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Abstract

The inTouch project explores the notion of haptic interpersonal communication. Using
bilateral force-feedback to couple two physically separated nodes, inTouch provides a
channel for expression through touch. This interaction is derived from the concept of
synchronized, distributed physical objects. This document explains the design and
implementation of a self-contained, microcontroller-based version of inTouch. The
structure of the system described here is intended to serve as an example of this
concept as it relates to interpersonal communication and as a starting point to
incorporating tactile channels into communication technologies.
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1 Introduction

The goal of any communication technology is to bridge the distance between people by

extending the senses through some transmission medium. Current communication

technologies, such as the telephone or the videophone, appeal exclusively to the visual

and auditory senses. Furthermore, work in the field of telepresence research has

focused on the visual and auditory extension of space [10]. What has largely been

unexplored, however, is the sense of touch, especially communication by touch. In

everyday situations, touch plays an important role in the relations between people. A

handshake, a pat on the back, and a warm embrace are all examples of physical

expression of emotion. At times, these actions are more compelling and expressive than

words. The goal of this project is thus to study new forms of interpersonal

communication by touch, and how a simple implementation of this concept may serve

as a starting point for incorporating tactile channels into future communication

technologies.

This chapter will describe the conceptual framework behind inTouch along with some

related work. Chapter 2 will introduce several versions of the inTouch system prior to

the implementation of inTouch-3. Chapter 3 will examine the hardware development of

inTouch-3 and will be followed by a discussion of the control algorithm in Chapter 4.

Chapter 5 describes the production effort of 10 sets of this system. Chapter 6

introduces the design and implementation of the main accessory to the system, the

modem interface unit. Chapter 7 describes several other accessories designed for the

inTouch-3. Finally, Chapter 8 will outline several areas of future work and will be

followed by the conclusion in Chapter 9.

1.1 Design Concepts

Haptic interpersonal communication aims to allow distant users to sense each other's

presence. Ideally, all tactile information should be transmitted to achieve this, but this

feat is currently beyond the state of the art. Instead, the concept of a "shared physical

object," as illustrated in Figure 1.1, is used. If two people manipulate a common object,

8



then they can communicate hapticly and sense each other's presence, as shown in (a).

If the object is instead separated and linked by some sort of communication technology,

then the illusion of a unified object can be created, as shown in (b). This is the concept

of a synchronized, distributed physical object.

a) shared physical b) synchronized distributed
object physical objects

Figure 1.1: Object-mediated communication

InTouch is an example of this concept and was designed by Media Lab graduate

students Scott Brave and Andrew Dahley. A conceptual sketch is shown in Figure 1.2.

The physical structure of inTouch consists of a set of three cylindrical, wooden rollers

embedded in a metal base. The rollers are hapticly coupled so that each roller behaves

as though it were physically linked to its corresponding roller on the other unit.

Interactions between users can include passively feeling the presence of the other,

moving the object cooperatively, or fighting over the state of the rollers.

Figure 1.2: inTouch conceptual sketch

1.2 Related Work

Current haptic research deals with the creation of virtual objects with form, mass, and

texture, and the force-feedback devices that allow them to be felt. An example is the

PHANTOM by SensAble Technologies. In these systems, the force-feedback device acts
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as a portal to the virtual world. InTouch, in contrast, does not link users to virtual

worlds, but to each other.

Although inTouch is decidedly a device that links physical spaces to physical spaces, an

example from the virtual world can still be referred to in this discussion. In most

virtual environments, a single user interacts with virtual objects as though they had

physical form. A scenario where more than one user interacts with the same virtual

object, however, illustrates the concept of inTouch. In this case, the virtual

environment serves as a mediator between physical spaces, connecting them like the

inTouch.

In contrast to virtual reality research, tactile communication involves the extension of

one's physical presence across distance. It is related to the field of tele-operation, which

allows the operator to control a slave device such as a robot from a remote location. To

facilitate the operator's control of the device, the forces exerted on it are reproduced at

the point of control in a sort of feedback loop, giving the operator a tactile sense of the

object under manipulation [7]. If the device under tele-operative control is not a slave

robot but another operator, then a device similar in concept to the inTouch is created.

Although tele-operation might be a plausible solution, it was not intended for the

function of interpersonal communication, so a more elegant solution is desired.

Although few in number, there has been some previous work related to communication

by touch. One such project is Feather, Scent, and Shaker [22] in which a pair of

"shaker" objects is linked so that movement of one causes the other to vibrate and

vice-versa.

Another project is HandJive [4], which allows the playing of haptic games through a pair

of hand-held objects. The object consists of a shaft resembling a joystick, which when

moved from side to side, causes a corresponding object to move up and down. The

difference between HandJive and inTouch is that the HandJive devices are not tightly

coupled. The input and output space exist on the same device, but are distinct. The

design was so chosen to prevent "fighting" over the device. This "fighting," however, is

fundamental to the concept behind inTouch.

A third project, which demonstrates the use of bilateral force-feedback in interpersonal

communication, is Kinesthetic Constructions [21]. Kinesthetic Constructions employs a
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network of large modem sculptures distributed around the world. Parts of each

sculpture are connected to other sculptures hapticly.

2 Evolution of the Design

2.1 Mechanical Model: inTouch-0

Three versions of inTouch existed prior to the work documented in this thesis. The first

version, inTouch-0, was a mechanical mock-up that served as a proof of concept and is

shown in the illustration below. The rollers are connected together by stiff flex shafts.

Figure 2.1: inTouch-0

2.2 Single Computer Version: inTouch-1

InTouch- 1 developed as the first electronic prototype of the inTouch concept. The

mechanical subsystem was designed by Phil Frei, a mechanical engineering student,

and is shown below. The rollers are driven by precision, permanent-magnet DC motors

made by Maxon, and are commonly used in force-feedback applications. Coupled to the

drive shaft of each motor is a digital rotary encoder, which is used to track position.

The encoder, made by Hewlett-Packard, has a resolution of 500 lines per revolution,

which provides for position accuracy to about three-quarters of a degree of arc. Each

roller is driven at a gear ratio of four to one, and thus 2000 lines of resolution are

possible per revolution of the roller.
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Figure 2.2: Mechanical subsystem of inTouch-1

The electrical subsystem consisted of a set of Impulse motor control boards,

manufactured by Immersion Corporation. These motor control boards interfaced to the

computer through PCI bus cards, and were programmed through C++ libraries provided

by Immersion. The system architecture of inTouch-1 is shown here.

Maxon motors /
HP encoders PCI cards

encoder count

control boards

Figure 2.3: System architecture of inTouch-1

From this point forward, a node will refer to the combined electrical and mechanical

subsystems, and represents an abstracted self-contained interaction unit. The diagram

above thus illustrates that both nodes are controlled by algorithms running on a single

computer, hence the name single computer version.

2.3 Distributed Computer Version: inTouch-2

For the third-generation version of inTouch, the mechanical subsystem was further

refined by Phil Frei to the unit shown below. The motors have been encased in the left

side of the unit and the shape made to conform to the placement of the rollers. This

improves the aesthetic appearance of the unit and invites the touch.
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Figure 2.4: Mechanical subsystem of inTouch-2

The control algorithms of inTouch- 1 were distributed symmetrically over two computers

so that the nodes could communicate over a local area network by passing position

information using universal datagram protocol (UDP). With this addition,

communication latency became an issue, and because inTouch is a bilateral feedback

system, obviously led to particularly undesirable effects such as system instability.

These effects will be examined in the sections to follow. The distributed architecture

system is shown here.

Maxon motors
HP encoders.

force connection

encoder count

Immersion
control boards

Figure 2.5: System architecture of inTouch-2

The system was tested using the Media Lab network and performed essentially

identically to inTouch- 1 as long as delay remained small. 'Typical network delays for

transmission within the Media Lab are approximately two milliseconds. For moderate

delays, compensation techniques such as velocity prediction permitted stable operation

to approximately 12 milliseconds. For delays exceeding 12 milliseconds, noise present

in the system prevented accurate prediction.

As an alternative means of compensation, low pass filtering was attempted. Since the

interaction frequency (the frequency at which the rollers are moved forward and
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backward) does not usually exceed five hertz, low pass filtering can reduce unwanted

high frequency oscillation at the expense of tactile sensitivity. This filtering technique

proved to be effective for delays up to 40-milliseconds [2].

2.4 Embedded Control Version: inTouch-3

This thesis documents the development of the fourth-generation inTouch system,

inTouch-3. The goal of inTouch-3 is a self-contained, embedded control system, which

implements the inTouch algorithm in custom hardware and firmware, and does not

require the use of a computer. Communication between nodes complies with the

RS-232C standard for serial communications, which permits future additions such as

modules for modem communication as well as an interface to a computer-based

simulator. The system architecture of inTouch-3 is shown below.

Maxon motors/
HP encoders

force connection

encoder count~47ftniouj
MCU-based
control boards

Figure 2.6: System architecture of inTouch-3

3 Hardware Implementation

3.1 Overview

The hardware implementation was accomplished first so that the control firmware could

later be developed on a stable hardware platform. This thesis documents the

development of the electrical subsystem of inTouch-3, since the mechanical subsystem

is unchanged from inTouch-2. The functional blocks of the inTouch-3 system are

shown below.
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Electrical
Mechanical Subsystem
Subsystem Roller Motor Encoder Microcontroller

Roller Motor Encoder Microcontroller

Stimulus + +Motor Driver

Figure 3.1: Functional diagram of the inTouch-3 system

The stimulus represents the users' input to the mechanical unit. This external torque

acts on the rollers, which are coupled to the motors. The motor shaft is in turn coupled

to a rotary encoder. The microcontroller, serving as the control core, reads the encoder

position and transmits it to the remote node. The microcontroller then executes the

inTouch synchronization algorithm on the encoder position received from the remote

node as well as its own position and outputs an appropriate control signal, which the

motor driver converts to current to drive the motor.

3.2 Microcontroller Selection

The PIC 16C73A microcontroller made by Microchip Technology, Inc., was selected for

the controller core. This microcontroller can operate at high speed (20 MHz), and can

thus provide ample processing power to implement the inTouch synchronization

algorithm. Moreover, the PIC is inexpensive and has an efficient RISC instruction set

and Harvard architecture. The microcontroller also offers several attractive features

such as serial communications hardware and a full set of interrupts.

3.3 Encoder Reader
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The first module to design in the inTouch-3 system was the rotary encoder reader used

to track the position of the roller. The output of the encoder is a quadrature logic signal

as shown in Figure 3.2. Note that the Phase A and Phase B waveforms differ in phase

by 90 degrees. IN is an index pulse generated by the encoder once per revolution and

can be used track absolute position. The index pulse is not used in inTouch since only

relative positions are necessary, as will be apparent in the discussion of the algorithm.

A

B

fi-N

T3 T3
1NDEX=AX@iieW

Figure 3.2: Quadrature waveform of encoder [16]

If the outputs of the encoder are considered as digital values, a sequence {00, 01, 11,

10, 00...) known as gray code is produced. The defining characteristic of gray code is

that only one bit changes between code words, which prevents logic race conditions

during code word transitions. The two sequences shown below illustrate the output

from the encoder lines in each direction of rotation. The sequences should be read from

top to bottom.

Bit A Bit B Bit A Bit B
0 0 0 0
0 1 1 0
1 1 1 1
1 0 0 1
0 0 0 0

Table 3.1: Code sequences of quadrature encoder for each direction of rotation

Using the exclusive OR operator on bit A of one code word (for example the 0 in 01) with

bit B of the following code word (the right 1 in 11), 1 is produced in one direction, while
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0 is produced in the other. Thus, quadrature output is used to determine direction of

shaft rotation.

The direction sensing described above may be implemented in software as firmware on

the microcontroller or as hardware as a connection of two flip-flops. In the interest of

reducing processing overhead on the microcontroller, the hardware implementation was

chosen and is shown in Figure 3.3.

+5 U1A

9> LK 812 D13 CLR

Figure 3.3: Schematic of direction sensing circuit

A digital counter maintains the encoder's position and is clocked from either phase A or

phase B of the encoder. The choice is arbitrary. The output of the direction sensing

circuit indicates the rotation direction and may be used to decide whether to increment

or decrement the counter.

Again, the design choice here for the counter may be implementation in software or

hardware. Necessary features of the counter include moderate to high resolution and

bi-directional clocking. The latter condition is necessary since the inTouch application

demands tracking of the roller in both directions. While up/down hardware counters

are available (for example, the 74HC 193), a software counter was chosen since it

provides for easy changes to the resolution of the counter, and implementation of

bidirectionality is simpler.

The software counter used in inTouch possesses only eight bits of resolution. To

address the problem of counter roll-over when determining the change in position

between counter values, a "shortest distance" method was used. The 8-bit counter

takes on values from zero to 255 and is unsigned. Therefore, incrementing the counter

at 255 results in a value of zero and decrementing it at zero results in a value of 255.
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For discussion, assume a starting counter value of zero. If the next value is between

zero and 127, the midpoint, then it is assumed that the encoder has moved in the

positive direction from zero to that given value. If the next value is between 128 and

255, then it is assumed that the encoder has moved in the negative direction from 0 to

that given value, rolling backwards to 255. To generalize for arbitrary starting values,

the difference between counter values is used. If the difference between two successive

counter values is less than 127, then the positive direction is assumed. If it is greater

than 127, then the negative direction is assumed. Similarly, if the difference is greater

than -127, then the negative direction is assumed. If it is less than -127, then the

positive direction is assumed. This method is illustrated in Figure 3.4.

