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ABSTRACT

Understanding the biological signals encoded in a genome is a key challenge of
computational biology. These signals are encoded in the four-nucleotide alphabet of
DNA and are responsible for all molecular processes in the cell. In particular, the
genome contains the blueprint of all protein-coding genes and the regulatory motifs used
to coordinate the expression of these genes. Comparative genome analysis of related
species provides a general approach for identifying these functional elements, by virtue
of their stronger conservation across evolutionary time.

In this thesis we address key issues in the comparative analysis of multiple
species. We present novel computational methods in four areas (1) the automatic
comparative annotation of multiple species and the determination of orthologous genes
and intergenic regions (2) the validation of computationally predicted protein-coding
genes (3) the systematic de-novo identification of regulatory motifs (4) the determination
of combinatorial interactions between regulatory motifs.

We applied these methods to the comparative analysis of four yeast genomes,
including the best-studied eukaryote, Saccharomyces cerevisiae or baker's yeast. Our
results show that nearly a tenth of currently annotated yeast genes are not real, and have
refined the structure of hundreds of genes. Additionally, we have automatically
discovered a dictionary of regulatory motifs without any previous biological knowledge.
These include most previously known regulatory motifs, and a number of novel motifs.
We have automatically assigned candidate functions to the majority of motifs discovered,
and defined biologically meaningful combinatorial interactions between them. Finally,
we defined the regions and mechanisms of rapid evolution, with important biological
implications.

Our results demonstrate the central role of computational tools in modern biology.
The analyses presented in this thesis have revealed biological findings that could not have
been discovered by traditional genetic methods, regardless of the time or effort spent.
The methods presented are general and may present a new paradigm for understanding
the genome of any single species. They are currently being applied to a kingdom-wide
exploration of fungal genomes, and the comparative analysis of the human genome with
that of the mouse and other mammals.

Thesis Co-Supervisor: Eric Lander, professor of Biology

Thesis Co-Supervisor: Bonnie Berger, professor of Applied Mathematics
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OVERVIEW

Biological Signals

Understanding the biological signals encoded in a genome is a key challenge of

modern biology. These signals are encoded in the four-nucleotide alphabet of DNA and

are responsible for all molecular processes in the cell. In particular, the genome contains

the blueprint of all protein-coding genes and the control signals used to coordinate the

expression of these genes. The well-being of any cell relies on the successful recognition

of these signals, and a large number of biological mechanisms have evolved towards this

goal. Specific protein complexes are responsible for the copying of a gene segment from

DNA to messenger RNA (transcription) and for its eventual translation into protein

following the genetic code to assign an amino acid to every tri-nucleotide codon. A

specific class of proteins called transcription factors help recruit the transcription

machinery to a target gene by binding their specific DNA signals (regulatory motifs) in

response to environmental conditions. An abundance of information within the cell

guides these processes, involving protein-protein and protein-DNA interactions between

a multitude of players, the state of DNA coiling, and other mechanisms that are still not

well-understood.

The computational identification of genes however, can only rely on the primary

DNA sequence of the organism. Current programs use properties about the protein-

coding potential of DNA segments that are unseen by the transcription machinery. In

particular, since genes always start with an ATG (start codon) and end in with TAG,

TGA, or TAA (one of three stop codons), programs exist that specifically look for these

stretches between a start and a stop codon called ORFs (Open Reading Frames). The

basic approach is to identify ORFs that are too long to have likely occurred by chance.

Since stop codons occur at a frequency of 3 in 64 in random sequence, ORFs of 60 or

even 150 amino acids will occur frequently by chance, but longer ORIs of 300 or

thousands of amino acids are virtually always the result of biological selective pressure.

Hence, simple computational programs can easily recognize long genes, but many small

genes will be indistinguishable from spurious ORFs arising by chance. This is evidenced

by the considerable debate over the number of genes in yeast, with proposed counts

ranging from 4800 to 6400 genes. The situation is worse for organisms with large,
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complex genomes, such as mammals where estimated gene counts have ranged from 30

to 120 thousand genes.

The direct identification of the repertoire of regulatory motifs in a genome is even

more challenging. Regulatory motifs are short (typically 6-8 nucleotides), and do not

obey the simple rules of protein-coding genes. In any single locus, nothing distinguishes

these signals from random nucleotides. Traditionally, their discovery relied on deletion

studies of consecutive DNA segments until regulation was disrupted and the control

region was identified6 . With the sequence of multiple genes in the same pathway at hand,

it became possible to search for the repetition of these signals in genes controlled by the

same transcription factor. Computational methods have been developed to search for

enriched sequence motifs in predefined sets of genes (for example, using expectation-

maximization 7 or gibbs-sampling8 , reviewed in 9). As microarray analysis provided

genome-wide levels of gene expression under a various experimental conditions,

computational methods of gene clustering have resulted in hundreds of such sets of

genes. Various computational methods have been used to mine these sets for regulatory

motifs, and dozens of candidate motifs have resulted from each search. The vast majority

of these candidate motifs are due to noise however, and only a total of about 50 real

motifs have currently been discovered.

The current methods of motif identification suffer from a number of limitations.

(a) First and foremost is that the weak signal of small motifs is hidden in the noise of

relatively large intergenic regions. This inherent signal to noise ratio limits even the best

programs from recognizing true motifs in the input data. (b) Additionally, the sets of

genes searched, and hence the motifs discovered, are limited by our current biological

knowledge of co-regulated sets of genes. The current knowledge is based on the

experimental conditions reproduced in the lab, which is likely to be a small fraction of the

vast array of environmental responses yeast uses to survive in its natural habitat. (c)

Finally, an emerging view of gene regulation has put in question the approaches that

search for a single motif responsible for a pathway or environmental response. Pathways

are not regulated as isolated components in the cell. Genes and transcription factors have

multiple functions and are used in multiple pathways and environmental responses. More

importantly, transcription factors do not act in isolation, and protein-protein interactions
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between factors are as important as protein-DNA interactions between each individual

factor and its target genes. Hence, individual gene sets will be enriched in multiple

motifs, and individual motifs will be enriched in multiple gene sets. A comprehensive

understanding of regulatory motifs requires a novel, more powerful approach.

Comparative genome analysis of related species should provide such a general

approach for identifying functional elements without prior knowledge of function.

Evolution relentlessly tinkers with genome sequence and tests the results by natural

selection. Mutations in non-functional nucleotides are tolerated and accumulate over

evolutionary time. However, mutations in functional nucleotides are deleterious to the

organism that carries them, and become sparse or extinct. Hence, functional elements

should stand out by virtue of having a greater degree of conservation across the genomes

of related species. Recent studies have demonstrated the potential power of comparative

genomic comparison. Cross-species conservation has previously been used to identify

putative genes or regulatory elements in small genomic regions10-3 . Light sampling of
4,14whole-genome sequence has been used as a way to improve genome annotation'

Complete bacterial genomes have been compared to identify pathogenic and other

genes 1-18. Genome-wide comparison has been used to estimate the proportion of the

mammalian genome under selection9.

Contributions of this thesis

The goal of this thesis is to develop computational comparative methods to

understand genomes. We develop and apply general approaches for the systematic

analysis of protein-coding and regulatory elements by means of whole-genome

comparisons with multiple related species. We apply these methods to Saccharomyces

cerevisiae, commonly known as baker's yeast. S. cerevisiae is a model organism for

which many genetic tools and techniques have been developed, leading to a wealth of

experimental information. This knowledge has allowed us to validate our biological

predictions and assess the power of the methods developed. We generated high-quality

draft genome sequences from three Saccharomyces species of yeast related to S.

cerevisiae. These data provide us with invaluable comparative information currently

unmatched by previous sequencing efforts. Starting with the raw nucleotide sequence

assemblies of the three newly sequenced species and the current sequence and annotation
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of S. cerevisiae, we set out to discover functional elements in the yeast genome based on

the comparison of the four species.

We first present methods for the automatic comparative annotation of the four

species and the determination of orthologous genes and intergenic regions (Chapter 1).

The algorithms enabled the automatic identification of orthologs for more than 90% of

genes despite the large number of duplicated genes in the yeast genome.

Given the gene correspondence, we construct multiple alignments and present

comparative methods for gene identification (Chapter 2). These rely on the different

patterns of nucleotide change observed in the alignments of protein coding regions as

compared to non-coding regions, specifically the pressure to conserve the reading frame

of proteins. The method has high specificity and sensitivity, and enabled us to revisit the

current gene catalogue of S.cerevisiae with important biological implications.

We then turn to the identification of regulatory motifs (Chapter 3). We present

statistical methods for their systematic de-novo identification without use of prior

biological information. We automatically identified 72 genome-wide sequence elements,

with strongly non-random conservation properties. To validate our findings, we

compared the discovered motifs against a list of known motifs, and found that we

discovered virtually all previously known regulatory motifs, and an additional 41 motifs.

We assign function to these motifs using sets of functionally related genes (Chapter 4),

and we discover additional motifs enriched in these sets.

We further present methods for revealing the combinatorial control of gene

expression (Chapter 5). We study the genome-wide co-occurrence of regulatory motifs,

and discover significant correlations between pairs of motifs that were not apparent in a

single genome. We show that these correspond to biologically meaningful relationships

between the corresponding factors and that motif combinations can change the specific

functional enrichment of target genes, thus increasing the versatility of gene regulation

using only a limited number of regulatory motifs.

We finally focus on the differences between the species compared and discover

the regions and mechanisms of evolutionary change (Chapter 6). We study rapid gene

family expansions and discover that they localize in the telomeres. We show that

chromosomal rearrangements and inversions are mediated by specific sequence elements.
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We find specific mechanisms of rapid protein change in environment adaptation genes, as

well as stretches of unchanged nucleotides suggesting novel functions for uncharacterized

genes.

Our results demonstrate the central role of computational tools in modern biology.

Our methods are general and applicable to the study of any organism. They are currently

being applied to a kingdom-wide exploration of fungal genomes and the comparative

analysis of the human genome with that of the mouse and other mammals. Comparison

of multiple related species may present a new paradigm for understanding the genome of

any single species.

I 1





BACKGROUND

0.1. Molecular biology and the study of life.

It is both humbling and bewildering that what separates humans from bacteria is

merely the organization and assembly of the same basic bio-molecules. It is the study of

these shared foundations of life that gave rise to the discipline of molecular biology. In

the microscopic level, complex and simple organisms alike are made up of the same unit

of life, the cell. A cell contains all the information and machinery necessary for its

growth, maintenance and replication. It is delimited from its surrounding by a water-

impermeable membrane and all communication and transport across the membrane is

tightly controlled. Two major types of cells exist, prokaryotic cells with simple internal

organization, and eukaryotic cells, with extensive compartmentalization of functions such

as information storage in the nucleus, energy production in mitochondria, metabolism in

the cytoplasm, etc. In unicellular organisms, the cell constitutes the complete organism,

whereas multi-cellular organisms (typically eukaryotes) can contain up to trillions of

cells, and hundreds of specialized cell types. In either case though, a cell can rarely be

thought of in isolation, but is constantly interacting with its surrounding, sensing the

presence of environmental changes, and exchanging stimuli with other cells that may be

part of the same colony or organism.

Within a cell, virtually all functional roles are fulfilled by proteins, the most

versatile type of macromolecule. Various types of proteins fulfill an immense array of

tasks. For example, enzymes catalyze countless chemical reactions; transcription factors

control the timing of gene usage; transporters carry molecules inside or outside the cell;

trans-membrane channels regulate the concentrations of molecules in the cell; structural

proteins provide support and shape to the cell; actins can cause motion; receptors

recognize intra- or extra-cellular signals. This incredible versatility of proteins comes

from the innumerable combinations of an alphabet of only 20 amino acid building blocks,

juxtaposed in a single unbranched chain of hundreds or thousands of such amino acids.

All amino acids share an identical portion of their structure that forms the protein

backbone, to which is attached one of 20 possible side chains of variable size, shape,

charge, polarity, hydrophobicity. The precise sequence of amino acids dictates a unique

13



three-dimensional fold that optimizes electrostatic and other interactions between the

side-chains and with the solvent.

DNA in turn carries the genetic information that encodes the precise sequence of

all proteins, the signals that control their production, and all other inheritable traits. DNA

is also a macromolecule, consisting of the linear juxtaposition of millions of nucleotides.

It encodes the genetic information digitally, like the bits of a digital computer, in the

precise ordering of four types of nucleotides. Like amino-acids, these nucleotides share a

fixed portion that forms a (phosphate) backbone to which is connected (via a deoxyribose

sugar) a variable portion that is one of four bases, abbreviated A, C, G, T. Unlike

proteins however, the structure of DNA is fixed. It consists of two strands, like the

sidepieces of a ladder, connected by pairs of bases, like the steps of ladder. The two

strands are wrapped around each other and form a double-helix. The two phosphate

backbones form the outside of the helix, and the base pairs, connected by weak hydrogen

bonds, form the interior of the helix. Only two pairings of bases are possible, based on

shape and charge complementarity: A always pairs with T and C always pairs with G.

This self-complementarity of the DNA structure forms the very basis of heredity: during

DNA replication, the two strands open locally, and each strand becomes the template for

synthesizing the opposite strand, its sequence dictated by base complementarity. The

DNA double helix is rarely exposed. It is typically wrapped around histone proteins and

packaged in a coiled structure referred to as chromatin.

The complete DNA content of an organism is referred to as its genome, and is

contained in one or more large uninterrupted pieces called chromosomes. Prokaryotic

cells contain one circular chromosome, and eukaryotic cells contain varying numbers of

linear chromosomes (16 in yeast, 23 pairs in human) that are compartmentalized within

the cell nucleus. Each linear chromosome is marked by a well-defined central region, the

centromere and the chromosomal endpoints called telomeres. In a multi-cellular

organism, every cell contains an identical copy of the genome (with extremely few

exceptions such as red blood cells that do not have a nucleus). In addition to the

chromosomal DNA, cells typically contain additional small pieces of DNA in plasmids

(small circular pieces found in bacteria and typically containing antibiotic resistance

genes), or mitochondria and chloroplasts (energy production organelles found in
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eukaryotes). Genome size varies widely across species, typically 5kb-200kb (kilo-bases)

for viruses2 0 2 2 , 500kb to 5Mb for bacteria15 , 10-30Mb for unicellular fungi23 ,24 , 97Mb for
25 1927 28the worm , 165Mb for the fly 26, 2-3Gb for mammals' ,, and 100Mb- 100Gb for plants

The amino-acid sequence of every protein is encoded within a single continuous

stretch of DNA called a gene. The transfer of information from the four-letter nucleotide

alphabet of DNA to the 20 amino-acid alphabet of proteins is ensured by a process called

translation. Consecutive nucleotide triplets (codons) are translated into consecutive

amino-acid residues, according to a precise translation table, referred to as the genetic

code. There are 64 possible codons and only 20 amino acids, hence the genetic code

contains degeneracies, and the same amino acid can be encoded by multiple codons.

Additionally, the codon ATG (that codes for Methionine) also serves as a special

translation initiation signal, and three codons (TGA, TAG, TAA) are dedicated

translation termination signals. These are typically called start and stop codons. DNA is

a directional molecule, and so are proteins. DNA is always read and synthesized in the 5'

to 3'direction (named after the 5' and 3' carbons in the carbon-ring of the sugar). Given

this directionality of either strand, we can refer to sequences upstream (5') or

downstream (3') of a particular nucleotide on the same strand. The two complementary

strands run in opposite direction and are called anti-parallel, hence upstream in one strand

is complementary to downstream on the opposite strand. Upstream and downstream are

typically used in relation to the coding strand of a gene (containing the sequence ATG).

Proteins are synthesized from the N terminus (encoded by the 5' part of the gene) to the

C terminus (encoded by the 3' part of the gene).

0.2. Gene regulation and the dynamic cell

DNA is not directly translated into protein, but it is first transferred by

complementarity into an intermediary single-stranded information carrier called

messenger RNA or mRNA in a process called transcription. The Central Dogma of

biology refers to this transfer of the genetic information from DNA to RNA to protein.

RNA is similar to DNA, but is single-stranded and contains a different type of sugar

connector between the phosphate backbone and the variable base (also the four bases are

A,C,G,U instead of A,C,G,T). This difference in structure enables RNA to assume

complex three-dimensional folds and perform a variety of cellular functions, only one of
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which is information transfer between DNA and protein. In eukaryotic cells,

transcription occurs in the nucleus where the DNA resides, and the resulting mRNA

molecule is then transferred outside the nucleus where the translation machinery resides.

During this transfer, the transcript undergoes a maturation step, including the excision

(called splicing) of untranslated gene portions (called introns), and the joining of the

remaining portions of the transcribed gene that are typically translated (called exons).

The splicing of introns is dictated by subtle signals between 6 and 8 bp (base pairs) long

that are found mainly at the junctions between exons and introns and within each intron.

In prokaryotic cells, transcripts do not undergo splicing and sometimes contain multiple

consecutively translated genes of related function.

The process of protein and RNA production, also called gene expression, is

tightly controlled at multiple stages, but mainly at the stage of transcription initiation.

This involves the uncoiling of chromatin structure around the gene to be expressed and

the recruitment of a number of protein players that include the transcription machinery.

These processes are regulated by a specific class of DNA-binding proteins called

transcription factors. These bind the double-stranded DNA helix in sequence-specific

binding sites, recognizing electrostatic properties of the nucleotides at each contact point.

A regulatory motif describes the sequence specificity of a transcription factor, namely,

the nucleotide patterns that are in common to the sites bound. Transcription factors are

classified according to their effect on the expression of their target genes: an activator

increases the level of gene expression when bound, and a repressor decreases that level.

Transcription factor binding is modulated by the protein concentration and localization of

the transcription factor, the three-dimensional conformation of the transcription factor

that may depend on chemical modifications, protein-protein interactions with other

factors that may bind cooperatively or competitively, and chromatin accessibility

GAL1

Transcription factors Mig1 and Gal4 G mRNA

recognize specific regulatory motifs to
induce or repress transcription of the protein
GAL1 gene and its eventual translation.

Figure 0.1. The Central Dogma of Biology. DNA makes RNA makes protein
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surrounding the binding site. Finally, in addition to transcription initiation, gene

expression is regulated at many stages, including mRNA transport and splicing,

translation initiation and efficiency, mRNA stability and degradation, post-translational

modifications of a protein, and protein stability.

These processes together modulate gene expression in response to environmental

changes, and are interlinked in complex regulatory networks, responsible for the dynamic

nature of the cell. These dynamics create the multitude of specific cell responses to

varying environmental stimuli. Gene regulation also creates the incredible variety of cell

types found within the same organism. For example heart, liver, lung, nail, skin, eye,

neurons, hair, or bone all have the exact same DNA content, but express a different set of

genes. Changes in gene expression however, can also be responsible for a number of

complex diseases. Understanding the dynamic cell is a major challenge for molecular

biology and modem medicine.

0.3. Evolutionary change and comparative genomics

The evolution of these complex mechanisms was shaped by the forces of random

change and natural selection. Random genomic change can generate new functions or

disrupt existing ones, and natural selection favors and keeps the fittest combinations. The

genotypic differences accumulated at the DNA level lead to observed phenotypic

differences between individuals of a population. Genomic changes can be as subtle as

the mutation, insertion or deletion of individual nucleotides, and as drastic as the

duplication or loss of chromosomal segments, entire chromosomes, or complete

genomes. Changes in a protein-coding gene can lead to multiple co-existing variants, or

alleles, of that gene within a population, that differ in specific residues and perform the

same function with slight differences. As the result of mating, the progeny will inherit a

combination of paternal and maternal alleles for different genes. The random mating of

individuals within a populations and the random segregation of chromosomal segments in

gamete formation creates new allelic combinations at each generation. The frequency of

these allelic combinations will vary through evolutionary time, either by selection for

their evolutionary fitness or by random genetic drift. As populations segregate and adapt

to their environment, different combinations of alleles dominate in each population. The

resulting differences in behavior or chromosomal organization can lead to loss of
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reproductive ability across sub-populations and the emergence of new species. The

emergence of new functions in these changing species allowed adaptation to all niches on

land, in the air, underground, or in the deepest oceans, in species as diverse as dinosaurs

and amoebae. It is thought that all life in the planet descends from a single ancestral cell

that lived around 3.5 billion years ago, and the incredible biodiversity observed today

resulted from incremental changes of existing life forms.

The genomes of related species exhibit similarities in functional elements that

have undergone little change since the species' common ancestor. Deleterious mutations

in these functional regions have certainly occurred, but the individuals carrying them

have been at a disadvantage and eventually eliminated by natural selection. Mutations in

non-functional regions have no effect to an organism's reproductive fitness, and will

accumulate over evolutionary time. Hence, the combined effects of random mutation and

natural selection allow comparative approaches to separate conserved functional regions

from diverged non-functional regions. Comparative genome analysis of related species

should provide a general approach for identifying functional elements without prior

knowledge of function, by virtue of having a greater degree of conservation across the

genomes of related species. When selecting species for a pairwise comparative analysis,

we face a tradeoff between closely related species (with many common functional

elements but additional spuriously conserved non-functional regions), and distantly

related species (with mostly diverged non-functional regions but fewer common

functional elements). The use of multiple closely-related species may present an

attractive alternative, exhibiting an accumulation of independent mutations in non-

functional regions, while having most biological functions in common.

