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Abstract

This thesis concentrates on the computation of hydrodynamic forces on ships and
offshore structures. The specific topic of this thesis is the higher-order forces and
moment. This thesis consists of two parts.

The aim of the first part is the development of a finite-depth unified theory for
ship motions and its extension to the computation of the second-order mean-drift
forces and moment. The mathematical background of the finite-depth unified theory
is introduced, and an associated computer program is developed to verify this theory.
The accuracy is checked from the comparison with the result of a three-dimensional
panel code, and the nice agreement is shown. The theory is extended to the computa-
tion of the second-order quantities. The mean forces and moment are computed using
the far-field formulae, and the wave drift damping matrix is obtained by Aranha's
formula. Based on the present study, slender-body theory is shown to be a useful
design tool for a floating ship, like an FPSO.

The second part develops a model and a corresponding computational program for
the prediction of nonlinear wave effects. The primary interest is the second-order high-
frequency effect which induces flexural body responses. The Rankine panel method
using the bi-quadratic B-spline basis function is adopted as a method of solution. The
theoretical aspects of the numerical scheme are described to verify the consistency
and stability of the method, and a thorough parametric study is carried out. The
computational result includes linear and nonlinear run-up and wave loads up to the
second order. Based in this numerical method, the sum-frequency wave loads are
obtained for a monochromatic wave and multi-frequency waves. Good agreement is
shown with existing numerical and experimental data.

Thesis Supervisor: Paul D. Sclavounos
Title: Professor of Naval Architecture
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PART I

SLENDER-BODY THEORY



Chapter 1

Introduction

During the last decade, most studies in marine hydrodynamics are based on nu-

merical methods and the complete three-dimensional problems have been of interest.

From today's point of view, slender-body theory may be too simplified or too mathe-

matical to be used as a design tool. However, it cannot be overlooked that strip theory

has been the most popular tool for the analysis of seakeeping performance over past

two decades. The reason of this popularity is partly its reasonable accuracy. In spite

of the fact that strip theory is a low-order theory, its accuracy is quite reasonable for

the linear seakeeping analysis. Furthermore unified theory provides better accuracy

comparable with three-dimensional method. More significant merit is its computing

effort. A unified theory code supplies almost instant answer using very little memory.

An another important but hidden reason is the simplicity of input data, in particular

the treatment of the hull form. Slender-body theory requires the offset data on ship

sections, so called, stations.

Recently second-order quantities have become important in the design of FPSO

(floating production, storage, offloading ship) or shuttle tanker. One of the important

issues in the design of these vessels is the slow drift motion, which is related to the

design of a dynamic positioning system and/or mooring lines. Strip theory has been

used to compute the added resistance which is a second-order quantity, but it doesn't

provide accurate results for such quantities. Since the second-order quantities are very

14



sensitive to the accuracy of the linear solution, a method more accurate than strip

theory is required even for the linear problem. In this sense, the three-dimensional

panel code, like WAMIT or SWAN, is desirable for the computation of second-order

quantities.

Unified theory bridges the gap between strip theory and a three-dimensional panel

method. Unified theory has an advantage that sectional offset data are sufficient for

the representation of the hull geometry. Furthermore the accuracy of unified theory

is comparable with that of the three-dimensional method since it introduces a three-

dimensional correction to strip theory. In addition the computation code requires

much less CPU time than any three-dimensional panel code. Therefore unified theory

may be an effective design tool which has all the advantages of strip theory and of a

three-dimensional panel code.

The most pioneering work for ship motion using slender-body theory was done by

Korvin-Kroukovsky and Jacobs [40]. Their method is based on the assumption of a

long slender body and short waves, not taking into account the interaction between

sections. Correcting Timman-Newman relation in their method, many refinements

were introduced. The most popular strip theory may be the method used by Faltinsen,

Tuck and Salvesen in 1970. A further development from strip theory was done by

Newman [54] and Sclavounos [64] who gave an excellent exposition of the state of the

art in this field. They presented a theoretical foundation perturbing from the strip

theory approach, to extend the region of whole frequencies.

There are not many studies of the finite-depth seakeeping problem. Even though

the shallow-depth effect on two-dimensional sections has been studied many times,

few applications of the finite-depth strip theory exist. Kim [26] has shown the result

of the finite-depth strip theory, and Tuck [75] introduced a theory which assumes that

the depth is shallow and the wavelength is comparable with the ship length. Borresen

[6] has tried to extend unified theory to finite depth when the ship has forward speed.

He derived the far- and near-field solutions of the velocity potential, and an integral

equation was proposed. However, he didn't show any meaningful results since the

15



kernel of his integral equation involves double-integral terms which are difficult to

compute.

The present study is on the line of Borresen's work, in particular for a zero-

speed case. When there is no forward speed, the kernel of the integral equation can

be simplified using a contour integral, and it can be written as a series form that

makes the integral equation easy to solve. Unified theory is based on the matched

asymptotic expansion method, and an integral equation is derived from matching the

inner expansion of the far-field solution with the outer expansion of the near-field

solution. Solving the integral equation, both the far- and near-field solutions can

be completed. The present work introduces the far- and near-field behavior of the

velocity potential around a slender ship in finite depth, and a new kernel is derived

for the motion of the body with no forward speed.

Based on the present theory, a computer code has been developed for the heave

and pitch motion of a slender ship. Since the solution of strip theory is necessary

for unified theory, a strip theory code must be developed first. In the present study,

NIIRID [68], a computer code developed for two-dimensional sections, was used for

the strip theory code, and it was extended to the finite-depth problem. The series

form is used for the two-dimensional finite-depth Green function. The unified theory

code for the heave and pitch motions is extended from this strip theory code. Using

the strip theory solution, the three-dimensional corrections are computed by solving

the integral equations of unified theory. Numerical computations were carried out

for a few typical slender ships. The hydrodynamic coefficients and motion RAOs are

compared with WAMIT for validation.

The present study is extended to the computation of the second-order quantities.

Since the accuracy of unified theory is comparable with that of three-dimensional

panel method, the computation of the second-order mean forces and moment was

carried out using the linear solution in unified theory. The accuracy of these quantities

depends on the accuracy of Kochin function, i.e. the velocity potential and the motion

RAOs. For the deep water problem, Kim & Sclavounos [33] applied the deep-water
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unified theory (heave, pitch) and strip theory(sway, roll, yaw) to the computation of

second-order quantities, and they showed a favorable agreement with WAMIT. The

present study introduces the results for finite depth.

This study includes the wave drift damping for infinite depth. Aranha [2] sug-

gested a formula for the wave drift damping coefficients in surge and sway. More

recently he extended his formula to the yaw-motion component [3]. Although there is

some doubt about its accuracy, particularly in the radiation problem, his formula has

an advantage that it requires just the drift forces at zero speed. Computations were

carried out for a mathematical hull, Ship1, which Finne and Grue [19] considered.

The damping coefficients with Aranha's formula are compared with the result of the

three-dimensional panel method obtained by Finne and Grue.

This part consists of five chapters including this introduction. In chapter 2 the

boundary value problem is formulated with the fundamental assumptions. The theo-

retical approach of the boundary value problem is described in chapter 3. In the far

field, the velocity potential is written as the line distribution of a three-dimensional

wave sources, while the near-field solution can be obtained by solving the two-

dimensional boundary value problem formulated using the slender-body assumption.

From matching two solutions, a new integral equation is derived. In chapter 4, the

formulae for the second-order quantities are summarized. Using the linear solutions,

the mean-drift forces and moment can be obtained using far-field formulae. The wave

drift damping coefficients are also computed using the mean forces and moment at

zero speed, and Aranha's formula is applied. The computational results based on

the present theory are introduced in chapter 5. The hydrodynamic forces, motion

RAOs and second-order quantities are computed for a few typical slender ships and

the results are compared with WAMIT and other existing data.
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Chapter 2

Boundary Value Problem

Consider a Cartesian coordinate system fixed in space with the free surface taken

at z = 0. As shown in Figure 2-1, the center-plane of the ship is at y = 0 and

the positive x axis points towards the bow. Assume that the ship undergoes small

harmonic oscillatory motions in a monochromatic linear wave with frequency w.

Figure 2-1: Coordinate System

If an ideal fluid and the irrotational flow are assumed, using complex notation,
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the linear velocity potential, <b, is defined by

<D(x, y, z, t) = R{#(x, y, z)e iW} (2.1)

where

6

#(x, y, z) = RJ{# + #7 + E j#(x, y, Z)}. (2.2)
j=1

The subscript j means the direction of motion, and (j is the complex motion am-

plitude. j = 1, 2, 3 and j = 4, 5, 6 correspond to the translational and rotational

motions. #7 denotes the diffraction potential and #, is the incident wave potential

given by

igA cosh{k(z + h)} _ik(xcos#+ysin3). (2.3)
W cosh kh

A is the wave amplitude and # is the angle of the incident wave, with 3 = 1800 for

head waves. k is the wave number.

The linearized boundary value problem for #j(x, y, z) can be written as follows:

- Fluid domain,

V 2 4j = 0 (2.4)

- Free surface, SF(Z 0),

a#- w2
o # - = 0 (2.5)

Oz g

- Body surface, SB,

fi j=1jinj... 6 (2.6)
ion . jI j =7
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- Bottom surface, Sh(z = -h),

a = 0 (2.7)
Oz

n = (ni, n2 , n3) is the unit normal vector pointing inside the body surface with

n5= -xn + zni. This boundary value problem requires an additional radiation

condition to become well posed.

In the present study, unified theory for the heave and pitch motions are considered.
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Chapter 3

A Finite-Depth Unified Theory

Unified theory is based on the matched asymptotic expansion method. Two dis-

tinct solutions at the far and near field around a ship are described in the following

sections. Their inner and outer expansions are major interests in order to match two

solutions in the overlapping zone. The two leading terms are considered in the inner

and outer expansions. The first term is a strip theory contribution, and the other

term is a three-dimensional correction. The matching conditions produce an integral

equation, which is a key of unified theory. In order to develop the present theory, the

ship is assumed slender so that the longitudinal flow gradient near the ship hull can

be assumed to be much smaller than the transverse flow gradients.

3.1 The Far-Field Solution

The velocity potential doesn't feel the detailed body shape in the far field, located

at a radial distance comparable to or greater than the ship length. If a body is slender,

the velocity potential can be expressed as a line distribution of three-dimensional

finite-depth wave sources,

#5 (X, y, Z) = d< gy((G( x, y, z) (3.1)
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where q3(() is the strength of the Green function, G(x, y, z). Using the convolution

theorem, #j (x, y, z), can be rewritten in the Fourier domain as

1 oc
# (x, y, z) = du eiuxq*(u)G*(u; y, z). (3.2)

27r - oo

The superscript * denotes the Fourier transformation.

G*(u; y, z) can be obtained by solving the boundary value problem for a line

distribution of wave Green functions, and the details are described in Appendix A.

G*(u; y, z) is written as follows :

1 00
G*(u; y, z) = drJ o dve" x

1 cosh{ u2 + v2(z+ h)} (3.3)
cosh{ u2 + v2h} [ u2 + v2 tanh{ u2 + v2h} - v]

where v = w2 /g.

Equation (3.3) recovers the result of Ogilvie and Tuck [58] when h -+ oc,

1 ivy eMo
G*(u; y, z) - dvevY . (3.4)

27r J-oo V/U 2 + v2 
- *

Let's define a Fourier-transformed function, f*(u; y, z), such that

f*(u; y, z) = G*(u; y, z) - G*(0; y, z) (3.5)

Notice that G*(0; y, z) = G2D(y, z) where G2D(y, z) is the two-dimensional Green

function which satisfies the linearized free-surface boundary condition and the radia-

tion condition. Then the velocity potential can be rewritten as

#5j(x, y, z) = G2D (y, Z)qj (X) +fQj - X'yZ)<. (3.6)

The adoption of f(x, y, z) leads the decomposition of the far-field solution with

two terms, two-dimensional and three-dimensional contributions. As mentioned later,
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the near-field solution is supposed to be written as the same form.

Now consider the inner expansion of the far-field solution. The inner expansion

can be obtained using the Taylor series expansion of the integral term in equation (3.6)

for small y and z. The Taylor series expansion is applicable when a function is not

singular at its expansion point. In this case, the expansion is applied to the integral.

The integral of f ( - x, y, z) doesn't have a singularity at ( - x, y, z) = (0, 0, 0), and

the details are explained in Appendix B. Then, the inner expansion is written as

<j(x, y, z) = qj(x)G2D(y, Z) + -j( )f X)0,0)<

+y g j (q)f(( - x, y, z)<jy=z=0

+Z'91 qj( )f (-x, y, z)dly=z=o + O(y 2 , z 2 ) (3.7)

For the heave and pitch motion, the second integral term vanishes because of sym-

metry. The third integral term remains as long as z is not zero.

3.2 The Near-Field Solution

At transverse distances of the order of the ship beam, the details of the ship

geometry should be considered. In particular the relative orders of the flow gradients

are dictated by the relative orders of the body surface gradients. If the body is

slender for the y and z coordinates to be of O(e), the gradients in the longitudinal

and transverse directions can be written as

- 0(1) << a, 7- = O(-). (3.8)
OX Oy 19z E

Then the boundary value problem is reduced to the two-dimensional problem at a

certain section of the body.

Notice that the body boundary condition is pure imaginary. If there is a term

which is pure real and satisfied with other conditions, it will be a homogeneous
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solution. Then the general solution of the near field consists of a particular solution

#p and a homogeneous solution #H,

#j(X, y, Z) = #j,P(x, y, z) + C (x) j,H (x, y, z) (3.9)

C(x) is an arbitrary function of x which will be determined from the matching with

the inner expansion of the far-field solution. The particular solution is the strip theory

solution, say @kj(xI y, z) which satisfies the pure imaginary body boundary condition.

The homogeneous solution can be regarded as a free wave potential which is a pure

real potential, and Oj (x, y, z) + '/ (x, y, z) can be a homogeneous solution where Oj

is the complex conjugate of $j. Thus we can rewrite as

#j(X, Y, Z) = {1 + C(x)}@(x, y, z) + Cj(x) (x, y, z) (3.10)

The outer expansion of this solution is of interest in order to match with the inner

expansion of the far-field solution. At a large distance from the body, the particular

solution has a point-source behavior. Then it can be written as

e0i (x, y, Z) = o-j (x)G2D (Y, Z) (3.'1

where o-(x) is the strength of the two-dimensional wave source, G2D, placed at the

center of the section. Therefore the outer expansion of the near-field solution is

written as

#j(x,y,z) = [o(x) + Cj(x){uo-(x) +j(x)}]G 2D(y,z)

- Cj (x)&(x)(G 2 D(y, z) - 02D y, z)) (3.12)

with

G2D y, z) - 2D (y, Z) - -2i Im(G2D)

24



. cosh{mo(z + h)} moh

cosh(moh) vh + (moh )2 COS(my)

+0( 1) (3.13)
y

and m = k, such that

v = mo tanh(moh) (3.14)

G2D - G2D contains the three-dimensional effects in the near-field solution. The

physical description of this term is a free wave contribution. When y becomes large,

the local waves decay exponentially. In consequence the free wave contribution is

dominant in G2D - G2D. Newman [54] showed the deep water case,

G2D(y, z) - 2D(y, Z) - 2i(1 + vz) cos(vy) (3.15)

when h -+ oc. This limit case is proven using

cosh{m0 (z + h)} emoZ = 1 + moz + (mOz) 2 + ... (3.16)
cosh(moh)

1 ) 1 (3.17)
vh +( cosh(m,, h) vh

and v = m.

