
MIT Open Access Articles

Lattice Boltzmann method for multiscale self-
consistent field theory simulations of block copolymers

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Chen, Hsieh, YongJoo Kim, and Alfredo Alexander-Katz. Lattice Boltzmann Method 
for Multiscale Self-consistent Field Theory Simulations of Block Copolymers. The Journal of 
Chemical Physics 138, no. 10 (2013): 104123. © 2013 American Institute of Physics

As Published: http://dx.doi.org/10.1063/1.4794922

Publisher: American Institute of Physics (AIP)

Persistent URL: http://hdl.handle.net/1721.1/79659

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/79659


Lattice Boltzmann method for multiscale self-consistent field theory
simulations of block copolymers
Hsieh Chen, YongJoo Kim, and Alfredo Alexander-Katz 
 
Citation: J. Chem. Phys. 138, 104123 (2013); doi: 10.1063/1.4794922 
View online: http://dx.doi.org/10.1063/1.4794922 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v138/i10 
Published by the AIP Publishing LLC. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 24 Jun 2013 to 18.51.3.76. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2052096014/x01/AIP-PT/JCP_PDFCoverPg_0613/comment_1640x440.jpg/6c527a6a7131454a5049734141754f37?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Hsieh Chen&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=YongJoo Kim&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Alfredo Alexander-Katz&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4794922?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v138/i10?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 138, 104123 (2013)

Lattice Boltzmann method for multiscale self-consistent field theory
simulations of block copolymers

Hsieh Chen, YongJoo Kim, and Alfredo Alexander-Katza)

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA

(Received 19 September 2012; accepted 26 February 2013; published online 14 March 2013)

A new Lattice Boltzmann (LB) approach is introduced to solve for the block copolymer propagator
in polymer field theory. This method bridges two desired properties from different numerical tech-
niques, namely: (i) it is robust and stable as the pseudo-spectral method and (ii) it is flexible and
allows for grid refinement and arbitrary boundary conditions. While the LB method is not as accu-
rate as the pseudo-spectral method, full self-consistent field theoretic simulations of block copoly-
mers on graphoepitaxial templates yield essentially indistinguishable results from pseudo-spectral
calculations. Furthermore, we were able to achieve speedups of ∼100× compared to single CPU
core implementations by utilizing graphics processing units. We expect this method to be very useful
in multi-scale studies where small length scale details have to be resolved, such as in strongly seg-
regating block copolymer blends or nanoparticle-polymer interfaces. © 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4794922]

I. INTRODUCTION

Block copolymer self-assembly has been shown to be
a route for the production of exquisitely controlled patterns
with sub-10 nm resolution that can be used in lithographic
applications1–6 and may one day find other important applica-
tions in functional materials or electronics.7–9 The prediction
of block copolymer morphologies by means of computer sim-
ulations is currently a topic of intense study due to the mul-
tiple potential applications. In this respect, Self-Consistent
Field Theory (SCFT) has been shown to be invaluable in
reproducing (and sometimes predicting) experiments with a
high degree of fidelity.10–15 Within the SCFT of block copoly-
mers, one needs to evaluate the propagator of a single poly-
mer in an external field which represents the probability of
having a given monomer at a given position in space. This in-
volves either directly sampling the configurations of the poly-
mer using, for example, Monte Carlo methods,16–19 or solving
the associated Fokker-Planck equation for the evolution of the
distribution function of the polymer that has the form of the
diffusion equation in an inhomogeneous and time-dependent
field.20–23 Solving for this propagator constitutes the basis for
obtaining the mean field free energy of the system and for
evaluating other properties such as polymer densities. Here
we explore a novel and complementary approach to this prob-
lem by utilizing a Lattice Boltzmann Method (LBM) for solv-
ing for the propagator.

In the last decade, SCFT has become the gold standard
in the prediction of block copolymer morphology. One of the
key advances was the solution of the diffusion equation us-
ing a pseudo-spectral (PS) method that allowed the use of
large steps along the polymer chain while at the same time
improving accuracy when constructing the propagator.24–28

a)aalexand@mit.edu.

The pseudo-spectral method is also robust in that it is sta-
ble for all conditions. Previous methods, such as the semi-
implicit Cranck-Nicholson approach, were marginally stable
in 2D and only stable in 3D for time steps satisfying �t
< �x2/8.29–31 However, one of the advantages of real space
methods is that one can refine the meshes in situations where
better local accuracy is necessary without sacrificing velocity
of execution of the full domain. Such refinements are not pos-
sible in the traditional spectral methods because the box needs
to be periodic. In order to alleviate this, Fredrickson and co-
workers have developed very recently a new spectral scheme
using Chebyshev polynomials32 and studied the problem of
wetting. In this work the authors used a constant mesh, but
the fact that the boundary conditions are not periodic opens a
route to perform multigrid simulations using this method.