255

These values are assumed to These values are assumed to
indicate rotation in the indicate rotation in the

"negative" (decrementing) "positive" (incrementing)
direction. direction.

127

Figure 3.4: Accounting for counter roll-over

3.4 Encoder to Microcontroller Interface

There are two options for designing the interface between the encoder and the

microcontroller. The microcontroller can poll the encoder to watch for changes in the

encoder clock. This scheme, however, has the disadvantage that it requires substantial

processing overhead, especially if the motor shaft is moving at high speed. In this case,

the microcontroller must poll the encoder at least as fast as the expected rate of

encoder change. Since the inTouch system uses high-resolution encoders at a

moderate gear ratio, very small movements of the roller will result in encoder changes,

so a high polling rate would be required.

An alternative solution to polling is to take advantage of the interrupt capabilities of the

PIC microcontroller. The encoder clock may be connected to the external (EX)

interrupt of the microcontroller, which is executed on either the rising or falling

transitions of the RBO pin (the edge is software selectable). This allows the PIC to
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execute other code in the time saved from not having to poll the encoder for changes.

The interrupt service routine (ISR) for the EXT interrupt may thus examine the direction

output from the encoder hardware and increment or decrement the software counter as

appropriate.

An additional feature of the encoder to microcontroller interface that was not included

in the final design is prescaling of the encoder clock. The objective of prescaling is to

reduce the resolution of the encoder by eliminating clock pulses. Prescaling may be

performed either in software by ignoring every other or every third clock pulse, for

instance, or in hardware with a simple counter as shown in Figure 3.5. The outputs of

the counter provide powers-of-two divisions of the encoder clock.

+5 U1
T 16 |VCC Q1 9 ENCC L K

Q2 67 ENCCLK/12'>
Q3 -5F- EN~iR

10 3
<-ENCCLK7 '; >CLK Q5 2

Q6 4
11 Q7 13

RESET Q8 12
Q9 14

Q10 1
8 Qi1 1GND Q12

74HC4040

Figure 3.5: Hardware prescaling of the encoder clock

Prescaling might be used to reduce the resolution of the encoder when rotation speeds

are too high. Assuming the interrupt clocking scheme described above, it is observed

that there is a maximum clocking frequency that can be handled by the microcontroller.

This is a function of both the instruction overhead necessary to service the interrupt as

well as the execution time of the ISR code itself. Moreover, it is undesirable to have the

interrupt service routine executing so frequently that other interrupts or the main loop

of the program cannot be executed. Ultimately, the maximum clocking frequency is

dependent upon the clock speed of the microcontroller. If prescaling is being used for

this purpose, then hardware implementation is more sensible since reducing the

encoder resolution prior to interfacing with the microcontroller will reduce execution

frequency of the interrupt service routine.
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3.5 Motor Controller

The next developmental block in the functional diagram is the motor driver hardware.

Motor control may be divided into three main areas: torque control, velocity control, and

position control. These three types of control are best implemented as closed loop

systems, as the discussion here will show. Torque control requires current sensing

hardware, which will be discussed in Section 3.5.2. Velocity control is typically

performed by coupling a tachometer to the motor shaft, producing a voltage

proportional to angular velocity. Position control may be achieved using a rotary

encoder, which produces a quadrature pulse train as described in Section 3.3, or a

simple potentiometer, which produces a varying voltage with respect to position.

InTouch requires both torque control for force-feedback and position control to

maintain positional consistency of the rollers. Position control is achieved in the

firmware of the microcontroller, using input from the encoder reader described in the

last section, and will be discussed in more detail in sections to follow. Torque control

will be examined here.

3.5.1 PWM Motor Drive

The initial design of the torque controller employed a scheme known as pulse-width

modulation (PWM). In PWM, the pulse width, also known as the duty cycle, is varied

between zero and 100 percent of the waveform's period. In this way, the time in which

the waveform is logical HIGH is varied from zero, at zero duty cycle, to the whole period,

at 100 percent duty cycle. Note that in the limiting cases zero and 100 percent, the

waveform is constant. Figure 3.6 shows PWM waveforms for 25, 50 and 75 percent

duty cycles. Another parameter of PWM is the switching frequency, which is the

frequency at which a high pulse and a low pulse occur (with the exception of the

limiting cases). The inverse of the frequency is the PWM period.

50% duty cycle 75% duty cycle 25% duty cycle

Figure 3.6: PWM waveforms for varying duty cycles [20].
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If the PWM waveform is connected to the gate of a transistor, it may be used to vary the

voltage at its terminals in proportion to the duty cycle, and do so very efficiently. Since

the PIC microcontroller includes on-chip hardware PWM generators, they can be used

for motor control with the added feature that essentially no software overhead is

incurred in generating these waveforms.

3.5.2 H-Bridge Circuit

Although PWM can generate an analog voltage when used with a transistor as will be

shown in the next section, the problem of how those transistors should be connected to

drive motors must still be addressed. One desirable feature is that the circuit should

only need one voltage supply, although motor drive should be possible in both

directions. A configuration known as an H-bridge, Figure 3.7, provides the answer.

Cl +12

470uF

Q D D2PWM2
MOSFET Q2

PWMt Q2
M1 MOSFET N

OUTPUT1 VOl V02 OUTPUT2

Q3 MOTOR PWM1)
MOSFET D3 D4

PWM2 MOSFET N

Vsense

R1

Figure 3.7: H-bridge circuit

Notice that when the upper left and the lower right transistors are switched on by

applying sufficient voltage to PWM 1, current flows through the motor in the left to right

direction. When the upper right and the lower left transistors are switched on by

applying sufficient voltage to PWM2, current flows through the motor in the right to left

direction. Thus, by choosing the appropriate pair of transistors to drive, bidirectional

motor drive can be achieved with only a single voltage supply. Because the H-bridge
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circuit is used to drive inductive loads such as motors, protection diodes are added

across the transistors to protect them from inductive reverse current. Note that the

H-bridge shown above includes a current sensing resistor in the main current path.

The resistor produces a voltage (Vsense) proportional to the current flowing through the

bridge and thus can be used for current feedback control.

Rather than switching both transistors on each PWM cycle as described above, one

terminal of the motor can be held at a fixed potential by turning on the upper transistor

in that branch and turning on the lower transistor of the other branch during the on

period and the upper transistor during the off period. The voltage at the other terminal

of the motor is thus the time-average voltage as function of the duty cycle. The purpose

of this method of drive is to prevent the motor from slipping during the PWM off time.

During this portion of the waveform, both of the upper transistors in the H-bridge are

switched on, creating a low impedance path between the motor terminals. This

presents a particular problem for inTouch because the low impedance path means that

the motor behaves as a generator under free rotation of the shaft. The induced voltage

causes current to flow through this closed path around the motor terminals in a

direction that resists the motion. To compensate for this "inductive friction" effect, the

inTouch control algorithm, which will be discussed in Chapter 4, drives the motor

slightly by an amount dependent upon velocity and thereby reduces the perceived

friction.

Returning to Figure 3.7, it is seen that MOSFET's are typically used for H-bridge

transistors. Field-effect transistors have essentially no gate current, and thus are easy

to drive with logic. An enhancement mode n-channel MOSFET will turn on completely

when its gate voltage is several volts above its source voltage. This does not present a

problem for the transistors in the lower half of the bridge since their sources are

referenced to ground. However, the sources of the upper pair of transistors in the

H-bridge are referenced between ground and the supply voltage of the bridge, 12 volts,

depending on whether those transistors are turned on. Therefore, under this

configuration, the gates of the upper pair of transistors must be switched from a voltage

above the supply voltage of the bridge to ensure proper operation.

One possible solution is to switch to an alternate configuration where p-channel

MOSFET's rather than n-channel MOSFET's are used for the two transistors in the

upper half of the bridge. A p-channel MOSFET turns on when there is no voltage on the

gate (to be precise, when the gate voltage is close to the voltage of the drain), and turns
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off when it is several volts above. (Note that for p-channel devices, the source voltage is

more positive than the drain voltage and for n-channel devices, the source is more

negative than the drain voltage.) With this modification, a logic inverter is needed to

drive the p-channel MOSFET's from the PWM signal. This may be seen by noting that

the p-channel MOSFET must be presented a logical LOW to turn on, while the

n-channel MOSFET must be presented with a logical HIGH. One problem with this

modification is that p-channel devices tend to exhibit poorer performance than

n-channel devices, manifested as higher gate threshold voltage, higher on resistance,

and lower saturation current. This behavior results of the particulars of semiconductor

physics. Specifically, in p-channel devices, the carriers are quantum holes rather than

electrons, which have lower mobility and shorter lifetime [8].

Another solution is to return to the original configuration of all n-channel devices, but

switch the transistors with a voltage that is higher than the supply voltage of the

H-bridge. This higher voltage can be generated using a device known as a charge

pump, which will be discussed in Section 3.6. While the H-bridge can be built with

discrete components as in Figure 3.6, sometimes it is more convenient to use integrated

circuits that also provide additional features not easily achievable with discrete

electronics. One example is the National Semiconductor LMD 18200. The LMD 18200

has a high current rating and built-in current sensing transistors to measure the

amount of current flowing through the H-bridge. This device was chosen to implement

the H-bridge in the initial tests described in the next section.

3.5.3 Initial Tests of Open-Loop Current Control

An initial test configuration was built and microcontroller code was written to sweep

through the range of the duty cycle. The PIC was configured to produce 10-bit

resolution PWM (1024 values) at a switching frequency of 19.53 kHz. The PWM output

was connected to the LMD 18200 to produce current at a supply voltage of 12 volts, the

rating of the Maxon motor in the mechanical unit.

The results of the initial tests proved to be unsatisfactory as the PWM drive produced

torque that was nonlinear with respect to duty cycle as shown in the figure here.
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Figure 3.8: Torque as a function of duty in PWM drive

The stall current is the amount of current drawn by the motor with its rotors locked.

The value shown in the graph is an 8-bit digital value acquired from the internal ADC of

the microcontroller, mapped to an actual motor current range of 2.79 amperes. The

largest data point is a value of 130, which corresponds to an actual current of about 1.4

amperes and is just slightly greater than the maximum continuous current limit of the

Maxon motor. The current sense circuitry of the LMD 18200 and the transfer function

of the ADC are assumed to be linear and monotonic. The horizontal axis is the 10-bit

duty cycle of the microcontroller's PWM generator.

The observed behavior is a result of several factors, but first the operation of the

LMD 18200 when used with PWM drive must be examined. The initial tests used

sign/magnitude PWM drive as shown in Figure 3.9. In sign/magnitude drive, the

magnitude is given by the PWM waveform, and the sign is given by a direction control

line.

Sign/Magnitude PWM Control
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Figure 3.9: Sign/magnitude PWM drive [17]

24

140
120

4)100
80

S60
S40

20
0

0 200 400 600 800 1000

Duty Cycle



Consider current flow from left to right through the motor in the H-bridge circuit of

Figure 3.6. In this state, transistor QI is held on while Q2 and Q4 are alternately

switched on and off. The net effect is that Vol rises to 12 volts, while V 0 2 is the time

average voltage of 12 volts and ground and is a function of the duty cycle. Since Vol >

V 0 2 , current will flow from output 1 to output 2. The situation is reversed for drive in

the other direction.

The drive scheme described above suggests voltage drive rather than current drive and

so the electrical dynamics of the motor must be considered. Modeling the motor as a

first order system of an inductor in series with a resistor, constitutive relations yield:

Va - Vbemf = ia(R + sL) (3.1)

where va is the applied voltage, Vbemf is the back EMF voltage, ia is the applied current, R

is the motor resistance, and L is the motor inductance. Calling the left hand term Vm

and using the fact that motor torque is related to applied current by the motor's torque

constant, Km, Equation 3.1 becomes:

Vm = rKm(R + sL) (3.2)

Rearranging, the transfer function of voltage to torque is seen to be:

1
KmL (3.3)

Vm R

L

The solution of which is an exponential of time constant R/L. Moreover, the system

tends to suppress high frequencies (as s approaches infinity, the transfer function goes

to zero). Thus, waveforms with short duty cycles, which have greater high frequency

content than waveforms with long duty cycles, are "filtered out" by the inductance of

the motor and do not contribute to mechanical torque. At a certain "turn on" threshold,

the inductance is overcome and the motor begins to move.

Another factor that may contribute to the nonlinearity, especially near zero, is the fact

that the transistors in the H-bridge do not function as ideal switches. The

voltage-current characteristic of a typical transistor shows that it goes out of

conduction at a non-zero base or gate voltage. The initial tests used sign/magnitude

modulation as described above. The shortcoming of this technique is that there is a

dead band of current around zero caused by transistor cutoff. The contribution of these

two factors may explain the observed results of the initial tests.
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3.5.4 Closing the Loop: The PWM Servo Controller

Note that the actual current drawn by the motor is a function of the work performed. If

the motor spins freely, the current will be small regardless of the duty cycle of the PWM

driver. Increasing the duty cycle in this case will merely increase the rotational speed of

the motor, up to the limit of the maximum speed of the motor. As the motor encounters

more and more resistance, that is, as it performs an increasing amount of work, the

current demanded similarly increases. The relationship of the duty cycle to the motor

current is only consistent when the load is constant. If the load varies, then the motor

current tends to follow the changes in the load. Therefore, open loop control of the

current is an unsatisfactory solution for a force-feedback application such as the

inTouch system, where precise torque and thus current control is necessary.

