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ABSTRACT:

We introduce Softspec, an all-software, speculation based approach to automatic
parallelization of sequential applications in modem programming languages, including C.
Softspec parallelizes loops containing stride-predictable memory references, without
resorting to complex compiler analyses, special hardware support. By detecting parallel
regions at runtime and speculatively executing them in parallel, Softspec succeeds in
parallelizing codes with memory access patterns that are indeterminable until runtime,
such as codes with pointers. We have implemented a prototype system and observed
speedup on dense-matrix applications running on a symmetric shared-memory
multiprocessor. We show how other classes of applications previously not amenable to
automatic parallelization could possibly be parallelized using the Softspec approach,
including certain sparse-matrix applications.
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1. Introduction

In the pursuit of higher and higher performance, architects have greatly increased the

complexity of hardware and software systems. This is driving up the cost of design, development,

implementation, and also decreasing the reliability of these systems. A primary motivation of our

work is to discover ways to improve performance of modem computer systems without unduly

increasing the complexity faced by either application developers, compiler writers or computer

architects.

Symmetric shared-memory multiprocessors are able to provide scalable high

performance with only simple hardware extensions to existing uniprocessors. However, these

systems are not as widely accepted as uniprocessors due to the difficulty of programming them,

making it difficult to develop, debug, and maintain applications. To overcome this difficulty,

compiler techniques to automatically parallelize programs have been developed. However, these

compilers require complex inter-procedural data-flow and alias analyses to identify parallel

regions and prove that they do not have any data dependences between them for all possible

program inputs and dynamic program behavior. Consequently, the codes amenable to compile-

time parallelization are typically small, self-contained programs consisting of loop nests with

affine array accesses. They are also written in languages such as FORTRAN, which permit

limited memory aliasing. Current parallelizing compiler techniques fall short of being able to

parallelize typical applications, which are large systems with multiple modules written in newer,

more popular languages such as C, C++, and Java. Even the FORTRAN programs that were

amenable to compile-time parallelization may not be parallelizable once re-written in the newer

languages, since these languages permit aliasing of pointers and promote use of a variety of data

structures. For example, the mere presence of a single unanalyzable pointer can render compile-

time identification of parallelism impossible.
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With the aim of parallelizing programs containing pointers and different kinds of data

structures, new hardware-based speculative systems have been proposed and researched [1][2][3].

These techniques attempt to overcome the need for a compile-time proof of the existence of

parallelism by speculatively executing candidate regions in parallel. However, one of their

drawbacks is that require specialized hardware support to (1) identify violations of the sequential

semantics of the program caused by speculation and (2) annul the effect of speculative execution,

in this case. This hardware support ranges from significant extensions of existing multiprocessing

memory systems [1][2] to completely new hardware structures [3].

In this paper, we approach the problem of parallelizing modem sequential applications by

relying on two observations: one about program performance and one about memory access

patterns. These permit us to increase performance of applications without unduly increasing the

complexity of the hardware and software required. First, it was observed in both parallelizing

compilers and speculatively parallelizing schemes that good speedup was achieved when the

parallel regions do not have inter-dependences. These doall regions can be executed in parallel

without any synchronization. By comparison, programs with memory dependencies between

iterations that are executed in parallel must incur the overhead of frequent synchronization, to

manage the memory dependencies. Secondly, we observe that the addresses appearing in loop

iterations can be predicted based on runtime information. In Section 4, we show that applications

with affine accesses as well as sparse matrix and integer applications have many predictable

accesses.

We present a parallelization scheme that takes advantage of these observations. On the

basis of runtime prediction of memory addresses appearing in loop iterations, this scheme

speculates on the existence of parallel regions at runtime. These regions are executed in parallel

with a simple mechanism to detect speculation violations. When the prediction is accurate, the
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speculative parallelism will succeed and scalable speedup can be observed. If the prediction is

found to be inaccurate while executing the program in parallel, a (parallel) mechanism is

provided to undo the effect of the speculation so that the loop may be correctly re-executed

sequentially. This scheme ensures that there is no need for synchronization or access to the same

memory locations by different processors during parallel execution.

To provide a working example of this approach and evaluate its runtime performance, we

implement Softspec: a compiler and a runtime-system which together permit sequentially written

C programs to run speculatively in parallel on a shared-memory multiprocessor. The compiler can

be applied to programs containing loops with stride predictable load/store addresses, including

loops containing affine array accesses and potentially sparse matrix applications that are not

parallelizable using compile-time analysis. Code generation involves only localized analysis of

code regions and does not make use of complicated whole program analyses. Our implementation

is all-software and no hardware modifications to the multiprocessor are needed. We measure

speedup when the compiled programs are run on a modem Digital Alpha multiprocessor, and we

expect that these programs will achieve even greater speedup on tightly-integrated single-chip

multiprocessors envisioned for the future [14]. Applicability of this approach hinges on

successfully exploiting the predictability of dynamic addresses to detect whether or not there will

be inter-thread memory dependencies. This approach is not necessarily limited to programs with

stride-predictable load/store addresses.

The rest of the paper is organized as follows. Section 2 describes the Softspec approach.

Section 3 describes our prototype compiler and runtime system implementation. In Section 4, we

examine the stride predictability of Spec92 benchmarks and provide three case studies of dense-

matrix and sparse-matrix applications, to evaluate the Softspec approach. In this section, we also

provide results for the runtime performance of dense-matrix codes that are parallelized by our
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compiler. Section 5 provides an overview of related work and section 6 concludes the paper. Four

appendices are also provided, to further elucidate various concepts. Appendix A describes and

evaluates optimized algorithms used in the detection phase. Appendix B shows a source program

and its corresponding output from the Softspec compiler, which is linked with the Softspec

runtime library. Appendices C and D provide source code for the Softspec compiler and runtime

system, respectively.

2. The Softspec Approach to Parallelization

This section presents an overview of our novel approach to parallelization. In parallelizing a

loop, the read and write accesses of the first three iterations are profiled. Using this profile

information, the runtime system performs checks for stride predictability. If accesses are stride

predictable during the first three iterations, the runtime detection phase checks if the loop is

parallelizable assuming that the stride predictions hold for the remaining iterations. If parallelism

is detected, the loop is speculatively executed in parallel. If the accesses behave as predicted

during the parallel execution, the speculative parallelization of the loop will be a success.

However, if there is a misprediction, the remaining part of the speculative parallel execution is

aborted and the effect of the executed part of speculation is undone, i.e. Softspec has the ability

to restore the state of the machine memory to what it was before speculative execution. The rest

of the section describes these four steps, prediction, detection, speculation, restorability, and

undo, in detail.

2.1 Stride Prediction

A load/store is said to be stride predictable, if the address it accesses is incremented by a

constant stride for each successive dynamic instance (for example in a loop). Due to a
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fundamental property of affine functions, array accesses with affine index expressions within

loops are always stride-predictable.

In our approach to parallelization, the compiler need not perform analysis to prove that a

loop has affine index expressions, or that its accesses are stride predictable. By profiling the

addresses appearing in the first two iterations of a loop at runtime, it is possible to infer the stride

with which addresses appear in subsequent iterations using stride-predictability. In practice, three

iterations are profiled to additionally perform a check to verify that the addresses appearing in the

third iteration follow the stride pattern deduced from the addresses in the first two iterations. This

is illustrated in Figure 1 (a), where the addresses of two hypothetical memory references are

graphed for the first three iterations and linearly extrapolated to predict the addresses appearing in

subsequent iterations.

It has been observed that many other types of memory references, in addition to affine

access functions, can be stride predictable [8][10]. In Section 4.1, we show that both floating-

point and integer benchmarks of the SPEC92 suite have high degree of stride predictability of

memory addresses.

proc o proc I proc 2
AA A
D D D
D -- D D
R -R R ~
E -E E

s - -s -s

iterations iterations iterations
(a) Prediction of two accesses after 3 iterations (b) Detection of speculative parallel region (c) Speculative parallel execution on 3 processors

Figure 1: Profile, prediction, detection and speculative execution of a loop with two memory accesses
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2.2 Detection of Parallelism

Once the addresses accessed by the loop iterations have been profiled and the strides have

been calculated, it is necessary to determine whether parallel execution of the loop will violate the

sequential semantics. The requirement for inter-iteration parallelism is that a write in one iteration

should not be to the same address as another read or write in another iteration. Otherwise, true,

anti, or write dependences will result. Figure 1 (b) shows how the two address predictions from

Figure 1 (a) are compared to find the maximum number of loop iterations where the two address

ranges do not overlap.

We now show how to determine whether two stride predictable memory references will

lead to inter-iteration data-dependencies. Suppose there are two memory instructions within the

loop body which access addresses po and qo during the first iteration of the loop, and continue to

access memory with strides s and t, respectively. In general s and t may not be equal. Then on the

n'th iteration, the accesses will be p(n) = po + s*n and q(n) = q0 + t*n respectively. If for some m

0 and n 0, both less than N, we have p(m) = q(n), then a memory dependence will result

when N iterations are executed in parallel. This condition results in a diophantine equation in m

and n with a solution set parameterized by one integer variable. Solutions to this equation indicate

which iterations will have dependencies. From this solution the maximum number of iterations of

the loop which can run in parallel can be calculated as follows.

We can re-write this equation as s*m - t*n = q0 - po. This equation will admit solutions if

and only if the greatest common divisor of s and t, namely (s,t), divides qo - po. In this case, the

solution set of this equation can be obtained as a singly-parameterized set, by using Euclid's gcd

algorithm which also computes the (s,t)[16]. Once the parameterized solution is obtained, a

further calculation determines the smallest non-negative values of m and n, which are solutions.
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From this, we can calculate the largest number of iterations that can be run without incurring

inter-iteration memory dependencies.

By pairwise comparison of references, it is then possible to determine how many

iterations of the loop can be parallelized. If there are R load instructions and W write instructions

within the loop body, W(W+R) comparisons must be performed and the minimum of all the

results is the number of parallelizable iterations within the loop.

2.3 Speculative Parallelization

Upon calculation of the number of parallel iterations within the loop, the program needs to

decide at runtime whether or not to attempt parallel execution. If the iterations predicted to be

parallel are too few, then the program will decide to execute the loop sequentially. Otherwise, the

loop enters a speculative parallel execution where loop iterations are executed in parallel on the

available processing nodes as illustrated in Figure 1 (c). If there are no mispredictions, then

speculation successfully executes the program, correctly and in parallel.

2.4 Restorability

In case that any addresses were mis-predicted, the calculation performed by the speculative

execution could violate the sequential semantics of the original program. Therefore, a mechanism

is needed to ensure correct execution of the loop in this case.

Correctness of execution can be ensured only if the speculative execution has a property

that makes it possible to restore the machine memory to its pre-speculation state in case of a mis-

prediction, so that the loop may be correctly re-executed sequentially. We call this property the

restorability property of speculative execution. The undo mechanism we designed to implement
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restorability into the Softspec execution model is described in the next section. To enable an

efficient mechanism that implements restorability, we construct the Softspec program so that

speculative execution does not cause any true, anti, or output dependencies between the iterations

executed in parallel on each processor. Without such a design, different processors could be

writing and reading to the same memory locations leading to data hazards, thereby making it

impossible to reconcile the order of reads and writes between processors when the effect of

speculation on the machine's (shared) memory needs to be undone. To prevent inter-iteration

dependencies during speculation, we design the program so that

I. it performs speculative execution using the predicted addresses in place of the

actual addresses for the loads/stores in the loop body, and

II. it enters speculative parallel execution only if the predicted addresses will not

lead to true, anti, or output memory dependencies between the parallel iterations

(as described in the previous section).

Since the actual addresses appearing in loads/stores within an iteration are unknown until the

program executes that iteration, there is no way to guarantee that these addresses will not lead to

dependencies in case of mis-predictions. Therefore I is necessary. II uses I to ensure that the loop

is executed speculatively in parallel only if it is free of inter-iteration dependencies.

2.5 The Undo Mechanism

During parallel execution, the code running on each processor incorporates checks to

determine if any of the predicted addresses differ from the actual addresses. When a

misprediction is detected the effect of the remaining iterations, some of which may have already

have been executed by other processors, needs to be undone. Once a misprediction is detected by
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a processor, the fact (one bit of information) is communicated to the other processors and each

processor must restore the machine's memory to what it was prior to speculation.

Writes to a memory location destroy the value stored previously at that memory location.

Therefore, as part of the Softspec approach, each processor saves the original values in a write

buffer just before they are about to be overwritten. We note that the predicted addresses can be

calculated from the value of the stride, the iteration number, and the address appearing in the first

iteration. Therefore, the address at which a value is overwritten need not be saved along with the

overwritten value itself.

To recover the pre-speculation state of memory after speculative parallel execution, each

processor simply restores each value that it overwrote to the proper memory location.

Additionally, since intra-iteration dependencies may exist when there are no inter-iteration

dependencies, the processor restores the values in reverse order of which they were written; i.e.

each processor restores the most recently written value and then proceeds to restore the next most

recently written value, etc. The restoration is guaranteed to be work correctly without resulting in

dependencies among the processors, since the writes performed by each processor during

speculation use predicted addresses. These predicted addresses were dependence free by

construction. Restoration of the values can proceed in parallel on all the processors for this same

reason, requiring no global communication except for the broadcast of the existence of

mispredictions between processors.

3 Softspec implementation

In this section, we describe a prototype implementation of a compiler and runtime system

which is used to parallelize sequential programs using our approach. The implementation we

describe is capable of parallelizing inner loops containing stride predictable memory accesses
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without resorting to inter-procedural analysis or whole-program analysis. It requires only simple

localized analyses of code regions.

Our software implementation consists of a runtime system linked into code generated by

a compiler, which takes a sequential C program as input and produces a parallelized C program as

output. The runtime system was written in C using the POSIX Pthreads library [21]. The source-

to-source compiler was written using the SUIF compiler infrastructure [19, 22]. Code is generated

to run on a Digital AlphaServer 8400, which is a bus-based shared memory multiprocessor

containing eight Digital Alpha processors.

We use the Pthreads library to create parallel threads once the program starts and

terminate them only when the program ends. A single set of threads is used for all loops within

the program. Synchronization among threads is effected through the use of low-latency shared

counters and symmetric memory barriers. We avoided using locks and other standard

synchronization primitives provided by the Pthreads library, since they had unacceptably high

latencies for our application.

We illustrate the parallelization of a loop by our compiler through an example (an actual

example source program and its output from the Softspec compiler are given in Appendix B).

void foo(double *a, double *b, int j) {
double *p;
int i;
p = &a[j];
for(i=O; i<500; i++)
{

a[i] = i;
b[i+j] = b[i] - (*p);

}

}
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This loop has three memory accesses namely two writes {a[i], b[i+j]} and two reads

{b[i], (*p) }. These accesses are affine with respect to the loop index and therefore will be stride

predictable with strides 8, 8, 8, and 0 respectively. In order for the loop to be parallel, there

should be no inter-iteration dependencies between the reads and the writes, as well as between the

writes themselves. In this example, the loop will be parallel if a and b are non-overlapping arrays

of 500 doubles and j >= 500. However a parallelizing compiler must make several inferences

before coming to this conclusion. For example it must deduce that a and b are distinct arrays.

Second, it must deduce that there will be no inter-iteration dependence between b[i+j], b[j], and

(*p). Deducing this information at compile-time requires sophisticated whole-program alias

analysis, or may be impossible since the dependencies may be input-data dependent. The problem

becomes much simpler with the Softspec approach which simply measures the initial values and

strides of these memory accesses at the beginning of the loop and calculates whether the loop will

be parallel, at runtime. Blind instrumentation of loads and stores within the loop body is all that is

required with Softspec. Even if the code is located within procedures, inter-procedural analysis is

not required. Our compiler also avoids the overhead for privatizable local variables and reads to

local variables within the loop body, through scalar privatization analysis, local to the loop body.

Additionally, certain simple loop carried dependencies caused by local variables such as

induction variables, can be eliminated through similar analysis on the loop body alone.