A new alternative to finite discretization schemes is to
use a lattice Boltzmann solver.33, 34 The solution to the under-
lying equations in this case emerges from a fluid lattice dy-
namics and has been used in many hard problems including
turbulence.35 This has several advantages: (i) it is intrinsically
stable, (ii) the mesh can be locally refined,36–41 (iii) arbitrary
boundary conditions are straightforward to implement, and
(iv) it is simple to parallelize and very fast codes already ex-
ist for multiple architectures.42–45 The LB approach has been
used extensively to solve the Navier-Stokes equations,46–49 re-
action diffusion problems,50, 51 finance problems,52 etc. Thus,
it constitutes a rather versatile approach to solving many
different problems involving differential equations. Here we
show that the LB approach is a viable alternative for SCFT
simulations being at least comparable in speed (if not faster)
than pseudo-spectral solvers. Our study is performed using
Graphics Processing Units (GPUs) which are also a new and
powerful alternative for massively parallel simulations.

This article is organized as follows: in Secs. II A
and II B we provide a brief overview of polymer field

0021-9606/2013/138(10)/104123/10/$30.00 © 2013 American Institute of Physics138, 104123-1
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theory and how one can find a suitable solution to the fields,
in particular concentrating on the case of diblock copolymers.
In Sec. II C 1 we briefly explain the pseudo-spectral method
and in Sec. II C 2 we introduce the LB method applied to the
case of polymers. Our local refinement approach is introduced
in Sec. II C 3. We then proceed in Sec. III A to character-
ize the accuracy of the LB method for different fields and in
Sec. III B we show the SCFT simulations with local refine-
ments. In Sec. III C we compute the morphologies of di-
block copolymers on varying commensurate templates and in
Sec. III D we provide benchmarks for the speed of the
method. We finalize with concluding remarks.

II. THEORETICAL BACKGROUND AND METHODS

A. Field theory model

In this section we briefly present the model of an incom-
pressible AB diblock copolymer melt.53 Note that it is trivial
to expand this model to triblock copolymers, polymer solu-
tions, or polymer blends.54 This model treats individual di-
block copolymers in the continuous Gaussian chain descrip-
tion, includes a Flory-type contact interaction χ among dis-
similar block segments (A and B), and constrains the total
segment number density to a constant value ρ0 at all points r
in the system volume V (incompressibility condition). The
block copolymers are assumed to be monodisperse with a
total of N statistical segments; NA segments of type A and
NB = N − NA segments of type B. Statistical segments are
assumed to occupy equal volumes v = 1/ρ0 and have equal
segment lengths b. The average volume fraction of type A
segments in the copolymer is denoted by f = NA/N.

Through the use of Hubbard-Stratonovich-Edwards
transforms, the segmental interactions in the above model
can be decoupled with two auxiliary fields. Upon tracing out
the chain coordinates, the nV T canonical partition function
can be reexpressed as an interacting (classical) statistical field
theory.54, 55 Scaling the lengths by the unperturbed radius of
gyration Rgo = b

√
N/6 and the curvilinear displacements s

along the chain contour by N, the partition function is ex-
pressed as

Z ∝
∫

D�+
∫

D�−e−H [�+,�−], (1)

where the effective Hamiltonian is given by

H [�+,�−] = −C{V ln Q[�+,�−]

+ i

∫
dr�+(r) − 1

χN

∫
dr[�−(r)]2}. (2)

The function Q[�+, �−] corresponds to the partition function
of a single polymer in the auxiliary fields i�+ (pure imagi-
nary) and �− (purely real), where i ≡ √−1. The two fields
have different roles in the theory: �+ can be interpreted as a
fluctuating pressure that enforces incompressibility, while �−
is an exchange potential that defines the fluctuating composi-
tion profile in the AB copolymer melt. In particular, the latter
field is conjugate to the local density difference between A
and B defined as

ρ̂−(r) = ρ̂A(r) − ρ̂B(r), (3)

where ρ̂A(r) and ρ̂B(r) are the local density operators of the
A and B type of monomers, respectively.

The single polymer partition function Q[�+, �−] can be
evaluated in the usual way,

Q[�+,�−] = 1

V

∫
drq(r, 1; [�+,�−]), (4)

where the function q(r, s; [�+,�−]) is a propagator that de-
scribes the probability of observing the s segment of the chain
at position r, given all possible placements of the first seg-
ment. This propagator satisfies the following modified diffu-
sion equation

∂

∂s
q(r, s; [�]) = ∇2q(r, s; [�]) − �(r)q(r, s; [�]) (5)

with the initial condition

q(r, 0; [�]) = 1 (6)

and the field �(r) defined as

�(r) =
{

i�+(r) − �−(r), if 0 < s ≤ f

i�+(r) + �−(r), if f < s ≤ 1
. (7)