A possible solution to this problem is to use the current sense feedback output of the

H-bridge to close the loop and adjust the duty cycle dynamically to achieve the desired

current. In this way, current drive is achieved, since feedback eliminates the effect of

the motor dynamics of Equation 3.1. The initial attempt to implement current control

used feedback from the analog-to-digital converter of the PIC microcontroller and a

proportional-accumulator-difference (PAD) filter to produce the output. The PAD is

essentially a discrete-time PID filter, which will be examined in greater detail in Chapter

4. For now it suffices to know that the PAD algorithm works by examining the

difference between a desired output and the actual output in determining how to adjust

the output to achieve zero difference, or error. This type of controller is known as a

PWM servo controller.

One reason for the failure of the PWM servo controller was that the internal ADC of the

microcontroller, used for current sensing, possessed only 8-bit resolution, which most

likely resulted in large amount of quantization error in this application. This problem

could have been remedied by an external higher-resolution analog-to-digital converter

such as the Linear Technologies LTC 1298 at the expense of added complexity and

hardware cost.

Another reason for the failure was calculation error in the PAD algorithm. The

discrete-time algorithm approximates its continuous time counterpart, but a high

sampling rate must be used to minimize the error. This was not possible since the

microcontroller needed to execute the inTouch synchronization algorithm

simultaneously. Two possible solutions may have been to use a dedicated processor or
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shift current feedback control to the continuous-time domain by implementing it in

analog circuitry. The latter solution will be examined in Chapter 8.

A third reason for the failure of the PWM servo controller code was that sign/magnitude

PWM modulation used for motor drive did not have good control around the zero

current point. The reasons for this problem were discussed in the last section. The

importance of near-zero current control will be more apparent in the discussion of

interactions in Chapter 4. For now, assume that the inTouch interaction requires this

type of control for optimal performance. One solution to this problem is to use a

technique known as 50 percent modulation, or locked anti-phase modulation, as

illustrated in Figure 3.10.

Locked Anti-Phase PWM Control
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Figure 3.10: Locked anti-phase PWM modulation [17]

In locked anti-phase modulation, the diametrically opposite pairs of transistors are

driven in alternation. If the duty cycle is 50 percent, the time-average voltage at each

terminal of the motor is the same, and so the time-average current over one period is

zero and the motor remains stationary. If the duty cycle is shifted either above or below

50 percent, the average current will be non-zero and will flow in the appropriate

direction, as illustrated in the figure above. The advantage of locked anti-phase

modulation is that only one control pin is necessary as both sign and magnitude

information is contained in the waveform. Moreover, this form of modulation has

improved near-zero current control over sign/magnitude modulation and exhibits no

current dead band since the transistors are on and switching even though the motor is

stationary. The scheme is recommend for "applications where fast dynamic control of

inertial loads (i.e., the rapid reversal of the direction of rotation of a motor) is important
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... [since] the 'regeneration' of net average power from the load back to the supply [is]

able to take place [20]." Thus, it is particularly appropriate for inTouch.

3.5.5 The Commercial Solution

In the interests of saving time, commercially available motor drivers were ultimately

used. The 4212Z servo amplifier, made by Copley Controls Corporation, was selected

and configured for torque feedback control. This particular amplifier uses locked

anti-phase PWM modulation for good near-zero current control and no current dead

band. Current is also automatically adjusted through feedback and controlled by an

analog voltage. The addition of these amplifiers necessitated slight modifications to the

controller board circuitry to accommodate the analog control signals. The modified

block diagram in shown in Figure 3.11.

Stimulus Copley DAC
Servo Amplifier

+ + Custom
Hardware

and
FIIu, | n ] F 2.- |- . Firmware

Figure 3.11: Modified functional block diagram of inTouch-3 system

Note in the figure that the motor driver block has been replaced by the digital-to-analog

converter (DAC) block and the servo amplifier block. The implementation of the DAC

block will be described in the next section. The servo amplifiers designated in the figure

are the Copley motor drivers. No changes were made to the Copley amplifiers except

that the transconductance was changed to 0.7 amperes/volt by replacing one of the

configuration resistors. This setting indicates that 0.7 amperes of current are produced

for every volt of control signal. The reader is referred to the 4212Z user's manual,

available from Copley Controls Corporation, for the details of operation.
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The Copley servo amplifiers can be configured to work with motors of varying

inductance. Since the Maxon motors used for the inTouch were on the smaller side, a

power inductor was added in series with the motor to increase the total inductance.

The addition of the inductor satisfied the servo amplifier's minimum inductance rating

and also reduced inductive heating in the motors caused by the locked anti-phase

modulation, which might shorten motor operating life.

The unit that is comprised of the DAC, the microcontroller, and the encoder reader, will

from this point forward be termed the controller board. This board, along with the

Copley servo amplifier will be termed the controller unit.

3.6 Digital-to-Analog Converter

The Copley amplifiers accept industry-standard analog control signals ranging from -10

volts to 10 volts. With the transconductance set at 0.7 amperes/volt as described in

the last section, about 1.8 volts are necessary to produce the 1.25 amperes at which the

Maxon motors are rated. An external DAC, the Maxim MAX504, was selected to

produce the control voltage. The MAX504 has 10 bits of resolution and is interfaced

through serial peripheral interface (SPI).

SPI describes a synchronous serial port. Data is sent to the device from the

microcontoller one bit at a time. Each bit is distinguished by a clock pulse from the

microcontroller, hence the term synchronous. The DAC accepts a 10-bit digital value

that is transferred by SPI and which sets the analog output voltage. The DAC can be

configured to produce a bipolar signal, although this reduces the resolution from 10

bits in one polarity to 9 bits in two. In order to produce bipolar voltages, however, the

DAC must be powered by bipolar voltage supplies. The problem thus became how to

convert the five volt logic supply into negative five volts to power the DAC.

The solution was to use a charge pump converter, the Linear Technologies LTC 1044 as

shown in Figure 3.12. The charge pump converter works by accumulating charge in a

bucket capacitor, C12, then transfering it to a reservoir capacitor, C13. During the first

half of the switching cycle, the bucket capacitor is connected to V+, charging it to that

voltage. During the second half of the switching cycle, the positive terminal of the
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bucket capacitor is connected to ground, while the negative terminal is connected to

VouT, thus inverting the voltage V+.

U5 +5

1 BOOST V+7

3 CAP+ OSC 6 0.l1uF 50V C9
C12 + 4 GND LV 5 \ci

10uF 16V CAP- VOUT +
- 10F16V Cl

Figure 3.12: Charge pump negative voltage converter

With 5 volt and -5 volt supplies, the MAX504 can produce analog voltages in the range

of -2.048 to +2.048 volts, over which the 10 bits of resolution are mapped. Thus, by

writing the appropriate value into the DAC, the microcontroller can set the drive current

to the motor. Feedback is performed in hardware by the servo amplifier to maintain the

proper current regardless of the load on the motor.

3.7 Data Communications Interface

The microcontroller communicates with its remote counterpart using the RS-232C

standard for serial communication. The RS-232C standard specifies electrical

parameters as well as the data format. The most common data format consists of a

start bit, a logical HIGH to LOW transition, followed by 8 data bits, followed by a stop

bit, a LOW to HIGH transition. This format is known as 8N1, which represents eight

data bits, no parity, and one stop bit. The number of data bits can vary from 5 to 9 and

more than one stop bit may be used. Another important parameter of RS-232 is the

baud rate, which is the number of clock periods per second. InTouch uses 8N1 data

format at a baud rate of 19200. Thus, the bit period is approximately 52.08pts and one

byte requires 520.8is to be transmitted.

The RS-232C standard uses what is known as non-return-to-zero (NRZ) bipolar voltage

signaling. A logical LOW is indicated by a voltage of +5 to + 15 volts, while a logical

HIGH is indicated by a voltage of -5 to -15 volts. The driver must be able to operate

into loads of 3000 to 7000 ohms with a slew rate less than 30V/ts and with the ability

to withstand short circuits. The receiver must present a load of 3000 to 7000 ohms and
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convert an input of +3 to +25V to logical LOW and -3 to -25 volts to logical HIGH [8].

An example waveform is shown in the figure below.

any amount of

more than +3V time desired START

"MARKING" LOGIC ONE STOP "MARKING"

less than -3V Dn D, D2 or D7
(LS8) or

parity

Figure 3.13: RS-232 serial byte waveform [8]

The data format is handled by the microcontroller in firmware or internal hardware.

The PIC 16C73A contains a module known as a universal synchronous/asynchronous

receiver transmitter (USART), which handles generating the baud clock, serializing data

for transmission, and shifting incoming data into a receive data register. For

microcontrollers that do not possess internal USART's, an external USART or UART

(same as USART but only asynchronous mode) may be used. Alternatively, RS-232

data format may be implemented in firmware. The PIC C compiler from Custom

Computer Services, Inc., for instance, includes libraries to facilitate serial

communications.

The one disadvantage of software implementations of RS-232 is the processing overhead

needed to poll for and receive data, although a method of using interrupts to eliminate

the need for polling will be described here. The internal USART of the PIC 16C73A

includes associated receive data and transmit data interrupts. The receive data

interrupt eliminates the need for data polling. The following interrupt service routine

illustrates how to use the interrupt to receive data as it arrives:

#INTRDA
void ServiceRDA()

ProcessSerial (getc ());

ProcessSerial () is assumed to be a procedure which processes serial data after it is

received. Getc () is a compiler command that copies data from the receive data register

into the working register, so that it may be passed as an argument to

ProcessSerial (). In order to activate the receive data interrupt, it must be enabled

either by setting the appropriate bit in the PIR1 register of the PIC or by using the

compiler's enableinterrupts () function. In addition, the GLOBAL interrupt must be
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enabled to activate the interrupt handler. The reader is referred to the PIC 16C73A

user's manual available from Microchip Technology and the C compiler manual

available from Custom Computer Services for more information.

For microcontrollers that do not possess serial hardware, but do possess the external

(EXT) interrupt described in Section 3.4, the following technique may be used. Recall

from the discussion above that the RS-232 start bit is a transition from logical high to

logical low. Thus to detect the start bit, the EXT interrupt should be configured to

trigger on the falling edge and the following interrupt service routine may be used:

#INTEXT
void ServiceEXT()

ProcessSerial (getc ());

In the code segment above, ProcessSerial () is again a procedure to process serial

data after it has been received. However, getc () in this case is a compiler-generated

software routine that receives RS-232 data. As an implementation note, the INTF bit of

the INTCON register should be cleared prior to activating the interrupt handler or there

is a possibility that the EXT interrupt service routine may be executed immediately even

though no data is being received. Since getc () blocks to receive data, execution will

stop at this point waiting for data that is not present.

The transmit data interrupt is not used in the inTouch application, but indicates when

the USART is ready to accept more data to transmit. It is useful in applications where

streaming data must be transmitted at the maximum capacity of the channel, since

data can be transmitted consecutively with minimal delay between bytes.

To implement RS-232 electrical specifications, a level shifter was used. The Maxim

MAX233 provides a convenient minimum-component solution. Charge pumps are

traditionally used to produce the bipolar voltage levels of RS-232. The MAX233

conveniently incorporates the entire charge pump internally so that no external

capacitors are needed. Although the MAX233 ensures compliance with the RS-232

specifications, it may not be necessary in all applications, especially those in which cost

is an issue and where cable lengths are short. The RS-232 standard works for cable

lengths of at least 50 feet [8]. The actual limitation is a function of the noise present

and the impedance characteristics of the cable and may be maximized by using

twisted-pair cable. For inTouch, the objective was to maximize the cable length so that
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the nodes could be separated by large distances. Thus, a fully compliant transceiver

such as the MAX233 was needed.

For extended distances, a differential signaling protocol such as RS-485 may be used.

In contrast to RS-232 where all signals are referenced to ground, differential signaling

protocols use the voltage difference between two lines. This scheme has better noise

immunity since noise present in the system will most likely effect both lines (i.e.

common mode) and will cancel when the difference is taken (i.e. differential mode).

Strictly speaking, RS-485 only defines the electrical parameters. The data format is

arbitrary, so RS-232 8N1 data format may be used, for example. The other feature of

RS-485 is that it supports multi-drop configurations, so that many nodes may be

connected to the same cable, although in this case more complex network arbitration

may need to be used. The reader is referred to National Semiconductor application note

1057 for more information about RS-485.

3.8 Power Supply

Most of the power consumed by the inTouch system is in the form of current used to

drive the Maxon motors. Under normal interaction patterns, the motors operate only

slightly above their no-load current. Maximum current will occur if the users twist the

rollers apart in opposite directions until the current limit imposed by the inTouch

algorithm takes effect. If all three rollers are subjected to this condition, the

approximate power consumption will be (3)(1.25A)(12V) = 45 watts, assuming 100

percent efficiency. In reality, efficiency is less than 100 percent, especially since the

efficiency of the Maxon motor is only approximately 80 percent. Moreover, the Copley

servo amplifiers require 24 volt supplies to produce 12 volt bidirectional drive.

