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Limited Sectoral Trading between the EU ETS and China 

Claire Gavard*‡, Niven Winchester† and Sergey Paltsev† 

Abstract 

In the negotiations of the United Nations Framework Convention on Climate Change (UNFCCC), 
new market mechanisms are proposed to involve Non-Annex I countries in the carbon markets 
developed by Annex I countries, beyond their current involvement through the Clean Development 
Mechanism (CDM). Sectoral trading is one such mechanism. It would consist of coupling one 
economic sector of a Non-Annex I country, e.g., the Chinese electricity sector, with the carbon market 
of some Annex I countries, e.g., the European Union Emission Trading Scheme (EU ETS). Previous 
research analyzed the potential impacts of such a mechanism and concluded that a limit would likely 
be set on the amount of carbon permits that could be imported from the non-Annex I country to the 
Annex I carbon market, should such a mechanism come into effect. This paper analyzes the impact of 
limited trading in carbon permits between the EU ETS and Chinese electricity sector when the latter 
is constrained by a 10% emissions reduction target below business as usual by 2030. The limit on the 
amount of Chinese carbon permits that could be sold into the European carbon market is modeled 
through the introduction of a trade certificate system. The analysis employs the MIT Emissions 
Prediction and Policy Analysis (EPPA) model and takes into account the banking–borrowing of 
allowances and the inclusion of aviation emissions in the EU ETS. We find that if the amount of 
permits that can be imported from China to Europe is 10% of the total amount of European 
allowances, the European carbon price decreases by 34%, while it decreases by 74 % when sectoral 
trading is not limited. As a consequence, limited sectoral trading does not reverse the changes 
initiated in the European electricity sector as much as unlimited sectoral trading would. We also 
observe that international leakage and leakage to non-electricity sectors in China are lower under 
limited sectoral trading, thus achieving more emissions reductions at the aggregate level. Finally, we 
find that, if China can capture the rents due to the limit on sectoral trading, it is possible to find a 
limit that makes both regions better off relative to when there is no international trade in carbon 
permits. 
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1. INTRODUCTION  

Carbon markets are developing around the world as policy instruments to reduce greenhouse 
gases emissions. The European Union Emission Trading Scheme (EU ETS) has existed since 
2005. Elsewhere, national or subnational carbon markets are also operating in Australia, Japan, 
New Zealand and California (Trotignon et al., 2011). Interconnections between them may 
develop (e.g., a full link between the European and the Australian trading schemes is planned for 
2018). Pilot carbon markets are also being trialed in China. To date, Non-Annex I countries1 
have been involved in carbon markets through the Clean Development Mechanism (CDM) 
defined in Article 12 of the Kyoto Protocol (UN, 1998). For each project approved by the CDM 
Executive Board, a certain amount of credits, called Certified Emission Reductions (CER) are 
issued.2 Many of these projects are renewable energy projects in India or China, e.g., the 
Huadian Fuqing Niutouwei wind power project in China. These CERs can be traded and sold in 
the carbon markets of Annex I countries. Among these carbon markets, the EU ETS is the largest 
one to accept CERs for compliance. Similarly, under the Joint Implementation mechanism (JI) 
defined in Article 6 of the Kyoto Protocol, Emissions Reduction Units (ERU) can be emitted for 
projects occurring in Annex B countries and traded in other Annex B countries.3 The EU accepts 
ERUs and CERs for compliance in the European carbon market (EU, 2004). In Phase II of the 
EU-ETS (2008–2012), the limit set on the amount of ERUs and CERs used in the ETS was 13% 
of the total amount of European allowances (EUA). This limit was not reached. 

For major developing countries, new market mechanisms are being considered to move away 
from the CDM to a wider approach. These countries could then be involved in a global 
agreement without making nation-wide commitments. This improvement is supported by the 
decision of the 2011 United Nations (UN) Climate Conference in Durban to set up such 
mechanisms under the United Nations Framework Convention on Climate Change (UNFCCC). 
Sectoral trading is one of the propositions (EU, 2009). It involves including a sector from one 
nation in the cap-and-trade system of another nation or group of nations (IEA, 2009b). For 
example, Chinese or Indian electricity sectors could be linked to the emission trading schemes of 
some Annex I countries. Such approaches have been widely discussed (Baron et al., 2008; Baron 
et al., 2009; CCAP, 2008; Bradley et al., 2007; ICC, 2008; IEA, 2006a, 2006b; IEA, 2007). 
Although they are less efficient than a global cap-and-trade system (Tirole, 2009), they may 
encourage participation in an international climate agreement (Sawa, 2010). As emissions 
reductions achieved through the CDM have been criticized (Schneider, 2007), there is a hope 
that a sectoral mechanism would achieve greater environmental benefits (IEA, 2005a; IEA, 

                                                 
1 The lists of Annex I and Non-Annex I countries were defined in the Kyoto Protocol (UN, 1998). 
2 Lecocq and Ambrosi (2007) presents the process through which CER units are issued and the sectors and 

developing countries in which most CDM projects take place. 
3 Annex B countries are Annex I countries with an emission reduction or a limitation commitment under the Kyoto 

Protocol (UN, 1998). 
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2005b; IEA, 2006a, 2006b; Schneider et al., 2009a, Schneider et al., 2009b; Sterk, 2008) and 
take advantage of a wider set of abatement opportunities (CCAP, 2010). 

