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Abstract

Carbon related systems have attracted a large amount of attention of the science

and technology community during the last few decades. In particular, graphene and
carbon nanotubes have remarkable properties that have inspired applications in sev-

eral fields of science and engineering. Despite these properties, creating structurally

perfect samples is a difficult objective to achieve. Defects are usually seen as imperfec-
tions that degrade the properties of materials. However, defects can also be exploited
to create novel materials and devices. The main topic of this thesis is studying the
effect of isotope doping on the phonon properties of graphene. The advantage of the
isotope enrichment technique is that only phonon frequencies or thermal properties
can be modified without changing the electrical or chemical properties. We calculated
the values of the phonon lifetimes due to isotope impurity scattering for all values of
isotopic fractions, isotopic masses and for all wavevectors using second order pertur-
bation theory. We found that for natural concentrations of 13C, the contribution of
isotopic scattering of optical modes is negligible when compared to the contribution
from the electron-phonon interaction. Nevertheless, for atomic concentrations of 13C
as high as p = 0.5 both the isotopic and electron-phonon contributions become com-
parable. Our results are compared with recent experimental results and we find good
agreement both in the 13 C atomic density dependence of the lifetime as well as in the
calculated spectral width of the G-band. Due to phonon scattering by 13C isotopes,
some graphene phonon wavefunctions become localized in real space. Numerical cal-
culations show that phonon localized states exist in the high-energy optical phonon
modes and in regions of flat phonon dispersion. In particular, for the case of in-plane
optical phonon modes, a typical localization length is on the order of 3 nm for 13C
atomic concentrations of p ~ 0.5. Optical excitation of phonon modes may provide a
way to experimentally observe localization effects for phonons in graphene.
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Title: Professor
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Chapter 1

INTRODUCTION

Carbon related systems have had a large impact on science and technology in the

last few decades. Because carbon atoms are bonded together by covalent bondings

and due to the low atomic number, the carbon-carbon bond is one of the strongest

chemical bonds found in nature. The carbon orbitals hybridize in many different

forms such as spi, Sp2, sp 3 , etc., and as a consequence, carbon is naturally present

in many allotropic forms. The initial work done on three-dimensional graphite was

later extended to zero-dimensional fullerenes and one-dimensional nanotubes. More

recently, the interest in carbon related systems has increased exponentially since

individual layers of graphite, called graphene, were individually isolated [5] forming a

novel two-dimensional system. This novel nano-material has extraordinary electrical,

optical, thermal and mechanical properties and for this reason numerous applications

in a large variety of fields are being studied. Among them we can mention graphene

as a ballistic transistor [6, 7], sensor [8, 9, 10], electrode [11] and coating [12]. At the

same time, in addition to these, carbon nanotubes [13], which can be understood as

a rolled sheet of graphene, can be used as a structural material [14, 15].

Even though large samples of graphene can be produced with high purity, the pres-

ence of defects is very difficult to avoid. In fact, because graphene is two-dimensional,

long-range carbon order is only possible at zero temperature (Hohenberg-Mermin-

Wagner theorem [16]). At finite temperatures, topological defects such as dislocations

are always present. Although defects can be seen as imperfections in the material
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that can degrade its properties, defects can actually be used to generate novel de-

vices. Understanding from a fundamental point of view the effect of defects on these

nanomaterials is a first step towards this goal. At the same time, the fact that carbon

nanotubes and graphene are one and two-dimensional systems, respectively, allows us

to study defects in a different setting than what is conventionally done (i.e., in 3-D).

As an example, dislocations, which can be seen as line defects in a 3-D material, can

become less intuitive in lower dimensions [17].

1.1 Basic Properties and Applications

Graphene is a single layer of carbon atoms in an hexagonal lattice. Atoms hybridize

with sp 2 bondings and the r-bonds are mostly responsible for its electronic properties.

Graphene has no band gap but the electronic density of states vanishes at the Fermi

level. The electronic dispersion relation is linear in E vs. k at the corners of the

Brillouin zone (BZ), also called Dirac cones (see Fig. 1-1(a)) and can be described

as Ek - vF k1, where VF = 106 m/s is the Fermi velocity and k is the wavevector

with respect to the K-point. Therefore, the effective mass of the electrons at the

Dirac point is zero, leading to interesting electronic properties. The electron mobility

is remarkably high, in excess of 15000 cm 2 /Vs [18]. From a fundamental point of

view, interesting physics occurs in this system, such as the anomalous Quantum-Hall

effect [19], surface enhanced Raman spectroscopy (SERS) [20, 21] and remarkable

spin transport phenomena [22].

The thermal conductivity of graphene at room temperature is on the order of

4000 W/mK [23], which is remarkably high as in other carbon systems like carbon

nanotubes and diamond. The phonon dispersion relations are plotted in Figure 1 (b).

Similarly, their mechanical properties make graphene and carbon nanotubes one of

the strongest materials known, achieving a Young Modulus of approximately 0.5 TPa

[24].

Several applications can exploit the properties of graphene. From a technological

point of view, some of the most interesting properties are the high mobility, me-
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Figure 1-1: (a) Graphene electronic band structure for ?r and a bands and (b) phonon

dispersion relations [1].

chanical and electrical resilience [25], absence of back-scattering [26] and high crystal

quality [25]. Graphene has great potential in high-speed and high-frequency elec-

tronics, achieving operating frequencies of 300 GHz [7]. The high carrier mobility,

tunable band-gap, ballistic transport and transparency make graphene ideal for op-

toelectronic devices. Some of the applications based on this aspect are touch-screens,

light-emitting diodes and solar cells. Because graphene has a low electronic noise,

graphene is highly sensitive to chemical species and this can be exploited in sensors.

Individual gas molecules can be detected [8] and, additionally, graphene can also be

used when high sensitivity to electrical charge, magnetic fields and mechanical strain

are required. Because of its small thickness, graphene can also be used as an electrode

material for capacitors [27] in rechargeable batteries, for instance.