Inevitably, some loss occurs in the voltage conversion.

Although this may be the maximum continuous current, transient currents produced,

for example, when the motor abruptly reverses direction may be much higher. Under

these conditions, the power supply must be able to source and sink power rapidly. The

power supply must be able to absorb the energy stored in the inductance of the load

quickly when a direction reversal, and thus a current reversal, is demanded.

Initial tests used 60 watt power supplies that shut down when large transient currents

such as those described above were produced. To solve these problems, a 150 watt
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power supply was selected. The rating is arbitrary; 150 watts was selected for reasons

of availability and cost.

The electronics, in contrast, operate on five volt supply with low current. A simple

method of producing low DC voltages from higher DC voltages is with a linear regulator

such as the LM340. The problem with linear regulators is that their efficiency is

usually no better than 50 to 60 percent. The resistive loss manifests itself as radiated

heat and thus linear regulators must be heat sunk when operating at high power.

Recall that power is the product of current and voltage. Thus, high heat dissipation

occurs when current is high or voltage is high or both. Recall that the input to the

regulator would be 24 volts, assuming that the same power supply for the Copley

amplifiers was used for the electronics. This condition would mean that the regulator

would need to accommodate a 19 volt voltage drop, so heat dissipation would be

enormous even at low currents.

The solution was to implement a switching regulator, which can have an efficiency

approaching 90 percent. The National Semiconductor LM2574 is a simple switching

regulator that requires a minimum number of external components. The operating

principle of the switching regulator is that energy is stored in the magnetic flux of the

inductor and switched into the load. Since flux and not charge, as in the charge pump

converter, is used to store energy, the voltage may be higher, lower, or the inverse of the

input voltage.

A step-down (buck mode) regulator, as shown below, converts a high voltage to a low

voltage. The output voltage is compared to an internal voltage reference. If the output

falls below the reference, an oscillator turns on, which drives current into the inductor

until the output voltage rises above the reference. The output capacitor, C5, forms an

RLC filter with the inductor and the load to remove the switching frequency, leaving DC

voltage. Since the voltage of the inductor is not constrained, the catch diode, D2, turns

on when the OUTPUT pin drops to -0.4 volts to protect the regulator. Diode D1 protects

the regulator from negative input voltages caused by reversed connections.
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10V

Figure 3.14: Step-down switching regulator circuit

3.9 Mechanical Unit Interface

The mechanical units were initially designed to house the electronics in a small space in

the base. After the electronics were developed, however, this space was found to be too

small. The solution was to place the electronics in a separate control box away from the

mechanical unit, presumably on the floor. Only encoder and motor drive connections

would need to be made between the control box and the mechanical unit, however, they

would need to be separated by a moderate distance (approximately six to ten feet). This

did not present a problem with the motor drive connections; larger gauge wire would

suffice to carry the needed maximum current over greater distances. However, the

encoder outputs would not operate reliably over such lengths of cable under the present

configuration.

The problem was that the encoder had open-collector outputs that needed pull-up

resistors to produce valid logic levels. Open-collector interfaces do not work well over

long cable runs that are subject to environmental noise and signal reflections. The

solution was to use a line driver, the 74AC244, near the encoders to drive current

through the cable and a schmitt trigger, the 74HC 14, at the other end to recover clean

logic signals from the noisy received signals through hysteresis. The end of the encoder

extension cable is AC terminated using a resistor and a capacitor chosen to match the

characteristic impedance of twisted pair cable, 100 ohms.

To make this possible however, an auxiliary circuit containing the line driver would

need to be placed in the base. Power could be supplied by the control box through the

same cable that carried the encoder signals from the mechanical unit. Figure 3.15

shows the configuration for one encoder. Note that the line driver is selected from the
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AC logic family, which has higher source current capability. This is particularly

important for overcoming cable capacitance when driving long cables.

+5

R1 R2 ,+5
2k k7

-f Encoder Extension Cable

P1 - +5 2 10 00 U2

5 3 0410 M 17 1 Al Y1 4-ENCA')
4 3 11 01 A2 Y2 6

35 is A3 Y3149 8
2 D--12 O2 3A4 Y4

06 12 Cl C2 13 12
ENCODER 13 07 17 03P~ih A6 6 YENOE -== 9 11 100pF 00pF

R3 4 74HC14
74AC244 100 100

Figure 3.15: Extending the encoder cable length

3.10 Fault Recovery and Troubleshooting

Several features were included both in hardware and firmware to make inTouch-3 more

robust and easier to troubleshoot. In hardware, several status LED's were included to

aid problem diagnosis. For example, LED's were added to verify operation of the five

volt logic supply, operation of the encoder, serial data reception and transmission, and

a general status LED to indicate proper execution of firmware.

Several features of the PIC microcontroller facilitate fault isolation and recovery. The

microcontroller contains an internal watchdog timer that runs independently of the

system oscillator. The purpose of the watchdog timer is to automatically reset the PIC

should execution stop for any reason. Also included in the firmware are several

initialization checks to verify proper operation of the DAC and the servo amplifier. If a

fault occurs during initialization, an error code is transmitted on the serial output to aid

in repair. Verification is also performed during regular operation should any fault arise

in that case. Initialization and operation faults are handled by stalling the

microcontroller until the watchdog timer automatically restarts the device.
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4 The inTouch Control Algorithm

Now that the hardware platform has been developed, the inTouch control algorithm can

be implemented in microcontroller firmware. The development of the algorithm will

begin by examination of the fundamental principles.

4.1 Mechanical Subsystem

The mechanical subsystem of inTouch consists of a set of three wooden rollers driven

by DC motors. Recall that the motor and roller exhibit a certain amount of load

damping, BL, and rotational inertia, JT. The rollers experience torque, Tm, produced by

the motor, and disturbance torque, Td, produced by the user, both of which influence

the shaft position, 0. Newton's law gives:

JT = Tw + Td - Be (4.1)

Taking Laplace transforms yields:

JT S20=Tw+Td -BLSO (4.2)

This result forms the core of the block diagram shown below. An integrator block is

attached to convert angular velocity to angular position, 0. The motor torque, Tm, is

related to the drive current by the torque constant, Km, since current drive is used.

Figure 4.1: Block diagram of mechanical subsystem and controller
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4.2 Control Loop

Since the mechanical subsystem is subject to physical limitations in bandwidth and

speed, a control loop is formed around it to compensate for these characteristics. The

addition of a feedback block, KT, a position transducer in this case, and a control block,

Gc, forms the control loop. The reference voltage, V, sets the desired position and is

compared to the feedback voltage, Vf, in the controller to command the mechanical

subsystem. The fact that the system responds to error, the difference between these

two voltages, is what characterizes it as a feedback system.

Position consistency is achieved by coupling the rollers with a critically damped,

computational spring. The inTouch control algorithm is the computational equivalent

of the flex shafts of inTouch-0, upon which the system is modeled. Recall from

mechanics that a spring exerts an opposing force of magnitude proportional to the

displacement. A damped spring can be modeled as an ideal spring in addition to a

shock absorber, which exerts a damping force that is proportional to velocity. Equation

4.3 describes the damped spring system.

F = -KAx - BAx (4.3)

where F is the force exerted, K is the spring constant, B is the damping coefficient of the

shock absorber, and Ax is the displacement. Since the flex shafts of inTouch-0 are

rotary springs which oppose angular movement, the equations become:

To =K(01 - 00) )+ B($1 - $do) (4.4)

Ti =K(60 -0 1)+ B(d0 - 1 ) (4.5)

where

Oo/ angular positions of the two coupled rollers
rO/2 torque to exert on the corresponding roller
K spring constant
B damping coefficient

Note that the angular positions are defined in such a way that the resulting torque

opposes the movement of the roller (the negative sign of Equation 4.3 has been

distributed).

In reality, a damped spring model exhibits mechanical friction, which is

velocity-dependent. To compensate for this fact, an anti-damping force may be added

to the system so that the perceived friction is lowered. Adding this term, the equations

above become:
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To = K(0, - 00 ) + B( 1 - $0 )+ Bfrico 0

T1 = K(00 -- 0 1)+ B( 0 - 1 )+ Bfice (4.7)

where Bfrt is the friction compensation coefficient. Equations 4.6 and 4.7 represent the

action of the controller.

The algorithm attempts to maintain this mechanical to computational equivalence

insofar as the electrical system will permit, with a few notable exceptions. Two

instances in which this equivalence breaks down are the limitations of finite gain and

finite motor torque.

The mechanical model exhibits an extremely high spring constant determined by the

torsional rigidity of the flex shafts and a large maximum force deliverable before

breaking. The response of the shafts is fast with infinitesimal overshoot and rapid

settling time, corresponding to a critically-damped system. While the computational

model may approach the performance of the mechanical model by increases in the

system gain, corresponding to the high spring constant, doing so may cause adverse

effects such as instability. While such instabilities may be prevented through

appropriate compensation techniques, the maximum gain will be finite and less than

the "gain" of the mechanical model.

Furthermore, the maximum output torque of the motor, which is finite, determines the

maximum force deliverable by the computational system. Therefore, a limit must be

imposed on the maximum current applied to the motor, and thus the maximum torque

produced by it. If the rollers are pulled apart, the computational system will follow the

spring model until the torque limit of the motor is reached. At that point, the torque is

held constant for all displacements beyond the limit. One disadvantage of the torque

limit is that it breaks the illusion of a synchronized, distributed physical object.

4.3 PID Controller

The control block of the feedback system contains a proportional-plus-integral-plus-

derivative (PID) filter, which receives the error as an input and produces an appropriate

output. The theory behind the PID controller will be examined first.
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4.3.1 Theory

The primary purpose of the PID controller is to compensate the control loop for the

dynamics of the mechanical system. As seen in Figure 4.1, the mechanical system is

second-order between torque and position and includes two mechanical parameters, the

damping and the rotational inertia. When properly tuned, the PID controller produces a

system response that is critically damped and compensates for the limitations of the

mechanical system. To analyze system response, performance metrics for transient

response and stability must be introduced.

System performance is usually characterized by three parameters: maximum overshoot,

rise time, and settling time. Maximum overshoot, Mp, is defined as the peak value of

the unit step response measured from unity. The amount of overshoot relates to the

relative stability of the system [6]. The rise time, tr, is the time required for the response

to rise from ten to ninety percent of the final value. The settling time, ts, is the time

required for the response to reach and stay within two percent of the final value [6]. A

critically damped system exhibits the minimum possible rise time that maintains zero

overshoot and damped oscillations. Figure 4.2 illustrates the transient response

attributes of a system and Figure 4.3 shows the unit step response of a critically

damped system.

Alowable tdarance:

M ... . ... .. 0

WW_

Figure 4.2: System transient response attributes [6]
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Figure 4.3: Unit step response of a critically damped system [6]

To assess system stability, a number of techniques may be utilized. Two common

metrics, gain margin and phase margin, are used to describe the properties of the

open-loop frequency response. The gain margin (g.m.) is "the amount of increase in

gain where the phase is -180' that produces instability [61." The phase margin (p.m.) is

"the amount of negative phase shift that when added at the frequency where the

magnitude is unity will produce instability [61." Two other notable points are the

magnitude crossover frequency and the phase crossover frequency. The magnitude

crossover frequency, ce, occurs where the open-loop gain magnitude is unity. Its

reciprocal is roughly proportional to the rise time for systems with

frequency-independent feedback paths [6]. The phase crossover frequency, coo, occurs

where the phase of the open-loop frequency response is -1800. These measures of

system stability are shown in the Bode plots of the open-loop transfer function L(s) in

Figure 4.4.
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Figure 4.4: Gain and phase margins of open-loop transfer function [6]

To achieve optimal performance in terms of these measures of transient response and

stability, the PID controller takes advantage of three methods of compensation:

proportional, lead, and lag compensation. Some desirable characteristics in the

controller thus include high DC and low-frequency gain for good tracking performance

and ample gain and phase margin for stability.

A proportional compensator is the simplest closed-loop system configuration and

provides a way to move the open-loop magnitude response up and down to achieve a

certain phase margin. The proportional compensator will generate a stable closed-loop

system if the open-loop system is stable and the gain is sufficiently low. This is true

because closed-loop poles approach open-loop poles for low gains [6]. For good tracking

performance, however, the condition of low gain to maintain stability is too restrictive

and thus more refined methods of compensation are needed.

The mechanical system has a typical bandwidth of tens or hundreds of hertz.

Increasing the proportional gain can improve tracking performance, but creates
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instability as a result of decreased phase margin. Introducing lead compensation can

compensate for the lagging phase shift in the mechanical system at high frequencies.

Lead compensation increases system bandwidth by adding positive phase shift in the

region near crossover without significantly increasing the loop transmission magnitude

in this region. A lead compensator is implemented as a proportional-plus-derivative

(PD) compensator. The simplest form is a real zero of the form rs+ 1 (with a pole at

infinity), but is more commonly implemented as the transfer function:

1 ars +1
GC (S)=- 1(4.8)

a rs +1

which has a zero and a faster pole to the left for a> 1.

Having satisfied the condition of increasing phase margin to improve stability, the

tracking performance can be improved by increasing the DC and low-frequency gain

with a lag compensator. The effect of the lag compensator can be viewed in two ways.