The compiler replaces the loop with three different loops: profile, detect, and speculate.

The first two loops are run sequentially and the third one is the one during which the loop is

executed speculatively in parallel. A fourth loop is needed to sequentially execute the remaining

iterations in case the speculation fails. Figure 2 shows the execution path of each loop, with the

vertical axis representing time, and the horizontal axis representing the processors in the SMP.
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Each box represents the loop that is running on the respective processor, and the numbers within

each box show the iteration numbers being run on each processor for a hypothetical example.

processor 0 p i processor 2

IProfile
3
4

Sequential
Execution

Dete.tion *.

40

41 101. .
Speculative pca tivg Speculative
Parallel Parle Parallel
Execution Execution

70 EeC n130
Ok 4ok

.. . mispredict!

I ~If processoi' bd m sisprediction

I....................

Figure 2: execution path of the processors in a Softspec
parallelized loop.
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3.1 Profile Loop

The address of the first write, a[i], will be &a[O], and the address of the corresponding

write in the second iteration will be &a[1]. Using this information we conclude that the

difference will be &a[1] - &a[O] = sizeof(double)= 8. Based on the stride prediction, we can infer

that the write in the third iteration is likely to be a[ 1] + 8 = a[2], which is indeed the case since the

write is to a[i] on the i'th iteration. In the example, the remaining three memory accesses are also

stride predictable.

The profile loop profiles the addresses appearing in three iterations and additional data

structures in the runtime system are used to keep track of the addresses. The addresses are stored

in these data structures after two iterations are executed. The strides are calculated by subtracting

the addresses appearing in each load/store in the second iteration, with those appearing in the first

iteration, respectively. The addresses obtained from the third iteration are used to recalculate the

stride and verify that the stride remains constant across the three iterations. This check identifies

many of the non-stride predictable accesses, and stops parallelization early in the process.

The code and data structures needed to implement the profile loop might look something

like this, with code inserted within the loop body to store the addresses appearing in the first three

iterations.
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/* in runtime system */

void * profileaddress[3][NUM_MEMREFS];

/* in code generated for profile loop */
for(iter=O; iter<3; iter++)
{

int i=iter;

profileaddress[iter][0] = &ai];
a[i] = i;
profileaddress[iter][1] = &b[i+j];
profileaddress[iter][2] = &bli];
profileaddress[iter][3] = P;
b[i+j] = b[i] -(*p);

}

Note that the pro f ile address data structure is shown as a pointer array. The outer index of

this array is for the particular iteration that is being profiled. The inner index is used to

consecutively number the memory accesses. In practice, the reads and write to different data

types use separate profileaddress arrays for reasons having to do with recovery from

misspeculation.

3.2 Detection

By making use of the addresses and strides obtained by the prediction loop, the number

of parallel iterations in the loop can be determined, assuming that the stride prediction holds true

throughout the loop. In our implementation, we overlap execution of the calculation with

execution of a copy of the loop so as to continue to make forward progress. This is important

since the detection calculation may take as much time as tens of iterations. It is always

advantageous to make the detection faster since it means that the program can start parallel

execution quicker, rather than running sequentially while the detect procedure is running in a

parallel thread.
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The intersect procedure

The intersect procedure takes the initial addresses and strides of two memory references

and calculates the earliest future iteration at which a hazard can occur, based on the stride

prediction. One implementation of the intersect procedure solves the diophantine equation from

section 2.3 exactly, by making use of Euclid's algorithm to calculate gcd's. Roughly 80-90% of

the execution time for detecting parallelism was spent in the procedure that calculates the gcd.

Therefore we have employed optimized versions of the gcd and obtained improved runtime

performance. Secondly, we have implemented an approximate algorithm that is able to

conservatively estimate the number of parallel iterations and at the same time decreasing the time

spent in intersect. For a detailed discussion of optimized algorithms, see Appendix A. In figure 3,

we show the (averaged) number of cycles taken by the optimized detect procedure for different

numbers of reads and writes. The 3-d graph indicates that how the time taken by the detection

algorithm scales with the number of reads and writes. From this figure we can deduce that the

time increases much faster with an increase in the number of writes than an increase in the

number of reads, which can be explained by the theoretical scaling of W(W+R) as derived in

section 2.2.
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Figure 3: Execution time for detection algorithm

3.3 Speculation and Recovery from Misprediction (Undo)

Once the program has detected that parallelism exists within the loop, the program enters

the speculative parallel mode where loop iterations are executed in blocks on the processors. The

speculative version of the loop involves several mechanisms to incorporate calculation of the

predicted address, comparison with the actual address, and the undo mechanism. Throughout this

section, we illustrate the mechanisms employed by providing pseudo-code which implements the

mechanisms for loads/stores.

Since the parallelization is based on a prediction, the predicted addresses are calculated to

be the first address appearing in the loop iteration offset by the number of loop iterations times

the stride for that load/store.

predictaddress = firstaddress + iteration * stride;
actualaddress = [caculated from loop body]
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We must be able to ensure correct execution in case of misprediction. To verify if a misprediction

has taken place, we insert code to check whether the actual address is equal to the predicted

address. During parallel execution, each processor maintains a flag that keeps track of whether

the predicted addresses are equal the actual addresses. If there is no discrepancy between

predicted and actual addresses, the speculation would have been correct. However if there is a

discrepancy, mis-speculation has occurred and must be re-executed sequentially. All the iterations

after the mispredicted iteration must be executed sequentially. This code appears as follows,

if(actualaddress != predict-address) cancel-flag = 1;

At the end of speculation, a processor which encounters a misprediction informs all other

processors, and all the processors can undo the effect of speculation as described below. In case

of a load, no action needs to be taken since load operations do not change the state of memory.

However in the case of writes, additional mechanisms are required. A write buffer, implemented

as an array, is provided to save values about to be overwritten. In the pseudo-code below, each

value about to be overwritten is stored at location pointed to by writebuf f er, and the pointer

into the write buffer is incremented.

overwrittenvalue = *(predict_address);
*(writebuffer++) = overwritten_value;

To undo the writes that each processor has performed, the runtime system simply restores

the values from the write-buffer into the predicted addresses for each iteration, starting from the

most recent iteration and proceeding to the earliest executed iteration. Each processor can undo

its writes in parallel, and without global communication, since the writes by different processors
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were written to different addresses. We note that this is another advantage of using prediction to

eliminate the possibility of inter-iteration data dependencies before parallelization.

3.4 Softspec Compiler Architecture

The Softspec compiler takes a sequential C program as input and generates speculative

parallel C code. The resulting code must be linked with the Softspec runtime library and compiled

with the native C compiler to produce an executable that runs on a Digital Alpha symmetric

shared memory multiprocessor.

The Softspec compiler (source code in Appendix C) was written using the Stanford

University Intermediate Format (SUIF) basic library [22], which itself is written in C++. SUIF

has many built-in capabilities that permit rapid prototyping of source-to-source compilers. C

programs once read into SUIF, may be analyzed, transformed, and output back into C. The

intermediate format has rich data structures that can represent low-level and high-level

programming constructs, such as procedures, for-loops, as well as local and global variables

along with the symbol tables they are defined in. The SUIF data structures are represented as

objects with accompanying methods that are useful for analyzing and transforming them.

SUIF provides a translator (scc) which converts input C programs to SUIF's intermediate

format. Compilers in SUIF are written as a series of passes which perform a certain well-defined

transformation on the program, once the program is in the SUIF intermediate format. Each pass

reads in the result of the previous pass that is stored in a file, then performs its transformation,

and outputs the result to a file. Each pass is a C++ program (using the SUIF library) that

manipulates the SUIF data structures and calls the SUIF library to accomplish its transformation

on the program. Any information that needs to be conveyed by one pass to the next pass, such as

the results of code analyses, can be inserted in "annotations" attached to the SUIF data structures.
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Numerous pre-written passes come with the SUIF standard library, and they perform a variety of

code transformations and optimizations. While the use of intermediate file storage formats can

become inefficient in terms of the time taken by the compiler, it provides flexibility in mixing and

matching passes to architect new compilers.

Our current implementation of the Softspec compiler parallelizes inner loops of programs

that do not contain any control flow or procedure calls within the loop body. The Softspec

compiler analyses the program, to identify candidate loops to parallelize, then generates

speculative parallel code with calls to the accompanying runtime library. It is implemented as a

SUIF pass. The design of the instrumentation is inspired by the design of the SUIF-based Haltsuif

tool [20] which is a used to instrument code in order to gather profile information execution. Prior

to running the compiler pass, a scalar variable analysis pass (moo -Psce) must be run to get

information (passed as annotations to the compiler) on the behavior of local variables appearing

inside the loop body. It determines whether local variables can be privatized within iterations. If

local variables lead to loop-carried dependencies, the compiler cannot privatize the local variables

and decides not to parallelize the loop (more sophisticated dynamic compilation techniques might

be used to speculatively parallelize the loop in this case).

Once the compiler searches for and discovers a candidate inner loop to be parallelized, it

proceeds to generate three loops each within its own procedure that correspond to the profile,

detect, and (parallel) speculative loops. In the generated code, each of the procedures called by

these loops is called in sequence at the location of the original loop, and the original loop is left

intact to execute any remaining iterations if the speculative loop does not run to completion.

3.5 Runtime System Architecture
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During parallel execution, the execution path of a Softspec program consists of multiple

threads performing detection and speculation, apart from the thread of the program that executes

the main procedure, as illustrated in Figure 2. We implemented our runtime system in C, making

use of the POSIX Pthreads library [21] for parallelization primitives. As the main procedure

executes, it may contain several loops that are parallelized by the Softspec compiler, interspersed

by several sequential regions. The execution time overhead of spawning new threads for each

parallelized loop at runtime is too much, as determined by our experiments. Therefore, our

solution then is to spawn the parallel threads when the main program begins, and have the main

thread signal these threads via shared memory to perform detection and speculation when the

main thread encounters the parallelized regions. The architecture of the runtime system is largely

determined by this design decision (source code in Appendix D).

During execution, once the main thread profiles addresses in the loop, it stores these

addresses into data structures accessible by the runtime system. Next, the main thread sets a flag

in shared memory that informs the detection thread to perform detection using the profiled data.

The main thread then enters sequential execution of the loop to make forward progress while the

detection thread is running. Once the detection thread completes detection, it in turn informs the

main thread via shared memory so the main thread can use the results of detection to enter

speculative parallel execution.

Similar to the detection thread, several speculative threads are spawned at the start of the

main thread. However, several additional mechanisms are needed to transfer the context of the

main thread to the speculative threads. Before informing the speculative threads to begin

executing, the main thread must inform each speculative thread of the values of the local

variables that are live within the loop body. This is accomplished by having the main thread load

these values into shared memory and having each speculative thread read these values into its
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own local variables. Since the speculative threads are active throughout the execution of the

program, and multiple parallel loops may appear during the program, the speculative threads

require a means of knowing which loop (i.e. code segment) they should be speculatively

executing. This is accomplished by also passing the address of the procedure containing the

speculative loop in shared memory to all the speculative threads, just like the values of local

variables. Code for the undo mechanism need not be generated by the compiler, and it is included

as part of the runtime system.

Synchronization among the speculative threads to determine the beginning and end of

speculative execution requires low-overhead mechanisms to be effective. The synchronization

primitives in the Pthreads library do not satisfy this requirement, so we implemented our own

synchronization mechanisms based on shared memory flags. The speculative threads are

numbered consecutively and each thread is responsible for informing the next thread when it

began and commenced speculative execution, through a shared memory flag. By spacing the flags

out in memory longer than a cache line, this approach can avoid cache conflicts between different

processors.

3.6 Comparison of Softspec to sequential execution

In this section, we look at the overheads on the source loop which are required to compile

it into a Softspec parallelizable loop. Each loop is replicated into three other modified loops:

profile, detect, and speculate.

The profile loop differs from the original loop since addresses are written to a data

structure in the runtime system, before they are used by loads and stores. The detect loop is

designed to run in parallel with the calculation for detection of parallelism, so as to make forward

progress. It is nearly identical to the original loop, except for a check to determine the whether the
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detection calculation has finished or not. Finally, the speculation loop incurs an overhead for each

load/store to calculate the predicted address and check whether the predicted address equals the

actual address. Each write additionally incurs the overhead of saving the values about to be

overwritten. An estimate of the overheads in terms of machine instructions are given below in the

table,

Per iteration Per read Per write

Profile 0 4 4

Detect 2 0 0

Speculation 0 6 11

In addition, synchronization between the parallel threads adds additional overhead, which

is not present during sequential execution. A barrier is required at the end of parallel execution to

determine if any of the processors observed address mispredictions. This barrier may cost several

thousand cycles on a shared-memory multiprocessor, and it's cost in cycles increases linearly

with the number of processors.

Symmetric multiprocessors on a chip, as envisioned for the future [14], are likely to

reduce synchronization costs (in terms of execution time overhead). Application of Softspec

techniques in such a realm becomes more attractive (1) since the overheads due to

synchronization appearing between the profile, detect, and speculative loops will be reduced, and

(2) this permits exploitation of even finer-grained parallelization in order to achieve further

speedup.
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4 Behavior of Programs and Runtime Performance

In section 4.1, we present evidence for stride-predictability of dynamic memory

addresses in Spec92 benchmarks to indicate the potentially wide applicability of the Softspec

approach. In section 4.2, we present three case studies of two dense-matrix and one sparse-matrix

application to evaluate the Softspec approach and study the runtime performance of our prototype

Softspec implementation.

4.1 Stride Predictability of Spec and Sparse-matrix benchmarks

Stride Predictability of memory addresses is a common behavior of programs. We used

the ATOM profiling tool to measure the extent of stride predictability in several Spec92
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Figure 4: % stride predictability of Spec92 benchmarks

benchmarks. In the graph below, we show the percentage of dynamic memory references which

could be predicted from the previous two dynamic instances of the same memory reference.

The high percentage of stride predictable references among floating point benchmarks

(swm256, Ora, Tomcatv, Ear, Hydro2d) can be understood since most of the loops contain affine

index expressions for loads and stores. The numbers are also encouraging in the case of the first

three out of four integer applications (Eqntott, Compress, Espresso, Li) which exhibit stride
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predictability in more than half of the memory references. Experimental evidence for the stride-

predictability of load addresses in several Spec benchmarks have also been reported in [8][10].

4.2 Case Studies of the Softspec Approach

To evaluate the runtime performance of this approach, we present an analysis of the

execution times of familiar benchmark, namely (dense) matrix-multiplication in section 4.2.1 and

a code which is not parallelizable by most parallel compilers, namely Serial Bidiagonal Cyclic

Reduction [15] in section 4.2.2. In section 4.2.3, we present evidence of the parallelizability of

sparse matrix multiplication code, which cannot be parallelized by any compiler.

The dense matrix codes are compiled using our prototype Softspec from sequential C.

The output of Softspec is compiled with the native C compiler (cc) using the "02" and "pthreads"

flags. The speedups over sequential execution (cc -02) are shown in Figures 5 and 6.

4.2.1 Dense-Matrix Multiplication

The main loop nest in this (dense) matrix-multiplication application is:

for(i=O; i<N; i++) {
for(j=O; j<N; j++) {

for(k=O; k<N; k++) {
c[i][k] += aIi][j] * b~i][k];

}
}

}
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The inner loop is parallel, and Softspec is able to parallelize this loop at runtime and achieve

speedup shown in the graph in Figure 5.

We observe that the address check and write buffer overhead of the loop body, which has

very little computation, is approximately 100% in this application. When two or more processors

are used to carry out speculative parallel execution, we observe nearly linear speedup with the

highest being 2.5 for 6 parallel threads.

To understand the overheads introduced by the profile, detect, and speculative parallel

execution of the parallelized program, we show the number of iterations and processor cycle

counts for each of these regions for the inner loop of the 10,000x 10,000 matrix multiplication and

compare them to the original sequential loop, in the table below.

