which disrupted periods can be attributed to the incident and which can be attrib-

uted to propagation, but the V values do not document these factors in themselves. As with any analy-

sis of disruption impacts, differentiating the "direct" impacts and the "knock-on" effects may not be
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possible-particularly when other incidents may follow major incidents. In addition, the metric does not

account for different control strategies, which can affect passenger delay significantly. Nonetheless,

by choosing specific incidents that appear not to have any follow-up incidents, the disruption impacts

of those problems could be analyzed by line section using the V metric described here. In addition,

the metric has the advantage of offering the opportunity to compare recovery strategies; with similar

incidents, the impacts of different controller actions could be evaluated.
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Flgure 5-16: Calculating the total isruption Impact V
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Altogether, this method provides an indication of when disruptions began and were resolved, and their

severity, both in terms of overall disruption impact (V) and intensity (1). Table 5-4 indicates when and

where disruptions occurred, by section, on May 15, 2012. The most significant disruptions by overall

journey time variability occurred on the Heathrow westbound section from 12:28 to 13:19, with a V of

17.43, and on the Rayners Lane eastbound section from 21:19 to 22:18, with a V of 19.78. These two
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Table 5-4: Disrupted periods of at least 5 minutes according to variation index.

Affected Duration
section Start End (m)V I

Heathrow 12:28 13:19 51 17.43 0.34westbound
Rayners Ln 13:00 13:14 14 3.05 0.22eastbound

Heathrow 12:45 13:45 60 13.92 0.23eastbound________
Heathrow 14:46 14:58 12 0.58 0.05

westbound _______

Rayers Ln 14:49 15:07 18 3.21 0.18
westbound _______ ______________

Heathrow 17:14 17:21 8 0.17 0.02
eastbound________________

Heathrow 20:42 20:56 14 2.17 0.16
westbound __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _ __ _ _ _ _

Rayners Ln 21:19 22:18 59 19.78 0.34
eastbound________ ________ ____ ____

Rayners Ln 22:19 22:39 20 2.06 0.10
westbound______________ ____

Rayners Ln 22:35 23:18 43 7.63 0.18eastbound
Rayners Ln 23:27 23:43 16 4.03 0.25
eastbound _______ _______ _______

Whole line n/a n/a n/a 74.03 0.24

section-based disruptions had the same I of 0.34, which was the highest level of intensity for any of

the disruptions measured on this day.

It should be reemphasized that both the V and / figures are relative ones; they reflect neither the

number of customers affected, nor the number of hours individuals were delayed. On May 15, the dis-

ruption on the eastbound Rayners Lane service noted above produced a similar V score as that on the

westbound Heathrow section, with identical intensity scores. But the number of people affected on the

Heathrow section (at midday) was likely higher than that on the Rayners Lane section (at night). But V

only accounts for variability within each section compared to standard journey times and thus makes

no adjustment based on the number of users affected, unlike the LCH measure, which does attempt
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to account for this.

Hence, the primary use of the total disruption impact measure V is to provide a way of comparing

different disruptions to evaluate their relative severity. It may also be used as a measure of the entire

day's disruption variability by summing disruptions, particularly by line segment. As such, it could pro-

vide a supplement to the full-day PWT and LCH metrics to provide a summary of the degree to which

passengers were affected by problems on the line.

5.4 PASSENGER ACCUMULATION

In addition to providing important information about the time it takes riders to complete journeys

between origin-destination pairs, Oyster can be utilized to track rider accumulation in the system.

This could prove to be a useful method to explain the effects of incidents on passengers. After all, if a

disruption causes increases in journey times for passengers on the system, there will be more riders

than normal in the system during disruptions-assuming steady entry of passengers into the system.

This section describes how Oyster data could be used to measure this passenger accumulation and

how this measure could be used to understand disruptions retrospectively. Chapter 6 investigates the

potential role of such a measure in tracking disruptions in real time.

On the Underground, information about the origins and destinations of passengers using the

system can be used to estimate the number of passengers on the system at any point in time. Though

many journeys have only one credible route for a specific origin-to-destination movement, others-usu-

ally those that require an interchange-have several possible routings because of the complexity of the

LU network in Central London. The RODS surveys conducted by LU (discussed further in Section 5.6)

provide some insight into how passengers complete their journeys. For more complicated journeys,

such as those that involve bus trips, Gordon's work (2012) allows for projection of actual journeys.

Oyster entries alone also offer some insight into how passengers were using the system at a point

in time. Oyster can measure the number of people in the system (excluding the small minority of people

who use magnetic tickets) at any time simply by summing the number of passengers who have tapped

in but not yet tapped out. In other words, subtracting the cumulative number of exiting passengers
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from the cumulative number of entering passengers. These estimates of passenger accumulation can

also be developed for specific lines by considering stations where service on only that line is provided.

For instance, on the Piccadilly Line, of 53 total stations, 32 have no interchange with any other

line and therefore we can be confident that customers who enter there will be riding the Piccadilly Line

(eastbound or westbound), at least for the first part of theirjourneys. This information can, in addition,

be divided up into the line sections described in Section 5.2. There are 11, 4, 11, and 6 stations with

no interchanges in the North, Trunk, Heathrow, and Rayners Lane sections, respectively, that could be

used for such an analysis. There are no stations in the line section from Rayners Lane to Uxbridge with

such characteristics since all these stations are shared with the Metropolitan Line. This demonstrates

one inherent weakness of this type of analysis: It cannot be performed on a line where multiple lines

share stations.

This accumulation method has a number of other deficiencies. Since we do not know the desti-

nation of riders who have tapped in but not yet tapped out, their route patterns or direction of travel

cannot be projected (with the exception of riders at termini stations). Because of the lack of knowledge

about direction of travel, an increase in riders originating from a station compared to normal could

mean a disruption in either or both directions-but this method does not show which is being affected.

These issues require that this approach be developed further.

Nonetheless, examining passenger accumulation using Oyster tap-ins at Piccadilly Line stations

with only Piccadilly Line service may offer some insight into the status of service on the line. Figure

5-17 illustrates passenger accumulation from Piccadilly-line only stations on September 19-23, 2011.

As noted in Section 5.1, September 22 saw major disruptions to eastbound service between 17:00

and 20:00.

Figure 5-17 demonstrates that the five days saw very similar levels of passenger accumulation

in each of the four analysis sections throughout the day. These charts document passenger accumu-

lation at 10-minute intervals. Recall that the passenger accumulation indicated here is simply the

number of passengers who have tapped in at Piccadilly Line-only stations, but not out, in each of the
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sections. Thus it must be emphasized that if the chart indicates that there are 1,000 passengers from

the Heathrow section currently on the system, this simply means that there are 1,000 passengers who

tapped into Piccadilly Line-only stations on the Heathrow section who have not yet tapped out, not that

there are a total of 1,000 riders on the Heathrow section at this time. These passengers may or may

not still be in the Heathrow section, or even on the Piccadilly Line, and other riders from other parts of

the Piccadilly Line or other lines altogether may have entered the section.

However, examining the section of passengers in the Trunk section clearly demonstrates the effect

of the service disruption that began at around 17:00 on September 22; then, there were clearly more

passengers originating from the Trunk section than on the other days. This was also true of the Heath-

row section beginning at around 18:30 on September 22. This evidence suggests that it is possible to

use such Oyster information to track increased rider accumulation and thus effects of the disruption.
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Figure 5-17: Passenger accumulation by Piccadilly Une sectIon.



102 1 Freemark

That said, Figure 5-17 also illustrates a major reason to be cautious in using such passenger accumu-

lation information to examine the effects of disruptions. The chart indicates that there was a significant

increase in passenger accumulation on the North section beginning at around 21:30 on September

20. A quick evaluation of these charts might suggest that there had been a major disruption that had

backed up travelers very significantly. However, a more in-depth analysis shows that September 2 0 th

was the date of a major match for the Arsenal football team. Arsenal has a stadium located adjacent

to a North section Piccadilly Line station (Arsenal). When the game ended, passengers flooded into the

system, therefore causing a major increase in ridership there.

A careful examination of the data, though, can still be quite revealing. Figure 5-18 illustrates rider-

ship on the four Piccadilly Line study sections on September 22 as a percentage of that on September

21, a "normal" service day with no major disruptions. All sections, in particular the Rayners Lane sec-

tion, saw ridership above normal between 18:30 and 20:00, indicating a disruption during this period.

Examining this data from an absolute perspective (B) may actually be more useful in terms of identify-

ing the most challenged sections of service. The data show that ridership on the Trunk section of the

line was 200 passengers above normal beginning at around 17:00 and continuing until 22:45 or so,

with a peak of about 950 riders above normal at around 18:40. In the context of changes in absolute

volume, the changes on the Rayners Lane section, which serves fewer riders at the stations available

for analysis, no longer appear nearly as significant.

One way to summarize the information from the graph in Figure 5-18 is to measure the area under

the curve of the disrupted passenger flow line, in a similar manner to the one used in Section 5.3. A

minimum number of passengers affected by a disruption can be set as a margin (in this case, 200 ad-

ditional passengers riding than typical will be used to illustrate the concept), and the area of the curve

above that level can be calculated using Equation 5-4.
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F = Passenger accumulation variability = ab (p; -p,) dt - 200(b - a) (5-4)

Where,
pi is the accumulation of passengers on the study day on a specific segment;
p, is the accumulation of passengers on a normal day and time on the same segment;
a is commencement of the disrupted period in minutes (where p, -ps first reaches 200); and
b is end of the disrupted period in minutes (wherep, -p, drops below 200).

The F measure, like the previous measures discussed in this chapter, is a relative one that allows dif-

ferent disruptions to be compared, and the scale for the metric is shown in Figure 5-19. However, un-

like V and /, F allows comparisons between different line sections, because it represents the absolute

increase in accumulated riders over what would be expected for a given period. If one section of the

line has a considerably higher Fscore than another, the disruption has likely had a far greater impact in

that section in terms of the number of passengers affected. For September 22, this method produces

the results shown in Table 5-5.
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Figure 5-19: Scale for F metric.

Table 5-5: Passenger accumulation on September 22.

Une section Start End F
Trunk 17:00 17:06 310
Trunk 17:18 19:24 95,090
Trunk 19:36 19:42 340
Trunk 19:48 22:48 50,600

Heathrow 18:00 19:24 27,070
Heathrow 22:06 23:00 6,060
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When compared with V and the relevant LCH measures from the CuPID database, F provides an ad-

ditional measure to better understand disruption impacts on passengers. These comparisons will be

used further in Chapter 6 for the purposes of identifying real-time problems on the line.

5.5 COMPARISONS WITH NETMIS, SERVICE CONTROLLER, AND CUPID DATA

Comparing the results of the travel time variation analysis described previously with NetMIS data on

train frequency provides some insight into the differences between data from these two sources. In

Figure 5-20, variations in Oyster travel time throughout the day on April 24, 2012 are shown in solid

lines, with frequencies of trains running eastbound through four stations (from NetMIS) shown in dot-

ted lines. These four stations are representative of the four sections identified for the travel time varia-

tion analysis. By examining the variation from normal frequencies and headways, we can develop a

reasonable idea of the state of traffic.

Figure 5-20 demonstrates that the analysis of frequencies provides only a general indication of

service quality. While the Oyster variation analysis shows quite significant delays for customers on the

Rayners Lane section between 18:00 and 19:00, no change is seen in the frequency, though it is lower

than scheduled. Moreover, while frequencies do decline on the Trunk and North sections, this decline

occurs mostly after customer journey times have been affected on the North section.

A closer look, such as is shown in Figure 5-21, is equally revealing of the differences between the

type of information provided by NetMIS and Oyster records. Significant drops in frequency in the North

and Trunk sections of the line (from about 24 to 16 trains per hour) occurs almost two hours after

major passenger journey time increases have been recorded. This may indicate that passengers have

chosen to switch to another line in order to avoid delays. That said, it is also possible that even reduced

frequencies by 19:00 do not significantly affect passenger journey times because even frequencies of

16 trains per hour (recorded on the North section at 19:00) provide a train every 3.75 minutes. This

latter possibility, though, assumes adequate space on the trains to handle the passenger load, which

may be unrealistic considering the loads on central sections of the Piccadilly Line.
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One way to improve the value of the NetMIS data analysis is to examine all headways during the period

studied, not just the frequency of trains over a one-hour period. Figure 5-22 shows the headways at

representative stations. This analysis provides a more in-depth view of what problems are occurring by

showing specifically where and when the highest headways occurred. One major difference between

looking at the headways themselves and the variation from the schedule, is that while with the for-

mer, it is difficult to see much disruption for the frequently served part of the system (the North and

Trunk sections), the latter compares every section to its normal situation. This discrepancy provides

two views of the same data: The former indicates the general effects on passengers (as previously

described, they may not be seriously affected by higher headways in high-frequency sections) and the

latter shows effects on operations, which likely are more seriously affected by headways in terms of

percentage variation.

