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Abstract 

Siderophores are low-molecular-weight iron chelators that are produced and exported by 

bacteria and fungi during periods of nutrient deprivation. The structures, biosynthetic logic, and 

coordination chemistry of these molecules have fascinated chemists for decades. Studies of 

such fundamental phenomena guide the use of siderophores and siderophore conjugates in a 

variety of medicinal applications that include iron-chelation therapies and drug delivery. Sensing 

applications constitute another important facet of siderophore-based technologies. The high 

affinities of siderophores for both ferric ions and siderophore receptors, proteins expressed on 

the cell surface that are required for ferric siderophore import, indicate that these small 

molecules may be employed for the selective capture of metal ions, proteins, and live bacteria. 

This minireview summaries progress in methods that utilize native bacterial siderophore 

scaffolds for the detection of Fe(III) or microbial pathogens.  
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I. Introduction 

Iron is an essential nutrient for most organisms.1-3 This first-row transition metal ion is 

involved in multiple biological phenomena essential to life that include oxygen transport and 

respiration, electron transfer, DNA synthesis and repair, and primary metabolism. Iron-

containing enzymes also participate in secondary metabolism and the oxidative stress 

response. Iron is typically found in the +2 (ferrous) and +3 (ferric) oxidation states in biological 

systems, and higher oxidation states are achieved transiently during enzymatic catalysis. 

Organisms acquire this important nutrient by employing dedicated mechanisms for iron 

acquisition, transport, and storage.2,4,5 Prokaryotes require micromolar (10-6 M) concentrations 

of iron to replicate and colonize, and are thus faced with a metabolic predicament because the 

concentration of Fe(III) at neutral pH is low (ca. 10-18 M).6 Moreover, the free iron concentrations 

in living organisms, including the vertebrate host, are strictly regulated at lower concentrations 

(ca. 10-24 M in human serum)6 because of the inherent toxicity of the metal ion, which results 

from its propensity cycle between the Fe3+/Fe2+ oxidation states and generate deleterious 

radicals via Fenton chemistry. To acquire the concentrations of iron necessary to thrive in 

nutrient-limited environments, prokaryotes utilize a variety of strategies for iron acquisition.2 

Both Gram-negative and –positive bacteria produce and export siderophores (Figure 1),7-9 a 

family of low-molecular-weight iron chelators, which are a focus of this minireview. Other tactics 

for iron acquisition include the uptake and utilization of heme iron,10,11 which has been observed 

for Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis, and the 

expression of transferrin receptors on the cell surface, which allows various pathogenic species 

such as Neisseriaceae and Pasteurellacea, to obtain iron from host transferrin.12,13 Acquisition 

of iron by these three mechanisms is associated with virulence.9,11-16 

Siderophores comprise a family of low-molecular-weight iron chelators that are produced 

and exported by bacteria, fungi and plants, during periods of nutrient deprivation.7,8 Most 

siderophores exhibit extraordinarily high affinity and selectivity for iron(III) with binding constants 

(Ka) ranging from 1030 M-1 to 1052 M-1 (Table 1).17,18 Since mycobactin P was first isolated in 

1949,19 over 500 siderophores have been discovered, and approximately one half of these 

molecules have been characterized structurally.7 Figure 1 presents siderophores 1-11, which 
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highlight the structural diversity of this iron chelator family. Table 1 summarizes the producer 

organisms and iron affinities of select siderophores. With few exceptions (i.e. pyochelin 2, vide 

infra), siderophores provide hexadentate coordination spheres for Fe(III) complexation and 

coordinate this metal ion with 1:1 stoichiometry. Figure 2 depicts ferrioxamine B,20 Fe(III)-

coordinated ferrichrome21 and yersiniabactin,22 and the vanadium(IV) complex of enterobactin.23 

Catecholates, hydroxamates, and α-hydroxycarboxylates are common bidentate ligands utilized 

by siderophores. Enterobactin is a canonical example of a triscatecholate scaffold whereas 

desferrioxamine and petrobactin are hydroxamate- and α-hydroxycarboxylate-utilizing 

siderophores, respectively. Heterocycles, formed via the enzyme-catalyzed cyclization of Ser 

and Cys building blocks,24 provide basic nitrogen atoms and hence another strategy for iron 

coordination by siderophores as exemplified by pyochelin 2 and yersiniabactin 4.  

Nonribosomal peptide synthetase (NRPS) assembly lines are responsible for the 

biosynthesis of many siderophores.8,24,25 The logic of these macromolecular machines has been 

covered elsewhere, and we direct the reader to comprehensive reviews on this topic for further 

information.26,27 Siderophores are actively transported to the extracellular environment by 

dedicated export machinery. Following extracellular iron sequestration, the resulting ferric-

siderophore complexes are captured by specific membrane receptors (Kd values are typically in 

the nanomolar range), providing a means for iron uptake.28-30 The structures and mechanisms of 

siderophore uptake machinery vary for Gram-negative and –positive bacteria. Gram-negative 

bacteria have a double-layer membrane structure,31 and utilize an outer membrane receptor, a 

periplasmic binding protein, an inner membrane ABC transporter, and the TonB complex for 

ferric siderophore transport. The TonB complex controls the transfer of the siderophore from the 

outer membrane receptor to the periplasm binding protein, and the ABC transporter provides 

cytoplasmic entry.32,33 Less is known about the siderophore uptake process in Gram-positive 

bacteria; these species express lipoproteins and ABC transporters that may be responsible for 

ferric-siderophore transport.2,34 Both the biosynthesis and transport of siderophores are 

regulated by repressor proteins that are sensitive to iron concentration. For example, Fur is the 

iron-uptake regulation protein expressed by most Gram-negative bacteria. Fur is a Fe(II)-binding 
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protein, and the holo form coordinates to specific DNA regulatory sequences, thereby 

repressing the transcription of relevant genes when iron levels are high.35,36  

Comprising a family of important natural products with fascinating structural features, 

total syntheses of many siderophores have been achieved, providing entry points into 

modification of these intriguing scaffolds for various applications. One established medicinal use 

of siderophores and synthetic siderophore mimics is in the treatment of iron-overload diseases 

including hemochromatosis and thalassemia.37,38 Desferrioxamine B is an FDA-approved iron 

chelator for the treatment of such diseases. Along these lines, siderophores and siderophore 

mimics also have potential as cancer therapeutics because cancer cells require high 

concentrations of iron for proliferation.39,40 Starving cancer cells of iron using siderophore-based 

compounds is therefore of interest for cancer therapy. Another active research area is the 

design and application of siderophore-drug conjugates.41 This work is largely inspired by a 

family of naturally-occurring siderophore-antibiotic conjugates called sideromycins, which 

includes the Streptomyces natural product albomycin.42,43 These remarkable secondary 

metabolites serve as “Trojan horse” antibiotics that are recognized and transported into recipient 