Recent studies have demonstrated the potential power of comparative genomic

comparison. Cross-species conservation has previously been used to identify putative

genes or regulatory elements in small genomic regionsI -3. Light sampling of whole-
4,14genome sequence has been studied as a way to improve genome annotation' . Complete

15-18bacterial genomes have been compared to identify pathogenic and other genes'

Genome-wide comparison has been used to estimate the proportion of the mammalian

genome under selection19.
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0.4. Sequence alignment and phylogenetic trees

The comparison of related sequences is typically represented as sequence

alignment (for an example see figure 3.2). The correspondence of nucleotides across the

sequences compared is given by offsetting the nucleotides of each sequence such that

matching nucleotides are stacked at the same index across all sequences. To represent

insertions or deletions (indels), gaps are typically inserted as dashes in the shorter

sequence; these could represent a deletion in the sequence containing the gap, or an

insertion in the other sequences. Typically, no reordering or repetition of nucleotides is

allowed within a sequence, and hence no inversions, duplications, or translocations are

represented in a sequence alignment. To construct an alignment of two sequences is

equivalent to finding the optimal path in a two-dimensional grid of cells, and dynamic

programming algorithms have been developed to align two sequences in time

proportional to the product of their lengths, and space proportional to sum of their

lengths. The optimal alignment of two sequences minimizes the total cost of insertions,

deletions, and nucleotide substitutions (gaps and mismatches), each penalized according

to input parameters. These parameters are set to match estimated rates of insertions,

deletions and nucleotide substitutions in well-conserved portions of carefully-constructed

alignments. For example, substitutions between nucleotides of similar structure are more

frequent and hence transitions between purines (A and G) or between pyrimidines (C and

T) are penalized less than transversions from a purine to a pyrimidine and vice versa.

Also, it is typical to penalize gaps using affine functions, namely adding a cost

proportional to the size of the gap to a fixed cost for starting a gap. Global alignments

compare the entire length of the sequences compared, and local alignments only align

sub-portions of the sequences.

The best match of a query sequence can be found in a database of sequences by

scoring the local alignments between the query and each sequence in the database.

Constructing the full dynamic programming matrix for each of the sequences in a large

database can be costly, and efficient algorithms have been developed to only align a

small subset of the database sequences. These algorithms take advantage of the fact that

strong matches of a query sequence will typically contain stretches of perfectly conserved

residues, and first select all database sequences that contain such stretches. To do so, a
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hash table is first constructed for the database, listing all sequences and positions that

contain a particular k-mer. After this slow step that need only be performed once, the

lookup of all k-mers in a query sequence can be performed rapidly against a large

database, constructing a list of hits. Local alignments are then constructed around each

hit, extending the k-mer matches to longer high-scoring local alignments. These ideas

are implemented in the popular program BLAST, and used thousands of times daily to

query the genomes of dozens of sequenced species and millions of sequences. One

modification of the BLAST algorithm called two-hit Blast only constructs a local

alignment when at least two nearby hits are found. This allows the retrieval of more

distantly related sequences by searching for shorter k-mers, while still maintaining high

specificity by requiring multiple k-mer hits in common.

Multiple sequence alignments can also be constructed for more than two

sequences. Constructing the full dynamic programming matrix is exponential in the

number of sequences compared and typically impractical for long sequences. Therefore,

current algorithms work by extending multiple pairwise alignments between the

sequences compared. The similarities between all pairs of sequences can be used to

construct a phylogenetic tree, summarizing the most likely ancestry of the sequences,

linking them hierarchically from the most closely related pair to the most distantly related

outgroup. Multiple sequence alignment algorithms typically start by aligning the most

closely related sequences, and progressively merge alignments moving up the

phylogenetic tree from the leaves to the root. Algorithms to merge two alignments

typically use once-a-gap-always-a-gap methods, but more recent algorithms have been

developed to locally re-optimize multiple alignment portions by revisiting previously

added gaps and improving the overall alignment score.

0.5. Model organisms and yeast genetics.

The shared biology of related species allows one to study a biological process in

one organism and apply the knowledge to another organism. Simpler organisms provide

excellent models for developing and testing the procedures needed for studying the much

more complex human genome. Such model organisms include bacteria, yeast, fungi,

worms, flies and mice, each teaching us different aspects of human biology. For

example, the study of cancer development has flourished by studying mouse models, and
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has lead to medical application in humans. Mutant strains can be isolated containing

specific defects in genes that lead to disease phenotypes. Controlled crosses can be used

to restore lost functions or inhibit genes at particular stages of development and study

their effects on the organism. The shorter the generation time of a model organism, the

easier it is to perform multiple crosses.

The yeast Saccharomyces cerevisiae in

particular provides a powerful genetic system

with the availability of a wide array of tools such

as gene replacement, plasmids, deletion strains,

two-hybrid systems. Yeast is also amenable to

biochemical methods, such as the purification and

characterization of protein complexes. Because of
Figure 0.2. The yeast Saccharomyces

these experimental advantages, yeast has been the cerevisiae undergoing cell division.

system of choice to study the most basic cellular

functions common to eukaryotes such as cell division, cell structure, energy production,

cell growth, cell death, cell cycle, gene regulation, transcription initiation, cell signaling,

and other basic cell processes. More recently, yeast has become the organism of choice

for the development and testing of modem technologies for genome-wide experimental

studies. The complete parts-list of all genes has radically changed the face of biological

research. If a particular phenotype is due to the function of a single protein, it is

necessarily encoded by one of these few thousand genes. Additionally, the relatively

small number of genes (-6000) allows the simultaneous observation of the complete

genome for mRNA expression, transcription factor binding, or protein-protein

interactions. The public sharing of yeast strains, materials, and genome-wide

experimental data has provided a global view of the dynamic yeast genome unmatched in

any other organism.

Yeast also presents an ideal organism for developing computational methods for

genome-wide comparative analysis. It is the most well-studied eukaryote, and the vast

functional knowledge allows the immediate validation of our findings against previous

work. Additionally, the strong experimental system allows the experimental follow-up of

biological hypotheses raised in the comparative work. The small genome size (250 times
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smaller than human) allows the sequencing of multiple yeast species at an affordable

cost. Additionally, the small number of repetitive elements allows for easy whole-

genome-shotgun assembly (see next section). For all these considerations, we decided to

work on yeast.

0.6. Genome sequencing and assembly

We sequenced and assembled the complete genomes of S. paradoxus, S. mikatae

and S. bayanus, three yeast species that are close relatives of S. cerevisiae, within the

Saccharomyces sensu stricto group29 . Their divergence times from the S. cerevisiae

lineage are approximately 5, 10 and 20 million years (based on sequence divergence of

ribosomal DNA sequence).

Like S. cerevisiae, they all 20Myr S.cerevisiae
S.paradoxushave 16 chromosomes and 150Myr

their genomes contain S.mikatae

about 12 million bases. S.bayanus

These species were chosen

based on their evolutionary Kluyveromyces

relationships (closely S.pombe
enough related that

functional elements be Figure 0.3: Phylogenetic tree of analyzed species. The newly

conserved, and distant sequenced species are shown in bold. Star denotes inferred

genome-wide duplication of the yeast genome. Divergence times
enough that non-functional are approximate and based on ribosomal DNA sequence divergence
bases have had enough

evolutionary time to diverge).

Reading the order of the nucleotides in any one segment of DNA relies on a

technology developed by Sanger in 1977 that uses the central agent of DNA replication,

DNA polymerase. This protein complex recognizes the transition from double-stranded

DNA to single-stranded DNA in an incomplete helix, and extends the shorter strand in

the 5' to 3' direction. By introducing a small fraction of faulty nucleotides that cause an

early termination of the extension reaction, and subsequently comparing the lengths of

resulting fragments in each of four reactions, this method infers the sequence of a DNA

fragment. The extension reaction can be initiated at any unique segment of DNA by
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introducing a complementary segment called a primer. This primer binds single-stranded

DNA by complementarity, creating the double-strand to single-strand transition

recognized by DNA polymerase. Unfortunately, since the Sanger method works by

weight separation between fragments of different lengths, it can only determine the

sequence of small fragments (currently around 800 nucleotides). The weight difference

between fragments of 800 nucleotides and fragments of 801 nucleotides is too small to be

detected reliably.

To obtain the sequence of longer stretches of DNA, two methods are possible.

One is to synthesize a new primer at the end of 800 nucleotides and use it to sequence the

subsequent 800 nucleotides (and so on). Unfortunately, synthesizing new primers is

expensive and time-consuming since the primer to be used is not known until the

sequence is obtained, and this method is rarely used. An alternative method is to first

make many copies of the longer stretch of DNA and randomly break them into small

fragments, and then sequence 800 nucleotide reads from each of these fragments and re-

piece them together computationally (each of the fragments is inserted to a common

vector whose sequence is known, hence the same primer can be used to sequence the end

of each of these fragments). This alternative method is called shotgun sequencing, in

reference to the random breaking of the longer fragment as if struck by a shotgun.

Sequence reads can also be obtained from both ends of a fragment, providing linking

information between paired reads. This method is called paired-end shotgun

sequencing. The shotgun fragments are typically selected to be of a particular size,

providing additional information about the genomic distance between paired sequence

reads.

Shotgun sequencing depends heavily on the computational ability to correctly

assemble the resulting fragments of sequence. Fragment assembly searches for

sequences common between two sequence fragments (also called reads) and unique

otherwise, in order to join them into a longer sequence. This is made harder due to

sequencing errors that lead to sequence differences between reads that really come from

the same part of the genome, as well as repetitive sequences within genomes that lead to

identical sequences between reads that come from different parts of the genome. Modern

assembly programs produce stretches of continuous sequence called contigs, which are
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linked into supercontigs or scaffolds, when their relative order, orientation, and estimated

spacing is given by the pairing of reads (Figure 0.4). To assemble complete genomes,

two methods are currently in use. Whole-genome shotgun (WGS) randomly breaks the

complete genome and assembles all fragments computationally. Clone-based methods

first partition the genome into large fragments (clones) and then use shotgun sequencing

for each of the fragments. Clone-based methods are more expensive but more reliable.

WGS methods are cheaper but rely more heavily on the ability of subsequent

computational assembly programs. Hybrids between WGS and clone-based methods are

used nowadays in major sequencing projects. It is also common to use WGS with links

of multiple sizes to provide both short-range and long-range connectivity information.

link link
read. :: read ~ :_ _read

-- - --- 7X

-contig contig contig
scaffold

Figure 0.4 Genome Assembly. Overlapping sequence reads are grouped into blocks of continuous

sequence (contigs). The pairing of forward and reverse reads provides links across neighboring

contigs, grouping them in supercontigs or scaffolds. Each base in the genome is observed on average

in 7 overlapping reads.
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CHAPTER 1: GENOME CORRESPONDENCE

1.1. Introduction

The first issue in comparative genomics is determining the correct correspondence

of chromosomal segments and functional elements across the species compared. This

involves the recognition of orthologous segments of DNA that descend from the same

region in the common ancestor of the species compared. However, it is equally important

to recognize which segments have undergone duplication events, and which segments

were lost since the divergence of the species. By accounting for duplication and loss

events, we ensure that we are comparing orthologous segments.

We decided to use genes as discrete genomic anchors in order to align and

compare the species. We constructed a bipartite graph connecting annotated protein-

coding genes in S. cerevisiae to predicted protein-coding genes in each of the other

species based on sequence similarity at the amino-acid level. This bipartite graph should

contain the orthologous matches but also contains spurious matches due to shared

domains between proteins of similar functions, and gene duplication events that precede

the divergence of the species. Determining which matches represent true orthologs and

resolving the correspondence of genes across the four species will be the topic of this

chapter.

We present an algorithm for comparative annotation that has a number of

attractive features. It uses a simple and intuitive graph theoretic framework that makes it

easy to incorporate additional heuristics or knowledge about the genes at hand. It

represents matches between sets of genes instead of only one-to-one matches, thus

dealing with duplication and loss events in a very straightforward way. It uses the

chromosomal positions of the compared genes to detect stretches of conserved gene order

and uses these to resolve additional orthologous matches. It accounts for all genes

compared, resolving unambiguous matches instead of simply best matches, thus ensuring

that all I-to-I genes are true orthologs. It works at a wide range of evolutionary

distances, and can cope with unfinished genomes containing gaps even within genes.
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1.2. Establishing gene correspondence

Previously described algorithms for comparing gene sets have been widely used

for various purposes, but they are not applicable to the problem at hand.

Best Bidirectional Hits (BBH) 30 ,3 looks for gene pairs that are best matches of

each other and marks them as orthologs. In the case of a recent gene duplication

however, only one of the duplicated genes will be marked as the ortholog without

signaling the presence of additional homologs. Thus, no guarantees are given that 1-to-I

matches will represent orthologous relations and incorrect matches may be established.

Clusters of Orthologous Genes (COG) goes a step further and matches groups

of genes to groups of genes. Unfortunately, the grouping is too coarse, and clusters of

orthologous genes typically correspond to gene families that may have expanded before

the divergence of the species compared. This inability to distinguish recent duplication

events from more ancient duplication events makes it inapplicable in this case, since the

genome of S. cerevisiae contains hundreds of gene pairs that were anciently duplicated

before the divergence of the species at hand . COGs would not distinguish between the

two copies of anciently duplicated genes, and many orthologous matches would not be

detected (Koonin, personal communication).

We introduce the concept of a Best Unambiguous Subset (BUS), namely a group

of genes such that all best matches of any gene within the set are contained within the set,

and no best match of a gene outside the set is contained within the set. A BUS builds on

both BBHs and COGs to resolve the correspondence of genes across the species. The

algorithm, at its core, represents the best match of every gene as a set of genes instead of

a single best hit, which makes it more robust to slight differences in sequence similarity.

A BUS can be isolated from the remainder of the bipartite gene correspondence graph

while preserving all potentially orthologous matches. BUS also allows a recursive

application grouping the genes into progressively smaller subsets and retaining

ambiguities until later in the pipeline when more information becomes available. Such

information includes the conserved gene order (synteny) between consecutive

orthologous genes that allows the resolving of additional neighboring genes.
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1.3. Overview of the algorithm

We formulated the problem of genome-wide gene correspondence in a graph-

theoretic framework. We represented the similarities between the genes as a bipartite

graph connecting genes between two species. We weighted every edge connecting two

genes by the amino acid sequence similarity between the two genes, and the overall

length of the match.

We separated this graph into progressively smaller subgraphs until the only

remaining matches connected true orthologs (Figure 1.1). To achieve this separation, we

eliminated edges that are sub-optimal in a series of steps. As a pre-processing step, we

eliminated all edges that are less than 80% of the maximum-weight edge both in amino

acid identity and in length. Based on the unambiguous matches that resulted from this

step, we built blocks of conserved gene order (synteny) when neighboring genes in one

species had one-to-one matches to neighboring genes in the other species; we used these

blocks of conserved synteny to resolve additional ambiguities by preferentially keeping

matches within synteny blocks. We finally searched for subsets of genes that are locally

optimal, such that all best matches of genes within the group are contained within the

group, and no genes outside the group have matches within the group. These best

unambiguous subsets (BUS) ensure that the bipartite graph is maximally separable, while

maintaining all possibly orthologous

relationships.

When no further separation was

possible, we returned the connected

components of the final graph. These

contain the one-to-one orthologous pairs

resolved as well as sets of genes whose

correspondence remained ambiguous in

a small number of homology groups.

Figure 1.1. Overview of graph separation.

A1

B 2

C 3

A 1

B 2

C 3

A 1

B 2

C 3

A2

B 2

C 3

We construct a bipartite graph based on the blast hits. We consider both forward and reverse matches for near-

optimality based on synteny and sequence similarity. Sub-optimal matches are progressively eliminated simplifying

the graph. We return the connected components of the undirected simplified graph.
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1.4. Automatic annotation and graph construction

In this section, we describe the construction of the weighted bipartite graph G,

representing the gene correspondence across the species compared. We started with the

genomic sequence of the species and the annotation of S. cerevisiae, namely the start and

stop coordinates of genes. We then predicted protein-coding genes for each newly

sequenced genome. Finally we connected across each pair of species the genes that

shared amino-acid sequence similarity.

The input to the algorithm is based on the complete genome for each species

compared. For S. cerevisiae, we used the public sequence available from the

Saccharomyces Genome Database (SGD) at genome-www.stanford.edu/Saccharomyces.

SGD posts sixteen uninterrupted

sequences, one for each chromosome. S. cerevisiae S. bayanus
The sequence was obtained by an 0 tholog
international sequencing consortium and

published in 1996. It was completed by

a clone-based sequencing approach and

directed sequence finishing to close all

gaps. Subsequent to the publication,

updates to the original sequence have

been incorporated in SGD based on

resequencing of regions studied in labs

around the world. lss

The genome sequence of S.

paradoxus, S. mikatae and S. bayanus

was obtained at the MIT/Whitehead

Institute Center for Genome Research.

We used a whole-genome shotgun

sequencing approach with paired-end

sequence reads of 4kb plasmid clones, Figure 1.2. Bipartite Graph Construction.
with lab protocols as described at www- Annotated ORFs (vertical block arrows) are

genome.wi.mit.edu. We used ~7-fold connected based on sequence similarity.
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redundant coverage, namely every nucleotide in the genome was contained on average in

at least 7 different reads. The information was then assembled with the Arachne

computer program35,36 into a draft sequence for each genome. The assembly contains

contigs, namely continuous blocks of uninterrupted sequence, and scaffolds or

supercontigs, namely uninterrupted blocks of linked contigs for which the relative order

and orientation is known. This order and orientation is given by the pairing of reads that

originated from the ends of the same 4kb clone. The draft genome sequence of each

species has long-range continuity (more than half of the nucleotides are in scaffolds of

length 230-500 kb, as compared to 942 kb for the finished sequence of S. cerevisiae),

relatively short sequence gaps (0.6-0.8 kb, which is small compared to a typical gene),

and contains the vast majority of the genome (-95%).

Once the genome sequences are available, we determine the set of protein-coding

genes for each species. For S. cerevisiae, we used the public gene catalogue at SGD. It

was constructed by including all predicted protein coding genes of at least 100 AA that

do not overlap longer genes by more than 50% of their length. It was subsequently

updated to include additional short genes supported by experimental evidence and to

reflect changes in the underlying sequence when resequencing revealed errors. For the

three newly sequenced species, we predicted all uninterrupted genes starting with a

methionine (start codon ATG) and containing at least 50 amino acids.

We then constructed the bipartite graph connecting all predicted protein coding

genes that share amino acid sequence similarities across any two species (Figure 1.2).

For this purpose, we first used protein BLAST 37 to find all protein hits between the two

protein sets (we used WU-BLAST BlastP with parameters W=4 for the hit size in amino

acids, hitdist=60 for the distance between two hits and E=10-9 for the significance of the

matches reported). Since the similarity between query protein x in one genome and

subject protein y in another genome is sometimes split in multiple blast hits, we grouped

all blast hits between x and y into a single match, weighted by the average amino acid

percent identity across all hits between x and y and by the total protein length aligned in

blast hits. These matches form the edges of the bipartite graph G, described in the

following section.
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1.5. Initial pruning of sub-optimal matches

Let G be a weighted bipartite graph describing the similarities between two sets

of genes X and Y in the two species compared (Figure 1.1, top left panel). Every edge

e=(x,y) in E that connects nodes x e X and y e Y was weighted by the total number of

amino acid similarities in BLAST hits between genes x and y. When multiple BLAST

hits connected x to y, we summed the non-overlapping portions of these hits to obtain the

total weight of the corresponding edge. We constructed graph M as the directed version

of G by replacing every undirected edge e=(x,y) by two directed edges (x,y) and (y,x)

with the same weight as e in the undirected graph (Figure 1.1, top right panel). This

allowed us to rank edges incident from a node, and construct subsets of M that contain

only the top matches out of every node.

This step drastically reduced the overall graph connectivity by simply eliminating

all out-edges that are not near optimal for the node they are incident from. We defined

M80 as the subset of M containing for every node only the outgoing edges that are at

least 80% of the best outgoing edge (any not in the upper 20% of all scores). This was

mainly a preprocessing step that eliminated matches that were clearly non-optimal.

Virtually all matches eliminated at this stage were due to protein domain similarity

between distantly related proteins of the same super-family or proteins of similar function

but whose separation well-precedes the divergence of the species. Selecting a match

threshold relative to the best edge ensured that the algorithm performs at a range of

evolutionary distances. After each stage, we separated the resulting subgraph into

connected components of the undirected graph (Figure 1.1, bottom right panel).

1.6. Blocks of conserved synteny

The initial pruning step created numerous two-cycle subgraphs (unambiguous

one-to-one matches) between proteins that do not have closely related paralogs. We used

these to construct blocks of conserved synteny based on the physical distance between

consecutive matched genes, and preferentially kept edges that connect additional genes

within the block of conserved gene order (Figure 1.3). Edges connecting these genes to

genes outside the blocks were then ignored, as unlikely to represent orthologous

relationships. Without imposing an ordering on the scaffolds or the chromosomes, we
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associated every gene x with a fixed position (s, start) within the assembly, and every

gene y with a fixed position (chromosome, start) within S. cerevisiae. If two one-to-one

unambiguous matches (xl, yl) and (x2, y2) were such that xl was physically near x2,

and yI was physically near y2, we constructed a synteny block B=({x1, x2},{yl,y2}).

Thereafter, for a gene x3 that was proximal to {xI, x2}, if an outgoing edge (x3, y3)

existed such that y3 was proximal to {yl,y2}, we ignored other outgoing edges (x3, y') if

y' was not proximal to {yl,y2}.

Without this step, duplicated genes in the yeast species compared remained in

two-by-two homology groups, especially for the large number of ribosomal genes that are

nearly identical to one another. We found this step to play a greater role as evolutionary

distances between the species compared became larger, and sequence similarity was no

longer sufficient to resolve all the ambiguities. We only considered synteny blocks that

had a minimum of three genes before using them for resolving ambiguities, to prevent

being misled by rearrangements of isolated genes. We set the maximum distance d for

considering two neighboring genes as proximal to 20kb, which corresponds to roughly 10

genes. This parameter should match the estimated density of syntenic anchors. If many

genomic rearrangements have occurred since the separation of the species, or if the

scaffolds of the assembly are short, the syntenic segments will be shorter and setting d to

larger values might hurt the performance. On the other hand if the number of

unambiguous genes is too small at the beginning of this step, the genes used as anchors

will be sparse, and no synteny blocks will be possible for small values of d.