A point to note here is that while headways are one interesting indicator of service performance,

London Underground has developed headway management tools that are intended to improve the

regularity of headways even during disruptions. On the Piccadilly Line, train drivers are provided count-

down clocks in stations in Central London that give them information about when they should depart;

this regulates headways, ensuring relatively evenly spaced service even when there are fewer trains

operating on the line. As such, some of the variation in headways documented in Figure 5-22 may be

resolved over time.

Figure 5-23 compares journey time variation and headway variation eastbound between 16:00

and 20:00 on April 24 th. This comparison provides a bit more context for the disruption that occurred.

Large headways occur on the Rayners Lane section before the significant increase in journey time vari-

ation from the norm, as expected. For the North section, however, major journey time variation appears

to occur before the variation of headways. This may be because of train regulation that is instructing

drivers to move more slowly through the system, therefore maintaining relatively steady headways but

at a lesser pace.
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By comparing NetMIS and Oyster data, it is possible to get a reasonable idea of the impacts on both

passengers and service during specific disruptions. The journey time variation approach proposed

here offers real potential for describing the effects on the system of an incident by revealingjust where

and when passenger journeys were affected, without relying on imputed information from train delays

to make assumptions about how disruptions affected them.

Comparing journey time variation to service manager logs also provides a useful point of dis-

cussion. Figure 5-24 shows the variation in journey time on all four sections from 16:00 to 20:00 on

April 24, 2012. These disruptions are quantified using the total disruption impact index V, summarized

in Table 5-6, which shows that the most significant delays for passengers occurred westbound in the

North and Rayners Lane sections of the line. It is clear from the chart that a problem westbound on

the North section of the line propagated to westbound service on the Rayners Lane and Heathrow sec-

tions, which then propagated to eastbound services in these sections. Eastbound service in the North

section also appears to have been somewhat affected by westbound disruptions.
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Time
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FIgure 5-24: Journey time variations, east and westbound Journeys.
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Table 5-6: Total disruption impact Vacross sections (April 24,2012,16:00-20:00).

Line section Start End V
Heathrow eastbound 18:26 19:05 1.06
Heathrow westbound 17:59 18:28 5.51

Rayners Ln eastbound 18:19 18:48 7.51
Rayners Ln westbound 17:31 19:41 26.26

Trunk eastbound - 0
Trunk westbound 16:56 17:23 2.12
North eastbound 16:48 17:21 4.49
North westbound 16:28 17:18 16.07

Total - - 63.02

A review of the service controllers logs provides more detail about what occurred. The train service

controller only recorded one incident that lasted more than five minutes on April 24 th: a SPAD (signal

passed at danger) incident at 16:10. According to the controller log, this incident occurred at Arnos

Grove westbound and was resolved in 11 minutes. When recorded in the CuPID disruptions database,

as shown in Table 5-7, this data was used to establish the NACHs figure for the incident, which was

a relatively high 21.82 NACHs (or 2,182 Lost Customer Hours). When visualized in terms of journey

times in Figure 5-24, it is clear that the impacts of the disruption were felt quite strongly by passengers

entering the system from around 16:30 to 17:15. The Oyster journey time variation analysis, however,

provides additional information that CuPID does not-notably that increased travel times also occurred

eastbound, and that they spread to the Rayners Lane and Heathrow sections by 17:30.

According to CuPID, at 17:41, a train operator refused to pick up a train because of health con-

cerns at Arnos Grove westbound. This caused service to be delayed as a new operator had to be

found. According to Oyster journey time records, however, this incident caused no visible impact on

customers; westbound journey times in both the North and Trunk sections between 17:40 and 20:00

remained within the normal fluctuation range of ±20%. Yet CuPID, assuming that the delays affected

passengers, assigns LCH values to this incident. This is one illustration of the differences in results

between the existing estimations provided by CuPID and the passenger data offered by Oyster.

At 18:46, a westbound train was delayed entering sidings at Barons Court, according to CuPID,
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causing a disruption. This was assigned a NACHs score of 8.19 (819 LCHs). The journey time variation

analysis shows an increase in average journey times on the Rayners Lane branch beginning at around

19:20, which might be a result of that incident.

Table 5-7: CuPID incident reports for Piccadilly Une (April 24, 2012, 16:00-20:00).

Location Time Duration Incident NACHs
Amos Grove 16:10 11 SPAD 21.82

Amos Grove westbound 17:41 3 Train operator refused to pick up train 2.60
Amos Grove westbound 17:44 120 Train operator refused to pick up train 5.94

Barons Court westbound 18:46 6 Delayed departure into sidings 8.19

These examples provide evidence of the importance of considering several types of data in analyzing

the effects of disruptions. While CuPID and NetMIS offer valuable insight into train operations, they

only offer limited information about the passenger impacts in many situations-and that is where the

analysis of Oyster journey time changes may be helpful. Ideally, combining these three data sources

not only for the Piccadilly Line, but all London Underground services, can provide additional informa-

tion to supply Transport for London's disruptions analysis team the most updated and reliable informa-

tion about how efficiently riders are moving around the system.

There is room for future research on the use of Oyster data to get a better handle on the problems

encountered on the line. It also suggests that in order to fully understand the impacts of disruptions, it

may be useful to take advantage of both travel time variation data provided by Oyster and passenger

impacts estimates from CuPID. Using a case study from September 22, 2011, the various information

sources are compared below, offering an overall view on the impacts of a disruption that occurred

between 16:00 and 19:00, primarily affecting eastbound Piccadilly Line service in the Trunk section

of the line.

Two NetMIS measures-arrival headways and train travel times-are compared to the two Oyster

measures described in this chapter in Figure 5-25, which shows performance on the Piccadilly Line

eastbound on September 22, 2011. These provide a useful comparison for determining the informa-
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tion that is gained from the different approaches.

The headways information provides little evidence of any pattern throughout the period. Though

there is some short-lived increase in headways on the Trunk section beginning at around 18:15, that

increase is momentary and does not correspond directly with the increase in journey times experi-

enced by passengers according to the journey time variation analysis. It is true that the journey time

variability, passenger accumulation, and train travel time information provide similar information about

the status of disruption in the Trunk section. But whereas passenger accumulation and journey time

variability demonstrate that there were disruptions in the Heathrow and Rayners Lane sections of the

line, the train travel times data do not indicate this, illustrating that riders may have been impacted in

a way that is not easily conveyed through an examination of train movements. In addition, the journey

time variability information identifies the severity of the disruption on each of the sections for the aver-

age rider over the study period, while the train travel data does not illustrate this directly. This compari-

son thus highlights the value of using AFC data to analyze disruption impacts on passengers.

5.6 UNDERSTANDING CUSTOMER ROUTE CHOICE

As described in Chapter 3, Transport for London currently uses the Rolling Origin-Destination Survey

(RODS) to estimate the route choices of passengers in the Underground network. RODS plays an im-

portant role in understanding passenger travel patterns on the system because it provides information

about where customers choose to make connections. Since many passengers in the system take more

than one line to reach their destinations, this information makes it possible to estimate passenger

flow at the line segment level more accurately. However, while useful, RODS has a number of limita-

tions. Because it is a survey, it only samples a small percentage of overall customers, meaning that

it does not represent all travel patterns. Since it is "rolling," it uses data that can be several years old

to monitor customer patterns. People surveyed ten years ago may not act the same as people today,

given changes in the system. This section suggests that RODS could be improved with supplementary

material based on current Oyster information.
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While this research primarily focuses on trips that both begin and end at Piccadilly Line stations, a look

at disruptions also provides insight into customer route choice. Indeed, disruptions provide a unique

opportunity to analyze what riders do when a disruption occurs on the line. By tracking how customer

journey times are affected by delays, we may be able to estimate what route they took.

Customers traveling on the London Underground between Knightsbridge and Finsbury Park have

two primary alternatives for travel, as shown in Figure 5-26. Though the route is served directly by the

Piccadilly Line, customers making this journey have the option of switching to the Victoria Line at Green

Park to complete their trips to Finsbury Park. The Transport for London journey planner does not rec-

ommend this path, in part because the transfer at Green Park involves a long walk. But the train trip

between Green Park and Finsbury Park is quicker on the Victoria Line than the Piccadilly Line (about

14 minutes versus 18 minutes), so some customers might see an advantage in switching lines. RODS

data suggest that 93.5% of passengers take the Piccadilly Line for this journey.

A. Direct on Piccadilly Line. B. Interchange at Green Park to Victoria Line.

Figure 5-26: Routes between Knightsbridge and Finsbury Park.

However, the comparison in Figure 5-27 suggests otherwise. September 21, a "normal" operations day

with few disruptions, shows median journey times of about 27 minutes throughout the day between

those stations. Because of the similar trip times for customers taking the Piccadilly Line the whole way

and those transferring to the Victoria Line, this data provide no information about route choice. How-
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ever, on September 22, the Piccadilly Line experienced significant delays beginning at around 17:00

and ending at around 24:00; the Victoria Line had no problems during this period. Figure 5-27 shows

very clearly the large increase in travel times that most customers experienced. Yet it also shows a

significant number of people with average travel times during the same period; these people must

have switched to the Victoria Line rather than remain on the Piccadilly Line, as there is no other way

they could have had such low travel times. Customers were told about minor delays, which likely did

not alter their travel patterns significantly. But these delays were not "minor" in that they increased trip

times by almost 100%.
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Figure 5-27: Oyster Journey times from Knightsbridge to Finsbury Park (September 2011).

The data show that between 17:00 and 24:00, 72% of customers traveling between Knightsbridge and

Finsbury Park had journey times of above 35 minutes. We can safely assume that they took the Pic-

cadilly Line. But the remaining 28% likely took the Victoria Line to achieve such low journey times. This

is significantly higher than the 6.5% that RODS estimates typically take the Victoria Line for a part of

this journey. Some of these passengers were undoubtedly influenced by the announcement of a Minor

W
E
E

50

40

30

20

10

+e aa

0
23 25



118 | Freemark

delay at around 17:30, or it is possible that this notification made no impact at all. This effect cannot

be completely evaluated, however, a thorough study of customer response to passenger announce-

ments has not yet been conducted by a public transport system such as TfL. Thus before making any

broad conclusions from information derived from disrupted days, these sociological questions must

be addressed.

Nonetheless, analyses of disrupted days can provide unique insights into customer travel patterns

when one potential route path is disrupted and the other is not-especially when riders are not thor-

oughly informed of a problem on the line (which would alter their decision making). Further analysis

of origin-destination pairs presented in Table 5-8, using disrupted days in the study period, may be a

valuable undertaking for Transport for London to determine the degree to which RODS accurately re-

flects customer route choice on the Piccadilly Line. Using the journey time data for disrupted days can

thus play an important role in informing the development of a more accurate rider flow model for the

system as a whole.

Table 5-8: Origin-destination pairs where customers have two clear alternatives (one of which is the
Piccadilly Line) for making their journeys (Source: RODS).

RODS OD%
Route RODS OD % for Alternative RoutePiccadilly

Green Park-Finsbury Park (eastbound) 0.0 100.0 (Victoria Line)

Finsbury Park-Green Park (westbound) 2.6 97.4 (Victoria Line)

Green Park=King's Cross (eastbound) 0.0 100.0 (Victoria Line)

King's Cross-Green Park (westbound) 0.0 100.0 (Victoria Line)

King's Cross-Finsbury Park (eastbound) 0.0 100.0 (Victoria Line)

Finsbury Park-King's Cross (westbound) 0.1 99.9 (Victoria Line)

Hammersmith-King's Cross (eastbound) 50.1 49.9 (Circle or Hammersmith and City Lines)

King's Cross-Hammersmith (westbound) 66.5 33.5 (Circle or Hammersmith and City Lines)
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Using AFC data to monitor
disruptions in real time

Transport for London's Network Operations Centre (NOC) provides customers with the latest informa-

tion about the status of service across the regional transit network, which is available online and at

stations. Updates are communicated to customers to reflect the delays that might be expected on

specific lines, with the assumption that customers can benefit from this additional information about

their journeys. In theory, accurate information offered to customers may allow them, in response to a

delay, to change their travel modes or their journey departure times, alter their routes, communicate

their late arrival times to friends or colleagues, or simply be more understanding of the disruptions they

face on their journeys.