Expressions for the reduced segment densities (volume
fractions) in a block copolymer melt are well-known.54 In
particular, the reduced densities of A and B segments can be
shown to be given by

φA(r; [�+,�−]) = ρA(r; [�+,�−])

ρ0
,

= 1

Q

∫ f

0
dsq†(r, 1 − s; [�+,�−])

× q(r, s; [�+,�−]) (8)

and

φB(r; [�+,�−]) = ρB(r; [�+,�−])

ρ0
,

= 1

Q

∫ f

1
dsq†(r, 1 − s; [�+,�−])

× q(r, s; [�+,�−]), (9)

where f is as before the fraction of type A segment,
f = NA/N. The single diblock partition function Q and the
propagator q(r, s; [�+,�−]) are given by Eqs. (4) and (5), re-
spectively. In the expressions we have also introduced a com-
plementary propagator q†(r, s; [�+,�−]), which is analo-
gous to q(r, s; [�+,�−]), but the propagation along the chain
starts from the B end of the polymer. The q†(r, s; [�+,�−])
propagator thus satisfies the following diffusion equation:

∂

∂s
q†(r, s; [�]) = ∇2q†(r, s; [�]) − �(r)q†(r, s; [�]), (10)

with the initial condition

q†(r, 0; [�]) = 1 (11)

and the field �(r) is now given by

�(r) =
{

i�+(r) + �−(r), if 0 < s ≤ 1 − f

i�+(r) − �−(r), if 1 − f < s ≤ 1
. (12)
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B. Numerical sampling algorithm

In this work we are interested in the so-called mean
field solution (or SCFT solution) for the polymer field the-
ory. Such an approach simply consists in minimizing the en-
ergy H[�−, �+] and finding the fields �∗

− and �∗
+ such that

∂H/∂�+/−|�∗
+/− = 0.53, 54, 56 In this work we use a simple ex-

plicit Euler forward scheme to do so. This approach has been
shown to be useful in describing many properties in the self-
assembly of block copolymers.12–15 The “equations of mo-
tion” for the fields in such a scheme are given by

�
j
−(t + �t) = �

j
−(t) − �t�

∂H [�∗
+,�−]

∂�
j
−(t)

+
√

�tηj (t),

= �
j
−(t) − �t�C{−φ

j
−(t ; [�∗

+,�−])

+ 2

χN
�

j
−(t)} +

√
�tηj (t), (13)

where �
j
− and φ

j
− represent the value of the continuous

field �−(r) and continuous reduced density difference φ−(r)
= φA(r) − φB(r) at the cubic lattice site coordinates specified
by the label j = (jx, jy, jz). The factor � > 0 is a constant relax-
ation rate. Notice that we add a term ηj(t) which is a Gaussian
real noise with first and second moments given by

〈ηj (t)〉 = 0 (14)

and

〈ηj (t)ηj ′
(t ′)〉 = 2�′δj,j ′δt,t ′ , (15)

where �′ is an arbitrary small constant used to avoid getting
trapped in metastable points. This dynamics is utilized for all
calculations and, as such, whatever effects appear from it will
appear regardless of the method used to solve the diffusion
equation which is the main contribution of this work.

For each update of the �− field we relax the �+ field as

�
j
+(t + �t) = �

j
+(t) − �t

∂H [�+,�−]

∂�
j
+

,

= �
j
+(t) − �t�iC{φj

+(t ; [�+,�−]) − 1},
(16)

where as before �
j
+ and φ

j
+ represent the value of the con-

tinuous field �+(r) and the continuous reduced total density
φ+(r) = φA(r) + φB(r) at the cubic lattice site coordinates
specified by label j. We relax �+ according to this scheme
until the variance of the reduced total density φ

j
+ averaged

over the lattice, σ 2 = 〈(φj
+)2〉 − 〈φj

+〉2, satisfies σ 2 < 0.0001,
which implies that on average the local volume fraction is be-
tween 0.99 and 1.01 at each lattice point.

C. Solving the diffusion equation

1. Pseudo-spectral method

Solving the diffusion equation given by Eq. (5) is an in-
tegral part of the field-theoretic polymer simulations, since
at each Langevin step its solution must be calculated for the
particular realization of the field �(r). The pseudo-spectral
method has been recognized as an accurate and efficient

way,24, 25 which we will briefly describe below. The basic idea
is that Eq. (5) can be formally solved as

q(r, s + �s) = exp[�s∇2 − �s�(r)]q(r, s), (17)

where the value of the function at the contour location
s + �s is constructed from knowledge of the function at the
previous contour value q(r, s). In this way, the solution to
Eq. (5) can be constructed by propagating the initial condi-
tion q(r, 0) = 1 up to s = 1 through successive applications
of the operator L = exp[�s∇2 − �s�(r)]. In principle this
can be done, but the structure of L is complicated because the
Laplacian operator ∇2 and the field � do not commute. How-
ever, by use of the Baker-Hausdorff identity, the operator L
can be conveniently approximated to yield an update scheme
that is accurate to third order in �s. This results in the follow-
ing approximate update formula for the diffusion:

q(r, s + �s) ≈ exp

[
−�s

2
�(r)