R2D 3W YCR4C BR197C BR195C
YGL 1C ( BR199W YPR178V YPLU 7C YEL b6W
YPR019WV YORO99W ( BR198C) Y'DL 195WP
YBL023C YBR205VW YM116C YMR13 1C
YLR274W1 YNLO29C YPL151C
YELO32W YKR061W Y LR222C

Y I L005C

Figure 1.3. The use of synteny. In blocks of conserved gene order (synteny), we preferentially keep

those matches that preserve the order of orthologous genes.
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1.7. Best Unambiguous Subsets

We finally separated out subgraphs that were connected to the remaining edges in

the graph by solely non-maximal edges. These subgraphs are such that the best match of

any node within the subset is contained within the subset, and no node outside the subset

has its best match within the subset. These two properties ensure that the subsets are both

best and unambiguous.

We defined a Best Unambiguous Subset (BUS) of the nodes of XuS, to be a

subset S of genes, such that Vx: xeS <-> best(x) c S, where best(x) are the nodes incident

to the maximum weight edges from x. We then constructed M100, following the

notation above, namely the subset of M that contains only best matches out of a node.

Note that multiple best matches were possible based on our definition. To construct a

BUS, we started with the subset of nodes in any cycle in M100. We augmented the

subset by following forward and reverse best edges, that is including additional nodes if

their best match was within the subset, or if they were the best match of a node in the

subset. This ensured that separating a subset did not leave any node orphan, and did not

remove the strictly best match of any node. When no additional nodes needed to be

added, the BUS condition was met.

Figure 1.4 shows a toy

example of a similarity matrix.

Genes A, B, and C in one genome

are connected in a complete bipartite

graph to genes 1, 2 and 3 in another

genome (ignoring for now synteny

information). The sequence simila-

rity between each pair is given in the

matrix, and corresponds to the edge

weight connecting the two genes in

the bipartite graph. The set (A, 1,2)

forms a BUS, since the best matches

of A, 1, and 2 are all within the set,

A 1 A B C

1 80 35 40

B 2 2 60 30 35

C 3 3 40 60 80

A
A1

1 80

2 60
B 2 _

B C

C 3 3 60 80

Figure 1.4. Best Unambiguous Subsets (BUS). A BUS is a set

of genes that can be isolated from a homology group while

preserving all potentially orthologous matches. Given the

similarity matrix above and no synteny information, two such

sets are (A,1,2) and (B,C,3).
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and none of them represents the best match of a gene outside the set. Hence, the edges

connecting (A,1,2) can be isolated as a subgraph without removing any orthologous

relationships, and edges (B,1), (B,2), (C,1), (C,2), (A,3) can be ignored as non-

orthologous. Similarly (B,C,3) forms a BUS. The resulting bipartite graph is shown. A

BUS can be alternatively defined as a connected component of the undirected version of

M 100 (Figure 1.1, bottom panels).

This part of the algorithm allowed us to resolve the remaining orthologs, mostly

due to subtelomeric gene family expansions, small duplications, and other genes that did

not benefit from synteny information. In genomes with many rearrangements, or

assemblies with low sequence coverage, which do not allow long-range synteny to be

established, this part of the algorithm will play a crucial role.

A

C

B

D

Figure 1.5. Performance of the algorithm. Dotplot representation of the bipartite graph. The 16

chromosomes of S. cerevisiae are stacked end-to-end along the y-axis, and the scaffolds of S. paradoxus

are shown along the x-axis. Every point (x,y) represents an edge between S. paradoxus gene y and S.

cerevisiae gene x. A. Initial bipartite graph. B. Graph resulting from initial disambiguation step. C.

Graph resulting from use of BUS and synteny information. D. Unambiguous matches in graph C.
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1.8. Performance of the algorithm

We applied this algorithm to automatically annotate the assemblies of the three

species of yeast. Our Python implementation terminated within minutes for any of the

pairwise comparisons. We successfully resolved the graph of sequence similarities

between the four species, and found important biological implications in the resulting

graph structure.

Figure 1.5 illustrates the performance of the algorithm for the 6235 annotated

ORFs in S. cerevisiae and all predicted ORFs in S. paradoxus. The graph is initially very

dense (panel A), the vast majority of edges representing non-orthologous matches, mostly

due to protein domain similarities, ancient duplications that precede the time of the

common ancestor of the species compared, and transposable elements. After applying

the initial pruning step, many of the spurious matches are eliminated (panel B). The

presence of unambiguous matches allows us to build blocks of conserved gene order, and

use these to resolve additional matches using the BUS algorithm (panel C). The

unambiguous 1-to-I matches are mostly syntenic for S. paradoxus, thus ensuring that we

are comparing orthologous regions.

More than 90% of genes have clear one-to-one orthologous matches in each

species, providing a dense set of landmarks (average spacing -2 kb) to define blocks of

conserved synteny covering essentially the entire genome. Not surprisingly, transposon

proteins formed the largest homology groups. The remaining matches were isolated in

small subgraphs. These contain expanding gene families that are often found in rapidly

recombining regions near the telomeres, and genes involved in environmental adaptation,

such as sugar transport and cell surface adhesion29 . For additional details see section 6.2.

We have additionally experimented running only BUS without the original

pruning and synteny steps. More than 80% of ambiguities were resolved, and the

remaining matches corresponded to duplicated ribosomal proteins and other gene pairs

that are virtually unchanged since their duplication. The algorithm was slower, due to the

large initial connectivity of the graph, but a large overall separation was obtained. Figure

1.6 compares the dotplot of S. paradoxus and S.cerevisiae with and without the use of

synteny. Every point represents a match, the x coordinate denoting the position in the

S.paradoxus assembly, and the y coordinate denoting the position in the S.cerevisiae
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Figure 1.6. The effect of using synteny. Blocks of conserved gene order (blue squares) help resolve additional

ambiguities. These are mostly due to pairs of anciently duplicated yeast genes.

genome, with all chromosomes put end-to-end. Lighter dots represent homology

containing more than 15 genes (typically transposable elements) and circles represent

smaller homology groups (rapidly changing protein families that are often found near the

telomeres). The darker dots represent unambiguous 1-to-I matches, and the boxes

represent synteny blocks.

This algorithm has also been applied to species at much larger evolutionary

distances, with very successful results (Kellis and Lander, manuscript in preparation).

Despite hundreds of rearrangements and duplicated genes separating S.cerevisiae and

K.yarowii, it successfully uncovered the correct gene correspondence between the two

species that are more than 100 million years apart.

Additionally, the algorithm works well with unfinished genomes. By working

with sets of genes instead of one-to-one matches, this algorithm correctly groups in a

single orthologous set all portions of genes that are interrupted by sequence gaps and split

in two or multiple contigs. A best bi-directional hit would match only the longest portion

and leave part of a gene unmatched. Finally, since synteny blocks are only built on one-

to-one unambiguous matches, the algorithm is robust to sequence contamination. A

contaminating contig will have no unambiguous matches (since all features will also be

present in genuine contigs from the species), and hence will never be used to build a

synteny block. This has allowed the true orthologs to be determined and the

contaminating sequences to be marked as paralogs.
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This algorithm provides a good solution to determining genome correspondence,

works well at a range of evolutionary distances, and is robust to sequencing artifacts of

unfinished genomes.

1.9. Conclusion.

We have unambiguously resolved the one-to-one correspondence of more than

90% of S. cerevisiae genes. This provides us with a unique dataset whereby we can align

and compare the evolutionary pressure of nearly every region in the complete yeast

genome across four closely related relatives. In presence of gene duplication, some of the

evolutionary constraints that a region is under are relieved, and uniform models of

evolution would not capture the underlying selection for these sites. By ensuring that the

regions compared are orthologous, we can make uniform assumptions about the rate of

change of different regions, and apply statistical models for the significance of strong or

weak conservation.

In this thesis, we will use the multiple alignments of the four species to discover

protein-coding genes based on the pressure to conserve the reading frame of the amino

acid translation (Chapter 2). We will also search for unusually strong conservation in

non-coding regions to discover recurring patterns that constitute regulatory motifs

(Chapter 3). We will assign functions to these motifs (Chapter 4) and discover their

combinatorial interactions (Chapter 5) based on their conserved instances. Finally, we

will focus on the differences between the species to discover regions and mechanisms of

rapid evolutionary change (Chapter 6).
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CHAPTER 2: GENE IDENTIFICATION

2.1. Introduction

The genome of a species encodes genes and other functional elements,

interspersed with non-functional nucleotides in a single uninterrupted string of DNA.

Recognizing protein-coding genes relies on finding stretches of nucleotides free of stop

codons (called Open Reading Frames, or ORFs) that are too long to have likely occurred

by chance. Since stop codons occur at a frequency of roughly I in 20 in random

sequence, ORFs of at least 60 amino acids will occur frequently by chance (5% under a

simple Poisson model) and even ORFs of 150 amino acids will appear by chance in a

large genome (0.05%). This poses a huge challenge for higher eukaryotes in which genes

are typically broken into many, small exons (on average 125 nucleotides long for internal

exons in mammals 27).

The basic problem is distinguishing real genes -- those ORFs encoding a

translated protein product - from spurious ORFs - the remaining ORFs whose presence

is simply due to chance. The current public catalogue of yeast genes lists 6062 predicted

ORFs that could theoretically encode proteins of at least 100 amino acids. Only two-

thirds of these have been experimentally validated (known), and the remaining ~2000

ORFs are currently annotated as hypothetical. The total number of real protein-coding

genes has been a subject of considerable debate, with estimates ranging from 4,800 to

6,400 genes (in mammalian genomes, estimates have ranged from 28,000 to more than

120,000 genes).

In this chapter, we use the comparative information to recognize real genes based

on their conservation across evolutionary time. With the availability of genome-wide

alignments across the four species, we first examined the different ways by which

sequences change in known genes and in intergenic regions. The alignments of known

genes revealed a clear pressure to preserve protein-coding potential. We constructed a

computational test for reading frame conservation (RFC) and used it to revisit the

annotation of yeast. We showed that more than 500 previously annotated ORFs are not

meaningful and discovered 43 novel ORFs that were previously overlooked. We

additionally refined the gene structure of hundreds of genes, including translation start,
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stop, and exon boundaries. We show that our method has high sensitivity and specificity,
and suggest changes that affect nearly 15% of yeast genes.

2.2. Different conservation of genes and intergenic regions

We examined the different types of conservation in genes and intergenic regions.

We used the 1-to-I orthologous anchors (see Chapter 1) to construct a nucleotide-level

alignment of the genomes. The strong conservation of local gene order and spacing

(Figure 2.1) allowed us to construct genome-wide multiple alignments. We aligned each

gene together with its flanking intergenic regions using CLUSTALW 38 for the multiple

alignments across the four species. When sequence gaps were present in one or more

species, we constructed the alignment in multiple steps. We first aligned the gapless

species creating a base alignment. Then we aligned each portion of a partially covered

ortholog onto the base alignment, and constructed a consensus for each species based on

the individually aligned portions. We marked missing sequence between contigs by a dot

and disagreeing overlapping contigs by N. Finally, we constructed a multiple alignment

of the four species by merging the piece-wise alignments. With sequence alignments at

millions of positions across the four species, it is possible to obtain a precise estimate of

the rate of evolutionary change, including substitutions and insertion-deletions (indels), in

1315 20 24 33
1 2 3 4 56 7 & 9 10 11 12 14 16 17 18 19 21 22 23 252627 23 29 3031 323436 1 YGL140C 19 YGL122C (NAB2)

S. cMwrsae IM 1"t * 10 2 YGL139W 20 YGL121C
3 YGL138C 21 YGL120C (PRP43)
4 YGL137W(SEC27) 22 YGL119W(ABC1)
5 YGL136C 23 tW(CCA)G1
6 YGL135W (RPL18) 24 YGL118CS. pradoxus }7 YGL1 34W (PCL) 25 YGL117W
8 YGL133W 26 YGL1 16W (CDC20)
9 YGL132W 27 YGL115W (SNF4)
10 YGL131C 28Y114
11 YGL130W(CEGI) 28 YGL114W

S m~kt I~h1H44 1U140 11150140 12 YGL129C YOI3
13 YGL128C 30 kGL112C(TAF6)

14 YGL127C(SOHI) 31 YGL111W
15 YGLI26W (SCS3) 32 YGL1 10C
16 YGL125W (MET13) 33 YGL109W

s n I 4117 YGL124C 34 YGL108C
HIIDn1tU4E 18 YGL123W(RPS2) 35 YGL1O07C

Figure 2.1. Strong conservation of local gene order and spacing allows genome-wide multiple

alignments. A 50kb segment of S. cerevisiae chromosome VII aligned with orthologous contigs from each

of the other three species. Predicted ORFs are shown as arrows pointing in the direction of transcription.

Orthologous ORFs are connected by dotted lines, and colored by the type of correspondence: red for 1-to-I

matches, blue for 1-to-2 matches and white for unmatched ORFs. Sequence gaps are indicated by vertical

lines at ends of contigs, with estimated size of gap shown by the length of the hook.
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the tree connecting the species. We counted transitions, transversions, insertions and

deletions within these alignments and used these to estimate the rate of evolutionary

change between the species. We counted the rate of synonymous and non-synonymous

substitutions for every protein coding gene to find evidence of positive selection. The

detailed results will be described in chapter 6.

We compared the rate of sequence change at aligned sites across the four species

in intergenic and genic (protein-coding) regions (Figure 2.2). We found radically

different types of conservation. Intergenic regions typically showed short stretches

between 8 and 10 bases of near-perfect conservation, surrounded by non-conserved

bases, rich in isolated gaps. Protein-coding genes on the other hand were much more

uniform in their conservation, and typically differed in the largely-degenerate third-codon

position. The proportion of sites corresponding to a different nucleotide in at least one of

the three species is 58% in intergenic regions but only 30% in genic regions - a

Gene Intergenic

Conserved 0ii Mutation II] Gap U Frameshift

Figure 2.2. Patterns of change in genes and intergenic regions. Schematic representation of two multiple

sequence alignments in ORF YMR0l7W and neighboring intergenic region. Aligned nucleotides across the

four species are shown as stacked squares, colored by their conservation: green for conserved positions,

yellow otherwise. Alignment gaps are shown in white and frame-shifting insertions (length not a multiple

of 3) are shown in red. In addition to the abundance of frame-shift indels shown here, numerous in-frame

stop codons are observed in the other three species.
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difference of-2-fold. The difference becomes much greater when one considers the

gapped positions in alignments, representing insertion and deletion events (indels). The

proportion of indels is 14% in intergenic regions, but only 1.3% in genic regions. The

contrast is even sharper for indels whose length is not a multiple of three. These would

disrupt the reading frame of a functional protein-coding gene, and are detrimental when

they occur in real genes, unless they are compensated by a nearby indel that restores the

reading frame. Frame-shifting gaps are found in 10.2% of aligned positions in intergenic

regions, but only in 0.14% of positions in genic regions, a 75-fold strong separation. We

used these alignment properties to recognize real genes.

2.3. Reading Frame Conservation Test

We developed a Reading Frame Conservation (RFC) test to classify each ORF in

S. cerevisiae as biologically meaningful or not, based on the proportion of the ORF over

which reading frame is locally conserved in each of the other three species. Each species

with an orthologous alignment cast a vote for accepting or rejecting the ORF, and the

votes were tallied to reach a decision for that ORF.

We evaluated the percent of nucleotides that are in the same frame within

overlapping windows of the alignment. For every such window, we labeled each

nucleotide of the first sequence by its position within a codon, as 1, 2 or 3 in order,

starting at codon offset 1. We similarly labeled the nucleotides of the second sequence,

but once for every start offset (1, 2, or 3). We then counted the percentage of gapless

positions in the alignment that contained the same label in both aligned species, and

selected the maximum percentage found in each of the three offsets of the second

sequence (Figure 2.3). The final RFC value for the ORF was calculated by averaging the

percentages obtained at overlapping windows of 100 nucleotides starting every 50

Scer CTTCTAGATTTTCATCTT-GTCGATGTTCAAACAACGTGTTA-----TCAGAGAAACAGCTCTATGAGAAATCAGCTGATG

Scer_fi 123123123 23123121-I231231231231231231231 ----- 12312312312312 1 3123123123123121

Spar ATTCATA- CTCATCCT C CAATGTTCAAACAGCGTGTTACAGAC CAGAGAAACAGCTT -rGAGAAGTCAGCCGGTC RFC

Spar-fl 1231231201231231 31231231231231231231231243123131231231231231 -01231231231231231I 43-

Spar f2 23123123-42312312112312312312312312312312312312312312312312312 - 231231231231231 34 i
Spar f3 31231231-231231231231231231231231231231231231231231231231231231-D312312312312312 * 23-

Figure 2.3. Reading Frame Conservation Test. Gaps in this alignment between S. cerevisiae and S.

paradoxus change the correspondence of reading frame.
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nucleotides. For overlapping ORFs in the S. cerevisiae genome (n = 948), the RFC was

calculated only for the portion unique to each overlapping ORE. For spliced genes (n =

240), the RFC was calculated only on the largest exon.

We found that the distribution of frame conservation within each species is

bimodal, and we chose a simple cutoff for each species, 80% for S.paradoxus, 75% for

S.mikatae and 70% for S.bayanus. If the RFC of the best hit was above the cutoff, a

species voted for keeping the ORF tested. If the RFC was below the cutoff and the hit

was trusted as orthologous, the species voted for rejecting the tested ORE. Finally, if no

orthologous hit could be found due to coverage, a species abstained from voting. We

calculated a score between -3 and +3 for every ORF based on the number of species that

accepted it (+1) and the number of species that rejected it (-1). We kept all ORFs with a

score of I or greater, and rejected all ORIs with a score of-1 or smaller. We manually

inspected the remaining ORFs.

We also applied this test to 3966 annotated ORFs with associated gene names

(Table 2.4). These have been studied and named in at least one peer-reviewed

publication, and are likely to be represent real genes. Only 15 of these (0.38%) were

rejected (KRE20, KRE21, KRE23, KRE24, VPS61, VPS65, VPS69, BUD19, FYVJ, FYV2,

FYV12, API2, A UA1, ICS3, UTR5, YIM2). We inspected these manually and concluded

that all were indeed likely to be spurious. Most lack experimental evidence. For the

remainder, reported phenotypes associated with deletion of the ORF seems likely to be

explained by fact that the ORF overlaps the promoters of other known genes.

Accept Reiect

-4000 named genes 99.6% 0.1%

-300 intergenic regions 1% 99%

2000 Hypothetical genes 1500

Table 2.4. Testing all annotated protein-coding genes. The RFC test showed strong sensitivity and

specificity, accepting virtually all experimentally verified genes (named genes) and rejecting all

intergenic regions tested. We further applied this test to all the hypothetical genes and showed that

more than 500 currently annotated genes are not real.
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To investigate the power of the approach to reject spurious ORFs, we also applied

it to a set of controls sequences consisting of 340 intergenic sequences in S. cerevisiae

with lengths similar to the ORFs tested (Table 2.4). About 96% were rejected as having

conservation properties incompatible with a biologically meaningful ORF, showing that

the test has high sensitivity. Of the remaining 4% that were not rejected, close inspection

shows that three-quarters appear to contain true ORFs. Some define short ORFs with

conserved start and stop codons in all four species and others extend S. cerevisiae ORFs

in the 5'- or 3'-direction in each of the other three species. Thus, at most 1% of true

intergenic regions failed to be rejected by the RFC test.

The conservation-based gene identification algorithm we proposed has thus high

sensitivity and specificity. In the next section, we apply it systematically for de-novo

gene identification in S. cerevisiae.

2.4. Results: Hundreds of previously annotated genes are not real

When the yeast genome sequence was completed23 , 6275 ORFs were identified in

the nuclear genome that could theoretically encode proteins encoding at least 100 amino

acids and that do not overlap a longer ORF by more than half of their length (Figure 2.5).

SGD has since updated the catalog based on complete resequencing and re-annotation of

chromosome III, re-analysis of other chromosomes and reports in the scientific literature.

250
SD ubious

200 M Verified
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M 150
0
.4-
0

100
E
z

50

ORF length (AA)
Figure 2.5. Rejected genes are mainly short. These are likely to be occurring by chance alone

given the nucleotide composition of the yeast genome. The rejected genes show no evidence of

function, such as mRNA expression, protein function, genetically or bio-chemically.
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This resulted in a current version (as of May 2002) with 6062 ORFs > 100 amino acids,

consisting of 3966 'named' genes (described in at least one publication) and 2096

'uncharacterized' ORFs. SGD also includes a small collection of ORFs < 100 amino

acids (see below).

We sought to apply the RFC test to all 6062 ORFs in SGD. A total of 117 could

not be analyzed because they were almost completely contained within an overlapping

ORF (99 cases, with average non-overlapping portion = 12 bp) or because an orthologous

region could not be unambiguously defined in any of the species (18 cases). Of the 5945

ORFs tested, the analysis strongly validated 5550 ORFs. The vote was unanimous in

5458 (-98%) of cases. In the remaining cases, a valid gene appears to have degenerated

in one of the four species. A total of 367 ORFs were strongly rejected. These rejections

were unanimous in 63% of cases. In most of the remaining cases, S. paradoxus was too

closely related to S. cerevisiae to have accumulated enough frameshifts to allow

definitive rejection. The analysis deadlocked (one confirmation, one rejection, one

abstention) for 28 ORFs (0.5%). We inspected these, together with the 117 cases that

could not be analyzed due to overlaps and found convincing evidence (based on

conservation of amino acids, start and stop codons, and presence of indels), that 20 are

valid protein coding genes and 105 are spurious. We were unable to reach ajudgment in

the remaining 20 cases. Overall, a total of 5570 ORFs were accepted, 472 ORFs were

rejected, and 20 remain ambiguous.