This chapter summarizes how these announcements are currently made, with a focus on a com-

parison between the notifications made to customers and the service manager assessments of dis-

ruptions during the study period described in Chapter 4. The chapter then evaluates how the Oyster

journey time variation method described in Chapter 5 could be used to monitor service performance

in real time. It compares this method with information provided by live passenger accumulation and

NetMIS-based measures, including large headways, lateness, and train travel times. Given this uni-

verse of data available to monitor service conditions in real time, this chapter notes the positive and

negative characteristics of several types of information. It particular, it shows that the journey time
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variation measure, despite suffering lags in information availability, nonetheless can offer insight into

the status of service on the line in real time. A case study is used to show how information about route

performance changes over time, and suggests a mechanism through which real-time journey time

variation could be used so that announcements to customers better reflect likely delays. Finally, the

chapter provides an example of how such Oyster-based announcements could differ from the existing

NOC notifications, under certain conditions.

As such, the goal of this chapter is to explore the potential of incorporating several types of real-

time information, including AFC data, to refine the notifications given to passengers. This suggests a

framework for using Oyster information as part of an updated service status notifications regime.

6.1 THE PASSENGER NOTIFICATIONS SYSTEM

Because the London Underground provides frequent service throughout the day at almost all stations,

customers rarely rely on schedules to decide when to arrive at a station to start a journey. As shown in

Figure 3-5, on the Piccadilly Line, trains are scheduled to arrive at headways of 10 minutes or less at

all times of day at all stations with the exception of those from Rayners Lane to Uxbridge, where Met-

ropolitan Line trains also provide service. These frequencies make walk-up service the norm for riders

and allow them to make travel decisions without first consulting schedules.

Yet the reliability of train service can affect passengers significantly, sometimes forcing custom-

ers to wait far longer than just the few minutes they expect. Transport for London, like many public

transport agencies, is working to address the occurrence of delays on the line. At the same time it has

developed a standard approach to informing customers about problems when they do occur, such that

customers can make more informed decisions about their travel paths when they are using, or thinking

of using, the system. The NOC, operated by the London Underground, has established criteria that are

used to inform customers about the status of service; each LU line is evaluated independently. There

are four operations status indicators communicated to customers, ordered by magnitude of disruption:
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- Good service, indicating no problems on the line;
- Minor delays, indicating small delays on the line;
- Severe delays, indicating significant delays on the line;
- Line closure, Part suspended, or Suspended, indicating no train service on part or the

entire line.

Good service and line suspension are self-explanatory, but customers are provided no additional in-

formation about what distinguishes a "minor" from a "severe" delay. This leaves the onus of decision

making on the rider during such disruptions, though LU staff suggest that "minor" delays are meant

to encourage customers to stay on the route they had planned (with the expectation of slower-than-

normal service) and "severe" delays encourage customers to change journey plans. If there are minor

delays, customers are expected to assume that travel times are likely to be longer than normal, but

the magnitude of the delays during this disrupted period is not made clear to riders. This uncertainty

also exists during periods characterized by severe delays. For example, TfL does not provide custom-

ers estimates of when normal operations are expected to resume. The agency, though, is working to

develop measures of estimated resumption of service (EROS) that may be implemented in the next

several years.

Nevertheless, the NOC has clear guidelines to determine whether a delay is "minor" or "severe."

Four metrics-headways, slow trains, stoppages, and percentage of scheduled trains in service-are

used to establish the service quality on a line. The criteria for each metric differ by line; those for the

Piccadilly Line are shown in Table 6-1. It should be noted that the criteria are different during "core

times" (from 7:00 to 9:30 and 16:30 to 19:00) than during the rest of the day, because of the impor-

tance of these peak periods. In addition, TfL defines suspended service as existing when there has

been no train movement for at least 15 minutes.
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Table 6-1: Criteria for determining service status on the Piccadilly Une. Source: TfL NOC.

A. Minor Delays.

. Trains between Heathrow Airport- Trains between Acton Town-Uxbridge
Station Arnos Grove and Arnos Grove-Cockfosters

Core Times Other Times Core Times Other Times

3x normal lasting 4x normal lasting 2x normal (not 2x normal (not
Headways > 10 mins for more > 15 mins for more consecutive consecutive

than one train than one train cancellations) cancellations)

> 10 mins of > 20 mins of trains > 20 mins of trains
blocking back with > 10 mins of blocking moving slowly in an moving slowly in an area

Trains moving normal headway back with 3x normal area but trains are but trains are not being
slowly 3x ormor handone headway for more than not being terminated trinfor more than one on ri hr fshdld terminated short of

traintrain rai short of scheduled scheduled destination

Sit-down < 15 mins; Sit-down < 15 mins;
Stoppage/Sit Between 10-15 mins Between 15-20 mins advise minor delays advise minor delaysdown until gap regulated until gap regulated

% of Scheduled
Trains in Between 75-85% Between 70-85% Between 75-85% Between 70-85%

service

B. Severe Delays.

. Trains between Heathrow Airport- Trains between Acton Town-Uxbridge
Station Arnos Grove and Arnos Grove-Cockfosters

Core Times Other Times All Times
4x normal lasting 5x normal lasting 3x normal or there are > 2 consecutiveHeadways > 15 mins for more > 20 mins for more cancellationsthan one train than one train

> 15 mins of > 20 mins of blocking > 20 mins of blocking back and/or trains beingTrains moving blocking back and/ back and/or trains terminated early and/or trains working platform-
slo t erirnated early being terminated early to-platform

Stoppage/Sit >15 mins gap for > 20 mins gap for
down mor than one more than one station >15 mins

% of Scheduled
Trains in < 75% < 70% < 70%

Service
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The criteria described in Table 6-1 are evaluated based on live NetMIS data, which is communicated to

service managers using the TrackerNet live train-tracking system. The data have been refined signifi-

cantly over the years to best reflect TfL's understanding of the manner in which train travel conditions

affect passenger flow, and are unique to the Piccadilly Line (the information for each service reflects its

particular characteristics). As the table demonstrates, trains must be experiencing significant delays,

with more than 10 minutes of blocking back or headways that are three times longer than normal (at

peak hours), for even a minor delay announcement to be made. These service metrics are relatively

conservative, requiring service to be significantly affected before passengers are informed of any prob-

lems. This is a reasonable approach, since it would be inappropriate to warn customers about service

problems that are very minor or that may last only a short time. Too many warnings may be even less

useful than too few.

The NOC uses NetMIS data to determine whether any portion of the London Underground sys-

tem fits either the minor or severe delay status criteria and then updates the notifications provided to

customers accordingly. That said, based on discussions with TfL and LU staff in January 2013, NOC

personnel and train service controllers base announcements to customers only partially on the criteria

used in Table 6-1. Often more relevant are subjective assessments of service based on observed train

movements; in other words, notifications do not always follow the guidelines and differ depending on

who is making the decision. Nonetheless, notifications are distributed through the following media,

which offer information about all of the system's lines:

- Screens located in stations;
- The TfL Website;
- Twitter (TfL, London Underground, and Line-specific accounts);
- Email and text message alerts for which customers have signed up; and
- Third-party applications that receive TfL's data feed.

All of these content providers also offer additional information about issues on the line that do not

affect train service directly such as elevator outages. In addition, customers have access to next train

information via LED indicator screens on train platforms. This data can also be accessed online for

most stations. All in all, customers are provided access to a variety of sources with information about
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many aspects of their trips.

The study period discussed in Chapter 4, consisting of 29 somewhat (or very) disrupted days in

April, May, and June 2012, offers a starting point for analyzing the information provided to customers.

Figure 6-1 shows the passenger announcements made about the Piccadilly Line on each of the study

days. This chart demonstrates that a number of the study days, despite their elevated PWT scores (as

shown in the rightmost column), had no delay announcements; May 31, for example, had a PWT score

of 27 seconds but no announcement. Figure 6-1 provides information only about the most severe an-

nouncements made during any specific period, meaning that if there is a part line suspension on one

branch but minor delays on another, only the former is shown.

S7 * 9 10 1 12 1 14 15 1 17 1$ 29 20 2 22 2 24 2 Pr
.1 111
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11.0.12 20
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21M0612 40

2C0612 as
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eM.,, 3

Part suspension Severe delays Minor delays

Figure 6-1: Announced delays In study period.

Figure 6-2 provides the same information, but separately for each section of the Piccadilly Line (as

defined in Chapter 5). Table 6-2 summarizes the data presented in the figure. In both cases, only the

most serious problem is included when multiple announcements overlap when tabulating the overall
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conditions. In other words, if there is a part suspension in one part of the North section at the same

time as a minor delay on another part, only the former is counted. If different types of delays follow one

another with no break, they are counted as one continuous delay.

A. Trunk section

V17T1W

C. Heathrow section

E Part suspension

LI, 6,

B. Notsetn

-721V

D. Uxbridge section

Severe delays Minor delays

Figure 6-2: Announced delays, by line section.

Table 6-2: Delays announced In study period, by line section.

Number of Minutes% of service
Une suspended Minutes of Minutes of % o ice

announced time with
section service (rounded severe delays minor delays notifications*

to 5 mins)

Trunk 8 155 190 1,095 4.1

North 14 175 185 1,305 4.8

Heathrow 17 45 440 1,650 6.1

Uxbridge 26 1,165 590 1,605 9.7

* Of 34,800 total minutes of service on 29 study days.
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Both Figure 6-2 and Table 6-2 indicate that the Uxbridge section is the branch of service that was most

likely to receive passenger notifications. In fact, during the 29 study days, passengers on that section

were informed of some delay in the service-whether minor, severe, or suspended-9.7% of the total

service time. Discussions with Piccadilly Line staff reveal why the Uxbridge section (from Acton Town to

Uxbridge) experienced far more passenger announcements than other sections of the line (notably the

Trunk), despite it being the source of roughly an equivalent number of incidents as the North or Trunk

sections (see Chapter 4). The explanation is that Piccadilly Line service controllers, as a matter of pol-

icy, reduce service to the section of the line between Rayners Lane and Uxbridge in order to preserve

service on other parts of the line. Because this outer branch is also served by the Metropolitan Line,

customers have an alternative. As a result, it is misleading to examine only the passenger notifications

information to determine the presence of incidents on any individual part of the system.

Though other sections of the line were less likely to be subjected to passenger disruption an-

nouncements, a significant percentage of passengers on many days experienced such announce-

ments (recall, however, that these 29 study days represent the top half of the distribution of disrupted

days from April to June 2012). The frequency of passenger announcements suggests that the quality of

the information provided is of utmost importance. Riders with the ability to check the status of service

in advance may choose to change mode or route, alter the timing of their trips, or not travel at all if

they understand that service on the line is disrupted. Others who are already in the system may decide

to change their planned routes if they learn that there are major problems in one specific area. This is

particularly true for travelers in the trunk section of the line, where there are several alternatives, both

on the Underground and on local buses, for many journeys.

It is clear, however, that the existing passenger notifications system, while useful, is not always

fully representative of the disruptions occurring on the London Underground. Figure 6-3 compares the

most severe passenger notifications in the four sections of the line at all times during the study period

with all incidents that service managers recorded as lasting at least 5 minutes (a short time, but one

that allows virtually all incidents to be identified clearly). The illustration shows that a large number of
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incidents recorded by service controllers are never announced to customers. In addition, many inci-

dents that are announced to customers are only noted publicly fifteen minutes to as much as an hour

after the controller indicates that the incident occurred.

As shown in Figure 6-3, the majority of long-duration incidents recorded by service controllers are

eventually passed on to riders using the system. However, in many cases, the notifications system does

not always accurately indicate where and when disruptions are occurring (see also Section 6.4 for an

example).
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The clearest explanation for the discrepancy between controller comments and passenger notifica-

tions is that the two use different metrics to evaluate disruptions. While service controllers record

information that is relevant to every part of the service-including items only marginally related to

passenger travel times such as delays in crew duties-the NOC's TrackerNet-based system is designed

specifically to show train movements. In addition, not all disruptions are perceived to be "bad enough"

to communicate to customers; if the problem is expected to be resolved quickly, why concern custom-

ers needlessly?