Loop Original Profile Detect Speculate

Iterations 10,000 3 50 9947

Cycles 140,269 543 2,377 264,436
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The overhead introduced by the profile and detection loops is insignificant, in terms of

both cycles and iterations. For loops with far fewer iterations, the overhead of the detection loops

can be significant, and overlapping the detection phase with sequential execution of loop

iterations allows the program to make forward progress, as our implementation permits.

4.2.2 Serial Bidiagonal Cyclic Reduction

Serial Bidiagonal Cyclic Reduction [15] operates on dense-matrices. However, the data

access patterns are determined at runtime, and are hard to analyze by the compiler. For example,

one of the loop nests present in this program is,

r = n/2;
x[r] =br]

x[n] = b[n] - a[n-1] *x[r]

for(p=m-1; p>1; p--)
r = r/2;
x[r] = b[r];
for(j=3; j<n/r; j+=2) {

rj = r*j;
x[rj] = b[rj] - a[rj-1] * x[rj-r];

Most parallelizing compilers cannot analyze the data-accesses in this program, since the access

depends on the variable r, whose value is not available at compile time. Depending on the value

of r, the loop can be parallel or sequential, and the value of r is calculated in the outer loop. The

advantage of Softspec is that is it is able to parallelize the inner loop based on runtime

information of the value of r for each iteration. We present the speedup observed for this

application in the graph in Figure 6.
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We were able to achieve good speedup with low overheads for the two small

benchmarks, matrix multiplication and serial bidiagonal cyclic reduction, that were fully

automatically parallelized and executed on a modem multiprocessor using Softspec.

4.2.3 Sparse matrix multiplication

In this section we give an example of a sparse-matrix application which exhibits stride-

predictability, and has parallelism, but is not amenable to compiler-analysis. Sparse-matrix

algorithms differ from their dense-matrix counterparts largely because of the special storage

formats used for sparse-matrices. The code for this application is an adaptation of the matrix

multiplication algorithm given in section 4.2.1 for sparse matrices using compressed row storage

(CRS) format. The loop nest for the code is provided below.
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do i = offa(i) , offa(i+l)-l
do k = offb(ja(j)), offb(ja(j)+1)-1

if( (ptr(jb(k)) .eq. 0))then
ptr(jb(k)) = i
c(ptr(jb(k))) = a(j)*b(k)
index(ptr(jb(k))) = jb(k)
ii +1

else
c(ptr(jb(k))) = c(ptr(jb(k)))+a(j)*b(k)

endif
enddo

enddo

In this loop nest, the sparse matrices stored in ao and bo are being multiplied and stored (in CRS

format) in co. The arrays offa, ja, offb, and jb are used to locate the columns and rows of

elements in the sparse matrices stored in ao and bo. The inner loop contains an if-then-else
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Figure 7: qc2534.cua: histogram of stride-predictable parallel iterations

statement. The then statement initializes new sparse elements in the co array, and therefore is far

more likely to take the else direction than the then direction. When the loop takes the then part, it

has a loop carried dependence. However, when it takes the else part consecutively for many

iterations, the loop is parallel, since, by construction, its inner loop directly corresponds to the

inner loop of the (dense) matrix multiplication algorithm given in section 4.2.1.
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Even though the loop may be parallel, its memory accesses in the else part of the inner

loop body are to five different arrays, namely jb, ptr, a, b, c and there are two levels of indirection

in the access c(ptr(jb(k))). Therefore it is not plausible that any purely compile-time based

approach to parallelization can deduce the existence of parallelism in the loop.

In order for this loop to be stride predictable, all the accesses within the loop must be

stride predictable. We profiled the inner loop to determine how often and for how many iterations

the memory accesses will be stride predictable and parallelizable. This is highly dependent on the

sparse-matrix data set used, and we attribute the existence of stride predictability to the presence

of smaller dense regions within the sparse-matrix. Two data-sets exhibiting good stride

predictability and long stretches of consecutive parallel iterations are qc234 [17] and qc2534 [18]

from the Non-Hermetian Eigenvalue Problem Collection. qc234 has 2,205,306 iterations of which

1,879,192 (85%) are parallelizable and stride-predictable. qc2534 similarly has 78,222,562 (92%)

parallel iterations out of 84,728,996. For the qc2534 data set, we provide a histogram, in Figure 7,

of the number of parallel regions found for a given length of the parallel region in terms of

iterations. This data suggests that the linear sections may be parallelized at runtime using the

Softspec approach. Our prototype runtime system and compiler is unable to parallelize this

application, since we have yet to implement speculation invalidations due to memory references

and loop-carried dependences within rarely taken conditionals. We plan to extend Softspec to

take advantage of such programs and study more sparse algorithms and different data-sets.

5. Related Work

Advances in vectorizing and parallelizing compilers over the past two decades have led

to remarkable successes in automatic generation of highly efficient parallel code for certain kinds
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of programs, such as dense matrix calculations. However these compiler systems are large

complex systems. Examples include the Stanford SUIF interprocedural parallelizing compiler [1]

which has over 150,000 lines of code and took more than 10 human years to develop, and the

Illinois Polaris compiler [2(a)] consisting of over 170,000 lines of code [2(b)].

Alias analysis algorithms have been proposed to overcome the difficulty imposed by

pointers on parallelizing compilers [3][12][13]. However these systems work with only with

small, self-contained programs and do not scale with program size.

Speculative systems, based on hardware features not yet available on today's machines,

have been recently proposed to overcome the need for compile-time proof of existence of

parallelism in programs [4][5][6][7]. These systems speculatively execute candidate loop

iterations in parallel. A sophisticated hardware system is put in place to observe all the memory

accesses in order to determine if the sequential semantics of the program are violated by

speculative parallel execution. When a violation is detected, the speculative execution is revoked

and additional hardware mechanisms will undo the effects of speculative writes on the memory

system. Additional hardware support required by some of these proposed speculative paradigms

ranges from significant extensions of multiprocessor memory systems [4][5] to completely new

hardware structures [6].

Fundamental research into program behavior has shown that both data and address values

can be predicted by stride prediction and last-value prediction [8]. Stride predictability of

load/store addresses in scientific applications has been successfully exploited to improve the

cache behavior of these codes through compiler inserted prefetching in uniprocessor and

multiprocessor machines [9]. In [10], the stride predictability of memory addresses has been used

to perform speculative prefetching in out-of-order superscalars.
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The Inspector-Executor model proposed in [10] and its precursors are among the first

examples of using the compiler to generate code which gathers runtime information about a

program in order to execute the code in parallel to achieve speedup.

6. Conclusion

By exploiting inherent properties of applications, we have devised a novel parallelization

scheme. Since this approach does not require extensive fine-grain communication and

synchronization or complex hardware mechanisms, it can be fully implemented in software

targeting shared memory multiprocessors. Our prototype system was able to obtain parallel

speedups on few simple benchmarks. However, this scheme shows a huge potential to parallelize

many large applications where compile time analysis is prohibitively expensive or impossible.

We plan to extend the capabilities of this system in many directions. Since it is

sometimes difficult to obtain good performance with inner-loop (fine-grain) parallelism on

multiprocessors with high communication latencies, outer-loop (coarse-grain) parallelism can be

identified using a detector across inner loops. This involves a simple extension to the current

detector. Secondly, it is also possible to eliminate loop-carried true dependences whose values are

stride predictable. This technique may enable parallelization of algorithms that iterate over

linked-lists. Thirdly, since this technique requires only simple local analyses, it could potentially

be applied to parallelize executables. This will enable parallel execution of many sequential

legacy applications. One limitation of this technique as it stands, is handling control-flow within

the loop body. To expand the scope of the technique beyond loops containing straight-line code,

we plan to employ a combination of profile-based prediction and invalidation techniques to

handle many common cases of control-flow.
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We believe that the Softspec techniques will be applicable to a large class of important

applications that are currently unable to use automatic parallelization techniques. With the advent

of single-chip multiprocessors with low latency communication, these applications will be able to

obtain good parallel performance using Softspec.
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Appendix A

In addition to the gcd of two integers a and b, the calculation for detection of parallelism

requires a solution to the diophantine equation x*a + y*b = 1. We have found that the largest

percentage of execution time in the detection loop (see section 2.2) is in the procedure that

calculates the gcd, (a,b), and solution to the equation. Therefore we have investigated alternative

algorithms that can speed up the calculation of the gcd, as well as an approximate algorithm for

detection that avoids the gcd calculation altogether.

The first method we studied used a computational version of Euclid's gcd algorithm as

presented in [16, page 301]. Another related algorithm, called the Continued Fraction GCD

algorithm, involves converting the fraction a/b into a continued fraction. Pseudo-code is for this

algorithm is shown below the continued fraction coefficients are obtained in an array of integers

c(n):

1. let n = 1

2. set c(n)= 0

3. while a > b, increase c(n) by b and subtract b from a.

4. if a # b then increase n by 1, set c(n) = 0

5. while b > a increase c(n) and subtract a from b

6. if a # b then increase n by 1

7. goto step 2

Observe that in steps 2 and 3 we could replace the subtractions with one division. But,

since the Alpha processor does not have an integer division instruction, and, being a RISC

processor, has a very fast subtract, it turned out that this particular implementation is faster. After
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this algorithm finishes, we have the coefficients of the continued fraction in c(n) and (a,b). Then

we ignore the last term of the obtained continued fraction and calculate the fraction that

corresponds to it, namely p/q. Then x = -q and y = p.

The second method we studied to speed up detection avoids lengthy integer calculations

involving the gcd. However it is an approximate solution and always provides a conservative

estimate for the number of parallel iterations in the loop. Therefore, in some cases it may turn out

that this approximate algorithm will detect less parallelism than there really is. However in our

experience, it suffices in most cases.

To restate the detection problem, we are given ordered pairs of initial addresses and

strides, (a,b) and (c,d), and we are to find the minimum of over all pairs (m,n) that satisfy

a*m + b = c*n + d. We can visualize two lines in (x,y) space, namely a*x + b = y and

c*x + d = y. Without loss of generality, let b>d, that is, the line a*x + b = y intersects the y-axis

higher than cx + d = y. Then we distinguish between the following cases:

1. a 2 0, c > 0 : first line is horizontal or going up, second line is going up. Then

t=(b-d)/c gives us the number of the iteration when the second line will reach the y-

axis intercept of the first line (that is, the second write operation will have the same

address as the first address of the first write operation). We can parallelize up to t

iterations.

2. a = c = 0 - both lines are horizontal.

3. a 2 0, c < 0 - first line is horizontal or going up, second line is going down. Then they

don't intersect at all. We can parallelize all iterations.

4. a < 0, c 0 - first line is going down, second line is horizontal or going down. Then

t=(b-d)/(-a) is the number of the iteration when the first line will reach the y-

intercept of the second line (that is, the first write operation will have the same
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address as the first address of the second write operation). We can parallelize up to t

iterations.

5. a < 0, c > 0 - first line is going down, second line is going up. Then t=(b-d)/(c-a) is

the number of the iteration when both lines will intersect. We can parallelize up to t

iterations.

We came up with some minor improvements for certain special cases. In case 1. if the

value of t, computed is equal to 0, which is the case when b=d, then we can actually parallelize up

to max{a, c}/(a,c) iterations. Analogously, if t=O in step 4, then we can parallelize up to

max{-a, -c}/(a,c). Those two cases occur when the two write operations start from the same

address. If their deltas (the linear differences of two consequent addresses) are different, then they

really occur when writing memory address (a,c), the first operation writes there in iteration

a/(a,c) and the second - in iteration c/(a,c). The first write to that address is not problematic, but

the second is, so we take the bigger of those two numbers for the maximal number of

parallelizable iterations.

We have provided three different algorithms for the detect stage. The first uses Euclid's

gcd algorithm, the second uses the continued fraction gcd algorithm. And third, we presented an

algorithm that does not involve gcd, which we refer to as "extrapolation." To provide a

comparison of the three algorithms, we counted the cycles taken on our Alpha machine for two

problems of differing sizes. The first problem is for detection involving three reads for six writes,

taken from a loop in the Spec92 Tomcatv benchmark. The second problem is for 300 writes and

300 reads, all randomly generated. The (averaged) cycles counts for these cases are given in the

table below.
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Euclid's Continued Fraction Extrapolation

3 reads x 6 writes 4277 3820(11%) 1932(55%)

300 reads x 300 writes 68194 54201 (21%) 24322 (64%)

The percentages in brackets shown for the continued fraction and extrapolation methods

are the percent improvement over Euclid's algorithm. From these results, we conclude expect that

the continued fraction gcd algorithm can provide a modest improvement in the range 10-20%.

The extrapolation algorithm provides over 50% improvement over Euclid's algorithm, but it

offers only a conservative estimate of the number of parallel iterations.

Appendix B

This appendix contains an example source program and the corresponding output of the

Softspec compiler. It is provided to illustrate how the compiler uses the runtime system to

produce speculative parallel code from (sequential) C.

Source Program:

void main() {

int j;
float *A = (float *) malloc(sizeof(float) * 300);

float *A_1 = A;
for(j=0; j<300; j++) {

float *write;
write = &A_1[j];
(*write) = j;

return;

Softspec Output:

extern void main();
extern int malloc();

/* declarations of runtime system functions and variables */

extern int npiters;
extern void setmasterint_args(int, int);
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extern void set master float-args(int, float);
extern void set_masterpointer-args(int, void *);
extern int get-master_int_args(int);
extern int get-slave_intargs(int);
extern float get_masterfloat-args(int);
extern float get_slavefloat-args(int);
extern void *getmaster-pointer-args(int);
extern void *getslave-pointerargs(int);
extern void detectbegin(;
extern void slave-init();
extern void slave-quito;
extern void spec-init();
extern void spec-quit();
extern int detectcomplete(;
extern int slave-break-condition(;
extern void read-profile(int, int, unsigned int);
extern void write-float-profile(int, int, unsigned int);
extern unsigned int read-check-address(int, int, unsigned int);
extern unsigned int writefloatcheckandcrecordaddress(int, int, unsigned int);
extern int spectry(int);
extern void passjloop-specifics(int (*)(int), int, int);
extern void passjloop-statistics(int, int, int, int);

/* declarations of generated code */
static int profile_loop0(int);
static int detect_loopO(int);
static int remainderjloopO(int);
static int slave0(int);

/* Profile loop */
static int profile_loopO(int j-input)

int j;
float *A;
float node0;

float *A_1;
int iter-count;

A_1 = get-master-pointer-args(O);
itercount = 0;
for (j = j_input; j < 300; j++)

if (!(iter-count < 3))
goto exit-loop;

float *write;

write = &A_1[j];
node0 = j;
write_floatprofile(itercount, 0, (unsigned int)write);
*write = node0;

itercount = itercount + 1;

exit_loop:;

return j;

/* Detect Loop */
static int detect_loop0(int j-input)

int j;
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float *A;

{
float *A_1;

detectbegin();
A_1 = get-master-pointerargs(0);
for (j = jinput; j < 300; j++)
{

if (detectcomplete()
goto exitloop;

{
float *write;

write = &A_1[j];
*write =j;

}
}

exitloop:;
}

return j;
}

/* Remainder Loop */
static int remainder-loop0(int j-input)

int j;
float *A;

float *A_1;

A_1 = get-masterpointer-args(0);
for (j = j-input; j < 300; j++)
{
float *write;

write = &Al[j);
*write =j;

}
}

return j;
}

/* Speculative Loop */
static int slave0(int j-input)

int j;
float *A;
float node0;

slave-inito;

float *A_1;

A_1 = get-slave-pointer-args(0);
for (j = jinput; j < 300; j++)

{
if (slave-break-condition())

goto exit-loop;

float *write;
unsigned int predict;
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write = &A-l[j];
node0 = j;
predict = write_floatcheckandrecordaddress(O, 0, (unsigned

int)write);
*(float *)predict = node0;

exitjloop:;
}

return j;

/* main function */
extern void main()

int j;
float *A;

spec-init(;
A = (float *)malloc(1200u);

float *A_1;

A_1 = A;
/* saving the values of local variabbles to

* memory accessible by all the processors
*/
setmaster-pointer-args(O, AJ1);

j = 0;
passloop-specifics(slave0, 0, 1);
passjloopstatistics (npiters, 0, 1, 300);
j = profile_loop0(j);
j = detect-loop0(j);
j = spectry(j);
j = remainderloop0(j);

spec-quit (;
return;

Appendix C

This section contains source code in SUIF/C++ for the compiler. The header file is

duds.h, and the source files are: main.cc, duds init.cc, insertcode.cc, generatejarg-code.cc,

generate-profilescode.cc, generate detect_code.cc, generateslavecode.cc.

duds.h

/ Softspec Parallelizing Compiler */
/** Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */
/ MIT Lab for Computer Science */

/** This program takes a sequential C program as input and
* generates (parallel) C code to be run on a shared memory
* multiprocessor. The resulting code must be linked with
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* the Softspec runtime library.
* Please refer to the Softspec Paper for further details.
* The program uses the basic SUIF library.
* Note that the program only parallelizes inner loops
* appearing within the main procedure, which are not
* embedde within sub-procedures. However inner loops
* within sub-procedures may also be parallelized
* with a little more work.
*/

/ The following passes must be run in order on the input foo.c before
running this program

(1) scc -V -Target alpha-dec-osf -.spd foo.c
(produces foo.spd)
this converts the file to SUIF forma. The -Target
flag is needed so that the program may be compiled
to a Digital Alpha machine. Otherwise you will have
problems compiling later on.