1.2 Types of Defects

1.2.1 Edges

As in every crystal structure, graphene has boundaries (also called edges) which are

one-dimensional. The high-symmetry edges are the armchair and the zig-zag edge

which have different symmetries from one another (Fig. 1-2). In the context of
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Figure 1-2: Zig-zag and Armchair edges in graphene.

carbon nanotubes, unzipped nanotubes form graphene nanoribbons. The process of

unzipping has been developed in the last few years [28]. Elementary calculations

using tight-binding approaches show that the type of edge influences whether the

material is metallic or semiconducting. Armchair graphene nanoribbons (AGNR)

can be both metallic (only when N=3M-1, with M an integer and N defined as in Fig.

1-2) or semiconducting depending on the width of the nanoribbon, but all zig-zag

graphene nanoribbons (ZGNR) are metallic, with a high density of electronic states

at the edges. Moreover, ZGNR are more reactive than AGNR [29, 30]. This shows

that properties that seem to be unrelated to the electronic transport such as the

nature of the edge, can have an important effect on the properties of the nanoribbon.

Optical techniques like Raman spectroscopy can be used to characterize graphene

nanoribbons at the moment of fabrication. With more elaborate calculations, it is

found that all nanoribbons have an energy gap [31], but in the case of ZGNR, the

gap is a minigap of the order of a few meV.

For electronic applications, it is necessary to open a gap on the order of a few

hundred meV. Calculations show that increasing the ribbon width decreases the gap

and therefore, it would be necessary to decrease the dimensions of the ribbon to the

nanoscale for realistic calculations. Functionalizing edges for chemical applications
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is also another area of research. Edges can also produce magnetism in nanoribbons,

which can also have potential applications in spintronics [22].

1.2.2 Vacancies

The presence of vacancies create disconnection between atoms. In perfect graphene,

each carbon atom bonds with three other carbon atoms. Ion irradiation can produce

vacancies in graphene [32]. As in three dimensional structures, vacancies will pro-

duce a distortion of the lattice in non-trivial ways. In the case of graphene, we can

find different structures such as vacancies, di-vacancies, tri-vacancies and Thrower-

Stone-Wales (TSW) defects (Fig. 1-3). Further theoretical work on the generation of

vacancies needs to be done. Experimental work that can elucidate the effect of vacan-

cies can be done using TEM. In addition to changing the basic properties of graphene,

these sites can be functionalized with different atoms or molecules for specific sensor

devices.

1.2.3 Topological defects

Topological defects do not change the connectivity of carbon in the lattice, but they

produce changes in the physical properties. Among defects we can include heptagon-

pentagon dislocations, Thrower-Stone-Wales (TWS) defects (see Fig. 1-3), double

pentagon-octagon, double heptagon-pentagon, grain boundaries and extended line of

defects [33].

The main effect of the TWS transformation is a 900 rotation of a bond preserving

connectivity and producing no dangling bonds [34]. Theoretical work has been done

to create lattices which, in addition to hexagons, also have pentagons and heptagons

in either a local way or in an ordered way (for instance, like in Haeckelites [35]).

This becomes a geometrical problem in which an ordered arrangement has to be

constructed to form more complicated structures. For instance, it has been shown

through TEM imaging that in low angle grain boundaries these complex structures

are formed. Even though this is the simplest way to create a topological defect, other

12



Figure 1-3: Construction of a Thrower-Stone-Wales (TSW) defect. One C-C bond is
rotated by 900 to form two pentagons and two heptagons.

types of structures have been proposed like 8-5-8 structures, T5T7 structures, etc.

These defects are reactive and can be used to trap atoms or molecules. Inclusion

of these defects in the study of properties has been done in thermal transport [36],

chemical functionalization [37], mechanical properties [38] and electronics [39, 40, 41].

1.2.4 Substitutional Atoms

Chemical, electronic and thermal properties of graphene can be modulated in a con-

trolled manner by substitutional doping. Atoms in the hexagonal lattice are substi-

tuted by dopants (N, B, P, etc.) that disrupt the sp 2 hybridization and cause changes

in the band structure as well as an enhancement of specific properties. Graphene can

be functionalized and such a material can, for instance, be used in sensors. Dopants

can induce an opening of band gaps and achieve a metal-semiconducting transition.

For this purpose, theoretical work was done on nitrogen [42], boron [43, 44], sulfur

[45] and silicon [46] doping, achieving band gaps of up to 0.6 eV. Another way of dop-

ing graphene is to modulate the thermal properties without altering the electronic

properties, and this is achieved by 13 C isotope doping [47]. This effect is the main

topic of this thesis.
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1.3 Outline

The outline of this thesis is as follows. In Chapter 2, the fundamentals of Raman

spectroscopy will be introduced in order to understand the general context of the

present work. Additionally, the physics of phonons is reviewed and the methods

that were used to calculate the important quantities are described. In Chapter 3 we

present the results of the phonon lifetime calculations as well as phonon localization

effects [2]. In Chapter 4 we present the conclusions of this thesis and future work.
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Chapter 2

THE PHYSICS OF PHONONS

AND RAMAN SPECTROSCOPY

2.1 Fundamentals of Raman Spectroscopy

When shining light on to a material, part of the photon beam is transmitted, while

the rest interacts with the material causing absorption, reflection, light scattering and

photoluminescence. The exact way in which this interaction occurs depends on the

details of both the electronic and the vibrational properties of the material. There-

fore, light scattering techniques can be used to probe the fundamental excitations of

molecules and solids.

When light scatters inelastically, the energy of the incident light will be different

from the energy of the outgoing light, and this energy difference can be measured

experimentally. The inelastic scattering of light is called the Raman effect. Figure

2-1 shows a typical Raman spectra for graphene and graphite in which the x-axis

indicates the difference in wavelength between the incoming and outgoing photons.

The incident photon can decrease or increase its energy by creating (Stokes process)

or destroying (Anti-Stokes process) a phonon. Due to the conservation of energy and

momentum, we have

s- E±Eq 
(2.1)

k, = k+ k q
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where Ej (ki) is the energy (wavevector) of the incident photon, E, (k,) is the energy

(wavevector) of the scattered photon and Eq (q) is the energy (wavevector) of the

created or annihilated phonon where momentum and wavevector are related by p =

hk, h being the Planck's constant divided by 27r. The interaction between phonons

and light is mediated by electrons, and the strength with which this interaction occurs

depends on the polarizability of the material. At very specific energies, resonances

can occur and the shape of the Raman peak can be described reasonably well as the

response of a damped harmonic oscillator (corresponding to one lattice mode with

wavevector q) with a characteristic frequency wq forced by an external field (light)

of frequency w and damping parameter Eq. Thus, the intensity of the peak is of the

form

Io 1
I(w) = 0 1 )2 2 (2.2)

7rFq (W - )2Uq + (2

The damping energy is related to the lifetime of the phonons. The energy-time

uncertainty principle gives an uncertainty in the phonon energy given by AEAt a h

from which we can relate the damping parameter with the inverse lifetime of a phonon.