The vast majority of the rejections (96%) involve uncharacterized ORFs (for an

example see Figure 2.6). SGD reports no compelling biological evidence (such as

ATG

i III i

TA

Figure 2.6. Example of a rejected gene. DNA sequence that was previously though to encode a gene

shows an accumulation of frame-shifting insertions and deletions (for color key see Figure 2.2). The

sequence in fact does not correspond to a gene, get transcribed, or produce a protein product.
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changes in mRNA expression) to suggest that these ORFs encode a true gene. Most of

these overlap another well-conserved ORF, but show many insertions and deletions in the

non-overlapping portion. The remainder tend to be small (median = 1 aa, with 93% <

150 aa) and show atypical codon usage 2 3 ,39,40 . Figure 2.6 illustrates the case of an ORF of

333 bp that is clearly biologically meaningless. The orthologous sequence in all four

species is laden with frameshifts (as well as stop codons). Only one rejected ORF,

YBR 184W, appears to represent a true gene that fails the RFC test because it is evolving

very rapidly (see section 6.6).

In summary, the Reading Frame Conservation (RFC) test allowed a major

revisiting of the yeast genome annotation. By observing the pattern of indels in the

multiple alignment of predicted ORFs, it allowed us to automatically classify them as

biologically meaningful or spurious. It reached a decision automatically in 98% of cases,

accepting 99% of named ORFs and rejecting 99% of real intergenic regions, showing

strong sensitivity and specificity. It resulted in a drastic reduction of the yeast gene

count, rejecting nearly 500 ORFs. We next use the comparative information to refine the

boundaries of ORFs.

2.5. Refining Gene Structure

Comparative genome analysis not only improves the recognition of true ORFs, it

also yields much more accurate definitions of gene structure - including translation start,

translation stop and intron boundaries. We used the comparative data to identify

sequencing errors and refine the boundaries of true genes. Previous annotation of S.

cerevisiae has defined the start of translation as the first in-frame ATG codon. However,

the actual start of translation could lie 3' to this point, and the earlier in-frame ATG may

be due to chance. Alternatively, if sequencing errors or mutations have obscured an

earlier in-frame ATG codon, the true translation start could lie 5' to this point.

Similarly, the annotated stop codon could be erroneously annotated, due to sequencing

errors. Identifying the correct gene boundaries is important for many reasons, both

experimental (for example to construct gene probes), as well as computational (for

example to search for regulatory motifs).
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We examined the multiple alignment of unambiguous ORFs to identify

discrepancies in the predicted start and stop codons across the four species. We searched

for the first in-frame ATG in each species and compared it to the annotated ATG in S.

cerevisiae. In the S. cerevisiae start was not conserved, we automatically suggested a

changed translation start if a subsequent in-frame ATG was conserved in all species and

was the first in-frame ATG in at least one species. Otherwise, we searched for a

conserved ATG 5' to that point. Similarly, we suggested changes in stop codons when a

common stop in all other species disagreed with the S. cerevisiae annotation. We

manually inspected the alignments to confirm that the suggested start and stop boundary

changes agreed with conservation boundaries. We identified merges of consecutive S.

cerevisiae ORFs, when they unambiguously matched a single ORF in at least one other

species, and when their lengths added up to the length of the matching ORF.

We identified 210 cases in which the presumed translational start in S. cerevisiae

does not correspond to the first in-frame start codon in at least two of the three other

species (Figure 2.7 panel 1). In the vast majority of these cases, inspection of the

sequence alignments provides strong evidence for an alternative conserved position for

the translational start, either 3' or 5' to the previous annotation. We observed a lower

overall conservation as well as frame-shifting indels outside the new boundaries.

Similarly, we identified 330 cases in which the presumed translational stop codon in S.

cerevisiae does not correspond to the first in-frame stop codon in at least two of the three

1 ATG ATG

2 TAA_ _

rI 1111111 4II I 44 111111 1A III I.,
F P 2.7. Tu I ENE bndr- Thartm and sM "mdAn If am mur 7"m uV- gem ae beenwa

refuned b seontecmarios hs smimesra seqenin mrrrsma . cerevisae. ua

i Nuu9M"A* INuussua -MM qwurasam 99Vuaamauiinwuau

-1 aM as -ft as as 49Msinu IENAs as1 44% As I. as MC 4T a q Nt,5 asa n in - assasua

Figure 2.7. Refining gene boundaries. The start and stop codons of more than 300 genes have been

refined based on the comparisons. These sometimes reveal sequencing errors in S. cerevisiae.
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species. In -25% of these cases, the other three species share a common stop codon and a

single base change to the S. cerevisiae sequence would result in a stop codon in the

corresponding location (Figure 2.7 panel 2). The remaining 75% of cases appear to

represent true differences in the location of the translational stop across the species. Thus,

stop codons appear to show more evolutionary variability in position than start codons.

We also developed methods for the automatic detection of frame-shifting

sequencing errors. When regions of the multiple alignment shifted from one well-

conserved reading frame to another well-conserved reading frame, we pinpointed regions

of potential sequencing errors in each of the species. A number of these were detected in

the reference sequence of S. cerevisiae. We confirmed 32 of these computational

predictions by resequencing and found that in each case the published sequence was in

error, and that the predicted erroneous nucleotide was always within a few base pairs

from the experimentally confirmed sequencing error.

We identified 32 cases where two adjacent ORFs in S. cerevisiae are joined into a

single ORF in all three other species. In every case, a single nucleotide change would

suffice to join the ORFs in S. cerevisiae (either a substitution altering a stop codon or an

indel altering the reading frame). In principle, these cases could represent errors in the

genome sequence, mutations private to the sequenced strain S288C, or substitutions fixed

in S. cerevisiae. We examined 19 cases by resequencing the relevant region in S288C.

Our results revealed an error in the published sequence in 11 cases (establishing that there

is a single ORF in S288C) and confirmed the published sequence in the remaining 7

cases. Sequencing of additional strains will be required to determine whether these

remaining cases represent differences in S288C alone or in S. cerevisiae in general.

We also found two named ORFs (FYV5 and CWH36) that pass the RFC test and

cause phenotypes when deleted, but show no significant protein similarity across the four

species. In both cases, inspection reveals that the opposite strand encodes a protein that

shows strong amino acid conservation. (The latter gene has two introns, increasing the

count of doubly spliced genes to 8.) In each case, we postulate that the protein

responsible for the reported deletion phenotype is encoded on the opposite strand.

All merges and boundary refinements suggested specific changes to the

nucleotide sequence of S. cerevisiae (except 3' changes of translation start that required
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no change). To validate our predictions, we re-sequenced the sites of predicted sequence

discrepancies. We used both forward and reverse reads in two different PCR reactions

spanning the site. We examined 4 cases in which the comparative data suggested an

earlier start codon and found, by resequencing, that all correspond to errors in the

published sequence of S288C. We examined 17 such cases and found that 15 are

explained by errors in the published sequence of S288C.

New Introns. We also examined the conservation of introns in the yeast genome.

We studied 218 of the 240 ORFs reported in SGD to contain at least one intron (omitting

the rest primarily due to lack of an orthologous alignment). In 92% of cases, the donor,

branchpoint, and acceptor sites were all strongly conserved with respect to both location

and sequence. Moreover, exon boundaries closely demarcated the domains of sequence

conservation as measured by both nucleotide identity and absence of indels.

Discrepancies were found in 17 cases, of which at least 9 strongly suggest that the

previous annotation is incorrect. Five identify a new first exon (Figure 2.8) and four

predict that a previously annotated intron is spurious.

We then sought to identify previously unrecognized introns by searching the S.

cerevisiae genome for conserved splicing signals. We searched for conserved and

proximal splice donor and branch signals and manually inspected the resulting

alignments. Having constructed multiple alignments of ORFs and flanking intergenic

regions, we searched for conserved splicing signals. We used 10 variants of splice donor

signals (6-7bp) and 8 variants of branch site signals (7bp) that are found in

AAGT

ATG o.d exonm
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Figure 2.8. Identifying correct splicing. The short first exon was incorrectly annotated in S. cerevisiae. A

shorter and earlier first exon is conserved across the four species, and corresponds to the correct splicing.
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experimentally validated S. cerevisiae introns1 . We searched each species independently

but required that orthologous signals appear within 10 bp from each other in the multiple

alignment of the region. We also required that branch and donor be no more than 600bp

apart, which is the case for 90% of known S. cerevisiae introns. We then inspected the

multiple alignment surrounding the conserved signals for three properties: (1) a

conserved acceptor signal, [CT]AG, 3' of the branch site (2) high RFC 5' of the donor

signal and 3' of the acceptor signal. (3) low RFC within the intron. Roughly half of the

conserved donor/branch pairs met our additional requirements.

We predict 58 novel introns. Fifty cases affect the structure of known genes

(defining new 5'-exons in 42 cases, 3'-exons in 7 cases and an internal splice in one case)

and two indicate the presence of new genes. The relationship of the apparent splice

signals to existing genes is unclear for the remaining six cases. We visually inspected our

predictions and compared our results to experimental studies by Ares and colleagues that

identified new introns using techniques such as microarray hybridization41 . Of our 58

predicted introns, 20 were independently discovered by this group. Of the four annotated

introns predicted to be spurious, all four show no experimental evidence of splicing. Our

remaining predictions are currently being tested in collaboration with Ares and

colleagues.

2.6. Analysis of small ORFs

The power of our method was limited for small ORFs. Smaller regions may

indeed show lack of indels due to chance, and hence a high reading frame conservation

score may not be meaningful.

We tested 141 ORFs encoding 50-99 amino acids for which some biological

evidence has been published and are reported in SGD. Applying the RFC test and

inspecting the results, we conclude that 120 appear to be true genes, 18 appear to be

spurious ORFs and 3 remain unresolved. SGD also lists 32 ORFs encoding < 50 aa. We

did not undertake a systematic search for all such ORFs, because control experiments

showed that the RFC test lacked sufficient power to prove the validity of such small

ORFs (see below). However, it is able to reject 7 of the 32 ORFs as likely to be spurious.

Our yeast gene catalogue thus contains 188 short genes (<100 aa), of which 43 are novel.
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To evaluate the predictive power of the RFC test for small ORFs, we additionally

tested for presence of in-frame stop codons in the other species. When a small ORF in S.

cerevisiae showed a strong overall frame conservation, we measured the length of the

longest ORF in the same orientation in each orthologous locus. We measured the percent

of the S. cerevisiae length that was open in each species (no stop codons), and took the

minimum of the three percentages (OPEN) across the three additional species. When the

reading frame was open in each of the other species, the lengths found were identical to

that of S. cerevisiae, and OPEN was 100%. When OPEN was below 80%, we concluded

that stop codons appeared in the orthologous sequence, and therefore that the RFC test

falsely accepted a segment that did not correspond to a true gene. We observed the

distribution of OPEN for different values of RFC. For S. cerevisiae ORFs between 50

and 100 amino acids (aa), selecting for high RFC automatically selected for high OPEN,

and we estimated the test has high specificity. For ORFs between 30 and 50 aa however,

only a small portion of the ORFs with high RFC show a high OPEN, and we conclude

that the lack of indels within the small interval considered is not due to selective pressure,

but instead lack of evolutionary distance between the species aligned.

We further systematically searched the remainder of the S. cerevisiae genome and

evaluated all ORFs in this size range. Control experiments demonstrated that the RFC test

has high power to discriminate reliably between valid and spurious ORFs in this size

range. The genome contains 3161 such ORFs, nearly all are readily rejected by the RFC

test. However, 43 novel genes were identified. These ORFs not only pass the RFC test,

but they also have orthologous start and stop codons. Five of these have been reported in

the literature subsequent to the SGD release studied here

S cer PP ---------- I

Spar
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528 deleted 43 novel 34 merged 330 boundary 60 novel
changes introns

Figure 2.9. Revised yeast catalogue. Our analysis has affected nearly 15% of all genes.
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2.7. Conclusion: Revised yeast gene catalog

Based on the analysis above, we propose a revised yeast gene catalog consisting

of 5538 ORFs > 100 amino acids. This reflects the proposed elimination of 503 ORFs

(366 from the RFC test, 105 by manual inspection and 32 through merger). A total of 20

ORFs in SGD remain unresolved. Complete information about the gene catalog is

provided in 29 and will be discussed more fully in a subsequent manuscript in

collaboration with SGD and other yeast investigators. The revised gene count is

consistent with at least two recent predictions based on light shotgun coverage of related

species4 5 . We believe that this represents a reasonably accurate description of the yeast

gene set, because the analysis examines all ORFs > 100 amino acids, the methodology

has high sensitivity and specificity and the evidence is unambiguous for the vast majority

of ORFs. Nonetheless, some errors are likely to remain. The results could be confirmed

and remaining uncertainties resolved by sequencing of additional related yeast species, as

well as by other experimental methods.

Despite the intensive study of S. cerevisiae to date, comparative genome analysis

points to the need for a major revision of the yeast gene catalog affecting more than 15%

of all ORFs (Figure 2.9). The results suggest that comparative analysis of a modest

collection of species can permit accurate definition of genes and their structure.

Comparative analysis can complement the primary sequence of a species and provide

general rules for gene discovery that do not rely solely on known splicing signals for

gene discovery. Previous studies have shown that such methods are also applicable to the

understanding of mammalian genes 42. The ability to observe the evolutionary pressures

that nucleotide sequences are subjected to radically changes our power for signal

discovery.
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CHAPTER 3: REGULATORY MOTIF DISCOVERY

3.1. Introduction

Regulatory motifs are short nucleotide sequences typically upstream of genes that

are used to control the expression of genes, dictating under which conditions a gene will

be turned on or off. Direct identification of regulatory elements is more challenging than

that of genes. Such elements are typically short (6-15 bp), tolerate some degree of

sequence variation and follow few known rules. To date, the majority have been found by

experimentation, such as systematic mutation of individual promoter regions; the process

is laborious and unsuited for genome-scale analysis.

Computational analysis of single genomes has been successfully used to identify

regulatory elements associated with known sets of related genes 7-9. These methods

typically search for frequently-occurring sequence patterns at various distances upstream

of coordinately expressed genes, and will be further described in chapter 4. They are

however limited by the experimental information available, and hence do not permit a

comprehensive direct identification of regulatory elements43.

Comparative genomics offers various approaches for finding regulatory elements.

The simplest approach is to perform cross-species sequence alignment to find

phylogenetic footprints, regions of unusually high conservation. This approach has long

been used to study promoters of specific genes in many organisms' ,12,44-46 and recently

was applied across the entire human and mouse genomes' 9 . The genome alignments of

the four Saccharomyces species can similarly be used to study each yeast gene, to help

define promoters and other islands of intergenic conservation (Figure 3.2).

Our interest was to go beyond inspection of individual islands of conservation to

construct a comprehensive dictionary of regulatory elements used throughout the

genome. We investigated the conservation properties of known regulatory motifs and

used the insights gained to design an approach for de novo discovery of regulatory motifs

directly from the genome.

In this chapter, we develop and apply methods for genome-wide motif discovery.

We compare our results to a database of experimentally validated regulatory motifs and

rediscover virtually all previously known motifs. In chapter 4 we develop methods for
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inferring a candidate function for the motifs discovered making use of biological

knowledge about genes, and in chapter 5 we explore their combinatorial interactions.

3.2. Regulatory motifs

The current knowledge of gene regulation is based on focused experimental

studies of specific examples. The deletion of a transcription factor was shown to disrupt

the use of its target genes. Regulatory elements were identified in genetic screens

through function-disrupting mutations that reside outside of a protein-coding ORF.

Systematic mutagenesis of a particular promoter region (also known as promoter

bashing) and testing the resulting effect on gene expression has been used to identify

functional blocks in upstream regions of genes. To identify regulatory motifs at a

nucleotide level, footprinting methods can be used. These methods expose the bound

region to DNA damaging agents that degrade unbound nucleotides, leaving a 'footprint'

of the transcription factor on the bound and thus protected nucleotides. Finally, even

higher resolution information is obtained through crystal structures of transcription

factors bound to DNA. These different methods have produced lists of bound sites for

each of a small number of well-studied transcription factors.

The sites bound by these factors exhibit sequence similarities that reveal the

binding specificity of each factor, and can be represented in a regulatory motif

Representations for these motifs range from

consensus sequences listing the nucleotides

involved in binding, to weight matrices and

graphical models. Consensus sequences or

sequence profiles are the simplest such

representation, giving a list of possible bases for

each position in the bound site. Some positions

are strict and require the presence of a particular

nucleotide, others allow for degeneracies.

These can be represented compactly using the

IUB standard one-letter code (Table 3.1). More

complex representations can be used allowing

for more detail in the binding specificity.

IUB Nucleotides Name [PAP ,PO-P[

A A Adenine [1,0.0,01

C C Cytosine [0.1.0,01

G G Glutamine [0,01. 01

T T Tyrosine [0, 0.0 11

S C or G Strong [0, /. %, 0]

W A or T Weak [/2,0,0, %1

R A or G PuRine [%, 0, ,/2, 01

Y C or T pYrimidine [0. %, 0, %1

M A or C aMino group [ .2 0, 01

K G or T Keto group [0, 0, /2, /21

B C or G or T Not A [0, Vt,.. %

D AorG orT Not C [%v,.0, v, ]

H A or C or T Not G [ , %,0. 'I

V A or C or G Not T [ /,, 0

N A. C, G or T aNy base [%", %, %,1

Table 3.1. Degenerate nucleotide code.
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A weight matrix representation of a motif of length L assigns weight vector w= [WA, WC,

WG, WT] to every position i between I and L. The binding strength of a sequence can be

scored against a weight matrix by simply adding up the corresponding scores for each

position. In a probabilistic framework, the weights can represent the relative frequencies

of each nucleotide in real motifs, multiplying across the corresponding weights gives the

probability that a sequence s matches the motif represented by m. Alternatively, if log

probabilities are used instead, summing across the matrix gives the corresponding log

probability. This probability can be compared to the probability of obtaining s by chance,

to obtain a log-likelihood ratio that the sequence matches the motif. Both consensus

sequences and weight matrices model the binding contributions of nucleotide position as

independent. More complex Bayesian representations for motifs can be used to capture

pairwise and multiple dependencies between positions. As the models become more

complex however, the increased power comes at a cost, increasing the number of

parameters and possibly overfitting data.

Transcription factors have evolved different ways to contact the DNA double

helix, and these are reflected in different types of regulatory motifs. Some factors make

one long contact with the DNA helix recognizing between 6 and 8 positions, some of

which can be degenerate. One such example is the Mbpl transcription factor involved in

the timing of events such as DNA replication during cell division and recognizes the

motif ACGCGT. Other factors contact the DNA at two different points, resulting in motifs

with two cores, separated by a stretch of unspecified bases. For example, the binding site

recognized by Abfl, a general transcription factor involved in silencing and replication,

recognizes the motif RTCRYNNNNNACGR. The DNA-binding domains of other factors

are made of two identical parts (and hence called homodimers), contacting each other and

each contacting the DNA helix. The two parts recognize identical sequences, but on

opposite strands, and hence result in motifs that are reverse palindromes of themselves.

One such example is the Gal4 factor involved in galactose metabolism, recognizing

CGGNNNNNNNNNNNCCG, namely CGG on one strand spaced by 11 nucleotides (one full

turn of the double helix) from its reverse complement, CCG.
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3.3. Extracting signal from noise

Computationally, discovering regulatory motifs amounts to extracting signal from

noise. When the motifs searched are expected to be more frequent than other patterns of

the same length, one can apply discovery algorithms such as Expectation Maximization

(EM) or Gibbs sampling (and others reviewed in ref 9). These were pioneered by

Lawrence and coworkers47, and made popular in software programs like MEME 7' 48,
8,49,50 51AlignACE or BioProspector . More recent work has extended these methods to

incorporate phylogenetic footprinting4 -52 -54. These methods separate the motif discovery

problem in two sub-problems. (1) Given a set of starting coordinates i1, ... , i, in each of

the sequences, construct the optimal matrix representation for a motif that starts at each

of these positions. (2) Given a matrix representation for a motif m, find the starting

positions of the best matches for that motif in each of the sequences. These algorithms

start with a random assignment for the start positions and infers the best matrix, then

iterates to improve the assignment of start positions to better match the motif. EM

algorithms choose the optimal assignment for each of these rounds of iteration. Gibbs

sampling algorithms instead sample amidst the best start positions. Both algorithms

converge as long as the motif searched is actually frequent in the sequences searched,

since probabilistically, the algorithms will be likely to sample these motifs in their

iterative steps, and upon sampling them will converge to include them.

These methods have typically been applied to the upstream sequences of small

sets of genes, but are not applicable to a genome-wide discovery. Instead, k-mer

counting methods have been used to find short sequences that occur more frequently in

intergenic regions, as compared to coding regions in a genome-wide fashion43. However,

these typically find very degenerate sequences (such as poly-A or poly-T) and have

shown limited power to separate regulatory motifs from the mostly non-functional

intergenic regions. This is largely due to the small number of functional instances of

regulatory motifs, as compared to the large number of non-functional nucleotides. The

discovery of regulatory motifs still relies heavily on extensive experimentation.

Comparative genomics provides a powerful way to distinguish regulatory motifs

from non-functional patterns based on their conservation. In this chapter we first study

conservation properties of known regulatory motifs. We use these to construct three tests
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to detect the genome-wide signature of motif-like conservation. We use these tests to

detect all significant patterns with strong genome-wide conservation, constructing a list

of 72 genome-wide motifs. We compare this list against previously identified regulatory

motifs and show that our method has high sensitivity and specificity, detecting most

previously known regulatory motifs, but also a similar number of novel motifs. In

chapter 4, we assign candidate functions to these novel motifs, and in chapter 5, we study

their combinatorial interactions.