(2) porky -Dmemcpys foo.spd foo.no-memcpy
this pass dismantles memcpy instructions into
lod and str instructions. Only lod and str instructions are
alowed by the compiler, only for convenience in implementation.
Alternatively, if there are no memcpy instructions in the
input progra, then there is no need to run thsi pass.
The -Dmemcpys option is not a stanrad porky option,
and Walter (walt@cag.lcs.mit.edu) added it as part
of the rawcc version of porky.

(3) moo -Psce foo.nomemcpy foo.moo
By running this pass, local variables appearing in
loop bodies are analysed for whether they are
read, written, and can be privatized. This information
is neede by the compiler to detect whether these local
variables lead to loop carried dependencies. If they do,
then the loop cannot be parallelized by the current
implementation of softspec. moo -Psce writes three annotations
to each loop: read vars, write-vars, and privatizable.
These annotations are needed by the compiler to decide whether
the loop may be parallelized or not.

Therefor the compiler is run on the file foo.moo.

*/

// Standard C include files
#include <stdlib.h>
#include <iostream.h>
#include <stdio.h>
// for SUIF to work
#include <suif.h>
// for SUIF builder
#include <builder.h>
// for SUIF useful library
#include <useful.h>
// for stuff in RAW useful library
#include <raw-useful.h>

#define DEBUG 1

#define NEEDMEMORYBARRIER
#define DOUBLETOCHAR 8

#define NUMPARITERS 1000
#define MAXNUMMEMREFS 50
#define MAXARGS 50
#define NUMPROFITERS 3
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struct instruction-count {

int local-count;
int readcount;
int write_doublecount;

struct investigate

boolean Parallelizable;
filesetentry *fse;

};

// annotations

extern char *kread-vars;
extern char *k_write-vars;
extern char *k-privatizable;
extern char *kargs-list;

// initialized in
extern ptr-type
extern proc-sym
extern proc-sym
extern proc-sym
extern functype
extern ptr-type
extern proc-sym
extern proc-sym
extern proc-sym
extern proc-sym
extern func-type
extern ptr-type
extern proc-sym
extern ptr-type
extern proc-sym

dudsinit.h
*ptGenericFunc;
*ps-specinit;
*ps-spec_quit;
*ps-memory-barrier;
*ftGenerated;
*ptGenerated;
*ps-profileloop;
*ps-detectloop;
*psremainder_loop;
*ps-spectry;
*ftSlave;

*ptSlave;
*ps_slave;
*ptSpecifics;
*ps-passloopspecifics;

// variable corresponding to those in the runtime library
extern var-sym *detect-flag vs;
extern var-sym *read addrprof-vs;
extern var-sym *writedouble-addr-prof-vs;
extern var-sym *readdeltas-vs;
extern var-sym *write-doubledeltasvs;
extern var-sym *numpar-iters-vs;
extern var-sym *intargs-vs;
extern var-sym *doubleargs-vs;
extern var sym *pointer-args-vs;
extern var-sym *innerstartvs;

/* dudsinit.cc */
void init-syms(void);

/* insertcode.cc */
void insert-specinitandquit(treenode_list *maintnl);
void findinner-loops(treenode *tn, void *x);

/* generate-argcode.cc */
void get-args(tree_for *tf, int masterslave);
immedlist *set args(tree-for *tf);

/* generate-profile-code.cc */
tree-proc *create-profile-loop(file-set-entry *fse, tree-for *tf);
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/* generate-detect-code.cc */
tree-proc *createdetectloop(filesetentry *fse, tree-for *tf);

/* generateslavecode.cc */
tree-proc *createslaveloop(
fileset-entry *fse,
treefor *tf,
instructioncount *s);

main.cc:

/* Softspec Parallelizing Compiler */
/** Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */
/ MIT Lab for Computer Science */

#include <duds.h>

/* this procedure calls findinnerloops on the body of the tree-proc tp on to locate
* inner loops and parallelize them (if possible)
*/

void parallelizemain(tree-proc *tp)

// set builder to work with the current procedure
block::set-proc(tp);

// there is only one file set in this program
// and it needs to be accessed by code generation
// passes in other files
fileset->resetiter();
filesetentry *fse = fileset->next-file();

// the "investigate" data structure is used to pass certain
// values between procedure calls
// one of these values is fse
investigate *Inv = (investigate *) malloc(sizeof(investigate));
Inv->fse = fse;

// this line applies findjinner-loops to all nodes
// in the body of the procedure
// it is depth first
tp->body()->map(findinnerloops, (void *) Inv, FALSE, FALSE);

// this procedure inserts calls to initialization and
// finalization procedures from the runtime library
// at the very beginning and end of the procedure
// body (tp->body()).
insert specinit_and-quit(tp->body();

// this is necessary to ask SUIF to re-number the
// instructions so they have unique ids.
tp->numberinstrs();

/* When applied to a procedure (tp), it applies
* "parallelize main" if the name of the procedure is
* "1main"
*/

void do-proc(tree-proc * tp)

block::set-proc(tp);

procsym *curpsym = tp->proc();
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/* name of main procedure */
char *mainname = "main";
if (strcmp(curpsym->name(), mainname) == 0)

parallelize-main(tp);

return;

/* Writes the procedures generated by the program into
* the output file. Rajeev Barua showed me how to do
* this. Don't ask me how it works.
*/

static void write back()
fileset->reset-iter();
file-set-entry *fse;

while ((fse = fileset->next-file())

fse->reset-proc-iter();
proc-sym *ps;

while ((ps = fse->next-proc()) {
if (ps->is-inmemory()

ps->write-proc(fse);

/* This is the main procedure of this program.
* It parses the input file, generates parallel code,
* and writes the generated code back to suif files.
*/

main(int argc, char *argv[])

// routine from SUIF library
startsuif(argc, argv);

// routine from rawuseful.cc
// it reads the files into memory
// the routine provided in the SUIF
// library is buggy
my-suif_read-files(argc, argv, TRUE);

// creates the symbols that will be used
// in the generated code including procedures
// and global variables
init-syms();

// routine from rawuseful.cc
// iterates over all procedures in the
// input program and applies "do-proc" to
// the main procedure.
// do-proc looks for parallelizable inner
// loops and generates parallel code in an new procedure
mysuif-proc_iter(doproc, FALSE, FALSE, TRUE);

// writes back the generated code from memory to a file
writebacko;

// routine from standard library
// does not exit this program
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exit-suif();

// exits from the program
exit(0);

} // ** main ** //

dudsinit.cc:

Softspec Parallelizing Compiler */
/** Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu),
/ MIT Lab for Computer Science */

1998 */

#include <duds.h>

/* This file contains initializations of various SUIF variables
* which are used to generate code. They should be consistent with
* the runtime library.
*/

/* these are annotations output by a previously
* run porky pass
*/

char *kreadvars;
char *k-write-vars;
char *kprivatizable;
/* this is an annotation created and used by this pass */
char *k-argslist;

/* these are the pointers to procedures and
* this program
*/

ptrtype *ptGenericFunc;
procsym *ps-spec_init;
procsym *ps-spec-quit;
#ifdef NEEDMEMORYBARRIER

*ps memory-barrier;

*ftGenerated;
*ptGenerated;
*ps-profile_loop;
*psdetectloop;
*psremainder_loop;
*ps-spectry;

*ftSlave;
*ptSlave;
*ps-slave;

*ftSpecifics;
*ptSpecifics;
*ps-pass-loop-specifics;

types generated for use by

//
//
//

void (*foo) (void)
void spec_init(void)
void spec-quit(void)

// void memory-barrier(void);

//-
//
//-
//I
//
//-

//-
//-
//

int
int
int
int
int
int

int
int
int

(*foo)(int, int, int)
(*foo) (int, int, int)
profile-loop(int, int, int)
detectjloop(int, int, int)
remainder_loop(int, int, int)
spectry(int, int, int)

(*foo) (int, int, int, double *)
(*foo)(int, int, int, double *)
(-slave-)(int, int, int, double *)

/ void (*foo) (ptGenerated, int, int, int)

/* From lib.h must be consistent */

/* lib.detect.c variables */
*detect-flag-vs;
*read addr-prof vs;
*write-double-addr-prof-vs;
*read deltasvs;
*write-double-deltas-vs;
*num_pariters-vs;

/ int detect-flag
// unsigned long**read-addr-prof
// unsigned long **write-double-addrprof

// long*read-deltas
// long *writedoubledeltas
// int num-par-iters
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#endif

func-type
ptr-type
procsym
procsym
procsym
procsym

func-type
ptr-type
procsym

func-type
ptr-type
procsym

var-sym
var-sym
var-sym
var-sym
var-sym
var-sym



/* lib.master.c variables */
var-sym *int-args-vs; // int *int-args
var-sym *double-args-vs; // double *doubleargs
var-sym *pointer-args-vs; // void **pointer-args
varsym *inner-start vs; / int inner-start

/* this procedure initialize annotations */
void annote-init() {

ANNOTE(kreadvars, "read vars", TRUE);
ANNOTE(kwritevars, "write vars", TRUE);

ANNOTE(kprivatizable, "privatizable", TRUE);
ANNOTE(kargsjlist, "args list", TRUE);

/* the following procedures beginning with "init" initialize the
* various global variables and function pointers
*/

void init-global_variables(void)

/* from lib.detect.c */

detect_flag-vs = new varsym(typesigned, "detect_flag");
fileset->globals()->addsym(detect-flag-vs);

type-node *aptq = new array-type(type-unsigned-long, 0, MAXNUMMEM_REFS-1);
fileset->globals()->add~type(aptq);
type-node *apt = new array-type(aptq, 0, NUMPROFITERS-1);
fileset->globals()->addtype(apt);
readaddrprof-vs = new var_sym(

apt,
"readaddrprof");

fileset->globals () ->addsym (read-addr-prof_vs);

write-double-addr-prof-vs = new var_sym(
apt,
"writedouble-addrprof");

fileset->globals()->addsym(write-double-addr-prof-vs);

type-node *delat = new arraytype(type-signedjlong, 0, MAX_NUMMEM_REFS-1);
fileset->globals()->addtype(delat);
readdeltas_vs = new varsym(

delat,
"read.deltas");

fileset->globals()->addsym(readdeltas-vs);

write-doubledeltasvs = new var-sym(
delat,
"write-doubledeltas");

fileset->globals()->addsym(write-doubledeltas-vs);

/* from lib.master.c */

type-node *iat = new array-type(type-signed, 0, MAXARGS-1);
fileset->globals()->add-type(iat);
int-argsvs = new var-sym(

iat,
"intargs");

fileset->globals()->addsym(int-args-vs);

type-node *dat = new array-type(type-double, 0, MAXARGS-1);
fileset->globals()->add~type(dat);

double-args-vs = new var-sym(
dat,
"double-args");

fileset->globals()->add-sym(double-args-vs);
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type-node *pat = new array-type(type-void->ptrto(), 0, MAXARGS-1);
fileset->globals()->add-type(pat);

pointer-args-vs = new varsym(
pat,

"pointer-args");
fileset->globals()->add-sym(pointerargs-vs);

inner-startvs = new varsym(
type_signed,
"innerstart");

fileset->globals()->add~sym(innerstart-vs);

return;

void init-generic-func-syms(void)

// void (*foo) (void)
func-type *ft = new functype(type-vO);
ft = (func-type *)fileset->globals()->install-type(ft);
ptGenericFunc = new ptr-type(ft);
ptGenericFunc = (ptr-type *) fileset->globals()->install-type(ptGenericFunc);
ps-spec-init = fileset->globals()->newproc(ft, srcc, "spec_init');
ps-spec-quit = fileset->globals()->newproc(ft, srcc, "specquit");

#ifdef NEEDMEMORYBARRIER
ps-memorybarrier = fileset->globals()->new-proc(ft, srcc, "memorybarrier");

#endif

void init-generatedfunc types()

ftGenerated = new func-type(
type-signed, type_signed, type-signed, type_signed);

ftGenerated = (func-type *)fileset->globals()->install-type(ftGenerated);
ptGenerated = new ptr-type(ftGenerated);
ptGenerated = (ptr-type *) fileset->globals()->install-type(ptGenerated);
ps-spec-try = fileset->globals()->newproc(ftGenerated, src-c,

"spectry");

ftSlave = new functype(
type-signed, type-signed, type-signed, type-signed, type-double-

>ptr-to());

ftSlave = (func-type *)fileset->globals()->install-type(ftSlave);
ptSlave = new ptr_type(ftSlave);
ptSlave = (ptrtype *) fileset->globals()->install-type(ptSlave);

}

void init-paramfuncsyms(void)

func-type *ftSpecifics = new func-type(
type-vO, ptSlave, typesigned,
type-signed, typesigned);

ftSpecifics = (functype *)fileset->globals()->install_type(ftSpecifics);
ptSpecifics = new ptr-type(ftSpecifics);
ptSpecifics = (ptrtype *) fileset->globals()->install-type(ptSpecifics);
pspass-loop-specifics = fileset->globals()->newproc(

ftSpecifics, srcc, "passjloop-specifics");
}

return;
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/* This procedure calls the other init procedures.
* It is called from main
*/

void init-syms(void)

annote-init();

init-global_variables();

init-genericfuncsyms();

init-generatedfunctypes();

init-paramfunc-syms (;

return;

insertcode.cc

/* Softspec Parallelizing Compiler */

/** Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */

/* MIT Lab for Computer Science */

#include <duds.h>

/* This procedure inserts calls to the generated procedures into the

* body of the main procedure. The instruction_count structure
*/

void insert-intomain(
tree-for *tf,
treeproc *tpprofile,
tree_proc *tp_detect,
tree-proc *tp-slave,
instructioncount *s)

// the original for loop is replaced by the profile, detect,

// slave procedures and the remainder loop.