3.3 Matching Conditions

At a transverse distance greater than the body beam but less than the body length,

the inner expansion of the far-field solution should be the same with the outer expan-

sion of the inner-field solution.

Both equations (3.7) and (3.12) are decomposed with two terms, and the com-

parison of each term leads two matching conditions. However, unfortunately, both

equations include the z-coordinate. In order to circumvent the difficulty of treating
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the z-coordinate terms, consider the matching conditions at z = 0. That is to say,

matching can be carried out on z = 0 and extended to z < 0 by analytic continuation.

If the far- and near-field solutions should be the same, the coefficients of the

two-dimensional Green function should be the same,

qj(x) = oj (x) + Cj (x){o 3 (x) + &j (x)}. (3.18)

The same applies to the three-dimensional correction terms,

F(qj) Jgj()f ( 1 - x 0)d

= -2iCj(x)&(x) . (3.19)
vh + ( m ,h (2

The unknown parameter in the far-field solution is qj (x), while C (x) is unknown

in the near field. Therefore the above two equations will supply the solutions of the

two unknown parameters. The elimination of C (x) from the above equations leads

to the integral equation for qj(x),

vh±+ ( m~h )2 ()}q)
qj(x) + cosh(m)2{1 + }F(qj) = ou (x). (3.20)

2imoh & x)

The solution of the integral equation determines the far-field solution and also the

complete near-field solution in the form

uj(x) -- o(x)
<pg (x, y, Z) = @yj (X, y, z) + aj _W {@,jW v (x, y, Z) + VNy (x, y, Z)} (3.21)

Equation (3.20) has to approach the deep water case when h -+ oc,

qj (x) - (- + 1)L(qj) = og (x) (3.22)
27ri -
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where

L(q) q(x) (y + i7) + IL { sgn(x - ) ln(2vlx - || d

- - K[v(x - ()] q() } (3.23)
4

and

K(x) = Y(|xj) + 2iJO(|x|) + Ho(|xj) (3.24)

Here, JO(x), Y(x) are Bessel functions of zero-th order and Ho(x) is Struve function

of zero-th order. Besides, -y is the Euler constant.

F(qj) must approach L(qj) as h -+ oo. Since equation (3.13) approaches equation

(3.15), the limiting case can be proved by observing the kernel.

3.4 The Kernel of the Integral Equation

The computation of the kernel is the key in unified theory since the success of

solving equation (3.20) depends on the computation of kernel. Borresen obtained

the kernel in the Fourier domain in which the double numerical integration has to

be carried out. In consequence, the triple numerical integration should be treated to

solve this integral equation.

If the ship has no forward speed, a more simple form of the kernel can be derived.

Consider the Fourier-transformed kernel,

[00

f*(u;yz) = dv eVY x
27r -oo

cosh{ u2 +v 2 (z + h)}

cosh{ u2 +v 2h}[ u 2 +v 2 tanh{ u 2 +v 2 h} - v]

cosh{lvj(z + h)} (3.25)
cosh(|vlh)[|v| tanh(|v~h) - v]

This equation can be simplified using a contour integral. In a complex v-domain,
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there are two poles on the !R(v) axis which contribute to the free wave. The poles

on the Im(v) axis contribute to the local waves near a source singularity. When

y = Z = 0,

f*(u;0,0) = m 1
mh -v2h+v m2 _ 20 0

-Zmh vh m - 1) (3.26)
nh +v2h - v m2 + 'Ub2n=1 nl n

where

mntan(mnh) = -v (3.27)

which is the dispersion relation of the local waves.

Using

J0 du eZiUX m -FiY, 0 (MX) + wrJ 0 (mx) (3.28)
-oo m2 _ U2

du e- i m = 2KO(mx), (3.29)
-oo Vm2 + u2

the kernel in the physical domain is written as

1 20
f (X, 0, )= -- f *(u; 0, 0) e'"'du

27 -oo

1 m 2 2
{-iY(mox) + Jo(mox) - -6(x)}

2m h-v 2h+v mo

- n " {-Ko(mnx) (x)} (3.30)
n=m h+ v2h - v ,r mn

where Ko(x) is the modified Bessel function of zero-th order.

Now, the kernel is written in a series form. In fact, this result is consistent with

the series forms of the two- and three-dimensional Green functions derived by John

[25] and rewritten by Wehausen and Laitone [79].

A detailed investigation on the singularities of the kernel and its integral is re-
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quired. When y and z approach zero, the two-dimensional Green function has a

logarithmic singularity and the three-dimensional Green function has the logarithmic

and 1/r singularities. However, these singularities can be integrated. Furthermore

the 1/r singularity is canceled out with the two-dimensional logarithmic singularity

when it is integrated. The details are described in Appendix B.

Figure 3-1 shows the Fourier-transformed kernel, f* (u; 0, 0), for finite and infinite

depth. When h -+ oc, the kernel has to recover the infinite depth case. f*(u; 0,0) of

the infinite-depth kernel takes the form :

2v 1
lim f*(u; 0, 0) = ln( -) + Iri -

h-+oo u_

- i7r + cosh- 1 (!)

-7r + cos- 1 ()

if v > |lu

ifv <jul J
The finite-depth kernel approaches the infinite depth limit as h becomes large.

4.5

3.5

2.5L*0

U

Figure 3-1: Comparison of the finite and infinite depth kernel, w = 1.0
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3.5 Hydrodynamic Forces

The added mass aij and damping coefficient bij can be obtained from the inner

solution by integrating the linearized pressure over the body surface.

w2aij - iwbij = -iwp ni~ds (3.32)

where p is the water density.

Since the near-field solution can be decomposed with two separate terms, it follows

that

-iwp ni5jds = Hi + H2  (3.33)

where

H1 = -i p nJibds (3.34)

H 2 = -iwp f niC (x)(0 + 4')ds (3.35)

H1 is the contribution from strip theory, and H 2 is the three-dimensional correction

due to unified theory. Hence strip theory holds only H 1. In the deep water problem,

when v -s oo, Cj(x) -+ 0 so that strip theory is recovered. The same is valid for the

finite depth case.

The other quantities of interest for the evaluation of ship motions are the wave

excitation force and moment. Since the radiation potential is known, the Haskind re-

lation is applicable. Combining the body boundary condition, the near-field Haskind

relation is written as

Xi = -pA s(iwni, - $i ds. (3.36)
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Based on the Green's theorem, Sclavounos [67] derived the far-field Haskind relation,

Xi ipgA qj (x) eivxcos dx (3.37)

According to the study of Kim & Sclavounos [33], the far-field formula provides a

more accurate result in slender-body theory.

3.6 The Equation of Motion

Assuming that linear surge mode of motion couples weakly with heave and pitch

for slender ships, the classical equations of motion follow in the form

- Coupled Heave-Pitch Equations of Motion

-w 2 (M + a3 3 ) + iwb33 + C 33 ]3 +

S-w 2 (M 35 + a35) + iwb35 + C 35 ]Es = X3 (3.38)

-w 2 (M 5 3 + as 3 ) + iwb5 3 + C5 3 ]3 +

[ -w 2 (I5 + ass) + iwb5s + C55 ]s - X5 (3.39)

- Coupled Sway-Roll-Yaw Equations of Motion

-w 2 (M + a2 2 ) + iw b22 + C22 ] 2 +

S-w 2 (M 24 + a24 ) + iwb2 4 +C 2 4 ](4 +

S-w 2 (M26 + a26 ) + iwb26 + C26 ]6 - X2 (3.40)

31



-w 2 (M + a4 2 ) + iwb 42 + C42 ]2 +

-w 2 (144 + a44 ) + iwb44 + C 44 ] 4 +

-w 2 (M46 + a46) + iwb 46 + C46  X4 (3.41)

-w 2 (M + a62) + iwb62 + C6 2 ]2 +

-w 2 (M6 4 + a64 ) + iwb64 + C64 ](4 +

[ -w 2(I + a66) + iwb66 + C66 ](6 = (3.42)

M, Iij are the mass and moment of inertia of ship. Cij means the restoring term.

CD,eq is an equivalent coefficient of roll viscous damping.

The added masses and damping coefficients for sway, yaw and roll are obtained by

strip theory suggested by Salvesen, Tuck and Faltinsen [62]. Also all other quantities

which unified theory is not available are computed using their method.

The roll motion is greatly affected by fluid viscosity which has a nonlinear be-

havior. The state of the art of roll damping mechanisms is described in the report

of Himeno [22]. In the present study, the concept of equivalent drag coefficient is

applied. The equivalent linear damping can be obtained by preserving the energy

loss by viscous effects, and it can be written as

CD,eq = CD4W (3.43)
37

where CD is the quadratic viscous damping coefficient. Note that CD,eq is a function

of motion frequency and amplitude. Hence, at a given frequency, an iterative scheme

is applied to get the amplitude of roll motion.
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Chapter 4

Second-Order Quantities

4.1 The Mean Drift Forces & Moment

The slow drift forces and responses are important factors for the design of an off-

shore structure and a floating ship, like an FPSO. The accurate prediction of drift

force is essential to design a mooring and/or dynamic positioning system. In the sim-

ulation of the slow drift motion, the mean force and moment are the most important

quantities. They may be obtained using only the linear solution.

For deep water, the surge and sway mean forces can be obtained by the far-field

equations suggested by Maruo [46].

2_ f27r1

P = |20 H (0)12 cos OdO + - pwA cos ,3 R{ H(r + ,3)} (4.1)
87r o0 2

fv2 2 1r 1 1
810 =H(6) 2 sin OdO + pwA sin 3 R{H(-r + )} (4.2)

where H(O) is the infinite-depth Kochin function defined as

H() - # v(z-icosO-iYsin 0)dS (4.3)

In particular, when there is no work done by external forces, these equations can
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be rewritten in the following forms :

P= p 2 27r 2
v8 f |IrH (0)| 2 (COs n + cs O)d6

Fy = V2 7 H(() |2 (sin 0 + sin O)d6

(4.4)

(4.5)

The yaw moment, MA can be obtained using the equation derived by Newman

[52].

2 =-Im 21r(O) OH()d6 -
IlpwA

Im{ O9 (7r+3)}

where R(0) means the complex conjugate of H(9).

In finite depth, the far-field momentum formula is written as (C.C.Mei [47])

, = gA- C[- - pgA 2 Cg

z = X2 C9mo C4

1 z
[4Z2

1Z2 J0 27r

z2 
2 7r

|Hh(0) 2 cos Od9 + Z cos 3 Im{Hh(w + m)} ] (4.7)

Hh(0)12 sin 9d9 + Z sin 3 Im{ Hh(7r + m)} ] (4.8)

1Mf27rfh0 Ba (0) d~ImH0(9 6 d9
1 OHh(7 +

09 (4.9)

C9
C

2 2

Z - - V cosh2 (moh)
v 2h -mh - v

{1+ 2moh
2 sinh(2moh)

and Hh(9) is the finite-depth Kochin function, defined as

( o - < 19) e-imo(xcos9ysino)cosh{mo(z+h)}ds.Oan n cosh(moh)
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where

(4.10)

(4.11)

Hh (0) =I (4.12)



Particularly when there is no external work done to the ship,

x = pgA' C9  x [ --Z2f Hh ()1 2(cos O + cos#)dO ] (4.13)
mA C x 1 4 0

pgA= - 9 - x ±[Z2 f2| Hh(O)12 (sin96 + sin #d6]. (4.14)
mo C 47r o0

The diffraction velocity potential is also required to compute the Kochin function.

In the present study, the diffraction potential is replaced with the velocity potential of

an equivalent two-dimensional wave-maker problem. At first, the diffraction problem

based on strip theory is solved. Then the integral equation, equation (3.20), is solved

using the strip theory solution. Since equation (3.20) applies to the radiation problem,

this method can be considered as the wave-maker problem of a snake-like vessel. That

is to say, the ship is set to an equivalent wave maker with a wavelength of 27r/v cos #.

So the diffraction potential is corrected approximately based on this idea.

4.2 Wave Drift Damping: Deep Water

The wave drift damping coefficients can be computed using Aranha's formula which

is based entirely upon the knowledge of the drift forces at zero speed. Aranha's

formula is valid only in deep water. In the present work, a wave drift damping matrix

is obtained using the mean drift forces and moment by unified theory for deep water.

The wave drift damping coefficient, Bj, is defined in the drift matrix equation for

a ship with small forward speed.I x,u (w, 3) Fx (w,30)]

y,U (w, y(w,/3)

Mz, U zM P
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Biu(w, 3)

- B 2 1 (w, #)

B61(w, #)

B 12 (w,/#) B 16 (w,3)

B 22 (w,#) B 26 (w, #)

B 62(LO ) B66 (W, )

where Pu, Pyu, Mp are the drift forces and moment when the ship has a steady

speed, Ux, Uy, and Qz. Aranha's formula [2] provides that

w OF
=-cos3o: -2sin 3
g a(.4

OFx
0#

=-[sin~o I+ 2cos# 3
g au #O
= OF-
g[c05/3w- -2sin/3

w OFY
S [sin w O

g -[cos Ow
g Bo

-[sin/#
g

8M
WOW

y
a/3

+ 2 cos 0/ 3 +
aoM

- 2 sin3 0 /

or

-4cos# I

- 4 sin PFx]

-4cos# PY]

4 sin # Py]

+ 4 cos3 RZ]

+ 4 sin M Az

The first differential terms consider the change of wave frequency caused by the

forward speed and the second terms consider the change of wave angle. There are two

differential terms in equation (4.16), and these are obtained using a central difference

formula.

The third column of the drift damping matrix, Bi6 , can be obtained by the recent

Aranha's formula [3] which is based on the slender-body approximation.

B 16 (w, /3)

B 26 (w,/)

B66(w, /)

B 2 (w,3 -1
2

~ B62 (w,#)

~ B 2 2 (w,/3)

(4.17)

36

UI

UV

QzI (4.15)

Biu(w,#)

B 12 (w, )

B 2 1 (w,#)

B 2 2 (w, 3)

B 61 (w, 3)

B62 (w, 3)

(4.16)



where

fL 2{1 _ (a( 2
' = (4.18)

fL{1 2 __

b(x) is the water-line profile of the ship.

Even though Aranha's formula is not conclusively proven to be exact, especially

for the radiation problem, it has been found to provide quite accurate predictions of

the drift damping coefficients for offshore structures.
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Chapter 5

Computational Results &

Discussion

In order to develop a computer code of unified theory, a strip theory code is

essential. For the present computation, the strip theory code developed at MIT for

deep water was extended for finite depth. The infinite-depth code is based on NIIRID

for the evaluation of the sectional added mass and damping coefficient. NIIRID solves

the complete boundary value problem for an arbitrary two-dimensional section. In the

computation of the finite-depth problem, the subroutine of NIIRID, which computes

the Green function, is extended to finite depth. The finite-depth Green function

was evaluated using a series form. The details about the extension are described in

Appendix C.