3.4. Conservation properties of known regulatory motifs

We first studied the binding site for one of the best studied transcription factors,

Gal4, whose sequence motif is CGG(N) 1 CCG (which contains 1 unspecified bases). Gal4

regulates genes involved in galactose utilization, including the GAL] and GALJO genes

that are divergently transcribed from a common intergenic region (Figure 3.2). The Gal4

Scer TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTCGGATkCCCAACGAATTTAATAATCATATTACATGGCATTACCACCATATACA
Spar CTATCTTGATCTTTTCACAATTTTT-CACTATATTAAGATGGGTGCAAGAAGTCTGATTATTATATTACATCGCTTTCCTATCATACACA
Smik GTATAT TGAATTTTTCAT TTTTT T CAC TATCT TCAAGGTTATGTAAAAAA-T GTCAAGATAATATTACAT T TCGT TACTAT CATACACA
Sbay TTTTTT TGATTTCTTTAGTTTTCTTTCTTTAACTTCAAAATTATAAAAC4kAGTGTAGTCACATCATGCTAT CT-GTCACTAT CACATATA

TBP
Scer TATCCATATCTAATCTTA TTAT TGTTGT-GGAAAT-GTAAAGAGCCCCATTATCTTAGCCTAAAAAAACC-TTCTCTTTGGAACTTTCAGTAATACG
Spar TATCCATATCTAGTCTTA TAT TGTTGT-GAGAGT-GTTCATAACCCCAGTATCTTAACCCAAGAAAGCC--TT-TCTATCAAACTTCAACTG-TACG
Saik TACCCATCTCTACTCTTA TTATA TGTTAC-GGGAATTGTTGGTAATCCCAGTCTCC CAGATCAAAAAAGGT--CTTTCTATGGAGCTTTG-CTA-TATG
Sbay TAGATATTTCTGATCTTT TTATATATTATAGAGAGATGCCAATAAACGTGCTACCTCGAACAAAAGAAGGGGATTTTCTGTAGGGCTTTCCCTATTTTG

GAL4 GAL4 GAL4
Scer CTTAACTGCTCATTGC---TATATTGAAGT GGATTAAAGCCCCC GGGCGCAGCCCTCC GGAkGACTCTCCTCC GCGTCCTCGTCT
Spar CTAAACTGCTCATTGC-----AATATTGAAGT GGATCAGAAGCCCC ACrGGACGACAGCCCTCC (~AGJCGAATATTCCCCTCC GCGTCGCCGTCT
Smik TTTAGCTGTTCAAG-------ATATTGAAAT GGATAGAAGCCGCC GAAJCGACCkAATTCCCCA GG-AACATTCTCCTCC GCGGCGTCCTCT
Sbay TCTTATTGTCCATTACTTCGCAAT GTTAAAT C TGGAT CACAACTCC Q kTGACAGTACTCC rCGJAAAACTGTCCTCC CAACTCCTCT

GAL4
Scer TCACCGG-TCGCGTTCCTCAkACGCAGATGTG tTCGCCCGCACTGCTCAACAkAAAGATTCTACAA-----TACTA&GCTTTT--ATGGTTATGAA
Spar TCGTCGGGTTGTGTCCCTTAA- CATCGATGTA TCGCCCGCCCTGCTCCfAACAAGAACGATTCTACAAGAAA-TACTTGTTTTTTTATGGTTATGAC
Smik ACGTTGG-TCGCGTCCCTGAA- CATAGGTACG TCEACCACCGTGGTCflAACTAAATACTGGCATAAAGAGGTACTAATTTCT--ACGGTGATGCC
Sbay GTG-CGGATCACT CCC TkT-TACTGAACCC TCGC CGCCATACCCcCAA A GCAAAT CCAAC.AACAAA-TGCCTGTAGTC--CCACTTATGT

MIG1
Scer GAGGA-AAAATTGGCAGTAA----CCTGCCCCCACAAkCCT-CAAATTAACGAATCAAATTAACAACCATA-GGATGAATGCGA-----TTAG--T
Spar AGGAACAAAATAAGCAGC CC- --- ACT GACCCCATATACCT TCAAACTATTGAAT CAAATTGGCCAGCATA-TGGTAATAGTACAG------TTAG--G
Smik CAACGCAAAATAAACAGTCC----CCC CCACATACCT -CAAATCGATGCGTAAAACTGGCTAGCATA-GAATTTTGGTAGCAA-AATATTAC--G
Sbay GAACCGT CAAATCACAATTCCTTCCCCCT- CCCCAATATACT T GT T CCGT GTACACCACACTGGATAAACAAT GAT GGGGT TGC GGTCAAGC CTACTCG

MIG1 TBP
Scer TTTTTAGC TATTTCTGGG TAATTAATCAGCGAAGCG--ATCATTTTT-CATCTATTAACACGAT TAT' TCGAAAACTCCATAACCAC-----TTSpar CTTT T- -T TATTCCTGCAGCAATTCATCCGCAAAAAATAATGGTTTTT-GGTCTATTAGCAAACATAT T GCAAAAGTTGCATAGCCAC-----TT
Smik TTCTCA-- TTTCTCTGTGAITAATTCATCACCGAAATG--ATGGTTTA--GGACTATTAGCAAAC TATA TGCAAAAGTCGCAGAGATCA----AT
Sbay TTTTCCGT TACTT CTTACTGGCTCAT -- GCAGAAACTAATG TTTTCTTTCCT TTGCAAAC TAT TATAAACTAAATTCGCCTCAATTGTA

Scer TAAC TAATAC T TT CAACATT T TCAGT- - T TGTAT TACT T-CT TAT T CAAAT---- GTCATAAAAGTATCAACA-AAAAATTGTTAATATAC CTCTATACT
Spar TAAATAC-ATTTGCTCCTCCAAGATT--TTTAATTTCGT-TTTGTTTTATT ---- GTCATGGAAATATTAACA-ACAAGTAGTTAATATACATCTATACT
Smik TCATTCC-ATTCGAACCTTTGAGACTAATTATATTTAGTACTAGTTTTCTTTGGACTTATACAATACCAAAA-AAAATAGTCAGTATCTATACATACA
Sbay TAGTTTTTCTTTATTCCGTTTGTACTTCTAGAT TTATTTCCGGTTTTACTTTGTCTC TACAAACATCAATAACAAGT TCAACATTTGT

Scer TTAA-CGTCAAGGA---GAAAAACTATA
Spar TTAT -C GT CAAGGAAA- GAACAAAC TATA Factor footprint
Saik TCGTTCATCAAGAA---AAAAAACTA.. -Fc-o
Sbay TTATCCCAAAAAAACAACAACAACATATA- * ** * *-- Conservation island

Figure 3.2. Phylogenetic footprinting of the Gall-GallO intergenic region reveals functional nucleotides.
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motif occurs three times in this intergenic region, and all three instances show perfect

conservation across the four species. In addition, there is a fourth, experimentally

validated binding site5 5 for Gal4 that differs from the consensus by one nucleotide in S.

cerevisiae. This variant site is also perfectly preserved across the species.

We then examined the frequency and conservation of Gal4 binding sites across

the aligned genomes (Figure 3.3). In S. cerevisiae, the Gal4 motif occurs 96 times in

intergenic regions and 415 times in genic (protein coding) regions. The motif displays

certain striking conservation properties. First, occurrences of the Gal4 motif in intergenic

regions have a conservation rate (proportion conserved across all four species) that is -5-

fold higher than for equivalent random motifs (12.5% vs. 2.4%). Second, intergenic

occurrences of the Gal4 motif are more frequently conserved than genic occurrences

(12.5% vs. 3%). By contrast, random motifs are less frequently conserved in intergenic

regions than genic regions (3.1% vs. 7.0%), reflecting the lower overall level of

conservation in intergenic regions. Thus, the relative conservation rate in intergenic vs.

genic regions is -1 1-fold higher for Gal4 than for than random motifs. Third, the Gal4

motif shows a higher conservation rate in divergent vs. convergent intergenic regions

(those that lie upstream vs. downstream of both flanking genes); no such preferences is

seen for control motifs. These three observations suggest various ways to discover motifs

based on their conservation properties (see conservation criteria below).

Scer

Spar

Smik

Sbav
_ A ___

Evaluate conservation within: Gal4 Controls

(1) All intergenic regions 12.5% 2.4%

(2) Intergenic : coding 12:3 3:7

(3) Upstream : downstream 12:0 1:1

Figure 3.3. Genome-wide conservation of the Gal4 motif. The six-fold to 11-fold separation between

the conservation of Gal4 and that of random control motifs suggests three signatures for motif discovery.
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We extended these observations by assembling a catalog of 55 known regulatory

sequence motifs (Table 3.4), by starting with two public databases (SCPD 5 6,57 and

YTFD 8) and curating the entries to select those with the best support in the literature.

Known motif Discovered motif

Factor Motif MCS Motif

ABF1
UME6
CBFI
NDT80
REB I
MCMIa
SW6
PHO4
MBPI
SW4
DAL8 1
RPN4
MSN2
MSN4
PDRI
ESR2
MIG1
MIGIb
BAS1
GCN4
GAL4
HSF1b
ESR I
MET31
AFT1
TEA I
PUT3
HAP2
RAP1
LEU3
MCM1b
INO4
INO2
GLN3
ADRI
FKH2
FKH1
RLMI
SW15
HAP
XBP 1
MACI
TBFI
MSE
STE12
DIG1
MET4
HAP4
SMP1
ACE2
YAPI
CIN5
RMEI
HAC1
GCR1

RTCRYmnnnnACG 50.0
TCGGCGGCTA 20.9
RTCACRTG 19.0
TCGGCGGCTDW 18.6
TTACCCGG 17.8
TrWCCCnWWWRGGAAA 16.5
ACGCGT 16-4
CACGTG 16.1
ACGOGTnA 14.8
TTTTCGCG 12.4
GATAAG 121
TTTTGCCACC 11 5
CCCCT 113
OCCT 11-3
CCGCGG 9-3
AAAAWrTTT 8 9
CCCCRSWWWW 8.7
CCCCGC 8.4
TGACTC 8.3
ATGACTCAT 8.2
CGGmnnnnnnnmCCG 8.0
TTCTAGAA 78
GATGAG 77
AAACTGTGGC 6.8
YRCACCCR 6.8
CGGnCGG 6.8
CGGnnnnnnnnnnCCG 6 2
TGATTOGC 57
ACACCCATACATTT 5.2
CCGGnnCCGG 49
YTTCCTAATTWGnnCn 4.8
CATGTGAAAT 4 1
CATGTGAAAT 4 1
GATAAK 3.8
GGAGA 37
TTGTTTACST 3.6
TTGTTTACST 3.6
CTAWWWWTAG 3.6
KGCTOR 34
CGGnnnTAnCGG 2.5
MCTCGARRRnR 2,5
TTTGCTCA 2.3
TTAGGG 23
TTTTGTG 1.4
RTGAAACA 0.7
RTGAAACA 0.7
TGGCAAATG 0.7
TnRTTGGT 0.5
ACTACTAWWWWTAG 0.4
GCTGGT -0.6
TTACTAA -11
TrACTAA -11
GAACCTCAA -1 4
CAGCGTG -1 4
GGAAG -18.5

Genome-wide Category- based

S S
S NC
S S
S NC
S S
S S
S S
S S
S S
S S

NE
S NC
S NE
S NE
S NE
S NC
S NE
S NE
S S
S S
S S
S S
S NC
S S
S NC

NC
W NE

S
S S

RTCRYknnnnACGR
TSGGCGGCTAWW
RTCACGTGV
TSGGCGGCTAWW
RTTACCGORM
TTCCnaAttnGGAAA
WCGCGTCGCGt
RTCACGTGV
WCGCGTCGCGi
WTTTCGCGTT

TTTTGCCACCG
hRCCCYrWDt
hRCCCYTWDt
YCCGSGGS
GRRAAAWTTTTCACT
DCCCCGCGH
DCCCCGCGH
ATGACTCWT
ATGACTCWT
CGGCnnMGnnnnnnnCGC
TTCTMGAAGA
gcoGATGAGmtgaraw
SKGTGGSGc
RVACCCTD

CCGMnnnnnnnnnmSGR
TGATTGGT
ACACCCACACATmC
CCSGTAnCGG
TTCCnaAttnGGAAA
GnnnCATGTGAA
CATGTG

tTTGTTTACnTTT
tTTGTrTACnTTT
CTAnnTTTAG
TGCTGG
GCnnTTAnCGG
TCTCGARRA
TGCTCA
GKBAGGGT
TTTTGTOTCRC
YTGAAACA
YTGAAACA
CGGTGGCAAAA
TGATTGGT

TGCTGGT

GGAAGC

S
S
S
S

NE
NE
S
S
S
S

NC
NC
S

NC
NC
S
S

NE
S

NE
S

NE
NE
NE
NC
S

Table 3.4. Genome-wide conservation of known motifs. Matching nucleotides in bold. S=strong

match, W=weak match, NE=not enriched, NC=no category available. Category scores in brackets.
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S
S

S
S
S

S
S

S
S

S

MCS

36.2
23.4
17.6
23.4
34.3
13 8
10.2
176
10.2
12.0

11.0
78
7.8
6.7

15.6
8.2
8.2
61
61
5 0
7.0

24 7
81

10.3

5-4
[6.4]
99
6,5

13.8
[6.8
[4-4]

10.8
10.8
[4.7]
[6 1]
4.8

12.5
[5.4]
4.8
9.9

[12.2]
[12 2]

[6.4]

[7.4]

14 4]



We defined a Motif Conservation Score (MCS) based on the conservation rate of the

motif in intergenic regions. To evaluate the Motif Conservation Score (MCS) of a motif

m of given length and degeneracy, we compared its conservation ratio to that of random

patterns of the same length and degeneracy. We first computed the table F containing the

relative frequencies of two-fold and three-fold degenerate bases, given the S. cerevisiae

nucleotide frequencies (.32 for A and T, .18 for C and G). For example, W=[AT]

(.32*.32) is a more likely two-fold degenerate base than Y=[CT] (.18*.32). We then

selected 20 random intergenic loci in S. cerevisiae. For each of these loci, we used the

order of nucleotides at that locus together with the order of degeneracy levels in m to

construct a random motif. If the first character of m was two-fold degenerate and the first

nucleotide at the selected locus was A, we picked a two-fold degenerate base containing

A (W, R or M), their relative frequencies dictated by F, and continued for every character

of m. We then counted conserved and non-conserved instances of each of the 20

generated control patterns and computed r, the log-average of their conservation rates.

We then counted the number of conserved and non-conserved intergenic instances of m,

and computed the binomial probability p of observing the two counts, given r. We

finally reported the MCS of the motif as a z-score corresponding top, the number of

standard deviations away from the mean of a normal distribution that corresponds to tail

areap. Nearly all of these sequence motifs are binding sites of known transcription

factors. Most of the known motifs show extremely strong conservation, with 60% having

MCS > 4 (which is substantially higher than expected by chance). Some of the motifs,

however, show relatively modest MCS. These motifs may be incorrect, suboptimal or not

well conserved.

3.5. Genome-wide motif discovery

Our methodology for genome-wide motif discovery involves first identifying

conserved mini-motifs and then using these to construct full motifs (Figure 3.5). Mini-

motifs are sequences of the form XYZn(O-21)UVW, consisting of two triplets of specified

bases interrupted by a fixed number (from 0 to 21) of unspecified bases. Examples are

TAGGAT, ATAnnGGC, or the Gal4 motif itself. The total number of distinct mini-

motifs is 45,760, if reverse complements are grouped together.
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Conserved mini-motifs are evaluated according to three conservation criteria

(CC 1-3), based on our observations about the properties of the Gal4 motif. In each case,

conservation rates are normalized to appropriate random controls. CCI (Intergenic

conservation) evaluates the conservation rate of a mini-motif in intergenic regions. CC2

(Intergenic-genic conservation) evaluates the stronger conservation in intergenic regions

as compared to genic regions. CC3 (Upstream-downstream conservation) evaluates the

different conservation of a mini-motif when it occurs upstream vs. downstream of a gene.

CC I: Intergenic conservation. We searched for mini-motifs that show a

significant conservation in intergenic regions. For every mini-motif, we counted ic the

number of perfectly conserved intergenic instances in all four species, and i the total

number of intergenic instances in S.cerevisiae. We found that the two counts seem

linearly related for the large majority of patterns (Figure 3.5 panel A), which can be

S 2.000 4.000 6.000 8000 10.000 12.000

Total count of intergenic instances

2- S 1

Percent conserved instances in downstream-only regions

B
20 - -

W.*~

7 t741'

Percent conserved instances in coding regions

D 1 TCA - 6 - ACG CC1 mi

2 .TCA ..... ACG -. CCI1. mini 1

3 ... TCA . . . ACG ... CC1. mini I
CAC. . ACG . . CC1: mini 9
TCA . CGA. . CC1. mini 19

.GTC . ACG. CCl mni29
ATC . . CGA..- CC1 mini 46

CAC... CGA. . CC1 mini 78
* CAT. . ACG . .. CC 1 mini 161

.TCA CGG .. CC1. mini 165
ATC CGG.. CC1. mni 336

-.RTCAY....ACGR .. . CCI. mega
4

4 .RTCAY... .ACGR.. CC1.mega1
... RTCAY... .ACGr ... CC2. mega 1
. .. RTCRYk. . ACGR ... CC3. mega 2

.. . RTCAY ..... ACGR.. Final Mof I

Figure 3.5. Genome-wide motif discovery method. The three conservation tests and motif collapsing.
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attributed to a basal level of conservation r given the total evolutionary distance that

separates the four species compared. We estimated the ratio r as the log-average of non-

outlier instances of ic/i within a control set of all motifs at a given gap size. We then

calculated for every motif the binomial probability p of observing ic successes out of i

trials, given parameter r. We assigned a z-score S to every motif corresponding to

probability p. This score is positive if the motif is conserved more frequently than

random, and negative if the motif is diverged more frequently than random. We found

that the distribution of scores is symmetric around zero for the vast majority of motifs.

The right tail of the distribution however is much further than the left tail, containing

1190 motifs more than 5 sigma away from the mean, as compared to 25 motifs for the left

tail. By comparing the two counts, we estimated that 94% of these 1190 motifs are non-

random in their conservation enrichment.

CC2: Intergenic-genic conservation. We searched for motifs that are

preferentially conserved in intergenic regions, as compared to coding regions. In addition

to ic and i (see previous section), we counted the number of conserved coding instances

gc, and the number of total coding instances g, for every mini-motif. We observed the

ratio of conserved instances that are intergenic a=ic/(ic+gc), and compared it to the total

ratio of motif instances that are intergenic b=i/(i+g). Not surprisingly, we found that

typically b=25% of all motif instances appeared in intergenic regions, which account for

roughly 25% of the yeast genome. Similarly, only a=] 0% of conserved motif instances

appeared in intergenic regions, which reflects the lower conservation of intergenic

regions. To correct for this typical depletion in intergenic conservation, we estimated a

correction factorf-a/b for mini-motifs of similar GC-content. Then for a given mini-

motif, the proportion of all instances found in intergenic regions and the correction for

the lower conservation of intergenic regions together gave us r=f*i/(i+g), the expected

ratio of conserved intergenic instances for that motif. We evaluated the binomial

probability p of of observing at least ic conserved instances in intergenic regions and

ic+gc conserved instances overall, given the expected ratio r. As in CC 1, we computed a

z-score S for every motif and found a distribution centered around zero for the large

majority of motifs, and a heavier right tail. We selected 1 1 10 motifs above 5 sigma and

estimated that 97% are non-random as compared to only 39 motifs below -5 sigma.
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CC3: Upstream-downstream conservation. We searched for motifs that are

differentially conserved in upstream regions and downstream regions. We defined

upstream-only intergenic regions in divergent promoters that are upstream of both

flanking ORFs, and downstream-only intergenic regions in convergent 3' terminators that

are downstream of both flanking ORFs. We then counted uc and u, the conserved and

total counts in upstream-only regions, and similarly dc and d in downstream-only regions.

We found that upstream-only and downstream-only regions have similar conservation

rates, and the ratios uc/u and dc/d are both similar to ic/i for the large majority of motifs.

We thus used a simple chi-square contingency test on the four counts (uc,u,dc,d) to find

motifs that are differentially conserved. We found 1089 mini-motifs with a chi-square

value of 10.83 or greater, which corresponds to a p-value of .001. Given the multiple

testing of 45760 mini-motifs, we estimated that roughly 46 will show such a score by

chance and that 96% of the selected motifs will be non-random.

The conserved mini-motifs are then used to construct full motifs (Figure 3.5).

They are first extended, by searching for nearby sequence positions showing significant

correlation with a mini-motif. The extended motifs are then clustered, merging those with

substantially overlapping sequences and those that tend to occur in the same intergenic

regions. Finally, a full motif is created by deriving a consensus sequence (which may be

degenerate). Motifs are typically degenerate, and a single full-motif can be responsible

for multiple strong mini-motifs. We now describe methods to recover the full motifs and

their degeneracy.

We extended each mini-motif selected by searching for surrounding bases that are

preferentially conserved when the motif is conserved. We used an iterative approach

adding at every iteration one base that maximally discriminates the neighborhood of

conserved motif instances from the neighborhood of non-conserved motif instances. The

added base was selected from fourteen degenerate symbols of the IUB code (A, C, G, T,

S, W, R, Y, M, K, B, D, H, V). When no such symbol separated the conserved and non-

conserved instances with significance above 3 sigma, we terminated the extension.