There are several reasons why phonons have a finite lifetime. On the one hand, the

anharmonicity of the potential, which is responsible for thermal expansion and the

finite thermal conductivity, causes phonon-phonon interaction. Additionally, phonons

interact with electrons, which may cause the excitation of an electron from the valence

band to the conduction band. Finally, impurities in the crystal may cause phonon-

impurity scattering, and this will be the main topic of this thesis.

2.1.1 Quantum Description of the Raman Process

A realistic description of the Raman process requires us to describe the physics from

a quantum-mechanical point of view. As mentioned before, the interaction between

light and phonons is mediated by electrons and, therefore, a large number of different

processes are possible. To keep track of all the relevant processes that may occur,

Feynman diagrams, such as those shown in Fig. 2-2, are useful. Such diagrams sim-

plify the interpretation of the Raman process. Each node on this diagram represents

16
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Figure 2-1: Typical Raman spectra of graphene. Typical features include the

symmetry-allowed G-band and the G'-band. Other lower intensity features also are
observed, but not discussed further in this thesis.

an interaction, which translates into matrix elements of the interaction between elec-

trons, phonons and photons in the Raman calculation. A typical Raman intensity

calculation involves calculating these matrix elements and obtaining expressions of

the type

2

I o 1 (ile_(_s)|_k')(k' e-p (q)_Ik)_(kIe iser_ 2 6(Easer - hwq - hw) (2.3)
k,k' [Eiaser - (Ek - Ei)][Eiaser - hWq - (Ek, - Ej)]

where li)(Es) denotes the initial state (energy) of the system, Wiaer (Eiaser) is the

frequency (energy) of the incoming phonons (the source is a laser line), w, is the fre-

cuency of the scattered photons, k (Ek) and k' (E,) represent intermediate electronic

states (energies), and WeR(Leph) denotes the electron-photon (electron-phonon) in-

teraction matrix. Higher order processes will include more nodes in the diagram,

and will result in more complicated expressions than Eq. (2.3), but the idea is still

the same. In this work we focus on the effect of the phonon lifetime on the Raman

spectra, so it will not be necessary to evaluate expressions of the form of Eq. (2.3).

A detailed description of the Raman calculation can be found in [1].
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Figure 2-2: Examples of Feynman diagrams for scattering processes that contribute

to Stokes Raman scattering. Here wi (w,) is the frequency of the incident (scat-
tered) photon and k and k' are the corresponding wavectors of electron-hole states.
Each node represents an interaction between an electron and a photon or between an

electron and a phonon.

2.2 Isotope impurities

The 13 C isotope exists in natural carbon in a 1.1% abundance and the remaining 98.9%

are "C. Because of the low concentration of 13C, we can usually neglect this isotope

effect for discussing the physical properties of graphene-related materials. However,

if we consider, for example, the intrinsic spectral linewidth in Raman spectroscopy,

the isotope effect might be essential as one of the important intrinsic scattering mech-

anisms. When we intentionally increase the 13C isotope concentration in an sp 2 ma-

terial, the resulting graphene-related material made of varying concentrations of 13C

has provided interesting information for gaining a better understanding of phonon

related properties [48] as well as growth mechanisms [49, 50]. The advantage of the

isotope enrichment technique is that only phonon frequencies or thermal properties

can be modified without changing the electrical or chemical properties, so that we

can distinguish effects due to the electron-phonon interaction from those associated

with electronic or electron-electron interactions in making assignments for unassigned

18



optical spectral features [48, 51, 52]. In the case of crystal growth, if we substitute

a 12 C atom in a gas source molecule by a 13C atom, we can get information on how

the carbon atoms from the gas molecule are used for the crystal growth of carbon

nanotubes [49 and graphene [50].

Miyauchi et al. [48] made a 100% 13C single wall carbon nanotube (SWNT) sample

by chemical vapor deposition using 13 C ethanol. Comparing the Raman spectra

of 13C SWNTs and 12C SWNTs, they assigned the phonon-assisted peaks in the

photoluminescence spectra. Kalbac et al. [51] observed the Raman spectra of a

special bilayer graphene sample on a substrate, in which the top (bottom) layer of the

bilayer graphene consisted of pure 12C (13C) so that they could separately investigate

the single layer components of bilayer graphene. Costa et al. [3] observed a frequency

shift and broadening of the Raman G-band in single wall carbon nanotubes as a

function of 13C concentration, and they suggested that these effects were caused by

phonon localization due to the elastic scattering of phonons by the 13C atoms [3]. In

addition, they studied the laser energy dependence of the G' and D bands for pure

12 C and pure 13 C samples. They found for each band that the slope of the curve,

which is sensitive to the electronic structure, does not change with the isotope mass.

This result serves as strong experimental evidence that isotope enrichment does not

modify the electronic structure.

Many theoretical works are focused on thermal transport properties of isotope-

enriched samples. Savid et al. [53] studied the phonon transport of isotope disordered

SWNTs and boron nitride nanotubes in the presence of isotope disorder by an ab ini-

tio calculation. They calculated the reduction in thermal conductivity due to the

impurities, and they concluded that the reduction is mostly due to diffusive scat-

tering of phonons by the isotopes. More recently, Yamamoto et al. [54] extended

the previously mentioned calculations to study phonon transmission fluctuations in

carbon nanotubes, finding a universal behavior with respect to phonon transmission,

tube chirality, and concentrations and masses of isotopes. In these two works [53, 54],

the three transport regimes (ballistic, diffusive and localized) are observed, and local-

ization lengths are calculated via atomistic Green's function formalisms, while local-
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ization effects of the phonon wavefunction are not discussed. As pointed out by Savid

et al., localization effects are difficult to observe in thermal transport measurements

because the thermal conductance is mostly dominated by the ballistic and diffusive

contributions. The localization regime appears in the high-energy optical modes, and

thus special experimental techniques capable of probing these high-energy modes are

required to observe any localization effects.