Numerical computations were carried out for a few slender ships. A mathemat-

ical hull and a Series 60 hull are considered for the linear and mean drift quan-

tities. The mathematical hull is of parabolic shape, like the Wigley hull, with

beam(B)/length(L)=0.15 and draft(T)/length(L)=0.1. The Series 60 hull has the

block coefficient (CB) of 0.7, and a parent model is considered. For the wave drift

damping coefficients, computations were performed for the mathematical ship used

by Finne and Grue [19]. This hull, called Ship1, is expressed by the 4-th order poly-

nomial equation for the beam and a half-circle for the sections.
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5.1 Solution Grid and Its Dependency

Since unified theory is a slender-body theory, sectional offsets are only necessary for

the description of the hull geometry. Figure 5-1 shows the stations for slender-body

theory and the three-dimensional mesh for WAMIT on the Series 60 hull. Figure 5-2

shows the distribution of grid nodes on the parabolic hull.

Figure 5-3 shows the dependency of section number on the heave added mass and

damping coefficient for the parabolic hull. In this case, the number of nodes on each

section is fixed. Figure 5-4 shows the effect of node number with the fixed number

of sections. Both results show the insensitivity of solution grid for linear quantities.

Table 1 compares the values for one specific case, w L/g = 2.0. It is surprising that

the result with 5 stations and 3 nodes on each section is not much different with the

that of 40 stations and 20 nodes. Even for a mathematical hull form, this result is

quite encouraging.

Table 5.1: The heave added mass
(half domain) ; parabolic hull, h/

(a33 ) and damping coefficient(b 33)
L = 0.2, w(L/g) 1 /2 - 2.0

for different grids

39

station node a 33  b33____

3 3.1767739E-03 5.7931738E-03
5 5 3.1702337E-03 5.7432665E-03

10 3.1910257E-03 5.7664076E-03
5 3.1650849E-03 5.8484091E-03

10 10 3.1855819E-03 5.8818124E-03
15 3.1951349E-03 5.8921375E-03
5 3.1638728E-03 5.8937315E-03

20 10 3.1846275E-03 5.9162732E-03
15 3.1943801E-03 5.9264624E-03
5 3.1635107E-03 5.9003350E-03

30 10 3.1850706E-03 5.9226453E-03
15 3.1948064E-03 5.9333052E-03
10 3.1848375E-03 5.9254845E-03

40 15 3.1948953E-03 5.9358547E-03
20 3.1997717E-03 5.9412871E-03



The grid dependency on the second-order quantities has to be observed since

these has a shorter length scale than the linear quantities. Figure 5-5 shows the

convergence of the longitudinal mean force on the parabolic hull. The results shows

more sensitivity on the number of station. However, the grid dependency on the

second-order quantities are not serious so that usually more than 20 stations provides

a nice convergence.
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(a)

(b)

Figure 5-1: Solution grid for the Series 60 hull: (a) for unified theory, (b) for WAMIT

Parabolic Hull

5 stations & 3 nodes in half body

20 stations & 10 nodes in half body

Figure 5-2: Distribution of grid nodes on the parabolic Hull
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5.2 Hydrodynamic Forces

The accuracy of the hydrodynamic forces depends on that of velocity potential.

Since the computation of the hydrodynamic forces requires the surface integration of

the velocity potential on ship sections, the accurate velocity potential guarantees the

accurate hydrodynamic forces. The accuracy of the velocity potential is also related

with the second-order quantities, and it will be mentioned later.

Figure 5-6 plots a33 and b33 for deep water, and these are compared with the

results of strip theory and WAMIT. It is obvious that strip theory is not suitable at

low frequencies.

Figure 5-7 and 5-8 compare the heave and pitch added mass and damping coeffi-

cients. It is obvious that the present unified theory provides an accuracy as good as

the deep water case. In particular, at low frequency, the strip theory solution shows

a large discrepancy with those of WAMIT and unified theory.

Strip theory is valid in the high frequency range. When the wave length is large

compared with the ship length, the three-dimensional effect becomes more significant

so that strip theory is not good as much as in the high frequency range. These results

show clearly the weak point of strip theory. The same trend can be observed in Figure

5-9 for the heave-pitch cross coupling terms.

Depth effects on the heave added mass and damping coefficient are shown in Figure

5-10 and 5-11. At low frequencies, the hydrodynamic coefficients are very sensitive

to depth.

The hydrodynamic coefficients of other motions are shown in Figure 5-12 and 5-13.

These results are by strip theory, and there is some discrepancies in both motions.

Figure 5-14 and 5-15 shows the wave excitation forces and moment in head waves.

These results are for deep water, and the far-field Haskind formula is applied in this

computation. The same accuracy is found in the finite depth problem. As expected,

unified theory shows a good agreement with WAMIT. For the motions where unified

44



theory is not available, oj can be used instead of qj.
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5.3 Motion RAOs

Figure 5-16 and 5-17 shows the heave and pitch motion RAOs of the Series 60

hull in deep water, and unified theory predicts very accurate motion RAOs. When

the ship has no forward speed, the heave and pitch motions are more important than

others since the ship will change her position to be parallel to the wave direction.

It is interesting that the results of strip theory don't show the large deviation

from unified theory. In particular even at low frequencies where the hydrodynamic

coefficients are inaccurate, strip theory shows reasonable motion RAO. It seems that

the dominant force at the low frequency range comes not from the added mass and

damping but from the restoring force. Actually this is the reason why strip theory

is still valid for the analysis of the linear seakeeping performance. Therefore, if only

the motion RAO is of interest, strip theory may be not a bad choice.

However, when it comes to an extension to the second-order quantities, the accu-

racy of the linear solution is more important. In order to compute the second-order

quantities using the linear solutions, the linear solution should be as accurate as pos-

sible. In this case, the accuracy of strip theory is not enough. This issue will come

back in next section.

Figure 5-18 shows the depth effects on the motion RAO. It is interesting that the

heave motion is less than the deep-water case when the depth become shallow, in

particular at low frequencies. Since, for a fixed frequency, the incident wave length

becomes shorter as the depth decreases, the heave response at low frequencies is not

large as much as in deep water case. Also the peak of the pitch motion shifts to a

lower frequency.

Figure 5-19 shows the heave and pitch RAOs in finite depth. The motion RAO

for finite depth has the same accuracy with that of deep water. Both unified and

strip theory don't show large discrepancies with WAMIT.

Figure 5-20 shows the sway motion RAO and its phase at oblique sea. At oblique
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ship, sway, roll and yaw motions becomes significant, and strip theory predicts the

motion RAOs very well. Figure 5-20 and 5-21 shows the results for the roll and yaw

motions, and the present strip theory code provides a nice agreement with WAMIT.

The viscous damping in the roll motion plays a significant roll at resonance. Figure

5-22 shows the effects of the viscous damping at the roll resonance. The resonance

frequency is a function of the transverse metacentric height which is related with the

ship beam. Besides the motion RAO is narrow banded near resonance, as shown in

figure 5-22. The values of CD applied in this figure are 0.05 and 0.075, and these are

the general range of CD in real ships. The application of viscous damping offers more

realistic motion RAO.
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5.4 The Second-Order Quantities

Albeit strip theory predicts the reasonable motion RAO, the velocity potential is

not accurate as much as motion RAO. It was proven in the results of the hydrodynamic

forces. Since the computation of the second-order forces requires the velocity potential

as well as the motion RAO, unified theory is expected to produce better results of

the second-order quantities.

Figure 5-23 compares the Kochin function of slender-body theory with WAMIT's.

At a low frequency, the magnitude of the Kochin function is dictated by the real

component since Froude-Krylov force is dominant, while the imaginary term plays

important roll at high frequencies. Some discrepancy is found near 0 = 0 and r, but

the general agreement is favorable.

In Figure 5-24, the longitudinal mean drift force is shown for different depths.

When h/L is 1.0, 0.5, the discrepancy with the infinite depth limit is not so significant.

However, as the depth becomes smaller, the force reduces and the frequency of the

peak shifts. A wavelength in finite depth is shorter than that of deep water at the same

frequency. In this case, the motion RAOs near the peak in finite depth is smaller than

in the deep-water case. In consequence the magnitude of the peak becomes smaller

and the frequency of the peak changes a little.

Figure 5-25 shows the comparison of the longitudinal mean force by WAMIT,

strip and unified theories. Since the wave heading is 1800, only the heave and pitch

motions contribute to the mean force in the radiation problem. The agreement be-

tween WAMIT and unified theory is not as good as for the linear quantities, but it

is quite acceptable, especially near the peak. In the practical sense, the longitudinal

force is very important since the ship changes her position to be parallel to the wave

direction.

Figure 5-26 shows the longitudinal mean drift forces on the Series 60 hull at oblique

sea. In this case, the angle of the incoming wave is 150', and the contributions from

sway, yaw and roll motions are significant. Therefore this result is the combination
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of unified and strip theories. The accuracy is not as good as the head sea case, and

the main source of this discrepancy is the strip theory solution.

Figure 5-27 shows the lateral mean drift forces on the Series 60 hull at oblique

sea. The slender-body solution shows nice agreement with WAMIT, unlike the lon-

gitudinal forces. In order to figure out this inconsistency, consider the order of mag-

nitude for both forces. The orders of magnitude of the longitudinal and lateral drift

forces are different. As shown in Figure 5-26 and 5-27, the longitudinal force is non-

dimensionalized with respect to ship beam, and the lateral force by the ship length.

This means that the longitudinal force is much smaller than the lateral force, which

is natural for a slender body. Hence the longitudinal force is more difficult to predict.

The mean yaw moments at oblique sea are shown in Figure 5-28, and the yaw

moments are found not accurate as much as forces.

Figure 5-29 shows the wave drift damping coefficient, B6 6 , for Ship1. Finne and

Grue [19] obtained the wave drift damping using a three-dimensional panel code, and

this figure compares B66 with their result. Equation (4.17) is used for slender-body

theory. In this figure, ITTC wave spectra are overlapped to indicate the frequency

range of real ocean waves. The frequencies of these spectra are normalized, and the

ship length is assumed to be 100m which is a reasonable approximation. This figure

shows that Aranha's formula provides a reasonable trend in the frequency range where

the energy of the ocean wave is dominant. However, at high frequencies, Aranha's

formula seems unsuitable to use.

Figure 5-30 shows Bu1 for Ship1. In this figure, B11 by Aranha's formula using

equation (4.16) is compared with the result of Finne and Grue. When kL is larger

than 7, the discrepancy between these results are significant. From Figure 5-29 and

5-30, it is obvious that Aranha's formula is not applicable in the entire frequency

range. It is not proper to judge Aranha's formula with a few limited results, but it

seems that something is missing in Aranha's formula. In spite of its lack of theoretical

background, Aranha's formula have a fascinating advantage that it requires the drift

force only at zero speed. Therefore a more profound study is needed.
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In the prediction of the drift motion, the viscous effects cannot be ignored. For a

slender ship, the viscous effects become significant in the sway and yaw drift motion.

A Morrison-type approximation would be used, but a systematic study is necessary.
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Chapter 6

Conclusions & Contributions

In the present part of the thesis, slender-body theory is applied to compute the

linear hydrodynamic forces, motion RAOs and second-order forces. The heave and

pitch motions were solved using unified theory, while other motions were solved using

strip theory. In order to take into account water depth, unified theory is extended to

finite depth.

One of the main contributions of this part is the analytic derivation of a finite-

depth unified theory. The analytic forms of the far- and near-field solution in finite

depth were derived under slender-body assumption, and a new integral equation was

obtained for the strength of three-dimensional wave sources. The kernel was written

as a series form which makes it easy to compute. From the comparison of the kernel

with that of infinite depth, the limit case of deep water was proved.

An another contribution is the development of a computer code based on the

proposed theoretical background. A strip theory code was extended to finite depth,

and the development was continued to unified theory for infinite and finite depth.

For the sectional computation, NIIRID was extended to finite depth. Numerical

computations were carried out for a few typical slender ships, and the hydrodynamic

coefficients and motion RAOs was compared with WAMIT's for validation.

In finite depth, the hydrodynamic coefficients are sensitive to water depth at low

frequencies. The results which are based on unified theory showed nice agreement
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with WAMIT. The same accuracy of unified theory was found for the wave excitation

forces and moment. For the motion RAOs, it was found that both unified theory and

strip theory predict reasonable values.

The other contribution of the present part is the extension of its computation to

the second-order quantities. Since unified theory was proved to provide an accuracy

comparable with three-dimensional codes for the linear problem, its solution may be

used to compute the second-order quantities. In the computation of the second-order

quantities, the accuracy is dependent on Kochin function. Unified theory addes a

correction to the near-field solution of strip theory so that Kochin function is more

accurate than strip theory. The comparison with WAMIT's result showed a favorable

agreement of the mean-drift forces and moment in finite depth as well as infinite

depth.

The present work was extended to the wave drift damping for deep water, and

Aranha's formula was applied. Aranha's formula has an advantage that it is based

entirely upon the knowledge of the drift forces at zero speed. From this study, it was

observed that Aranha's formula may be useful in the frequency range in which most

of ocean wave energy is, but a very thorough study for this formula is required.

According to the present result, slender-body theory is thought to be an efficient

and elegant method to predict the seakeeping performance and second-order quan-

tities of slender ships. Slender-body theory requires much less memory and faster

CPU time than any other three-dimensional code. Furthermore, unified theory has

an accuracy similar with a three-dimensional code with very simple input data of the

hull geometry. Therefore, the method proposed in this thesis is expected to be used

directly to the initial design of a floating ship, like an FPSO.
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PART II

LINEAR & SECOND-ORDER
FREE SURFACE FLOW
AROUND OFFSHORE

STRUCTURES



Chapter 1

Introduction

The aim of this part is to develop models and a corresponding computational

code for the simulation of the nonlinear wave-induced loads and responses of realistic

structures. Oil and gas exploration and extraction has been moving into deeper and

deeper waters, and offshore structures are being designed for operation at a stationary

position, in water depths exceeding 1,000 meters. Examples of such designs include

large volume gravity platforms, Tension-Leg Platforms (TLP's), Semi-Submersibles

and large Spar Buoys. They are operated in hostile weather environments and over

periods which may exceed two decades. This part aims the development of an efficient

and accurate numerical method for the design of such offshore structures.

The theoretical approach to the linear wave loads and responses of realistic off-

shore structures has reached a mature state and some existing computational codes,

like WAMIT, are widely used by the oil industries. However, the nonlinear loads

and responses in the design of large volume offshore structures play an increasingly

important role, and the theoretical status is not much matured yet.

Nonlinear surface wave effects can be divided into two distinct categories, low and

high frequencies. Low-frequency effects dictate the slow drift response of compliant

structures restrained by weak restoring mechanisms. Its natural period is of the

order of minutes, and the quadratic wave effects are dominant. Many researches

have carried out for the quadratic wave effects on the slow response of the offshore
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structures, and some significant works were done by Korsmeyer, et al [39], Chen, et

al [8], Emmerholf & Sclavounos [13] and Lee & Newman [43].

High frequency nonlinear wave effects are more complex than low frequency ef-

fects. They are responsible for the excitation of the high-frequency response of the

offshore structure and its subsystems in flexural modes with resonant periods of the

order of a few seconds. The flexural vibration of the tethers of a TLP and the trans-

verse oscillation of a large volume gravity platform are good examples. Unlike their

low-frequency counterpart, high frequency wave effects are not merely of quadratic

nature. Sclavounos [70] showed that, in random waves of modest steepness, that

second and third order effects are equally important and both may contribute to the

springing excitation of the TLP tether response. In steep ambient waves, TLP's are

also known to manifest a ringing response which is attributed to nonlinear effects po-

tentially of higher order than third. Even though several studies have considered the

analytical and numerical aspects of this problem, like M.H. Kim [27], the modeling

and simulation of these phenomena remains a challenging topic.