]
exp[�s∇2]

× exp

[
−�s

2
�(r)

]
q(r, s). (18)

The basic procedure now is as follows: First, the oper-
ator e−(�s/2)�(r) is applied at the lattice collocation points in
real space. The resulting discretely sampled function is trans-
formed to reciprocal space by a fast-Fourier transform (FFT)
and the operator e−�sk2

, corresponding to the discrete Fourier
transform of e�s∇2

, is applied. An inverse FFT then restores
the real space representation and the operator e−(�s/2)�(r) is
finally applied at the lattice collocation points. The solution
is then propagated forward by successive applications of the
procedure just outlined.

2. Lattice Boltzmann method

The mathematical form of Eq. (5) is exactly the same
as the so-called reaction-diffusion equation, which has been
successfully and effectively solved by the LB method.50, 51

The LB method was originally developed as a meso-
scopic particle-based numerical approach for solving fluid-
dynamical equations.35, 57 However, more recently, the LB
method has also been used as a general Laplace or Poisson
equation solver.58, 59 Here we describe the LB method within
the context of polymer field theory. The partition function
propagators q(r, s) at each lattice site are accounted for by
a one particle probability distribution fi(r, s), where r is the
lattice site, s is the curvilinear displacement, and the subscript
i represents one of the finite spatial vectors ei at each lattice
node. The number and direction of the spatial vectors are cho-
sen such that the resulting lattice is symmetric so as to easily
reproduce the isotropy of the system.59, 60 The propagators at
each site are calculated as

q(r, s) =
n∑

i=0

fi(r, s), (19)

where n is the total number of the spatial vectors.
During each contour step ds, distributions fi stream along

vectors ei to the corresponding neighboring lattice sites and

Downloaded 24 Jun 2013 to 18.51.3.76. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



104123-4 Chen, Kim, and Alexander-Katz J. Chem. Phys. 138, 104123 (2013)

collide locally. The most widely used variant of LB is the
lattice Bhatnagar-Gross-Krook (BGK) model,49, 57 which ap-
proximates the collision step by a single time relaxation to-
ward a local equilibrium distribution f

eq

i . The complete lat-
tice BGK model (including the “reaction term” R50, 51) is now
written as

fi(r + eidx, s + ds) −fi(r, s) = f
eq

i (r, s) −fi(r, s)

τ
+ wiR,

(20)
where the reaction term equals to R = �(r)q(r, s) and the
equilibrium distributions satisfy51

f
eq

i (r, s) = wiq(r, s). (21)

It can be derived from the Chapman-Enskog analysis that
the relaxation constant τ is related to the “diffusion coeffi-
cient” D of the relevant diffusion equation,49, 51, 57 where D is
effectively the prefactor in front of the Laplacian operator. For
the normalized form in Eq. (5), the following relation holds:

D = 1 = c2
s ds(τ − 0.5), (22)

where cs = 1√
3
(dx/ds) is an effective “lattice speed” in the

LB method.
The weights wi depend in general on the dimension and

the type of the lattice used. For two dimensional simulations,
we use the nine direction model (D2Q9),49, 51, 57 which gives
the weights as

wi =

⎧⎪⎨
⎪⎩

4/9, e0 = (0, 0)

1/9, e1−4 = (±1, 0), (0,±1)

1/36, e5−8 = (±1,±1)

. (23)

For three dimensional simulations, we use the nineteen direc-
tion model (D3Q19),49, 57 which gives the weights as

wi=

⎧⎪⎨
⎪⎩

1/3, e0 = (0, 0, 0)

1/18, e1−6 = (±1, 0, 0), (0,±1, 0), (0, 0,±1)

1/36, e7−18 = (±1,±1, 0), (±1, 0,±1), (0,±1,±1)

.

(24)

3. Local refinement

Under certain conditions, it would be more efficient to
use locally refined patches of gridpoints, enabling a high res-
olution only where needed. The local refinement algorithm in
the LB method has been developed by many researchers;36–41

here we apply the procedure similar to the original work by
Filippova and co-workers.36 Grid refinement is performed by
dividing the space step by a refinement factor m. The spacing
and the contour steps on the fine grids are now given by

dxf = dxc

m
(25)

and

dsf = dsc

m
, (26)

where the superscripts “f” and “c” represent fine and coarse
grids, respectively. In order to have a constant “diffusion co-
efficient” across the coarse and fine grids, the relaxation con-

stant in the fine grids has to be redefined by36

τf = 1 + m(2τ c − 1)