Lag compensation decreases high-frequency gain, which lowers the crossover frequency

and increases phase margin for systems with monotonically decreasing phase and

magnitude over frequency. Alternatively, the lag compensator may be seen to increase

low-frequency gain while maintaining phase margin. A lag compensator has a transfer

function of the form:

is + 1
Gc (s) = ao (4.9)

a-is +±1

which has pole and a faster zero to the left for a> 1. In the extreme case where the pole

is placed at zero, the lag compensator becomes:

GC (S)= a(rs1)= aor +a (4.10)
S S

which is the transfer function of a proportional-plus-integral (PI) compensator.

Care must be taken when using the lag compensator in the placement of the lag zero to

keep the negative phase dip well below the crossover point. Locating the lag zero too

close to crossover can produce instability. Locating the lag zero at too low a frequency

sacrifices performance by reducing gain over a wider frequency range [6].

A proportional-plus-integral-plus-derivative (PID) controller thus combines these three

compensation techniques. The most basic transfer function of the PID controller is

thus of the form:

K1
Gc(s)= Kp + - + KDS (4.11)

S
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where Kp, K, and KD are the proportional, integral, and derivative gains, respectively.

4.3.2 Discrete-Time Implementation

The mechanical model of Equations 4.4 and 4.5 suggests that the controller should

respond to both the position of the roller as well as its derivative, the velocity. This

naturally suggests proportional-plus-derivative (PD) control. While PD control is

commonly implemented using operational amplifiers and the like, a discrete-time

controller is desired so that it can be implemented in a microcontroller. To make the

controller more general, integral feedback was also added, but is not used by the

present implementation of inTouch-3. Thus, implementation of the controller involves

discretization of Equation 4.11.

The PID controller takes as inputs the desired position and the actual position. The

encoder implicitly digitizes the position of the roller, which is represented by a digital

counter, and this value is taken as the actual roller position. The desired, or reference,

position is taken from the remote node through the serial interface. The difference

between the desired position and the actual position is the error. The output of the

controller is computed by multiplying the error by some constant and adding it to a

multiple of the derivative of the error and the integral of the error. The derivative of the

error is approximated in real-time as the first difference of the error. The integral is

approximated using an error accumulator whose initial state is taken to be zero. The

result is shown in Equation 4.12.

output[n] = KP * error[n] + KI * integ-error[n] + KD * deriv-error[n] (4.12)

error[n] = desired[n] - actual[n]
integerror[n] = integerror[n-1] + error[n]
deriv-error[n] = error[n] - error(n-1]

where KP is the proportional gain, KI is integral gain, and KD is the derivative gain. To

compensate for both mechanical friction and inductive friction, as described in Section

3.5.2, the actual velocity of the roller is used, approximated again by the first difference

of actual positions. The output is thus computed as:

output[n] = KP * error[n] + KI * integ-error[n] + KD * deriv-error[n] (4.13)
+ KA * (actual[n] - actual[n-1])

where KA is the friction compensation (anti-damping) gain. Note that Equation 4.13 is

the computational analogy of the mechanical model, Equation 4.6, if the integrator is
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removed. In the present implementation of inTouch-3, Equation 4.13 is recomputed at

a sampling rate of 1kHz.

As a practical point, the system described by the difference equation above is subject to

a condition known as integral wind-up. Since the integrator serves as an accumulator

of error, a large integral term can develop, which can lead to excessive overshoot.

Integral wind-up may occur, for instance, when the controller attempts to accelerate the

mechanical system beyond its maximum rate, which produces an extended period of

error. To prevent this condition, a limit may be imposed upon the integral term so that

a large magnitude accumulated error does not pass into the output. Furthermore,

output limits are imposed on the controller to protect the motor from excessive current.

4.3.3 Frequency-Domain Analysis

To aid in analysis of the inTouch-3 system in the next section, the PID controller will be

examined in the frequency domain. Expansion of Equation 4.13 yields:

output[n] = KP * (desired[n] - actual[n])

+ KI * sum(O,n) (desired[n] - actual[n]) (4.14)
+ KD * (desired[n] - actual[n]-desired[n-1]+actual[n-1])

+ KA * (actual[n]-actual[n-1])

where suo ,n) represents the sum from sample 0 to sample n of the error. The limits to

the accumulator and the output are ignored in this analysis for simplicity. Taking the

z-transform of Equation 4.14 gives:

Output(z) = Kp (Desired(z) - Actual(z))

+ K- (Desired(z) - Actual(z))
1-z (4.15)

+ KD (Desired(z) - Actual(z) - z Desired(z) + z 1 Actual(z))

+ KA (Actual(z) - z -1 Actual(z))

which may be simplified to the following form:

Output(z) = H desired (z)Desired(z) - Hactual (z)Actual(z) (4.16)

where Hdeswred(z) and Hctwa(z) are given as follows:

Hdesired (z) =(K, + KD) - K + -1
lz (4.17)

(K, + K, + KD )Z 2 -(K, + 2 KD)z + KD

z(z -1)
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K1
Hactuai(z)=(Kp+ KD -KA )-(KD -KA)z 1 + _

1 -- (4.18)
(K, +K, +KD -KA)z (2 KA -K, - 2 KD)z+(KD -KA)

z(z -1)

Since integral feedback is not used in the present implementation of inTouch-3, the

integral gain K can be set to zero. Equations 4.17 and 4.18 thus simplify to:

Hdesired (z)=(KP + KD )- KD &' (K, + KD)z - KD (4.19)

Hactua (z)=(Kp + KD - KA) -(KD - KA)z = (K, + KD - KA)z -(KD - KA) (4.20)

Using Equation 4.16, the PID controller located in the control block of Figure 4.1 may

be represented by the following block diagram. Note that Output(z), after discrete to

continuous-time conversion, commands the servo amplifier, which produces Im.

Desired(z) Hdesired(Z)

Output(z)

Actual(z) Hactua(z)

Figure 4.5: Block diagram of the PID controller

4.4 System Analysis Models

The inTouch control algorithm may be analyzed in four configurations: single-node zero

disturbance torque, single-node zero reference input, two-node zero delay, and

two-node non-zero delay models. These configurations will be examined in this section.

4.4.1 Single-Node Model with Zero Disturbance Torque

Under the single-node model, a node that is not connected to any other node is

analyzed. In the standard two-node configuration of the inTouch-3, the remote encoder

count is taken as the desired position and the local encoder count taken as the actual

position. In this way, the two nodes are coupled together as expected.
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In one configuration of the single-node model, the desired position serves as the input

and the actual position as the output, Figure 4.6. The disturbance torque, Td, is taken

to be zero. The block between Va and Tm represents the response of the servo amplifier

and the motor. Km is again the torque constant of the motor and Kvr is the

transconductance of the Copley servo amplifier, which has a bandwidth of 3 kHz.

Desired(z)

Hdes id(Z)

+/ Va M v T. 10 1 /

D/C s +K K; 3000 s(Js + B) CD _

Hactuai(z) Actual(z)

Figure 4.6: Single-node, zero disturbance torque model

The mechanical subsystem has a transfer function given by:

Hmech (s) = KMKy1  (4.21)
s(Js + B)(s + 2rc .3000)

Hmech(s) can be discretized to eliminate the DIC and CID blocks by using the bilinear

transformation, which maps the s-plane into the z-plane by the following relation:

s = 2 (4.22)
T 1+ z'

where T is the sampling interval in seconds. For the analysis here, T = 0.001,

representing a sampling rate of 1kHz. Applying Equation 4.22 produces:

Hmech (Z)= K T(z) (4.23)
4(z - 1)[(BT + 2J)z + (BT - 2J)] [(30007cT + 1)z + (30007cT - 1)]

The open-loop transfer function for the feedback loop is Hmech(z)Hactua,(z). Applying

Black's Formula and a series reduction yields the following for the system transfer

function:
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H (z)= Hdesired(z)Hmech(z) (4.24)
1 + H mech (z)H actual (z)

The step response of this system is shown in Figure 4.7. The vertical axis represents

the actual position of the mechanical roller. The mechanical constants and PID

controller gains were chosen to produce representative behavior, but need to be

determined empirically in future work under more thorough analysis. Note that the

step response shows the performance characteristics described in Section 4.3.1:

maximum overshoot, rise time, and setting time. The PID controller may be tuned to

optimize the control system as measured by these criteria.

Step Response

1.4 - r

E
0.6

0. 4

0 1 2 scA
Time (sec.)

Figure 4.7: Step response of the single-node, zero disturbance torque model

4.4.2 Single-Node Model with Zero Reference Input

As an alternative configuration of the single-node model, the desired position can be

taken as constant and zero with the disturbance torque serving as input and the actual

position again taken as output, Figure 4.7. The KPID block in the diagram is the PID

controller of Figure 4.5.
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T_ I Ky, V. Actual(z)
K. 4 4 D/C * KPID

s + 2;r -3000 Desired(z)

Figure 4.8: Single-node, zero reference input model

To analyze this model, the input Desired(z) will be taken to be zero. The KPID block can

then be reduced to:

Output(z) = -Actual(z)Hactual (z) (4.25)

Using the bilinear transformation in terms of z, given by:

T
1+ -s

z = 2 (4.26)
T

2

to convert Hactua(z) to the continuous-time domain, yields:

(K, + 2 KD - 2 KA)s + 2KP
Hactual (s) = 2 T (4.27)

T

The open-loop transfer function is then given by:

L(s) = -H actual (s) Km K y (4.28)
s(Js + B)(s + 2 .3000)

Black's formula can be applied to produce the system transfer function.

Given a constant and zero reference input, the controller will attempt to hold the

mechanical roller in a fixed position. Since the input to the system is the disturbance

torque, it is more useful to examine the impulse response rather than the step

response. The impulse input represents a short perturbation of the mechanical roller

from the zero position. The impulse response is shown in Figure 4.9. The vertical axis

represents the mechanical roller position. The mechanical constants and PID controller

gains were again chosen to produce a representative response. Note that the roller

position settles to zero as expected.
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Figure 4.9 Impulse response of the single-node, zero reference input model

4.4.3 Zero Delay Model

A second system model is the two-node zero delay configuration. The two nodes are

connected by an ideal, zero delay communications link. The interaction involves only

one user, so the disturbance torque of one node is zero while the other is non-zero. In

this case, the input is the disturbance torque, and the output is the actual position.

The full inTouch-3 system block diagram is shown in Figure 4.8. For the zero delay

model, the Dxx blocks have zero sample delay.
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Td]

Td2s(J2s+B2)

Figure 4.10: inTouch-3 system block diagram

In order to analyze the zero delay model, the full system block diagram can be reduced

to a system of the form shown in Figure 4.9. The transfer function HL(s) represents the

equivalent transfer function of the two PID controllers, the zero delay communications

link and the mechanical subsystem of the remote node with zero disturbance torque.

Td1m

_. K,,1Ky,1 V. HL(s)

s + 27c -3000

Figure 4.11: System diagram for analysis of the zero delay model

The first step in reducing Figure 4.8 to Figure 4.9 is to manipulate Figure 4.8 to

account for zero delay and zero disturbance torque in the remote node. The result is

shown in Figure 4.10.

51



V.1(s)

Actuall(z)

Figure 4.12: Block diagram of zero delay model

Since the disturbance torque for the remote node, Td2, is zero, the mechanical

subsystem and servo amplifier can be represented by the following transfer function:

Hmech2 (s) = Km2 Kv12  (4.29)
S(J 2s + B2 )(s + 27c -3000)

Hmech2(s) can be discretized to eliminate the DIC and CID blocks by using the bilinear

transformation, producing:

Hmech2 (Z) = Km2 Kv12T 3 (z + 1)' (4.30)
4(z - 1)[(B 2T + 2J 2 )z + (B 2T - 2J 2 )][(30007rT + 1)z + (3000rT -- 1)]

The inner feedback loop consisting of Hmech2(z) and Hactuan(z) can be replaced by its

closed-loop equivalent using Black's formula, yielding H(z), given by:

HH (Z)= mech 2 (Z) (4.31)
1+ H mech 2 (z)H actual2(Z)

Through series and parallel reductions, the block diagram of Figure 4.10 can be

simplified to HL(z), given by:

HL (z) = -H actual1 (z) + H desired2(z)Hj (z)Hdesiredl (z) (4.32)

HL(z) is the discrete-time equivalent of HL(s), which can be derived using the bilinear

transformation. Substituting HL(s) into block diagram of Figure 4.9, the open-loop

transfer function is found to be:

L(s) = KM1KyrI _ H (s) (4.33)
s(JiS + B1)(s + 2;r .3000)
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The impulse response of the system is shown in Figure 4.13, where the vertical axis

represents the mechanical roller position of node 1. The mechanical constants and PID

controller gains were chosen again to produce a representative response. As expected,

the roller position settles to some displacement following the impulse disturbance

torque. The value of this displacement depends primarily on the system damping. Less

damping will obviously cause the roller to travel further before coming to rest. Note

that the roller position does not return to zero as in the single-node, zero reference

input model of the last section since node 2 is tracking the movements of node 1. The

dynamics of node interaction will be examined in Section 4.5.

Impulse Response

E

Time (sec.)