The present study aims the time simulation of the second-order high-frequency

wave loads. Since the frequency-domain method depends critically upon the proper

discretization of the free surface for the accurate evaluation of slowly convergent

infinite integrals, the time-domain method may circumvent these difficulties and make

the direct simulation possible with realistic sea spectra.

The present work is based on the Rankine panel method. After the pioneering

work of Hess and Smith [21], there were many studies on the application of panel

method to the water wave problems, particularly for the wave resistance problem.

Gadd [20] and Dawson [11] deserve to get a credit as pioneers in this field. After

their works, many variations of panel method have been developed. In particular,

Sclavounos and Nakos [69] proposed a method using B-spline function under the

thorough theoretical study. Based on their stability analysis, further developments

were continued for the ship motion [49] and the transient wave problems [50] [51].

The present work follows their work for the zero-speed solution of the linear and
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high-frequency second-order problem around a single and multiple truncated circular

cylinders.

Panels are distributed over the body surface and an annular domain over the mean

position of the free surface. The linear and second-order free-surface conditions are

stated in terms of a pair of unknowns, the velocity potential and free surface elevation.

The radiation condition is enforced by the introduction of an annular artificial beach,

the location and extent of the artificial beach are selected to minimize the reflection

of the energy back towards the body boundary. The Laplace equation in the fluid

domain is enforced by the application of the Green's theorem using the Rankine source

as the Green function. This computational set-up allows the solutions of the linear,

second or higher-order problems.

The present work includes the rational numerical analysis which ensures that

the wave disturbance propagates over the free surface panel mesh in a stable manner

and with little reflection from the beach. The time-stepping scheme is selected after a

rational stability analysis along the lines of Sclavounos & Nakos [69] and Nakos [51]. A

discrete dispersion relation is obtained and a stability condition is derived which offers

valuable guidance towards the selection of a neutrally stable time-integration scheme

with very desirable properties. As with most time-domain Rankine free surface panel

methods, the use of filtering is necessary for the removal of the panel-scale saw-tooth

oscillatory error. Several filtering schemes are tested and the best one is selected.

Simulations of the linear and second-order hydrodynamic forces on bottom-mounted

and truncated circular cylinders are presented and compared to benchmark computa-

tions. Frequency domain forces are obtained from a single record by Fourier analysis,

illustrating the very desirable attribute of the time domain method that a single force

record contains information across the frequency range, if the incident wave record is

properly selected.

The computation is extended to irregular waves. Realistic ocean wave can be

expressed as a superposition of a large variety of waves with different frequencies,

amplitudes, and phases. The direct time simulation of irregular waves removes several

69



of the complexities associated with the treatment of low- and high-frequency nonlinear

wave-body interactions in the frequency domain. The present method allows the

simultaneous solutions of the linear, second-order problems in random wave record,

therefore permitting the direct generation of force and response records for use in

design. The computation of the time consuming QTF matrices in the frequency

domain is circumvented and the alternative solution of the second-order free surface

problems in the time domain is carried out efficiently. As the first step towards

realistic ocean spectra, the present thesis shows a bench mark test for the waves with

multi-component waves.

In chapter 2 of this part, the boundary value problems of interest are formulated

with basic assumptions. The numerical method is described in chapter 3. The detailed

explanations about spatial discretization and time integration are in this chapter, and

a thorough stability analysis is carried out to observe the consistency and temporal

stability of the numerical scheme. Chapter 4 introduces the computational results.

This include the results of parametric study and wave profile around a body as well

as the linear and second-order hydrodynamic forces in a monochromatic wave or

multi-frequency waves. Chapter 5 summarizes the present work.
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Chapter 2

Boundary Value Problems

Consider the coordinate system and a floating body illustrated in Figure 2-1. As-

suming ideal flow, the total velocity potential, #, is governed by the Laplace equation

in the fluid domain. For a sufficiently small ambient wave steepness, the following

perturbation expansion for the velocity potential and wave elevation is postulated,

# =1 + #2 + .... (2.1)

n= T1 + n2 + .... (2.2)

where the subscript k denotes the k-th order term. Upon the substitution of equa-

tion (2.1) and (2.2) into the exact kinematic and dynamic conditions, the linear and

second-order free surface conditions are obtained in terms of the velocity potential

and wave elevation.

Then the boundary value problems of the linear and second-order problem can be

written as follows :

Linear Problem

- Fluid domain,

V 201 = 0 (2.3)
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(2.5)

(2.6)

(2.7)

Second-Order Problem

On 
t



- Fluid domain,

V 2 402 = 0 (2.8)

- Free surface, SF(Z = 0),

1411(02+ g9712 = - -V741 - 741 - 1z fi (2.9)
at 2 Ozat
0772 a 02 a275

2 = -Vo 1 - V771 + 771 Z2  f2, (2.10)

- Body surface, SB, for diffraction

= 0. (2.11)
On

- Bottom surface, Sh(Z = -h),

0 0 (2.12)
0z

In addition the radiation condition should be imposed. The body boundary condi-

tion is applied on the mean position of the body. In the present study, the second-order

radiation problem is out of interest.

In the diffraction problem, the velocity potential and wave elevation can be sepa-

rated as the incident wave and perturbed components. In the linear problem, consid-

ering the random ambient wave, the incident wave can be expressed as a superposition

of a large variety of waves such that

M igAm cosh km(z + h) eikmcos mikmsinmY+wmt~iOm} (2.13)

m-1 Wm cosh kmh

where Am, oWm, km, 0m, Om are the amplitude, frequency, wave number, heading angle,

and phase of the m-th component, respectively. Besides h is the water depth. When

the wave is long-crested, #m are the same. The second-order incident wave takes the
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following form:

M MMM.j+") i(w -W . t (.4

#1,2 = RIO E (#, 2 egwlw)t + ,2 (2.14)
1=1 m=1

where #f2 , #7 2 is referred as the complex sum- and difference-frequency components

of the second-order incident potential.

The hydrodynamic forces acting on the body are obtained by integrating the linear

and second-order pressure over the wetted body surface. This leads to the definitions

of the linear and second-order forces,

A1 J)ISB ds (2.15)

F2 = Fq+ Fp (2.16)

where

=-p, V01 -V#1)nds+pg r ndl (2.17)
qJJ SB, 2 2 P9 *h

I, = -p ( )nd (2.18)

Here, p, g, n' are the fluid density, gravitational acceleration, and normal vector on the

body surface. Moreover, Lw, denotes the contour integral along the body waterline

on the z = 0 plane. In the second-order force, Fq is a contribution from the linear

solution, while F, comes from the pure second-order potential.
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Chapter 3

The Numerical Method

3.1 Rankine Panel Method

The present study adapts the Rankine panel method developed by Sclavounos and

Nakos [69], Nakos, Sclavounos, & Kring [50], Kring [42] for the treatment of the

ship seakeeping problem. In this method, Rankine panels are distributed over the

body boundary and a domain of finite extent on the z=0 plane. Both the velocity

potential and wave elevation are retained as unknowns and discretized by adopting a

bi-quadratic B-spline variation over the panel surface which maintains continuity of

both unknowns across panels.

The velocity potential, free surface elevation, and normal velocity at Xi = (xi, y, zi)

are approximated as,

where Bj is a B-spline basis function with respect to the local coordinate system,

(2, Q).
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The B-spline basis function of the (p, q)-th order can be written as

(3.2)

where

B(p,q)(p, g) = b()()b(q)(Q)

b(P)(=) = 0 b(P-1) bt (2 ) d (3.3)

b() (,) = {
0,

|1I < Az\/2

II > Ai/2
(3.4)

where As is the panel size in the local coordinate system.

Basically, any order can be selected for the basis function. However, since the

second-order free surface boundary conditions require the second-order differential

terms, it is not desirable to choose p and q less than 2. One distinctive advantage of

the higher-order discretization is the analytic treatment of a lower-order differential

term. On the other hand, the number of neighbor panels increases when the order

of basis function becomes large, and this requires more complicated numerical treat-

ment. Therefore, the present study applies the bi-quadratic basis function, and this

discrete approximation provides the convergence of the numerical method which will

be mentioned later. The bi-quadratic basis function is written as,

By = b(2)(2)b(2)(g), (3.5)

2A
2 ( s + 3 )2,

b(2 )(s) S 2 + 3A8),

T-S 2

-3 < S < A

2 -2

A. <~ < 3AS
2 - 2
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This function introduces the coupling of the unknowns with their value over the 8

neighboring panels.

Applying the Green's identity over the body surface, SB, and the mean position

of the free surface, SF (z = 0 plane), and substituting the discretization (3.1) of

the velocity potential and the wave elevation, the following system of equations is

obtained,

11 -. -. -
(pk)+1Bij + (Oki+ Big(C G (Xi;C d(+ ISBUSF n

- (O )+1Jj Bij ()G(Xi; ()d = 0, (3.7)

where G(Xi; ) is the Rankine source potential defined by G(X; ) 1/27r|Xi - (I

and the summation notation is understood over the index j = 1, ... , N where N is the

total number of panels. The subscript k denotes the problem order, i.e. k = 1 for

linear and k = 2 for second order, and the index i denotes the field or collocation point

where the integral equation is enforced, with i = 1, ..., N. Finally the superscript n + 1

denotes the value of the respective quantity at the (n + 1)th time step.

Equation (3.7) is a linear system of equations which relates the velocity potential

to its normal derivative over the domain boundaries at the (n + 1)th time step. Over

the body boundary, the normal derivative is known and #n+1 is unknown. Over the

z = 0 plane, the normal derivative #n+1 is the unknown, while the velocity potential is

known in terms of its value at the previous time steps obtained from the discretization

of the free surface conditions.

The discretized forms of the free-surface boundary conditions are

k y (k Bi + g (77k +1Bij =62,k(fl)+1 (3.8)

k+ _zB 3 ( B = 6 2,k(f2)+, (3.9)

where 6 2,k is a delta function which takes the value of zero for k = 1 and the value of

one for k = 2. In addition At is the time step.
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The elimination of the wave elevation between equations (3.8) and (3.9) leads to

an explicit relation of the velocity potential <0n+1 at the (n + 1)th time step to the

potential and the normal derivative at the nth time step. Therefore, at the (n + 1)th

time step the unknowns are the potential over the body boundary and its normal

derivative over the z = 0 plane, which are determined upon solving the linear system

of equation, (3.7). The wave elevation qn+1 then follows from equation (3.9) and the

velocity potential over the free surface at the subsequent (n + 2)th time step from

equation (3.8).

The forcing functions of the linear problem are zero, while its second order coun-

terparts fi are finite and a function of the linear solution which should be determined

before solving of the second-order problem.

For the finite depth problem, the additional panels are distributed on the bottom

surface, Sh, and normal flux is set to be zero.

3.2 Stability Analysis

The theoretical justification of a numerical method can be achieved by the stabil-

ity analysis. There are two issues in the stability analysis. One is consistency, and

the other is temporal stability. The proof of consistency indicates that the discrete

numerical solution approaches the continuous solution when the spatial and temporal

discretizations go to zero. In a wave problem, the dispersion relation can be observed

in order to check the consistency. Temporal stability analysis offers a certain condi-

tion or absolute stability/instability of the selected time-integration scheme. By the

Dahlquist equivalent theorem, a linear numerical scheme is convergent if and only if

it is consistent and stable.

The stability analysis of Sclavounos & Nakos [69] and Nakos [50] for the forward-

speed ship wave problem is applicable to the zero speed problem as well. Consider the

evolution of a surface wave disturbance in the absence of a body over the rectangular

panel mesh illustrated in Figure 3-1.
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Figure 3-1: Rectangular panels on free surface for stability analysis

From the Green's theorem, the velocity potential and its normal derivative over

the free surface are related by the expression,

( - 1 - C - R(#4kXii) - f 4 9 k(C) G(Xi;() d( =_ R(Xi) (3.10)

where R(Xi) is the forcing term corresponding to the linear or second-order excitation

of the free surface conditions, equation (3.8) and (3.9).

Introducing the discrete Fourier transform of the function, f(lAx, mAy, nAt), the

values of which are known at the spatial location, x = lAx, y = mAy, and at the

time step, t = nAt,

Ni Nn Nn

f(u, v, w) = AxAyAt E E 3 f (lAx, mAy, nAt)egulax~vnAY-nat)
1=0 m=0 n=O

(3.11)

the inverse transform becomes,

f (lAx, mAy, nAt) =

(2w7)3 f/At fr/AX j/Ay f(u, v, w) e-i(ulAx+vmAy-wnAt)dwdudv.

Then the Fourier transforms of the integral equation (3.10) and the free surface
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conditions (3.8), (3.9) have the following forms:

5 - z5 = R (3.13)
Z 5 + gO5 = fi (3.14)

At
z-1I

B - 5B = f2 (3.15)At

where Z is the complex function Z = ezWAt, and 5, f1, f2, and R are the discrete

Fourier transforms for Bij, fi, f2, and R, respectively. In addition S is the discrete

Fourier transform of Sij,

SiJ = SF Bi 3(()G(Xi; ()d. (3.16)

The integral limit of the potential comes from the consideration of the aliasing

theorem and from the selection of integration contour for the inverse that includes all

singularities in the dispersion equation. The Fourier transforms of B and S for the

general order of the basis function are written with the form :

B = sinP+ 1 (7r + m7r) sinq+1(p7r + 17r) (317)b = AxAy E E (7 ))q+l

Sx =x
27r

sinP+ 1 (t7r + m7r) sinq+1(07r + 17r)

m=- oo (i7r + mr)p+1 (07r + lr)q+l V(f + rn)2 + a2(V + 1)2

where ft = uAx/27r, V = vAy/27, and a = Ax/Ay.

The discrete potential, #(lAx, mAy, nAt), can be obtained by eliminating qz and

i from equation (3.13) to (3.15),

1oo ao N
#(lAx, mAy, nAt) = J -k e-i(Ax+vmAy-onAt)dodudo, (3.19)

(27r) 3 c - o W
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where

Rk = 62 ,k(Z - 1)AtSf 1 + 5At 2gZR - 62 ,k At2gZf 2  (3.20)

W = (Z - 1)255 + gZAt 25 2 . (3.21)

= 0 contains the dispersion relation of this discrete system. In a non-dimensional

form, the discrete dispersion relation can be written as follows

Z2 - (2- )Z + 1 = 0, (3.22)

where 3 = Ax/gAt 2 and So( f') Axb/5.

If the numerical method has the consistency, W must recover the continuous

dispersion relation, W,

W=w 2 _ gg/2 + v 2 = 0 (3.23)

The consistency of the discrete dispersion relation can be examined through an asymp-

totic expansion of B/S. When Ax, Ay -+ 0, a series expansion of B/S becomes,

5 + + (-1)p+1As(vAs)q+l

5 V2+v2  (vAs + 27r)q+l(uAs)2 + (vAs + 27) 2

+ (-1)q+1As(UAs)p+l
(uAs + 27r)P+1 (uAs + 27) 2 + (vAs) 2

+ (1)p+q+ 2As(UAs)p+(vAs)q+l
(uAs + 27)P+1(vAs + 27)q+l (UAs + 27) 2 + (vAs + 27) 2

+ O(Asp+q+ 3 ) (3.24)

where As = O(Ax, Ay).
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When p = q, it can be simplified as

- = U2 + v2 + O(Asp+ 2 ). (3.25)

so that, as At -+ 0, the discrete dispersion relation recovers the familiar continuous

limit,

V = W + O{Asp+3, At} = 0. (3.26)

This result proves that the present numerical scheme for time integration has the

consistency for any order of the basis function. In particular, when the bi-quadratic

spline is applied, the accuracy of the dispersion relation is of fifth order in panel size,

and the major source of numerical error comes from the temporal discretization.