// First, we have to generate some preliminary code

// record lower bound of the loop in "start"
// code generated: start = lower bound of for loop
var-sym *start vs = tf->scope()->newvar(typesigned, "start");
instruction *startset = new in-rrr(io-cpy,

type-signed,
operand(start-vs),
tf->lbop().clone(tf->scope());

treeinstr *startti = new tree-instr(start-set);
tf->parent()->insert-before(startti, tf->list_e();

// set the index variable to the lower bound as well

// code generated: index = lower bound of for loop
instruction *lb set = new in-rrr(io-cpy,

tf->index()->type(,
operand(tf->index(),
tf->lb-op().clone(tf->scope()));

tree-instr *lb-ti = new tree-instr(lb-set);
tf->parent(->insertbefore(lb-ti, tf->list-e();
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// record step of the loop in "step" variable
// code generated: step = step of loop
var-sym *step-vs = tf->scope()->new-var(typesigned, "step");
instruction *step-set = new in-rrr(iocpy,

typesigned,
operand(step-vs),
tf->step-op().clone(tf->scope()));

treeinstr *step-ti = new tree instr(stepset);
tf->parent(->insertbefore(stepti, tf->list_eo);

// record upper bound of loop in "ub" variable
// code generated: ub =
var-sym *ub-vs = tf->scope () ->new var (type-signed, "ub");
instruction *ubset = new inrrr(iosub,

typesigned,
operand(ub-vs),
tf->ub_op().clone(tf->scope(),
operand(step-vs));

treeinstr *ubti = new tree-instr(ub-set);
tf->parent()->insert-before(ub-ti, tf->liste());

// passloop-specifics communicates the several values
// via shared memory to the runtime system.
// these values include the loop bounds, the step,
// the number of reads and writes in the loop, etc.
// therefore it is inserted into the code before calls to
// other procedures

instruction *pass-specifics = new in-ldc(ptSpecifics,
operando, immed(ps-pass-loop-specifics));

instruction *slave-ptr = new in-ldc(ptSlave,
operando, immed(tpslave->proc());

instruction *numreads = new injldc(type-signed,
operando, immed(s->read_count));

instruction *num writedoubles = new inldc(type-signed,
operand(), immed(s->write-double-count));

instruction *call-specifics = new in-cal(type-vO, operando,
operand(pass-specifics), operand(slave-ptr),
operand(num-reads),
operand(numwrite-doubles),
operand(start-vs));

treeinstr *call specificsti = new tree_instr(callspecifics);
tf->parent(->insert-before(call-specifics-ti, tf->list-e();

// memory barrier is needed to make sure all values written
// to shared memory are propogated visible to the parallel
// threads running on different processors.

instruction *mb = new injldc(ptGenericFunc, operando,
immed(ps-memory-barrier));

instruction *mbin = new incal(type-vO, operand(),
operand(mb));

treeinstr *mbti = new treeinstr(mb in);
tf->parent(->insert-before(mbti, tf->list-e();

// code generated: j = profile-loop
instruction *profile-loop = new injldc(ptGenerated,

operand(), immed(tp-profile->proc()));
instruction *profile-loop-in = new in-cal(typesigned,

operand(tf->index(), operand(profile_loop),
operand(tf->index()), operand(step-vs),
operand(ub-vs));

treeinstr *profile-loop-ti = new tree-instr(profile-loopin);
tf->parent()->insert-before(profile_loopti, tf->liste());

// code generated: j = detectloop(j)
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instruction *detect-loop = new inldc(ptGenerated,
operando, immed(tp-detect->proc()));

instruction *detect-loop in = new in_cal(type-signed,
operand(tf->index()), operand(detectjloop),
operand(tf->index(), operand(step-vs),
operand(ub-vs));

tree-instr *detectloop-ti = new tree-instr(detectloop_in);
tf->parent()->insertbefore(detectloop-ti, tf->list-eo);

// code generated: j = spectry()
instruction *spec-loop = new in-ldc(ptGenerated,

operand(), immed(ps-spectry));
instruction *spec-loopin = new incal(typesigned,

operand(tf->index()), operand(specjloop),
operand(tf->index()), operand(step-vs),
operand(ub-vs));

tree-instr *spec-loop-ti = new tree_instr(spec-loop-in);
tf->parent(->insertbefore(spec_loopti, tf->list-e();

// keep the original loop and make it the remiander loop
// by replacing the lower bound with the latest value of
// the index.
tf->lb-op().remove(;
tf->set_lbop(operand(tf->index());

return;

/* This procedure determines wheter a loop may be paralleized by
* the sofspec compiler.
* assumes: (1) that tf is an inner loop
* (2) the SUIF pass "moo -Psce" has been run on the input program
* and therefore the read_vars, write-vars, and provatizable
* annotations have been written on this for loop
* returns: true or false depending on the result of analysis.
*/

boolean is-parallelizable(tree-for *tf)

{

// get the annotations
immedlist *read-vars-iml

= (immedlist *) tf->annotes() ->peekannote(k-readvars) ->immeds(;
immedlist *writevarsiml

= (immedlist *) tf->annotes () ->peek-annote(k-write-vars) ->immeds(;
immedlist *privatizable iml

= (immedlist *) tf->annotes() ->peek-annote(k-privatizable) ->immeds(;

// if any of the annotations are not present,
// we cannot performa analysis, so return FALSE
if( readvarsiml == NULL

write-varsiml == NULL
| privatizable-iml == NULL)

return FALSE;

// if there are no variables written to,
// then something is wrong. At least the
// loop index variable should be written to
if ( !(write-varsiml->count() > 0) ) {

return FALSE;

// if the first variable written to is not
// a symbol, then return FALSE
if( !(((*write-varsiml)[01).is-symbol() )

return FALSE;

// if the first variable written to is not the
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// index variable, then return FALSE
// the index variable usually appears as the
// first variable written to
if( (((*writevarsiml)[0]).symbol())->sym-id()

!= tf->index()->symid()
return FALSE;

// condition for no loop carried dependencies:
// the write vars list is identical to the
// privitizable vars list except for the
// presence of the loop index in ths write
// vars list.
// the following code checks for this
// condition.
int writecount = write_vars_iml->count(;
int privatizablecount = privatizableiml->count(;

for(int i=l; i < writecount; i++) {

if(i-1 >= privatizable-count)
return FALSE;

if( (*privatizableiml)[i-1]
!= (*write-vars-iml)[i]

return FALSE;

// if all the above tests pass, return TRUE

return TRUE;
}

/* Given a treenode tn, this procedure finds all for loops which
* contain straight line loop bodies, and then replaces them with parallel
* versions. The search is depth-first.
*/

void findinnerjloops(tree node *tn, void *x)

// the number of parallellizable loops found so far
static int num-par-loops=O;

// a data structure to passed between procedures
// see parallelize main in main.cc
investigate *Inv = (investigate *) x;

// find inner loops is recursively applied to all nodes
// in the body of the treenode (tn) to identify inner
// loops.

if( tn->is-for() ) {

// if the node is a for loop, it could be an
// inner loop, or its body could contain a loop.
// therefore it is necessary to determine which
// is the case, and parallelize only inner loops.

tree-for *tf = (treefor *) tn;

// the data structure Inv is also used to
// determine which loop in a loop nest is
// the inner loop, and hence parallelizable.
// the Parallelizable flag is set initially to
// true and then it is subsequently set to
// false by recursive calls to findinnerloops,
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// if the for loop contains control flow or loop themselves.

Inv->Parallelizable = TRUE;

// recursive call to fineinner-loops to determine
// whether the current for loop (tf) is an inner loop

tf->body()->map(findinner_loops, x, FALSE, FALSE);

// if tf is not an inner loop, then do not try to parallelize
if(Inv->Parallelizable == FALSE)

return;
}

// check to see if there are any loop carried
// dependencies of local variables, precluding
// parallelization with the current softspec
// implementation.
if( !isparallelizable(tf)

Inv->Parallelizable == FALSE;
return;

// now generate parallel code

// first get the list of local variables whose
// current values need to be passed in to
// the context of the profile, detect, and
// slave procedures.
immedlist *args-iml = setargs(tf);
tf->prepend.annote(k-argsjlist, argsjiml);

// the following generate procedures automatically
// install the procedures they generate into the
// code. Calls to these procedures are inserted
// into main by insert-intomain below.

//generate profile code
tree-proc *tp-profile = create-profile_loop(Inv->fse, tf);

// generate detect loopby insert-intojmain
treeproc *tp-detect

= create-detect-loop(Inv->fse, tf);

// this is a structure which keeps track of the
// number of reads and writes in the body of the
// loop, and is used to pass these numbers to the
// runtime system. The number of reads and writes
// are determined in the code which generates

// the slave code.

instruction_count *s = new instruction-count;

// generate the dlave code
tree-proc *tp-slave

= create-slave-loop(
Inv->fse,
tf,

S);

// insert the generated procedures into
// the main procedure
insert_into_main(

tf,
tpprofile,
tp-detect,
tpslave,
S);
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// now set the Parallelizable flag to FALSE to indicate
// that any outer loops are not parallelizable
Inv->Parallelizable = FALSE;

} else if( tn->is-instr() {

// if there are branches or procedures within the loop body,
// we do not parallelize the loop. This is not a necessary
// limitation. We could put some code here to insert
// duds code within procedures.

inst format inf = ((treeinstr *) tn)->instr(->format(;

if(inf == inf-bj || inf == infcal || inf == inf-mbr)

Inv->Parallelizable = FALSE;
return;

I else if( tn->isblock()
// if you encounter a block, then look inside the
// block.
tn->map(findinnerloops, x, FALSE, FALSE);

} else {
// in all other cases, we say that the loop is not
// parallelizable
Inv->Parallelizable = FALSE;

return;

/* This procedure inserts procedures which initialize (spec_init)
* and wrap up (spec-quit) the runtime system. The init procedure
* starts threads for the detection and slave , and the quit
* destroys these threads. Therefore the init procedure is
* inserted at the beginning of the main procedure body, and
* quit is inserted at the end of main
*/

void insertspec-initand-quit(treenode-list *main-tnl)

/* specinit */
instruction *init = new inldc(ptGenericFunc, operand(),

immed(ps-specinit));
instruction *initin = new incal(type-vO, operand(),

operand(init));
tree-instr *initti = new tree-instr(init-in);
maintnl->insertbefore(initti, main tnl->head();

/* spec-quit */
instruction *quit = new inldc(ptGenericFunc, operand(),

immed (ps-spec-quit));
instruction *quitin = new in_cal(type-vO, operand(),

operand(quit));
tree-instr *quitti = new tree_instr(quit-in);
main tnl->insertbefore(quitti, main tnl->tail());

return;
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generate argcode.cc:

/* Softspec Parallelizing Compiler */
/* Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */

/ MIT Lab for Computer Science */

#include <duds.h>

void get-args(tree_for *tf, int masterslave)

immedlist *args iml = tf->annotes()->peek-annote(kargsjlist)->immeds();

int args-count = args-iml->count(;

int int-count=O;
int double-count=O;
int pointer-count=O;

for(int i=O; i<args-count; i++) {

symnode *sn = ((*argsiml)[i]).symbol();

if( sn->is-var() ) {

var-sym *vs = (var-sym *) sn;

if( vs != tf->index() ) {

type-node *vst = vs->type();

if( vst == type-signed ) {

//instruction *init = new in_ldc(ptSetInt, operand(,
// immed(ps-setmasterint-args));

//instruction *arg-num = new inldc(typesigned,
// operand(, immed(intcount));
//instruction *init in = new incal(type-vO, operando,
/ / operand(init), operand(arg-num), operand(vs));

// tree-instr *init-ti = new tree-instr(init-in);

block int-args-bl(int-args-vs);
block argnumbl(intcount);
block arg-var-bl (vs);
block assign(arg-var bl = int_args-bl[argnumbl]);
treenode *inittn = assign.maketree_nodeo;
tf->parent()->insert-before(inittn, tf->list_e));

int-count++;

} else if (vst == type-double)

//instruction *init = new in-ldc(ptSetFloat, operand(),
// immed(ps-setmasterdoubleargs));

//instruction *argnum = new in-ldc(type-signed,
// operando, immed(double_count));
//instruction *initin = new in-cal(type-vO, operand(,

/ / operand(init), operand(arg-num), operand(vs));
//treeinstr *initti = new tree-instr(init-in);
//tf->parent()->insert-before(init-ti, tf->liste());

block double-args-bl(double-args-vs);
block arg-numbl(double-count);
block arg-var-bl (vs);
block assign(arg-var bl = doubleargs-bl[argnumbl]);
treenode *inittn = assign.maketreenode(;
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tf->parento->insertbefore(init-tn, tf->list-e();

doublecount++;

} else if( vst == type-double->ptrto()
| vst == type-signed->ptrto() ) {

//instruction *init = new in ldc(
// ptSetPointer, operand(),

// immed(ps-set-master-pointer-args));
//instruction *arg-num = new injldc(typesigned,
/ / operand(), immed(pointer-count));
//instruction *initin = new incal(
// type-vO, operand(,
// operand(init), operand(argnum),
// operand(vs));
//tree-instr *initti = new treeinstr(init-in);

block pointer-args-bl(pointer-args-vs);
block argnumnbl(pointercount);
block arg-var-bl (vs);
block assign (argvar-bl = pointer-args-bl [argnumbl]);
tree-node *init tn = assign.maketree-node();

tf->parent()->insert-before(init_tn, tf->list_e());

pointercount++;

return;

boolean immedisin list(symnode *s, immed-list *iml)

if(iml == NULL)
return FALSE;

int iml count = iml->count(;

for(int i=O; i < iml-count; i++) {

assert( ((iml)[i]).is-symbol() )
if(s == ((*iml) [i]).symbol()

return TRUE;

return FALSE;

immedlist *set args(tree for *tf)

immed list *read-vars-iml
= (immed list *) tf->annotes()->peek annote(kread vars)->immeds()

immed list *privatizable iml
= (immed-list *) tf->annotes()->peek annote(k-privatizable)->immeds()

60



if(read vars-iml == NULL)
return NULL;

int readcount = read vars-iml->counto;

immedlist *args-iml = new immedlist;

for(int i=O; i < readcount; i++) {

assert( ((*readvars-iml)[i]).is-symbol() );

if ( ! immedis_injlist(
((*readvars-iml)[i]).symbol(),
privatizable-iml)
) {

sym-node *sn = ((*readvarsiml)[i]).symbol();
args-iml->append(immed(sn));

}

int int-count=O;
int doublecount=O;
int pointer-count=O;
int argscount = args-iml->count();

for(int i=O; i<args-count; i++) {

sym-node *sn = ((*args-iml)[i]).symbol();

if( sn->isvar() )

var-sym *vs = (var-sym *) sn;

if( vs != tf->index() ) {

type-node *vst = vs->type();

if( vst == type-signed ) {

//instruction *init = new in_ldc(ptSetInt, operando,
/ immed(ps-set-master-int-args));

//instruction *arg_num = new inldc(typesigned,
// operand(), immed(int-count));
//instruction *init-in = new incal(type-vO, operand(,
/ / operand(init), operand(arg-num), operand(vs));

// tree-instr *init ti = new tree-instr(init-in);

block int-args-bl(int-args-vs);
block argnumbl(intcount);
block arg-var-bl (vs);
block assign (int-args-bl [arg-numbl] = argvarbl);
treenode *init-tn = assign.make-treenode();
tf->parent()->insert_before(init_tn, tf->list_e());

intcount++;

} else if (vst == type-double) {

//instruction *init = new inldc(ptSetFloat, operand(),
// immed(ps-set masterdouble-args));

//instruction *argnum = new inldc(typesigned,
// operand(), immed(double-count));
//instruction *init in = new in-cal(type-vO, operand(),
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/ / operand(init), operand(argnum), operand(vs));
//tree-instr *initti = new tree-instr(init-in);
//tf->parent(->insertbefore(initti, tf->liste());

block double_args-bl(double-argsvs);
block arg-num_bl(doublecount);
block argvar-bl(vs);
block assign(double-args-bl[arg-numnbl] = arg-var-bl);
treenode *init-tn = assign.make-tree-nodeo;
tf->parent(->insert-before(init-tn, tf->list-eo);

double-count++;

} else if( vst == type-double->ptr-to()
| vst == type-signed->ptr-to() {

//instruction *init = new in-ldc(
// ptSetPointer, operand(,

// immed(pssetmasterpointer-args));
//instruction *argnum = new inldc(typesigned,
// operand(), immed(pointer-count));
//instruction *initin = new incal(
// type vO, operand(),
// operand(init), operand(arg-num),
// operand(vs));
//treeinstr *initti = new tree-instr(init-in);

block pointer-args-bl(pointerargs-vs);
block argnumbl (pointer-count);
block argvar bl (vs);
block assign(pointerargs-bl[arg-numbl] = arg-var-bl);
treenode *init-tn = assign.make-tree-node(;

tf->parent()->insert-before(init-tn, tf->list-e());

pointer-count++;