Several previous studies have investigated the impact of sectoral trading. Hamdi-Cherif et al. 
(2010) analyzed sectoral trading between all developed countries and the electricity sector of 
developing countries. Gavard et al. (2011a) looked at the hypothetical US–China case, with 
trading between a national policy in the US and an electricity cap in China. These studies 
showed that, with unlimited sectoral trading, carbon prices in the two systems are equalized and 
a large proportion of the emissions reductions specified in Annex I sectors are implemented in 
Non-Annex I sectors. Hence carbon price decreases in Annex I regions resulted in a partial 
reversal of the technological changes induced by Annex I carbon policies in the absence of 
sectoral trading. Conversely, sectoral trading induces greater adoption of low-carbon 
technologies in emerging regions. Previous studies also show that such a sectoral policy leads to 
carbon leakage to the rest of the emerging country’s economy due to a reduction in fossil fuel 
prices. Gavard et al. (2011b) show that the European carbon price would decrease by more than 
75% if there were unlimited sectoral trading between the EU ETS and Chinese or Indian 
electricity sectors. This suggests that policy makers would limit the amount of permits that could 
be traded, in the same way that caps are imposed on the volume of CERs and ERUs accepted for 
compliance in the EU ETS, if sectoral mechanisms are adopted. 

The purpose of this paper is to quantify the impact of setting a limit on the amount of carbon 
permits that could be traded under sectoral trading. The analysis considers the case of a coupling 
between the EU ETS and Chinese electricity sector over the time period 2015–2030. 

This paper has three further sections. Section 2 describes relevant policies, the modeling 
framework and the scenarios considered. Section 3 presents the results. Section 4 concludes. 

2. MODELING FRAMEWORK 

The analysis in this paper extends the MIT Emissions Prediction and Policy Analysis (EPPA) 
model. Policies represented in this model include the EU-ETS and its extension to the aviation 
sector, the use of offsets through the CDM, and sectoral trading. 

2.1 The EPPA Model 

The EPPA model is a recursive–dynamic, multiregion computable general equilibrium model 
(Paltsev, 2005). The model is designed to assess the impact of energy and environmental policies 
on emissions and economic activity. Version 5 of the model is calibrated to 2004 economic data 
and is solved through time by specifying exogenous population and labor productivity increases, 
for 2005 and for five-year increments thereafter. As indicated in Table 1, 15 individual countries 
or regions are represented. For each country or region, fourteen production sectors are defined: 
five energy sectors (coal, crude oil, refined oil, gas and electricity), three agricultural sectors 
(crops, livestock and forestry), and five other non-energy sectors (energy-intensive industry, 
transport, food products, services and other industries). Factors of production include capital, 
labor, land and resources specific to energy production. There is a single representative utility-
maximizing agent in each region that derives income from factor payments and emissions 
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permits and allocates expenditures across goods and investment. A government sector collects 
revenue from taxes and purchases goods and services. Government deficits and surpluses are 
passed to consumers as lump sum transfers. Final demand separately identifies household 
transportation and other household demand. 

Production sectors are represented by nested constant elasticity of substitution production 
functions. Production sector inputs include primary factors (labor, capital and energy resources) 
and intermediate inputs. Goods are traded internationally and differentiated by region of origin 
following an Armington assumption (Armington, 1969), except crude oil which is considered as 
a homogenous good. 

In the model, electricity can be generated from traditional technologies (coal, gas, oil, refined 
oil, hydro and nuclear) and advanced technologies. Advanced technologies include solar, wind, 
biomass, natural gas combined cycle, natural gas with carbon capture, integrated gasification 
combined cycle with carbon capture, advanced nuclear, wind with biomass backup, and wind 
with gas backup. There also are four technologies that produce substitutes for energy 
commodities: shale oil and hydrogen are substitutes for crude oil, synthetic gas from coal is a 
substitute for natural gas and liquids from biomass is a substitute for refined oil. The period in 
which advanced technologies become available reflects assumptions about technological 
developments. When available, advanced technologies compete with traditional energy 
technologies on an economic basis. 

The model projects emissions of GHGs (CO2, methane, nitrous oxide, perfluorocarbons, 
hydrofluorocarbons and sulfur hexafluoride) and urban gases that also impact climate (sulfur 
dioxide, carbon monoxide, nitrogen oxides, non-methane volatile organic compounds, ammonia, 
black carbon and organic carbon). 

Version 5 of the EPPA model is calibrated using economic data from Version 7 of the Global 
Trade Analysis Project (GTAP) database (Narayanan and Walmsley, 2008) and energy data from 
the International Energy Agency. The model is coded using the General Algebraic Modeling 
System (GAMS) and the Mathematical Programming System for General Equilibrium analysis 
(MPSGE) modeling language (Rutherford, 1995). 
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Table 1. EPPA model aggregation. 