Figure 3-2 shows a comparison of the continuous and discrete dispersion relations

for a = 1.0 and v = 0, which shows a favorable agreement. As the time step, At,

becomes larger for a fixed ft, the numerical error increases. When 3 is 0.7, the discrete

system becomes unstable at a certain At and Ax.

An important property of the discrete dispersion relation is found at uAx/27

0.5, which the wavelength is exactly two panels long. The slope of the discrete

dispersion relation goes to zero at this point, and this indicates a zero group velocity.

This produces the growth of a short wave length error, which is known as the Nyquist

saw-tooth wave. External forcing will cause these short wavelength errors to grow

since a zero group velocity means no energy can be radiated away. To prevent this

type of instability, a low-pass spatial filter must be applied.

The condition of temporal stability follows from the discrete dispersion relation,

equation (3.22). When the root of equation (3.22) is on a unit circle, the scheme

becomes neutrally stable, and the condition for neutral stability becomes

S0 (i6, i;)
# > . (3.27)

2
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Therefore, if this condition is satisfied, the present numerical method is consistent,

neutrally stable, and sufficient for the solution of the continuous boundary value

problem originally posed.

The limit behavior is of interest when the space segment approaches zero. Us-

ing the limit case of equation (3.25), it is simple to show that the neutral stability

condition becomes

At2 < (3.28)

This condition says that the time segment must be inversely proportional to the

square root of the wave number. Therefore, the maximum At becomes

At2 < 4As (3.29)

so that the time segment also approaches zero as As goes to zero.

Figure 3-3 shows the contour plot of S,/20 2 when o = 1.0 and u = v. The

boundary of stability zone is a line such that V§ /2 3 = 1. The stability zones for the

bi-quadratic and bi-cubic basis functions have minor difference. Based on Figure 3-2

and this figure, the basis function higher than bi-quadratic doesn't offer a significant

improvement for numerical stability.

3.3 Wave Absorbing Zone

This study adopts a wave absorption zone to satisfy the radiation condition (Figure

3-4). The numerical implementations of this concept can be found in the work of

Baker et al. [5] and Cointe [10]. This method is intended to minimize the reflection

at the truncated boundary by absorbing outgoing waves which travel through the

absorption zone. The design of this artificial zone must be considered in terms of its

damping parameters, such as its size, strength, and the distance from the body where

the wave-absorbing zone starts.
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Wave Absorbing Zone

Figure 3-4: Application of the artificial wave absorbing beach

Consider the following linearized kinematic condition in the wave-absorbing zone,

Oiii + p1(r) T+ 1 = 0. (3.30)
19t Oz g

A extra term, p1 (r),i, is a type of Newtonian cooling or mass flux through the

surface that is proportional to the wave elevation. The other additional term, A2(#) 01,

is similar to the Rayleigh viscosity and acts as a sponge that modifies the dispersion

of the wave. In Appendix D, numerical tests are introduced for some different choices

of damping mechanism, and it is obvious that the adoption of p2(r) provides better

result.

Putting #1 = Re{'I 1 (x, y, z)eiwt}, the kinematic condition becomes,

g + {-w2 + iwpi (r) - p2(r)}'I 1 = 0. (3.31)az

If [ 1 (r), p2(r) are assumed to be constants, the dispersion relation for infinite depth

becomes

ip, ± (-ps + 4gk - 4P2)1/2 (332)
2
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The imaginary term contributes to the wave damping, thus p1 will be the damping

parameter as long as p' < 4gk + 4pu2. It should be noted that the dispersion property

of the waves is affected by the Newtonian cooling. To offset this dispersion, the

damping parameters, p1 and [12, may be selected to satisfy the relationship

2

P2 = [. (3.33)
4

It is desirable for the damping parameters to vanish at the inner edge of the zone

and increase slowly towards the outer edge. If there is a sudden change of the free

surface boundary conditions at the beginning of the wave absorbing zone, a reflection

may be caused at the edge.

When the damping parameters are not constant across the zone, an analytic treat-

ment of the change in dispersion is difficult. However, computational testing indicates

that the results of equation (3.33) are still applicable. In this study, a quadratic taper

is used for pli,

(r - r)
pi = 3po 4 (3.34)

which satisfies fL 1 1dr = po, where po is a constant, called the beach strength, and L

is the zone size.

The effect of the wave-absorbing zone on the second-order problem follows from

the linear theory since the dispersion characteristics are the same in deep water. In

practice, if the wave absorbing zone for the second-order problem overlaps with that

of the linear problem, there will be some interference since the linear solution will

already contain the effect of its own numerical beach.

3.4 Conversion to Frequency Domain

The time domain solution produces a force record that can be converted to the

frequency domain through a Fourier transform. A Fast Fourier Transform (FFT) was
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not used in this study since the component frequencies are a function of the time

interval and will not be easily applicable to arbitrary, unequal frequency intervals.

However, since the underlying frequency components are given with the forcing, a

similar method can be used.

If a time-dependent function, f(t), is written as the following form

N

f (t) = A, + ( Aneiwt, (3.35)
n=1

a direct integration of the Fourier series should satisfies

ft N t1 N ti

f (t&eiw-tdt = Ao ( eiWmtdt + ( An12 eiw"teiw'mtdt (3.36)
$2 n=1 (2n=1 1

where wn is a basis frequency of f (t) with a complex amplitude A, and Wm is a test

frequency.

Since the equation is valid for arbitrary test frequencies, there is no restriction

on the selection of the basis and test frequencies. The substitution of N + 1 test

frequencies including a steady component leads to a linear system of equations which

determines An. The left-hand side can be evaluated by numerical integration. This

provides an efficient Fourier transform for the given time record.

3.5 Spatial Filtering

It is shown that a saw-tooth wave may be generated in the discrete system. Spatial

filtering schemes are widely used in time-domain wave problems in order to eliminate

the spurious, saw-tooth waves. Shapiro [63] suggested a general filtering equation of

the following form,

K

1: Ck(=70rk + 'lj+k), (3.37)
k=O
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where K indicates the number of mesh points included in the filter, and Ck is the

weight for each point. Longuet-Higgins & Cokelet [45] have suggested two filtering

equations with quadratic and cubic accuracy, and their 5-point filter is popular.

In the present computation, a 7-point filter is applied, and co = 0.3506, ci =

0.2306, c2 = -0.1006, c3 = 0.0194 are selected to minimize the smoothing effect. The

amplification factor of this scheme is

2irZ\s 4wZs 6wZs
R = 0.7012 + 0.4612 cos( A ) - 0.2012 cos( ) + 0.0388 cos( ) (3.38)

A ~ AA

where A is the wave length to be considered. The amplification factors for different

filters are introduced in Appendix E. If the wave length is 2As, the amplification

ratio becomes zero so the saw-tooth waves will be completely removed.

The application of filter results in some minor energy loss. It is desirable for a

filter not to have much energy loss, and Nakos [50] showed that the amplification

ratio of the present filter indicates less damping than other 5- and 7-point filters. In

Appendix E, the smoothing effect by filters is described in detail.

An important side effect of the spatial filter is that it will also affect the non-

wavelike free surface modes near the body. This error can be minimized if the spatial

filter is not applied at every time step. If the filter is only applied periodically, the

free surface near the body will have time to return to its equilibrium position. In the

time record, this effect appears as an error spike. Since, the underlying numerical

method is neutrally stable, this error spike quickly disappears within two to three

time steps.

To quantify this side effect, the application of the filter can be viewed as an

additional forcing term. Applying it to the potential and wave elevation yields, e =

47 + E4 and / = r" + c,. The free surface boundary conditions become

(q)t Bi)+ -(r7k k)+1 BB = 62,k(f1)+ 1 - (e/At) 6 n,NF (3.39)

(7k)n+ 1  - ( Bk)n - )2-n
i i Bi )'Bij = 6 2,k (f2)n - (,n/At)6n,NF (3.40)
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where NF is the time step interval or period at which the spatial filter is applied.

Therefore, as At decreases, this error spike becomes higher and narrower.

This side effect can be ignored by showing that the force record between appli-

cations of the filter is insensitive to the period. There will be a minimum period of

application below which this error spike becomes significant. There is also a maximum

period beyond which the spurious, saw-tooth oscillations become unstable. Numer-

ical experience has shown that this bound is very broad and poses no difficulty in

practice.
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Chapter 4

Computational Results &

Discussion

4.1 Solution Grid

The computational method has been applied to both truncated and bottom-mounted

circular cylinders. Figure 4-1 shows the solution grid for a single bottom-mounted

cylinder and the truncated 4 cylinders. The computational result may be influenced

significantly by a grid system, and the choice of proper solution grids is essential.

Since the radiation and diffraction potential have a source- or dipole-like behavior at

far from the disturbance, a circular computational domain with a polar grid system

is adopted in the present computation.

For the panel distribution on the free surface near a multi-cylinder array, the

solution of a Poisson equation with negative exponential forcing provides a body-

fitted mesh. This grid system allows for panel sizes that expand with distance from

the body, which is necessary for computational efficiency, and it can be applied both

to single vertical cylinders or to more general multi-body structures. Appendix F

explains the generation of an elliptic grid system.

The second-order problem, with significant energy at wavelength shorter than the

linear problem, requires a finer mesh resolution so that the number of panels become
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much larger for the same computational domain. Fortunately the sum-frequency

disturbance is localized near the body, and the computation domain may be smaller

than the linear problem. In this viewpoint, two different mesh systems depending on

the order of problem can be used in order to minimize the computational effort. In

this case, an interpolation scheme transmits the linear solution from its large, coarse

grid to the smaller, denser grid of the second-order problem.

In the simulation of random wave, the computational domain must cover the

longest wave length, while the mesh size should be enough fine to resolve the shortest

wave length. In particular, if the difference-frequency components as well as sum-

frequency are supposed to be simulated, the computational domain depends on the

smallest difference-frequency and the mesh size near the body depends on the largest

sum-frequency. Figure 4-2 shows an example of computational domain and solution

grids for random incident wave.
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(a) Single Cylinder (half)

Figure 4-1: Solution grids : (a) a single bottom-mounted cylinder, (b) 4 truncated
cylinder

93



0
x/a

(a) Computational domain

Figure 4-2: Solution grids for random waves near a bottom-mounted cylinder (half)
: (a) computational domain, (b) grids near the body
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4.2 Wave Absorbing Zone

The role of the wave absorbing zone, is another critical numerical issue. If the

damping mechanism is too weak or too strong, the outgoing waves may be reflected

by the truncated boundary or the inner edge of the absorbing zone. Therefore it is

necessary to examine the sensitivity of the results to the parameters of the zone.

To test this sensitivity, the flow is computed near a single, truncated, circular

cylinder of diameter D(= 2a) and draft d. A quadratic taper for p1 withp2 = -p2/4

is applied.

The rate of wave absorption for given zone parameters is related to the wave

frequency. So, the strength of the zone, pi, will be dictated by the highest expected

frequencies, while, in general, the necessary length of the zone is dictated by the

lowest frequencies. The optimal choice of the damping strength is related to the

frequency, but a choice based upon the high frequencies will still be effective for lower

frequencies. Therefore, the absorbing zone can damp a wide spectrum of wavelengths.

[ Rwax/D L/D Rmax/AI A 33/(pV) B33 /(pV D/g )

20.0 1.6 0.7316 0.2489
0.5 205.4 40.0 3.2 0.7315 0.2595

60.0 4.8 0.7315 0.2596
10.0 3.6 0.5391 0.0753

1.5 25.9 15.0 5.4 0.5392 0.0753
20.0 7.2 0.5392 0.0753

Table 4.1: The heave added mass (A33 ) and damping coefficient(B 33) for different
lengths of the wave absorbing zone. : a/d = 1.0, yot, = 3.0. (WAMIT with same body
grid : 0.7324, 0.2491 (w(D/g) 1/ 2 - 0.5), 0.5420, 0.0749(w(D/g) 1/ 2 

- 1.5) )

Figure 4-3 and 4-4 show the time history of the horizontal force acting on a

truncated cylinder in a monochromatic wave. Here, Ai, A is the amplitude and length

of the linear incoming wave. For the different zone sizes and damping strength, the

forces are almost identical.
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Table 1 summarizes the hydrodynamic coefficients of a truncated circular cylinder

undergoing forced heave motion. Based in Figure 4-3, 4-4 and this table, it is obvious

that the computational result is insensitive to both the strength and size of zone.

Figure 4-5 shows the second-order wave profile near a truncated cylinder. Figure

(a) and (b) have different strength of beaches, but any significant difference of wave

profile is not found. The hydrodynamic force on the body is shown in Figure 4-

6. Like the linear force, it is obvious that the second-order force is insensitive on

the damping parameters. Therefore, the wave-absorbing zone is valid also for the

second-order problem, as expected.

When the incident wave is irregular, the damping mechanism must take care of

the longest and shortest waves simultaneously. Since the beach strength is related

to the wave frequency and the beach size is a function of the wave length, the zone

must be wide enough to damp the longest wave and the beach strength must be

strong enough to damp the shortest wave. However, as shown in Figure 4-2, the

grid resolution at the artificial beach is too coarse to simulate short waves since the

grid size expands towards the truncation boundary. In this case, not the artificial

beach but the numerical damping plays a significant roll to damp short waves, and

the primary roll of the wave-absorbing zone is to eliminate long waves. The test cases

for the irregular incident waves are described in section 4.5.
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Figure 4-3: Linear horizontal force acting on a single truncated cylinder: w(a/g)i/2
1.0, L/A = 1.0, different damping strength
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Figure 4-4: Linear horizontal force acting on a single truncated
1.0, po/w = 2.0, different zone size

cylinder : w(a/g)i/2
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Figure 4-5: Instantaneous second-order wave profiles for different damping strength
w(a/g)1/2 = 1.0, L/A = 1.0, t(g/a) 1/2 = 25.133
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Figure 4-6: Second-order horizontal force acting on a single truncated cylinder
w(a/g)1/2 = 1.0, L/A = 1.0, different damping strength
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4.3 Linear Radiation Problem

The linear radiation problem has been solved for a single vertical cylinder and an

array of four vertical cylinders. The hydrodynamic forces were obtained by direct

integration of the pressure on the bodies.

Figure 4-7 illustrates the free surface elevation for the four-cylinder array in forced

surge motion. This array is the typical shape of a tension-leg platform (TLP). The

hydrodynamic coefficients for this solution are compared to the frequency-domain

code, WAMIT, in Figure 4-9 and 4-8. In this case, 3500 panels are distributed on

the free surface and 1260 panels are distributed on the body. The free surface has

been divided into four patches in order to fit the mesh near the body. In the actual

computation the symmetry condition is applied so that only half the domain needs to

be considered. Since, the continuity of the solution has not been explicitly enforced

at the boundaries of the patches, there is a slight error at these intersections. This

error decays with increasing grid density and doesn't have a significant effect on the

body forces.