2
. (27)

The numerical realization is the following. The whole
computational domain is covered with the coarse grid and
patches of fine grids are defined in certain regions. At a given
step s0, values of the distributions on the coarse grid which
come from regions of finer patches are calculated in the nodes
common to both grids according to

f
post,c

i (r, s0) = f
post,f

i (r, s0), (28)

where f
post,c

i and f
post,f

i are the post collision distribu-
tions (but before streaming step) on the fine and coarse
grids, respectively. At the step s1 = s0 + dsc (after one
“stream-collision” step on the coarse grid), the new values of
f

post,c

i (r, s1) are known on the boundary of the fine patch.
With interpolation f̃

post,c

i , one can calculate the values of
f

post,f

i (r, s) according to

f
post,f

i (r, s) = f̃
post,c

i (r, s1) (29)

at steps s = s0, s0 + dsf, . . . , s0 + ds f(m − 1).

III. RESULTS AND DISCUSSION

A. Accuracy of the lattice Boltzmann method

Studies have shown that the pseudo-spectral method is
highly accurate in solving diffusion equations.24, 25, 54 Thus, it
is ideal for us to compare the solutions from the lattice Boltz-
mann method to the solutions from the PS method and esti-
mate the accuracy of the LB method. We construct the sim-
plest testing scheme by solving a homopolymer melt with the
initial condition q(r, s = 0) = 1 under a fixed field �(r) and
comparing the propagators at the chain ends q(r, s = 1) from
different methods. In this testing scheme, we use square (2D)
or cubic (3D) lattices with periodic boundary conditions of
lengths lx = ly = 3.2Rgo or lx = ly = lz = 3.2Rgo. For a dis-
cretization dx = 0.1, the lattice sizes are Nx = Ny = 32 or Nx

= Ny = Nz = 32. For dx = 0.05, the lattice sizes are Nx = Ny

= 64 or Nx = Ny = Nz = 64. For the PS method, the chain dis-
cretization is set to ds = 0.001 (Ns = 1000) if not otherwise
specified; for the LB method, we change ds continuously in
order to find the minimum error (discussed in detail later).

We test three fields that we believe are most relevant
to the simulations of block copolymers: (1) sine, (2) hyper-
bolic tangent, and (3) delta function fields. The first two fields
have periodic forms that occur when the block copolymers
pass order-disorder transitions.61, 62 Sine or hyperbolic tan-
gent functions are used for weak or strong segregations,

�sin(r) = A sin

(
M

2πx

Nx

)
(30)

and

�tanh(r) =

⎧⎪⎨
⎪⎩

A tanh
(

x− Nx
4

ξ

)
, if x < Nx

2

−A tanh
(

x− 3Nx
4

ξ

)
, if x >= Nx

2

, (31)
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FIG. 1. Partition function propagators of a homopolymer at the chain ends
q(r, s = 1) along the x direction under (a) sine and (b) nanoparticle fields
solved from the pseudo-spectrum or LB methods. The space discretization is
set to dx = 0.05. The LB relaxation constant is τ = 2.5, 1.7(∼ τ ∗

sin), and 1.1
for sine field and τ = 1.7, 1.2(∼ τ ∗

NP ), and 0.8 for nanoparticle field.

where A is the field amplitude, M is the mode of the sine field,
and ξ is a parameter that controls the sharpness of the hyper-
bolic tangent field at the transitions. The third field has a delta
function form that is used for block copolymer systems with
nanoparticles (NP)63 or lithographical templates:12, 13, 64

�NP (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−100, if

Nx

2 − 1 ≤ x ≤ Nx

2
Ny

2 − 1 ≤ y ≤ Ny

2
Nz

2 − 1 ≤ z ≤ Nz

2 (for 3D)
0, otherwise

. (32)

Figure 1 shows the representative calculated partition
function propagators at the chain ends q(r, s = 1; [�]) along
the x direction from both the PS and LB methods under the
sine (Fig. 1(a)) or nanoparticle fields (Fig. 1(b)). For compar-
ison purpose, we consider the solutions from the PS method
(with ds = 0.001) as the exact solution. Interestingly, we find
that the accuracy of the LB method is controlled by the relax-
ation constant

τ = 3
ds

dx2
+ 0.5. (33)

The observation that the accuracy of the LB method is con-
trolled by τ has also been observed by other researchers when
solving the reaction-diffusion equation.51 Interestingly, for τ

larger than a value that we here label τ*, we find that the LB
method overestimates q, while for τ smaller than τ*, we find
underestimate solutions (Fig. 1). This can be particularly seen
in the case of a very localized external field, as would be a
small nanoparticle. In principle, this is a very discouraging
fact of solving the diffusion equation using a LB solver, but
as will be shown below, this method becomes robust with re-
spect to τ once the full SCFT is solved. Thus, it is not neces-
sary to know a priori which is the best τ for solving the field
theory. The reason for this behavior is a cancelation of er-
rors when updating the fields, as will be discussed in detail in
the end of this section. Additionally, it is important to no-
tice that the PS scheme strongly loses its accuracy if we do
not consider many steps along the chain. We find that for the
nanoparticle field, the chain discretization ds = 0.01, which
is a typical value in SCFT simulations, is not sufficient to ob-
tain the accurate result. As shown in Fig. 1(b), the PS solution
with ds = 0.01 has a very large discrepancy compared to the
solution with ds = 0.001.