}

assert(int_count <= MAXARGS);
assert(doublecount <= MAXARGS);
assert(pointer-count <= MAXARGS);

return args_iml;

generate-profile-code.cc

/** Softspec Parallelizing Compiler */
/** Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */
/** MIT Lab for Computer Science */

#include <duds.h>

/* This procedure inserts the address profiling code for an
* instruction, lod or str.
*/

void instrinsert-profile(
instruction *in,
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instruction count *s,
var_sym *iter count,
proc-symtab *pst-profile)
{

// we do not handle memcpy instructions as of yet.
// however they could be disassembled into lod and str
// instructions
assert( in->opcode() != io-memcpy );

if(in->opcode() == io-lod

|| in->opcode() == io-str) {

inrrr *inls = (in-rrr *) in;

// after running the following code,
// vs should refer to the variable
// that contains the address of the
// lod/str
varsym *vs;

if( inls->srclop().isinstr()

// now detach the address expression and store
// it in a "promote" variable
instruction *tmp-ins = inls->srclop().instr();
type-node *tmptyp = inls->srclop().type(;
vs = new varsym(tmptyp, "promote");
pst-profile->add~sym(vs);
tmpjins->remove();
inls->srcl-op().remove(;
inls->set-srcl(vs);
tmp-ins->set-dst (vs);

else if( inls->srclop().is-symbol()
vs = (var-sym *) inls->src1_op().symbol();

} else {
assert(FALSE);

// next, insert code that stores the profiled address
// into the shared array from the runtime system (read-addrprof-vs)

// this array is different depending on whether the dealing with

// loads or stores
block addr-arraybl;
block refcountbl; // this is the index into the array
if(in->opcode() == iojlod) {

addrarray-bl .set (read-addr-prof-vs);
ref-count-bl.set(s->readcount);
s->readcount += 1;
s->local-count++;

} else {
addr-array-bl .set (writedouble-addr-prof-vs);
ref-count-bl.set(s->writedoublecount);
s->write-double-count += 1;
s->local-count++;

}

// now make the assignment of the address value to the

// shared array
instruction *cast = new in-rrr(io-cvt, type-unsignedjlong,

operand(), operand(vs));
block castbl(cast);
block itercountbl(iter-count);
block init-bl;
initbl.set(addrarraybl[iter_countbl][refcountbl] = castbl);
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tree-node *inittn = initbl.maketreenode();
in->parent()->parent()->insert-before(inittn, in->parent()->liste());

return;

/* This procedure inserts the instrumentation needed to
* profile addresses appearing in loads/stores within the
* loop body, for the profile loop.
*/

void insert-profile(
treenode list *tnl,
var-sym *iter-count,
proc-symtab *pstprofile)

int length = tnl->counto;

// this data structure is needed to count the number of
// reads and writes within the loop body
struct instructioncount *s = new instruction_count;
s->read count = 0;
s->writedoublecount = 0;

// apply instrinsert-profile to all instructions
// within the loop body
for(int i=0; i<tnl->count(; i++)

tree-node *tn = (*tnl)[i];
if( tn->is-instr() {

s->local count = 0;
treeinstr *ti = (treeinstr *) tn;
instr-insert-profile(

ti->instr(,
S,
itercount,
pstprofile);

i+= s->localcount;

}

/* As the name of the procedure suggests

*/

tree-proc *create-profile-loop(file-set-entry *fse, tree-for *tf)

// a variable that keeps track of the number of
// detect procedures successfully generated, so
// it can give them different names.
static int count=0;
char name[100];
sprintf(name, "profileloop%d", count);

// create the procedure and install it into the
// file symbol table
proc-sym *ps-profile

= fse->symtab()->new-proc(ftGenerated, src-c,
name);

ps-profile->set-fse(fse);
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// create a procedure symbol table for the procedure
proc-symtab *pst-profile = new proc-symtab(name);
fse->symtab()->addchild(pstprofile);

// create the arguments of the procedure, namely
// starting index, the step, and the upper bound

char inputname[100);

// add first argument
sprintf(input-name, "%s-input", tf->index()->name));

var-sym* inputvar = pst-profile->newvar(type-signed, inputname);
input-var->setparamo;
pstprofile->params()->append(inputvar);

// add second argument
sprintf(inputname, "%s-step", tf->index()->name();
varsym* stepvar = pst-profile->new-var(typesigned, input-name);
step-var->set_paramo;
pst-profile->params()->append(step-var);

// add third argument
sprintf(input-name, "%s-stop", tf->index()->name();
var-sym* stop-var = pstprofile->new-var (type-signed, input-name);
stop-var->setparam();
pst-profile->params()->append(stop-var);

// make the body of the profile procedure
treenodejlist *profile-body = new tree_node_list;

// first insert a copy of the original loop itself

tree-for *tfc = tf->clone(pst-profile);
profile-body->push(tfc);

// create tree-proc for profile procedure, and install

// the body into the treeproc
tree-proc *tp-profile = new treeproc(profile-body, pstprofile);
ps-profile->set-block(tp-profile);

// set the current procedure for the builder library

// using the following command
block::set-proc(tpprofile);

// set the lower bound, step, and upper bound of the

// for loop to argument values
(tfc->lb_op()).removeo;
tfc->set_lbop(operand(input-var));
(tfc->stepopO).remove(;
tfc->set-step-op(operand(step-var));
(tfc->ubop()).remove(;
tfc->set-ub-op(operand(stop-var));

// the following call to getargs inserts

// calls to data structures within the runtime

// library to initialize local variables so they

// have the same values as in the main procedure

get-args(tfc, 1);

// a counter is needed to keep track of the number of iterations

var-sym *iter-count = pst_profile->new~var(type_signed, "iter_count");

// this block of code genertes all the necessary

// additional code needed in the body of the loop

// to perform detection
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// code generated: itercount = 0
instruction *itercountinit = new injldc(type-signed,

operand(iter-count), immed(0));
treeinstr *itercountinitti = new tree instr(itercount_init);
tfc->parent()->insertbefore(iter-count-init-ti, tfc->list_e));

// install exit-loop label symbol
labelsym *exit loop-ls = pstprofile->newjlabel("exitloop");
in-lab *exitloop_il = new inlab(exitloopjls);
tree instr *exit-loop-ti = new treeinstr(exit_loop_il);
tfc->parent()->insert-after(exitloop-ti, tfc->list-eo);

// make break condition at beginning of loop body
// code generated:
// if(!(itercount < NUMPROFITERS)) jump exit-loop;

instruction *three = new injldc(type-signed,
operand(), immed(NUMPROFITERS));

treeinstr *threeti = new tree-instr(three);
in-rrr *test = new inrrr(iosl, typesigned,

operand(), operand(iter-count), operand(three));
tree instr *testti = new tree-instr(test);
in-bj *break-loop = new inbj (io-bfalse,

exit_loop_ls, operand(test));
treeinstr *break loop_ti = new treeinstr(breakjloop);

// code generated: itercount+=l
instruction *one = new injldc(type-signed, operand(), immed(l));
instruction *itercountincr = new in-rrr(io-add, type-signed,

operand(iter-count), operand(iter-count), operand(one));
treeinstr *itercountincrti

= new tree instr(itercount incr);

// insert the generated into the loop body
tfc->body()->insert_after(iter-countincr_ti,

tfc->body()->tail());
tfc->body()->insertbefore(breakloopti, tfc->body()->head();
tfc->body()->insert_before(testti, tfc->body()->head));
tfc->body()->insertbefore(three_ti, tfc->body()->head());

// this instruments all the loads and stores in the loop body
// so that the addresses are made accessible to the runtime library
insert-profile(tfc->body(), iter-count, pst-profile);

// memory barrier, needed to make sure that the profiled addresses
// are seen by the threads running on other processors.
instruction *mb = new injldc(ptGenericFunc, operand(),

immed (ps memorybarrier));
instruction *mbin = new incal(type-v0, operand(),

operand(mb));
tree instr *mbti = new treeinstr(mb-in);
profile-body->append (mb-ti);

// create return instruction
inrrr *in-ret = new in-rrr(

io-ret, type-void, operand(, operand(tfc->index()));
treeinstr *tiret = new treeinstr(in ret);
profile-body->append(tiret);

// increment count
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count++;

// number the instructions in this procedure, since new ones have been

// created
tp-profile->number-instrs (;

return tp-profile;

generatedetect_code.cc

/ Softspec Parallelizing Compiler */

/* Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */

/** MIT Lab for Computer Science */

#include <duds.h>

/* As the name of the procedure suggests

*/

tree-proc *create_detect_loop(filesetentry *fse, tree_for *tf)

// a variable that keeps track of the number of

// profile loops successfully generated, so
// it can give them different names.

static int count=O;
char name[100);
sprintf(name, "detect_loop%d", count);

// create the detect procedure and install it into the

// file symbol table
procsym *ps-detect

= fse->symtab()->new-proc(ftGenerated, srcc, name);
ps-detect->set-fse(fse);

// create a procedure symbol table for the procedure

procsymtab *pst detect = new proc-symtab(name);
fse->symtab()->add-child(pstdetect);

// create the arguments of the detect procedure, namely

// starting index, the step, and the upper bound

char input-name[100];

// add first argument
sprintf(input-name, "%s-input", tf->index()->name());
var-sym* input-var = pst-detect->new-var(type_signed, inputname);
inputvar->set-param();
pst-detect->params()->append(input-var);

// add second argument
sprintf(inputname, "%sstep", tf->indexO->name();
varsym* step-var = pstdetect->new-var(typesigned, input-name);
stepvar->set-paramo;
pst-detect->params()->append(step-var);

// add third argument
sprintf(input-name, "%s-stop", tf->index()->name());
var-sym* stop-var = pst-detect->new-var(typesigned, input-name);
stopvar->set-paramo;
pst-detect->params()->append(stop-var);
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// make the body of the detect procedure
tree node-list *detect-body = new tree-nodelist;

// first insert a copy of the original loop itself
treefor *tfc = tf->clone(pst-detect);
detectbody->push(tfc);

// create tree-proc for detect-procedure, and install
// the body into the tree-proc
tree-proc *tp-detect = new tree-proc(detect body, pst-detect);
ps-detect->set-block(tpdetect);

// set the current procedure for the builder library
// using the following command
block::set-proc(tp-detect);

// set the lower bound, step, and upper bound of the
// for loop to argument values
(tfc->lb-op()).remove(;
tfc->setlb-op(operand(input-var));
(tfc->step-op()).remove(;
tfc->setstepop(operand(stepvar));
(tfc->ub-op()).remove(;
tfc->setub-op(operand(stop-var));

// the following call to get-args inserts
// calls to data structures within the runtime
// library to initialize local variables so they
// have the same values as in the main procedure

get-args(tfc, 1);

// this block of code genertes all the necessary
// additional code needed in the body of the loop
// to perform detection

// set detect_flag = 1 so that the runtime system
// begins detection (in parallel)
block detect-flag-bl(detect-flag vs);
block set-detect-flagbl(detect_flagbl = block(l));
tree-node *set detect-flag-tn = set-detect-flag-bl.make_tree_node(tfc);
tfc->parent()->insertbefore(setdetectflag tn, tfc->liste());

// memory barrier to make sure that the runtime
// system reads this value of detectIflag
instruction *mb = new injldc(ptGenericFunc, operando,

immed(psjmemory-barrier));
instruction *mbin = new in-cal(type-vO, operand(),

operand(mb));
tree-instr *mb-ti = new treeinstr(mbin);
tfc->parent(->insertbefore(mbti, tfc->liste();

// insert code into loop body to return if
// detectflag is equal to 2

inrrr *in-ret = new in rrr(
io-ret, typevoid, operand(), operand(tfc->index()));

block index bl(tfc->index());
block checkcodebl(block::IF(block(detect-flagbl == block(2)),

block(in ret)));
tree-node *check code-tn = checkcode bl.make-tree node(tfc->body());
tfc->body()->insert before(checkcode-tn, tfc->body()->head();

// insert code at end of loop to wait if detect flag is not 2
label-sym *wait-ls = pst-detect->new label("wait");
inlab *waitil = new in-lab(wait-ls);
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treeinstr *wait-ti = new tree-instr(wait-il);

in-bj *wait-branch = new inbj(io-jmp, waitjls);
//tree-instr *wait-branchti = new tree_instr(wait-branch);
block ifdetectflag-bl(block::IF(block(detect_flagbl != block(2)),

block(wait-branch)));
tree-node *if_detect-flag-tn = if-detectflagbl.make_tree_node(tfc);

tfc->parent()->insert-after(ifdetectflag-tn, tfc->liste());

tfc->parent()->insert-after(wait-ti, tfc->liste());

// insert return
in-rrr *in ret = new in-rrr(

io-ret, type-void, operand(), operand(tfc->index());
tree-instr *ti-ret = new tree-instr(inret);
detect-body->append(ti-ret);

// increment count
count++;

// number the instructions in this procedure, since new
// ones have been created
tp-detect->number-instrs (;

return tpdetect;

generate_slavecode.cc

/* Softspec Parallelizing Compiler */

/* Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */

/ MIT Lab for Computer Science */

#include <duds.h>

/* This procedure inserts the address prediction/check for lod/str instructions

* and (if necessary) the code needed for str instructions to save the

* value to the write buffer.
*/

void instr-insertaddress-prediction(
tree_for *tf,
instruction *in,
instruction-count *s,
procsymtab *pst-slave,
var-sym *write-pointer-vs,
varsym *ncancel-vs)

// make sure there are no memcpy instructions
// these instructions could be handled by breaking
// them up into lod and str instructions, but
// we haven't implemented that

assert( in->opcode() != io-memcpy );

// if the instruction is a lod or str,
// generate the appropriate code

if(in->opcode() == io-lod

|| in->opcode() == io-str)

inrrr *inls = (in-rrr *) in;
varsym *actual vs, *pvs;

// obtain the address of the lod/str in a

// variable (actual-vs)
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if( inls->srclop().is_instr() )

instruction *tmpins = inls->srclop().instr();
type-node *tmp-typ = inls->srcl_opo.type();
actual-vs = new varsym(tmptyp, "promote");
pstslave->add-sym(actual-vs);
tmp-ins->remove();
inls->srclop().remove();
tmp_ins->setdst(actual-vs);

} else if( inls->srclop().is-symbol()
actual vs = (var-sym *) inls->srclop(.symbol();

else {
assert(FALSE);

instruction *init, *iter-num, *ref-num;

// in case of lod
if(in->opcode() == iojlod) {

// create variables predict and delta needed to for
// address calculations
var-sym *predict-vs = new var-sym(type unsigned long, "predict");
pst-slave->add sym(predict vs);
block predictbl(predict vs);
var-sym *delta-vs = new var-sym(type-signed long, "delta");
pst_slave->add-sym (delta vs);

// create builder structures for the following variables
block readcount-bl(s->read count);
block delta_bl(delta-vs);
block read deltas-bl(read-deltas-vs);
block ncancelbl(ncancel-vs);
block actual bl(actual-vs);

// initialize read delta before for loop
block initreaddeltabl(delta-bl = readdeltas-bl[readcountbl]);
tree-node *initreaddelta-tn = init_readdeltabl.maketreenode(tf);
tf->parent()->insert-before(initread delta-tn, tf->list-e();

// initialize predicted address before for loop
// by accessing the profiled address data structures
// in the runtime system.
block read-addrprof bl (read addr-prof vs);
block read array-access bl(readaddrprof-bl(block(0)][read count-bl]);
instruction *read array-access

read arrayaccess bl.make-instruction(tf);
block factor bl(block(delta vs) * (block(tf->lbop())

block(inner-start vs))/block(tf->step-op()));
instruction *factor = factorbl.makeinstruction(tf);
instruction *init read address = new in rrr(ioadd, type-unsigned long,

operand(predict vs), operand(read-array-access), operand(factor));
tree instr *initreadaddress-ti = new tree instr(init_readaddress);
tf->parent()->insertbefore(init-read addressti, tf->list_e();