The principle of linear superposition allows a multi-frequency time domain simu-

lation. Figure 4-10 shows the time history of the vertical force acting upon a single

cylinder forced to heave with eleven frequency components. This case is intended to

demonstrate the ability of the numerical beach to absorb both short and long wave-

lengths simultaneously. The grid resolution is small enough for the highest frequency,

and the domain is large enough for the longest wave. Figure 4-11 presents the added

mass and damping coefficients for the single and multiple frequency solutions. There

is no significant discrepancy between the two cases.
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Figure 4-7: Wave profile near a 4-cylinder array under forced surge motion : a/d =
1.0 for each cylinder, (x/D, y/D) = (1.5, 1.5), (1.5, -1.5), (-1.5, -1.5), (-1.5, 1.5),
o(D/g)1/2 = 2.0
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Figure 4-10: Time-history of vertical force on a single cylinder in force heave motion
with multi frequencies : a/d = 1.0, co/a = 0.05
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Figure 4-11: Added mass and damping coefficient for surge and heave motion : the
same cylinder with Figure 4-10
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4.4 Linear & Second-Order Diffraction Problem:

Monochromatic Wave

The computational procedure for the linear diffraction problem is the same as the

radiation problem except for the incident wave forcing. However, the second-order

problem is more complicated for two reasons. First, the relative value of the second-

order physical parameters is small in comparison to the linear solution. A small

error in the linear solution may lead to a large error in the second-order solution.

An accurate solution of the underlying linear problem is essential. Second, the grid

resolution for the second-order problem must be more fine since it is driven by the

double frequency of the linear wave. With the application of the multi-grid approach,

computational efficiency does not suffer since a smaller domain can be used.

Figure 4-12 illustrates the wave elevation near a bottom-mounted circular cylinder

in a regular incident wave. Although scattering is not evident in the linear problem

at this frequency, the second-order problem does show significant diffraction. In this

case, the contribution of the second-order solution to wave run-up is obvious. Figure

4-13 shows the contours of the disturbance velocity potential around a cylinder. The

second-order potential is much more localized around the cylinder.

Figure 4-14 shows the comparison of the time history of the horizontal force acting

upon the cylinder. The second-harmonic component induces a peak force greater than

the linear contribution.

The hydrodynamic forces are illustrated in Figures 4-15 and 4-16. Figure 4-15

shows the linear wave excitation force, and Figure 4-16 is the second-order quadratic

transfer function (QTF). The linear solution is compared to WAMIT and the second-

order results are compared to Kim [27]. The result of M.H. Kim is based on a

frequency-domain method. He studied the second-order forces for vertical axi-symmetric

bodies using a boundary integral method with ring-sources, and the solutions was ex-

pedited by analytic integration in the entire local-wave-free outer field of a requisite
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free-surface integral.

In Figure 4-16, F is the quadratic force composed from the linear solution, and

F, is the component due to the second-order potential. The total second-order force

is F2 . The result shows a nice agreement.

Figure 4-17 shows the comparison of the wave run-up with the experiments of

Kriebel [41] along the weather (0 = 0) and lee (0 = 180) sides. The computational

results are actually computed at r = 1.02a and the experimental data is the averaged

value over 10 waves. It is obvious that the linear solution is not sufficient, and the

second-order contribution is significant. When the waves become steep, the second-

order solution will also not be sufficient because of stronger nonlinear effects.

Figure 4-18 shows the time history of the vertical force acting upon a truncated

circular cylinder in infinite depth. In this case, the major contribution to the vertical

force comes from second-order theory. The particular solution of the second-order

inhomogeneous problem is the main component. As discussed by Newman [57], the

partial standing waves generated by interference of the scattered and incoming wave

induce a pressure component which does not decay with depth. This leads to an

effect sometimes called a microseism. The wave-absorbing zone used in this study

has proven to be sufficient for this type of standing wave. In Figure 4-19, the QTF of

the second-harmonic vertical force is compared to the result of Kim [28], and shows

good agreement.
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Figure 4-12: Wave profile near a bottom-mounted cylinder : diffraction problem,
a/d = 0.25, k1a = 2.0, A1/a = 0.2
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(a) Linear

(b) 2nd-order

(c) Total

Figure 4-13: Contour profile of the diffraction potential near a bottom-mounted cylin-
der : the same case with 4-13
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4.5 Wave Loads at Irregular Waves

The computation is extended to irregular incident wave. The linear radiation

problem with multiple frequencies was mentioned in section 4.3, and it was found

that the linear superposition can be well simulated by the present numerical method.

The second-order problem with irregular wave is more complicated than the linear

problem due to the nonlinear interaction of components. In a monochromatic wave,

the second-order quantities vary with only a double-harmonic frequency. However,

in the multi-frequency waves, the quadratic characteristics dictate the second-order

quantities so that each component induces the sum- and difference-frequency terms

through the interaction with other frequency waves.

A time signal of the second-order quantity can be written as the following gener-

alized form :

N N

f (t) = E E AjAj [ ftcos{(wi + w3)t + 0+ )} + fi-cos{(wj - wj)t + 4'-5)} ] (4.1)
i=1 j=1

where Ai is the amplitude of incident wave and f:, f7. are the sum and difference

quadratic transfer functions. In addition, 'Vj. and V/- are the phases. The difference-

frequencies contribute to the mean and slowly-varying components. On the other

hand, the sum-frequencies don't provide the mean value but generate high-frequency

response.

For example, in the bichromatic wave, a second-order quantity is written with a

mean value and four frequencies, 2wi, 2w 2, jw1 - W21, and wi + 0 2, such that

f(t) = A1 A2 [ fo + f + cos(2wit + V) + f+ cos(2W2t + 042)

+2f+ 2 cos{(w 1 + W2 )t + +2 } + 2f-2 cos{(wi - W 2 )t + 1 2} ] (4.2)

Figure 4-20 and 4-21 show the time-histories of the second-order surge force on

a bottom-mounted cylinder when the incident waves are bichromatic. Since the
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Figure 4-20: Time-history of the second-order surge force on the cylinder at bichro-
matic waves : a bottom-mounted cylinder, h/a = 4, k1a = 1.0, k2a = 1.2, A 1,2/a =

0.1, #31,2 = 180"
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Figure 4-21: Time-history of the second-order surge force on the cylinder at bichro-
matic waves : a bottom-mounted cylinder, h/a = 4, k1a = 1.0, k2a = 1.6, A1,2 /a =

0.1, #1,2 = 1800
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Figure 4-22: Surge QTF obtained from the force signal of bichromatic waves the
same cylinder with Figure 4-20, k1a = 1.0, 1.2(fixed), A1,2/a = 0.1, #1,2 = 1800

difference-frequencies of two cases are different, two signals show very different modu-

lations. Using the Fourier transform described in section 3.2, five components in equa-

tion (4.2) can be extracted from each signal. Figure 4-22 shows the sum-frequency

surge QTF obtained from the signals. The results are compared with M.H. Kim's

[27], and the agreement is very favorable.

When the linear incident wave contains more than two components, the numerical

computation and time-signal analysis become more complicated. For the numerical

computation, the largest frequency, i.e. the shortest wave length, influences on the

time step and panel size. On the other hand, the smallest frequency, i.e. the longest

wave length dictates the maximum simulation time and computational domain. In the

second-order problem, in general, the minimum frequency is the smallest difference-

frequency. Furthermore, the maximum frequency is always twice of the largest linear

frequency.

Since the present study concentrates on the sum-frequency contribution, the com-

putational domain is not extended far enough to cover the whole difference-frequency
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waves. The study on the difference-frequency problem can be found in the work of

Kim, Sclavounos, Nielson [29]. According to numerical experiences, in general, the ac-

curacy of the difference-frequency quantities is better than that of the sum-frequency

quantities.

Figure 4-23 shows the time histories of the wave elevation, the linear and second-

order surge forces on the cylinder when four linear frequencies are imposed. The

wave elevation is at x = 0. In the case of linear force, the corresponding frequency-

domain result contains four components which have the same frequencies with the

incident waves. While the second-order force signal consists of 16(4x 4) sum-frequency

components and 16(4x4, including diagonals which contribute on the mean value)

difference-frequency components.

The diagonal double-frequency QTF obtained from the single signal shown in Fig-

ure 4-23 is plotted in Figure 4-24, comparing the magnitude of QTF of a monochro-

matic wave computation at each frequency. The agreement is quite good.

In the numerical simulation of multi-component waves, the computational param-

eters should be carefully selected since the different time and length scales may be

mixed in a single run. In the present study, a thorough study was carried out in

order to observe the sensitivity on the computational parameters. The case with

k1a = 1.0, 1.2, 1.4, 1.6, shown above, was tested since the accurate QTF's are given

by M.H. Kim [27]. The considered parameters are as follows

(1) Computational Domain

The computational domain is related to wavelength. Particularly, if the difference-

frequency component is supposed to be observed, the computational domain must be

extended far enough to cover the long wave generated by the difference-frequency. The

linear wavelength of this case varies from 3.9a 27ra and the second-order wavelength

varies approximately from a (the shortest sum-frequency wave) to 150a (the longest

difference-frequency wave). In this parametric study, four different domains are con-

sidered such that R/a = 20, 40,80,140 where R is the maximum domain radius. The
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Figure 4-23: Time-history of the wave elevation, the linear and second-order surge
force on the cylinder at multi waves : k1a = 1.0, 1.2,1.4, 1.6, Ai, 2 ,3 ,4 /a = 0.1, #31,2,3,4 =
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Figure 4-24: Comparison of the diagonal sum-frequency surge QTF between

monochromatic wave and multi waves : the same cylinder with Figure 4-23

reason that the truncation domains are less than the longest difference-frequency wave

length is because the present study concentrates on the sum-frequency component.

Here, the panel resolution is the same.

Figure 4-25(a) compares 4x4 sum-frequency surge QTF matrices of four domains

with M.H. Kim's results. The discrepancy of these QTF's is not significant, thus

it means that the broad range of the computational domain can be applied. An

interesting fact found in this study is that the difference-frequency QTF matrices,

shown in Figure 4-25(b), are also very close to M.H. Kim's result. In spite of small

domains which are much less than the difference-frequency wave length, the difference-

frequency QTF's show quite favorable agreement.

(2) Grid Resolution

The grid resolution is an important parameter for the short waves, i.e. the sum-

frequency components. It is related to the numerical damping and the accuracy of

115

--- Single Wave

* Multi Waves-



R/a=20

R/a=40
R/a=80

R/a=140
M.H.Kim

1.201

1125 1.25

(a) sum-frequency

3

1-

01

1.25 1.25

1.5 1.5

(b) difference-frequency

Figure 4-25: Four by four surge QTF matrix obtained from a single time history at
multi waves the same cylinder with Figure 4-23, different computational domain,
(a) sum-frequency (b) difference-frequency
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hydrodynamic forces on a body. Moreover, in the viewpoint of computational effi-

ciency, it is also important to find the optimum number of panels within an acceptable

tolerance of accuracy.

In the present study, the computational domain is fixed to R/a = 80, while the

numbers of panels are changed in order to get different grid resolutions. Figure 4-

26 shows the QTF matrices for the different numbers of panels. In all cases, more

than 8 panels are distributed within the shortest wavelength near the body. The

computational results don't show any significant discrepancy, meaning these solutions

are converged.

According to numerical experiences, the most critical parameter in the panel res-

olution is a grid size near the body. Since the sum-frequency contribution is very

localized near the body, the grid should be fine enough to resolve the shortest wave

near the body. Based on the present study, it is recommended to distribute at least

7 or 8 panels within the shortest wave length around the body. However, too fine

grid will result in a computational inefficiency since it requires too much small time

segment and a lot of CPU time.

(3) Time Segment

The time segment is related to the temporal stability and computational efficiency.

A good parameter in the selection of the time segment is the smallest wave period,

i.e. the largest wave frequency. The present study was carried out for At = Tmin/N

with N = 150, 300, 500. Here, Tmin indicates the smallest linear wave period within

four components.

The computed QTF matrices are shown in Figure 4-27. The results are a little

more sensitive than the space discretization parameters, in particular in the sum-

frequency values. However, even for N = 150, the accuracy is quite favorable.

(4) Sampling Time for Fourier Transform

Since the time signal must be transformed into the frequency domain in order to

117



Panel:3900
Panel:5100

Panel: 6100
M.H.Kim

2-

01

1.25 1.25

1.5 1.5

(a) sum-frequency

2

01

1.25 1.25

1.5 1.5

(b) difference-frequency

Figure 4-26: Four by four surge QTF matrix obtained from a single time history at
multi waves : the same cylinder with Figure 4-23, different numbers of panels, (a)
sum-frequency (b) difference-frequency
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Figure 4-27: Four by four surge QTF matrix obtained from a single time history
at multi waves : the same cylinder with Figure 4-23, different time segments, (a)
sum-frequency (b) difference-frequency
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get a QTF matrix, a proper amount of sampling data must be selected for the Fourier

transform. A good parameter to choose the amount of sampling data is the largest

wave period,

Figure 4-28 shows the QTF matrices for different sampling times, TFT. The upper

figure is when TFT is the same with the largest wave period, Tmax, and the below is

when TFT = 2, 3, 4 X Tmax. In this case, Tmax comes from the smallest difference

frequency, i.e. Tmax = 1/27wi - Wjomin with i $ j.

It is obvious that TFT= TmaX is not enough. In particular, despite Tmax is much

longer than any sum-frequency wave period, this time range is not enough to get a

reasonable accuracy of the sum-frequency result. The aliasing error in the discrete

Fourier transformation may be the reason. That is, the sampling time is not sufficient

for the difference-frequency components so that the aliasing error may affects all other

components. Hence, the sampling time for the Fourier transform can be a critical

parameter. The difference-frequency QTF matrices are shown in Figure 4-29, and

the same trend is shown. Based on the present result, it recommended to apply the

sampling time more than twice of the longest wave period in order to get an accurate

QTF matrix.

(5) Damping Zone

The sensitivity of the computational result on the artificial damping zone was

observed since the artificial beach is enforced on long and short waves at the same

time. As shown already, the sensitivity on the damping parameters was not significant

for the radiation and monochromatic-wave diffraction problems, and it is valid in the

multi-frequency diffraction problem. Figure 4-30 shows the QTF matrices for two

different sizes of the artificial beach with the same computational domain. A major

roll of the damping zone in this problem is to damp long difference-frequency waves.

Since the panels on free surface expands toward the truncation boundary, the panel

size at far from the body is not fine enough to resolve the short wave length, so that

short waves are eliminated by numerical damping before they reach to the truncation
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Figure 4-28: Four by four sum-frequency surge QTF matrix obtained from a single
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Figure 4-30: Four by four sum-frequency surge QTF matrix obtained from a single
time history at multi waves : the same cylinder with Figure 4-23, different size of the
artificial damping zone, (a) sum-frequency (b) difference-frequency
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edge. Hence, the beach size is more important than the beach strength in this case.

The application to a realistic ocean spectrum is the most difficult part in this study.

In the theoretical point of view, there is no significant difference in its application.

However, in the viewpoint of computational effort, there is a big difference between

previous cases and ocean spectra. For example, in the North Atlantic and Pacific

Oceans, the w values of the ocean-wave spectra vary between 0.2 and 2.0 rad/sec

[16]. It should be noticed that this range is valid in the linear sense. Thus, for the

second-order sum-frequency problem, the panel resolution must be fit up to W = 4.0.