Nevertheless, there would be great value in working to improve the customer communications

system for the most basic of reasons: not all customers trust the existing messages. Anecdotal evi-

dence based on conversations with LU passengers, and LU and TfL staff suggest that the disruptions

notifications that are provided are not always relied upon because passengers frequently experience

either slow service with no corresponding service alert, or, alternatively, normal service despite a no-

tification. The perception of the lack of accuracy of these messages encourages customers to ignore

them, making it more difficult for agencies like TfL to influence passengers when desired.

6.2 USING THE DISRUPTIONS INDEX TO MONITOR PROBLEMS IN REAL TIME

One hypothesis of this research is that, using methods such as the analytical techniques developed in

Chapter 5, it is possible to supplement existing knowledge about service on the line-based on train

movements-with additional data derived from Oyster passenger taps to improve the provision of cus-

tomer information. If connected to real-time information about the status of passenger movements

on the line, this data could offer a valuable complement to existing sources. If the data are consistent

with that suggested by NetM IS, this resource will reinforce the understanding of the service status. If

they are different, however, Oyster may offer additional insights into the degree to which passenger

movements are being affected by service. The in-depth nature of the Oyster information may also be

beneficial in terms of targeting announcements to make them as specific and relevant as possible.

Before proposing how the Oyster data could be used to monitor passenger movements in real

time, several caveats must be noted so as to emphasize the limitations of this technique. First, the
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analysis conducted here has been performed retrospectively, with a complete set of data, as if the data

were available in real time. However, all fare gates on the London Underground system cannot cur-

rently automatically transmit tap-ins and -outs by customers in real time to the NOC or to other TfL loca-

tions, a necessary step for conducting the analysis to support real-time decision making, as suggested

here. While certain stations, such as several on the Jubilee Line, are capable of transmitting such

information within minutes, most stations on the Piccadilly Line do not currently have this capability.

Planned upgrades to the faregates, the establishment of a data warehouse within TfL, and the overall

improvement in information technologies, are expected to make these resources available within the

next decade, however. Because of the need to receive the most up-to-date data as possible, the lack

of such real-time information is the major stumbling block that would have to be overcome before this

proposal could be fully implemented. The computations described here can be conducted quickly on a

low-end computer, so nothing about the analysis is technically difficult, but any implementation of this

tool would require software development to automate the analysis.

Second, while a metric based on passenger travel time can provide useful information about the

passenger experience, it cannot be the only tool used to determine the announcements to make to

riders. Service managers who are attempting to restore service after a major incident may prefer hav-

ing customers enter the system more slowly than normal in order to reduce crowding and improve the

chances of a faster recovery. As such, it might be useful to maintain a severe delay announcement

after the incident has ended. The decision on whether to do so must remain in the hands of a service

manager, even if supported by data tools such as the one described here.

Third, unlike the NetMIS-sourced data currently used to provide information about disruptions,

data provided by smartcards suffer from a significant lag between when a problem occurs on the line

and when affected customers exit the system. The method described in Chapter 5 requires customers

to leave the system before their journey times can be recorded and the extent of their delay can be

understood. As such, the exact time period for the disruption's occurrence is never known precisely,

although it may be estimated.
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For example, Figure 6-4 compares travel time variation for customers based on their entry times

(in purple), and their exit times (in gold). The entry timeline (which is used for the analysis in Chapter

5 and this chapter) shows how significant the disruption was for customers, based on the time they

entered the system; the exit time line shows the disruption for customers, based on the time they

exited the system. Naturally, for the day shown (April 24, 2012), the increase in travel time appears

"earlier" for entering customers than for exiting customers. For example, customers who entered at

16:35 experienced journey time variations of more than +50%, but customers who exited at the same

time experienced variations of less than 10%. Only at 16:55 did the variations in travel time for exiting

passengers reach +50%.

Thus the time at which a problem on the line (such as slow trains) caused increased journey time

occurred sometime between 16:35 and 16:55. The bimodal distribution of exit times for this group

of passengers is also interesting, as it suggests that of passengers who entered between 16:30 and

17:00 (those who were most disrupted), about half exited between 16:45 and 17:00 and half between

17:30 and 17:45. This may be a reflection of the particular OD pairs sampled in the North section of

the line profiled here. The lower variability of exiting passengers is probably a manifestation of the fact

that while the delays on the line affected a select cohort of people entering the system, their journey

times varied and their exits overlapped with people entering at other times who did not experience the

service delay.

It is on the system, between tap-in and tap-out, that delays are manifested. As a result, performing

an Oyster journey time analysis can offer some information on when the disruption occurred, but is not

definitive. There is an inherent lag between when passengers enter the system and when information

about their journey times is known. When real-time information is plotted in this section, it is graphed

showing the travel time variation only for exiting passengers, but based on their entry times. None-

theless, as will be shown in Section 6.3, this method still has the potential to provide insight into the

severity of disruptions experienced by passengers, even compared with data sources without such a

lag (such as NetMIS or the passenger accumulation measure discussed in Chapter 5).
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Figure 6-4: Journey time variation on the Piccadilly Une by Oyster entry and exit time.

Having noted these reservations about the journey time comparison method, it is also appropriate to

describe the benefits to providing Oyster input into the real-time passenger notifications system. Un-

like NetMIS, Oyster provides actual information about when a customer's journey begins and ends. As

such, it offers an alternative perspective that identifies exactly which group of customers is affected by

train travel problems. By segmenting the Oyster journeys recorded into baskets by section and direc-

tion, the method allows a quick way to examine the overall status of customer travel patterns on the

network.

Using the same technique as described in Chapter 5, Oyster data for a large number of travelers

moving throughout the London Underground system can be compiled and compared to standard per-

formance. The method is summarized in Figure 6-5.

Data from Each arivin journey travel time Update Data graphed
passengers exiting Is compared to expected travel added by system

the system 1 time, then averaged to -4 to existing -- entry time
downloaded to produce % variation per minute data set (tap-in time)

servers every minute per line section and direction

Figure 6-5: Method for acquiring and graphing real-time Oyster data.
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This data could be charted on a live screen with constantly updated data in graphed form, as shown in

Figure 6-6. This graph shows the travel time variation of customers on the Piccadilly Line on April 24,

2012. The chart is graphed as if it is being generated at 17:20. As such, the chart only includes infor-

mation about customers whose journeys have ended by 17:20 and does not represent the full extent of

customer data that will be available later when more customers have exited the system. At 17:20 there

are many customers still on the system who entered it many minutes earlier. If they have not exited yet,

however, their information cannot be included since it is not yet known. This real-time data, therefore,

is only a partial representation of the true state of the line at this time.
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E

60%

40%

20%

0%

-20%

-- Heathrow section - North section
- Eastbound ---- Westbound

Figure 6-6: Example Oyster-based journey time

Entry time

- Rayners Lane section - Trunk section

Indicator screen.

This real-time data is plotted using a rolling horizon technique. This means that, as in Chapter 5, the

variation v presented at a specific time represents the average of v over the previous fifteen minutes.

This provides a smoother curve for presentation and makes trends easier to read. However, if the data

were presented in chart form as shown in Table 6-3, it may be easier to understand. This table shows

the highest journey time variation for passengers entering within 15 minutes of the enquiry time from
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16:30 to 18:00 on April 24, 2012. Information for each of the Piccadilly Line sections, in both direc-

tions, is presented for each ten-minute enquiry point. The table does not reflect high journey time vari-

ability for riders boarding more than 15 minutes before the enquiry point. For example, if a real-time

enquiry is made at 17:00, only entries occurring after 16:45 are considered. The sample of riders is

limited to recent boardings because the real-time data is meant to reflect current, rather than past,

conditions. Including passengers entering long before the enquiry time could be a poor reflection of

conditions on the system at the enquiry time.

As the table shows, significant disruptions for passengers (highlighted for travel time variations

of > +20%) are recorded at 16:50, 17:00, and 17:10 in the westbound North section; at 17:10 and

17:20 in the eastbound North section; at 17:20 in the westbound Trunk section; and at 18:00 in the

westbound Rayners Lane section.

Table 6-3: Highest journey time variations for passengers entering within previous 15 minutes.

Hghes journey time % variation v withi prevIous 15 miutes; E quiry time
Une 16:30 16:40 16:50 17:00 17:10 17:20 17:30 17:40 17:50 18:00

section

unW 0 0 0.3 0 0 0 0.8 0 0 5.8

wetoud0 0 2.1 0 0 0 0 2.2 0 0

R a 0 0 0 0 0 0 0 0 0 0
estboudn

IbYM LI 0 0 0 0 0 0 0 0 0 29.2
westbound

Trunk 0 0 0 0 0 0 0.9 7.0 10.1 2.6
eastbond ______ ______ ______

Trunk 0 0 0 0 8.6 23.0 16.6 10.1 7.6 0.1westbound 14.2 40.5I3.8 32. 12.3 5.8 0 0

Nort 0 0 0.6 9.7 29.4 24.8 10.9 4.3 5.9 2.9
eastbound __ _ __ _ __ ___ _ __ _ __ _ __ _ __ _ _ _ _

North 0 14.2 40.5 33.8 32.7 12.3 5.8 0 0 0
westbound ____ ____ ____ ____ ____ ____ ____ ____ ____ ____



134 | Freemark

Table 6-3's data is illustrated in Figure 6-7, which charts journey time variability between 16:30 and

18:00 based on the information that service controllers would have every ten minutes during this pe-

riod. This sequence of points documents what a live feed of Oyster data would show using the method

described previously. The figure demonstrates how the information provided by a real-time analysis of

Oyster journey time variation data changes as more data becomes available (as customers exit the

system). It also allows controllers to examine data even for riders who boarded more than 15 minutes

before the enquiry point, whose data are excluded from Table 6-3.

Consider the cohort of North section riders who entered the Piccadilly Line westbound at 16:35.

At 16:42 (not shown), their travel time variation reaches roughly +15%; at 16:45, the variation reaches

+23%. By 16:50, the last point when this cohort would be included in the analysis for Table 6-3, their

variation increases above +40%. By 17:00, this cohort reaches its maximum variation of +58%. In this

example, an indication of a disruption in the form of an increasing height of the curve for one direction

and section of service begins to occur 10 minutes after the entry of a cohort of delayed riders. The

information lag between when customers affected by a disruption board and when it becomes appar-

ent that their travel is slowed (thanks to tap outs) means that the full severity of the disruption is not

obvious for quite a while. Yet the trend is clear very soon-a significant degree of disruption even just

10 minutes after riders enter, suggesting that this method has potential for real-time application.

For comparison, the source of this disruption was recognized by service controllers at 16:10 as

a SPAD for a train heading westbound at Arnos Grove. According to the log, the incident was resolved

in 12 minutes. Examining the Oyster data suggests that any impacts of the disruption on passengers,

however, occurred only later in the day. In other words, passenger delays cannot be projected directly

from the information about the incident itself, but rather must be evaluated through an analysis of

other data, such as that available from Oyster or NetMIS.

The example presented in Figure 6-7 demonstrates some of the benefits and failings of the travel-

time-based disruption analysis. The magnitude of a problem does not become fully apparent until

some time after many of those who are affected by the delays have boarded; indeed, at least some of
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Variation at: |16:00 |17:00 118:00 |16:00 |17:00 |18:00

- Heathrow section - North section - Rayners Lane section - Trunk section
-- Eastbound ---- Westbound

Figure 6-7: Journey time variation based on "real-time" Information, graphed at enquiry time.



136 1 Freemark

them must complete their journeys before their extended travel times are included. Though at 17:50,

there appear to have been no significant delays affecting westbound Rayners Lane section passengers

who boarded at 17:35, by 17:55 (not shown), it becomes apparent that those riders were affected by

travel times that varied by +45% above normal, and by 18:00 by +55%. It should be noted that the

method described in this section is significantly less effective for parts of the system with less rider-

ship, such as the Rayners Lane section; the gap in information flow in this example is likely a conse-

quence of the fact that there were few travelers in the period taking rides short enough to be evaluated

quickly, unlike on the North and Trunk sections, which have enough customers taking short trips at any

given point during the day to ensure faster availability of information about disruptions.