To systematically search τ* for different fields, we define
an error value51

Error =
√

�r|qPS(r, s = 1) − qLB(r, s = 1)|2
�r|qPS(r, s = 1)|2 , (34)

where qPS and qLB are the solutions from the PS and LB meth-
ods. Figure 2 shows the error values as a function of τ for dif-
ferent fields with different dimensions or dx. The amplitudes
of the sine and hyperbolic tangent fields are chosen to be A
= 10 here. It is clear that the critical τ* where the minimum
error occurs is not sensitive to dimensions or dx. For sin fields
with mode = 1 and tanh fields, τ* is around 1.7–2.2. How-
ever, for sin fields with mode > 1 and nanoparticle fields,
τ* decreases to 1.1–1.3. Although τ* does not change with
dx, the absolute errors decrease with decreasing dx. For dx
= 0.1, the minimum errors range from 0.01 (for the tanh and
sin fields) to 0.0005 (for the nanoparticle field). For dx = 0.05,
the minimum errors are much smaller from 0.005 (for the tanh
and sin fields) to 0.0001 (for the nanoparticle field). The min-
imum errors and τ* also change with the field amplitudes A.
Figure 3 shows the errors as a function of τ for sin (mode
= 1; Fig. 3(a)) and tanh fields (ξ = 1; Fig. 3(b)) with field am-
plitudes A = 4 to 10. As shown, the minimum errors and τ*
both increase with increasing A. In addition, we observe that
the optimal τ that results in minimum errors for q(r, s = 1)
also results in minimum errors for q(r, 0 < s < 1). In Fig. 4
we show the error values for q(r, s) as a function of τ for s
= 0.4, 0.6, 0.8, and 1.0. It is observed that for sine field with
mode = 1 and amplitude = 10, τ* ∼ 1.7 for all s.

After extensively testing the accuracy of the diffusion
equation solver, we move on to use the LB method to perform
the actual SCFT simulations. Figure 5(a) shows the mean-
field results (with the noise field η = 0 in Eq. (13))53 for
the density distributions of a diblock copolymer system with
f = 0.5 and χN = 13. Mild fields �− = ±5 to attract A or
B blocks are applied at x = 0 or x = Nx

2 to induce the lamel-
lar structure. To test the tolerance of the errors from the LB
method for the lamellar structure formation, we perform sim-
ulations with τ = 2.5, 1,7 (∼τ*), and 1.1 with dx = 0.05.
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dx = 0.1 (2-Dimensional)

dx = 0.1 (3-Dimensional)

dx = 0.05 (2-Dimensional)

FIG. 2. Error values (see text for definition) as a function of the relaxation
constant τ for different fields with (a) dx = 0.1 in 2D, (b) dx = 0.1 in 3D, and
(c) dx = 0.05 in 2D.

Comparing this to the PS result, it is surprising that the final
polymer density distributions from the LB method is undistin-
guishable from the PS results for all τ ’s even if we use nonop-
timized τ ’s with higher errors. The errors in the densities and
the equilibrium free energies are summarized in Fig. 5(b),
where the errors in the densities are defined similar to Eq.
(34) but with q(r) substituted with φ(r), and the errors in the
equilibrium free energies are defined as |(Heq

PS − H
eq

LB)/Heq

PS |.
We find that the errors in the free energies are about 2%–
3%, which are comparable to the errors in q(r, s). However,
it is very interesting that the errors in the densities are much
smaller, which are only about 0.1%–0.5%. The more accurate
densities may come from the normalization of

∫
dsq†q with

Q ∼ ∫
drq, which cancels the errors in q when calculating

0.001

0.01

0.1

1 1.5 2 2.5 3 3.5
0.001

0.01

0.1

E
rr

or

(a)

(b)

Hyperbolic Tangent Field (  = 1)

Sine Field (mode = 1)

Field Amplitude = 10
Field Amplitude = 8
Field Amplitude = 6
Field Amplitude = 4

dx = 0.1 (2-Dimensional)

FIG. 3. Error values as a function of τ for (a) sin field (mode = 1) and (b)
tanh field (ξ = 1) with different field amplitudes.