We are here interested in optical phonon scattering and the localization effect

in graphene which are the main topics of the present thesis. Phonon localization

is another example of Anderson's localization theory [55, 56], which is applicable

to several wave phenomena like light [57] or water waves [58], but has in the past

been mostly associated with electronic transport in disordered crystals. When the

phonon wavefunction is localized, the phonon mean free path Aph becomes finite and

proportional to the square of the localization length A .

When we discuss the electron-phonon interaction of graphene [59, 60], we generally

treat the phonon wavefunction as delocalized in the crystal. However, in a naturally

ocurring graphene sample, we know that 1.1% of the atoms are 13C and thus phonons

have a finite lifetime r and a finite localization length A due to the phonon scattering

by C, which is one of the main contributions to the natural linewidth -/ of the

Raman spectra. Further, we need theoretical understanding on how the localization

length A of the phonon is changed as a function of 13C concentration so that we can

explain the experimental observations of Costa et al [3].

In this work, we calculate the phonon wavefunction in a large unit cell, large

enough so that the localization length A is smaller than the size of this unit cell.

When we add an impurity to a perfect crystal lattice, the translational symmetry is

broken, and the wavevectors associated with the unit cell are no longer good quantum

numbers. This means that phonons are scattered into other states, and some of the

wave functions are localized in real space by mixing many q-states, where q is the

phonon wavevector.

It should be mentioned that the anharmonicity of the vibration also produces

phonon scattering. However, we do not include here this effect for simplicity. Since
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the anharmonicity effect should be significant for large phonon amplitudes, this phe-

nomenon is important only for high temperatures and can, in principle, be tuned in

experiments.

Our objective in the present work is two-fold. On the one hand, we calculate

the optical phonon lifetimes due to impurity scattering in order to have a value to

compare with competing processes. The advantage of performing this estimation is

that, assuming all scattering processes to be independent (Matthiessen's rule), our

calculation of A provides a way to directly compare the lifetimes of the different in-

teractions which are important for phonon properties, such as the electron-phonon

interaction and localization effects. Additionally, we calculate the localization length

as a function of impurity density to study localization effects caused by isotope impu-

rities. We focus particularly on the LO and iTO modes because of their importance

in the Raman G-band.

2.3 Phonons

We solve the phonon lifetime and localization problem within the harmonic approxi-

mation in which up to 4-th nearest neighbor interactions are considered and use the

force constants of Jishi et al [4]. The unit cell and the BZ of graphene are shown in

Fig. 2-3. The effect of adding a 1 C isotope impurity to the lattice will not modify

the force constant parameters, as the extra neutron in each nucleus will not modify

the chemistry of the bonding. However, the isotope impurity will affect the dynam-

ics due to the increased mass of the ion which is incorporated into the perturbed

Hamiltonian. In 2.3.1 we briefly describe the solution to the unperturbed problem, in

which we obtain expressions that will be useful for calculating phonon lifetimes, and

in 2.3.2 we introduce perturbations in describing the model we used for the estimation

of phonon lifetimes.
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Figure 2-3: (a) Unit cell of graphene and the translation unit vectors a1 and a 2 . (b)
The BZ of graphene. Here a is the lattice constant of graphene (0.246 nm). From
Ref. [2].

2.3.1 Unperturbed Hamiltonian

The unperturbed Hamiltonian of phonons, within the harmonic approximation, is

given by

H = 1 * 2 , (2.4)

where the subscript i labels the unit cell in the supercell and V labels the atom within

the unit cell (i.e., i = 1, 2, ... , N, and v = 1, 2 which corresponds to the graphene

sublattice A or B, respectively) and u' and p' are the amplitude and momentum

of vibrations at the (i,v)-th atom, respectively. The term VA"' is the interaction

potential between the atoms at (i, v) and (j, v'), and m, is the mass of the atom at

site v within the unit cell. u' and p / satisfy the commutation relation

[ujlp ',] = ihojj6,,i ow , (2.5)
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where 1,l' = x, y, z. u' and pf' can be expressed by a Fourier transformation for

wavevectors q within the BZ

u =u" (2.6)
qV

and

P" = p",(2.7)

where rf' is the equilibrium position of atom (i, v). Then Eq. (2.4) can be expressed

in terms of q rather than i, j

H = q P q + E U q ,q (2.8)
H=v 2 m, ,, 2(2.8)

where V"'= E, Ve"e' - We diagonalize the Fourier transform of the inter-

action potential <bq according to

e en"'1  = W e", (2.9)

where wqn (eqn) is the eigenvalue (eigenvector) of the n-th normal phonon mode

for wavevector q. The eigenvectors eqn satisfy the normalization condition e"*-

e "','= o,'. Further, we define the displacement Xq, of the n-th normal mode with

wavevector q by

X, = ji ," uv" (2.10)

and similarly for the momentum

1
Pqn =Z eg", . p". (2.11)

The Hamiltonian of Eq. (2.8) is thus simplified to

P,n P 2 Xt X2q1
H = 2 2 ,(.2
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where [Xq,, Pq,,,] = ih6
qq'inn'. Finally we define the annihilation and creation opera-

tors, respectively, as

aqn = (Xqn + iPt qn/Wqn), (2.13)

and

at = n(Xt - iPqn/wqn), (2.14)
q2 h qn

which satisfy [aqn, a ,i,] = 6
qq6nn,. The Hamiltonian now becomes

H = hWqn(a aq + ). (2.15)
q n q 2

2.3.2 Estimation of the Phonon lifetime

There are two ways to calculate the phonon lifetime for each phonon mode. In the

first approach, we can use the eigenstates and eigenvalues found for a large graphene

supercell and use these values to determine the T-matrix [611. In the second approach

we can treat the change in the mass matrix as a perturbation and find the phonon

lifetime using perturbation theory. We use the second approach to gain better physical

insight and to obtain explicit analytic expressions.

If we add "C isotope impurities into the lattice, we can consider the Hamiltonian

in Eq. (2.4) in which we set the mass m, equal to the average mass m = Ei,, mi,,/2N.