// cast the predicted address from an unsigned long to
// the type of the lod, can't use builder for this
// since it inserts its own casts.
instruction *predict vs-cast = new in-rrr(io_cvt,

actual-vs->type(),
operand(, operand(predict-vs));

inls->setsrcl(operand(predictvs-cast));

// insert code to check predicted address
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block check-predict-bl(ncancelbl = ncancel-bl & (predict-bl ==
actual-vs));

treenode *check-predicttn = checkpredictbl.make_treenode(tf);

// increment the predicted address, don't use builder for this

instruction *incr-predict = new in-rrr(ioadd,
type-unsignedjlong,
operand(predictvs),
operand(predictvs),
operand(delta-vs));

tree-instr *incr-predict_tn = new tree-instr(incr-predict);

// insert the generated instructions
inls->parent()->parent()->insert-before(check-predicttn, inls->parent()-

>list-e();
s->localcount++;
inls->parent()->parent()->insertafter(incrpredicttn, inls->parent()-

>parent()->tail());

// increment counts
s->local-count++;
s->read~count += 1;

} else {

// in case of a str instruction

// create variables predict, delta, value, needed for

// address calculations and value preservation
varsym *predict vs = new varsym(type-unsignedjlong, "predict");
pst-slave->add~sym (predict_vs);
block predict-bl(predict-vs);
var-sym *delta vs = new var-sym(type-signedjlong, "delta');
pst-slave->add.sym(deltavs);
var-sym *value vs = new varsym(type-double, "value");
pstslave->addsym(value-vs);

// creat block structures for the following variables
block writedoublecount-bl(s->writedoublecount);
block delta-bl(delta-vs);
block write doubledeltas_bl(writedoubledeltas-vs);
block actual-bl(actual-vs);
block ncancel-bl(ncancelvs);

// initialize write double delta before for loop
// using data structures from the runtime library
block init_writedouble_deltabl(deltabl

write_double_deltas-bl[writedoublecountbl]);
treenode *init-write-double-delta-tn

initwrite-double-deltabl.maketree-node(tf);
tf->parent()->insert-before(initwritedoubledelta-tn, tf->list_e();

// initialize predicted address before for loop
// using data structures from the runtime library
block writedoubleaddrprof-bl(writedouble-addr-prof-vs);
block

writedoublearray-access-bl(writedoubleaddrprof-bl[block(0)1[write-double-count-bl]);
instruction *write-doublearrayaccess

writedoublearray-accessbl.makeinstruction(tf);
block factor bl(block(delta vs) * (block(tf->lb-opo)

block(innerstartvs))/block(tf->stepop());
instruction *factor = factorbl.make_instruction(tf);
instruction *initwritedoubleaddress = new in-rrr(io-add,

typeunsignedjlong, operand(predictvs), operand(writedoublearrayaccess),
operand(factor));

tree-instr *init_writedoubleaddress-ti = new

tree-instr(initwritedoubleaddress);
tf->parent()->insert-before(initwritedouble-address-ti, tf->list_e();
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// cast the predicted address from an unsigned long to
// the type of the lod, can't use builder for this
// since it inserts its own casts.
instruction *predict vs-cast = new in-rrr(io_cvt,

actualvs->type(),
operand(), operand(predict-vs));

inls->setsrcl(operand(predictvscast));

// save the current value of the memory at predicted address
instruction *predictcast = new in rrr(io-cvt,

write-pointervs->type(, operand(),
operand(predict vs));

block savevalue bl;
save value bl.set(block(writepointervs).dref()

block(predict-cast).dref());
tree-node *save_valuetn = savevalue bl.maketreenode(tf);

// increment the write-pointer
instruction *one = new injldc(type-signed, operand(),

immed(DOUBLE_TOCHAR));
instruction *incr_writepointer = new in-rrr(ioadd, write-pointer-vs-

>type(), operand(write-pointer-vs), operand(one), operand(write-pointer vs));
tree-instr *incr write-pointer-tn = new tree instr(incrwrite pointer);

// insert code to check predicted address
block check-predict-bl(ncancelbl = ncancelbl & (predictbl ==

actualvs));
tree-node *check-predict-tn = checkpredictbl.maketree-node(tf);

// increment the predicted address, don't use builder for
// this
instruction *incr-predict = new in rrr(ioadd, type-unsigned-long,

operand(predict vs), operand(predict vs), operand(delta-vs));
treeinstr *incr-predict tn = new tree-instr(incr-predict);

// insert instructions into for loop body
inls->parent()->parent()->insert-before(save value-tn, inls->parent()-

>list-e());
s->local-count++;
inls->parent()->parent()->insertafter(incr-write-pointertn, inls-

>parent()->list-e());
s->local-count++;
inls->parent()->parent()->insert-after(incr-predict-tn, inls->parent()-

>parent()->tail());
s->local-count++;
inls->parent()->parent()->insertafter(check-predicttn, inls->parent()-

>list-eo);

// increment counters
s->local-count++;
s->write double count += 1;

}

}

return;

/* This procedure inserts the address prediction and
* checking mechanisms for each load and store in the
* for loop, by applying instrinsertaddr-prediction
* to each instruction.
*/

instruction-count *insertaddress-prediction(
tree-for *tf,
instruction-count *s,
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proc-symtab *pst-slave,
var-sym *write buffer vs)

// first create and initialize ncancel to 1 at the
// beginning of the loop.
// neancel is used to detect any address mispredictions
var-sym *ncancel vs = new var-sym(type-unsigned, 'ncancel");
pst-slave->addsym (ncancelivs);
block setncancel-bl;
setncancelbl.set(block(ncancelvs) = block(l));
tree-node *set-ncancel_tn = setncancelbl.maketree-node(tf);
tf->parent()->insert-before(set-ncancel-tn, tf->liste());

// create and set write-pointer, which points to the

// next free address in the write buffer

varsym *writepointer vs = new var-sym(typedouble->ptrto(, "write-pointer");

pst-slave->add~sym(writepointer-vs);
block setwritepointer-bl;
set-writepointerbl.set(block(write-pointervs) = block(write-buffer-vs));
tree-node *set-write-pointer_tn = setwrite-pointerbl.maketree-node(tf);

tf->parent()->insert-before(setwrite-pointertn, tf->liste());

// initialize the counts
s->read-count = 0;
s->writedoublecount = 0;

// now traverse the body of the for loop
treenode_list *tnl = tf->body(;
int length = tnl->count(;

for(int i=0; i<tnl->count(; i++) {

tree-node *tn = (*tnl)[i];
if( tn->is-instr() ) {

tn->print();
s->local-count = 0;
treeinstr *ti = (tree-instr *) tn;
instr-insert-address-prediction(

tf,
ti->instr(, s,
pstslave,
writepointervs,
ncancel-vs);

i+= s->local-count;
}

}

// generate code for conditional return if there was a

// misprediction
instruction *whatever = new in rrr(io-sub, type-signed,

operand(), operand(tf->lbopo), operand(tf->step-op());
inrrr *inret = new in-rrr(

ioret, type-void, operand(), operand(whatever));
// treeinstr *ti ret = new treeinstr(in-ret);
block condret_bl(block::IF(block(block(ncancel vs) == 0), block(in-ret)));

tree-node *cond rettn = condretbl.maketree-node(tf);
tf->parent()->insertafter(condret_tn, tf->list_e();

return s;

}

/* as the name suggests .
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*/
tree-proc *create slaveloop(
file-set-entry *fse,
tree-for *tf,
instruction-count *s)

// a variable that keeps track of the number of
// slave procedures successfully generated, so
// it can give them different names.
static int count=O;
char name[100];
sprintf(name, "slave%d", count);

// create the procedure and install it into the
// file symbol table
proc-sym *ps-slave

= fse->symtab()->new-proc(ftSlave, srcc,
name);

ps-slave->set-fse(fse);

// create a procedure symbol table for the procedure
proc-symtab *pst-slave = new proc-symtab(name);
fse->symtab()->add-child(pstslave);

// create the arguments of the procedure, namely
// starting index, the step, and the upper bound

char input-name[100];

// add first argument
sprintf(input-name, "%s_input", tf->index()->name());
var-sym* input-var = pst-slave->new_var(type_signed, inputname);
input var->set-param();
pst-slave->params()->append(input-var);

// add second argument
sprintf(input-name, "%sstep", tf->index()->name();
var-sym* step-var = pst_slave->new-var(type-signed, input-name);
stepvar->setparam();
pst-slave->params()->append(stepvar);

// add third argument
sprintf(input-name, "%sstop", tf->index()->name();
var-sym* stop-var = pst-slave->new-var(type-signed, input-name);
stop var->set-param();
pst-slave->params()->append(stop-var);

// add fourth arguemnt
sprintf(inputname, "write-buffer");
var-sym *write buffer vs = pst_slave->new-var (typedouble->ptrto (, input-name);
write-buffer vs->set-param(;
pstslave->params()->append(write-buffer-vs);

// make the body of the slave procedure
treenodelist *slave-body = new tree-nodejlist;

// first insert a copy of the original loop itself
tree-for *tfc = tf->clone(pst-slave);
slave-body->push(tfc);

// create tree-proc for profile procedure, and install
// the body into the tree-proc
tree-proc *tp-slave = new tree-proc(slave-body, pstslave);
ps_slave->set block(tp-slave);

// set the current procedure for the builder library
// using the following command
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block::setproc(tpslave);

// set the lower bound, step, and upper bound of the
// for loop to argument values
(tfc->lb_op()).remove();
tfc->set_lbop (operand(input-var));
(tfc->stepop()).remove(;
tfc->set_step-op (operand(step-var));
(tfc->ubop()).remove( ;
tfc->set-ubop (operand(stop-var));

// the following call to get-args inserts
// calls to data structures within the runtime
// library to initialize local variables so they
/ have the same values as in the main procedure
get-args(tfc, 0);

// insert address prediction code
insert_address prediction(tfc, s,pst-slave,write-buffer-vs);

// insert the return statement
inrrr *in-ret = new in-rrr(

io-ret, type-void, operando, operand(tfc->index()));
tree-instr *tiret = new tree-instr(in-ret);
slavebody->append(ti-ret);

// increment the counter
count++;

// number the newly created instructions in the
// procedure
tp-slave->number-instrs (;

return tp-slave;

Appendix D

This appendix contains source code in C for the runtime system compiler. The header

files are lib.h, lib.arithmetic.h, lib.detecct.h, lib.master.h, lib.slave.h and the source code files are,

lib.arithmetic.c, lib.detect.c, lib.master.c, lib.slave.c.

lib.h:

/ Softspec Runtime System */
/ Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */
/ MIT Lab for Computer Science */

#define MEMORYBARRIERREQUIRED

#define CACHELINEFACTOR 3

#define MAXNUMMEMREFS 50
#define MAXPARITERS 1000
#define MAXARGS 50
#define NUM_PROF_ITERS 3
#define NUMTHREADS 3

typedef int (*specfunction) (int, int, int, double *);
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/* lib.detect variables */
extern int detect-flag;
extern unsigned long read-addr-prof [NUM_PROF_ITERS] [MAXNUM_MEM_REFS];
extern unsigned long write-double addrprof [NUMPROFITERS] [MAXNUMMEMREFS];
extern long read deltas[MAXNUMMEM_REFS];
extern long write_double_deltas[MAXNUN_MEM_REFS];
extern int numpar-iters;

/* lib.master variables */

extern int *flags;
extern int *finished;
extern specfunction spec_loop;
extern int numread refs;
extern int numwritedoublerefs;
extern int inner;
extern int innerstart;
extern int innerstep;
extern int inner_stop;
extern int int_args[MAXARGS];
extern double double-args[MAXARGS];
extern void *pointer-args[MAXARGS];

/* macros */

#define FLAGS(n) flags[(n) << CACHELINEFACTORJ
#define FINISHED(n) finished[(n) << CACHELINEFACTOR]
#define THREADS(x) threads[((x)%NUMTHREADS) << CACHELINEFACTOR]

lib.arithmetic.h:

/* Softspec Runtime System */
/** Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */
/** MIT Lab for Computer Science */

#define min(x,y) ( (x) > (y) ? (y) : (x) )
#define max(x,y) ( (x) < (y) ? (y) : (x) )

struct gcd-struct {
long a;
long b;
long gcd;
long x;
long y;

typedef struct gcd-struct gcd-struct;

void gcd(gcd-struct *g);

int intersect(
unsigned long p,
long s,
unsigned long q,
long t);

lib.detect.h

/ Softspec Runtime System */
/** Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */
/* MIT Lab for Computer Science */
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void detect(void *x);

lib.master.h

/* Softspec Runtime System */
/ Author: Devabhaktuni Srikrishna (chinnama@cag.ics.mit.edu), 1998 */

/* MIT Lab for Computer Science */

void passloop-specifics(

spec-function spec_loop_function,
int numread-refs-input,
int numwritedoublerefs_input,
int innerstartjinput);

void spec_inito;

int spec-try(
int inner-start-input,
int inner-step-input,
int inner-stop-input);

void spec-quit();

lib.slave.h:

/* Softspec Runtime System */
/ Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */

/ MIT Lab for Computer Science */

int stop(int tid);
void spec_do(void *x);

lib.arithmetic.c:

/ Softspec Runtime System */
/ Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */

/ MIT Lab for Computer Science */

#include <lib.arithmetic.h>

/* #define PRINTINTERSECT */

/* This procedure calculates the gcd (a,b) of two numbers a and b.
* It also calculates x and y such that x*a+y*b=(a,b).
* inputs are passed through the structure g, and results are
* returned through the same structure.
*/

void gcd(gcd-struct *g) /* based on Aho, Hopcroft, Ullman, p. 301 */

long xO=l, yO=O, xl=O, yl=l, i=l;
long aO=g->a, al=g->b;

/* special case al=b=0 */
if (al==0) {

g->gcd=aO;
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g->x=xO;
g->y=yO;
return;

while(aO%al != 0) {

long q, temp;

q = a0/al;

temp = al;
al = a0 - q*(al);
a0 = temp;

temp = xl;
x1 = xO - q*xl;
xO = temp;

temp = yl;
yl = yO - q*y1;

yO = temp;

g->gcd
g->x =

g->y =

long mod(
long a,
long b)
{

= al;
xl;
yl;

/* find minimum non-negative value of a + b * k */
/* if non exists, then return a */

if( b > 0 )
return (a >= 0) ? a%b : (a%b) + b;

else if( b < 0 )
return (a >= 0) ? a%b : (a%b) - b;

/* means b == 0 */

return a;

int intersect( /*
unsigned long p,
long s, /*
unsigned long q,
long t)

returns -1 if there is no intersection for positive displacements */
/* returns the positive displacement if there is intersection */

do not use this for s==0 and t==0 at the same time */

{

gcd-struct g;
long diff;
long d, m, n, 1;

long x, y, xl, yl, x2, y2;
long validl, valid2, same, zero;

/*
if(p==q && s==t)

return -1;
} else if(p==q) {
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i
*/

if (q > p) {
unsigned long utemp;
long itemp;

utemp = p;
p =q;
q = utemp;

itemp = s;
s =t;
t = itemp;

diff = ((long) (p-q));

g.a = -s; g.b = t;

#ifdef PRINTINTERSECT

printf("before gcd\n");
#endif

gcd(&g);
d = g.gcd;

#ifdef PRINTINTERSECT
printf("gcd passed\n");

#endif

if( diff % d 0)
return -1;

1 = diff/d;
x = 1 * g.x;

y = 1 * g.y;

by now
p + s * x = q + t * y

if (s == 0)
return

(non-zero solution)

y>O ? y : -1;

if(t == 0)
return x>0 ? x : -1;

m = t/d;
n = s/d;

xl = mod(x,m);
yl = (diff + s * xl)/t;
y2 = mod(y,n);
x2 = (t * y2 - diff)/s;

#ifdef PRINTINTERSECT
printf("** intersect:

y=%d, n=%d, \n** intersect: (%d,%d)

#endif

p=%u, s=%d, q=%u, t=%d\n** intersect: x=%d, m=%d,
(%d,%d)\n",p,s,q,t,x,m,y,n,xl,yl,x2,y2);