Furthermore, the different-frequency depends on the number of the discrete frequency,

and it becomes very small if the number of considered frequency is a lot. In addition,

the selection of a high cut-off frequency is not trivial since the ocean spectra have

long tail at high frequency where the wave energy is not ignorable, particularly for

the sum-frequency.

Figure 4-31 and 4-32 show the ITTC spectra and their discretizations for sea sate 5

and 6 in the North Atlantic Sea. The significant wave heights H, are 3.25m and 5.0m,

and the modal wave periods Tm are 9.7sec and 12.4sec, respectively. The one-sided

ITTC spectrum takes the following form:

S(w) = 0.11H,2 - (-) Tmj e~4( /) (4.3)
27 w

It is well known that the incident wave amplitude Am of equation (2.13) becomes

2S(wm)Aw and the phase is arbitrary between 0 and 27r. Figure 4-33 shows the

instantaneous linear waves and the corresponding second-order wave profiles near a

truncated cylinder with d/a = 4.0, A ITTC spectrum with sea state 5 was applied,

and the spectrum was discretized into 20 frequencies. Like a monochromatic wave

problem, the second-order high-frequency waves are very localized near the body.

Figure 4-34 shows the time signals of the wave amplitude at (x, y) = (0, 0), the

linear and second-order wave loads on the cylinder. The difference of these signals
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Figure 4-31: Discretization of ITTC spectrum at sea state 5 in the North Atlantic
Sea : H, = 3.25m, Tm = 9.7sec, 20 components
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Figure 4-32: Discretization of ITTC spectrum
Sea : H, = 5.0m, Tm = 12.4sec, 20 components

at sea state 6 in the North Atlantic

125

1

1



(a) Linear wave profiles

(b) Second-order wave profiles

Figure 4-33: The instantaneous linear and second-order wave profiles near a truncated
cylinder : ITTC spectrum at sea state 5, d/a = 4.0
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is the phase of the incident waves, and the phases are decided by a random number

generator [78]. Therefore, three signals come from the same spectrum with the dif-

ferent phases of wave components. Particularly the time signals of the second-order

forces are the mixtures of the sum- and difference-frequencies of 800(20x20 sum- and

20x20 difference-frequencies) components. From the comparison between the linear

and second-order signals, it can be known that the second-order signals contribute

more at high frequencies, as pointed by Sclavounos [70].

Figure 4-35 shows the time signals for the ITTC spectrum at sea state 6 with the

different numbers of discretization. When the a spectrum is discretized, in general,

the cut-off frequencies dictate the time segment and grid resolution. On the other

hand, the number of frequencies influences on the simulation time and computational

domain since the difference-frequency depends on the number of wave components.

As shown in this figure, when the number of components becomes larger, the signal

becomes more irregular.

If many computation results are collected for a given ocean spectrum, the second-

order statistic characteristics can be observed, using some signal-processing tech-

niques. This issue is a challenging topic, which can be extended from the present

study, and eventually it may replace an expensive experiment. The numerical time-

domain approach for the realistic ocean spectra is in a poorly mature state. However,

under the basis of the greatly fast development of computational environment, a full

simulation of the nonlinear wave loads in the realistic random ocean wave will be

getting popular. The present computation was carried out as a bench-mark test of

such simulation.
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Figure 4-35: Time signals of the linear wave elevation, linear and second-order forces:
ITTC spectrum in Figure 4-32, from top ; wave elevation, the linear surge and heave
forces, the second-order surge and heave forces
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Chapter 5

Conclusions & Contributions

A three-dimensional time-domain Rankine panel method has been applied to solve

the linear and second-order free-surface problems around the truncated or bottom-

mounted circular cylinders and cylinder array. The present method applies the bi-

quadratic B-spline function for the discrete representation of the velocity potential,

wave elevation, and normal flux on the fluid boundaries. For the time integration, a

modified Euler scheme is used.

One of the important contributions in the present part is the thorough theoretical

study on the numerical scheme. Using the discrete Fourier transform, it was proved

that the present numerical method has the consistency which ensures that the wave

disturbance propagates over the free surface panel mesh with proper dispersion. Fur-

thermore, the temporal stability condition was derived to offer a stable computation.

An artificial beach is applied in order to impose the radiation condition. The

kinematic free-surface boundary condition is modified in the artificial beach to damp

the normal flux without a significant change of wave system. This thesis introduces a

deep investigation on the damping parameters. It is found that the sensitivity of the

damping parameters is not significant in a wide range. In addition, a low-pass filter

is applied to eliminate saw-tooth waves which may prevent stable time-marching.

The linear radiation problem is solved in order to test the accuracy and efficiency of

the developed computer code. The time-domain solution is converted to the frequency

134



domain using the Fourier transformation, which is based on an integral method. The

hydrodynamic forces are compared with WAMIT, and a nice agreement was shown.

The major contribution of the present part is to compute the linear and second-

order diffraction forces on the truncated and bottom-mounted cylinders, particularly

for the sum-frequency. The results are compared with other benchmark computations,

and a very encouraging agreement was shown. The same is found to be the case with

the wave elevation computed around the waterline of a bottom-mounted cylinder for

which experimental measurements are available. Furthermore, the local second-order

standing waves generated by interference of the scattered and incoming wave are well

simulated using the present method.

To aim the realistic wave spectra, the computation was carried out for random

wave with multi frequencies. It is found that the present computer code simulates all

the components of the linear and second-order forces with good agreement. Based

on a thorough parametric study, some bench-mark computations were performed for

the realistic ITTC spectra. Therefore, the method emerges as a promising candidate

for the study of second and higher order wave interactions with realistic offshore

structures in a monochromatic or random ambient wave records.
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Appendix A

Fourier Transformation of A

Finite-Depth Green Function

Consider a line distribution of the three-dimensional wave source along x axis at

y = 0 and z = zo, and put Q(x, t) is the strength which is a function of x and

time. The depth is assumed finite and constant. Focusing on the stationary problem,

Q(x, t) and the velocity potential is put as

Q(x, t) = R{q(x)e' t }

<b(x, t) = R{#(x)e' t}

(A.1)

(A.2)

Here, all notations are same with Part I.

In the realm of linear potential theory, the velocity potential #(x, y, z) is given by

the following equations :

V 2#(x, y, z) = q(x)6(y)(z - z,)

- + = 0

-=0
6z

in fluid domain,

on z = 0,

on z = -h.

Now consider the double Fourier transform to above equations with respect to x
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Figure A-1: Line source along x axis at z = z,

and y. The first equation is written in the Fourier domain as

02

{02 - (U2 + v 2 )}#**(u, v; z) = q*(u)6(z - z,)

Moreover, other two equations become

(-w 2 +g )**
Oz

84**
= 0

(A.6)

(A.7)

(A.8)

When z 4 z0, the solution of an ordinary differential equation (A.6) has a form,

#** = Ae"z + Be-Sz (A.9)

where s = au2 + v 2 , and A and B are the coefficients which are supposed to be

obtained from other two boundary conditions.

Substituting equation (A.9) to (A.7) and (A.8), we can get

B( W2 +g; esz + e-sz)

C cosh{s(z + h)}

z0 < z < 0

-h < z < z,

where C is a constant.
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Now, consider the integral of equation (A.6) such that

- (u2 + v2)}g**(u, v; z)dz I zo+E= E
q*(u)6(z - z,)dz

a **|z+E = q*(u)
Oz 0z- U (A.12)

Therefore 4** is continuous on z = zo. From equation (A.10), the continuity condition

produces

w2+gs eszo + e-szo

C =_W 2 +gs B
cosh{s(zo + h)}

(A.13)

Substituting this result to equation (A.11), we can get

a* 1

s K[tanh{s(zo + h)} - 1]eszo + [tanh{s(zo + h)} + l]e-szo

with

K = 2 2 + gs ,-w + gs

and it leads to the explicit form of 4**.
Our interest is when z0 - 0. In this case, it can be written as

*(uV; z) -* cosh{s(z + h)}
s cosh(sh){tanh(sh) + }

(A.14)

(A.15)

(A.16)

Using

K - I _
K +1

a
2

(A.17)
g
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we can write #** with the following form :

cosh{ v/u 2 + v 2 (z +

9u/2 + v2 cosh{v u 2 + v 2 h}[tanh{

h) }
Vu 2 + v 2 h} -

g

#**(U, v; z) e(ux+vy) dudv (A.19)

Recalling equation (3.2) of Part I, we can conclude that the Fourier transformation

of G(x, y, z) with respect to x is

G* (u; y, z) dv eZV x

1

cosh{ vu 2 + v 2 h}

cosh{v/u2 + v2(z + h)}
u2 -+ v 2 tanh{ vu2 +v2h} - ]

9

This result was derived by Borresen [6] including forward speed. When there is a

forward speed U, w should be replaced with w - Uu. This recovers the deep water

limit when h -± oc.
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and thus

(A.18)

(A.20)

#(x y, Z) = 2 00 0
(27r) -o -oo 0

100

27r -oo



Appendix B

Singularities on the Kernel

Consider a series which is defined as follows

00 
M 

- nyG2D, S(y) = - -YI | (B.1)
_1 hml + hv2 _ 

When y = 0, the last term of equation (3.30) of Part I is recovered. That is to

say, G2D,S(y) is the local wave component of a two-dimensional Green function with

z = 0. When n - 0, im, becomes approximately n7r/h. Then G2D,S(y) can be

written as

G2D,S 0Z e _ - Yln} + I (B.2)
n_1 hmn+hv2

where

001
I = - -

n=1 nw

= 1 - e
7rr

1 Iry 1 1 - e Y
= -ln(- ) + -In (B.3)

ir h r y|
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Hence, when y -+ 0, G2D,S can be approximated as

00 
M* m 1 1G2D,S ' - { - 1

nh hv 2 _ n,

1
+ -{lnw7 - Inh + limln jel}

7w E0

The last term is a logarithmic singularity of interest.

The singularities in the three-dimensional Green function are in Y 0(x) and the

series of K[(x). As we know, an asymptotic value of Y(x) for small x is ln(x)/2,

and this is one singularity in the kernel of the integral equation of Part I. The other

singularity is in the series with K (x). In order to observe the singularity, define a

series term, G3D,S, as

100
G3D,S =

7r n_1

m 2" KoT(mx|)
hm2 + hv 2

- V

This term is a part of the last term in equation (3.30) in Part I.

Recalling the fact that mn approaches n7r/h if n becomes large, the series can be

rewritten as

00 m 2  K 1  
-

G3D,S -- { " Ko(mnIxI) - -Ko(-x)}
n_1 hm2n+ hv2 h h

121

27r x
x 2 00

+In-) + - E
4h h n 1

1

+~2 ( lhp2

1
-n}2n

(B.6)

where 7 is the Euler constant. This is derived using the following formula (Prudnikov

& et al [60], pp 698),

cos(na)Ko(nx)
n_1

7r 1 X
=_ + -(-y + In -)
29/x 2 + a2  2 47r

001

x * 1
+ -{ (

2 n=1 V(2n-r - a)2 + X2

+ - E {
2 n=i V(2n-r + a)2 + X2

There is a 1/r singularity in equation (B.7). This singularity has to be observed
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(B.4)

(B.5)

1
2nTr

1
}

-2nmr

(B.7)



in the integral sense since the line distribution is applied. The integral of 1/x is ln x,

and it is canceled out with the logarithmic singularity of equation (B.4) as x -+ 0.

Therefore the kernel of integral equation (3.30) in Part I is finite at any x.
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Appendix C

The Extension of NIIRID to Finite

Depth

Slender-body theory requires the solution of the sectional boundary value problem.

There have been many studies for two-dimensional wave problems, but Frank's closed-

fit method [17] is the most popular for strip theory. The present computation was

carried out using the extended version of NIIRID. NIIRID [68] was developed at MIT

for infinite depth. The method of solution of NIIRID is based on Green's theorem,

which is used to obtain a Fredholm integral equation of the second kind for the

velocity potential on the body boundary. The body section is approximated by the

connection of straight segments, and the midpoint of each segment is selected as the

collocation points.

Consider the line segments on a certain section, shown in Figure C-1. The follow-

ing equation is supposed to be solved,

q5 k G2~i y;a rd G2D (Xi, yi; 71) rds (C. 1)
j=1 j=1

where the subscript indicates the panel index. Since we knows the body boundary

conditions, equation (C.1) leads to a linear matrix equation for unknown #j. In most

cases, the half domain is enough for geometric input because of its symmetry with

143



y

= N (xy 2

2 n

(x,y) (x )

h ( Tol)

'---O

(xe, YJ(xc~ye)

(a) section (b) local segment

Figure C-1: Local coordinate system for a two-dimensional segment

respect to the center-plane.

The major task in assembling the matrix equation is the numerical integrals of

G2D and - G2D. A two-dimensional finite-depth wave Green function can be written

with a series form,

G 2D(x,y, t; (, q) = R(Goeiwt) (C.2)

with

Go =G1+G2+ G3

i m 2 _ v 2
i * m~-i cosh{mo(y + h)} cosh{mo(71 + h)}ed"lo-a

m0 hm2 - hv~2 + V

10 2nV OInY+q+2)e-nx1 1 mn+ v 2

2 _ ~hm + h 2 
_cos{mn(y + 17 + 2h)}e~"'"|"-

10 1 m2 + v2
1 n 1 -+ cos{mn(y -)e-"- (C.3)

2 E mn hml + hv2 _ v

where ((, r) is a source point, and all other notations are the same with Part I.

The line integral of G2D is required for the application of Green's second identity.

Since G2D has a logarithmic singularity, it is desirable to integrate analytically this
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singularity over a segment. The singularity is in G3 term which can be rewritten as

G1 : { 1 m + v2  cos{mn(y - g)}em"'|"-
G3 2 _ mn hm + hv2 _ V

n1n
1r cos{ (y ) X, } ± J (C.4)

n7r h

where

001

J cos{ngr (y - )}e-Y- (C.5)
n_1 2n7 hh(C5

Like Appendix B, we can write J as

1
J = i 1 - el{-Ix- +(Y-7)Ithe

27r
1 1 1 - e ________y-on_

= n - 1x - + I(y -T)| + -- In |I| (C.6)
27 27r -|X - (| + i(y - TI)

J has a logarithmic singularity which an analytic integration is possible. However,

the regular wave part is hard to integrate analytically. Gaussian quadrature is applied

in the present study, and the integral is approximated as

f(X2,Y2) N

{G2D(r) - In rI}dS e W{G2D(rk) - In TkI} (C.7)
(X1,1) k=O

where Wk is a weight and rk is the distance between a field point and the point which

Gaussian quadrature is applied(Figure C-1).

The analytic treatment of the velocity components induced by a line distribution

of wave source is more delicate than that of the velocity potential. Especially when a

field point approaches the singularity line, the convergence of series is very slow. For

example, let's consider a term,

1 mn + v2 cos{mn(y - 71)}eIC"1IX| (C.8)
mn hm2 + hv 2 - V
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The derivative with respect to x is

-sgn(x - ) 2  cos{mn (y - r)}e-"nI- (C.9)
hm2 + hv2 _ v

When n is large, m approach "- and mn+V - approach to -. If x - is very small,

then equation (C.8) has a convergence of 1/n, while equation (C.9) has much slower

convergence.