the densities using Eqs. (8) and (9). In conclusion, our results
show that the LB method is robust since one does not need
to know a priori the preferred τ . We believe the method is
comparable with the PS method as an accurate solver for the
polymer SCFT simulations, particularly if the self-consistent
evolution of the fields only depends on the densities and the
fields themselves. If higher accuracy in the calculation of the
free energies is necessary, one can always interpolate the final
configuration of the fields obtained using the LB method to a

1 1.5 2 2.5 3 3.5
0.01

0.1

1

E
rr

or

Sine Field (mode = 1, amplitude = 10)

s = 1.0
s = 0.8
s = 0.6
s = 0.4

dx = 0.1 (2-Dimensional)

FIG. 4. Error values for q(r, s) as a function of τ for s = 0.4, 0.6, 0.8, and
1.0.
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FIG. 5. (a) Density distributions of a diblock copolymer system with
f = 0.5 and χN = 13 from SCFT simulations with the PS or LB methods. (b)
Errors in the free energies and the densities comparing the LB result to the PS
result.

finer grid and solve for the propagator only once. This might
be very useful specially when dealing with multiple grids.

B. Multiscale SCFT simulations

Since the pseudo-spectral method evaluates the Laplacian
in reciprocal space,24, 25 this method is only semi-local, and it
has not yet been possible to apply local refinements. On the
contrary, the lattice Boltzmann method is purely local in real
space,57 enabling us to apply fine patches locally. In SCFT
simulations, the ability to apply finer discretization in specific
regions is potentially more efficient since most of the compu-
tations can now be used to calculate the regions of interest.
For block copolymer systems, when the interaction parame-
ter χN increases, the interfaces between A and B blocks be-
come sharper.62 As a result, one would like to refine the in-
terface regions in order to get higher resolution in this region.
Figure 6 shows the density distributions of a diblock copoly-
mer system with f = 0.5 and χN = 40 without (Fig. 6(a)) or
with local refinements (Fig. 6(b)). Without refinements (Fig.
6(a)), the LB result again agrees perfectly well with the result
from the PS method. However, sometimes the resolution of
the uniform discretization dx = 0.05 may not be enough to
resolve the interfacial regions. With local refinement, on the

0
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0.6

0.8

1

0 10 20 30 40 50 60

0

0.2

0.4
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0.8

1

Nx
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B
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A

B
LB

( N = 40)

A

B
PS

A

B
LB (dx = 0.05)

A

B
LB (dx = 0.025)

(a)

(b)

FIG. 6. Density distributions of a diblock copolymer system with f = 0.5
and χN = 40 (a) without or (b) with local refinements. The solid lines are the
solutions from the pseudo-spectrum method and the symbols are the solutions
from the lattice Boltzmann method.

other hand, the interfacial regions can be much more finely
resolved, as seen in Fig. 6(b). We find that the LB result with
local refinement also agrees very well with the “exact” PS re-
sult even with simple first order (or linear) interpolation on
the boundaries. Nevertheless, for more complex boundaries
where this is not the case one could use higher order inter-
polation methods.36–38 In the linear interpolation scheme we
simply average out the values of the “velocity densities” and
the mid points were the coarse and the fine grid meet. This
operation scales as the size of the boundary (in 3D it scales as
N

2/3
grid , where Ngrid is the number of points inside the refined

grid) and this interpolation is extremely fast. This is one of the
advantages of the method we present here. For the case of the
new spectral implementation using Chebyshev polynomials,
which in principle could be used to perform multigrid simu-
lations, one needs to recalculate the basis at each step along
the field relaxation dynamics. Such an operation scales with
the size of the refined box Ngrid. As usual, both methods have
their own appealing features: LB allows for a direct and fast
multigrid approach, but lacks the accuracy (more on this be-
low), while the new spectral methods have a higher accuracy
but might be slower. We are still in the early stages of de-
veloping both methods and thus a precise comparison is not
possible at this point.
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Lpost/L0 L7.1 = post/L0 L0.2 = post/L0 = 2.5

Lx

Ly
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FIG. 7. 2D SCFT simulations of the self-assembly of block copolymers on commensurate templates using the LB method. The parameters of the copolymers
are (a) to (c) f = 0.5 and χN = 13 and (d) to (f) f = 0.25 and χN = 18.