Then, the perturbation to the Hamiltonian AH is due to the kinetic term (expressed

in terms of velocities) and given by

A , 2-U/*U (2.16)

where fj'' = (mj - m)/m. We can express Eq. (2.6) in terms of creation and annihi-

lation operators atn and aqn using Eqs. (2.13) and (2.14)

u = . eNI: e (aqn + atqn)e'n, (2.17)
qn \ 2NWuqn
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and then replace Eq. (2.17) in Eq. (2.16) to obtain

AH= h"'(agnat qin,+ atqnaqn,), (2.18)
qq'nn'

where we dropped the terms involving the product of two creation (annihilation)

operators as they do not conserve energy. These two terms that were dropped are

going to be relevant beyond second order perturbation theory. The amplitude for

scattering a phonon from q to q', denoted by hqqt', is given by

h"' hR(q, q') ,,,e (2.19)
qq 4N Wnqn

where we defined R(q, q') as

R(q, q') = fj''e4-'-rj". (2.20)

We can use the Fermi golden rule to determine the transition rates Pay for phonon

scattering from the initial state (i) to final state (f)

Pi-+f = I(f AHji)|26(Ef - Ei), (2.21)

within second order perturbation theory. The transition probability for scattering

from state (q, n) to (q', n') is given by

Py," = Nqn(Nq'n' + 1)|hq"' 2 6(hwqn - hwqni), (2.22)

where Nqn (Nqtn') is the number of phonons in state (q, n) ((q', n')), and the lifetime

of the phonon mode (q, n) is then given by

q- = 2N 2  | IR(q, q')|2 in(e* , ,g) 2 6(wqn - wqini). (2.23)
n 2Nq1 ni q

Because we assume that the impurities are randomly distributed, we can use the

random phase approximation to evaluate I R(q, q') 12. If we take an ensemble average
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of |R(q, q') 2 over different realizations of the isotopically doped samples

(IR(q, q') I') fl fil e (2.24)

we obtain
(jRq~q~2)= =N Am 2 p(1 _ p)

(R(q, q)|2 p) (2.25)
(MO + pAM)2

where p is the number density of 13 C (0 < p < 1), mo is the mass of 13C and Am is

the mass difference between 12 C and 13 C isotopes. We discussed previously that our

unperturbed Hamiltonian of Eq. (2.4) is the one corresponding to the average mass

i so that the frequency spectrum is equivalent to the one corresponding to pure 12C

but scaled as x (n)-1/2 in the case of general p. Thus, if we rescale frequencies as

W = W0 rG/mo, where mo is the mass of 12 C, we can factorize the density p and

isotope mass dependence (mo + Am) from the summation in Eq. (2.23), yielding

-1 _ r(P) 0 2 0OWOn

T 2 o eW W', e*(Wqn - (2.26)

where the frequencies Wqn correspond to the n-th phonon mode frequency at q of 12C.

The function f(p) contains all the information about isotope mass and density;

Am 2 p(1 - p) mno
f(p) = .m2PO-P (2.27)

(mo + pAm) 2  mo + pAm (

The function f(p) is plotted vs. isotope density p in Fig. 2-4 for the cases of 13 C and

"C. Here we see that the effect of using 14 C instead of 13 C in doping 1 2 C produces a

reduction of the lifetime by a factor of approximately 4. However, 14 C is an unstable

isotope, while 13 C is stable and is found in naturally occurring materials. Thus we

focus on 13 C for the rest of the thesis. Nevertheless, we keep in mind that using "C

just changes the prefactor of Eq. (2.26) as plotted in Fig. 2-4. In addition, we can

transform Eq. (2.23) into an integral over the BZ, yielding

-1 = f d 0W0, .,2 oTq :d&0'wo, w(e* e' w (2.28)
87rnw qn qqn qn/\ qn - qn'I
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Figure 2-4: Isotopic density dependence of the lifetime given by the function f(p) as
defined in Eq. (2.27). From Ref. [2].

where S is the area of the unit cell. Here we emphasize again that the term inside the

summation of Eq. (2.28) has no dependence on impurity density or isotope mass, so

that the integration of Eq. (2.28) can be done using pure 12C eigenstates and eigen-

values, independent of the particular isotopically doped sample we are considering.

Therefore, we can express Eq. (2.28) as

T- (P) = f(p)Ign, (2.29)

where the function f(p) contains the density p dependence of the lifetime, while Iqn

contains the wavevector (and frequency) dependence and gives the correct units of s-1.

The value of Iq, is increased as we go to modes with higher frequencies and in points of

the BZ with a high density of states. In the next sections we will drop the superscripts

0 in Eq. (2.28) but taking into account that we are referring to the eigenstates and

eigenvalues of a pure sample containing only 12 C atoms. Eq. (2.29) is the result

of using second order perturbation theory and the random phase approximation.

Inclusion of higher order terms in the perturbation expansion will result in a more

complicated expression of the phonon lifetime in Eq. (2.29) in which the p density

dependence can no longer be factorized.
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Figure 2-5: (a) An example of a supercell, with N=30 unit cells and 60 carbon atoms.
Here N, and Ny label the number of unit cells in the x and y directions, respectively.
(b) The BZ of this supercell. From Ref. [2].

2.3.3 Localized states

To estimate the localization length A of the localized states, we numerically solve the

Hamiltonian of a supercell containing N unit cells of graphene. Even though this

approach may become time consuming for unit cells large enough to do quantitative

calculations, the advantage of numerically calculating the eigenstates and eigenvalues

(as opposed to using perturbation theory) is that we can obtain additional information

about the eigenstates that would be difficult to calculate otherwise. An example of

the type of supercell consisting of 2N atoms that we used in our calculations is shown

in Fig. 2-5. Here we introduced periodic boundary conditions for the supercell.

Because of the breaking of the translational symmetry by the introduction of "C

impurity atoms, we change the labels from u', with i = 1, 2, ..., N and v = 1, 2,

to uP , with i = 1, 2, ..., 2N. Therefore, the displacements u" in the supercell have

6N components. The diagonalization of this problem is analogous to the case of the

unperturbed Hamiltonian, but in this case we diagonalize the large 6N x 6N (real)

matrix V""' according to

V e/l' - w2ee, = ojf, (pu=1, ..., 2N; j= 1, ... , 6N), (2.30)
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in which w3 (er) is the eigenvalue (eigenvector) of the j-th normal mode. The or-

thonormal condition on the eigenvectors ej is given by

2N

: e . ei, = ogg . (231)
p=1

If we have extended states, on average leI R 1/v/N. On the other hand, for a

highly localized state we have |ef| e 1 for only a few atoms and lef| e 0 for the rest.