Therefore, in the extension of NIIRID, the velocity components are obtained by

numerical difference. Since the convergence of the velocity potential is much faster

than the velocity computation, the numerical difference is much faster than the direct

computation of derivatives. In the present work, a central difference is adapted.
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Appendix D

Body-Fitted Grid on Free Surface

A grid system influences on solution accuracy. So a systematic study for grid

resolution, aspect ratio, and skewness is necessary in panel method. The stability

analysis performed in this study helps to predict some effects of the grid system,

but that information is very limited and difficult to analyze. In most cases, the grid

dependency is observed by computational experience.

One of issues in grid generation is how to distribute panels on free surface near

a body. A circular cylinder is a simple model in this viewpoint. However, it is not

simple to generate a proper grid system near a offshore structure or a ship. A nice

grid system minimizes computer storage and computational time, and it makes it

possible to reduce numerical error and instability. Furthermore it resolves physical

details near the body.

In the present computation, a differential coordinate system is used in order to

generate a body-fitted grid system, in particular near the body. The differential

coordinate system is popular in Finite Difference Method (FDM) for viscous flow.

In this method, the physical coordinates are mapped on a new pseudo coordinate

system. The transformation between two coordinate systems may be any kind of

differential operator, elliptic, hyperbolic or parabolic. However, the transformation

should be unique. The present study applies Poisson equation, a well-known elliptic

equation.
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Define a new coordinate system, ((, q). Assume ( , 71) satisfies

V2(= P() (D.1)

V = Q(TI), (D.2)

where V is the gradient with respect to the physical coordinates, (x, y). P(s) and

Q(,q) is the forcing terms, so called control functions. Then we can rewrite above

Poisson equations with ((, 7) as independent variables,

92X 02Xi __2 XJP (09X ax(D3
a -20- + = - + Q) (D.3)

a - 20a3 + = -J2(Y P+ Q) (D.4)

where

a = ( )2 + ()2 (D.5)

ax 19X ay ay
= + (D.6)

= ()2 + (%)2 (D.7)og at
Dzxoy Ox ByOX = 9 Xa (D.8)

Boundary conditions are necessary, and the x, y coordinates on boundary grids

must be enforced. The x, y coordinates along the waterline of the body are given,

while the coordinates along other edge grids should be decided properly.

Now these equations can be solved to obtain the physical coordinates, x and y,

which are mapped on a regular rectangular grid of AZ= A= = 1 (Figure D-1). Taking

the advantage of a rectangular grid, the finite difference method is used to solve the

equations. For example,

O2X
a__= xi+,j - 2xij + xi_1,3 (D.9)

148



Y T1

X N1

NN-= N- _

Zaj=1 c E
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Figure D-1: Coordinate transformation for grid generation

= Yi+1,j+1 - Yi+i,j-1 + yi-ij-1 - i-1,j+i (D.10)

Two matrix equations are assembled with the boundary conditions, and an itera-

tive scheme avoids solving a full matrix of equation (D.3) and (D.4). In addition, a

over-relaxation factor can be used in order to accelerate the convergence.

The forcing functions, P( ) and Q(TI), are related with grid stretching. These

functions is used to contract and/or expand grid spaces. There are many ways to

choose P( ) and Q(7), and the present computation adopts exponential functions

with the form

n

P(s) = pi sgn( - (i)e-r-al (D.11)
i=1
m

Q(n) Z qj sgn(71 - nj)e-r I-iI (D.12)
j=1

where pi and qj are attraction amplitudes and ri is decaying constant. If pi and qj

are negative, the grids will be contracted. Otherwise the grids will be expanded.

Figure D-2 shows three different cases of pi. In this case, qj is set to be zero.

When pi is negative(left), the grids around body contract to body. If pi=0, equation

(D.1) becomes Laplace equation, and the generated grids are uniform. While, if pi
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(b)

Figure D-2: The effect of forcing terms, (a) P(() < 0, (b) P( ) = 0, (c) P() > 0

is positive(right), the grids expand. Detailed description about the effects of forcing

term can be found in Ref.[74].
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Appendix E

Artificial Wave Absorbing Zone

A proper treatment of the radiation condition is critical in the computation with

a finite domain for a unbounded boundary value problem. In some field equation

solvers, like FDM, in particular without free boundary, the zero velocity-gradient

condition is efficient and effective. However, in the free-boundary value problems, it

is not so simple to treat numerically the open boundary condition.

There are a few popular numerical techniques to treat the radiation condition

of wave problem. Faltinsen [14], Dommermuth and Yue [12], Aarnesland [1] have

matched the linear or nonlinear near-field velocity potential with the far-field asymp-

totic and/or linear solution. Vinje [77] used a periodic condition on the incoming and

outgoing boundaries for the numerical simulation of ship motion. For Finite Element

method, Bai [4] introduced a localized matching scheme.

One of the popular scheme is Orlanski's method. Since the Sommerfeld's radiation

condition should be satisfied in the far field, this condition may be applied numeri-

cally at the truncated boundaries. Orlanski [59] applied this method for unbounded

hyperbolic flows, and Chan [7], Yen and Hall [82] have applied this method for water

wave problems. In particular, this method is effective on long waves.

Outgoing waves can be eliminated using an artificial damping zone applied in the

present study. This concept is introduced by Israeli & Orszag [24] for a simple wave

equation, and Baker, Meiron and Orszag [5] applied similar method to water wave
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problems. Besides Cointe [10] proved its efficiency in the two-dimensional problems.

Recently Clements [9] combined this method with Orlanski's method, taking both

advantages.

Most of existing study for wave absorbing zone adopts the following kinematic

free-surface boundary condition.

S- + p1(r)i = o. (E.1)at az

This recovers equation (3.30) of Part II if p 2 is zero. When P2 is zero and p1

is a constant, the critical damping coefficient which doesn't allow oscillatory motion

becomes

pi = 2w. (E.2)

This can be easily proved using equation (3.32) of Part II. Faltinsen [15] used this

concept to include damping effects in sloshing problem. In the sloshing problem with

potential theory, transient effect doesn't decay if a proper damping mechanism is not

supplied.

Nakos [51] added a p2 term which was originally used by Israeli & Orszag [24]. The

roll of P 2 is to keep wave characteristics, and it is sort of stiffness control. Therefore,

if pi and p12 are constant, there is no change of the linear dispersion relation inside

of the zone. Furthermore it is possible to predict the decay rate of wave amplitude.

Assume a single wave component, which can be written as 7(x, t) = R{A(x)e"0w}, we

can find

I(x, t + T) _ LIT (E.3)

r/(x,t) e 2 e

where T = g. Hence, after one oscillating, the wave amplitude decays exponentially

proportional to . To keep the same damping effect for a higher frequency wave,

the magnitude of pi should be linearly larger.
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As described in Part II, it is not desirable to keep p, and p2 as constants. In this

case, the theoretical aspect is much more complicated and it is difficult to predict op-

timum or critical quantities of pi and P2. However, based on computation experience,

the similar damping mechanism is expected.

To maximize the efficiency of wave absorbing zone, a thorough study is necessary.

There are several parameters which dictates the efficiency, the the size of zone, the

magnitude of pi, the variation of p1 and P2, so on. In order to observe the effects of

these parameters, consider a two-dimensional pulsating pressure problem as shown in

Figure E-1.

p(x,t) damping zone
L

X

D

Figure E-1: A pulsating pressure patch problem

A pulsating pressure patch takes the form as follows:

p(x, t) = PO cos2(--|x|) sin(wt) (E.4)
D

where PO, D, w, are the amplitude, length, and frequency of the pressure patch. This

two-dimensional problem was solved using source distribution method.

Figure E-2 shows the evolution of wave as time marches. Here, p0 /wp = 27r is

applied and p1 has a linear variation,

(x - XO)
21=2 p" L2 (E.5)
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where x, is the coordinate where the wave absorbing zone begins. Israeli and Orszag

used a polynomial form of n-th order for pi such that

(r - x0 )"
pi = (n + 1)I" Ln+1 (E.6)

which satisfies f, pidx = po. Therefore yo may be a good parameter to indicate the

strength of the zone. In this case, P2 is also included. Figure (a) and (b) are for

L/D = 1 and 2, respectively. L/D = 1 means that the size of zone is one wavelength.

From this figure, it is obvious that a linear variation seems not a proper choice.

(a) (b)

Figure E-2: Evolution of free surface near a pulsating pressure patch po/wp 27r,
linear variation, (a) L/D = 1, (b) L/D = 2

Figure E-3 shows the evolution of waves when P2 is excluded, i.e. equation (E.1)

is applied. A quadratic variation of pi is used. Bad results are obtained when the

size of zone is short and the strength is weak. It is interesting that transient wave

may pass the damping zone since it contains the low frequency components.

Figure E-4 shows the evolution of waves when both pi and P2 are applied with a

quadratic variation of pi. It is obvious that this case provides the best results. When

the variation of pi is more than quadratic, the damping effect is concentrated in too

localized area, i.e. near the end of zone, and it is not desirable.

According these results, it is important to eliminate transient waves. The transient
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waves are generated when a computation starts, and many components are mixed.

Therefore, if the damping mechanism is weak, some long waves may not be eliminated

so that they reflect on the edge of truncated boundary.

(a) (b)

t
t

(c) (d)

Figure E-3: Evolution of free surface near a pulsating pressure patch quadratic
variation without P2 term (a) p0 /wp = 27r, L/D = 1, (b) po/wp = 47, L/D = 1, (c)

o/ww = 27r, L/D = 2, (d) po/wp = 47r, L/D = 2

In a three-dimensional problem, the sensitivity on the parameters is less significant

than the two-dimensional case. It is because the velocity potential decays with the

order of 1//r. According to the present study, the half of wavelength provides a

reasonable result with stable time-marching. Figure E-5 is the results of an axis-
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symmetric pulsating pressure patch problem. The same form with equation (E.4) is

applied, but x is replaced to r. According Figure E-5, it is obvious that the size and

strength of wave absorbing zone is not as much important as two-dimensional case,

but too weak and too short damping is not desirable.

When more than one component are mixed in the propagating waves, the wave

absorbing zone has to be tuned to the longest wave. This is a disadvantage of the

damping zone since the computation domain should be extended in order to include

the zone. However, this method is simple to apply and quite effective, even for

nonlinear problems.
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(a) (b)

t

(C) -
(d)

Figure E-4: Evolution of free surface near a pulsating pressure patch : quadratic vari-
ation, (a) p/w, = 27r, L/D = 1, (b) p/w, = 47r, L/D = 1, (c) pu/w, = 27r, L/D = 2,
(d) p/w, = 47r,L/D = 2
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(a) (b)

(c) (d)

Figure E-5: Evolution of free surface near a pulsating pressure patch : quadratic
variation with P2 term (a) po/w, = 1, L/D = 0.5, (b) pO/wp = 2, L/D = 0.5, (c)

po/w, = 1, L/D = 1, (d) po/w, = 2, L/D = 2
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Appendix F

Spatial Filters for Free-Surface

Wave Problems

Filtering is one of the basics in signal processing. Since usually there is some noise

in the measured signal, a proper filtering is essential. In a time domain approach

for wave problem, it is difficult to avoid the generation of numerical noise, and a

proper filter is required to eliminate this noise. As described in the stability analysis

of Part II, the discrete group velocity of the possible shortest wave becomes zero.

This shortest wave, i.e. two-grid-interval wave, doesn't disperse and grows up as time

marches. Therefore, the purpose of filtering in water wave problem is the elimination

of these saw-tooth waves.

Since a spatial filter is needed, it is not desirable to use as many points as a

temporal filter in signal processing. In particular, near the edge of boundary, the

available neighbor points are limited. When the number of neighbor points for the

filter is not many, the smoothing effects cannot be ignored so that the repeated

application can cause significant loss of energy. Usually the number of points is

related with the order of filter, i.e. the order of error which decides the amount of a

reason of energy loss/gain. Therefore it is required to find a filter which has minimum

energy change and is expressed with a few points.

Shapiro [63] designed a linear filtering scheme in order to eliminate a saw-tooth
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wave. He approximated a quantity of interest as a Fourier series, and suggested a

higher order filter,

K

C or + ( Ck(7j-k + -rj+k). (F.1)
k=1

where Ck is the coefficient which dictates the amount of smoothing and phase change.

The decision of a proper value of ck is the key of filter design.

In order to predict the smoothing effect after filtering, express rj in terms of a

sum of Fourier components, An cos{n(xj + On)}. Then, it is easy to find

RK (n) - A 1 - sin 2 K( 2 (F.2)
An 2

where Rk(n) is called the amplification factor or amplitude response function of k-th

order. When A = 2Ax, this filter eliminates the wave without phase change. The

coefficients, Ck, are shown in Table F.1.

K C co/C c1|C c2 /C c3 /C c4 /C c5 /C c6 /C c7 /C
1 1/22 2 1
2 1/24 10 4 -1
3 1/26 44 15 -6 1
4 1/28 186 56 -28 8 -1
5 1/210 772 210 -120 45 -10 1

6 1/212 3172 792 -495 220 -66 12 -1
7 1/214 12952 3003 -2002 1001 -364 91 -14 1

Table F.1: The coefficients of Shapiro's filter

Longuet-Higgins and Cokelet [45] obtained Ck using a different concept. They

lecomposed free surface profile into smoothing part and noise, and the second- or

third-order polynomial was used to approximate the surface profile. They proposed

two filtering formulae, which are very popular in the numerical simulation of water
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1
-i = (-l-2 + 4 77- + 10I0 + 4 7j+1 - Ti+2)
16
1
32i =(-77-3 + 97/i 1 + 1671i +F 9 77i+i - ?i±3)

(F.3)

(F.4)

whose the amplification factors are

R(n)

R(n)

= 1 - sin4 (7rAx/A,)

1
= -- {- cos(67r Ax/An) + 9 cos(27r Ax/An) + 8}

16

(F.5)

(F.6)

The first filter of Longuet-Higgins and Cokelet is based on the second-order polyno-

mial approximation and it is the same with Shapiro's filter of K = 2.

Table F.2:

n 3-pt. 5-pt.(A) 5-pt.(B) 7-pt.(A) 7-pt.(B)
2 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.2500 0.4375 0.1562 0.5781 0.6100
4 0.5000 0.7500 0.5000 0.8750 0.9024
5 0.6545 0.8806 0.7244 0.9588 0.9751
6 0.7500 0.9375 0.8438 0.9844 0.9936
7 0.8117 0.9646 0.9070 0.9933 0.9986
8 0.8536 0.9786 0.9419 0.9969 0.9999
9 0.8830 0.9863 0.9621 0.9984 1.0002

10 0.9045 0.9909 0.9744 0.9991 1.0002
11 0.9206 0.9937 0.9821 0.9995 1.0001
12 0.9330 0.9955 0.9871 0.9997 1.0000
13 0.9427 0.9967 0.9905 0.9998 1.0000
14 0.9505 0.9975 0.9929 0.9999 0.9999
15 0.9568 0.9981 0.9946 0.9999 0.9999

The comparison of the amplification factors : Shapiro(3-pt.5-pt(A).7-
pt.(A)), L.-H. & Cokelet(5-pt.(A),(B)), Nakos(7-pt.(B))

Recently Nakos [51] used a filter whose the amplification factor is written as

equation(3.38) in Part II. This filter also eliminates the saw-tooth wave completely

and produces less damping than other filters.
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The side effect of filter is smoothing effect. The amount of smoothing depends on

the choice of filter. For a single wave, the loss of energy is proportional to { 1- R(n) }2.

Table F.2 compares the amplification factors for different filters. It is obvious that

3-point filter results in too much energy loss, while others are generally good.
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