In addition, the full extent of the problems riders are experiencing takes longer to appear, since

that requires a majority of the people boarding at any particular time to have completed their trips. Be-

cause they are experiencing a disruption, their travel times take longer than normal and thus will take

longer to manifest in the calculations. Even so, the existence of an increasing problem on the line for

riders who boarded ten minutes before probably indicates that there are similar travel time variations

for riders boarding at the analysis time. At 16:45, the information manager knows based on Oyster

data that there were increasing problems on the westbound North section for riders boarding at 16:35

(though of course NetMIS data is likely also providing similar information about the existence of prob-

lems on the line, even earlier). By 17:00, however, the analysis makes clear that riders who boarded at

16:45 had similar travel time increases and by 17:30, it becomes evident that riders who boarded at

17:00 also saw the same travel time increases. The gap between the time when we know that travel

times are significantly longer than the norm (+20%) and the time when customers who experience

these longer trips board is summarized in Table 6-4 for riders on April 24 between 16:30 and 17:30,

for cohorts of entering riders every 10 minutes.

The evidence from Table 6-4 indicates that the Oyster journey time analysis is quickest in estab-

lishing the cohorts of riders that are seriously affected by disrupted conditions for those cohorts in the

middle of the disrupted period. The highlighted cohorts feature the shortest delay between the entry
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Table 6-4: Delay between entry time of disrupted cohort and real-time disruption identification.

Entry time for rider "Real" time at which
Une section cohort experiencing analysis tool identifies Time delay (min)

delays of +20% disruption occurrence
16:30 16:42 12
16:40 16:46 6

North eestbound 16:50 17:01 11
17:00 17:10 10
17:10 17:38 28
16:50 17:10 20

17:00 17:10 10
North eastbounid - - - - - - - - - - - - - - - - - -

17:10 17:26 16
17:20 18:00 40

17:00 17:20 20
Trunk westbound 17:10 17:22 12

17:20 17:40 20

time of a cohort that is severely disrupted and the moment at which the real-time analysis tool can

identify that that cohort is experiencing journey times that raise concern. In the case of travelers on

the North section travelling westbound during this period, it would have only taken the analysis tool six

minutes to show that customers boarding at 16:40 were experiencing higher-than-normal variations in

their journey times.

Section 6.2 has shown how Oyster journey time information might be used to identify the occur-

rence of disruptions, but it does not establish the degree to which this method is useful in a real-time

environment when compared to other information provided by Oyster, such as passenger accumula-

tion (riders who have not yet tapped off), and NetMIS, such as train headways or lateness. As such,

Section 6.3 compares the results of the real-time Oyster-based analysis with four other measures of

disrupted conditions.
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6.3 COMPARING DATA SOURCES

Section 6.1 presented the criteria used by TfL to determine when to make announcements to custom-

ers on the status of service on Underground lines. NetMIS headway data provide the most important

source of information with regards to operations. When trains arrive at reduced frequencies, carriages

become more crowded, customers sometimes are required to wait for another train to arrive in order

to board, and service generally slows down.

Chapter 5's study of the disruption in the afternoon of September 22, 2011 shows that while pas-

senger journey time variations increased above the +20% level for customers boarding in the Trunk

section of the line between 17:10 and 18:50, most eastbound train arrival headways at a station

midway on the Trunk remained within the standard variation until about 18:15. This indicates that the

headways measure was failing to provide a full representation of the consequence of the incident.

As such, passengers who might have been warned in advance to choose a different path or wait to

make their journeys remained uninformed. As shown in Table 6-5, a minor delay in the service was

announced only at 18:21, more than an hour after the first customers entering the Piccadilly Line saw

delays of +20% or above.

Table 6-5: Passenger notifications on September 22,2011.

Start time End time Notification Location

16:00 18:21 None n/a
Between Hammersmith and Amos

18:21 19:00 on Minor Delays Grove eastbound only. Good service
on the rest of the line.
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Of course, TfL has adopted a conservative approach to informing customers about the impact of

disruptions on the line, as stated in Section 6.1 and reinforced by the fact that the NOC does not always

follow its official guidelines. Informing customers about minor problems or giving customers informa-

tion about a problem that does not exist would lead to decreasing customer satisfaction. The agency

has spent years perfecting this approach and has developed a tried and trusted method. Nonetheless,

it is worth evaluating whether Oyster data can be used to identify the full extent of a disruption early

enough to supplement the information provided by NetMIS headway and other sources.

Table 6-6 offers a comparison between five types of data all potentially available in real-time for

Piccadilly Line service controllers. The data shown compare the live information available to control-

lers at ten-minute intervals between 16:00 and 19:00. The NetMIS and passenger accumulation data

is "final" (barring technical difficulties and lost data, there is little delay in transmission and the initial

data are the same as they would be in a retrospective analysis); it should be emphasized that the

journey time variations presented in the leftmost data column is incomplete, as discussed in Section

6.2. The information provided by the different types of data is not directly comparable, but across all

five datasets, the trend is clear: relatively normal service between 16:00 and 16:30 gradually becomes

more and more disrupted.
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Table 6-6: Comparisons between Oyster-sourced and NetMIS-sourced real-time information.

Real-time Oyster NetMIS Retrospective
Oyster

Highest Average Average Running timesjourney Passenger train train % variation Highest
Enquiry time % accumula- lateness headway from schedule Journey time
time variation tion F at LSQ at LSQ HMS-100 (10- % variation v

v within (10-min (10-min min Interval) within 15 min
15 min Interval) Interval)

16:00 7.1 -36 2.8 2.7 23.6 11.6
16:10 5.0 +110 1.1 3.3 9.2 7.2
16:20 3.0 +38 5.6 2.4 7.9 8.8
16:30 1.5 +40 0.4 2.5 11.9 14.6
16:40 8.0 +44 7.0 3.3 17.4 14.9
16:50 9.2 +9 3.5 2.6 22.6 17.1
17:00 9.7 +231 4.4 3.1 25.5 19.3
17:10 11.3 +156 4.5 3.3 34.1 21.2
17:20 7.4 +264 5.2 3.0 41.9 31.3
17:30 12.4 +529 7.4 2.7 49.3 32.3
17:40 22.5 +556 11.0 3.4 51.8 33.4
17:50 17.0 +616 12.6 3.2 65.4 40.3
18:00 26.5 +584 12.6 3.9 71.8 41.0
18:10 23.3 +682 16.2 3.5 82.8 42.1
18:20 24.8 +796 23.2 6.3 97.5 42.1
18:30 23.9 +844 25.6 4.9 107.3 40.2
18:40 21.6 +932 23.8 6.4 114.6 36.2
18:50 23.9 +713 No data* 4.4 111.2 31.9
19:00 16.4 +799 27.9 2.9 121.5 24.7

* Lateness is relative to schedule; because of gaps in data, not all trains are identified by train number and
therefore are not comparable to their schedules.



AFC data in real time analysis I 141

Table 6-6 demonstrates that train headways at Leicester Square (LSQ)-a station in the middle of the

Trunk and with service characteristics indicative of the service throughout the line section-provide

relatively weak information about customer service. When calculated in terms of average train head-

ways over the preceding ten-minute interval, major disruptions only appear beginning at 18:20, when

headways exceed 4 minutes for the first time; this condition lasts until 18:50, as highlighted. Retro-

spective information shows that disrupted conditions started affecting passengers boarding at 17:10,

but there is little in the headways data to confirm this until 18:20.

Other NetMIS data points are, in fact, more informative. Average train lateness, calculated by

determining the difference in arrival time at Leicester Square of trains over a ten-minute period and

the times when they were supposed to arrive, shows lateness of 10 minutes or more from 17:40 on,

as highlighted. This calculation, however, may be flawed: For example, it could be affected by a service

change in which a significant number of trains are renumbered. Because the Piccadilly Line's train

identification system suffers from significant information gaps (as described in Chapter 3), the accura-

cy of the lateness information cannot be guaranteed. In addition, the lateness of trains as compared to

schedule may not greatly affect riders (though it would certainly affect crew assignments): If all trains

are thirty minutes late, but with steady frequencies and normal travel times, riders will not perceive

any change in service.

The variation in running times for trains in the Trunk section of the line, from Hammersmith to

King's Cross, appears to correlate closely with the disruptions actually experienced by customers (see

the two rightmost columns in Table 6-6, with highlighted areas showing most severely disrupted times).

This makes intuitive sense, as monitoring train travel times between two stations is a direct reflection

of customer journey times, though these data would also suffer from a delay since a train has to arrive

at the destination station before its travel time can be calculated. As such, it could be useful to assess

train travel times in an aggregate method much as has been done with Oyster data here, examining a

set of ODs across a section of a line to determine the state of service in order to evaluate travel times

on both short and long segments simultaneously. That said, the sometimes-limited accuracy of Net-
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MIS data, as shown in Chapter 3, suggest that having alternative sources of data reaffirm conclusions

derived from tracking trains would be useful. In this example, it appears to be correct, but this may not

be true in all circumstances.

This leads to the question of whether the onset of a disruption and its severity can be identi-

fied using real-time Oyster data-using the passenger accumulation information described in Section

5.4 and/or the real-time variability method described in Section 6.2. As Table 6-6 shows, passenger

accumulation on the Piccadilly Line exceeds 500 passengers above normal beginning at 17:30, as

highlighted, significantly sooner than the headway measure implies a reason to be concerned, and ten

minutes before the lateness measure alert. As with the running times information, then, it potentially

provides a very useful source of information about the seriousness of a delay.

The final method is the journey time variation metric discussed in Chapter 5 and refined for real-

time purposes in Section 6.2. This variation measure, like the train travel time information, suffers

from a potentially fatal flaw: A lag in information between when the disruption is likely to have occurred

and when the data is provided. This is a consequence of the fact that the journey time variation can

only be calculated at the end of a trip, when a customer taps out of the system. This is likely to cause

significant delays in understanding the severity of a disruption. Nevertheless, Table 6-6 shows that a

"significant" level of disruption becomes evident using this method beginning at 17:40, which is the

same moment at which the NetMIS-based train lateness information shows a serious disruption occur-

ring and just ten minutes after the passenger accumulation information begins to indicate a problem

on the line. That said, it comes a full half-hour after the running times information shows a service

delay on the line. Even so, this measure of customer delays appears to provide useful real-time infor-

mation about the status of service.

These five measures are compared with the actual (retrospective) passenger journey time vari-

ability in Figure 6-8. The measures are charted at a relative scale to allow for a direct comparison

between them. As the graph demonstrates, of all the measures, the real-time journey time variation (in

this case, when multiplied by two to be charted at a relative scale) offers the closest approximation of
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the actual customer journey time variation. This indicates that the real-time Oyster data-even with its

inherent delay-can provide a reasonable proxy for the actual journey time variation and the severity

of the disruption. In this example, it appears to provide the most accurate real-time estimate of rider

disruptions of the five measures compared here. This is not to say that this will always be true, but

rather that the real-time estimate of Oyster journey time variation offers a valuable supplement to the

existing information.
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Figure 6-8: ComparIng real-time information sources with actual journey-time variation, on a relative
scale.

Despite the fact that real-time journey time variation v suffers from a lag in data availability, when plot-

ted in Figure 6-8 relative to the four other measures discussed above, it comes closest to matching the

actual journey time variation curve in terms of slope. All of these information sources are likely to be

useful in determining in real-time the likely impacts of an incident. A complete controller information
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system would provide information about all of these indicators. Future research should investigate the

degree to which each of these measures provides the most reliable estimates of disruption severity.

What is particularly worth examining is at what point each of the measures indicates when a problem

is "bad enough" to inform customers. Though the real-time Oyster method is but one within a universe

of potential data sources to measure real-time impacts of a disruption, it is discussed in the following

section more extensively to evaluate how it might be used to inform customers of delays.

Compared to other metrics, particularly the passenger accumulation and certain of the NetMIS

data, the journey time variation measure is likely to be less useful in determining the onset of a distur-

bance for passengers on the line. The inherent lag between when passengers experience delays and

when they tap out make using it as a tool for making the first announcement problematic. On the other

hand, tracking Oyster data may be more useful for determining the conclusion of a particular distur-

bance for passengers on a line. By using actual passenger data, the journey time variation metric of-

fers the opportunity to clarify when journeytimes have returned to normal. Though there would be a lag

in acquiring this information in this case as well, it still would offer insight into customer performance,

even if delayed by ten or fifteen minutes.

In addition, though the journey time variation metric must be evaluated more thoroughly to be un-

derstood completely, the results of this comparison suggest that, when scaled correctly, it may provide

an accurate assessment of the eventual severity of a disruption for passengers. If the metric defined

in Chapter 5 is accepted as a reasonable estimate of actual passenger disruption, then the use of it

in real-time circumstances may point to the severity of rider delays, as shown here. This technique,

however, requires additional study and comparisons for other disrupted events before it can be recom-

mended.