bacterial cells by siderophore uptake machinery. Applying the same strategy, a range of 

synthetic siderophore-antibiotic conjugates have been designed, synthesized, and evaluated for 

antibacterial activity.44-47 These conjugates generally exhibit β-lactams, fluoroquinolones, 

sulfonamides, and other small-molecule drugs coupled to hydroxamate- and catechol-based 

siderophores or siderophore-inspired molecules. A mycobactin-artemisinin conjugate was 

reported recently and exhibits activity against Mycobacterium tuberculosis and the malaria 

pathogen.48 

From the standpoints of therapeutic and analytical potential, siderophores hold 

significant promise. With a focus on the latter arena, the following sections of this minireview 

summarize siderophore-based strategies for Fe(III) sensing and pathogen detection. In both 

cases, the exquisite specificity and high affinity of a siderophore for ferric ion or its receptor 

provide the basis for using these molecules as sensors or probes. In Section II, we review 

siderophore-based iron detection with focus on fluorescent molecules. This sensing sub-

discipline is established, but has received less critical review than other areas of fluorescence-
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based metal-ion sensing.49-51 Fluorescence probes incorporating siderophore scaffolds that 

provide rapid, selective and sensitive responses to Fe(III) hold significant promise for 

investigating iron uptake by siderophore-utilizing organisms and, more broadly, the roles of iron 

in biology with particular emphasis on the so-called labile iron pool.52,53 These tools are also 

useful for monitoring iron concentrations in environmental and clinical samples. In Section III, 

we cover developing technologies that provide siderophore-based pathogen capture.54-56 These 

proof-of-concept studies are motivated by a need for rapid and reliable methods for detecting 

virulent bacteria in food products, the environment, and in clinical samples. We intend for this 

review to complement prior reviews that address siderophore coordination chemistry,18,57 

siderophore-based chelation therapy,37,38 siderophores and cancer therapy,39,40,58 and 

siderophore-antibiotic conjugates for drug delivery.41,44-47,58 We chose to limit the scope of this 

minireview to platforms that utilize native siderophore scaffolds rather than siderophore mimics. 

A wealth of literature pertaining to the design, synthesis, and application of siderophore analogs 

exists,59-72 some of which has been reviewed recently,18 and we note that a number of these 

molecules are fluorescent Fe(III) sensors.65-72 

 

II. Strategies for Fe(III) Detection 

 In this section, we highlight select examples where naturally-occurring siderophores 

have been employed for the detection of Fe(III) by using fluorescence. We first consider 

naturally-emissive siderophores, including pyoverdines (i.e. 1) produced by Pseudomonas spp. 

and azotobactin 3 from the soil bacterium Azotobacter vinelandii.9,73-83 Next, we evaluate several 

synthetic fluorophore-siderophore conjugates where fluorophores are attached to native 

siderophore scaffolds to provide fluorescence responses following Fe(III) coordination.84-88 Iron 

is a paramagnetic metal ion and thus has a propensity to quench fluorophore emission. As a 

result, most of the siderophores described herein afford fluorescence quenching or “turn-off” 

following Fe(III) recognition. Lastly, we present a lanthanide-based approach where Fe(III) 

coordination results in lanthanide displacement and loss of lanthanide luminescence.89  
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II.a. Fe(III) Detection Based on Naturally-Emissive Siderophores 

 Among the most celebrated fluorescent siderophores are the pyoverdines (i.e. 1),90 

which are produced by all fluorescent pseudomonads including Pseudomonas aeruginosa and 

P. fluorescens, and the nitrogen-fixing soil bacterium Azotobacter vinelandii. The PVD gene 

cluster of Pseudomonas spp. is responsible for the biosynthesis of pyoverdines.91 These 

nonribosomal peptides are comprised of a N-terminal dihydroxyquinoline chromophore, a 

peptide arm of six to twelve residues in length, and a side chain that is most often a small 

dicarboxylic acid or amide (Figure 1).90 The length and composition of the peptide arm are 

highly variable and strain-specific. Both L- and D-amino acids, in addition to a number of unusual 

monomeric building blocks such as hydroxaspartate and Nδ-hydroxyornithine, comprise the 

peptide arms. Over fifty pyoverdines or pyoverdine-like natural products have been isolated and 

structurally characterized.92 Pyoverdines form hexacoordinate Fe(III) complexes (Ka ~ 1029 M-1) 

and bind iron by using both hydroxamate and catecholate groups. Other emissive siderophores 

include azotobactins (i.e. 3),93,94 pyochelin 2,95 and scaffolds containing spermidine (i.e. 

parabactin, 8) or other groups that emit light, albeit weakly. In this section, we describe 

examples where a naturally-occurring siderophore has been employed for Fe(III) detection. In 

all cases, the siderophores were isolated and purified from cultures of the producing organism 

and iron coordination results in quenching or “turn-off” of siderophore emission. We first 

consider fluorescent siderophores employed for Fe(III) sensing in solution.73-75 Subsequently, 

we describe efforts to immobilize siderophores in materials, including micelle-templated silica 

and sol gel, for the optical detection of this metal ion.76-81,83  

 Azotobactin δ 3 is a fluorescent siderophore produced by Azotobacter vinelandii and 

shares structural similarities with the pyoverdines. In the laboratory, this natural product can be 

isolated in quantities of 100 – 200 mg/L of culture when a mutant strain that overproduces the 

siderophore is employed,96,97 providing sufficient quantities for extensive analytical work. 

Azotobactin δ is comprised of a decapeptide, (L)-Asp-(D)-Ser-(L)-Hse-Gly-(D)-β-threo-HOAsp-

(L)-Ser-(D)-Cit-(L)-Hse-(D)-Nδ-Acetyl, Nδ-HOOrn-(L)-Hse lactone, appended with an N-terminal 

6,7-diamino-2,3-dihydroxyquinoline chromophore (Figure 1; Hse, homoserine; HOAsp, 

hydroxyaspartic acid; Cit, citrulline; HOOrn, hydroxyornithine). Azotobactin δ utilizes the 
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hydroxamate group of Nδ-Acetyl, Nδ-HOOrn, the α-hydroycarboxylic moiety of β-threo-HOAsp, 

and the dihydroxyquinoline-derived catechol group to coordinate Fe(III).74 The optical absorption 

spectrum of azotobactin δ in aqueous solution at pH 5 exhibits a maximum at 380 nm (ε = 

23,500 M-1cm-1-) and a shoulder at 336 nm (ε = 19,600 M-1cm-1). Addition of Fe(III) to solutions 

of azotobactin δ results in a red-shift in the wavelength of maximum absorption to 412 nm (ε = 