Figure 3.5 panel D shows the top-scoring mini-motif found in CCI (Row 1), and the

corresponding extension (Row 2). We found that many mini-motifs have the same or

similar extensions, and we grouped these based on sequence similarity. We measured the
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similarity between two motifs as the number of bits in common in the best ungapped

alignment of the two motifs, divided by the minimum number of bits contained in either

Discovered motif

YCGTnnnnmRYGAY
RTTACCCGRM
gcGATGAGmtgaraw
TSGGOGGCTAWW
RTCACGTGV
WTATWTACADG
GRRAAAWTT1TCACT
TTCCnaAttnGGAAA
CGTTTCTTTTTCY.
TYYTCGAGA.
TTTTCGCG
TTTT = CGCG
TKACGCGTT
STGCGGnnnttTC TnnG
YCTATTGTT
TTTTGCCACCG
tTTGTTTACnlTT
RVACCCTD
WCGCGTCGCGt
GGGTnACCC
GnnATGTGTGGGTGT
TTTGTGTCRC

TTTCArCGCGC
TATTAWTATTATtMtnatta
SCGnHGGS
ACAGCCGCRY
DCGCGGGGH
SKGTGGSGc
TTTTn(1 9)GCKCG
HRCCCYTWDt
TKCCCnnnnGGG
GTGTCAGTAAt
RGTTTTTCCG
TTCTMGAAGA
YCCGSGGS
CrCCTTTTAT AC
CCSGTAnCGG
SKTKCCTT
CTCCCCTTAT
GCCCGG
SGCGCGRB
CTCSGCS
TGnKAGCGCCG
ATGACTCWT
CCGAnnnTCGG
SCGMnnnnnnKCG
CnCCGCGCnnTTTs
TTTTnnnnnnnnnnnngGGGT
TGTRnCAW
YCSknnnnnnnnnKCGG
CGGnnnnnnnnnnnnnKCGV
WGTGACg
RTCCCTV
YTCGTTTAGG
TYCGKRM
CGCnnnnnnnnnnnnnBCGB
TWCCCCM
CGGCnnMGnnnnnnnCGC
CCGSnnnnGVC
TRTAMATAKWT
TtTATAnTATATAnA
GKBAGGGT
GCnnTTAnCGG
GGCSinnnnGnnnCGCG
TTCTCnnnnnnnCGC
SCGKnnonKCGD
AATATTCTT
CGCGTnnnnnnnnAGG
CCGHVGGM
CGCG = TTTT
CGCGnnn nnGGGS
CTGCAGGGR

Location

5
5
5
5

3
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
S
5
5
5
5
5
3
5
5
5
5
5
5
5
5
5
5
3
3
5
5
5
5
5
3

5
5
5
5

MCS

362
34.3
24.7
23.4
17.6
17.4
15.6
13.8
13.5
12.5
12.0
12.0
12.0
11.8
11.5

1.0
10.8
10.3
102
10.0
9.9
9.9
9.8
9.5
8.8
8.6
8.1
8.1
7.8
7.8
7.3
7.1
7.1
7.0
6.7
6.5
6.5
6.4
6.4
6.3
6.3
62
62
6.1
6.1
6.0
6.0
5.8
5.5
5.4
5.4
5.3
5.3
52
5-2
5.1
5.0
5.0
5.0
4.8
4.8
4.8
4.8
4.7
4.7
4.5
4.4
4.4
4.3
4.3
42
4-2

Best category

ChiP: Abf1
ChIP: Rebl
Exp.: cluster 74
GO: meiosis
ChIP: Cf1
Exp.: cluster 16 downstrei
Exp.: cluster 74
ChIP: Mcml
GO: filameritation
Exp.: cluster 86
ChIP: Swi4
ChIP: Swi4
ChiP: Mbpl
GO: filamerntation
ChIP: Fkh2
GO: proteotysis
ChiP: Fkh2

ChiP: Mbpl
ChIP: Rebi
ChIP: Fhtl
ChIP: Suml

G-
GO.: flaentation
Exp.: cluster 37
Exp.. cluster 46
ChIP: Met3l

Exp.. clustet 8
ChiP: Mcml
ChiP: Sumi
ChiP: Rgt1
ChIP: Hsfl
GO: filamentation

ChiP: Leu3
GO. filamentation
Exp.: cluster 8
GO: filamentation

ChiP: Gcn4
Exp.: cluster 46

Exp cluster 46

ChIP: Sum'r

GO: hpd metabolism
GO: filamentation

Exp.: cluster 46
ChIP. Gai4

ChiP: Digi
Exp: cluster 7 4 dowvnstream
GO.- g tlycolytsis

ChIP: Mbpl
GO: fiiamentation

Exp.: cluster 46 downstream
ChiP: Sw4

Exp.: cluster 46
GO: filamentation

CCS Interpretation

90
38
62
10
27
25
37
29

7
5

21

18
11
6

25
28

17
8
5

14

6
6
8

22
15
15
7

10
9

8
7

11
10

Known: Abf1
Known: Rebi
Known: Esri GATGAG
Known: Ume6/Ndt8O
Known: Cbfl/Pho4
New: mitochondrial downstream
Known: Esr2
Known: Mcml
New: filamentation
Known: Xbp1 (Hsfl-co-ocuring)
Known: Swi4 fixed gap
New: Swi4 vaiable gap
Known: Mbpl/Swi6
New filarnentation
New: Rknl-Ike
Know: Rpn4/Met4
Known: Fkhl/2
Known: Aft1
New: double Mbpl
New. Rebi palindrome
Known: Rap1
Known. Mse
New: no category
New: no category
New: filamentation
New expression cluster 37
Known: Mig1b
Known: Met31
Known: no category
Known: Msn2/4
Known: McmI (hits tRNA
New: Sum1
New Rgti
Known: Hsf 1
New: filamentation
New. no category
Known: Leu3
New. filamentation
Known: Msn2./4
New. filamentation
New no category
New: no category

Known: Gcn4/Bas1
New: facilitators paindrome
New: no category
New. no category
New no category
New. no category
Known: Put3
New: no category
New: Sumi
New no category
New: lpid metabolism
New: filamentation
New: no category
Known: Migi + facilitators
Known: Gal4
New. no category
New: Ste12 (hits tRNA)
New: downstream cluster 74
Known: Tbf1/new. glycolysis
Known: Hap1
Known: MbpI-like
New: filamentatio
New: no category
New downstream facilitators
New: Swi4-vary gap
New: no category
New: no category
New: expression cluster 46
New. filamentation

Table 3.6. Discovered motifs and associated function.
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motif. Based on the pairwise motif similarity matrix, we clustered the extended motifs

hierarchically, collapsing two groups if the average similarity between their member

motifs was at least 70%. We then computed a consensus sequence for every cluster of

extended motifs, resulting into a smaller number of mega-motifs for each test (332 for

CC 1, 269 for CC2 and 285 for CC3). Row 3 shows the first 9 members of the top cluster

in CC 1, and the resulting mega-motif. Finally, we merged mega-motifs based on their

co-occurrence in the same intergenic regions (Row 4). We computed a hypergeometric

co-occurrence score between the intergenic regions hit by each mega-motif and again

collapsed these hierarchically. We computed a consensus for every cluster, and iterated

the co-occurrence-based collapsing step (results not shown). We obtained fewer than 200

distinct genome-wide motifs. Each full motif is assessed for genome-wide conservation

by calculating its MCS, and those motifs with MCS > 4 are retained. Each full motif was

also tested for enrichment in upstream vs. downstream regions, by comparing its

conservation rate in divergent vs. convergent intergenic regions.

3.7. Results and comparison to known motifs

The vast majority of the 45,760 possible mini-motifs show no distinctive

conservation pattern. However, -2400 mini-motifs show high scores by one or more of

these criteria (Figure 3.5 panels A, B, C). There is substantial overlap among the mini-

motifs produced by the three criteria, with about 50% of those found by one criterion also

found by another.

The conserved mini-motifs give rise to a list of 72 full motifs having MCS > 4

(Table 3.6). We omit full motifs with low MCS scores, and those that overlap tRNA

genes and may be due to secondary RNA structure. Most of the motifs show preferential

enrichment upstream of genes, but six are enriched downstream of genes. These 72

discovered motifs, found with no prior biological knowledge, show strong overlap with

28 of the 33 known motifs having MCS > 4. They include 27 strong matches and I

weaker match. The 72 discovered motifs also contain matches to 8 of the 22 known

motifs with MCS < 4. In these cases, the comparative analysis identified closely related

motifs that have higher conservation scores than the known motifs and occur largely at

the same genes; these may represent a better description of the true regulatory element.

Comparative genomic analysis thus automatically discovered 36 motifs with matches to
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most of the known motifs (65% of the full set, 85% of those with high conservation). It

also identified 42 additional 'novel' motifs not found in our list of known motifs. In the

next chapter, we develop methods to understand these novel motifs and assign a

candidate function to each of them.

3.8. Conclusion

Motif discovery amounts to extracting small sequence signals hidden within

largely non-functional intergenic sequences. This problem is difficult in a single genome

where the signal-to-noise ratio is very small. Previous methods have thus been limited to

discovering motifs within small sets of genomic regions. We have conducted a genome-

wide exhaustive search for all regulatory motifs. We produced a list of 72 strongly

conserved motifs, that includes most previously identified motifs. This ability to directly

discover regulatory motifs drastically changes our view of gene regulation. Instead of a

case-by-case study, we can now observe complete views of all regulatory building

blocks. Our method has re-discovered most previously known regulatory motifs without

use of any prior biological function. It should theoretically be applicable to any genome

for which no experimental data is available. Additionally, in yeast, we can use the

biological information to discover the function of the discovered motifs. We can also use

biological function to discover additional motifs. These two goals will be the topic of the

next chapter.

64



CHAPTER 4: REGULATORY MOTIF FUNCTION

4.1. Introduction

In response to environmental changes, a single transcription factor can induce the

expression of all genes necessary to fulfill a particular function, such as galactose import

and utilization. These genes are typically scattered throughout the genome and targeted

by the presence in their upstream regions of a specific regulatory motif recognized by the

factor. This regulatory motif will be enriched in the upstream regions of these genes,

namely it will occur more frequently in these regions than expected by chance as

compared to the rest of the genome.

This enrichment of regulatory motifs in functionally related sets of genes can be

used in two ways. Given a gene set, an associated motif can be found by searching the

upstream intergenic regions for short patterns occurring at an unusual frequency.

Alternatively, given a novel motif whose function is unknown, an associated gene set can

be found by testing a number of previously defined gene sets (categories) for enrichment.

In a single genome, motifs occur frequently by chance, and hence the enrichment

observed is sometimes not sufficient to perform either of these two tasks with high

sensitivity and specificity. With multiple aligned genomes at hand, most spurious motif

instances can be eliminated and the enrichment should become more pronounced. We

can use this increased power to assign a candidate function to the motifs discovered in the

previous chapter and to discover additional motifs in a category-specific way.

In this chapter, we present methods to distinguish biologically meaningful motif

instances under selective pressure from non-functional motif instances. We assign

candidate functions to the genome-wide motifs discovered in the previous chapter and

find that the majority of discovered motifs show a significant functional enrichment. We

also present a new method to discover additional regulatory motifs associated with

functional categories. For known factors, we find that our category-based discovery

method has great sensitivity and specificity, finding concise binding sites even when

previous methods fail. For all 354 categories tested, we find that only a small number of

motifs are found and these are shared, reused across categories.
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4.2. Constructing functionally-related gene sets.

In yeast, a number of genome-wide experiments have resulted in functional

groupings of genes into gene sets. These represent possibly co-regulated groups,

constructed from gene expression, transcription factor binding and protein function.

Microarray technology enables the simultaneous measurement of gene expression

levels for all 6000 annotated yeast genes on a single array. Such arrays contain thousands

of spots (one for every gene), each containing multiple single-stranded nucleotide probes

complementary to the corresponding predicted yeast gene. When cell extract is washed

on the array, the single-stranded mRNA transcripts present in the cell hybridize (bind) by

complementarity to the appropriate spots in the array. The level of hybridization can be

measured by first fluorescently labeling the mRNA transcripts and then measuring the

level of fluorescence on each spot using a laser scanner. The higher the hybridization

measured at a spot, the higher is the inferred level of mRNA expression for that gene.

These genome-wide experiments have been repeated for hundreds of experimental

conditions and expression profiles have been constructed for every gene, describing its

expression levels in each condition. These profiles can then be clustered

computationally 5 9, typically by their pairwise correlation coefficients, to obtain sets of

transcriptionally coordinated sets of genes.

Another technology, ChIP, has recently been applied to the genome-wide level to

observe the binding locations of a transcription factor across the genome 60,61. This

technology enables the specific targeting of a transcription factor of interest, in order to

pull it out of a cell extract. Pulling a transcription factor also selects for the DNA

fragments that it is bound to. A researcher can then hybridize these fragments against an

array containing probes for promoter regions, and infer which regions are bound by the

transcription factor. Current technologies target transcription factors by either

constructing an antibody specific to the factor, or by appending to the transcription factor

a tag to which an antibody already exists (antibodies are molecules used by our immune

system to recognize specific proteins of invading agents like viruses or bacteria; hence

the name of Chromatin Immuno-Precipitation abbreviated as ChIP, referring to the use of

antibodies to cause the chromatin bound by a factor to precipitate with the factor when
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this one is pulled). The DNA is fragmented before precipitation and only a few hundred

bases surrounding the bound site are typically pulled.

Genes can also be grouped intofunctional categories, based on the experimentally

determined function of the proteins they encode. The function of thousands of yeast

genes has been experimentally determined (to various degrees of precision). The

scientific papers that describe these functions have been manually curated by the

Saccharomyces Genome Database (SGD) group, generating a vast repository of

knowledge. This knowledge has been classified hierarchically into Gene Ontology (GO)

information or MIPS62 , using a unified language that crosscuts species and organism

boundaries. This hierarchy groups at each internal node genes of related function, from

the most specific to the most general, in categories such as 'meiotic DNA double-strand

break processing', 'cell cycle', or 'metabolism'. Genes of related function will

sometimes be part of the same metabolic pathway, required simultaneously for the

correct sequence of chemical modifications of a metabolite, and hence likely to be co-

regulated. Similarly, proteins that are part of the same protein complex are likely to be

co-regulated, since they are required simultaneously for the correct assembly of the

protein complex. Experimental methods similar to ChIP can be used to detect protein
63complexes : an antibody specific to one of the proteins in the complex is used to pull

the entire complex out of cell extract; the complex pulled is then fractionated at specific

residues and the charge/weight combination of the fragments obtained by Mass

Spectroscopy are used to find the precise set of amino acids in the fragment and the

corresponding proteins that can result in such amino acid subsets.

4.3. Assigning a function to the genome-wide motifs

We used the biological knowledge captured in these sets of functionally related

genes to assign function to the 72 genome-wide motifs discovered in the previous

chapter. Since motifs can be degenerate and sometimes conserved in only a subset of the

species, we first developed methods to score conserved motif instances. We then

evaluated the overlap between the set of intergenic regions with motif scores above a

given cutoff, and each functionally-related set of genes. We found a strong overlap with

functional sets for most of the genome-wide motifs, and discover novel motif functions.
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We used a probabilistic representation to detect conserved motif instances. We

interpret every genome-wide motif m of length L as a probabilistic model, generator of

sequences of length L over the alphabet {A,C,G,T}. We then evaluated for every

genome position, the probability that the sequence was generated by motif m, and

compared this to the probability that the sequence was generated at random, given the

ratio of A,C,G,T in the genome. We evaluated each species in turn, to obtain a total

number of bits in the alignment. Since gaps may exist in the alignment, we did not

evaluate the motif match directly on the alignment. Instead, we evaluated the motif in the

ungapped sequence of each species in turn, and translated the motif start coordinates

based on the alignment. To avoid evaluating each of 12 million start positions in the

yeast genome against the motif, we first hashed the four genomes for rapid lookup, and

subsequently only search those intergenic regions that contain k-mers in the motif

searched. To allow for degenerate matches, we also search for k-mers with one or two

degeneracies from the query motif. We then used a simple threshold t and obtain the list

of all intergenic regions containing conserved instances of the motif with score at least t.

These instances are either upstream of downstream of each flanking gene, depending on

its transcriptional orientation. We could thus generate an 'upstream' list of genes that

contain these conserved instances in their upstream regions, and a corresponding

'downstream' list of genes. We compared the overlap between each upstream and

downstream gene list against each set of functionally related genes.

We did not expect a perfect overlap where every gene in a category would contain

the motif and every gene outside the category would not contain the motif. On one hand,

we expected discrepancies due to experimental errors, incomplete annotations and

artifacts of the clustering algorithms. But even with perfect data, discrepancies arise

from molecular processes that cross-cut functional categories, transcription factor binding

that is dependent on additional protein-protein interactions or chromatin structure,

expression clusters that are controlled by multiple transcription factors. At the same

time, much like spurious motif instances can occur in a single species when motifs are

short and degenerate, even conserved motif instances can occur by chance, although less

frequent. Similarly, functional motif instances may appear diverged due to alignment

errors, or may have genuinely diverged across the species compared.
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Thus, we evaluated the overlap between motif presence and functional

information probabilistically. Assume that m genes contain the motif and r genes belong

to a particular functional category. At random, if the motif is independent from the

category, we expect the same proportion of genes to contain motif instances both inside

and outside the category. The probability of observing a deviation from that ratio can be

evaluated using the hypergeometric distribution, described in the appendix. If k genes are

observed in the overlap between the two sets, and n genes are present in the yeast

genome, we calculate a P-value that the enrichment is observed at random as the

hypergeometric sum for all values of k' that are greater or equal to k. Since we were

evaluating the overlap of each motif against a large number of candidate functional

categories, we use a Bonferroni correction for multiple hypothesis testing.

We applied these ideas to the motifs we discovered in our genome-wide search.

As a control, we used the Gal4 motif (Figure 4.1). Given the biological role of Gal4, we

considered the set of genes annotated to be involved in carbohydrate metabolism (126

genes according to the Gene Ontology (GO) 64 classification) with the set of genes that
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Figure 4.1. Assigning functions to genome-wide motifs based on functionally-related gene sets.
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have a Gal4 binding motif upstream. The intergenic regions adjacent to carbohydrate

metabolism genes comprise only 2% of all intergenic regions, but 7% of the occurrences

of the Gal4 motif in S. cerevisiae (3.5-fold enrichment) and 29% of the conserved

occurrences across the four species (1 5-fold enrichment). These results suggest that a

function of the Gal4 motif could be inferred from the function of the genes adjacent to its

conserved occurrences. Such putative functional assignments can be useful in directing

experimentation for understanding the precise function of a motif.

Novel functions for genome-wide motifs

We compared each of the 72 motifs against a collection of 318 yeast gene

categories based on functional and experimental data described earlier. These categories

consist of 120 sets of genes defined with a common GO classification in SGD 64; 106 sets

of genes whose upstream region was identified as binding a given transcription factor in

genome-wide chromatin immunoprecipitation (ChIP) experiments6 1; and 92 sets of genes

showing coordinate regulation in RNA expression studies59 . To measure how strongly

the conserved occurrences correlated with the regions upstream (or downstream) of a

particular gene category. We require a hypergeometric score of at least 10-5 to judge an

overlap as significant, after accounting for testing of multiple categories. Most of the 36

discovered motifs that correspond to known motifs showed strong category correlation.

Categories with the strongest correlation included those identified by ChIP with the

transcription factor known to bind the motif, although many other relevant categories

were identified. Of the 42 novel motifs, 25 show strong correlation with at least one

category and thus can be assigned a suggestive biological function (Table 3.6).

Some motifs appear to define previously unknown binding sites associated with

known transcription factors. Motif 32 is likely to be the binding site for Rgtl, which

regulates genes involved in glucose transport65 ; the motif occurs upstream of many such

genes, including appearing five times upstream of HXTI, which encodes a high-affinity

glucose transporter. Motifs 21, 31 and 51 are all associated with genes whose upstream

regions are bound by Sum 1, a transcriptional repressor of genes involved in meiosis. The

first motif has been previously reported (MSE) 66, but the latter two are novel and occur

near genes whose products are involved in chromatin silencing and transcriptional

repression.
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Other motifs do not match regions bound by known transcription factors, but

show strong correlation with functional categories. Motif 9 occurs upstream of genes

involved in nitrogen metabolism, including amino acid and urea metabolism, nitrogen

transport, glutamine metabolism and carbamoyl phosphate synthesis. Motif 25 is

enriched among co-expressed genes (expression cluster 37) whose products function in

vesicular traffic and secretion, including GDP/GTP exchange factors essential for the

secretory machinery, clathrin assembly factors and many vesicle and plasma membrane

proteins. Motifs 9, 13, 26, 34, 37 may play a role in filamentation. They are all enriched

in genes co-regulated during environmental changes, involved in signaling and budding

and bound by transcription factors involved in filamentation, such as Phd 1.

Six motifs show higher conservation downstream of ORFs. Some of these may

be in the 3' untranslated region of a transript and play a regulatory role in mRNA

localization or stability. The strongest (Motif 6 and 67) is found at genes whose product

localizes to the cytosolic translational machinery, the mtDNA translational machinery or

the mitochondrial outer membrane. Downstream motifs are also found enriched in a

group of genes repressed during environmental stress (Motif 60 with expression cluster

37) and a group of genes involved in energy production (Motif 66 with expression cluster

46).

Two motifs (Motif I I a and Motif 69) show variable gap spacing, suggesting a

new type of degeneracy within the recognition site for a transcription factor complex.

Motif I I a corresponds closely to the known motif for Swi4 (Motif 11) but is interrupted

by a central gap of 5, 7 or 9 bases; these variant motifs all show strong correlation with

genes bound by Swi4 in ChIP experiments.

4.4. Discovering additional motifs based on gene sets

We next explored whether additional motifs could be found by searching

specifically for conservation within individual gene categories. We selected mini-motifs

based on their enrichment in specific categories and extended them to full motifs. We

first evaluated our motif discovery method for ChIP experiments of factors with known

motifs, and we found high sensitivity and specificity. We then searched for novel motifs

in all 318 functional categories and discovered novel motifs.
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The enrichment of regulatory motifs found in co-regulated gene sets has been the

primary motivation for motif discovery algorithms such as MEME, AlignAce or

BioProspector. These algorithms typically search for frequently occurring motifs within

the set and subsequently evaluate the significance of the enrichment observed based on

the overall frequency of the motifs throughout the genome. Thus, they search for motifs

that are frequent within the set, and filter out those that are also frequent outside the set.