Therefore, we can distinguish localized states from non-localized states by defining the

second moment of the displacement field A (also known as the inverse participation

number [62]) as

A = E(e . et/)2. (2.32)

Most of the eigenstates will be extended states, in which case Aj 3 1/N, while for

localized states Aj is much larger and A, . 1.

At the same time, the function Aj is also useful to estimate the localization length

Aj of the eigenstates j, since A3 and A3 are related by A, oc A1 1/ 2 [56]. As we know,

for the 13 C concentration p = 0, all states are extended states. We can then estimate

the localization length of state j by

A. Ao 1/2
-_ = I-I(2.33)

Ao AJ '

where A0 is the size of the supercell and A0 is the average value of A for the special

case of a pristine graphene sample with only 12C atoms.

29



Chapter 3

RESULTS

3.1 Phonon lifetime

We calculated numerically the phonon lifetime for the elastic scattering process using

Eq. (2.28). Even though we do not intend here to discuss acoustic phonon modes,

we note that an analytical expression for the lifetime of the acoustic phonon modes

can be obtained by similar means and can be found in the literature in relation to

discussions of heat transfer [63]. This will be useful to obtain an idea about the

order of magnitude of the optical phonon scattering process, but we also calculate

numerically the values of r- 1 from Eq. (2.28) for all phonon modes. Due to our special

interest in the optical modes, we discuss these modes in more detail. Then we can

compare the contribution to phonon scattering coming from the presence of isotopic

impurities with competing processes contributing to -.

3.1.1 Low energy acoustic phonon modes

For the case of low energy acoustic phonon modes in graphene, we have linear disper-

sion relations for the LA and iTA modes near the F-point, and a quadratic relation for

the oTA mode. The integration of Eq. (2.28) over reciprocal space can be done analyt-

ically for the three acoustic modes. Because of the dot product term in Eq. (2.28), we

have a decoupling in the expression of the in-plane and out-of-plane phonon modes.
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For the in-plane modes we use Wqini ~ Cntq' in Eq. (2.28), where cn, is the velocity of

the phonon mode. We can define further an average value over the BZ for the dot

product of the polarization for the in-plane modes pin = ((e* - eq'n) 2
). The exact

values for this polarization term in the case of graphene can be found in the paper by

Lindsay et al [64]. Substituting pin into Eq. (2.28) and solving the indicated integral

we obtain
i _(P)SPi " -2 U 3 f (P)SPin 3 (3 1)

Tq n 4 \\(E n gn - 22 qn

where S is the area of the unit cell. Similarly, for the out-of-plane phonon modes

using Wq, = bq'2, and pout = ((e* .eg/,ni)
2) for n =out-of-plane, we obtain for the oTA

mode

1 (p)Spout 2
rqn 8b "qn (3.2)

The order of magnitude of the phonon lifetime of the optical in-plane modes (LA

and iTA) due to isotopic impurities can be estimated by evaluating Eq. (3.1) at the

BZ boundaries and using S = 0.052 nm2 , pin ~ 0.5, c ~ 20 km/s, hWqn ~ 0.15 eV

(wqn at q ~ r/a) and evaluating f(p) at the desired 13 C density. Therefore, the order

of magnitude of the lifetime of an in-plane optical phonon mode for the natural 1 3C

isotopic density (p = 0.011) is T - 30 ps, and for a 13 C concentration of p = 0.5, we

obtain a much shorter lifetime of T - 1 pS.

3.1.2 General Phonon Lifetime

For the general case of wave vector q and phonon mode n, we do a numerical integra-

tion of Eq. (2.28) over the BZ. The value of (Tf) 1 is plotted as a function of q in the

BZ and for all phonon modes in Fig. 3-1. As discussed in connection with Eq. (2.29),

the value of (Tf)- 1 is independent of isotope density or isotope mass, and to obtain

a numerical value for the phonon lifetime T we must first calculate the value of f(p)

of Eq. (2.27) from Fig. 2-4 depending on the particular values of 13 C concentrations

in the sample. As expected, optical phonon modes are sensitively affected by the

isotope impurities, while acoustic modes close to the F-point are less affected. For

the acoustic modes, and close to the F-point, we observe the power law behavior
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obtained in the previous section, i.e., (Tf)-1 cX W oc q 3 for the in-plane modes, and

(rf)-l oWc 2 oc q4 for the out-of-plane modes. There is also a large difference in

the lifetime scale between in-plane and out-of-plane phonon modes due to the large

difference in the stiffness of the relevant modes in graphene.

We now use the calculated values of the phonon lifetime for the optical modes at

the F-point to make comparisons with previously calculated values of the electron-

phonon coupling interaction in graphene. From Fig. 3-1 we obtain that at the F-

point for the in-plane optical modes, (rf)1 e 0.8 fs- 1 and from Fig. 2-4, we obtain

f (0.5) = 1.5 x 10-3 and f (0.011) = 7.5 x 10-5 . Then, the value of the phonon lifetime

due to 13 C impurities (no other lifetime limiting effects included) is Tph-imp ; 0.83 ps

for an isotopic atomic density of p = 0.5, and a value Tph-imp _ 16.7 ps for naturally

occurring carbon. Previously calculated results for the electron-phonon coupling at

the F-point of the optical modes [65, 66] are on the order re-ph r 0.6 ps. Thus, it is

expected that for high concentrations of isotope impurities, the scattering rates for

the isotopic impurity can become as large as that for the electron-phonon interaction.

However, for concentrations lower than p = 0.1, the isotope effect makes only a minor

contribution to the phonon lifetime when compared to the electron-phonon interaction

for optical phonon modes.