Countries or Regions Sectors Factors 

Annex I Non-Energy Sectors Capital 
United States (USA) Crops (CROP) Labor 
Canada (CAN) Livestock (LIVE) Crude Oil Resources 
Japan (JPN) Forestry (FORS) Natural Gas Resources 
Australia-New Zealand (ANZ) Food Products (FOOD) Coal Resources 
European Union (EUR) Energy-Intensive Industry (EINT) Shale Oil Resources 
 Transport (TRAN) Nuclear Resources 
Non-Annex I Services (SERV) Hydro Resources 
Mexico (MEX) Other Industry (OTHR) Wind Resources 
Rest of Europe and Central Asia 

(ROE)  Solar Resources 
East Asia (ASI) Energy Supply and Conversion Land 
China (CHN) Electric Generation (ELEC)  
India (IND)    Conventional Fossil  
Brazil (BRA)    Hydro  
Africa (AFR)    Nuclear   
Middle East (MES)    Wind   
Rest of Latin America (LAM)    Solar   
Rest of Asia (REA)    Biomass (BIO)   
    Advanced Gas (NGCC)   
    Advanced Gas with CCS (NGCAP)   
    Advanced Coal with CCS (IGCAP) 
    Advanced Nuclear (ADV-NUCL) 

 
   Wind with Biomass Backup 

(WINDBIO)  
    Wind with Gas Backup (WINDGAS)  
 Fuels  
    Coal (COAL) 
    Crude oil (OIL), Refined Oil (ROIL) 
    Natural Gas (GAS),  
    Shale Oil (SYNF-OIL)  
    Gas from Coal (SYNF-GAS)  
    Liquids from Biomass (BIO-OIL)  
    Hydrogen (H2)  

 

2.2 Limited Sectoral Trading 

Climate policy instruments in EPPA include emissions constraints, carbon taxes, energy taxes 
and technology regulations such as renewable portfolio standards. When there are emissions 
constraints under existing model functionality, permits may be either: (i) not tradable across 
sectors or regions, resulting in sector-specific permit prices in each region, (ii) tradable across 
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sectors within regions but not across regions, resulting in region-specific permit prices, or (iii) 
tradable across sectors and regions, resulting in an international permit price. Modeling sectoral 
trading requires extending the model to allow trade between international permits and sector-
specific permits. 

A trade certificate system is introduced to set the limit on the amount of sectoral permits that 
can be imported from the developing country (e.g., China) to the international carbon market of 
Annex I countries (e.g., the EU ETS). The number of certificates issued is a fraction, α, of the 
total amount of permits allocated in Annex I countries’ carbon markets. Each permit exported 
from developing countries to Annex I regions requires a trade certificate, which limits the 
number of permits imported to α multiplied by the number of permits issued in Annex I regions. 
The revenue from the certificates is distributed either to the importer or exporter of permits, and 
will ultimately depend on how the policy is designed. In the model, alternative revenue 
allocations are considered by endowing certificates to either China or the EU. As a consequence, 
the impact of the sectoral trading policy on the welfare in the countries involved depends on this 
allocation choice, as discussed in the results presented in Section 3. 

2.3 European and Chinese Energy and Climate Policies 

At the UNFCCC Conference of the Parties in Copenhagen in 2009, the EU committed to 
achieve a 20% emissions reduction below 1990 levels by 2020 (UN, 2009).4 This reduction is 
part of the 20-20-20 targets, which are to be met through the application of the Climate and 
Energy Legislative Package. Two other goals include raising the share of EU energy 
consumption produced from renewable resources to 20% and improving the EU’s energy 
efficiency by 20% by 2020. The EU ETS is a key instrument for reducing industrial greenhouse 
gas emissions. Started in 2005, it now covers more than 11,000 power stations and industrial 
plants in 31 countries.5 Credits from CDM and JI are accepted for compliance in the EU ETS 
under a specific limit. For Phase II of the scheme (2008–2012), this limit was 13% of the total 
amount of EU allowances. Banking and borrowing is allowed within each phase.  

In this analysis, the EU ETS is modeled as a carbon market covering the EU electricity sector 
and energy-intensive industries. To achieve an economy-wide 20% emissions reduction, the 
emissions constraint imposed on these sectors is a 42% reduction below 1990 levels by 2030. 
Banking of allowances is modeled by specifying a carbon price in the base period that grows at 
an assumed discount rate of 5% per year. The base period carbon price is chosen to target 
cumulative emissions specified by the cap. In the modeling exercise, no distinction is made 
between Phase III (2013–2020) and Phase IV (2021–2028). 

                                                 
4 The EU offered to increase its emissions reduction to 30% by 2020 if other major economies in the world commit 

to significant emissions reductions. The options for moving beyond a 20% reduction by 2020 are analyzed in a 
Communication published by the European Commission (EU, 2010). 