We select for both criteria simultaneously by choosing mini-motifs based directly on their

category enrichment score. We counted the conserved instances within the category (IN),

and the conserved instances outside the category (OUT). We estimated the ratio

p=IN/(IN+OUT) that we should expect for the category, based on the entire population

of mini-motifs. We then calculated the significance of an observed enrichment as the

binomial probability of observing IN successes out of IN+OUT trials given the

probability of successp. We assigned a z-score to each mini-motif, as described in the

genome-wide search. We extended those mini-motifs of z-score at least 5 sigma by

searching for neighboring conserved bases that increase the specificity. We finally

collapsed motifs of similar extension based on sequence similarity.

Known Motif
RTCRYnnnnACG
ATGACTCAT
CCGGGTAA
TTWCCcnwwwrGGAAA
ACACCCATACATTT
RTCACRTG
TTGTTTACST
CRCGAAAA
ACGCGT
RTGAAACA
CGGnrnnrinnnCCG
ACGCGT
CACGTG
TTCTAGAA
RTGAAACA
CATGTGAAat
TTGTTTACST
CCGGNNCCGG
TGACTC
KGCTGR
TriRTTGGT
CTAWWWNWTAG
CATGTGAAat
AAACTGTGGC
GCTGGT

Hyper
91.4
47.8
44.7
35.9
30.0
24.2
20.7
19.9
19.6
17.8
16.1
15.6
14.2
14.1
13.6
13.4
13.2
13.1
10.2

9.2
8.5
8.4
7.4
7.0
5.2

MEME motif (Lee et al)
TRTCAYT-Y-ACGRA
TGAGTCAY
SCGGGTAAY
TTTCC-AAW-RGGAAA
TTWACAYCCRTACAY-Y
TRGTCACGTG
TTGTTTAC-TWTT
CSMRRCGCGAAAA
G-RR-A-ACGCGT-R
GSAASRR-TGATRAWGYA
CGGM-CW-Y-CCCG
WCGCGTCGCGTY-C
TTGTACACTTYGTTT
TYTTCYAGAA-TTCY
CCYTG-AYTTCW-CTTC
G..GCATGTGAAAA
CYTRT1TAY-WTT
GCCGGTMMCGSYC-
CS-CCAATGK--CS
CACACACACACACACACA
YCT-ATTSG-C-GS
A-CTSGAAGAAATGCGGT
GCATGTGRAAA
GCACGTGATS
GTGTGTGTGTGTGTG

good
good
good
good
good
good
good
good

good

good

good
good
good

good

Category-based motif
RTCACnnnnnACGA
RTGACTCA
CCOOGTAAC
TCCnnnnnnGGA
ACCCCAACA
GTCACGTG
TGTTTTAC..TT
CAACRCGAAAA
AACGCGTCG
YTGAAACA
CGGnnnnnnnnnnCCGA
ACGCGT
CGCACGTG
GTTCTAGAAnnTrTCnnG
TGAAACR
G... CATGTGAA
TGTTAC
CCGGnnnCGG
TGACTCTA
TGCTGG
TGATTGGT
CTA..TTTAG
CATGTG
TGTGGC
TGCTGGT

Table 4.2. Category-based motif discovery shows increased power to discover concise motifs.

Hyper shows the enrichment of the previously published motif in the ChIP experiment corresponding to

the factor. For slightly enriched motifs, MEME fails to find the correct motif, but the conservation-

based method succeeds. Concise and correct motifs are found in each case.
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Factor
Abf1
Gcn4
Rebi
Mcm1
Rap1
Cbfl
Fkh2
Swi4
Mbp1
Ste12
GaI4
Swi6
Pho4
Hsf1
Digi
Ino4
Fkhl
Leu3
Bas1
SwI5
Hap4
Rlm1
Ino2
Met3l
Ace2

good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good
good

Comparson
same
same
same
same
same
same
same
same
better (+)
better (+)
better (+)
same
better (+)
same
better (+)
same
same
same
better (+)
better (+)
better (+)
better (+)
same
same
better (+)



We first evaluated our ability to detect the 43 known motifs for which ChIP

experiments had been performed with the transcription factor that binds the motifs. For

each category defined by the ChIP experiment, we undertook category-based motif

discovery. Strong category-based motifs were found in 29 cases and these invariably

corresponded closely to the known motifs (Table 4.2). These include I I cases in which

the motif had not been found by genome-wide motif discovery, suggesting that a

category-based approach can be more sensitive in some cases. No strong category-based

motifs were found for the remaining 14 known cases, including 7 cases in which genome-

wide analysis yielded the known motif. Analysis of these 14 known motifs showed that

none were, in fact, enriched in the ChIP-based category. This may reflect errors in the

known motifs in some cases and imperfect ChIP data in others. Genome-wide analysis

may simply be more powerful than category-based analysis in some instances. In all, 46

of the 55 known motifs were found by either genome-wide or category-based analysis.

The remaining 9 cases may reflect true failures of the comparative genomic analysis or

errors in the known motifs.

We compared our results to the motifs discovered by MEME in a single species as

reported in Lee et al6 . Our method showed stronger sensitivity in discovering all motifs

for which the ChIP experiment indeed contained the correct motif. Additionally, the

method showed strong specificity in the motifs discovered: the motifs were short and

concise, and closely matched the published consensus. On the contrary, MEME failed to

find the true motif in a number of cases, and when a motif was found it was generally

obscured by a number of surrounding spurious bases that are not reported in the known

motifs. Thus, we successfully used the additional information that comes from the

multiple alignment to improve category-based motif discovery with very satisfactory

results. By comparing multiple species, the signal becomes stronger. It allows the search

to focus on the conserved bases, eliminating most of the noise. Table I summarizes the

results. For each factor, we show the published motif, the hypergeometric enrichment

score of the motif within the category (Hyper), the motif discovered by MEME and a

quality assessment, the motif discovered by our method, as well as the corresponding

category-based score and a quality assessment, and finally the comparison of our method

to MEME. The performance of MEME degrades for less enriched motifs, but we

consistently find the correct motif.

73



Table 4 Additional new motifs discovered by category-based analysis

No. Category Category-based motif Interpretation Score

1 Exp.: cluster 37 YCCCTTAAA New: cluster 37 (Msn2/4-like) [8.5]
2 ChIP: FHL I in YPD ATGTACGGATG New: Rapi alternate [7.61
3 GO: carbohydrate transport GTTTTTCCG New: carbohydrate transport [7.2]
4 GO: fatty acid beta-oxidation TTAnnnCCG New: fatty acid oxidation [6.3]
5 GO: glycolysis/glyconeogenesis TAGTGGAAGC New: glycolysis/glycogenesis [6.0]
6 Exp.: cluster 37 TCAGCC New: cluster 37 [5.9]
7 Exp.: cluster 37 CGGnnnnnCGG New: cluster 37 [5.7]
8 ChIP: CIN5 in YPD GnTTAnnTnAGC New: Cin5 alternate [5.6]
9 ChIP: STE12 in butanol CATTCT Known: Tec1 [5.4]
Table 4.3. Novel category-based motifs.

We then applied the approach to all 318 gene categories. A total of 181 well-

conserved motifs were identified, with many of these being equivalent motifs arising

from multiple categories. Merging such motifs resulted in 52 distinct motifs, of which 43

were already found by the analyses described above. The remaining 9 motifs represent

new category-based motifs (Table 4.3), including the following.

Three novel motifs are associated with genes that are bound by the transcription

factors Rap 1, Ste 12 and Cin5, respectively. RapI is known to bind incomplete or

degenerate instances of the published motif and the new motif may confer additional

specificity. The motif associated with Ste 12 is the known binding site for the partner

transcription factor Tecd, suggesting that Stel2 binding is strongly associated with its

partner under the conditions examined. Similarly, the novel motif associated with Cin5

may be that of a partner transcription factor. Three novel motifs are associated with the

GO category for carbohydrate transport, fatty-acid oxidation and glycolysis-glycogenesis,

respectively. Three novel motifs are associated with an expression cluster (cluster 37)

that includes many genes involved in energy metabolism and stress response.

4.7. Conclusion

Category-based motif discovery contributes only a modest number of additional

motifs beyond those found by genome-wide analysis. This confirms the relatively small

number of regulatory motifs in yeast. A limited count is surprising given the large

number of coordinately transcribed processes in yeast. The versatility of fine-grain yeast

regulation may be rooted in a combinatorial control of gene expression, which will be the

topic of the next chapter.
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CHAPTER 5: COMBINATORIAL REGULATION

5.1. Introduction

We also used the comparisons to understand combinatorial interactions between

regulatory motifs. A simple view of gene regulation where each environmental response

is regulated by a dedicated transcription factor would require as many transcription

factors and regulatory motifs as there are molecules and environmental changes. This is

however not the case. It is estimated that only 160 transcription factors exist in the yeast

genome, but yeast cells contain thousand of co-regulated sets of genes. This discrepancy

requires a different model of gene regulation that goes beyond a one-to-one

correspondence between regulatory motifs and cellular processes.

Our results from the previous chapter indeed point to a model where specific

motif combinations are responsible for different cell responses. We saw that a single

motif is typically involved in the control of many processes, and that a single process is

typically enriched in multiple regulatory motifs. Furthermore, we saw that different

processes were enriched in different combinations of regulatory motifs. Protein-protein

interactions between the multiple factors bound upstream of every gene may dictate the

specific combination of conditions under which the gene will be expressed.

Understanding the combinations of regulatory motifs that are biologically meaningful,

and the changing target gene sets may explain the versatility of eukaryotic gene

regulation using only a small number of regulatory building blocks.

In this chapter, we develop methods to reveal the combinatorial control of gene

expression. We construct a global motif interaction map, simply based on proximity of

conserved motif pairs without requiring biological knowledge of gene function. We then

present evidence for the changing functional specificities of the motif combinations

discovered. Finally, we show the genome-wide effect of motif combinations on gene

expression change.

5.2. Motifs are shared, reused across functional categories

We saw in the previous chapter that the motifs discovered across different

categories largely overlapped. Each motif was discovered on average in three different
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categories. This overlap is certainly to be expected between functionally related

categories such as the chromatin IP experiment for Gcn4, the expression cluster of genes

involved in amino acid biosynthesis, as well as the GO annotations for amino acid

biosynthesis, all of which are enriched in the Gcn4 motif, the master regulator of amino

acid metabolism.

More surprisingly however, different transcription factors are often enriched in

the same motif (which may be due to cooperative binding), and the same motif appears

enriched in multiple expression clusters and functional categories. For example, Cbfl,

Met4, and Met3l share a motif, and so do Hsfl, Msn2 and Msn4; Fkh I and Fkh2; Fhll

and Rap1; Ste12 and Dig1; Swi5 and Ace2; Swi6, Swi4, AshI and Mbpl. Also, a single

motif involved in environmental stress response is found repeatedly in numerous

expression clusters, and in functional categories ranging from secretion, cell organization

and biogenesis, transcription, ribosome biogenesis and rRNA processing.

Hence, the set of regulatory motifs that are specific to one functional category

seems limited. This can hamper category-based motif discovery methods: no category

will be enriched in a single motif, and no motif will be enriched in a single category.

Additionally, there are a number of experimental limitations to a category-based

approach. For example, the expression clusters we have used, although constructed over

an impressive array of experiments, are still limited to the relatively few experimental

conditions generated in the lab. Additionally, the functional categories we used are

limited to the few well-characterized processes in yeast, and the molecular function of

more than 3000 ORFs remains unknown.

A genome-wide approach presents a new and powerful paradigm to understanding

the dictionary of regulatory motifs. By discovering in an unbiased way the complete set

of conserved sequence elements, we now have the building blocks to subsequent analyses

of regulation. To understand the full versatility of gene regulation, we now turn to

understanding the combinatorial code of motif interactions. We first show that motif

combinations can change the specificity of target genes, not in an additive, but in a

combinatorial way. We then present methods to discover interacting motifs from the
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genome-wide co-occurrence of their conserved instances, without making use of

functional information. We then show that the interactions found are meaningful.

5.3. Changing specificity of motif combinations.

The effect of motif sharing a reuse can be additive or combinatorial. An additive

effect simply adds the effect of the co-occurring transcription factors. For example, if

each of two factors induces the expression of a gene, and both bind to a particular region,

then their effect would be a doubly increased level of transcription for that gene. A

combinatorial effect can be more complex. Namely, the combination of two factors may

repress expression for a gene, even though either of the factors alone induces its

expression.

Similarly, we should find that transcription factor combinations show different

functional specificities than either of the transcription factors alone (Figure 5.1). We

study here the gene category enrichment of two transcription factors that are known to

bind to DNA cooperatively: Ste 12 and Tec1. We considered three types of regions:

those containing Tecl motifs but no SteI2 motifs, those containing Stel2 motifs but no

Tec I motifs, and those containing both Ste 12 and Tec I motifs. We then intersected these

Mating Budding

Filamentation

Figure 5.1. Changing specificity of motif combinations increases versatility of gene regulation.
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three types of regions against the gene sets described previously.

We found that the regions that contain only the conserved Ste 12 motif are

enriched for genes involved in mating and pheromone response, while those that contain

conserved occurrences of both the Ste 12 and Tec I motifs are enriched for genes involved

in filamentous growth. These computational observations are consistent with recent

elegant work showing genome-wide evidence that Ste 12 and Tec I indeed cooperate

during starvation to induce filamentation-specific genes68. We also found that regions that

contain only conserved occurrences of the Tec motif are enriched for genes involved in

budding and cell polarity, suggesting that Tec has functions that do not require

cooperative binding with SteI2.

5.4. Genome-wide motif co-occurrence map.

We next address the question of discovering these motif interactions in a genome-
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Figure 5.2. Genome-wide motif co-occurrence map reveals biologically meaningful motif

relationships and transcription factor interactions
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wide fashion. Protein-protein interactions between cooperatively binding transcription

factors require that they bind in proximity upstream of their target genes. The regulatory

motifs recognized by these factors should therefore co-occur in these intergenic regions

of cooperative binding. The spatial orientation and physical distance between these

motifs may vary across different genes, the varying distances being compensated by

DNA bending that can bring the two sites in proximity. However, motif interactions do

not typically cross gene boundaries, that are enforced by chromatin packaging and larger

physical distances from one intergenic region to the next. Thus, co-occurrence of

regulatory motifs in the same intergenic regions might be a good indicator of interacting

transcription factors.

Using the comparison of the four species, we observed the genome-wide co-

occurrence patterns of regulatory motifs (Figure 5.2). We searched for motifs that occur

in the same intergenic regions more frequently than one would expect by chance. We

computed the probability of seeing at least k regions in common when one motif is found

in m regions and the other motif is found in r regions, given a total of n intergenic regions

using the hypergeometric distribution.

Without using any functional information of gene categories, we found a number

of significant motif interactions. These group motifs together into complex motif co-

occurrence networks that may form the basis for studying combinatorial regulation of

gene expression. These are not apparent in a single genome, where functional instances

of the motif are overwhelmed by a much larger number of random occurrences. Cross

species conservation greatly decrease this random noise and reveals biologically

meaningful correlations.

5.5. Results.

We outlined here a number of biologically significant connections in the motif co-

occurrence map. The combinatorial effect between Ste 12 and Tec was indeed observed

at the genome-wide level. The Stel2 and Tec motifs show clear correlation, with about

20% of regions having a conserved occurrence of one also having a conserved occurrence

of the other. This enrichment is not apparent when considering S. cerevisiae alone.
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The motif co-occurrence map reveals a number of biologically meaningful

interactions. (a) About 60% of regions containing conserved motifs for the transcription

factor Leu3 (which regulates branched-chain amino-acid biosynthesis) also contain

conserved motifs for Gcn4 (a general factor regulating amino acid biosynthesis, as well

as many other processes). (b) About 46% of regions containing conserved motifs for the

transcription factor Met3l also contain conserved occurrences of CbfI. In fact, Cbfl

(which is involves in DNA bending) is known to physically interact and cooperate with

the MET regulatory complex. (c) About 34% of regions containing a conserved Gal4

motif also contain a conserved Migi motif. In this case, the correlation reflects

antagonistic interaction. Ga14 induces galactose metabolism genes in presence of

galactose, but Migi represses galactose metabolism in presence of glucose. (d) Pairwise

co-occurrence connects a group of five motifs: Msn2/4 (general stress response), RlmI

(response to cell-wall stresses), Pdrl (pleiotropic drug resistance), Teal (Ty element

activator) and Tbfl (Telomere-binding factor). This suggests a possible link between

various stress responses and adaptive changes at the genome level69.

Many additional correlations are seen among known and novel motifs and can be

pursued experimentally and computationally to construct comprehensive co-occurrence

networks. These can provide information valuable in deciphering biological pathways in

yeast.

5.6. Conclusion.

In this chapter, we provide methods to discover meaningful combinatorial

interactions between regulatory motifs in a genome-wide way. Motif combinations can

change the functional specificity of downstream motifs, and regulate a large number of

processes using only a small number of regulatory motifs. This combinatorial nature of

yeast regulation allows for a robust and modular regulatory network to adapt to changing

environmental conditions. It is possible that additional regulatory motifs are added to the

network, modulated by the more stable master regulatory motifs. We can further pursue

these ideas to understand the rewiring of regulatory networks across evolutionary time.

This may be one of many subtle ways of rapid evolutionary change outlined in the next

chapter.
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CHAPTER 6: EVOLUTIONARY CHANGE

6.1. Introduction

In previous chapters, we used the stronger conservation of functional elements

across related species for the direct identification of genes and regulatory motifs.

However, the species compared are not identical. They live in different environments

and are subject to different pressures for survival. In the short evolutionary time that

separates them, they have undergone a number of evolutionary changes to adapt to their

respective environments.

In comparative genomics, both similarities and differences of the species

compared can reveal important biological principles. Focusing on the similarities gives

us a view of a core cell whose functionality has remained unchanged since the common

ancestor of the species. Focusing on the differences gives us a dynamic view of a

changing genome, and the mechanisms evolved for rapid adaptation to changing

environments.

In this chapter, we focus on the mechanisms of evolutionary change that have

become apparent in our comparisons. We show that the ambiguities in gene

correspondence found in chapter 1 are localized in rapidly evolving telomeric regions at

the chromosome endpoints. We also show that non-telomeric changes in gene order are

due to either the inversion of a chromosomal segment (containing fewer than 20 genes) or

reciprocal exchanges of chromosomal arms. For both types of events, the sequences at

the breakpoints suggest specific mechanisms of chromosomal change. We observed few

differences in gene content between the species, suggesting that phenotypic differences

may be due to more subtle effects like protein domain changes and changes in gene

regulation. Finally, we observed rapidly and slowly evolving genes: at one end of the

spectrum, we found evidence of positive selection for rapid change in membrane

adhesion proteins, suggesting a small number of mechanisms of rapid change; we also

found genes that were surprisingly strongly conserved suggesting new hypotheses for

their function.

81



6.2. Protein family expansions localize at the telomeres.

In the previous chapters, we used unambiguous ORFs and intergenic regions to

discover conserved coding and regulatory elements in the yeast genome. In this chapter,

we use ORFs with ambiguous correspondence to determine regions of rapid change.

We marked the chromosomal location of all S. cerevisiae ORFs that are

ambiguous in at least one species. We then constructed ambiguity clusters when two or

more ambiguous ORFs within 16kb of each other. We counted the number of

ambiguities in each cluster, counting more than one ambiguities for an ORF whose

correspondence was ambiguous in more than one species. Only 32 clusters were found

containing more than two ambiguities. We ignored two clusters due to regions of low

coverage in S. mikatae and one cluster corresponding to a previously described inversion.

Most of the ambiguities are strikingly clustered in telomeric regions (Figure 6.1).

More than 80% fall into one of 32 clusters of two or more genes (average size ~18 kb,

together comprising ~4% of the genome), which correspond nearly perfectly to the 32

telomeric regions of the 16 chromosomes of S. cerevisiae. Only one telomeric region

lacks a cluster and only one cluster does not lie in telomeric regions in S. cerevisiae: it is

a recent insertion of a segment that is telomeric in the other three species. The rapid

structural evolution in the telomeric regions can also be observed at the gene level. The

gene families contained within these regions (including the HXT, FLO, PAU, COS, THI,

YRF families) show significant changes in number, order, and orientation. The regions

also harbor many novel sequences, including protein-coding sequences. Finally, the

telomeric regions have undergone 1 1 reciprocal translocations across the species.

Together, these features define relatively clear boundaries for the telomeric

regions on all 32 chromosome arms, with sizes ranging from -7 kb to -52 kb on

chromosome I-R. The extraordinary genomic churning occurring in these regions - and

the telomeric localization of environment adaptation protein families - together probably

play a key role in rapidly creating phenotypic diversity over evolutionary time. A high

degree of variation in telomeric gene families has also been reported in P. falsiparum69

the parasite responsible for malaria, and is related to antigenic variation.
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Figure 6.1. Rapid evolution in telomeres. Telomeric protein family expansions can

rapidly create phenotypic diversity, potentially an evolutionary advantage.
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6.3. Chromosomal rearrangements mediated by specific sequences.

Outside of the telomeric regions, few genomic rearrangements are found relative

to S. cerevisiae (Figure 6.2). To discover these, we considered consecutive unambiguous

matches, marking all changes in gene spacing, gene orientation, and off-synteny matches

between scaffolds and orthologous S. cerevisiae chromosomes. We found that changes in

gene spacing are typically associated with transposon insertions and associated novel

genes, as well as tandem duplications. Virtually all changes in gene orientation typically

affect between 2 and 10 consecutive ORFs and can be traced to one of 16 multi-gene

inversions. The majority of off-synteny matches involve a single ORF and only 20

involve more than 2 consecutive ORFs. Virtually all single-gene off-synteny matches

were contained within ancient duplication blocks of Saccharomyces as described in 70 and

http://acer.gen.tcd.ie/~khwolfe/yeast/nova/. These probably represent previously

duplicated genes that were differentially lost in different species, rather than a DNA

ITelomeric expansion iiTranslocation iii Transpostion
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break in one of the two lineages, as was previously noted in 71. Off-synteny matches that

involve more than two genes from the same chromosome correspond to one of 20

chromosomal exchanges.