Using the experimental values in Costa et al. [3] and assuming the Matthiessen

rule holds for the two scattering mechanisms (rP- 1 T r-imp + _ph), we can estimate

the contribution of the isotope impurities to the spectral width of the G-band yG- We

plot in Fig. 3-2 the experimental values of 7y2' (full-width at half maximum (FWHM))

and, taking into account that the spectral width y is related to the lifetime r as

oc T-1, we fit these values as

eYG exP f (p
7G ph= +'ph-impf( 0 5 )' (3.3)

where f(p) is defined in Eq. (2.27), and where we assume that the electron-phonon

coupling is the main competing process. The value 'xPimp obtained from the fitting

as defined in Eq. (3.3) corresponds to the linewidth at a 13 C concentration of p = 0.5.
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The values obtained from the fitting are 7Yrph = 11.2 ± 0.4 cm 1 and 7-imp

5.2 ± 0.4 cm-1 and the curve for 7G(p) is plotted with dashed lines in Fig. 3-2. We

see that the experimental data are well described by the dashed curve for our model.

The in-plane phonon optical modes at the F-point make the main contribution to the

G-band in Raman spectroscopy. If we consider our calculated value of the phonon

lifetimes at the F-point of the in-plane optical modes (Tph-imp a 0.83 ps), and using

the uncertainty principle, we obtain 'Yph-imp h/Tph-imp 6 6.0 cm -. This result is

in good agreement with the experimental result of 5.2 cm-.

Considering that isotopic defects do not interact directly with electrons, we expect

our results to extend to other Raman features. In particular, isotope impurities alone

cannot account for the presence of the D-band because of the null matrix elements

for elastic scattering of the electrons by the isotopic defects. The D-band, if present,

should originate from other types of defects and the main contribution of 13C atoms

would be to shift the D-band frequency due to the mass effect and change the spectral

width due to the reduced phonon lifetime.

3.2 Phonon Localization

To find the phonon localization length we first compute Aj = -(e e') 2 (Eq. (2.32))

for random impurities at different impurity concentrations p in a supercell. In Chapter

2 we discussed the case where if the phonon wavefunction is highly localized, A3

is close to 1, while if it is delocalized, A scales as 1/N. For our calculations we

used a supercell containing N = 2700 unit cells (Ao %13 nm) which, for natural

carbon, contains 59 impurity atoms. In Fig.3-3 we plot the phonon dispersion of

graphene as well as the localization length as a function of energy for the different

eigenstates and for an impurity density of p=O.l and p=0.2. The localization length

was normalized by AO = 13 nm as described in section 2.3.3. Here it is shown that

most states will be extended (A/Ao - 1) within the size of our supercell, but a few

states are localized. These localized states do not occur at random energies but

rather occur preferentially at high phonon energies and in regions with flat phonon

33



i A o.oefs-1 iTO .8 is-1

o Ifs~ fs0.02

1 1.

i Ao.2fs~ 2 fs~,

oTA I.0ES_ oTO 02f_

S 0:
Figure 3-1: Plot of Iq, = (rf)-1 for the different phonon modes and wavevectors in
the two dimensional BZ as defined in Eq. (2.29), where f(p) is defined in Eq. (2.27)
and plotted in Fig. 2-4. Intensity scales are plotted beside each mode map. In-plane
optical phonon modes (iTO and iLO) have a significantly lower lifetime than the other
modes. From Ref. [2].
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Figure 3-2: The points are the experimental values for the spectral width 7G (FWHM)
of the G-band obtained by Costa et al. [3] and the dashed curve is 7YG obtained by
fitting Eq. (3.3) with the values of Ye"_ph = 11.2 ± 0.4 cm and 7imp = 5.2 i 0.4
cm- 1 . From Ref. [2].
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Figure 3-3: (a) Phonon dispersion for monolayer graphene [4]. (b,c) Normalized
localization length A/Ao (AO is the size of super cell) as a function of the phonon
frequency for the atomic isotope impurity densities of (b) p=0.1 and (c) p=0.2 (surface
densities of 3.8 and 7.6 nm -2, respectively). From Ref. [2].

dispersion (near the M or F-points). For high frequencies, and in regions with flat

phonon dispersions, backscattering effects become increasingly important and thus

localized wavefunctions are observed. It is in these regions of the spectrum where the

localized regime is established when considering phonon transport, as discussed in

Savid et al [53]. Here we calculate directly the localization length of the wavefunction

using the inverse participation number Aj. Calculated characteristic lengths of a

few nanometers for the localization length A are comparable to those found using a

different approach in Savid et al. [53] and Yamamoto et al. [54] in the high energy

spectrum (in the proximity of 1600 cm-1 where the Raman G-band is located).

In the case of 1-D crystals, it can be shown that all states become localized due to

random impurities [56], and in the case of 2-D crystals, a similar behaviour is expected

as in the 1-D case. In the case of 3-D crystals, however, a transition from extended

to localized states is expected as the energy is moved towards the band edge energies.

This shows that localization phenomena is strongly dependent on dimensionality and

therefore, careful attention should be paid when comparing localization-related results

for nanotubes and graphene. Considering that the localized states under consideration

have localization lengths on the order of a typical nanotube diameter, the comparison
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is valid in this case but is no longer valid when considering lower frequency phonons

with localization lengths on the micrometer scale. In addition, the parameter space

when studying localization phenomena in carbon nanotubes is very rich because of

the tube diameter and chirality dependence which is not present in graphene.

In this work we mainly focus on the F-point of the in-plane optical modes (LO and

iTO branches) due to the dominant effect of these modes on the large G-band feature

of the Raman spectra. Thus, the present size of the supercell is sufficient for our

purposes of examining localization effects due to 13C impurities. We also plot in Fig. 3-

3 the calculated values for the out-of-plane phonon modes, where localization effects

are also visible in Figs. 3-3 (b) and 3-3 (c) (w ; 900 cm- 1). Infrared measurements

of these modes may provide further information on localization phenomena in this

range of frequencies. Even though a softening of the out-of-plane force constants

may provide an enhanced effect, it is not clear if this effect will be dominant in

an experiment because there will also be an increase of stiffness when considering

the interaction of graphene with the substrate (increase of the out-of-plane force

constants) or curvature effects if the experiments are done with carbon nanotubes.