Figure 4.13: Impulse response of the two-node zero delay model

4.4.4 Non-Zero Delay Model

The third system model is equivalent in form to the zero delay model except non-zero

delay is added to the communications link. In this case, the Dx blocks of Figure 4.8

have non-zero sample delay.
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Figure 4.14: Block diagram of non-zero delay model

Figure 4.11 shows the block diagram for the non-zero delay model. The effect of the

delay blocks is to produce a z-n term as a result of the n-sample delay. The analysis

here proceeds in an analogous manner to the previous section. The z-n terms may be

conveniently incorporated into Hdesired(Z). Following the derivation of the last section,

Figure 4.11 can be reduced to the following transfer function:

HL (z) = -H actali (z) + Z "21 H desired2 (z)H 1 (z)Hdesiredl (z) (4.34)

where z-n 2 corresponds to delay from node 1 to node 2 and z-n2 corresponds to delay

from node 2 to node 1. The open-loop transfer function is then given by Equation 4.33.

The impulse response of the system is shown in Figure 4.15. By raising the gain and

delay appropriately, an unstable response as illustrated in the figure can be attained.

The instability seen was achieved after increasing the gain 50-fold and inserting a

16-sample delay. In practice, the inTouch system has much lower gain and phase

margin and exhibits instability with delays above a few samples. The reasons for this

discrepancy may include system poles not accounted for by the model as well as

inaccurate mechanical constants. For future analysis, a more complete model could be

used and the mechanical constants should determined precisely.
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Figure 4.15: Impulse response of the two-node, non-zero delay model

4.5 Interaction Dynamics

Recall from the discussion of the PWM servo controller in Section 3.5.4 that good

near-zero current control was necessary for the inTouch system. Now that the control

algorithm has been developed, it can be used in the discussion of the interaction

dynamics, which will lead to a justification of why this property is needed.

Consider for the moment single-user interaction with a node. As the user stimulus

changes the node's local encoder counter, this information will be transmitted to the

remote node. The remote node, which has no disturbance torque (i.e. no user

stimulus), will track the local encoder changes. If it follows perfectly, then the

difference in the positions, or the error, will be zero. Therefore, the calculated torque in

the remote node will be close to zero. There will be small perturbations in the

calculated torque since a small, but non-zero, amount of torque is needed to move the

roller as it tracks the local roller position. However, these perturbations center around

zero, so precise current control around zero is necessary for good tracking performance.

Consider now user stimulus at both nodes. The torque produced at each node will be a

function of the difference in positions between them (recall the synchronization

algorithm). It is unlikely that the difference in positions will differ by large amounts for

any extended period of time. The reasons for this are that, first, users tend interact
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with the device in a back-and-forth movement and, second, the restoring force

generated by a large difference in position will be great and in the direction of

decreasing difference. Therefore, good current control around zero is of paramount

importance so that the tactile effect of inTouch is preserved and so that the controller

can make the position difference converge to zero. Moreover, the tactile sensitivity of

the hand will detect any imperfections in this control.

4.6 Adjustment of Algorithm Parameters

To facilitate adjustment of the algorithm parameters, two potentiometers were added to

the controller board. Changing the resistances of the potentiometers by turning their

adjustment screws changes the value of the analog voltage presented to the PIC

microcontroller. Using the microcontroller's internal ADC, the analog voltage can be

mapped to digital values used to set the algorithm parameters. In this way, the

algorithm's parameters can be adjusted easily without having to reprogram the

microcontroller. Moreover, since the parameters may be adjusted while the algorithm is

executing, immediate and dynamic feedback about the system's response can be

obtained.

The controller board and firmware also allow these digital values to be set exactly. An

example where this might be useful is the case where the algorithm is being tuned for

the first time. It may be desirable to set values that are initially likely to work based on

previous experience with other units. In order to see what the digital values are, an

adjustment mode was added to the firmware, which is entered by setting a jumper on

the controller board. In adjustment mode, the algorithm parameters are sent to the

serial interface where they may be viewed on any serial terminal. The output also

includes other information such as the firmware revision and state of other

jumper-configurable settings.

The digital values produced by the ADC may be assigned to any of the algorithm's

parameters merely by changing the microcontroller code. It has been found that the

two most useful parameters that may be need to be adjusted are the derivative gain in

the PID filter and the anti-damping gain. Adjustment of these parameters and how they

influence the system's response will be outlined here.
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The derivative gain controls the amount of damping in the system. The parameter is

adjusted by perturbing the rollers slightly with the node in isolation, that is,

disconnected from the remote node. Since the remote position is unchanged while the

node is disconnected, it may be seen from the algorithm implementation above that the

roller will oscillate back and forth as it attempts to maintain the same position. By

adjusting the derivative gain while perturbing the rollers, a point where the oscillation

decays quickly can be achieved, indicating a critically-damped system.

The anti-damping gain decreases the perceived friction of the rollers by adding a small

amount of velocity-dependent excitation to overcome mechanical and inductive friction.

By increasing the anti-damping gain, a point can be achieved where the perceived

friction is reduced to negligible levels and the roller appears to spin freely. Note,

however, that the efficacy of this type of compensation is greatly dependent upon the

uniformity of mechanical friction as the roller rotates about its axle. If the friction is

highly variable, then the velocity information obtained by computing the difference in

encoder values will have substantial error, and the effect of the compensation will be

diminished.

Looking again at the algorithm, it may be seen that the best method of adjusting the

anti-damping gain is the state where there is no difference between the local and remote

positions. This condition can be obtained by placing the device in loopback. In

loopback, the transmitted encoder information is routed immediately back to the device.

This simulates the condition of zero error; the local and remote positions will always be

the same, thus canceling all but the last term in Equation 4.13. What will remain is the

anti-damping term. By adjusting the gain to a sufficient value, a low friction state can

be obtained.

5 Production

Twenty inTouch units comprising ten sets were ultimately made for internal use and

distribution to corporate sponsors. The production effort involved selection and

acquisition of materials and services, outsourcing of labor-intensive tasks, and in-house

assembly, testing, and shipment of units.
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5.1 PCB Layout and Manufacturing

The first step in producing the inTouch-3 system was the layout of the controller and

auxiliary printed circuit boards (PCB). For this purpose, Protel Client software was

used. A two layer (top and bottom) PCB format was selected for each circuit for

simplicity and lower cost.

The process of generating a PCB design is first drawing the schematic in Client's

schematic editor. The schematic can then be used to generate a file known as a netlist,

which contains all the components of the circuit, their PCB footprints, and their

electrical interconnections. The netlist allows the PCB editor to guide the user in

routing the components. Routing involves drawing traces on the PCB to electrically

connect components. Client also provides the option of auto-routing using many

configurable optimization algorithms. The inTouch controller board and auxiliary board

in the mechanical unit were routed manually since they are relatively simple designs.

The controller board was designed to connect to the Copley servo amplifier by means of

interconnect pins on the Copley unit. In this way, the whole controller unit could be

assembled simply by aligning the interconnect pins and fastening the controller board

to the servo amplifier with aluminum stand-offs. Therefore, the Copley servo amplifier

defined the mechanical outline of the controller board. The controller board and the

assembled controller unit are shown below. The PIC microcontroller plugs into the IC

socket in Figure 5.1.

Figure 5.1: Controller board
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Copley Servo Amplifier

Figure 5.2: Assembled controller unit

To achieve the small board size necessary, surface mount form factor versions were

selected for each component where possible. Materials acquisition proved to be the

most time-consuming task as several parts were backordered for several weeks.

Components with second-source manufacturers should be selected whenever possible

to prevent delays caused by component shortages.

After the components were placed and routed, the top layer of the controller board was

covered with a ground plane. The ground plane is a large area of copper connected to

ground that covers the area of the board not containing components or traces. The use

of a ground plane lowers ground lead inductance, which reduces electrical noise,

particularly for the analog control signals on the board, and helps control ground

bounce. Ground bounce occurs when there are large currents flowing through the

ground electrode caused by high-speed switching logic, for example. This flow of charge

can induce a voltage in the ground lead if ground lead inductance is sufficiently high.

The result will be fluctuations in the ground potential which may cause glitch sensitive

logic, whose levels are referenced to ground, to trigger mistakenly. Moreover, if the

ground potential varies, then the analog control voltages to the servo amplifier may be

adversely affected.

The second circuit to lay out was the auxiliary board, which implements the auxiliary

circuit described in Section 3.10. The auxiliary board was designed to fit snugly in the

base of the mechanical unit. Connectors were selected so that readily available
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connecting cables could be used between the auxiliary board and the control box. The

auxiliary board also connects to the rotary encoder of each motor by means of flex

cable. The auxiliary board by itself and mounted to the mechanical unit are shown

below.

Figure 5.3: Auxiliary board

Figure 5.4: Auxiliary board mounted to the mechanical unit

After the printed circuit boards were laid out and finalized, they were output to an

industry standard format known as Gerber format. Gerber files are used by

computer-controlled machinery to manufacture the printed circuit boards. The actual

PCB manufacturing was carried out by Alberta Printed Circuits, who have a short

turn-around service of two business days.
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5.2 PCB Assembly

Assembling printed circuit boards can be an extremely tedious task. This was

especially true considering that each inTouch unit required three controller boards for

each of the twenty units that were to be manufactured. Therefore, Best Technologies,

Inc. was selected to assemble the boards to specification at a nominal cost. The

components and printed circuit boards were then shipped to Best Technologies for

assembly.

5.3 Control Box

With the controller units completed, the next issue to resolve was that of packaging.

Recall that the proposed scheme was to enclose the electronics in a control box located

some distance away from the mechanical unit. An aluminum box seemed an

appropriate choice for the control box, given that it was easy to machine and was

available in many different sizes. It was soon realized that while the task of cutting

holes for connectors was feasible for one or two boxes, it would not be so easy for

twenty. The final machining was outsourced to a local machine shop, Eastern Tool

Corporation, who also fabricated the metal parts for the mechanical unit.

Midway through the production process, it was discovered that the initial power supply

was insufficient to absorb the transient currents generated by the motors, as detailed in

Section 3.9. Thus, a power supply larger in both capacity and size was selected, but

which no longer fit in the control box. New aluminum boxes were selected and

prepared, but additional cost was obviously incurred in the change.

To handle the problem of securing the controller boards and power supply to the control

box, screw holes were drilled in the initial aluminum box. In this way, the controller

boards and the power supply could be fastened to the sides of the box with the screws

extending inward from the outside. After the change in aluminum boxes, it was decided

that a simpler method of mounting was to use adhesive foam, which not only secured

the boards to the sides of the box, but also isolated them electrically from each other

and the power supply.
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5.4 Cabling

The mechanical unit is connected to the control box by means of two cables. The

encoder cable is a standard, 9-conductor DB9M cable commonly used as an extension

cable for personal computers. The motor power cable uses mini-DIN8 connectors

similar to those found on the serial ports of Macintosh computers. After some

preliminary tests, however, it was decided that a larger gauge cable should be used

since the motor power cable might be required to carry moderately large currents. In

the worst case, the cable would need to carry 3.75 amperes, since all three motors are

powered from the cable and recall that each has a current limit of 1.25 amperes.

Therefore, custom cables were ordered from Communications Supply, Inc.

The two control boxes in each set of inTouch-3 systems are connected to one another by

means of an 8-conductor flat modular cable that carries serial data between controller

units. Recall that each roller requires one controller unit and each roller operates

independently of the other two in each node. Therefore, three serial communication

channels are required to connect the control boxes. At minimum, each serial channel

requires signal ground, transmit data (TD), and receive data (RD) lines. Since only eight

conductors were available, only two signal grounds were included. The control boxes

are equipped with DB9M connectors for the communications port. An RJ-45 to DB9M

adapter was included to make the connection. The advantages of flat modular cable

over thicker twisted serial cable are cost and ease in changing the cable length.

Finally, each control box receives AC power through a 3-conductor cable connected to

the mains. The system connections of inTouch-3 are summarized in the figure below.

Encoder R

Motor Motor
AC

mains
Mechanical unit Control box Control box Mechanical unit

Figure 5.5: inTouch-3 system connections
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5.5 Assembly and Testing

Two students were hired to assist in the assembly. Their work consisted of mounting

control units and connectors, making the necessary solder connections, and finally

testing the assembled units.

As a result of tolerances in the wood components of the mechanical unit, each was

hand-adjusted for optimum performance. These imperfections were primarily a result

of the hand-machining of these components. Perhaps in future versions, the

mechanical design can be adjusted to tolerate these imperfections, or the wood parts

may be replaced completely.

Moreover, several of the controller boards assembled by Best Technologies possessed

slight defects, which were uncovered during testing. The primary cause of these defects

was shorts to the ground plane. These problems could have been avoided if solder

masking was used. Solder masking covers the traces on the printed circuit board to

prevent shorts to other circuit traces and the ground plane. Solder masking was not

used primarily because of time constraints; the process of masking can add several

weeks to the PCB production time. As a result of this design choice, the ground plane,

which covers the areas around the components was left unmasked, and can easily short

to the traces if careful soldering is not observed. Most of these defective boards were

later corrected by hand.