5 In addition to the EU Member States, Croatia, Iceland, Norway and Liechtenstein also participate in the European 
trading scheme. 
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In 2009, before the Copenhagen Conference, China announced a target to reduce its carbon 
intensity by 40 to 45% by 2020 compared to the 2005 level. Modeling sectoral trading between 
the Chinese electricity sector and the EU ETS requires setting a trading baseline for Chinese 
emissions, below which China can sell emissions reductions to the EU. In the current analysis, to 
reflect emissions reductions due to the Chinese intensity target, we impose a 10% reduction 
target on Chinese electricity sector emissions by 2030 compared to no policy emissions. 

2.4 The Aviation Sector and the EU-ETS 

Since the beginning of 2012, emissions from international aviation have been included in the 
EU ETS (EU, 2008). Currently, the application of the scheme to flights in and out of Europe is 
under discussion and the legislation applies to all flights within Europe, including the countries 
of the European Economic Area (EEA) and European Free Trade Association space (EFTA). 6,7 
The annual average of 2004, 2005 and 2006 aviation emissions within, from and to covered 
European countries was 221 million tons. The cap set on European aviation was 97% of this 
reference in 2012, and 95% from 2013 onwards. Given the high growth rate predicted for the 
sector and the high cost of abating aviation emissions, the aviation sector will likely purchase 
permits from the general EU ETS (Malina et al., 2012). 

The impact of demand for permits by the aviation industry may be compensated by the use of 
CDM and JI credits.8 From 2008 to 2010, installations under the EU ETS surrendered CERs to 
cover 277 million tons of CO2-equivalent emissions and ERUs to cover 23 million tons of CO2-
equivalent. The limit on CER and ERUs in phase II of the EU ETS (13% of the amount of EUAs 
issued under the European cap) was not reached. By extrapolating these figures to 2011–2030 
and comparing them to the limit set on the amount of CERs and ERUs allowed in the EU ETS, 
we find an approximation of CDM and JI credits that could be used by the aviation sector to 
cover their emissions. 

In the analysis, we consider that aviation emissions grow at an annual rate of 3%. We 
decrease the general EU ETS cap defined in Section 2.3 by all aviation emissions above the 
aviation cap that are not covered by estimated CDM and JI credits available for compliance in 
the EU-ETS. This simplification does not take account of the marginal abatement cost curve for 
CDM and JI projects, but it allows the specification of a cap on emissions net of demand for 
permits by the aviation industry and use of CDM and JI credits. In practice, non-aviation and 

                                                 
6 A global solution for international aviation emissions is expected from the International Civil Aviation 

Organization (ICAO) General Assembly that will take place in autumn 2013. If no progress is made, the EU ETS 
legislation will apply to all flights to and from European countries, regardless of the origin or destination of each 
flight. 

7 The European Economic Area comprises the countries of the EU, plus Iceland, Liechtenstein and Norway. The 
members of the European Free Trade Association are Liechtenstein, Norway, Iceland and Switzerland. 

8 For the time period 2008–2020, the limit of CDM and JI credits accepted for compliance in the EU-ETS is 1.7 
billion tCO2. All projects are accepted except nuclear energy projects, afforestation and reforestation activities, 
and, from 2013 onwards, projects involving the destruction of industrial gases. Credits from large hydropower 
projects are subject to conditions. 
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aviation sectors may purchase CDM and JI credits. As a net cap is used in the modeling 
framework, the results do not depend on which sectors use the CDM and JI credits.. The impact 
of alternative assumptions regarding the availability of CDM and JI credits is considered in 
Section 3.5. 

2.5 Scenarios 

Five core scenarios are used to analyze the impact of sectoral trading with a limit on the 
amount of permits that can be traded. In the No-Policy scenario, no emissions constraints are 
imposed. This scenario provides the “business as usual emissions” for Chinese electricity sector. 
In the China-cap scenario, an emissions constraint is imposed on the Chinese electricity sector 
only, with a target of 10% reduction below business-as-usual emissions by 2030. In the EU-ETS 
Scenario, cumulative emissions between 2005 and 2030 are reduced by 7.7 billion tons relative 
to the No-Policy Scenario. This emissions reduction accounts for the use of CDM and JI credits 
and emissions targets specified for aviation and other EU-ETS sectors. In the Trade Scenario, 
sectoral trading is allowed between the EU ETS and the Chinese electricity sector without a limit 
on sectoral trading. In the Limit Scenario, sectoral trading is allowed but the amount of carbon 
permits that can be imported from China to the EU ETS for each time period is limited to 10% of 
the total amount of European allowances for this time period (α = 0.1). Given the constraint 
imposed on the EU ETS sectors, this fraction limits trade of certificates to 158, 143, 128 and 113 
million respectively in 2015, 2020, 2025 and 2030. In alternative variants of the Limit Scenario, 
we consider limits of 5, 10 and 20%.  

We assign the certificates revenue to the EU in the core simulations. Alternative allocations of 
the certificate revenue are considered in additional simulations, in particular for the welfare 
analysis. 

3. RESULTS 

3.1 Emissions Transfers and Carbon Prices 

Unlimited sectoral trading leads to a carbon price equalization between the two entities 
involved. Under limited sectoral trading, as long as the limit is bounding, carbon prices in the 
two regions are not equalized and the difference in prices in the two regions depends on α. 