23,000 M-1cm-1) with shoulders at 450 (ε = 10,000 M-1cm-1) and 550 nm (ε = 2,000 M-1cm-1). The 

shoulders are attributed to LMCT originating from the dihydroxyquinoline-based catecholate and 

hydroxamate binding sites. The stability constant for the ferric azotobactin δ complex was first 

reported to be ca. 1030 M-1 from thermodynamic analysis,73 and subsequent kinetic analyses 

and potentiometry from the same research group provided a value of 1.9 x 10-10 M-5.74 

 Azotobactin δ provides maximum emission at 490 nm (λex = 380 nm) in acetate buffer 

(pH 4.4). Addition of one equivalent of Fe(III) to solutions of azotobactin δ causes fluorescence 

turn-off and a slight blue-shift in the wavelength of maximum absorption.73 The quantum yield 

for azotobactin is 0.28 at pH 2 (6-hydroxypyrene-1,3,6-trisulfonic acid standard; Φ = 0.96, pH 

2).97 A fluorescence assay for Fe(III) determination using azotobactin δ provided a linear range 

between 0 – 95 ng/mL Fe(III) and a detection limit of 0.5 ng/mL (89 nM; acetate buffer, pH 

4.4).73 The emission readout from this assay was not perturbed by Na(I), Ca(II) or Mg(II) (2 to 5 

x 103-fold higher concentrations than that of ferric ion) whereas low concentrations of Cu(II) and 

Al(III) compromised the Fe(III)-induced response. 

A fluorescence method employing azotobactin as an Fe(III) reporter was subsequently 

devised for quantifying non-transferrin-bound iron (NTBFe) in the serum of thalassemia 

patients.75 Thalassemics suffer from iron overload and concentrations of NTBFe can reach 10 

µM in the serum of these patients. This disease is prevalent in developing countries, motivating 

the development of facile and inexpensive detection methods for monitoring NTBFe levels. This 

azotobactin-based approach involves (i) saturation of any apo transferrin in the serum by Co(III) 

addition, (ii) mobilization of non-transferrin-bound iron by using nitrilotriacetic acid, (iii) removal 

of all serum proteins, and (iv) addition of azotobactin to the resulting solution to quantify Fe(III) 

by using a calibration curve prepared with iron-spiked serum from healthy human subjects. 

Samples from sixty-three thalassemics were analyzed by this assay, which provided Fe(III) 
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concentrations in the range of 0.07 – 3.24 µM. These values correlated with serum iron levels 

and percent transferrin saturation, and also with colorimetric determination of Fe using the 

established bathophenanthrolinedisulfonate (BPT) method. It should be noted that fluorescence-

based assays for NTBFe using synthetic siderophore-fluorophore conjugates98 and fluorophore-

modified iron-binding proteins99 have been reported and reviewed elsewhere.52 In general, 

fluorescence-based techniques have the advantages that iron concentrations can be monitored 

rapidly on-site and without the need for sophisticated instrumentation (i.e. inductively coupled 

plasma mass spectrometry or atomic absorption spectroscopy); however, one drawback is that 

serum/sample color and also sample turbidity are oftentimes variable and may interfere with the 

fluorescence measurements. 

Fluorescent siderophores also find application in assays designed for either monitoring 

Fe(III) levels in water samples, and in technologies for waste water treatment. The tactics 

highlighted below all involve the encapsulation or immobilization of a fluorescent siderophore 

into a material, which thereby sequesters iron from the aqueous phase. In many instances, 

these materials are incorporated into flow cells and afford rapid quantification of Fe(III), and are 

recyclable. Such portable Fe(III) detectors are amenable for work in the field, which includes the 

rapid analysis of environmental samples and potentially quick clinical diagnostics. Most of the 

examples described below utilize pyoverdine (i.e. 1). Pyoverdine exhibits high water solubility, 

forms a 1:1 complex with Fe(III),100 and exhibits maximum emission at ca. 450 nm in solution. 

Like azotobactin δ, pyoverdine affords a turn-off fluorescence response to Fe(III). Pyoverdine 

has been immobilized on controlled pore class (CPG), in large-pore micelle-templated silica 

(MTS), and in sol gels for Fe(III) detection.76-79  

In the early 1990s, pyoverdine was immobilized on CPG and thereby incorporated into a 

flow cell, which provided iron determination in the 10 – 200 ng/mL range and a modest detection 

limit of 3 ng/mL.76 This approach was employed to evaluate iron concentrations in tap and 

mineral waters, and the resulting data were in agreement with data obtained by inductively 

coupled plasma atomic emission spectroscopy (95% confidence level). Because acidification 

results in catechol protonation and release of Fe(III) from pyoverdine, the flow cell was 

regenerated by flushing with 1 M HCl, and longevity studies revealed that an individual cell had 
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a lifetime of ca. three months or one-thousand measurements. Subsequently, this method was 

modified to for the analysis of iron speciation by outfitting the flow cell with a column containing 

persulfate.77 When the column was bypassed, the flow cell only reported on Fe(III). Flowing the 

solution of interest through the persulfate column resulted in oxidation of any Fe(II) to Fe(III) and 

thereby provided a measurement of total dissolved iron. This particular system was employed to 

determine total iron levels in tap water, well water, and wine. Like the first-generation sensor, 

this system was used repeatedly over the course of three months. Ten to fifteen samples may 

be processed each hour.  

A related tactic is to encapsulate or immobilize pyoverdine in MTS.78,79 A direct synthetic 

procedure was first devised where pyoverdine was dissolved in the templating micelles, and the 

resulting MTS provided reversible fluorescence quenching with Fe(III) addition.78 This 

preparation, however, resulted in insufficient encapsulation of the pyoverdine and alternative 

immobilization strategies were subsequently pursued. Along these lines, pyoverdine was 

covalently attached to a glycidoxy-grated large-pore MTS and a commercial high-grade 

glycidoxy-grafted silica gel (Figure 3).79 These materials served as metal ion sponges and 

sequestered iron from solutions containing mixed metal samples. In some instances, chromium 

interference was observed. Pyoverdine was also entrapped in sol-gel glass for Fe(III) 

detection.81,83 In one case, the siderophore exhibited maximum emission at 405 nm when 

encapsulated in the sol-gel, and maximum intensity was observed in the pH 5 to 7.5 range. 81 

Pyoverdine retained its Fe(III)-induced turn-off fluorescence response in the sol gel, and these 

Fe(III)-responsive materials exhibited greater stability than the CPG-based systems described 

above. The detector was employed to analyze iron concentrations in Madrid tap water and 

human serum.81 

Lastly, the intrinsic emission of parabactin (8, Figure 1) has been employed for the 

detection of bioavailable Fe(III) in ocean waters.82 Parabactin is a spermidine catecholate 

siderophore produced by Paracoccus denitrificans that employs two catechol moieties and a 2-

(2-hydroyxl)oxazoline to form a wine-colored hexacoordinate iron complex with a Ka value of 