/* special case when the solutions at multiples of (m,n) */
zero = (xl == 0 && yl == 0) || (x2 == 0 && y2 == 0);
if(zero) {

if(m*n < 0 || m==n)
return -1;

return (m > 0 && n > 0) ? max(m,n) : -min(m,n);
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valid1 = ( x1 >= 0 && yl >= 0);
valid2 = ( x2 >= 0 && y2 >= 0);
same = ( xl == x2 && yl == y2 );

/* look for another special case */
if(validl && valid2 && same)

return max(xl,yl);

if(validl) {
if(valid2) {

/* implies not same */
return (xl*y2-x2*yl)/((y2-yl)-(x2-xl));

} else {
return max(xl,yl);

} else
if(valid2)

return max(x2,y2);
else

return -1;

return 0;

lib.detect.c

/ Softspec Runtime System */
/** Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */
/ MIT Lab for Computer Science */

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <lib.h>
#include <lib.arithmetic.h>
#include <lib.detect.h>

/* #define PRINTOK */

int detect-flag=0;
int detect-flag;
unsigned long read addrprof (NUMPROFITERS] [MAXNUM_MEMREFS];
unsigned long write_doubleaddr-prof [NUMPROFITERS J[MAXNUMMEMREFS];
long read deltas[MAXNUM_MEMREFS];
long write doubledeltas[MAXNUMMEMREFS];
int numnpar-iters;

/* This procedure is called by the thread running detect().
* It performs detection on the values loaded in the data structures
* above
*/

int perform detect(void)

/* detect pattern
* returns the number of parallelizable iterations
*/

int i;
int localnum-par-iters=0;
int local-numread-refs = numread refs;
int localnumwritedouble-refs = numwritedoublerefs;
int constant non zerodeltas=l;
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unsigned long localwritedouble_first-iteration[MAX_NUMLMEMREFS];
unsigned long localreadfirst-iteration[MAXNUMMEMREFS];

#ifdef PRINTOK
printf("entering performdetect\n");

#endif
for(i=O; i<local-numwritedoublerefs; i++)

int templ, temp2;

localwritedoublefirstiteration[iJ] =

(write_doubleaddrprof[0])(i];

templ = ((int) (write-double-addr-prof[1])[i])
- ((int) (write double-addr-prof[O])[i]);

temp2 = ((int) (writedouble_addrprof[2])[i])
- ((int) (write-double-addr-prof[l])[i]);

if( templ != temp2 |1 templ == 0 ) {
constantnon-zero-deltas = 0;

I else {
writedoubledeltas[i] = templ;

}

for(i=0; i<local-numreadrefs; i++)

int templ, temp2;

local-readfirstiteration[i] =
(readaddr-prof[0])[i];

templ = ((int) (read-addr-prof[1])[i])
- ((int) ((readaddrprof[0])[i]));

temp2 = ((int) (readaddrprof[2])(i])
- ((int) ((readaddr-prof[l]))[i]);

if( templ != temp2 ) {
constantnonzerodeltas = 0;

} else {
read-deltas[i] = templ;

/* determine whether prediction is possible */

if(constant-non~zero-deltas) {

/* insert WAW and WAR dependence check
* and replace code below
* localnum-parjiters is the number of
* parallelizable iterations
*/

local_num-pariters = -1;

for(i=0; i<local_numwrite-double_refs; i++) {

int j;
unsigned long p=local-write-doublefirstiteration[i];
long s=write-double-deltas[i];
/* Inter-iteration Output dependency checks

* i.e. WAW

*/

for(j=0; j<i; j++) {
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unsigned long q=local-writedouble_first-iteration[j);

long t=writedouble-deltas[j];
int intersectresult;
intersect-result = intersect(p,s,q,t);

if( intersect-result > -l ) {
localnum-par-iters

= (local-num-par-iters == -1) ?
intersect-result :
min(local-numpar-iters, intersect-result);

}

/* Inter-iteration True and Anti dependency
* checks, i.e. RAW and WAR
*/

for(j=O; j<numread-refs; j++) {
unsigned long q=localread first iteration[j];
long t=read deltas[j);
int intersect-result;

#ifdef PRINTOK

printf("comparing W%d and R%d p s q t: %lu %ld %lu
%ld\n",i,j,p,s,q,t);

#endif

intersectresult = intersect(p,s,q,t);
#ifdef PRINTOK

printf('finished intersect\n");
#endif

if( intersect-result > -1 ) {
localnumpar-iters
= (local-num-par-iters == -1) ?

intersect-result min(local-num-par-iters,
intersect-result);

}

}

} else { /* no prediction possible */

local-numpar-iters=O;
}

#ifdef PRINTOK
printf("exiting perform-detect\n");

#endif

return local-num-par-iters;

void detect(void *x)

/* detect-flag is initailly set to zero by proc 0
* when proc 0 requests detection, then it changes detectflag
* to one. Next it changes back to 2 to indicate that the
* prediction calculation has been completed
*/

int i, j, constantnon-zero-deltas, hazard, localnumpar iters;
unsigned local-read firstiteration[MAXNUMMEMREFS];
unsigned local-writedoublefirst_iteration[MAXNUMMEMREFS];

while(l) {
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int flag = detectflag;
asm("mb");

if( flag < 0 ) {

/* means that the program is over */
break;

I else if( flag == 1

num-par-iters = perform-detect(;
detect_flag = 2;

asm("imb");

} else if(flag == 0 || flag == 2)

/* ok */

return;

lib.master.c

/* Softspec Runtime System */
/* Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */
/* MIT Lab for Computer Science */

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <assert.h>
#include <lib.h>
#include <lib.master.h>
#include <lib.detect.h>
#include <lib.slave.h>
#include <lib.arithmetic.h>

/* #define PRINTOK */

int numread-refs;
int numwritedouble refs;

/* signalling flags */
int *flags, *finished;

/* argument passing protocol */
specfunction specjloop;

int inner;
int inner-start;
int inner-step;
int inner-stop;

int int-args[MAXARGS];
double doubleargs[MAXARGS];
void *pointer-args[MAXARGS];

/* threads */
pthreadt threads [NUMTHREADS << CACHELINEFACTOR];
int thread-args [NUM_THREADS << CACHE_LINE_FACTOR];
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/* macros */
#define THREADS(x) threads[((x)%NUMTHREADS) << CACHE_LINEFACTOR]
#define THREADARGS(x) thread-args[((x)%NUMTHREADS) << CACHELINEFACTOR

void pass_loop-specifics(
spec-function spec-loop-input,
int numnread-refsjinput,
int num write double_refs_input,
int innerstart_input)
{

assert(num read refs <= MAXNUMMEMREFS);
assert(num write doublerefs <= MAXNUMMEMREFS);

spec-loop = spec-loop-input;
numreadrefs = numreadrefsinput;
numwrite-double-refs = numwritedouble-refs_input;
inner-start = innerstart-input;

return;

void master memoryinit(void)

int i;

/* create signalling flags */

flags = (int *) malloc(sizeof(int) * (NUMTHREADS << CACHE_LINEFACTOR));
finished = (int *) malloc(sizeof(int) * (NUMTHREADS << CACHELINEFACTOR));

/* initialize signalling flags */
for(i=O; i<NUMTHREADS; i++)

FLAGS(i) = 0;
FINISHED(i) = 0;

}

/*
intargs = (int *) malloc(sizeof(int) * MAXARGS);
double-args = (double *) malloc(sizeof(double) * MAXARGS);
pointerargs = (void **) malloc(sizeof(void *) * MAX_ARGS);
read-deltas = (long *) malloc(sizeof(long) * MAXNUM_MEMREFS);
write double-deltas = (long *) malloc(sizeof(long) * MAXNUMMEMREFS);
read-addr-prof = (unsigned long **) malloc(sizeof(unsigned long *) *

NUMPROFITERS);
write double addr-prof = (unsigned long **) malloc(sizeof(unsigned long **) *

NUMPROFITERS);
for(i=0; i<NUMPROFITERS; i++) {

read-addr-prof[i] = (unsigned long *)
malloc(sizeof (unsigned long) * MAXNUMMEMREFS);

write-double-addr-prof[i] = (unsigned long *)
malloc(sizeof (unsigned long) * MAXNUMMEMREFS);

*/

asm('mb");

return;

void master threadsinit(void)
{

int i;
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/* detect thread */
THREADARGS (NUM _THREADS-1) = NUM_THREADS-1;
pthreadcreate(&(THREADS(NUMTHREADS-1)), (void *) NULL, (void *) detect, (void *)

&(THREADARGS(NUM_THREADS-1)));

/* slave threads */
for(i=l; i<NUMTHREADS-1; i++)

THREADARGS(i) = i;
pthread~create(&(THREADS(i)),

&(THREADARGS(i)));
(void *) NULL, (void *) specdo, (void *)

return;

/* loop independent */
void spec-init(void)

int i;

mastermemory_init (;

masterthreadsinit();

return;

/* check whether we should
int shouldparallelize
int num-par_iters,
int inner,
int innerstep,
int inner-stop) {

parallelize the rest of the loop */

int maxiters;
int restiters;
int bound;

restiters = (inner-stop-inner)/innerstep;

maxjiters = (num-par-iters == -1) ?
restiters :
min(rest-iters,

num_par-iters- (inner-inner_start)

bound = max(NUM_THREADS-2,restiters);

/inner-step);

}
return maxiters>=bound;

/* loop independent */
int spec-try(
int inner_input,
int inner-step-input,
int inner-stop-input)
{

int cancel;
int local-inner;
int local-num-par iters = num_par_iters;

#ifdef PRINTOK
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printf( "spec-try: num_par_iters = %d\n", local-num-par_iters);
#endif

/* if detection is not possible, then return */
if(local-num-par-iters == 0)

return innerinput;

inner = innerinput;
innerstep = inner_step nput;
inner-stop = innerstop-input;

if (!should-parallelize(local-num-par-iters,
inner, innerstep, inner-stop))

return inner;

cancel=0;

/* begin speculative execution
* pass arguments
*/

/* start speculative execution */
FLAGS(O) += 1;

FINISHED(0) += 1;

asm("mb");

/* wait until all other threads have started
* this condition is needed to ensure that
* the finished flags reflect the state of the
* current loop and not the previous loop
*/

#ifdef PRINTOK
printf('spec-try: waiting for speculative threads to start\n");

#endif
while( FLAGS(NUMTHREADS-2) < FLAGS(O) ) {

asm('mb");

#ifdef PRINTOK
printf('spec-try: done waiting for speculative threads to start\n");

#endif

/* wait until all other threads have
* finished and then calculate final i
*/

while(l)

int s, t;
s = FINISHED(NUMTHREADS-2);
t = FINISHED(0);

asm("mb");

if(s >= t)
localinner = inner-stop;
break;

} else if (s < 0) {
int k;
for(k=l; k<=NUMTHREADS-2; k++)

if(FINISHED(k) < 0) {
asm("mb");
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break;
}

localinner = stop(k-1);
break;

return local inne:
printf("spectry:

void spec-quito /* loop
{

int j;

FLAGS(O) = -1;

detect-flag = -1;

asm("mb");

all threads completed\n");

independent */

for(j=l; j<NUMTHREADS; j++) {
pthreadjoin(THREADS(j), NULL);

return;

lib.slave.c:

/* Softspec Runtime System */
/** Author: Devabhaktuni Srikrishna (chinnama@cag.lcs.mit.edu), 1998 */
/ MIT Lab for Computer Science */

#include
#include
#include
#include
#include

<stdlib.h>
<stdio.h>
<pthread.h>
<lib.h>
<lib.slave.h>

int start(int tid) {

int localinnerstep, local-par-iters, localinner-start;
localinner-step = innerstep;
local-pariters = (inner-stop-inner)/(localinner-step * (NUMTHREADS-2));
localinnerstart = inner + (tid-1) * local-par-iters * localinner_step;

#ifdef PRINTOK
printf("start(%d), local-par-iters = %d\n", tid, local-par-iters);

#endif
return local inner-start;

int stop(int tid) {

int localinnerstep, localpariters, localinner-stop;

localinner-step = inner-step;
local-pariters = (inner-stop-inner)/(localinner-step * (NUMTHREADS-2));
localinner-stop

= (tid == NUMTHREADS-2) ?
inner-stop : inner+ tid * local-par-iters * localinner-step;
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#ifdef PRINTOK

printf("stop(%d), local-par-iters = %d\n", tid, local_par_iters);
#endif

return localinner_stop;

void spec-double undo(int tid, int iter, double *writedouble-rv)

{

/* CHECK TO VERFY THAT THE INDICES ARE INITIALIZED

* AND INCREMENTED PROPERLY
*/

int i;
int local-inner-start = innerstart;
int localinnerstep = innerstep;
int local_inner;
long localwritedoubledeltas[MAXNUMMEMREFS];
double *address [MAXNUMMEMREFS];
double *buffer-pointer;

/* load addresses/deltas into local buffers */
for(i=O; i<numwritedouble_refs; i++) {

local-write-double-deltas[i]
= writedoubledeltas[i];

address[i] = (double *)
( writedouble-addr-prof[O][i]
+ iter * localwritedoubledeltas(i] );

local inner = stop(tid);
buffer-pointer = writedouble-rv + iter * numwritedoublerefs;

for(i=iter-1; i>=0; i--) {
int k;
localinner -= localinner step;
for(k=num writedouble refs-1; k>=O; k--) {

address[k] = (double *) (((unsigned long) address[k])-
localwritedouble deltas[k]);

buffer-pointer--;
*(address[k]) = *bufferpointer;

}
}

return;

void specloopwrapup(int *my-finished, int *prev finished, int cancel, int tid, int
iter, double *write double-rv)

{

int s, t;

/* wait until previous processors finish */
while(l) {

s = (*prev finished);
t = (*my-finished);

asm("mb");

if( s >= t || s < 0)

break;

if( s < 0 || cancel )
(*myfinished) = -1;

asm("mb");
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spec-double-undo(tid, iter, writedouble-rv);
} else {

/* then signal next processor
* to complete */
(*my-finished) += 1;

asm("mb");

return;

}

void spec_loop-start(int tid, double *write-doublerv)

int k, iter=O;
int cancel=O;
int localinnerstart;
int localinnerstep;
int localinnerstop;
int local-inner;
specjfunction specloopjlocal;

/* flags */
int *myflag = &(FLAGS(tid));
int *prevfinished = &(FINISHED(tid-1));
int *my-finished = &(FINISHED(tid));

/* signal next processor to begin execution */
(*myfinished) = (*myflag);
(*myflag) += 1;

asm('mb");

/* download parameters locally */
localinner-start = start(tid);
localinnerstep=innerstep;
local-innerstop = stop(tid);
localinner = localinnerstart;
spec_loop_local = spec-loop;

#ifdef PRINTOK
printf("%d: starting speculative execution (%d, %d)\n", tid, localinner_start,

local-innerstop);
#endif

local inner = (*spec-loop) (local-inner start, localinner step, localinnerstop,
writedoublerv);

iter += (local-inner-local-innerstart)/local_innerstep;

/* check to see if there are any mispredicted addresses */
if(localinner == localinnerstart-localinnerstep) {

cancel=1;
I

#ifdef PRINTOK
printf("%d: finished speculative execution, cancel = %d\n", tid, cancel);

#endif
specloopwrapup(my_finished, prevjfinished, cancel, tid, iter, write-doublerv);

return;
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/* loop independent */
void specdo(void *x)

int k;

int tid = *((int *) x);
int *myflag = &(FLAGS(tid));
int *prevflag = &(FLAGS(tid-1));
double *writedouble rv = (double *)

malloc(sizeof(double) * MAXPARITERS * MAXNUMMEMREFS);

while(l) {

int counter = (*myflag);
int t = (*prev-flag);

asm("mb");

/* wait until previous processors completed */
if( t < 0 ) {

/* means time to quit, signal next processor */
(*myflag) = -1;

asm("mb");

break;
else if( t > counter ) {

specloop-start(tid, writedouble_rv);

return;
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