6.4 COMPARING THE DISRUPTIONS INDEX WITH CURRENT PASSENGER
NOTIFICATIONS
The method used to take advantage of real-time Oyster data described in Section 6.2 does not specify

how the results can be used to indicate a degree of disruption to passengers. It is not clear that there
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is a direct relationship between the NetMIS-based announcements given to customers today and the

Oyster-derived real-time data. But it is possible to envision using the Oyster information to assign

similar levels of disruptions information. In this context, two types of delays are described-minor and

severe delays-with the assumption that anything more serious (a part or full line suspension) would

be immediately communicated by service controllers in touch with operators.

The Oyster data suggest that any variation in travel time of above about 20% reflects greater-than-

normal delays for customers, and any variation that is twice as significant (more than 40% above stan-

dard travel times) implies significant rider delays. It is suggested therefore that the following criteria

could be used to inform announcements using the Oyster data:

- < +20% variation in travel time: Good Service;
- Between +20% and +40% variation in travel time: Minor Delays;
- > +40% variation in travel time: Severe Delays.

These represent one simple way in which the Oyster data could be used, keeping in mind that it is

intended to be supplementary to the existing NetMIS-based system, not a replacement. Note that this

is a hypothetical use of the Oyster data to make notifications, and any reform of the existing system

should incorporate Oyster, NetMIS, and controller data simultaneously. The exact specifications for

when the appropriate moment is to make an announcement should be based on further analysis.

Nonetheless, a diagram of how an Oyster-based announcement system could be used is presented in

Figures 6-9, 6-10, and 6-11.

Real-time Are there travel Yes - Are there travel Y 4
Oyster data time adations time vadations
presented 0- within the previous wiin the previous

phicall 15 m iOnuts that 15 minutes that
igure 6.S) exceed +20%? No exceed +40%?

oodeice [ De

Figure 6-9: Diagram of use of real-time Oyster data to update passenger notifications.

Severe Delays
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Figure 6-10: Hypothetical use of real-time Oyster data to update passenger announcements.

Figure 6-10 shows a hypothetical real-time Oyster-based travel time variation chart based on informa-

tion "known" at 17:30. The four imaginary sections of the line presented in the diagram show varying

performance over the course of the day, but only information presented in the previous 15 minutes is

used as an input to determine the status of service on the line. As a result, the hypothetical "A" and

"C" Corridors are determined to have delays significant enough to inform customers, whereas the rest

of the line is not.

The information at the top right of the chart indicates the degree of severity by noting the highest

level of journey time variation v in each section of the line, as first documented in Table 6-3. This offers

a quick view of the status of service. This could be used in association with the other real-time mea-

sures defined in Section 6.3 to determine the appropriate service status level presented to customers

at any given time.

Figure 6-11 shows how this information might be presented to customers on TfL's standard Ser-

vice updates chart. If relying on Oyster data alone, customers could be informed of problems on indi-

vidual sections of the line; in this case, because the "A" and "C" Corridors are experiencing significant
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Service updates at 17:30
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Figure 6-11: Hypothetical service updates using real-time Oyster data.

passenger delays, they are called out specifically as having "Severe" and "Minor" Delays, with the rest

of the Piccadilly Line (the hypothetical "B" and "D" Corridors) described as having Good Service, in line

with what is presented in Figure 6-10. That said, as discussed in Section 6.3, a comprehensive use of

all available data sources would be preferable.

As shown in Figure 6-7, the severity of a disruption is often not clear for many minutes after the

incident has begun. As such, real-time data must take into account a broad range of input. One way

to do that is to provide customer alerts if there are any measurements of travel time variation of 20%

or above the norm within the previous fifteen minutes, under the assumption that riders entering the

system as far back as fifteen minutes before the analysis time provide some information about service

on the line now. In other words, if controllers receive information at 15:30, they should make an an-

nouncement if any section of the chart exceeds the +20% baseline. Each section and direction of the

line should be examined independently.

In Figure 6-12, the passenger notifications provided by the NOC are compared with potential

notifications using the Oyster system, between 15:00 and 19:00 on April 24, 2012, a day with a PWT

score of 41 seconds. A signal problem on the North section caused a significant delay for customers at

around 16:25, producing repercussions in the line's service for the remainder of the afternoon.
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The graphs at the top and bottom of Figure 6-12 show the actual average passenger travel time varia-

tion from Oyster over the period, based on a retrospective analysis. The charts show that passengers

who entered the North section westbound at 16:25 were the first to experience disrupted travel condi-

tions. These problems propagated first to riders on the eastbound North section, then the westbound

Trunk, Rayners Lane section, and Heathrow section and finally the eastbound Rayners Lane section

of the line.

Passenger notifications consisted entirely of Minor Delay announcements, as indicated at the top

of the figure. Customers traveling from King's Cross to Cockfosters (the North section) were alerted

first, from 16:43 to 17:08; at 17:08, customers traveling from Acton Town to Heathrow and Uxbridge

(the Heathrow and Rayners Lane sections) were informed of problems until 18:31; then, for the rest of

the evening (until 20:54, off the chart), only customers on the section from Rayners Lane to Uxbridge

were informed of delays.

This record of passenger notifications points to the shortcomings of the existing passenger an-

nouncement system. Customers are generally not told whether the delays are in one direction or the

other.' This has the effect of potentially informing riders about a problem they are unlikely to experi-

ence-though it is worth pointing out that one basic issue is that even in cases where TrackerNet data

may show specific problems, these are not always communicated by the NOC. For example, riders

on the Heathrow branch were informed that they were likely to experience minor delays beginning at

17:08. Yet riders on the eastbound Heathrow branch did not see delays as large as 20% until 18:25 at

the earliest-more than an hour later. On the other hand, customers traveling in the line's Trunk sec-

tion (from Acton Town to King's Cross) were never told about any potential delays, despite the fact that

entering westbound Trunk customers experienced delays of 20% or more on average from 16:55 to

17:25. This was a full half hour during the afternoon rush period, when thousands of riders who likely

had other travel route options were not informed of potential delays on the line.

1 This is not always true: There are specific circumstances in which the notification does indicate the
direction of travel in which customers are affected. But most announcements do not differentiate by
direction, despite the fact that most customers are interested in only one direction at a time.
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The retrospective Oyster data presented in Figure 6-12 point to the advantage of using the analysis

tool proposed in this thesis. Based on the method presented in Section 6.2 and considering the high-

est variation during the previous fifteen minutes, the bottom chart indicates when either minor or ma-

jor delays would hypothetically have been announced for the line if Oyster real-time information were

used and compares it to the actual travel time variation recorded retrospectively. Comparing these

theoretical passenger announcements with the actual notifications made by the NOC shows the ad-

vantages and disadvantages of the system. Tables 6-7 and 6-8 indicate how several "issues" (part of

the overall pattern of disruption) that occurred in the afternoon of April 24 were responded to by NOC

and how they theoretically would have been addressed using the Oyster real-time method.

Table 6-7: Comparing real-time Oyster and NetMiS-based passenger notifications at commencement of
passenger delay.

Time that Journey
Section of the time variation passes Actual NetMIS-based Theoretical Oyster-
line whrea n trae +20% for entering based real-time
time variations are riders (retrospective (NC) responseresponse
Increasing information)

North section westbound 16:27 16:42 Minor delays for 16:35 Minor delays for
North both directions westbound North
16:42 Minor delays for 17:05 Minor delays for

North section eastbound 16:47 North both directions eastbound North
(same as above)

Trnk section westbound 16:56 None 17:15 Minor delays for
Trun secionwestbound Trunk

Rayners Lane section 17:08 Minor delays 17:50 Minor delays for
westbound 17:32 for Rayners Lane both westbound Rayners Lanewestbound ~directionses RyrsLn

Heathrow section 17:59 17:08 Minor delays for 18:15 Minor delays for
westbound Heathrow both directions westbound Heathrow

Rayners Lane section 17:08 Minor delays 18:36 Minor delays for
eastbound 18:18 fdr Rners Lane both eastbound Rayners Lane

Heathrow section 18:25 17:08 Minor delays for None
eastbound Heathrow both directions
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Table 6-8: Comparing real-time Oyster and NetMIS-based passenger notifications at end of passenger
delay.

Time that journey
Section of the time variation falls Theoretical Oyster-
line where travel below +20% for Actual NetMIS-based based real-time
time variations are entering riders (NOC) response
decreasing (retrospective response

Information)

North section westbound 17:19 17:08 Good service 17:13 Good service

North section eastbound 17:23 17:08 Good service 17:19 Good service

Trunk section westbound 17:24 None 17:22 Good service
Ran LU section 18:31 Past 19:00 18:35 Good servicewestboundl

Hahw e st d 18:28 18:31 Good service 18:36 Good service

Rayners Lane section 18:50 Past 19:00 Past 19:00eastboundl
Heathrow section 18:38 18:31 Good service None
eastbound _ __ __

As indicated by Tables 6-7 and 6-8, the Oyster real-time analysis method appears to be more accurate

(the highlighted cases) than the current NOC method on about two-thirds of events, both in terms of

when disruptions begin (Table 6-7) and when they end (Table 6-8). This result must be viewed with

some skepticism, however, as the result is being measured using the criterion (travel time variation)

that itself is used to develop the Oyster delay-based announcements. But if it is accepted that Oyster

travel time variations do accurately represent the experience of riders on the line, this comparison pro-

vides useful insight into the ways in which the existing announcements could potentially be improved

by incorporating Oyster data.

The evidence from this comparison does show that there are several cases where the NOC infor-

mation is more accurate than the Oyster-derived information. Because the NOC's announcements are

skewed towards telling customers in both directions about delays (even when the problem is initially

in only one direction), the NOC alerted riders to problems on the Heathrow Line in both directions at
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17:08. Though the eastbound delays did not begin until 18:25, the Oyster-based system never re-

vealed this to be an issue worth announcing to customers, so it was ultimately less useful. This was

also true for the North branch eastbound service; there, delays began at 16:47 but the NOC made an

announcement there at 16:42, whereas Oyster only recognized the problem at 17:05.

The example of April 24, 2012 documented in this section may provide an idealized case for the

use of real-time Oyster data to establish the presence of and severity of disruptions. There are sev-

eral potential problems with this approach that deserve repeating. The first and most important of

these difficulties is the inherent lag in the farecard data between when customers enter the system

and when it becomes clear that there are delays on the line. As shown in Section 6.2, these delays

nonetheless can be caught within ten minutes, though that is less likely for less-utilized sections of the

service. As shown in Section 6.3, despite the lag, the real-time Oyster data is nonetheless more closely

correlated with the ultimate severity of journey time variation of customers than other measures such

as passenger accumulation and headways. Future research should investigate the ways in which these

measures can be integrated most effectively to minimize the impact of lag.

Oyster data has also the potential to produce "false alarm" events in which a problem appears to

be particularly bad at one point in time, thus inducing a passenger notification, but which disappear

once more data becomes available. In theory, this could occur if a number of riders took short but

longer-than-usual trips in the first fifteen minutes after they boarded, but most riders (exiting after the

fifteen minute initial period) took trips that lasted a normal amount of time. This is unlikely to occur

because it would require the short trips to be longer than usual even as long trips are normal; unless

a group of passengers is stranded on a platform for some reason, this should not occur (since people

taking longer trips share the train travel segment with those taking the short trips). In addition, the sec-

tions of the Piccadilly Line described in this thesis are long enough and with enough passenger data

available that outliers are unlikely to affect the average significantly. That said, if the line were divided

into smaller analysis sections, data error resulting in "false alarms" would be more likely.

The deficiencies in the Oyster data reaffirm the argument that it would be inappropriate to rely
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on this information alone to make determinations about the status of service on a particular line. Yet

there are also deficiencies in the information provided by the current NetMIS-based system, notably

thanks to incomplete data provision (which is less of a problem with Oyster). Thus the evidence sug-

gests that both the NOC's NetMIS system and the proposed Oyster real-time method offer insight into

the travel time variations affecting passengers on the line. However, neither tool is reliable enough

on its own to ensure that riders are receiving the most accurate possible information about London

Underground services. If NOC decision makers are presented with both types of information, each

providing proposed service announcements, they may be able to make qualitative assessments based

on accumulated knowledge about the appropriate message to provide customers. Though there are

guidelines in place by NOC to use NetMIS to automatically determine how customers are provided

information, these are merely suggestive; NOC has the ability to make subjective judgments, and for

good reason. For instance, if a disrupted service is moving along the line from east to west, it may be

appropriate to announce to customers that there is a delay before such a delay has actually occurred.