1048 M-1 at basic pH.101 In ethanol and in aqueous solution adjusted to pH 3.1, parabactin 

exhibits three absorption bands centered at 210, 250 and 311 nm. The latter two absorption 
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bands red shift to 253 and 316 nm at pH 8. Addition of Fe(III) to solutions of parabactin results 

in a new absorption feature centered at 500 nm (10 mM tricine buffer, pH 8). The emission 

spectrum of apo parabactin also exhibits solvent- and pH-dependence; the wavelength of 

maximum emission is observed at 401 (ethanol), 440 (pH 3.3) or 460 nm (pH 8.0) following 

excitation at 311 nm. Addition of Fe(III) to solutions of parabactin results in fluorescence 

quenching. To provide a recyclable biosensor for Fe(III) determination in ocean waters, 

parabactin was added to a sol-gel solution and the mixture was spin coated onto quartz.82 The 

encapsulated parabactin exhibited absorption and emission properties similar to those observed 

for free parabactin at pH 3.1, which was attributed to an acidic microenvironment in the pores 

resulting from the acid-catalyzed preparation of the sol gel. A flow cell was outfitted with the sol 

gel, and parabactin emission turned off when aqueous Fe(III) was flushed through the devise. 

Using this Fe(III)-dependent fluorescence change, an Fe(III) calibration curve was prepared 

(0.05 to 1 nM) and a detection limit of 40 pM for Fe(III) achieved, the latter of which is 

impressive given that the emission from parabactin is not especially bright as judged by the 

chromophore (Φ and ε values were not reported in this work). To further evaluate this strategy, 

the Fe(III) content in a standard seawater reference sample was determined to be 3.24 ± 0.35 

nM, in good agreement with the certified value of 3.71 ± 0.63 nM. Next, seawater samples 

collected from varying depths (3 to 303 m) in the North Atlantic Ocean (49o38.0’N, 18o31.8W) 

were analyzed, and the parabactin-derived biosensor reported that iron concentrations vary 

from <100 pM in surface waters to 700-1000 pM at a depth of 300 m. This concentration range 

is similar to those reported by others studying iron concentration gradients in the North Atlantic 

Ocean.102 

 

II.b. Fe(III) Detection Based on Synthetic Fluorophore-Siderophore Conjugates 

 A complementary approach to siderophore-based optical detection of Fe(III) is to modify 

naturally-occurring siderophores with synthetic fluorophores, affording siderophore-fluorophore 

conjugates that provide changes in emission following Fe(III) coordination. This tactic requires 

that the siderophore has a functional group amenable to synthetic modification, and that 

fluorophore conjugation has negligible impact the iron-binding properties of the chelate. To date, 



	
   11 

the DFO and pyochelin scaffolds have been utilized for the assembly of Fe(III)-responsive 

siderophore-fluorophore conjugates (Figures 4-6).53,84-86,88,103 The DFO conjugates 12-16 

(Figures 4 and 5) provide turn-off sensing of Fe(III) whereas fluorescence enhancement or 

“turn-on” detection of this metal ion is achieved with the pyochelin conjugates 17-18 (Figure 6). 

Advantages of employing DFO include its commercial availability and its N-terminal amino 

group, the latter of which is a synthetic handle for fluorophore attachment. Preparation of the 

pyochelin-fluorophore conjugates required multistep syntheses, and these routes provide 

access to a multitude of other pyochelin-based molecules.104  

 

II.b.i. DFO-Fluorophore Conjugates for Turn-Off Fe(III) Detection  

DFO, 5, is a hydroxamate-based siderophore produced by the soil actinomycete 

Streptomyces (Figure 1). Although it is the first and only FDA-approved siderophore drug for 

treating iron-overload disease, the lack of oral availability and low cell permeability limit its utility. 

In the early 1990s, a derivative of DFO bearing a terminal nitrobenz-2-oxa-1,3-diazole (NBD) 

moiety was reported (12, NBD-DFO, Figure 4).84 NBD-DFO is water-soluble, exhibits maximum 

emission centered at 548 nm (λex = 475 nm), and affords fluorescence quenching upon addition 

of Fe(III) (10 mM HEPES, 100 mM NaCl, pH 7.4). Mixtures of acid (pH < 5) and excess EDTA 

reverse Fe(III)-induced turn-off, confirming that NBD-DFO is a turn-off Fe(III) sensor and that 

the fluorophore-modified chelate retains a high-affinity for this metal ion. A stability constant for 

NBD-DFO for Fe(III) was not reported and is assumed to be similar to that of parent DFO (Table 

1). Negligible changes in apo NBD-DFO emission occur following addition of Ca(II) and Mg(II) 

whereas Mn(II), Zn(II) and Cu(II) afford variable degrees of fluorescence quenching. The turn-off 

behavior induced by Mn(II) and Zn(II) is only observed with excess metal ion (100 to 200-fold 

greater than ferric ion). In contrast, introduction of one equivalent of Cu(II) into solutions of NBD-

DFO results in quenching. The copper-induced fluorescence decrease is reversible by addition 

of acid, suggesting a means of differentiating a turn-off response generated by Cu(II) or Fe(III) 

by using acid and acid/EDTA mixtures.  

 NBD-DFO was subsequently employed in two biological contexts.84,85 In one report, the 

anti-plasmodium activity of NBD-DFO was evaluated.84 DFO itself suppresses malarial infection 
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in vitro and in several rodent/primate species in vivo, but exhibits slow penetration into 

erythrocytes, which hinders its therapeutic utility. NBD is relatively lipophilic and NBD-DFO lacks 

the terminal amino group of the parent compound, suggesting that this fluorophore modification 

may result in improved cellular uptake and more potent inhibition of P. falciparum growth. The 

ability of NBD-DFO to inhibit intraerthyrocytic P. falciparum growth was therefore investigated.  

Dose-response studies revealed an IC50 value of 5 +/- 0.62 µM. This value is 5-to-6-fold lower 

than the IC50 value of unmodified DFO (26 +/- 5 µM). Apo NBD-DFO uptake experiments 

employing uninfected and infected erythrocytes monitored by NBD emission suggested that the 

uptake was highly selective for the infected cells. Complementary uptake studies employing 

radiolabeled 59Fe-NBD-DFO revealed that the negligible cellular entry of iron-bound form. 

 NBD-DFO was subsequently utilized to monitor iron uptake in maize and cotton roots.85 

Radiolabeled 55Fe-NBD-DFO was transported into both maize and cotton roots that were 

cultured in iron-deficient media. A time-dependent fluorescence increase in both the cotton and 

maize roots treated with Fe-bound NBD-DFO was observed over ca. fifteen hours by 

fluorescence microscopy. The magnitude of fluorescence enhancement was greater for roots 

that were cultured in iron-deficient media compared to those supplemented with 100 µM 

FeEDTA. Because NBD-DFO binds Fe(III) reversibly, one possible explanation for the observed 

fluorescence enhancement is iron release from NBD-DFO and hence the monitoring of 

intracellular siderophore dynamics and iron utilization. Other explanations include (i) uptake of 

ferric NBD-DFO because the observed fluorescence increase results from weak emission from 

this coordination complex and (ii) instability of the probe manifest as photoactivation.  