6 Modem Interface Unit

6.1 Overview

Work was started to develop an external modem interface unit for the inTouch-3 system

to permit operation over long distances through the telephone network. The fact that a

standard RS-232 serial interface was used for data communication between control

boxes permits this transition with little or no change to the data format. However, the

issues of timing and communications latency are raised, which will be examined here

first before proceeding into the implementation of the interface unit.
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6.2 Timing and Delay

Recall from Chapter 5 that the serial connection of inTouch-3 contains three

independent serial channels that are not synchronized. What this means is that if a

modem is to be used as the communication link, a method of multiplexing or

synchronization will be required. Multiplexing will be discussed in this section and

synchronization will be explored in Chapter 8.

Delay must first be addressed. Previous experience has shown that the inTouch system

is very sensitive to delay on the order of a few milliseconds. Any type of multiplexing

scheme will introduce some amount of delay into the system. The average service time

will be one half of the expected service time of each channel multiplied by the number of

multiplexed channels for a time-division multiplexed (TDM) system. Synchronizing

schemes are advantageous here in that they introduce less delay. The time spent

waiting in queue in a TDM system is instead distributed over the sampling interval in a

synchronous system. This will become apparent in the discussion of Chapter 8.

While the delays introduced by multiplexing or synchronizing schemes are easily

accounted for, network delays are not so readily determined. In a typical data network

that does not have guaranteed service, such as the local area network used in

inTouch-2, delay is neither uniform nor bounded. Fortunately, voice networks are

required to carry real-time data, where lost or delayed packets are useless. To achieve

real-time performance, voice networks tend to operate isosynchronously, dividing link

capacity equally between channels. This provides for uniform delay between packets

since in this scheme it is not possible for one channel to load the network in such a way

as to deny service to other channels. Moreover, delay is bounded since normal

conversations are difficult over high-latency channels without more extensive

conversation protocols such as those used by radio operators.

Voice networks are thus suitable for the inTouch-3, which is also a real-time system.

Furthermore, since delay is more predictable, compensation techniques can be simpler.

6.3 Hardware Implementation

The hardware implementation of a serial multiplexer/demultiplexer will be explored

first. This device combines multiple streams of data into one and separates the
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multiplexed stream into its parts again on the remote side. In the multiplexing unit, the

streams of data arrives at channels and are combined into an outgoing stream of data

sent to the modem, referred to as the link. In the demultiplexing unit, data arrives from

the link and is separated and retransmitted on the channels. Note that the system is

full-duplex; data travels in both directions simultaneously on both channels and the

link, as shown in the figure below. To operate with the inTouch-3 unit, which contains

three independent serial channels, a 3-to-1 multiplexer/demultiplexer is thus required.

3 independent
serial ports Multiplexed

serial port

Control box Modem External External Modem Control box
interface serial serial interface

unit modem modem unit

Channels
b Channels

4- Link

Figure 6.1: Serial multiplexer/demultiplexer system connections (a) and data flow (b).

6.3.1 Serial Ports

A straightforward way of implementing this device is to build a microcontroller circuit

with four serial ports. Most microcontrollers with internal serial ports such as the PIC

16C73A contain at most only two serial ports. However, the Maxim MAX3 100 provides

the answer. The MAX3 100 is an external universal asynchronous receiver transmitter

(UART), which handles transmission and reception of RS-232 data. The MAX3100's

interface to the microcontroller is via SPI, described in Section 3.6. SPI is a bus

interface that permits multiple devices to share the same set of communication lines,

Figure 6.2.

Note that data out (SDO) from the microcontroller connects to data in (SDI) of the device

and vice versa. A device on the bus is selected by means of its chip select (CS) pin,

which activates the chip and tells it to listen and respond to data on the bus. Thus, a
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microcontroller can control any number of devices on the SPI bus, essentially limited

only by the number of chip select outputs.

Figure 6.2: Multiple external serial ports

The MAX3 100 UART expects logic level inputs and outputs at its TX and RX pins. In

order to use it with RS-232 data, a level converter similar to the MAX233 must be used.

While the MAX233 needs no external components, it only contains two receivers and

transmitters. A four port serial multiplexer would thus require a minimum of two of

these chips. The MAX208, which contains four receivers and transmitters, was selected

to provide a more cost effective solution, as only one of these devices is needed.1 The

MAX208 does, however, require several 0. 1piF external capacitors for proper operation

of the internal charge pump, Figure 6.3.

1 Two devices will actually be needed to implement control lines. This will be discussed in Section 6.4.1.
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20
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Figure 6.3: MAX208 four channel RS-232 level converter

6.3.2 LCD Display

In addition to four serial ports, a means of display was desired to show the state of the

device, since it would also presumably handle session initiation and termination. A

simple, low-power display device is the character liquid crystal display (LCD).

Character LCD's commonly use the Hitachi HD44780 as their display controller IC. The

HD44780, usually built into the LCD module, provides a straightforward

command-oriented interface to the microcontroller, and requires either a 4-bit or 8-bit

parallel interface for data and commands as well as several control lines.

In order to minimize usage of input/output pins on the microcontroller, which tend to

be a precious commodity, the LCD was interfaced to the SPI bus using a serial-input-

parallel-output shift register, the 74HC595, to convert serial data to parallel data. The

shift register is clocked using the same SPI bus clock and receives its data from the SPI

data output line. With this scheme and appropriate firmware, the microcontroller can

address the LCD as though it were an SPI device, Figure 6.4.
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Figure 6.4: SPI-interfaced character LCD

6.3.3 Numeric Keypad

To complete the user interface, a means of input is needed. A numeric keypad provides

the solution here. A standard 3x4 keypad, which has an arrangement similar to the

keypad on a touch-tone telephone, was used to allow the user to input commands, and

most importantly, the number to be dialed. There are many schemes to read keypads,

which consist of a matrix of switch contacts. A simple and straightforward scheme is as

follows. When a key is depressed, it connects one row contact with one column contact.

If the microcontroller places a logical high or low on a row and examines each of the

columns for the corresponding high or low level, then it can detect which key is pressed

by repeating the process with each row.

Again to minimize usage of input/output pins, a method of making the keypad behave

as an SPI device was developed, Figure 6.5. Using the 74HC595 shift register again,

logical high or low levels can be set on the rows of the keypad by writing appropriate

bytes to the shift register. The columns may be read with a parallel-input-serial-output

shift register such as the 74HC 165. Both the 74HC595 and 74HC 165 can operate on

the SPI bus. For simplicity in the final implementation, the 74HC165 was omitted and

the columns were read from the microcontroller's input/output pins directly.
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Figure 6.5: SPI-interfaced keypad

6.3.4 SPI Bus Address Decoder

A convenient device that can be used to address SPI bus devices is a decoder, Figure

6.6. The 74HC138 is a 3-to-8 decoder, which takes as input 3 bits and selects one of 8

control lines from the 3-bit binary number. Therefore, addressing a device on the SPI

bus involves outputting a 3-bit number to select the appropriate device and

subsequently reading or writing to the SPI bus.

Figure 6.6: SPI bus address decoder
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6.4 Firmware Implementation

Turning now to the microcontroller firmware, three primary functions can be identified.

The microcontroller should communicate with the modem through one of the serial

ports with the ability to sense when a connection has been established through the

carrier detect line of the modem. Secondly, the microcontroller should read input from

the user through the keypad and display both input and connection status on the LCD

display. Finally, the microcontroller should handle the multiplexing/demultiplexing

functions once the connection has been established. It should receive data from the

three serial ports in a round-robin fashion and re-transmit it through the fourth serial

port to the modem. At the same time, it should receive data from the modem and route

it to each of other three serial ports again in round-robin fashion.

6.4.1 Modem Controller

The first of these tasks can be implemented quite simply as a result of the modem's

standard AT command set and status lines. The modem may be thought of as a simple

serial link with two modes, command and data. In command mode, the modem

responds to AT commands received from the serial port, which include dialing,

disconnecting, and so on. Once a connection has been established, the modem

proceeds into data mode and acts as a simple serial communication channel.

The modem's interface to the microcontroller requires a full serial port as defined in the

RS-232 standard. In addition to the transmit data (TD) and receive data (RD) lines, the

serial port must also implement data terminal ready (DTR), ring indicator (RI), carrier

detect (DCD), clear to send (CTS), and request to send (RTS) lines. In command mode,

the modem only responds commands when DTR is asserted. In data mode, the modem

only maintains the connection as long as DTR is asserted. RI indicates when an

incoming call occurs so that the microcontroller can take appropriate action to answer.

DCD indicates when a connection has been established with the remote modem. RTS

governs flow control for data from the modem to the microcontroller. CTS governs flow

control for data from the microcontroller to the modem. The action of the modem

controller can therefore be summarized by the following tasks:

1. Issue a proper initialization string with the AT command.

2. Dial a number (obtained from the user interface module) using ATD.

3. Monitor RI for incoming calls and issue ATA to answer.
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4. Monitor DCD after dialing or answering to know when to enable the serial

multiplexer/demultiplexer.

5. Monitor DCD while connected in case the connection is lost.

6. Assert RTS to tell the modem the microcontroller is ready to accept incoming data

for demultiplexing.

7. Monitor CTS and pause multiplexing as necessary if the microcontroller is exceeding

the modem's channel capacity.

8. Deassert DTR to disconnect the call.

6.4.2 Keypad Input Parser and Display

The LCD display and the numeric keypad comprise the user interface to the device. The

LCD, as the output device, shows the number to be dialed as it is entered on the keypad

as well as the status of the connection. The keypad input parser stores the entered

number in a queue until the user requests a connection to be established. The parser

need only recognize a few commands, which are distinguished by the pound (#) key as a

prefix. Pressing the pound key twice (##) dials the number stored in the queue and

waits for a connection. Pressing pound and the star key (#*) aborts the current

operation or hangs up the modem if connected and returns to ready state. The parser

recognizes two other sequences that have special significance, (#1) and (#2). The

meaning of these commands will be explained shortly.

6.4.3 Connection Types

The modem interface unit was designed to support three connection types: telephone

network, direct modem, and null modem. A telephone network connection is

established by two modems over the telephone network, and is the intended

configuration for use with the inTouch-3. A direct modem connection involves wiring

the modems together directly. In this case, no dial tone can be generated, but a

connection can be established, as will be illustrated shortly. This configuration is most

commonly used for demonstration purposes. The last type of connection, null modem,

involves a direct cable connection between modem interface units, with no actual

external modem present. A null modem is an adapter that is meant to connect two

serial terminals together.

A telephone network connection is initiated by entering the number to be dialed on the

keypad and pressing (##). No action is necessary on the remote end as the telephone
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line will ring and the remote modem interface unit will answer the call. Once the

connection has been established, the serial multiplexer/demultiplexer will be started

automatically on each side.

A direct modem connection is initiated by pressing (##) on one side and (#2) on the

other side. Recall that (##) dials a number with the "ATD" modem command. If no

number is present in the queue, only the "ATD" string will be sent to the modem. The

sequence (#1) is the manual answer command, which will send the string "ATA" to the

modem, causing it to go off hook. The effect of this sequence will be a manual

connection sequence initiated by the pair of modems, which solves the problem caused

by the absence of a ring signal.

Finally, a null modem connection is initiated by entering (#2) into the keypad. The (#2)

sequence starts the serial multiplexer/demultiplexer immediately without a connection

sequence, since the null modem connection does not require one.

6.4.4 Data Routing

The serial multiplexer/demultiplexer performs time-division multiplexing (TDM) of the

data stream. In time-division multiplexing, all channels share the capacity of the link

equally by transmitting in predetermined time slots. As with any communications

scheme, the issues of framing and routing must be considered. Framing and routing

information is usually added to data packets in the form of header bytes to assist the

receiver in distinguishing them. Since the link capacity of the modem interface unit is

already restricted to the relatively low bandwidth of the modem, the amount of overhead

in framing and routing information should be minimized for maximum transfer

efficiency.

As another design consideration, the RS-232 protocol restricts packet size to byte

multiples for the 8N1 format. In other words, any packet of length less than a byte will

still require a full byte. Thus, while only two bits are needed to distinguish data from

the three serial channels of the inTouch, a full header byte would be required. The

resulting efficiency would be 50 percent (one header byte for every data byte), thus

reducing the effective bandwidth by one-half.

A more efficient scheme is to use a TDM system where data is transmitted from each

channel in a consistent order. For example, the first byte might be data from channel
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1, the second byte data from channel 2, and the third byte data from channel 3. The

sequence might be repeated four times and terminated by a framing byte, a reserved

byte that cannot appear in the data. The framing byte delineates the data frame, which

consists of the 12 data bytes plus the framing byte. The purpose of the framing byte is

to resynchronize the receiver so that if data is lost in the frame, only a maximum of 12

bytes will be misrouted. Once the receiver sees the framing byte, it will route the next

received byte to channel 1. This system is used in the present implementation of the

serial multiplexer/demultiplexer, and has an efficiency of about 92 percent, since only

one byte out of thirteen is overhead.

Another issue that must be considered is that of queuing. Since several streams of data

are converging into one, the resulting link must have a capacity at least as great as total

arrival rate of all channels. If the link capacity does not satisfy this constraint, then

data queues will be needed to store data until it can be serviced. Care must be taken so

that the arrival rate of all channels does not exceed the link capacity in such a way as

to fill up the queues. If this occurs, the oldest or newest data can be discarded as

appropriate according to the chosen service rule. In the present implementation of the

modem interface unit, queues are implemented in hardware as a feature of the

MAX3 100 UART. The MAX3 100 contains an eight byte receive queue, which is cleared

if an overflow occurs. This condition should not occur as long as the link can maintain

a speed of 57600 baud. This number is derived by considering that three 19200 baud

channels are being multiplexed.