S. paradoxus shows no reciprocal translocations, 4 inversions and 3 segmental

duplications. S. mikatae shows 4 reciprocal translocations and 13 inversions. S. bayanus

has 5 reciprocal translocations and 3 inversions. The results confirmed four recently

reported reciprocal translocations in these species, identified by pulsed-field gel

electrophoresis72 , and identified four additional reciprocal translocations that had been

missed. The sequence at the chromosomal breakpoints suggested the possible

mechanism that underlie the rearrangements. Strikingly, the 20 inversions are all flanked

by tRNA genes in opposite transcriptional orientation and usually of the same isoacceptor

type; the origins of inversions in recombination between tRNA genes has not previously

been noted. The reciprocal translocations occurred between Ty elements in seven cases

and between highly similar pairs of ribosomal protein genes in two cases; the implication

of Ty elements in reciprocal translocation is consistent with previous reports 44 71-73. One

segmental duplication involves 'donor' and 'recipient' regions that are descendants of an

ancient duplication in the yeast genome 70 . Differential gene loss of anciently duplicated

genes has been previously reported 74, but this is the first observation of a recent re-

duplication event within anciently duplicated regions.

6.4. Small number of novel genes separate the species

We found a very small number of genes unique to one species and absent in the

others. We noted above that S. cerevisiae contains 18 genes for which we could not

identify orthologs in any of the other species, of which 7 encode > 200 aa. These may be

species-specific genes in S. cerevisiae, but alternatively could simply reflect gaps in the

available draft genome sequences.

This uncertainty does not arise, however, in the reverse direction in identifying

genes in the related species that lack an ortholog in S. cerevisiae. We found a total of 35

such ORFs encoding : 200 aa (with the minimum length chosen to ensure that these are

likely to represent valid genes). The list includes 5 genes unique to S. paradoxus, 8 genes

unique to S. mikatae (two of which are 99% identical) and 19 genes unique to S. bayanus
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(three of which form a gene family with > 90% pairwise identity). There is also one gene

represented by orthologous ORFs found in the latter two species only and one

represented by orthologous ORFS in all three related species.

These species-specific ORFs are notable with respect to both function and

location. The majority (63%) can also be assigned biological function on the basis of

strong protein-sequence similarity with genes in other organisms. Most involve sugar

metabolism and gene regulation (including one encoding a silencer protein). The majority

(69%) are found in telomeric regions and an additional set (17%) are immediately

adjacent to Ty elements; these locations are consistent with rapid genome evolution.

A curious coincidence was noted in the region between YFLO14W and YFLO16W

in S. cerevisiae. In the orthologous regions in all four species, we find a species-specific

ORF in every case (165, 111, 136 and 228 aa), but these four ORFs show little similarity

at the protein level. The amino acid sequence has been disrupted by frame-shifting indels,

but a long ORF has been maintained in each case. The explanation for this phenomenon

is unclear, but may prove interesting.

6.5. Slow evolution suggests novel gene function.

With sequence alignments at millions of positions across the four species, it is

possible to obtain a precise estimate of the rate of evolutionary change in the tree

connecting the species.

One notable observation is the difference in substitution rate between S.

cerevisiae and S. paradoxus (Figure 6.3). Using S. bayanus as an outgroup, the

substitution rate is about 67% lower in the lineage leading to S. paradoxus. This

observation is consistent regardless of the measure of evolutionary change: mutations,

A S.cerevisiae B 0.133 S. cerevisiae
C 03

0 0 S.paradoxus S.paradoxus

088 - S.mikatae 0.188 S. mikatae

0.118 S.bayanus 0269 S. bayanUS

Figure 6.3. Slower mutation rate of S. paradoxus observed in genes and in intergenic regionsl
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insertions, deletions measured across intergenic regions, genes or degenerate nucleotides

in coding sequence all point to the same discrepancy. Hence, we can conclude that S.

paradoxus is evolving at a slower rate than S. cerevisiae or S. mikatae. This could be due

to generation time, but also life cycle throughout the year. Wild-type species remain

dormant most of the year in spores, until the next blooming. This causes fewer cell

divisions, hence fewer errors in replicating the DNA.

We can also observe differences in the rate of change of individual genes. One

case stands out as an extreme outlier: the mating-type gene MATA2. The gene shows

perfect 100% conservation at the amino acid level over its entire length (119 aa) across

all four species. More strikingly, the gene shows perfect 100% conservation at the

nucleotide level as well (357 bp). This differs sharply for the typical pattern seen for

protein-coding genes, which show relaxed constraint in third positions of codons.

Notably, the MATA2 gene is the only one of the four mating-type genes (the others being

MATcI, MATa2 and MATA I) whose biochemical function remains unknown despite

two decades of research75 . An important clue may be that the sequence of MATA2 is

identical in all four species to the 3'-end of the MATu2 gene. Perfect conservation at the

nucleotide-level and identity to the terminus of MATL2 suggests that MATA2 may

function not only by encoding a protein, but by encoding an anti-sense RNA or a DNA

site. Hence, the lack of evolutionary change can suggest additional biological functions

responsible for the pressure to conserve nucleotide sequence.

6.6. Evidence and mechanisms of rapid protein change.

Similarly, the unusually high rate of change can be biologically meaningful. The

gene analysis described in chapter 2 rejected only a single ORF (YBR184W) that is

clearly encoding a functional protein. The region containing YBR184W corresponds to a

large open reading frame in all four species (524, 558, 554 and 556 amino acids,

respectively), but the alignment shows unusually low sequence conservation. The

sequence has only 32% nucleotide identity and 13% amino acid identity across the four

species (Figure 6.4). Pairwise alignments across the species show numerous insertions

and deletions, explaining why the gene failed the RFC test. (Interestingly, multiple

alignment of all four species simultaneously improves the alignment sufficiently that the

gene passes the RFC test; this suggests a way to improve the test.)
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The rapid divergence is suggestive of a gene under strong positive selection. We

tested this notion by calculating the Ka/Ks ratio (the normalized ratio of amino-acid-

altering substitutions to silent substitutions), a traditional test for positive selection 6 .

Sce r MYQNNVLNAI LASEKSNFQYD-SGT I LRN-HKRP I ITFNNNIEHTVSEPNNFTGYEEKED
Spar MDRNNVLNNI SVSGKSNFQYEQNGKRRLKNQKRP I ITFNSNAEYAI SEHEKYTNYEETT D
Smik MLNNISSSGNINVQYEQNING-RLKNDKTPTKSFNANVEYTICNYNSFESYEERVVLNTM
Sbay MIPNNVLNDIADSGRLNVKYNQQIKVKLGNVKAQGIGLGANEMPPSENDFKYTSYEERIE

* * *

Scer L---DIMDICPYYP ------- KARML--ADAIQHAKTSASENKMELSM---------KTI
Spar SIATNMCPYYRKGGILMDAPQSVMNQRANTSIGEDKKYVSEHNSGILNPGNKVELSMKAT
Smik K---TCSNYQKGDILIEILQPVMNRTI-NTRISKSKKNNPEYKSGVLSPEDEAESLMKKT
Sbay RQKI KTHYHYRKGGTRI DTSKVAINQHADTRIRGGRKCTPEHNIGTTTSKHEARLPEDI P

* *

Sce r PCLKKENVHVEKG DWSQLSTSRICKILED ADKKNKTRRQSAPLQKTKYFPTNENQNTD
Spar PCLKQEDCHFEGG DWSQLSTSKICKILEDJ SGKKHKTRGQLAPLQKVKYPQKIGNQKTD
Smik KFLKRKSNHHKE DWSRLSTSNICKILED SGKKDRTRVQSSLLQEKIYPQKVCNQKIK
Sbay QPIEQENRHFED DWSRLSTSKICEILED SSKKHRSKVHFTPLPKKEKLPKTHYKEND

* +++t +.±..t±...+tt..+±.+t+j ** *

Scer I NQNWSQIPNEDICALIIARNKNRKRKNLSCSKVQEIQGNIDLPKKDVQEGDISD

Spar K QNWSQIPNEDICALIEKISSR NKNPKRINRSCSQIQEMLGGIDSAENRIDKGEITD
Smik E14NQNWSQIPNEDICALIERIASR SKPLKRTNHPDYQVKEITDAIDAAGDCMRKVEGMQ
Sbay E NQDWSQIPNEDVCELIEKIASRifNNSLKDMDRSCSRNQENSETIDFLENDTHIGELTN

Scer SSLFAAVRGTKKVSGYDYNSEDKIPNAIRLPYCKQILRLFSLLQMKRNDLIVTSENCNSG
Spar SPLFTAVRENEDVLGYNFGSKGKIPKAICLPHHKEKIQLVSFLQMKKNELGTTCKNHEGE
Smik TLLVKDEGSCENSRRRDFNSKSIIPNTISLPFQKDRKQLRSTLQRKRKSLVTISGTHGK
Sbay T LQRNAKGSCEKTTENHYNPESKI SKAICLPHQEKELRLI PFLQKQRREPAI I CRGGVRE

* * ** * **

Scer VFFSNFNYQLQVKSNCIANI-----SSTLSFLPHHEITVYTSFILYPNVVDNIWECTRY-
Spar LVLRKFDDKVTVNSNCATNNYFNEVIATLNYSVYHEMTVYTSFILNPNVGDNIWGSRKCA
Smik FIMRELDNESIVKLNCPVNRFFNQEKVILNHSFHHEIIVYTYTALQFKVENNIWKLRKSP
Sbay FRMRKSPKKLKLCPRT LVRNVFSVGVI I SSHSLSFERKI LMHQTFELRS LRDI RDRRTSS

Scer ------ AIQLLKSEAAQFTLLRDIYSGFTIILSNHRYHPKGFSADYCYSANELTLFLFVI
Spar FQLLKPEAVDTTNNMHHFTLPQDIHGDSIIVVSKYQFDPNNLVVELRYSSKKLRLLHSIF
Smik IQLLEPGVINTTNILHPVSVPQGLYGDFTVFLSKNLTDPKKFIDGCCFSLQELRSLTCAF
Sbay FLRSKLEQAHTEITSHLFKPSQSISPCFTMKVVKNRLGSKAFAIICHYELQTPQFDLRGP

Scer RTGQKKVLYRSIPH------NTAAIEKDSSFDTENRKRRSEEEVVLKCRKCSNNSLALKE
Spar GTGSKKILYHLIPH------ NITTVKEDCPSDTEYSKKRSQKNVLKYRMYSNSSL-VLKE
Smik GTYQKNELHHRIAY------HTTTIEMDYYSSTQYEKKKPHKNAIFRNRTHANSWLTPKK
Sbay KTSDCNTHKKSSRLLLMPCEATAIKEIYHPDANLKSKTSHGNTVVETEKLFNNCLPRKGR

Scer ISTYRLDSAEGFEKSQPLKDEAKLSDMNYVQGSISYNRTILTGLWKLFHRLCCKDRYRKT
Spar ISAHGLDSVESFARSQSPENKRELSDINYVQGSVTHNRSILACLGDFFHRFYFKSCSGKT
Smik VCVHRLDSAGCSHRFQPAEKKENHKDVNSLQGNDTRQRNIISDLRNFFLKFYCNGCSKKT
Sbay ADLLNSVERSSKSRPSEAKNNPSRNDAINVQGSVTANNSLFAGLRGLFHRLYSKDCWSKA

Scer N SETLFYUUSTERWYG x4HY-
Spar DLSETLFYDNSTEKWVKMGEI HQ-
Smik DLSKI LFYDDFTEKWVKMGEI HH-
Sbay DLSET LFYDDLTNRWVKMGD IQYH

** **** * ** ** *

Figure 6.4. Multiple alignment of YBR184W shows only three conserved protein domains.
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Whereas typical genes in S. cerevisiae show a Ka/Ks ratio of 0.11 ± 0.02, YBR184W has

a ratio of 0.689. This ratio ranks as the third highest observed among all yeast genes (If

three small domains with high conservation are excluded, the ratio rises to 0.774). The

two genes with higher Ka/Ks ratio are YAR068W, a putative membrane protein, and

YER121 W, whose expression changes under stress.

The protein encoded by YBR184W has not been extensively studied, but

expression studies show that the gene is induced during sporulation77 and sequence

analysis shows that it is similar to the gene YSWJ that encodes a spore-specific protein.

This is consistent with the observation that many of the best studied examples of positive

selection in other organisms are genes related to gamete function. The change might

promote speciation by imposing constraints on mating partner selection.

The vast majority of nucleotide changes in protein coding regions are silent or

affect individual amino acids. However, a small number of events suggest additional

mechanisms of rapid protein change. These events include closely spaced compensatory

indels that affect the translation of small contiguous amino acid stretches. They also

include the loss and gain of stop codons (by a nucleotide substitution or a frame-shifting

indel) that may result in the rapid change of protein segments or the translation of

previously non-coding regions. Such events are observed more frequently near

telomeric regions and may affect silenced genes or recently inactivated pseudogenes.

Additionally, we found a small number of differences in the length of orthologous

proteins. These typically involve changes in the copy number of tri-nucleotide repeats,

such as (CAA)n that encodes hydrophobic stretches often involved in protein-protein

interactions. The most drastic example is seen for the TFPI gene, which encodes a

vacuolar ATPase. The S. cerevisiae gene contains an insertion of 1400 bp that is absent

in the three related species. The insertion corresponds to the recent horizontal transfer of

a known post-translationally self-splicing intein, VMA 179.

6.7. Conclusion.

When comparing genomes, similarities and differences alike can reveal biological

meaning. In comparing closely related species, the precise ways in which genomes

change can reveal important biological insights. From the large-scale chromosomal
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changes, to the substitutions of individual nucleotides, we find specific rules and

constraints in the ways genomes evolve. Precise signals seem to govern how genomes

are read, but also how they change. Evolutionary fitness may come from the combination

of a fit genome that outperforms competition in the present, but also a modular genome

that enables rapid evolution in times of extreme environmental pressure. The ability to

rapidly carry out advantageous changes may be an inherent requirement in creating

complexity via modularity. Evolutionary traits may be selected by reversible changes

that allowed survival in the past, and will allow survival in the future. Each of the

similarities and differences observed merits further experimental study. Understanding

how genomes are written, and how they change, will be central to our understanding of

the ever-changing book of life.
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CONCLUSION

C.1. Summary

In this thesis, we explored the ability to extract a wide range of biological

information from genome comparison among related organisms. Our results show that

comparative analysis with closely related species can be invaluable in annotating a

genome. It reveals the way different regions change and the constraints they face,

providing clues as to their use. Even in a genome as compact as that of S.cerevisiae,

where genes are easily detectable and rarely spliced, much remains to be learned about

the gene content. We found that a large number of the annotated ORFs are dubious,

adjusted the boundaries of hundreds of genes, and discovered more than 50 novel ORIs

and 40 novel introns. Moreover, our comparisons have enabled a glimpse into the

dynamic nature of gene regulation and co-regulated genes by discovering most known

regulatory motifs as well as a number of novel motifs. The signals for these discoveries

are present within the primary sequence of S.cerevisiae, but represent only a small

fraction of the genome. Under the lens of evolutionary conservation, these signals stand

out from the non-conserved noise. Hence, in studying any one genome, comparative

analysis of closely related species can provide the basis for a global understanding of a

wide range of functional elements.

Our results demonstrate the central role of computational tools in modern biology.

The analyses presented in this thesis have revealed biological findings that can not be

discovered by traditional genetic methods, regardless of the time or effort spent. Isolated

deletion of every single yeast gene has been carried out without resolving the debate on

the number of functional genes. Promoter analysis of any single gene could not reveal

the subtle regulatory signals that become apparent at the genome-wide level. The

approach presented is general, and has the advantage that one can increase its power by

increasing the number of species studied. As sequencing costs lower and sequencing

capacity increases, obtaining additional genomes becomes only a question of time. The

comparison of multiple related species may present a new paradigm for understanding the

genome of any single species. In particular, our methods are currently being applied to a

kingdom-wide exploration of fungal genomes, and the comparative analysis of the human

genome with that of the mouse and other mammals.
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C.2. Extracting signal from noise.

For S. cerevisiae, our results show that comparative genome analysis of a handful

of related species has substantial power to separate signal from noise to identify genes,

define gene structure, highlight rapid and slow evolutionary change, recognize regulatory

elements and reveal combinatorial control of gene regulation. The power is comparable

or superior to experimental analysis, in terms of sensitivity and precision.

In principle, the approach could be applied to any organism by selecting a suitable

set of related species. The optimal choice of species depends on multiple considerations,

largely related to the evolutionary tree connecting the species. These include the

following:

(1) The branch length t between species should be short enough to permit

orthologous sequence to be readily aligned. The yeasts studied here differ by t = 0.23-

0.55 substitutions per site and are readily aligned. The strong conservation of synteny

(covering more than 90% of S. cerevisiae chromosomes belong in synteny blocks)

allowed the unambiguous correspondence of the vast majority of genes.

(2) The total branch length of the tree should be large enough that non-functional

sites will have undergone substantially more drift than functional sites, thereby providing

an adequate degree of signal-to-noise enrichment (SNE). For this analysis, the multiple

species studied provide a total branch length of 0.83 and a probability of nucleotide

identity across all four species in non-coding regions of 49%. The SNE is thus ~2-fold

(=1/0.49) for highly constrained nucleotides and correspondingly higher for composite

features involving many nucleotides.

(3) The species should represent as narrow a group as possible, subject to the

considerations above. Because the comparative analysis above seeks to identify genomic

elements common to the species, it can explain only aspects of biology shared across the

taxon. In the present case, the analysis identifies elements shared across Saccharomyces

sensu stricto, a closely related set of species such that the vast majority of genes and

regulatory elements are shared.

With these considerations in mind, the question remains as to what is the "right"

number of species for comparative analysis. Similarly, one can ask, given a set of
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previously sequenced species, what is the optimal choice for the next species to sequence.

The answer of course depends on the goal at hand. In discovering genes, the number of

species required depends on the length of the genes sought. In discovering motifs, the

number of species depends on the motif length, its allowed degeneracy, and the total

number of conserved instances. And in each case, the evolutionary distance of the

species compared, but also the topology of the phylogenetic tree, will determine our

ability to extract signal from noise. We found that genome-wide methods could increase

the power of comparative analysis that is based on a handful of species. The answer in

the general case merits a much more detailed analysis.

C.3. Analysis of mammalian genomes

What are the implications for the understanding of the human genome?

The present study provides a good model for evolutionary distances (substitutions

per site in intergenic regions) relevant to the study of the human. The sequence

divergence between S. cerevisiae and the most distant relative S. bayanus (11% indels

and 62% nucleotide identity in aligned positions) is similar to that between human and

mouse (12% indels and 66% nucleotide identity in aligned positions).

An important difference between yeast and human is the inherent signal-to-noise

ratio (SNR) in the genome. Yeast has a high SNR, with protein-coding regions

comprising ~70% of the genome coding for protein or RNA genes and regulatory

elements comprising perhaps -15% of the intergenic regions. The human has a much

lower SNR, with the corresponding figures being perhaps -2% and ~3%19. A lower SNR

must be offset by a higher SNE. Some enrichment can also be obtained by filtering out

the repeat sequences that comprise half of the human genome. Greater enrichment can be

accomplished by increasing the number of species studied, taking advantage both of

nucleotide level divergence and frequently occurring genomic deletion' 9 .

Such considerations indicate that it should be possible to use comparative

analysis, such as explored here for yeast, to directly identify many functional elements in

the human genome common to mammals. More generally, comparative analysis offers a

powerful and precise initial tool for interpreting genomes.
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C.4. The road ahead

In this thesis, we explored the ability of computational comparative genomics to

extract biological signals that govern genes, regulation, and evolution. The nature of

these signals however had been previously established experimentally. Knowing that

genes were translated into amino acids every three nucleotides was central in our test of

reading frame conservation. Knowing that regulatory motifs appear in multiple

intergenic regions was crucial to our genome-wide discovery methods. Knowing the

kinds of functional sequences to look for allowed us to examine the ways that they

change. In each case, our methods relied on well-posed questions based on currently

established biological knowledge.

In the future however, it will be important to formulate new hypotheses from

genomic data. We cannot begin to imagine the types of information encoded in the

human genome. The basis for intelligence, psychology, immunity, development,

emotions are all encoded within our cells. New biological paradigms will be needed to

explore novel aspects of biology, and their very discovery will reside in genome-wide

studies. Development of new technologies, new statistical methods, new computational

tools will be needed. An explosion of biological data, but also an explosion in novel

experimental techniques has already started. And the only way to proceed is a constant

marriage between biology and computer science.
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APPENDIX

Counting combinations: The number of ways to choose k items without

replacement from a total of n is given by (n choose k):

n n! n(n -1)...(n -k +1)

k )(n - k )! k! k!

Binomial distribution: The probability of obtaining k successes out of n trials

given a probability p of success for any one trial is given by:

p(k)= (njpk -)k

Hypergeometric distribution: When choosing a random subset of size r from n

items of which m belong in a particular category, the probability that k of the selected

items belong to that category is given by:

p(X = k) = E7IzI -k
k r-k r

Standard normal distribution (or Gaussian distribution): The sum of a large

number of independent variables follows a normal distribution of density function:

f(x) e

Computing z-scores: Any probability p can be represented as the standard

deviations away from the mean of a standard normal distribution corresponding to tail

area p.

p

-3 z -2z -1 z 0 +1 z +2 z +3 z
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