Fluorescein-derivatized DFO conjugates (13, FL-DFOthio; 14, FL-DFOam, Figure 4) have 

also been reported.52,53,86,87 These particular siderophore-fluorophore conjugates are appealing 

from the photophysical perspective because fluorescein exhibits high brightness (Φ x ε) and 

water compatibility.105 Compounds 13 and 14 each exhibit a fluorescein moiety coupled to the 

N-terminal amine of the siderophore, provide turn-off Fe(III) sensing in aqueous solution, and 

are biologically compatible. Sensor 13 was once commercially available from Molecular Probes, 

Inc. (now Invitrogen) and has been employed to measure levels non-transferrin-bound iron in 

serum.98,99 One assay measured desferrioxamine-chelatable iron (DCI) in serum, which can be 
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used as an efficiency index of a chelation therapy. Patients treated with deferiprone, an iron-

chelating drug, showed substantial increase of DCI after two hours of oral administration. 

Deferiprone has much better cell permeability than DFO. The results of this study indicated that 

deferiprone shuttles intracellular iron to extracellular DFO, suggesting a new chelation therapy 

by using a combination of deferiprone and DFO. In another recent application, FL-DFOam 14 

was immobilized onto mesoporous silica to provide highly selective and sensitive iron 

nanosensors.86 The optimized sensor, which exhibited minimal FL-DFOam leaching, was 

prepared by covalently anchoring FL-DFOam to the amine-functionalized internal surface of the 

mesoporous silica material. This hybrid material can be compressed into small pellets, which 

exhibit a linear response to Fe(III) concentrations in the low-micromolar range when incubated 

in solutions containing this metal ion. Selectivity studies showed that Ca(II), Al(III), and Ni(II) do 

not interfere with the response, and Cu(II) partially quenches the sensor emission. Further 

development of this approach may provide portable and stable iron nanosensors with high 

sensitivity and selectivity for use in the field.  

The last examples of fluorophore-DFO conjugates that provide fluorescence quenching 

with Fe(III) coordination are 15 and 16, the former of which was designed for tumor imaging and 

treatment (Figure 5).87 Multifunctional conjugate 15 is comprised of a near-infrared (NIR) 

fluorescent moiety (cypate), a cyclic peptide (RGD) for receptor-specific recognizing and cellular 

internalization, and the DFO moiety. The RGD peptide binds the integrin αVβ3 receptor (ABIR). 

This receptor is overexpressed on the endothelial cells in many tumors and therefore is a target 

for tumor imaging, diagnosis, and therapy. An in vitro study using ABIR-positive cells revealed 

that incorporation of RGD peptide improved the cellular uptake of DFO, and the conjugate 

remained in the cellular space for up to 10 h. Cellular distribution studies showed that 

compound 15 accumulated in the mitochondria, lysosomes and the cytosol. Further studies 

addressing intracellular iron chelation by the probe may afford insights about iron-related 

molecular-recognition processes. 
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II.b.ii. Pyochelin-Fluorophore Conjugates for Turn-On Fe(III) Detection  

 Pyochelin (2, Figure 1) is a yellow-green emissive siderophore that was first isolated 

from Pseudomonas aeruginosa cultures in the late 1970s.106,107 In contrast to the siderophores 

discussed thus far, pyochelin contains neither catecholate nor hydroxamate groups. It is a 

tetradentate ligand that coordinates Fe(III) via one phenolate and one carboxylate oxygen atom, 

and two nitrogen atoms from thiazoline and thiazolidine heterocycles. Pyochelin forms 1:1 and 

1:2 Fe:L complexes, with the second pyochelin proposed to coordinate in a bidentate fashion, 

and exhibits relatively low Fe(III) affinity compared to other siderophores (Table 1).106,108 

Pyochelin also forms coordination complexes with Co(II), Ni(II), Cu(II), and Zn(II) and Mo(VI).109 

Because of its unusual structure, relatively weak Fe(III) affinity, and the relatively low levels of 

pyochelin produced by Pseudomonas cultures, this natural product has been described by 

some as a “secondary siderophore.”90  

 Two pyochelin-NBD conjugates, 17 and 18, that provide fluorescence enhancement 

following Fe(III) coordination in aqueous solution were reported recently (Figure 6).88 These 

sensors differ from one another in the nature of the linker installed between the siderophore and 

fluorophore moieties. Sensor 17 exhibits a relatively short succinate linker whereas a long and 

flexible polyethyleneglycol moiety is incorporated into 18. In both molecules, the linker is 

connected to pyochelin via the N3” position, which is involved in iron coordination. The 

syntheses of 17 and 18 involved eleven and twelve steps, respectively, and both molecules 

retained iron-coordinating ability. Addition of Fe(III) to aqueous solutions of 17/18 resulted in 

fluorescence enhancement centered at 545 nm (150 mM Tris buffer, pH 8).  Five equivalents of 

Fe(III) were required for maximum turn-on with 2.9- and 3.2-fold emission enhancement 

observed for 17 and 18, respectively. This turn-on behavior is in striking contrast to the 

fluorescence quenching observed for unmodified pyochelin following Fe(III) coordination.95,106 

Job plot analyses indicated 1:2 and 1:3 Fe:L stoichiometries for 17 and 18, respectively. Neither 

selectivity of 17/18 for Fe(III) over other first-row transition metal ions nor whether the 

fluorescence turn-on is specific for Fe(III) were reported, and future studies along these lines 

are warranted. Fluorescence microscopy studies employing P. aeruginosa PAD07, a strain 

expressing the pyochelin receptor FptA, indicated that FptA binds and transports 17. 
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Intracellular fluorescence from the NBD chromophore was observed. In contrast, no cellular 

labeling was observed for P. aeruginosa DH51, which does not express FptA, following 

incubation with 17. These preliminary experiments indicate that 17 is suited for studying 

pyochelin uptake in Pseudomonas and other organisms, and that FptA may transport various 

pyochelin-derivatized cargos.  

 To date, few turn-on fluorescent detectors for Fe(III) have been reported,49,72,110-112 

making these pyochelin-fluorophore conjugates important contributions to the broad field of 

metal-ion sensing. Moreover, several of the turn-on Fe(III) sensors reported to date have 

relatively low affinity (Kd ~ 5 – 300 µM) and hence high detection limits, which limit practical 

utility.49 Unraveling the photophysical properties of the apo and iron-bound forms of 17/18, and 

precisely how the synthetic modifications at the N3” position influence the coordination behavior 

of pyochelin, will be enlightening and provide insight for the design of second-generation turn-on 

pyochelin-based metal-ion sensors in addition to other types of pyochelin-based conjugates.  