6.5 Test Results

With the hardware and firmware implementation of the serial multiplexer/demultiplexer

complete, the entire circuit was laid out in Protel Client, and prototype printed circuit

boards were ordered from Alberta Printed Circuits. The modem interface board is

shown in Figure 6.7.
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Figure 6.7: Modem interface board

The modem interface unit was tested with the inTouch-3 and two U.S. Robotics 56k

modems. Although the modems can achieve a maximum connection speed of 53

kilobaud, this speed can only be attained in one direction and only if one side uses a

digital phone line. With connections made between two standard analog lines, a

maximum throughput of 33600 baud without compression can be achieved. This

bandwidth ultimately proved to be insufficient for the present implementation of the

inTouch-3 system. The reader is referred to the ITU V.90 standard for details of the 56k

protocol.

Test results of the modem interface unit showed that the modem could not maintain the

57600 baud throughput required for inTouch-3, as expected. The observant reader

might point out that the ideal maximum throughput of 115200 baud might be achieved

with compression. However, the use of data compression in the modems presented

unexpected problems of delay. The compression algorithm used in the U.S. Robotics

modems were found to be not strictly real-time, and thus added variable

communication latency to the system that is function of data entropy. This is expected

since data compression is achieved by transmitting groups of bytes as shorter

representations. Byte-to-byte compression would not be very effective since the

algorithm could not take advantage of patterns in the data.

One solution to the modem bandwidth problem is to reduce the sampling rate of the

inTouch-3 so that lower bandwidth is required. In changing the sampling rate, the

74



algorithm parameters will most likely need to be re-adjusted to stabilize the system.

Another solution is to synchronize sampling between controller boards, so that

multiplexing is unnecessary. In this case, only the modem controller and user interface

would be required. Synchronization will be explored in Chapter 8.

7 Other Accessories

7.1 Port Adapter

To facilitate adjustment of the algorithm parameters as described in Section 4.6 and to

view informational output on the serial terminal, a port adapter was designed and

manufactured. The port adapter, shown in Figure 7.1, plugs into the communications

port of the control box and permits easy access to the three independent serial ports.

The RJ-45 to DB9M adapter used in the communications cable serves the dual purpose

of connecting the port adapter to the computer's serial port. The pin allocation of the

DB9M adapter is compatible with the port adapter. Thus, a standard, crossed

4-conductor flat modular cable with RJ- 11 connectors, commonly used in telephone

equipment, is all that is required.

Figure 7.1: Port adapter

7.2 Delay Simulator

To simulate the effects of communication delay, a simple circuit was designed and

implemented. The circuit is comprised of two PIC 16C73A microcontrollers and one

MAX233 RS-232 level converter. Each microcontroller implements a size-adjustable

FIFO buffer for data travelling in one direction. Serial data is received and
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retransmitted after a sample delay set by the size of the buffer. The random-access

memory capacity of the microcontroller is 192 bytes. A maximum buffer size of 128

bytes is achievable with the remaining memory consumed by program variables.

Using the same scheme developed for algorithm parameter adjustment in the inTouch,

a potentiometer was interfaced to the internal ADC. The potentiometer allows for

adjustment of the buffer's size without reprogramming the microcontroller. The serial

output is used along with a standard serial terminal to display the buffer size as set by

the potentiometer.

The contents of the buffer are advanced by the arrival of new data. Therefore, it is

imperative that streaming data arrive at uniform intervals if consistent, predictable

delay is desired. The current implementation of inTouch-3 only transmits data on

changes in the encoder, which presents a problem under this scheme. There are two

options available. The inTouch code can be altered to transmit the encoder counter at

every sampling interval, regardless of whether the position has changed or not.

Alternatively, the delay simulator can be connected to the synchronous clock output of

the controller board, which is coherent with the sampling interval. The delay simulator

can then use this clock to advance the contents of the buffer.

7.3 Recording Data

A simple Java applet was written to facilitate the recording of interaction data with

inTouch-3. The applet assumes that two serial ports are available on the computer and

implements two threads to receive incoming data. Each serial port taps data from the

inTouch communication cable travelling in a single direction. Thus, one serial port

captures data flowing from node 1 to node 2, while the other serial port captures data

flowing in the other direction. The encoder data, which is binary, is made

human-readable by conversion to hexadecimal ASCII when it is received from the serial

port. These hexadecimal values are then written to a disk file for later analysis. A

custom serial adapter was made to permit access to the data lines of port 1 in the

inTouch communication cable. These two lines are connected to the receive data lines

of the two serial ports of the computer.
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8 Future Work

8.1 Custom Servo Amplifier

In retrospect, it would have been possible to design hardware to perform motor control

equivalent in functionality to the Copley amplifier. This would have been a more cost

effective solution in the long run.

One option is to use the PWM output of the PIC microcontroller to generate an analog

output by passing the PWM waveform through a simple RC filter as shown in Figure

8.1. The time constant r=RC should be chosen large enough to smooth out ripple in the

analog output and is dependent on the PWM switching frequency. The voltage follower

is added to ensure that the output has low impedance and does not load circuits

connected to it.

+5

C1 LMC6492I MI
( WM_I:N -+

0.10 1 ANALOGOUT

Figure 8.1: Generating an analog voltage from the PWM output

The power amplifier circuit to drive the motors might be similar to that shown in Figure

8.2. The simplest implementation uses bipolar voltage supplies as shown in the

schematic. Power bipolar junction transistors are used as voltage-controlled current

sources to source and sink current through the load as necessary. Feedback is used to

correct for crossover distortion caused by the diode drops in the power transistors as

well as for resistive loss through the load. The gain may be adjusted by the

potentiometer. Interfacing the circuits of Figures 8.1 and 8.2 might prove to be a

solution to replace the Copley amplifiers.
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Figure 8.2: Power amplifier circuit

Another alternative may be to use the National Semiconductor LM12, a monolithic

power operational amplifier designed to drive high current loads. The LM628 motion

controller datasheets provide circuits for motor drive using the LM 12. The reader is

referred to these documents for more information. It should be noted that the optimal

solution is to perform torque control in hardware with current feedback to off-load the

microcontroller, which must execute the inTouch synchronization algorithm.

8.2 Power Supply Isolation

By its very nature, the servo amplifier generates a great deal of electrical noise through

PWM switching of high currents. This electrical noise may be hazardous to logic on the

controller board, or may cause improper operation at the very least. One method of

reducing electrical noise propagation into the logic is through power supply isolation.

In the current implementation of inTouch-3, both the servo amplifier and the controller

board share the same 24 volt power supply. While the controller board is isolated from

noise on the 24 volt line by means of the switching regulator of Figure 3.13, the logic

ground is not. To suppress noise from the servo amplifier, a 1 pLH inductor should be

added between logic ground and the servo amplifier ground. The inductor need not be

large, since it need only handle the small amount of current that the logic draws.
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8.3 Controller Board Synchronization

In Chapter 6, the implementation of the modem interface unit was discussed. Recall

that the test results showed that the modem bandwidth was insufficient for the

inTouch-3 at the present sampling rate of 1kHz. The sampling rate might be reduced to

500Hz to cut the data rate in half. This change, however, would require readjustment

of the algorithm parameters.

Alternatively, the controller boards could be synchronized in their sampling times, so

that the data produced would already be in order and non-overlapping in time.

Synchronization would also require a change in the sampling time, but it eliminates the

need for the serial multiplexer/demultiplexer. A preliminary effort was made to

synchronize the controller boards by wiring the three boards in a cascade configuration

as shown in the figure below.

Controller 1 SYC SN Controller 2 SYC SNController 3

Figure 8.3: Controller board configuration for synchronization

The timing diagram of the configuration is shown here.

SYNC OUT WAVEFORMS

>1563ps 521 pis

Controller 1

sample

Controller 2

Controller 3

Figure 8.4: Timing diagram for inTouch-3 synchronization

The total processing time for each sample has been found empirically to be 380pts. This

figure can also be derived by counting the number of instruction cycles required to

process each sample and multiplying by the instruction time (200 nanoseconds at 20
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MHz). Another factor is the byte transmission time. Recall from Section 3.7 that at

19200 baud, this time is 521ps. Since the data transmission time exceeds the

processing time, 521 is defines the lower limit of the sampling period to achieve

non-overlapping data.

The sampling period, as shown in Figure 8.4, begins on the falling edge of the

synchronization clock. Controller 1 serves as the master controller and generates the

synchronization clock (SYNC OUT) as shown. After 521 Is has elapsed, during which

sampling, calculations, and serial communications has taken place, the rising edge of

the synchronization clock triggers the sampling period of controller 2 through SYNC IN.

Again after 521 ts has elapsed, controller 2's SYNC OUT line triggers controller 3. Since

controller 1 does not know when controller 3 completes, the period of the

synchronization clock period is set greater than 1563 is to ensure that controller 1 does

not begin transmitting until controller 3 has completed. As an alternative, controller 3

can be wired to controller 1 to provide this information.

This preliminary work has not been completed at the time of this writing, as there are a

number of remaining difficulties to work through. The task of synchronizing the

controller boards is reserved for future work.

8.4 Delay Compensation

Techniques for delay compensation and a quantitative study of the effects of delay on

the system should be studied in future work. Using the system models presented in

Section 4.4, the algorithm parameters can be varied to produce instability. The sample

delay can likewise be adjusted to produce instability. Preliminary work has been done

to compensate for delay using prediction and adaptive compensation for the inTouch-2

system [2]. Delay compensation for the inTouch-3 system is particularly important

because the system is designed to be incorporated into other communication

technologies as a self-contained unit. Delay of some form is present on any

communications channel and so it is imperative that the problem be addressed.
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8.5 Multi-Node Configuration

The inTouch-3 system at present supports two node interactions. To make the system

more general, work should be done to develop multi-node support. There are various

node topologies that may be explored. A ring topology as illustrated in the figure below

is one possibility. The main advantage of the ring topology is that minimal changes to

hardware and the synchronization algorithm are required. Since communication

between nodes is point-to-point, the existing RS-232C interface may be used. The

disadvantage of the ring topology is that communication delay is different over the two

directions of data travel between nodes. Consider communication between node 1 and

node 2. Data traveling from node 1 to node 2 encounters only a single unit delay. In

contrast, data traveling from node 2 to node 1 encounters a three unit delay since it

must first pass through node 3 and node 4 before arriving at node 1. While the

synchronization algorithm need not be changed to support the ring topology, delay

compensation will most likely need to be used to account for this difference in

communication latency.

TX RX

RX Direction of TX
Data Flow

TX RX

RX TX

Figure 8.5: Four-node ring topology

A second possible topology is the shared bus of Figure 8.6. The main advantage of the

shared bus topology is that communication latency between nodes is generally equal for

short bus lengths. One disadvantage of this topology is that communication is not

point-to-point as in the ring topology, but multi-master. In hardware, a multi-drop

protocol such as RS-485 must be used. It is straightforward to adapt the RS-232

interface to support RS-485 with an interface device such as the Maxim MAX485. In

software, the issues of collision detection and bus arbitration must be addressed, since
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many nodes are transmitting on the same bus simultaneously. Moreover, the

synchronization algorithm must be altered to account for multi-node input, perhaps by

averaging the received positions.

Bidirectional
shared bus TX RX TX RX TX RX TX RX

Figure 8.6: Four-node shared bus topology

9 Conclusions

This thesis describes the design and implementation of the inTouch-3, a self-contained,

robust embedded control system for the purposes of communication by haptic

force-feedback. Both hardware and firmware design have been discussed in detail,

along with the design tradeoffs made in the process. The product of this development

work is a system that is connected by a direct serial line and that is ready for

distribution and use.

Several accessories have been developed including a module for interfacing the system

to a modem. Initial tests showed that the modem bandwidth was insufficient to handle

the data rate of the current inTouch implementation with data multiplexing. Two

possible solutions to this problem include reducing the sampling rate from 1kHz and

synchronizing the controller boards to eliminate the need for data multiplexing.

Together, these techniques should allow the inTouch-3 to operate over a telephone line.

Another area for future development is in the synchronization of more than two objects.

Using the ring topology described in the last section, only minimal changes to the

firmware are required to adapt the inTouch-3 system to multi-node operation.

One foreseeable problem that may prevent inTouch-3 from operating as described is the

problem of communication latency. This problem should be addressed in the future

using the system models of Section 4.4. Once the effect of latency is understood, the

system can be compensated appropriately to operate properly in any configuration.
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Finally, this thesis has examined many issues regarding small-scale production. The

results here may provide a framework for future production efforts of inTouch as well as

other projects. As of January 1999, six sets of inTouch-3 systems are in the process of

being distributed to various sponsors for field use. Another four sets will remain at the

Media Laboratory for demonstration and experimental purposes.

It has been shown that the inTouch is a medium for physical communication. Given

that there is no standard "language" of touch, it is interesting to observe how users

create their own forms of communicate through this medium. It is hoped that the

result of this distribution and experimentation will be further insight into the cognitive

science aspect of the project, especially in the form of user studies. The method for

data collection from the system as described above should be useful to this end.
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