C. Self-assembly of block copolymers on varying
commensurate templates

An active research area in engineering block copolymer
morphologies is guiding block copolymers to self-assemble
on lithographic templates to acquire special orientations or
long range order.12, 13, 65–69 Toward this end, SCFT simula-
tions have been widely used to complement experiments in or-
der to predict or verify the experimental results.12, 13, 69 Here,
we try to reproduce the experimental and theoretical findings
from previous works using SCFT simulations with the lattice
Boltzmann method. Figures 7(a)–7(c) show a diblock copoly-
mer system with f = 0.5 and χN = 13 self-assembled on the
predefined templates. The simulation boundary lengths (with
periodic boundary conditions) are lx = 2Lx and ly = 2Ly,
where the ratio of Lx and Ly is fixed to Lx/Ly = 1.5. Four
“posts” that attract A monomers are put on the positions (x, y)
= (0, 0), (Lx, 0), (0, Ly), and (Lx, Ly). When changing the ratio
of Lx and the natural diblock copolymer length L0 from Lx/L0

= 1.5 to 2.5, we find that the lamellar orientations rotate in
order to be commensurate with the post distances. These ro-
tations agree perfectly well with prior studies.12

Figures 7(d)–7(f) show the diblock copolymer system
with f = 0.25 and χN = 18. The simulation boundary lengths
(with periodic boundary conditions) are lx = 1.75Lpost and
ly = Lpost. Two “posts” that attract A monomers are put on
the positions (x, y) = (0, 0) and (0.875Lpost, 0.5Lpost). Sim-
ilar to the lamellar structures (Figs. 7(a)–7(c)), the cylin-
drical orientations rotate when changing the ratio Lpost/L0

(Figs. 7(d)–7(f)) in order to be commensurate with the dis-
tances between the posts. These rotations again agree partic-
ularly well with prior studies.13 In summary, we show that
SCFT simulations with the LB method yield indistinguishable
results for the self-assembly of block copolymers on com-
mensurate templates.

D. Benchmarking

For the last decade, general-purpose computation on
graphics processing units (GPGPU) has become more and
more popular in scientific computing. Very recently, Delaney
and Fredrickson have used graphics processing units to im-
plement polymer SCFT simulations with the pseudo-spectral

method (SCFT-PS),70 and acquired up to 60x acceleration
compared to contemporary CPU cores. Because of a high de-
gree of locality, the lattice Boltzmann method is a great can-
didate for GPU calculations.58, 71, 72 We thus port our SCFT
simulations with the LB method (SCFT-LB) to a GPU ar-
chitecture. We compare the runtime of SCFT-LB or SCFT-
PS running on a GPU (NVIDIA Tesla C2050) to the runtime
of SCFT-PS on a desktop CPU (Intel Core 2 Duo 2.4GHz).
Figure 8 shows the runtime per iteration (ds = 0.01) as a func-
tion of the total number of lattice points for different process-
ing units and methods. For SCFT-PS on a GPU, the runtime
per iteration increases from 0.02 to 0.5 s when increasing the
number of lattice points from 4096 to 104 8576. On the other
hand, for SCFT-PS on a CPU, the runtime per iteration in-
creases from 0.02 to 20 s when changing the same number of
lattice points. We would like to point out that, without exten-
sive optimization, our runtime for SCFT-PS is very close to
those obtained by Delaney and Fredrickson.70 For SCFT-LB,
it is more desirable to consider 2D and 3D separately since
the number of “spatial directions” are different, where there
are 19 directions in 3D but only 9 directions in 2D. On a GPU,
the computation speed for 3D SCFT-LB is comparable with
SCFT-PS for a number of lattice point higher than 105 and
slightly faster for a number of lattice point smaller than 105.

FIG. 8. Runtime per iteration as a function of the total number of lattice
points for different processing units and methods.
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For 2D SCFT-LB, the computation speed is about 2 × faster
than SCFT-PS for a number of lattice point higher than 105

and is up to 10 × faster for a number of lattice point smaller
than 104. In summary, we demonstrate that the LB method is
very efficient to perform SCFT simulations on GPUs.

IV. CONCLUSIONS

In this work we have presented a novel approach employ-
ing lattice Boltzmann theory to solve for the propagator in
SCFT. We have demonstrated that our hybrid LB-SCFT ap-
proach is capable of reproducing the results obtained with the
pseudo-spectral method. Interestingly, the agreement between
both when actually solving the full field solution exhibited er-
rors much smaller than when considering single modes of the
fields. An advantage of the LB method, however, is that one
can consider local refinement of the mesh, while still retaining
unconditional stability. While this is not as important for pure
diblock copolymers, this improvement will certainly become
important in blends that include homopolymers or in systems
where disparate length scales appear. Furthermore, the LB
method is very flexible and can be implemented under many
different types of lattices and boundary conditions. For exam-
ple one can also work in unstructured lattices73–75 or apply
complex boundary conditions either directly or through well
developed immersed boundary methods.76 Our implementa-
tion on a GPU reached ∼100 × improvement in the computa-
tion speed for 2D lattices and ∼60 × speedups for 3D lattices
compared to a CPU implementation. However, as mentioned
above, new methods using spectral algorithms with high pre-
cision are also emerging.32 Such methods could be used in
multigrid calculations and it is up to the researcher to choose
a method depending on the problem requirements. Neverthe-
less, we believe the LB method nicely complements current
SCFT methods and we have introduced it in the present work.
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