  

II.c. Fe(III) Detection Based on Lanthanide Displacement 

 Several displacement approaches for metal-ion detection have been reported and afford 

either a turn-on or turn-off fluorescence response to the metal ion of interest. Frequently, a 

metal ion that shares the same coordination site as the analyte and substantially quenches 

background emission from the receptor is employed. Displacement of this metal ion by the 

analyte results in fluorescence enhancement that is not achieved by using the receptor alone. 

This particular strategy has been utilized for turn-on Hg(II) sensing by Cu(II) displacement from 

a naphthlene-derivatized dihydrazone ligand,113  and for improving the dynamic range of the 

turn-on Zn(II) sensor Zinpyr-1 (ZP1) by substituting the Mn2:ZP1 complex for apo ZP1 as the 

Zn(II) probe.114 A complementary displacement tactic requires a lanthanide ion, the 

luminescence of which provides an indirect spectroscopic probe of the metal ion of interest 

following displacement of the antenna115 or the lanthanide ion itself. The latter strategy was 

recently employed for turn-off Fe(III) detection using terbium-bound N-methylanthranyl 

desferrioxamine B (19 and 20, Figure 7).89  
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Lanthanide ions coordinate to hydroxamate, catecholate, and salicylamide ligands, and 

siderophores have been proposed to mediate actinide mobility in contaminated subsurface 

environments.116,117 DFO B, 5, prevents Eu(III) absorption by goethite (α-FeOOH) and boehmite 

(γ-AlOOH), at least under laboratory conditions.118 The possibility of employing lanthanide 

complexes of N-methylanthranyl DFO B for Fe(III) detection was likely inspired, at least in part, 

from such prior studies. It was hypothesized that the N-methylanthranyl moiety would serve as 

the antenna and thereby transfer energy to the coordinated Ln(III) ion, providing luminescence. 

Following excitation of 19 at 340 nm, Tb(III) emission was observed in organic solvents such as 

ethyl acetate and acetonitrile. Addition of Fe(III) to a solution of 19 in ethyl acetate resulted in 

luminescence quenching, attributed to displacement of Tb(III) from the chelate and formation of 

21. A detection limit for Fe(III) was not provided for this siderophore-based detector, and the 

Tb(III) emission was quenched in protic solvents, including methanol and methanol/water 

mixtures, which limits its utility. A β-diketonate derivative of Tb:MA-DFB, 20, was next prepared 

by using hexafluoroacetylacetone (Hfac) as a blocking ligand to prevent water molecules from 

binding to the Tb(III) center. This β-diketonate complex exhibited Tb(III) emission in water, 

which was quenched following addition of Fe(III). A detection of 5 nM in water was reported; 

however, compound 20 was not tested in more complex or real-world samples. From the 

standpoint of design, the choice of Hfac as a blocking ligand over other β-diketones known to 

enhance Tb(III) luminescence is unclear, and systematic variation of the β-diketone may prove 

to be worthwhile for tuning the luminescence properties of the Tb(III) complex.119 Further studies 

will reveal whether such siderophore-based, Fe(III)-induced lanthanide displacement 

approaches are applicable to other siderophore scaffolds and have practical utility.  

 

III. Strategies for Pathogen Detection   

 In this section, we present four recent strategies for or applicable to the detection of 

microbial pathogens that require siderophores.54-56,120 These methods rely on siderophore 

immobilization and take advantage of the high-affinity association of siderophores to bacterial 

cell-surface receptors. Following iron coordination, ferric siderophores are recognized and 

sequestered by dedicated uptake machinery expressed on the cell membrane (Section I), which 
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provides a route for cytoplasmic entry. A number of siderophore receptors have been 

characterized structurally and biochemically with prominent examples including FepA121 

(enterobactin receptor) and FhuA122 (ferrichrome receptor) of E. coli, and FpvA123 (pyoverdine 

receptor) of Pseudomonas aeruginosa among others. These receptors exhibit specificity for one 

or several siderophores and bind these small molecules with dissociation constants in the 

nanomolar range. This specificity, in addition to the high-affinity binding capacity of the 

siderophore receptors, is attractive for developing species-specific bacterial identification and 

capture technologies. Moreover, from the perspective of pathogen detection, targeting 

siderophore receptors is worthwhile because the expression of functional siderophore uptake 

pumps is essential for proliferation and virulence in the iron-limiting environment of the 

vertebrate host. The likelihood of pathogens mutating these receptors is low.   

 A recent proof-of-concept example of siderophore-based pathogen detection involved 

polydimethylsiloxane (PDMS) stamping and immobilization of pyoverdine onto gold-plated glass 

chips for the capture of the opportunistic human pathogen Pseudomonas aeruginosa (Figure 

8).54 FpvA is the pyoverdine receptor expressed by P. aeruginosa and it has a Kd value of ca. 

0.5 nM for its iron-bound ligand.124,125 Pyoverdine was complexed with gallium and coupled to 

bovine serum albumin (BSA) by using carbodiimide chemistry. Subsequently, a PDMS stamp 

housing a pattern of repeating parallel ridges was treated with pyoverdine-BSA and employed to 

imprint a parallel pattern of pyoverdine-BSA onto gold-plate glass chips. In the first set of 

experiments, the chips were treated with solutions of DiO-labeled P. aeruginosa and the 

resulting emission pattern was visualized by using fluorescence microscopy. DiO, 3,3’-

dioctadecyloxacarbocyanine perchlorate, is a commercially-available fluorescent dye that binds 

to cell membranes. These experiments revealed a parallel pattern of DiO emission, with 

emission corresponding to the pyoverdine-functionalized regions of the chip. This pattern 

indicated that P. aeruginosa bound to the chip only where pyoverdine was attached. Because 

pre-loading the bacteria sample with a fluorophore is impractical for achieving rapid pathogen 

detection in real-world samples, the DiO-labeling step was ultimately circumvented by using 

light scattering, followed by Forrier transform analysis, to visualize the siderophore-captured 

bacteria. Using this technique, 104 cells/mL were routinely detected. In some instances, P. 
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aeruginosa from cultures at 102 cells/mL was observed. Only fifteen minutes were required for 

maximum P. aeruginosa binding, making this approach significantly more rapid compared to 

established methods for pathogen detection such as PCR-based screens.  

To probe the selectivity of the pyoverdine-modified chips for pyoverdine-producing 

organisms, the chips were treated with E. coli or Yersinia enterocolitica, species that neither 

express FpvA nor utilize pyoverdine for iron acquisition. Only negligible patterning was 

observed, supporting a requirement of a pyoverdine receptor for chip-based detection. It should 

be noted that the effect of metal-ion coordination by pyoverdine on the detection limit was not 

addressed in this study. It is unclear whether the pyoverdine stamped onto the gold chips is 

gallium-bound, iron-coordinated (resulting from iron-induced displacement of gallium), metal-

free or a mixture of these species. Although iron-free and gallium-bound pyoverdine bind to 

FpvA,124,126 the speciation may influence the detection limit for this system or for similar chips 

that utilize different siderophores. 