For instance, the major disruption that began in the westbound direction on the North section of the

Piccadilly Line on April 2 4th affected service on the Trunk, then the Rayners Lane section, and finally

the Heathrow section. It may be useful to inform customers in advance that they are likely to experi-

ence problems for a section that is likely to, but has not yet, experienced increasing travel times.

6.5 IMPROVING INFORMATION FLOW WITHIN THE AGENCY

None of the analysis presented here or in Chapter 5 can be completed without changes in the way

in which Transport for London approaches information sharing between different departments in the

agency. At the heart of the problem is that while TfL has several very useful datasets available, these

are not universally accessible by agency staff, according to interviews with employees. For example,

whereas NetMIS information is used to analyze service at the London Underground, analysts at TfL

headquarters are generally unfamiliar with how this source can be interpreted and do not use it in

their daily work. The inverse is often true for Oyster data, though staff at TfL have begun investigating

the possibilities of sharing more data. This lack of comparative assessment inhibits a thorough under-
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standing of how the system is functioning and what improvements may be feasible.

If upgrades are made as planned to faregates that would allow live Oyster data to be streamed to

TfL, this data should be shared directly with NOC personnel so that they can incorporate it into the Lon-

don Underground's passenger disruptions notifications. This will require understanding of the potential

use of AFC data currently confined to TfL headquarters to be passed to staff at the Underground, an

important but likely time-consuming process.



7
Conclusion

This chapter summarizes the research conducted in this thesis and suggests avenues for future re-

search on the impact of disruptions on customers using the system. Section 7.1 provides an overview

of the insights provided by the thesis as a whole, offering a chapter-by-chapter summary of the re-

search undertaken and the methods developed to describe disruptions on the London Underground

Piccadilly Line. Section 7.2 offers a note of caution, identifying significant limitations of this research

and additional work needed to be fully implementable. Much of the research has high potential for ap-

plication on the London Underground, however, and corresponding recommendations are described

in Section 7.3. Section 7.4 notes how the research might be expanded in other directions that take

advantage of AFC data in the analysis of the effects of disruptions.

7.1 RESEARCH SUMMARY

This thesis reviews disruptions on the London Underground Piccadilly Line, analyzing not only the char-

acter of incidents that occur on the line today, but also offering improved methods to understand their

impacts on passengers. The thesis has three primary components: First, a description and categori-

zation of incidents that occur on the Piccadilly Line; second, the development of a new measure of

impacts on passengers resulting from those incidents using AFC data; and third, an exploration of the
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potential use of AFC data in real-time applications to monitor the service on the line. As an ensemble,

the thesis offers new insight into the impact of disruptions than was hitherto available to the London

Underground.

Chapter 4 characterizes and categorizes incidents that occurred on the Piccadilly Line during a

three-month study period composed of 29 analysis days in spring 2012. The chapter summarizes the

tools currently used by the London Underground to evaluate service, including the CuPID disruption

database, the excess platform waiting time metric, and the headways proxy metric. By reviewing the

occurrence of incidents on the Piccadilly Line including service controllers' logs, the chapter notes the

concentration of problems relating to signals, especially when weighed in terms of the duration of in-

cidents. It also shows that incidents are disproportionately clustered in the early morning and midday

periods of the day, and in the Trunk and North sections of the line. It finds that stations where trains

pull in and out of sidings, such as Acton Town and Arnos Grove, account for a large percentage of inci-

dents on the line.

The thesis emphasizes the difference between "incidents" and "disruptions," describing the first

as the specific "problem" on the line that triggered delays, such as a broken rail, a sick passenger, or a

stalled train. The duration of an incident is the length of time between the problem being identified and

it being "solved." A disruption, on the other hand, is defined as the cumulative impact of the incident

on the passengers using the line. This distinction is essential to understanding service provided on the

line and allows us to differentiate train and customer impacts.

Chapter 5 proposes a novel approach for investigating disruptions. It first identifies the limitations

of approaches based on AFC origin-destination pair analyses and notes that NetMIS train-tracking data

is incomplete and therefore there may be advantages to supplementing the information gained from

it with Oyster AFC data. As a new approach, this chapter develops an aggregate method to measure

variability in customer journey time during disrupted periods. This metric examines journey times on

all OD pairs within defined sections of the Piccadilly Line to determine variation in journey time for the

average passenger departing at a specified time on a specified section and direction. The advantage
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of this aggregate approach is that it allows far larger sample sizes-and therefore better accuracy-in

analysis of short time periods than individual OD pairs do.

The chapter provides example results of this analysis for disrupted days and demonstrates the

applicability of the method in identifying time periods of the most significant disruptions. Using this

variability information, the chapter proposes two metrics that can be used to quantify the overall cus-

tomer impact of disruptions on the system. Total disruption impact takes the integral of the journey

time variation function, and allows impacts of different disruptions on different parts of the system

to be compared. This measure has particular applicability for comparing actual journey time variation

with the estimates derived from the NetMIS-informed Lost Customer Hour (LCH) metric currently used

for retrospective disruption analysis by the London Underground. The chapter also provides a second

metric that describes the relative intensity of a particular disruption.

This chapter also examines the impact of disruptions by quantifying the number of passengers

using specific portions of the system. A measure of passenger accumulation shows that disrupted

periods feature more active customers than normal because their travel is delayed due to slower-

than-normal train service. This accumulation metric can be compared with journey time variability and

NetMIS-based data to offer an overall assessment of customer impacts. Finally, Chapter 5 notes the

possibility of using AFC data from disrupted periods to infer path choices and compare them to those

implied by London Underground's route-assignment model. By investigating journey times under dis-

rupted conditions for passengers taking journeys on OD pairs where there is more than one possible

route, we can identify riders' likely route by examining whether or not they were delayed when one of

the potential paths was disrupted and the other was not. AFC data from normal service days would

not allow this type of analysis since journey times on such alternative routes are typically similar and

therefore non-differentiable using Oyster data.

Chapter 6 examines the possibility of using AFC data to assess the impact of disruptions on pas-

sengers in real time. It begins with a description of the existing passenger notification system, specifi-

cally identifying the criteria used (based on NetMIS train-tracking data) to determine whether or not



158 | Freemark

passengers are informed of delays on the line. The chapter demonstrates that passengers are alerted

to delays up to 10 percent of the time on parts of the Piccadilly Line, but that those delays do not

always correspond directly to the incidents recorded by controllers, which raises questions about the

accuracy of the current announcements.

The chapter then analyzes the possibility of using journey time variation data as proposed in Chap-

ter 5 to monitor the performance of the rail system. This approach, however, is flawed in that it requires

passengers to "tap out" of the system before theirjourney times can be determined. As an alternative,

the chapter considers using the passenger accumulation measure first explored in Chapter 5. When

compared with NetMIS data, both approaches offer useful insight into the magnitude of passenger

disruptions on the line in real time, suggesting that there are useful ways for AFC data to be used in a

real-time context.

7.2 LIMITATIONS FOR METHOD IMPLEMENTATION

The increasing implementation of AFC technologies on public transport systems around the world pro-

vides a major new source of information about the movement of passengers along lines. This thesis

offers several insights into how AFC data might be harnessed to examine the impacts of disruptions.

Yet there are several significant issues that must be recognized when using the journey time variation

methods described in Chapters 5 and 6.

First, the method has limited applicability. Total journey time variation applies to the average pas-

senger using a section of the line in one direction. This means that it cannot be applied ad hoc for

individual passengers, though it can focus in on people who were likely affected by problems. In addi-

tion, a journey time variation in one section of the line cannot be directly compared to that of another

section in terms of passenger impacts, because the number of passengers using different parts of the

line varies. For instance, a large variation on the Rayners Lane branch may affect fewer riders than a

small variation on the Trunk section. This could be resolved to some degree if the disruption impact

figure were multiplied by the flow of passengers using each of the sections. LU's estimates of flow on

the Piccadilly Line are not yet fully developed, however, though Ravichandran (2012) has explored a
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potential method by which to determine passenger flow on the line for a period of time.

Second, the method relies on the sectioning of the Piccadilly Line into a series of usable parts.

An effort was made to identify sections that corresponded to train reversal points based on interviews

with train controllers, but the journey time variation method could be applied to a multitude of fea-

sible sections along the line, potentially up to and including an analysis of the whole line. As such, the

conclusions reached by this thesis about problems on the line may not address the concerns of most

passengers. The correct sectioning of the line should be subject to further discussion to ensure that

the study sectioning is appropriate to the question being asked.

There are also serious questions that remain unresolved about the value of AFC data in a real-time

context. Discussion with Transport for London staff indicate that though certain Oyster data is avail-

able from several stations (almost) in real time, the majority of stations do not yet provide a direct data

feed, though further analysis is necessary to define this more precisely. Though the situation is likely

to improve over the coming years with the installation of new Oyster readers and fiber-optic cables, the

degree to which these technologies will provide real-time information must be examined thoroughly

before any solution can be implemented.

In addition, it should be cautioned that AFC data should not be used to indicate that an incident

has occurred or been resolved. Rather, controller communications with line staff should continue to

be the primary mechanism for identifying incidents. As an example, AFC data may indicate significant

passenger accumulation, which may be due to the end of a football game, rather than an incident on

the line. AFC data use should be confined to tools for better understanding impacts on riders. It may

also be particularly useful for identifying when the disruption has ended in terms of cessation of pas-

senger impacts.

Finally, the passenger accumulation metric, while useful for determining the build-up of riders us-

ing the line during a disruption, should not be confused with an indication of passenger flow. Because

it is not direction-specific (we do not know which way passengers who board but have not exited are

traveling, of course), because it does not include the Oyster boardings from interchange stations,



160 Freemark

and because it does not account for people who transfer into and out of the Piccadilly Line it is not

representative of overall ridership in any sense of the word. It provides a quick way to monitor general

conditions along the line, but it should not be extended to any other analysis pertaining to rider flows.

7.3 RECOMMENDATIONS TO TRANSPORT FOR LONDON AND THE LONDON
UNDERGROUND

The analyses presented in this thesis were designed to be useful to planners and analysts in London,

and there are some clear ways in which the research results can be applicable to improving our under-

standing of the London public transport network. The following recommendations capture the lessons

learned from discussions with TfL and LU staff, as well as the thesis findings.

e Share Oyster and NetMIS data across divisions. The thesis has demonstrated that there are

concrete benefits that result from comparingAFC and train-tracking data. While each offers similar

insights into the service environment, neither provides a full description of the conditions on the

line. Together, however, they can effectively complement one another, one source filling in the gaps

in the other source data. But currently, easy data access for the two sources is still quite siloed. TfL

fares and ticketing staff are experts with Oyster, while LU service planning and analysis staff are

expert with NetMIS.

While there is clear movement towards the increased sharing of these data, the task is not

yet complete. In order to expand upon the conclusions of this research and ensure that it can be

as useful as possible to staff throughout TfL, it is critical to continue that movement so that data

accessibility is ubiquitous.

e Improve retrospective analysis of disruptions by including AFC data. This thesis has argued

strongly that Oyster AFC data opens an important avenue for potential evaluation of the impact of

disruptions on passengers. While there is currently limited work at TfL that investigates changes in

journey times for riders making specific journeys, there is no comprehensive metric by which Oys-

ter data can be analyzed to assess the magnitude of a disruption. This thesis offers such a metric.
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Though the thesis only provides the groundwork for a more comprehensive process of analysis

of Oyster data for disruption evaluation, it offers a way to compare disruptions and identify which

group of customers may have been most impacted by an incident.

The journey time variation metric may provide a way to evaluate the accuracy of the lost cus-

tomer hour (LCH) metric currently used by LU personnel to assess disruption impacts. The LCH

estimates incident impacts based on projections of rider flow and disruption duration, while the

method proposed here is based on actual journey times. The LCH estimates are revised every five

years or so; it would be reasonable to use the journey time variation metric or an extension of it to

study the actual impacts of disruptions and then alter the LCH estimates to ensure that they ac-

curately reflect what occurs on the system during and after an incident.

Investigate the applicability of AFC disrupted-day data to improve the understanding of route

choice. A large percentage of travelers on the London Underground use interchange stations to

move between lines during the course of their journeys. While these interchanges may improve

their commute, they cause significant difficulties for data analysis, since they are not recorded in

the Oyster data and thus the way customers get from one station to another often remains unob-

served. In order to correct this gap in information, TfL conducts the RODS survey to assign percent-

ages of travelers on each OD to specific routes. Yet this thesis has raised the question of whether

the results of those surveys-which are often years old-are always reliable.