Emissions in the Chinese electricity sector and in the sectors covered by the EU ETS are 
presented in Figure 1, and carbon prices in each region are displayed in Figure 2. If China sets a 
cap on its electricity sector and does not trade carbon permits abroad (China-cap), Chinese 
electricity emissions are 5.92 billion tons in 2030 (Figure 1a), 0.66 billion tons less than No-
Policy emissions and the Chinese carbon price for the electricity sector is $6.2/tCO2 (Figure 2a). 
If the EU ETS is not coupled with Chinese electricity sector (EU ETS), the European carbon 
price is $39.7/tCO2 in 2030 (Figure 2b) and the emissions covered by the EU ETS amount to 
1.30 billion tons in 2030, compared to 1.96 in the No-Policy Scenario (Figure 1b). 
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Figure 1. CO2 emissions, in (a) the Chinese electricity sector, and (b) EU ETS sectors. 
 

 

 

 

 
Figure 2. Carbon prices in (a) the Chinese electricity sector, and (b) the EU ETS. 

 
If unlimited sectoral trading is allowed between the two entities (Trade), Chinese carbon 

permits corresponding to 410 million tons CO2 are exported to Europe and the carbon price is 
equalized across the two systems at $10.2/tCO2. Emissions from the sectors covered by the EU 
ETS are 1.66 billion tons while those from the Chinese electricity sector are 5.51 billion tons in 
2030.9 

In the Limit Scenario, imports of Chinese permits cannot exceed 10% of the number of 
permits issued under the EU-ETS for each time period. This limit is 113 million in 2030. In this 

                                                 
9 The amount of permits transferred in 2030 is the difference between Chinese electricity emissions in the China-

Cap and the Trade scenarios in 2030. It is not equal to the difference between European emissions specified 
under the EU ETS and the Trade scenario in 2030, as banking and borrowing allow European agents to fulfill 
part of their 2030 emissions reductions obligations in previous periods. 
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scenario, Chinese emissions are equal to 5.81 billion tons of CO2, while EU emissions are 1.43 
billion tons in 2030. Carbon prices ($25.9/tCO2 in Europe and $7.20/tCO2 in China in 2030) are 
not equalized in the two regions. 

Carbon prices and the volume of permits transferred vary with α. The stricter the limit, the 
lower the amount of permits that are transferred from China to the EU, and the larger the price 
difference between the two regions (see Table 2). When α = 0.05, the volume of permits traded 
is 57 million tons in 2030 and the carbon price is $6.78/tCO2 in China and is $31.4/tCO2 in 
Europe. In comparison, when α = 0.2, the volume of emissions transferred is 410 million tons 
and the 2030 carbon price is $8.05/tCO2 in China and $10.2/t CO2 in the EU ETS. 

Table 2. Carbon prices and volume of permits transferred in 2030. 

 Volume of Permits 
Transferred (Mt CO2) 

Chinese Carbon Price 
($/t CO2) 

EU Carbon Price 
($/t CO2) 

China-Cap - 6.24 - 
EU ETS - - 39.7 
Limit, α=0.05 57 6.78 31.4 
Limit, α=0.1 113 

 
7.2 25.9 

Limit, α=0.15 170 7.62 20.3 
Limit, α=0.2 228 8.05 15.7 
Trade 410 10.2 10.2 
 

Table 2 also reports results when there is no limit on sectoral trading. Under unlimited 
sectoral trading, the European carbon price decreases by 74% and under limited sectoral trading, 
this reduction is 34% if α = 0.1 and 21% if α = 0.05. 

3.2 Electricity Generation Profiles 

Carbon emissions constraints in China and the EU change electricity generation profiles in the 
two regions. Previous analysis shows that unlimited sectoral trading between Europe and China 
would reverse most of the changes induced by the EU ETS in the European electricity sector. 
Tables 3 and 4 present electricity generation in China and Europe in the No-Policy, China-Cap, 
EU ETS, Trade and Limit (when α = 0.1) scenarios. 
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Table 3. Electricity generation in China in 2030 (EJ). 

 No-Policy China-Cap Trade Limit 
Coal 22.6 20.3 19.1 20.1 
Oil 0.85 0.85 0.88 0.87 
Nuclear 4.09 4.19 4.24 4.20 
Hydro 4.67 5.12 5.35 5.17 
Solar and Wind 1.86 1.93 1.97 1.94 
Traditional Gas 0.24 0.21 0.20 0.21 
NGCC* 1.79 2.11 2.08 2.05 
Total 36.1 34.7 33.86 34.51 
*Note: NGCC refers to natural gas combined cycle. 
 