 Following this proof-of-concept report, the siderophore-modified chip methodology was 

extended to the detection of Yersinia enterocolitica.55 This Gram-negative human pathogen 

causes gastroenteritis and employs its xenosiderophore DFO (5, Figure 1) for iron acquisition. 

The receptor FoxA is responsible for ferrioxamine uptake by Y. enterocolitica,127,128 and 

utilization of this siderophore is associated with virulence and systemic infection in patients 

receiving chelation therapy for iron overload.129 A ferrioxamine-BSA conjugate was therefore 

prepared by using carbodiimide chemistry, and a PDMS stamp was treated with ferrioxamine-

BSA and used to pattern a gold-plated glass surface. The chips were subsequently incubated 

with 108 CFU/mL of Y. enterocolitica, which grown under iron-deficient conditions, and analysis 

of the chips revealed a light-scattering pattern attributed to pathogen capture. This pattern was 

not observed for chips treated with unmodified BSA or when the cultures of Y. enterocolitica 

were pretreated with desferrioxamine to saturate FoxA. LIVE/DEAD staining indicated that 

>95% of chip-bound bacteria were alive, and incubation of the chips with dead Y. enterocolitica 

resulted in no patterning. As observed for the pyoverdine-modified chips, signal saturation was 

observed following a ca. fifteen-minute incubation (108 cells/mL). Optimized chips, bearing a 20-

30% weight ratio of siderophore/BSA, afforded a detection limit of 103 CFU/mL observable by 



	
   19 

the eye. The chips retained Yersinia capture ability after one year of storage. To evaluate the 

selectivity of the chips for ferrioxamine-utilizing microbes, the chips were treated with 

Staphylococcus aureus, Mycobacterium smegmatis, Pseudomonas aeruginosa, and Vibrio 

cholerae. Negligible to no pathogen capture was observed for cultures of S. aureus, M. 

smegmatis, and P. aeruginosa whereas V. cholerae was bound by the chips. An experiment 

testing chip performance with a mixed species sample was not reported. Nevertheless, these 

results point to a need for multiplexing and incorporating orthogonal siderophores on a given 

chip for rapid species-specific identification in mixed bacterial samples.  

 Siderophore-modified CdSe/ZnS quantum dots (QDs) were employed to capture 

Pseudomonas fluorescens previously isolated from the Dong-Hu Lake in China.56 P. fluorescens 

is typically found in soils and waters, and this bacterium produces the fluorescent siderophores 

pyoverdine and pyochelin amongst others. This species expresses the ferrichrome receptor.130 

P. fluorescens is a fish pathogen,131 and occasionally causes disease in humans with 

compromised immune systems.132,133 In this work, QDs were coated with polyethyleneglyco-

phosphoethanolamine (PEG-PD-QD) and ferrichrome was coupled to the terminal amino groups 

of PEG-PD-QD by using carbodiimide-based coupling chemistry. Incubation of the ferrichrome-

QDs with cultures of P. fluorescens resulted in clustering and sedimentation observable by 

fluorescence microscopy and UV-visible spectroscopy. The clustering phenomenon was not 

observed when the ferrichrome-QDs were incubated with Bacillus subtilis or with P. fluorescens 

cultures that were pre-incubated with ferrichrome.  

 The last proof-of-concept approach employs an immobilized siderophore designed to 

separate siderophore-binding proteins from cell extracts and is applicable to pathogen detection 

(Figure 9). Motivated to provide a simple and direct method for the discovery of siderophore-

binding proteins in cell extracts, a biotinylated derivative of petrobactin (22, B-petrobactin), a 

siderophore produced by marine bacteria134 and the human pathogens Bacillus cereus and 

Bacillus anthracis,135 was synthesized.120 The ferric complex of B-petrobactin was incubated 

with streptavidin-agarose beads, which were used to prepare a petrobactin-affinity column.  

Following pre-treatment of the column with BSA to reduce non-specific binding.  B. subtilis cell 

lysates were loaded onto the column and eluted with guanidinium chloride solution, and SDS-
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PAGE analysis of eluted fractions revealed that only one protein was repeatedly retained on the 

column. Trypsin digest and mass spectrometry identified this protein as YclQ, an ABC 

transporter binding protein and member of the yclNOPQ gene cluster. Prior work established 

that YclQ is the petrobactin-binding protein utilized by B. subtilis and that it coordinates apo and 

ferric petrobactin with Kd values of 32 and 142 nM, respectively (determined by fluorometric 

titration).136 Indeed, the B. subtilis mutant ΔyclQ did not exhibit growth recovery following 

supplementation of nutrient-depleted growth medium with petrobactin whereas growth recovery 

was observed for the control strain. In agreement with the B-petrobactin pull-down assay, these 

data indicate that YclQ is the only petrobactin-binding protein expressed on the B. subtilis cell 

surface.  

 Although this approach was intended for the discovery of siderophore-binding proteins, 

its applicability to pathogen capture is clear and warrants careful consideration. Incubating 

bacterial samples with biotinylated siderophores and resin or magnetic beads bearing 

streptavidin affords a means to separate the bound and unbound cells. Moreover, the 

biotin/streptavidin interaction may be employed in other immobilization strategies. A biotinylated 

ferrichrome, prepared by chemical synthesis137 and a biotinylated salmochelin, prepared by 

chemoenzymatic synthesis138 have been reported in the chemical literature. Synthetic routes to 

other biotinylated siderophores, and biotin attachment strategies that do not compromise iron 

coordination or interaction with the target receptor, are required for this approach to be broadly 

applicable. 

     

IV. Summary and Perspectives 

 This minireview summarizes advances in siderophore-based detection of iron and 

microbial pathogens reported through mid-2012. Building upon decades of fundamental studies 

in siderophore coordination chemistry, total synthesis and biology, some highlights of the past 

few years include reports of siderophore-based turn-on Fe(III) sensors and pathogen capture 

strategies. These proof-of-concept studies warrant further elaboration. Moreover, additional 

directions in both fundamental research and technology development with broad impact (i.e. 

environmental monitoring, therapeutics, diagnostics) exist. Along these lines, expanding the 
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toolbox of available siderophore scaffolds is an important step for advancing the field. Of ca. 

500 siderophores isolated to date, only a handful have been evaluated in applications-based 

work. DFO, pyoverdine family members, and synthetic siderophore mimics are commonly 

employed because they are commercially available (i.e. DFO) or easily obtainable (i.e. 

pyoverdines), and afford relatively facile chemical modification. Limitations in siderophore 

availability may result from difficulties in cultivating the producer organism and/or isolating 

adequate quantities of the molecule in high purity from cultures. In addition, site-specific 

chemical modification of native siderophore platforms that house multiple functional groups is 

oftentimes challenging. Organic synthesis affords the means to circumvent these issues, and 

the total syntheses of many siderophores have been achieved. The synthetic routes to 

functionalized mycobactin,48 petrobactin,120 and pychelin88 scaffolds reported in 2010-2011 

provide opportunities for further elaboration. Chemoenzymatic and biosynthetic production of 

novel siderophores and siderophore conjugates are additional avenues worthy of exploration. 