This thesis shows that disrupted periods provide potentially valuable insights into traveler be-

havior on certain OD pairs, particularly those in central London. By examining where journey times

increase significantly during disruptions but before notifications have been made to passengers,

empirical evidence on route choice for certain ODs can be obtained. Using this data in addition to

the current RODS results could produce improved flow analyses on the Underground system.

. Exploring the possibility of using AFC data In real time. The thesis documents two potential

methods by which Oyster data might be used in real time: First, by using the journey time variation

method, and second, by using the passenger accumulation method. Each likely requires signifi-
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cant improvements to the existing faregate and communications system to be fully implemented.

Yet AFC data may be able to provide important insights into disruptions, in particular their sever-

ity. Though train-tracking data may identify when a problem has occurred, it may not be specific

enough to indicate how severely passengers are affected; Oyster data, if used right, can. Just as

important, the Oyster data, more easily than the train-tracking data, can clarify when a disruption

has ended.

That said, Oyster data should be used with caution. Too small a sample may result in misun-

derstanding the disruption's severity. The problem is particularly true for the journey time variation,

which relies on customers to "tap out" before it can be produced, thereby creating a lag in informa-

tion provision. In addition, customers should not be given too much information without consider-

ing the long-term effects of over-informing customers, which might include riders slowly abandon-

ing their trust in the accuracy of the notifications system in representing the current conditions.

Reexamining the use of headways as a metric for determining whether to issue customer

notifications. The NOC uses a measure of headways as one of its primary criteria for determining

whether to make an announcement to customers about the status of service on the Piccadilly Line.

Headways are a useful statistic, as waiting time consumes a large percentage of many custom-

ers' journeys. Therefore, increasing headways may indicate more serious problems down the line.

Discussions with LU staff suggest that NOC notifications are made with less-strict adherence to the

official guidelines than might have been assumed, but headways still play a role.

Yet the evidence suggests that there are other metrics that more clearly indicate the status

of service than headways at individual stations. The Oyster journey time variation and passenger

accumulation metrics, once real-time Oyster data are available, may be quite reflective of actual

customer experience of disruptions. Other NetMIS information, notably train travel time between

individual stations, might be even more useful in making some decisions. If one TfL goal is to en-

sure that the information given to customers is targeted and is as accurate as possible, a broaden-

ing of the sources used to identify delays is desirable.
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7.4 FUTURE RESEARCH DIRECTIONS

This thesis provides a framework for analyzing Oyster data to assess the impact of disruptions on pas-

sengers. The metrics it develops are applicable to the Piccadilly Line, but they could be modified to

assess service on other London Underground lines. Three potential studies, described below, suggest

how the metrics described could be further refined to better aid LU in understanding the travel patterns

of customers using the service.

- Analyze the most efficient way to segment lines for aggregate analysis. The analysis present-

ed in the thesis divides the Piccadilly Line into five segments for analysis based on train reversal

points (of which one section, from Rayners Lane to Uxbridge, is not used because it overlaps with

the Metropolitan Line). This segmentation, however, could be altered in another round of journey

time variation analysis. A valuable research direction would explore the value of using different

sections on the same dataset and exploring the value of information provided in varying circum-

stances.

e Evaluate the effects of controller strategies on disruption impacts. The V metric defined in

Chapter 5 assesses the severity of a disruption from the perspective of customers, but it does not

differentiate between direct impacts of the incident, "knock-on" effects, and controller actions. Fu-

ture research should compare the customer impacts of varying strategies, given similar incidents.

This could aid controllers in determining how best to respond to incidents while minimizing rider

inconvience.

e Assess whether journey time variation "tracks" through a line in a predictable manner. The

thesis shows certain circumstances in which journey time variation, as expected, "moves" down

the line from one section to another, as trains move in that direction. A future research study could

evaluate whether that progression can be reliably predicted, depending on the type of incident that

occurred. If so, it may be possible to estimate future travel time variation on the line and inform

customers in advance that there are likely to be problems on their journeys.
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e Determine the appropriate role of journey time variation in triggering passenger announce-

ments. Chapter 6 suggests potential passenger notifications based on the journey time variations

recorded, suggesting that a 20% variation be considered a "minor delay" and a 40% variation

a "severe delay." These correlations, however, should be further analyzed to determine whether

these announcements are reflective of how the average customer feels about his or her journey.

For instance, does a customer with a trip that takes 30% longer than normal think that he or she

has had a minor or severe delay? Or is some other notification more appropriate for the situation?

A survey of customer attitudes about notifications, which has yet to be conducted by TfL, might add

significantly to our understanding of customer response. In addition, further investigation must

be conducted to determine how journey time variation information is used in concert with train-

tracking data.

- Further analysis of the accumulation metric. Evaluating passenger boarding data offers signifi-

cant promise for determining when delays are occurring on the line, particularly in real time. This

thesis offers an initial review of how to use such data, but the method should be more fully inves-

tigated to evaluate its potential applicability.



Bibliography

And reassen, T.W. (1995) (Dis)satisfaction with public services: the case of public transportation.
Journal of Services Marketing, Vol. 9, No. 5, pp. 30-41.

Bates, J., Polak, J., Jones, P., Cook, A. (2001). The valuation of reliability for personal travel.
Transportation Research, Part E: Logistics and Transportation Review, Vol. 37 No. 2-3, pp. 191-229.

Bernal, M., Welch, E., Sriraj, P.S. (2009) Understanding the Impacts of Delays on Blue Line
Customers. Paper presented at Transport Chicago. Available online at <http://www.transportchicago.
org/uploads/5/7/2/0/5720074/3-understandingthe_impact ofdelays._onbluelinecustomers.
pdf >.

Bonsa ll, P. (2004) Traveller Behaviour: Decision-making in an Unpredictable World. Journal of
Intelligent Transportation Systems: Technology, Planning, and Operations, Vol. 8, No. 1, pp. 45-60.

Bryan, H., Blythe, P. (2007) Understanding behavior through smartcard data analysis. Proceedings of
the Institution of Civil Engineers Transport, Vol. 160, No. TR4, pp. 173-177.

Carrel, A. (2009) Diagnosis and Assessment of Operations Control Interventions: Framework and
Applications to a High Frequency Metro Line. Thesis, Master of Science in Transportation, MIT.

Chan, J. (2007) Rail OD Estimation and Journey Time Reliability Metrics Using Automated Fare Data.
Thesis, Master of Science in Transportation, MIT.

Fonseca, F., Pinto, S., Brito, C. (2010) Service Quality and Customer Satisfaction in Public Transports.
International Journal for Quality Research, Vol. 4, No. 2, pp. 125.

Frumin, M. (2010) Automatic Data for Applied Railways Management: Passenger Demand, Service
Quality Measurement, and Tactical Planning on the London Overground Network. Thesis, Master of
Science in Transportation, MIT.

Gordon, J. (2012) Intermodal Passenger Flows on London's Public Transport Network: Automated
Inference of Full Passenger Journeys Using Fare-Transaction and Vehicle-Loading Data. Thesis,
Master of Science in Transportation, MIT.

Harper, C. (2012). Communication by email with LU Head of Insight, October 19, 2012.

Hickey, S. (2011) Improving the estimation of platform wait time at the London Underground. Thesis,
Master of Science in Transportation, MIT.



166 1 Freemark

Jang, W. (2010) Travel Time and Transfer Analysis Using Transit Smart Card Data. Transportation
Research Record: Journal of the Transportation Research Board, No. 2144, pp. 142-149.

Jesperson-Groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L., Mar6ti, G., Nyhave Nielsen, M.
(2007) Disruption Management in Passenger Railway Transportation. Econometric Institute Report,
No. El 2007-05.

Jiang, Z., Li, F., Xu, R., Gao, P. (2012) A simulation model for estimating train and passenger delays in
large-scale rail transit networks. J. Cent. South Univ, No. 19, pp. 3603-3613.

Kahneman, D.,Tversky, A. (1979). Prospect Theory: an analysis of decision under risk. Econometrica,
Vol. 47, No. 2, pp. 263-291.

London First. (2012). Crossrail 2: Supporting London's Growth. Interim report of London First's
working group. Accessed December 26, 2012. Available online at <http://londonfirst.co.uk/wp-
content/uploads/2012/08/120515_Crossrai_2-_Supporting_Londonsgrowthreport.pdf >.

Mayor of London. (2010) Mayor's Transport Strategy. Accessed December 27, 2012. Available online
at <http://www.tfl.gov.uk/corporate/11610.aspx>.

Nassier, N., Khani, A., Lee, S.G., Noh, H., Hickman, M. (2011) Transit Stop-level O-D Estimation
Using Transit Schedule and Automated Data Collection System. Submitted for Presentation and
Publication, 90* TRB Annual Meeting, January 23-27, 2011.

Paul, E. (2010) Estimating Train Passenger Load from Automated Data Systems: Application to
London Underground. Thesis, Master of Science in Transportation, MIT.

Pender, B., Currie, G., Delbosc, A., Shiwakoti, N. (2012) Planning for the Unplanned: An International
Review of Current Approaches to Service Disruption Management of Railways. Australasian
Transport Research Forum 2012 Proceedings, 26-28 September 2012, Perth Australia.

Ravichandran, H. (2012) Estimating passenger load on the Piccadilly Line. Unpublished work at MIT.

Schil, M. (2012) Measuring journey time reliability in London using automated data collection
systems. Thesis, Master of Science in Transportation, MIT.

Transport for London (TfL) Heartbeat. Heartbeat. No specific date. Internally accessible system
providing information about the status of present and historical service on the London Underground.

Transport for London (TfL) Network Operations Centre (NOC). Guidelines for passenger notifications.
No specific date. Internally accessible system.

Transport for London (TfL). (2011a) Developing a reliability metric of LU customers. Customer
research conducted by 2CV for TfL.

Transport for London (TfL). (2011b) NACHS 2014 Explanatory Notes Part A: Using the CuPID
Calculator.



Bibliography |1.67

Transport for London (TfL). (2012a) Budget 2012/2013. Accessed January 2, 2013. Available online
at < http://www.tfl.gov.uk/assets/downloads/2012-13-budget-tfl-march2012.pdf>.

Transport for London (TfL). (2012b) London Rail and Tube Services Map. Accessed January 1, 2013.
Available online at <http://www.tfl.gov.uk/assets/downloads/london-rail-and-tube-services-map.
pdf>.

Transport for London (TfL). (2012c) Travel in London Report 5. Accessed December 28, 2012.
Available online at <http://www.tfl.gov.uk/assets/downloads/corporate/travel-in-london-report-5.
pdf>.

Transport for London (TfL). (2012d) Business Plan: Transport for London's plans for the next decade.
Accessed December 26, 2012. Available online at <http://www.tfl.gov.uk/assets/downloads/
corporate/tfl-business-plan-2012.pdf>.

Transport for London (TfL). (2012e) Annual Report and Statement of Accounts. Accessed
December 29, 2012. Available online at <http://www.tfl.gov.uk/assets/downloads/corporate/tfl-
annualreport-2012.pdf>.

Transport for London (TfL). (2013) Company information. Website, with many sources about the
organization. Accessed January 12, 2013. Available online at <http://www.tfl.gov.uK/corporate/
about-tfl/4510.aspx>.

Tr6panier, M., Morency, C., Agard, B. (2009) Calculation of Transit Performance Measures Using
Smartcard Data. Journal of Public Transportation, Vol. 12, No. 1, pp. 79.

Uniman, D. (2009) Service Reliability Measurement Framework using Smart Card Data: Application
to the London Underground. Thesis, Master of Science in Transportation, MIT.

Vald6s-Diaz, D., Martinez, F., Bartolomei Su6rez, S., Colucci, B. (2005) Analysis of Disruption Causes
and Effects in a Heavy Rail System. Third LACCEI International Latin American and Caribbean
Conference for Engineering and Technology, "Advances in Engineering and Technology: A Global
Perspective," 8-10 June 2005, Cartagena de Indias, Colombia.

Van der Hurk, E., Kroon, L., Mar6ti, G., Vervest, P. (2012). Dynamic Forecast Model of Time
Dependent Passenger Flows for Disruption Management. In Voss, S., Munoz, J.C. (Eds.). CASPT.
Santiago, Chili: CASPT.

Von Neumann, J., Morgenstern, 0. (1944). The Theory of Games and Economic Behaviour. Princeton,
NJ: Princeton University Press.