In China, unlimited sectoral trading enhances the changes induced by the constraint on 
Chinese electricity sector. For example, electricity production from coal decreases by 6% in the 
Trade Scenario relative to the China-Cap Scenario. Electricity production from low-carbon 
technologies is also impacted: in the Trade Scenario, relative to the China-Cap Scenario, 
electricity production from nuclear energy increases by 1.2%, hydropower increases by 4.5%, 
and wind and solar power increases by 2.1%. The price of electricity increases by 6.7% in the 
Trade Scenario, which decreases demand and ultimately production by 2% compared to the 
China-Cap Scenario. When sectoral trading is limited (α = 0.1), these effects are smaller. 
Relative to the China-Cap Scenario, the electricity price increases by 2.9% and the total amount 
of electricity generated decreases by 0.5% in the Limit Scenario. Also in this scenario, the total 
amount of electricity produced is 34.51 exajoules (EJ) out of which 11.31 EJ is from low carbon 
technologies, compared to a total of 34.7 EJ, including 10.72 EJ from low carbon technologies in 
the China-Cap Scenario. 

Table 4. Electricity generation in Europe in 2030 (EJ). 

 No-Policy EU ETS Trade Limit 
Coal 4.23 2.64 3.65 3.02 
Oil 0.49 0.51 0.49 0.50 
Nuclear 4.01 4.39 4.15 4.30 
Hydro 1.54 1.73 1.60 1.68 
Solar and Wind 1.18 1.26 1.21 1.24 
Traditional Gas 2.11 1.94 2.05 1.99 
NGCC 0.16 0.69 0.46 0.64 
Total 13.72 13.16 13.60 13.37 
 

In Europe, unlimited sectoral trading partially reverses technological changes induced by the 
EU ETS. Setting a limit on the amount of carbon permits that can be imported from China to 
Europe reduces this effect. For example, in comparison to the EU-ETS Scenario, electricity 
production from coal increases by 38% in the Trade Scenario and by 14% in the Limit Scenario. 
Additionally there is greater generation from low-carbon technologies in the Limit Scenario than 



 

12 

the Trade Scenario: nuclear power production increases by 3.6%, hydropower production 
increases by 5%, and solar and wind power production increases by 2.5%. 

In summary, unlimited sectoral trading between the EU ETS and the Chinese electricity sector 
would enhance the development of low-carbon electricity technologies in China relative to an 
isolated cap on electricity emissions while decreasing the total amount of electricity produced. In 
Europe, this would partly reverse changes induced by the EU ETS in European electricity 
generation. Limiting the amount of carbon permits that could be imported from China to the EU 
would reduce these effects.10 

3.3 Leakage and Aggregate Emissions Reductions 

From 2005 to 2030, the cumulative emissions reduction constraint imposed in the analysis is 
7.06 billion tons in Europe and 4.73 billion tons in China. These caps induce leakage of 
emissions to non-covered sectors and regions (see Table 5). 

Table 5. Cumulative leakage and emissions reductions relative to the No-Policy Scenario for 
the time period 2005–2030 (billion tCO2). 

 EU-ETS China-Cap Trade Limit 
Leakage to the Rest of the Chinese Economy 0.36 0.67 1.71 1.25 
Leakage to the Rest of the EU Economy -0.15 0.02 -0.07 -0.12 
Leakage to the Rest of the World 1.72 0.29 1.74 1.29 
Total Leakage 1.93 0.98 3.39 2.42 
Global Emissions Reduction 5.13 3.75 8.40 9.37 
 

Gavard et al. (2011a) show how sectoral trading induces leakages in the Non-Annex I 
countries involved. As the electricity sector is constrained, electricity price rises, which 
decreases output in other sectors. At the same time, there is a decrease in the price of coal and a 
substitution toward this input in many sectors. As a consequence, all sectors see their emissions 
increase due to the substitution effect, except the transport, electricity and oil sectors. In 
aggregate, there is positive leakage to the rest of the Chinese economy. The amount of 
cumulative leakage to the rest of the Chinese economy is 1.25 billion tons of CO2 under limited 
sectoral trading and 1.71 billion tons when no limit is set on the amount of permits that can be 
traded. In Europe, leakage to the rest of the economy is negative. As the EU-ETS covers not only 
the electricity sector but also energy-intensive industries, this result is driven by the output effect 
dominating the substitution effect between coal and electricity (i.e. there is not a large 
substitution from electricity to coal in non-electricity sectors as in the China-Cap Scenario). If 
international leakage is also taken into account, we observe that aggregate leakage is 
significantly smaller when there is limited sectoral trading (2.42 billion tons of CO2) than when 
international trade in permits is not restricted (3.39 billion tons of CO2). This result is explained 

                                                 
10 Given the fact that Chinese electricity production is nearly three times that in Europe in 2030, a similar change in 

absolute values is proportionally more significant in Europe than in China. 
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by the fact that, when there is limited sectoral trading, a larger proportion of the reduction in 
emissions takes place within the EU-ETS, which has a broader sectoral coverage. This can be 
related to the fact that emissions reductions in China target the electricity sector only while they 
relate to the electricity sector as well as other energy-intensive industries in Europe. Taking into 
account the constraints imposed in Europe and China, and total leakage, we conclude that 
aggregate emissions reductions at the world level are higher under limited sectoral trading than 
in the other scenarios. 