In Fig. 3-4 (a) we plot the average localization length A for optical modes in a

phonon frequency interval corresponding to the F-point of the in-plane optical modes

(w ; 1600 cm-1) as a function of 13 C isotope concentration p. From the calculations,

a typical localization length is on the order of A ; 3 nm. Examples of the average

displacement lul of the atoms with respect to their equilibrium position as a function

of position (projected on the x-axis) for localized states are shown in Figs. 3-4 (b) and

(c) for two samples with p = 0.2 and p = 0.4, respectively. Many factors contribute

to having an asymmetric curve after averaging over many eigenstates. On the one

hand, the effect of increasing the mass of a small number of atoms in the lattice (by

adding 13 C impurities to a 12 C lattice) is not the same as decreasing the mass of a

small number of atoms in the lattice (by adding 12 C impurities to a 13C lattice). As

discussed before, the localization length is calculated from the inverse participation

number A1 since A3 oc A 1/2 , and A3 is calculated using the amplitudes of the atoms

in the eigenstate j. When we decrease the mass of a small number of atoms, the
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Figure 3-4: (a) Localization length A at the F-point of the optical phonon modes as
a function of 13C atomic density p. (b,c) Displacement (in arbitrary units) of two
different localized eigenstates as a function of position (projected on the x-axis) for
an in-plane optical mode at the F-point and corresponding to 13 C concentrations of
(b) p = 0.2 and (c) p = 0.4. From Ref. [2].

amplitude of these atoms with decreased mass within some (optical) eigenstate will

be larger than the corresponding amplitude of the eigenstate in the pristine samples,

and the opposite happens when increasing the mass of a small number of atoms.

Therefore, even though in both cases the participation number will be larger than

the one corresponding to the pristine sample eigenstates, the effect of isotope doping

will be more abrupt in the first (decreasing mass) case. In addition, as the frequency

of an oscillator scales with mass m as cx m-1 2 , when we change the 13 C density

of the sample, there are considerable changes in the density of states and therefore,

when averaging over a frequency window, the comparison of localization lengths A at

different densities p is not straight-forward. The physics behind the localization of

the eigenstates is related to the formation of islands of lower mass that vibrate at a

different frequency from the rest of the lattice. At a 3 nm length scale, for example,

around 100 atoms are vibrating in the localized mode and this regime corresponds to

the case of weak localization [67].
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Chapter 4

CONCLUSIONS

In this thesis we review the most commonly known types of defects in nano-carbon

systems and emphasize the importance of understanding their effect on the proper-

ties of the materials. We argued that even though 'perfect' graphene has remarkable

properties, actual graphene samples contain impurities. Even though impurities can

degrade some of the properties of a perfectly crystalline system, in some cases impu-

rities can also be beneficial. Our main focus in this work is to gain an understanding

how defects change the properties of graphene. The final goal is understanding the

limitations of devices as well as exploiting defect physics for technological purposes.

In the present work we studied the effects of 13C isotope doping on the optical

phonon modes of graphene. Here we calculated the values of the phonon lifetimes due

to isotope impurity scattering for all values of 13 C densities and for all wavevectors

within second order perturbation theory. These values are important for understand-

ing the details of the Raman spectra of graphene and, in particular, the spectral width

of the Raman features. Phonon lifetimes of optical phonon modes are considerably

smaller (0.8 ps) than the corresponding lifetimes of the acoustic modes (which scale

as a power law of the frequencies). We found that for natural concentrations of 13C,

the contribution of isotopic scattering of optical modes is negligible when compared

to the electron-phonon interaction. Nevertheless, for atomic concentrations as high

as p = 0.5, both contributions become comparable. Our results were compared with

recent experimental results of 13C Raman spectroscopy of nanotubes [3] and good
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agreement was found for both the density dependence of the lifetime as well as in the

calculated spectral width of the G-band. We predicted that the reduction of phonon

lifetimes by changing 13C isotopes to "C would be approximately fourfold.

The localization of optical phonons due to isotope impurities in graphene is cal-

culated by the supercell method. Due to phonon scattering by 13 C isotopes, some

graphene wavefunctions become localized in real space. Localized states appear pre-

dominantly in the high-energy optical phonon modes and in regions of flat phonon

dispersion, where backscattering effects become increasingly important. A typical

localization length is on the order of 3 nm for optical phonon modes at high con-

centrations of 13 C (in the range of number densities p = 0.2 - 0.8). Even though

we focused attention mostly on in-plane optical modes, out-of-plane phonon modes

may also provide a way to measure phonon localization effects and can be studied

experimentally by infrared measurements. Even though these modes may also show

pronounced localization effects due to reduced out-of-plane force constants, the cou-

pling of graphene with the substrate (or curvature effects when considering nanotubes)

may introduce more complicated effects.

4.1 Further Interactions

In this work we only considered 13C impurity scattering, and disregarded all other

kinds of scattering events. The objective of this approach was to obtain the char-

acteristic lifetimes associated with the 1 3 C impurity. In this way it is possible to

compare the effect of this particular scattering process with all other competing pro-

cesses to determine the relative importance of each. We compared our results for

the 13C isotopic impurity scattering process with previously calculated values of the

electron-phonon interaction which is an important process when considering optical

phonons modes and their effect on the Raman spectra. Another potentially important

term is the inclusion of anharmonic effects, which are associated with the thermal ex-

pansion of the lattice and such effects are observable through temperature dependent

Raman spectroscopy studies [68], included in molecular dynamics simulations and
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are also important in phonon transport [69], which will be a future work. Because

of the temperature dependence of the anharmonic terms, such effects can in prin-

ciple be tuned and accounted for in an experiment. In addition, inclusion of other

types of defects like vacancies, grain boundaries, dislocations, etc. is also necessary,

and understanding the relative importance of each of these scattering processes on

the phonon modes as a function of temperature and other parameters remains to be

investigated both theoretically and experimentally. In principle, static point defects

such as substitutional atoms can be studied using a similar approach as the one used

in this thesis, while extended defects such as grain boundaries or dislocations require

a different treatment.

4.2 Future Work

There are still many issues for further study. Even though there has been a consid-

erable amount of work done related to electron-phonon coupling, inclusion of anhar-

monic effects and phonon-defect interactions are also important for understanding

the phonon-related processes in Raman spectroscopy [70] and in phonon transport

more generally. Additionally, using similar procedures, this work can be extended to

study the interaction of electrons with defects. In particular, substitutional defects,

vacancies, grain boundaries and edges may make an important contribution to the

overall phonon and electron scattering processes. Calculating the relative importance

of these interactions in the full parameter space as well as understanding the signa-

tures of defects in the Raman spectra would produce results relevant not only for

basic science but also for technological applications.
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