Indeed, an artificial pathway to 3,4-dihydroxybenzoic acid was recently utilized to produce a 

novel catechol-derived aminocoumarin antibiotic in Streptomycetes coelicolor M512.139  

 From the standpoint of Fe(III) detection, additional photophysical characterization of 

fluorescent siderophores and fluorophore-siderophore conjugates is warranted. Standard 

characterization (i.e. quantum yield values and extinction coefficients for the apo and metal-

bound species) is often lacking. In some instances, these values were determined in prior work 

and under conditions irrelevant to the sensing application. These data provide valuable 

quantitative information useful for making comparisons between molecules, and are generally 

required by other sensing fields. Lastly, more detailed mechanistic studies, especially for 

molecules that provide fluorescence enhancement with Fe(III) coordination, will afford valuable 

insights of broad relevance to the metal-ion sensing field and aid future sensor design.  

 Whether the proof-of-concept methods for pathogen capture and siderophore-protein 

discovery described above are applicable to pathogen detection in more complex biological and 

clinical samples remains to be evaluated. Testing in real-world samples is an important first step 

in this regard, and achieving the required sensitivity and selectivity will likely require optimization 

and new design strategies that include multiplexing. In closing, we aim for this minireview to 
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summarize highlights spanning approximately two decades of siderophore-based detection 

research, provide a helpful resource for the community, and catalyze new frontiers in 

siderophore-based research. We look forward to the outcomes of such future endeavors. 
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Table 1. Properties of select siderophores produced by bacteria and fungi.  
No. Siderophore Producing Organism(s)a logKf (FeIII)b p[FeIII]c Naturally 

emissive Refd 

1 Pyoverdine Pseudomonas spp. 30.8 27 yes 100 

2 Pyochelin Pseudomonas aeruginosa, 
Burkholderia cepacia 
 

5.4, 
17.2e 

 
16.0 

yes 106, 
108 

3 Azotobactin δ Azotobacter vinelandii 28.1 27.8 yes 74 

4 Yersiniabactin Yersinia enterocolitica, Yersinia 
pestis 

36.6 n.d. yes 140 

5 Desferrioxamine B Nocardia spp., Streptomyces spp. 30.6 26.6 no 141 

6 Ferrichrome Aspergillus spp., Penicillium spp., 
Ustilago spp. 

29.1 25.2 no 142, 
143 

7 Enterobactin Klebisella spp., Enterobacter spp., 
Erwinia spp. 

49 35.5 no 144 

8 Parabactin Paracoccus denitrificans ~48 n.d.f yes 101 

9 Petrobactin Marinobacter hydrocarbonoclasticus, 
Bacillus cereus, Bacillus anthracis 

43 23.1 no 145 

10 Mycobactin S Mycobacterium smegmatis 26.6 n.d.f no 146 

11 Staphyloferrin B Staphylococcus hyicus n.d.f n.d.f no  

a Select examples of producing organisms. b Kf is the apparent forming constant of FeIII and the fully 
deprotonated ligand. c When [FeIII]total = 10-6 M, [L]total = 10-5 M, at pH 7.4. d The references specify the 
source of the stability constant. e The first value was determined in methanol due to the low solubility of 
the siderophore. The second value was determined in 20% ethanol/water. f n.d. = not determined. 
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Figure Captions 

 

Figure 1.  Examples of siderophores produced by Gram-negative bacteria (1-5, 7-10), Gram-

positive bacteria (11) and fungi (6). The iron-coordinating moieties are highlighted in red. 

Multiple structural variants of some siderophores exist (i.e. pyoverdines, azotobactins, 

desferrioxamines, mycobactins, etc.). In such cases, one example is provided and referred to 

throughout the text unless noted otherwise. 

 

Figure 2. Structures of ferrioxamine B (ref. 20), [Fe(ferrichrome)] (ref. 21), [Fe(yersiniabactin)]- 

(ref. 22) and [V(enterobactin)]2- (ref. 23) determined by X-ray crystallographic analysis. The 

oxygen atoms are depicted in red, the nitrogen atoms in blue, the sulfur atoms in yellow, and the 

carbon atoms in grey. The metal ions are labeled in green and the hydrogen atoms are omitted 

for clarity. 

 

Figure 3. Immobilization of ferrioxamine B onto glycidoxy-grafted silica gel (ref. 79).   

 

Figure 4. Structures of NBD- and fluorescein-containing fluorophore-DFO conjugates 12-14. 

The donor atoms are depicted in red and the fluorophores are labeled in blue. 

 

Figure 5. Structures of cypate-DFO conjugates 15-16 designed for cancer imaging studies. The 

donor atoms are depicted in red and the cypate fluorophores are labeled in blue. 

 

Figure 6. Structure of pyochelin-NBD conjugates 17-18 that give fluorescence turn-on with 

Fe(III) coordination in aqueous solution. The donor atoms are depicted in red and the NBD 

fluorophores are labeled blue. 

 

Figure 7. Iron detection based on lanthanide displacement. Molecules 19 and 20 exhibit terbium 

luminescence, which is quenched following Fe(III)-mediated Tb(III) displacement. The N-

methylanthranyl moiety is depicted in blue.  



	
   33 

 

Figure 8. Pathogen detection using siderophore-immobilization on glass chips (refs. 54 and 55). 

(A) Application of the siderophore-BSA conjugate to a PDMS stamp. (B) Immobilization of 

siderophore-BSA onto a gold-plated glass chip. (C) Exposure of the chip to a bacterial culture. 

(D) Imaging of bacterial capture. 

 

Figure 9. (A) Isolation of siderophore-binding proteins by using biotin-siderophore conjugates 

(ref. 120). (B) Structure of biotinylated petrobactin 22. The donor atoms are depicted in red and 

the biotin moiety is labeled in blue. 
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Figure 1. Zheng & Nolan (two columns) 
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Figure 2. Zheng & Nolan (two columns) 
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Figure 3. Zheng & Nolan (two columns) 
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Figure 4. Zheng & Nolan (one column)  
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Figure 5. Zheng & Nolan (two columns) 
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Figure 6. Zheng & Nolan (one column)  
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Figure 7. Zheng & Nolan (2 columns) 
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Figure 8. Zheng & Nolan (one column) 
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Figure 9. Zheng & Nolan (two columns) 
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This minireview summarizes siderophore-based methods for the fluorescence detection of 

Fe(III) and capture of bacterial pathogens.  
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