3.4 Welfare Impacts 

The welfare impact of sectoral trading is driven by two effects. On the one hand, trade in 
carbon permits induces financial transfers from the Annex I country to the Non-Annex I region 
(transfer effect). On the other hand, the constraint on the Non-Annex I country electricity sector 
makes electricity more expensive, which causes a decrease in aggregate output (general 
equilibrium effect). Gavard et al. (2011a) show that unlimited sectoral trading improves welfare 
in Annex I regions but decreases it in Non-Annex I regions. This is driven by the constraint 
imposed in the Annex I region being more stringent than the constraint imposed on Chinese 
electricity sector. As such, the general equilibrium effect dominates the transfer effect in non-
Annex I regions when there is sectoral trading. As a consequence, while sharing the carbon 
constraint improves welfare in the Annex I country, this is not necessarily so in the Non-Annex I 
country. 

As noted in section 2, modeling limited sectoral trading by introducing a trade certificate 
system requires making a choice regarding the allocation of the revenue from the certificates, 
which influences welfare in each region. We consider separate cases where the revenue is 
allocated to China or the EU. Table 6 reports welfare changes for the China-Cap, EU-ETS and 
Trade Scenarios relative to the No-Policy Scenario. Table 7 reports welfare changes for the 
Limit scenario with alternative values of α, and with allocation of the certificate revenue to 
Chinese or European households. 

Table 6. 2030 Welfare changes relative to the No-Policy Scenario (percent). 

Scenarios In China  In the EU 
China-Cap -0.14  0.00 
EU ETS 0.00  -0.27 
Trade -0.23  -0.17 

 
In the China-Cap and the EU ETS scenarios, the welfare changes compared to the No-Policy 

Scenario (-0.14% in China in the China-Cap scenario, -0.27% in Europe in the EU ETS case) are 
driven by the constraints on emissions in each region. Under unlimited sectoral trading (Trade), 
the EU is better off but China is worse off, as the general equilibrium effect dominates the 
revenue effect. 
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Table 7. 2030 welfare changes in the Limit Scenario relative to the No-Policy Scenario for 
alternative values of α (percent). 

Scenarios In China  In the EU 
 Rent to China Rent to the EU  Rent to China Rent to the EU 
Limit, α=0.2 -0.18 -0.21  -0.19 -0.17 
Limit, α=0.15 -0.16 -0.20  -0.21 -0.19 
Limit, α=0.1 -0.14 -0.18  -0.23 -0.21 
Limit, α=0.05 -0.14 -0.16  -0.24 -0.23 

 
Under limited sectoral trading, welfare changes depend on the allocation of certificate 

revenue. For obvious reasons, welfare is higher in China if Chinese households receive the 
revenue than if certificate revenue is allocated to the EU. For example, for α = 0.15, welfare 
decreases by 0.16% in China if certificate revenue goes to China, but it decreases by 0.20% if the 
revenue is allocated to the EU. Similarly, Europe is better off if European households are 
endowed with the certificates. In addition, the welfare in China decreases as the limit α increases, 
while welfare in Europe increases with α. This is related to the general equilibrium effect and the 
dissymmetry in the carbon constraints as mentioned above; while sharing the constraints 
improves welfare for Europe, it is not necessarily so for China. Table 8 summarizes changes in 
electricity prices, aggregate output, net exports and the terms of trade as a consequence of the 
policy. We observe that the electricity price in China in 2030 rises by 6.7% in the Trade Scenario 
and by 2.9% in the Limit Scenario (α=0.1) relative to the China-Cap scenario. The aggregate 
output of Chinese economic sectors decreases by 0.11% in the Trade Scenario and 0.02% in the 
Limit Scenario. Exports decrease by 4.9% in the Trade Scenario and by 3.3% in the Limit 
Scenario but the terms of trade increase by 0.04% in the Trade Scenario and by 0.005% in the 
Limit Scenario. 

Table 8. Change in electricity price, aggregate output, next exports and the terms of trade 
in China in 2030, relative to the China-Cap Scenario (percent). 

Scenarios Change in 
Electricity 

Price 

Change in 
Aggregate 

Output  

Change in 
Net 

Exports  

Change in 
the Terms 
of Trade  

Limit +2.89 -0.02 -3.32 +0.01 
Trade +6.72 -0.11 -4.90 +0.04 

 
Compared to the Trade Scenario, for which China is always worse off relative to the China-

Cap scenario, it is interesting to note that, under limited sectoral trading, there exists a limit for 
which China is at least as well off as in the China-Cap Scenario, providing the certificate revenue 
is allocated to China. The EU is also better off in this scenario. As one entity is better off without 
the other being worse off, this situation (Limit scenario with α = 0.05 or 0.1) is pareto superior 
to the situation in which each region has its own constraint and no trading is allowed between 
them. Of the cases considered here, welfare is greater when α =0.1. 
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3.5 Sensitivity Analysis 

In Section 2.4, we explained how European aviation emissions are included in the analysis, 
taking into account an approximation of the use of CDM and JI credit by this sector. In this 
subsection, we present the change in results when European aviation emissions are included in 
the analysis without compensation through CDM and JI projects. The results are summarized in 
Table 9. Under this adjustment, the carbon price in the EU ETS scenario in 2030 is $43.4/tCO2 
and emissions from the sectors covered by the scheme are 1.28 billion tons. In the Limit 
Scenario, the European carbon price decreases by 36% with α = 0.1, and by 17% if α = 0.05. 
Carbon prices in European and Chinese electricity sectors equalize at $10.4/tCO2 in 2030 in the 
Trade Scenario. Under unlimited sectoral trading, 435 million tons of Chinese carbon permits are 
sold to Europe in 2030, compared to 114 million tons in the Limit Scenario. Emissions from the 
sectors covered by the EU ETS reach 1.65 billion tons in the Trade Scenario in 2030 and 1.41 in 
the Limit Scenario. The carbon price in China is $7.19/tCO2 in the Limit Scenario and 
$10.4/tCO2 in the Trade scenario. The welfare analysis presented in the previous section is robust 
to this sensitivity test. 

Table 9. Carbon prices, permits traded, and emissions without CDM and JI credits. 

Scenarios Volume of 
Permits 

Transferred  
(Mt CO2) 

Chinese 
Carbon 
Price 

($/tCO2) 

EU Carbon 
Price 

($/tCO2) 

Chinese 
Electricity 

Sector 
Emissions 

(billion tCO2) 

EU ETS 
Sectors 

Emissions 
(billion 
tCO2) 

China-Cap - 6.24 - 5.9 1.95 
EU ETS - - 43.4 6.6 1.28 
Limit 114 7.19 27.7 5.8 1.41 
Trade 435 10.4 10.4 5.5 1.65 

 

4. CONCLUSIONS 

In the UNFCCC negotiations, new market mechanisms are proposed to extend Non-Annex I 
countries participation in carbon markets beyond the current project-based CDM. Sectoral 
trading is one such proposition. To prevent a large proportion of the reduction in emissions 
shifting from Annex I to Non-Annex I regions, limits on sectoral trading have been suggested. 
This paper quantified the impact of limited sectoral trading between the EU ETS and Chinese 
electricity sector. We find that, while carbon prices in the European and Chinese electricity 
sectors equalize at $10.2/tCO2 under unlimited sectoral trading, the carbon price is $25.9/tCO2 in 
Europe and $7.2/tCO2 in the Chinese electricity sector when the amount of Chinese carbon 
permits imported in the EU cannot exceed 10% of the number of permits issued under the EU-
ETS. The change in the EU carbon price represents a 34% decrease compared to when there is 
no sectoral trading. If the amount of Chinese permits that is accepted in the ETS is 5 or 20% of 
the number of EUA allowances, the EU carbon price is respectively $31.4/tCO2 and $15.7/tCO2. 
We observe that, while unlimited sectoral trading enhances adoption of low-carbon technologies 
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induced by the emissions reduction constraint in the Chinese electricity sector, this effect is 
diminished under limited sectoral trading. Low carbon technologies represent 31% of a total of 
36.1 EJ of electricity produced in China if there is a 10% emissions reduction constraint on this 
sector. Under unlimited sectoral trading with the EU-ETS, the absolute amount of electricity 
from low carbon technologies increases by 0.84 EJ but the total amount of electricity produced in 
China decreases by 2%. If there is a limit on the amount of permits traded, electricity from low 
carbon technologies represents 11.31 EJ, which is 33% of the total amount of electricity 
generated in China. In Europe, while unlimited sectoral trading partially reverses the changes in 
the electricity sector induced by the EU-ETS, a limit on this mechanism moderates this effect. If 
no trading is allowed between the EU-ETS and Chinese electricity sector, low carbon electricity 
in Europe produces 7.38 EJ in 2030. With limited sectoral trading, low-carbon electricity 
production is 7.22 EJ in 2030, compared to 6.96 EJ if no limit is set on the volume of permits 
that can be traded with China. 

Regarding aggregate emissions, we observe that international leakage and leakage to the rest 
of the Chinese economy are lower when a limit is set on the amount of permits that can be traded 
than without it. As a consequence, global world emissions reductions are higher under limited 
sectoral trading than in the other scenarios. Welfare changes in both regions involved depend on 
the way the revenue from the certificates is allocated. China is better off if it receives the revenue 
than if the revenue is allocated to the EU. We find that there exists a limit that makes both 
regions better off or at least one region as well off and the other better off relative to when there 
is no international trade in emissions permits. In the analysis, this pareto superior situation is 
reached when the volume of Chinese permits imported to Europe cannot exceed 10% of the 
volume of EUA allowances defined by the European cap. 

To conclude, a sectoral trading mechanism would allow some Non-Annex I countries to 
participate in the carbon market developed by Annex I countries. If a limit is set on the amount 
of permits that can be traded, such a mechanism would not decrease the carbon price in the 
Annex I country as much as when there is no limit. As a consequence, it would not reverse the 
changes initiated in the electricity sector of the Annex I country as much as unlimited sectoral 
trading would. In terms of leakage and aggregate emissions reductions, limited sectoral trading 
also yields better results than unlimited sectoral trading. Finally, we observe that, if the revenue 
from the certificates is allocated to Chinese households, it is possible to find a limit that makes 
both regions involved better off compared to the case in which no trading is allowed between the 
two regions. 
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