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Systems Biology of the Endothelial Mechano-activated Pathways

Multiple signaling pathways are employed by endothelial cells to differentially respond to
distinct hemodynamic environments and acquire functional phenotypes, including regulation of
inflammation, angiogenesis, blood coagulation, and the vascular tone. In order to understand
how these pathways interact, this thesis applies a systems biology approach through a two-step
process. First, we constructed an integrated mathematical model for shear-stress-induced nitric
oxide (NO) production to assemble the current understanding of this signaling system. Second,
we conducted experiments to define how shear stress dynamically modulates the expression of
components of the endothelial glycocalyx, a mechanosensor that regulates shear-stress-
dependent NO production.

Nitric oxide produced by vascular endothelial cells is an anti-inflammatory mediator and a potent
vasodilator. In order to understand the rich diversity of responses observed experimentally in
endothelial cells exposed to shear stress, we assembled four quantitative molecular pathways
previously defined for shear-stress-induced NO production. In these pathways, endothelial nitric
oxide synthase (eNOS) is activated (a) via calcium release, (b) via phosphorylation reactions,
and (c) via enhanced protein expression. To these pathways we added (d) an additional pathway
describing the actual NO production from the interactions of eNOS with its various protein
partners. These pathways were then combined and simulated. The integrated model is able to
describe the experimentally observed change in NO production with time following the
application of fluid shear stress, and to predict the specific effects to the system following
interventional pharmacological or genetic changes. Importantly, this model reflects the up-to-
date understanding of the NO system and provides a platform to aggregate information in an
additive way.

The endothelial glycocalyx is a glycosaminoglycan layer located on the apical surface of
vascular endothelial cells. Previous studies have documented a strong correlation between the
glycocalyx expression, local hemodynamic environment, and atheroprotection. Based on these
observations, we hypothesized that the expression of components of the endothelial glycocalyx is
differentially regulated by distinct hemodynamic environments. In order to test this hypothesis,
human endothelial cells were exposed to shear stress waveforms characteristic of atherosclerosis-
resistant or atherosclerosis-susceptible regions of the human carotid, and the expression of
several components of the glycocalyx was then assessed. Interestingly, we found that heparan
sulfate expression is higher and evenly distributed on the apical surface of endothelial cells
exposed to the atheroprotective waveform, and is irregularly present in cells exposed to the
atheroprone waveform. Furthermore, the expression of a heparan sulfate proteoglycan, syndecan-
1, is also differentially regulated by the two waveforms, and its suppression mutes the
atheroprotective-flow-induced cell surface expression of heparan sulfate. Collectively, these data
links distinct hemodynamic environments to the differential expression of critical components of
the endothelial glycocalyx.

Taken together, these projects present in this doctoral thesis increase our understanding of
endothelial mechano-activated pathways, and have demonstrated how we could use systems
biology approach to unravel complex biological problems.

Thesis Supervisors: C. Forbes Dewey, Jr. & Guillermo Garcia-Cardefia
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Chapter 1: Introduction

1.1 Background and Scope

The vascular endothelium is a thin layer of cells that line the interior surface of blood vessels.

The endothelium serves as an interface between bloods and surrounding tissues and plays

multiple roles in inflammation, angiogenesis, blood coagulation, and control of vascular tone.

Though the endothelium has long been discovered in the 1 9 th century, its function has not been

understood until the recent decades. In 1973, scientists were able to culture endothelial cells in

vitro and begin to study its various properties (34). One of the most interesting observations was

its ability to respond to flow: the cultured endothelial cells are able to align to the direction of the

flow, suggesting that there are mechanisms for the cells to sense the local hemodynamic

environment (13). In the 1990s and 2000s, with the advancement of molecular biology

techniques, many of the mechano-sensors and mechanotransduction signaling pathways have

been identified (34). Scientists have found mechano-sensors, including trans-membrane proteins

and ion channels, on both the apical surface and basolateral surface of the endothelial cells. Upon

exposure to specific shear stress waveforms, some transmembrane proteins can transmit the force

to other intracellular proteins through the mutually connected cytoskeleton, and others can

directly convert the mechanical force to biochemical signals, activating multiple cell-signaling

pathways (10). As a result, the endothelial cells increase surface expression of thrombomodulin

and decrease surface expression of cell adhesion molecules, leading to the antithrombotic

phenotype and anti-inflammatory phenotype. The flow also triggers the endothelial cells to

produce nitric oxide (NO), a molecule that can diffuse to smooth muscle cells and lead to

vasodilation.

Shear-stress-induced NO production is complexly regulated by multiple pathways. These

pathways were studied one at a time and few researchers have analyzed how pathways interact

with each other. This is partially due to the fact that in biomedical research, the classical

hypothesis driven approach looks into just one factor at a time, making it rigorous but inefficient

in dissecting a multi-factor system. To resolve this inefficiency, researchers have developed the

systems biology approach. In the systems biology approach (see Fig. 1-1), quantitative

mathematical models are constructed based on existing experimental data. The system model

reflects the current understanding of the biological system interested and provides a platform for
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integrating new information. From analyzing the model structure and simulation data,

researchers gain additional biological insight to the system and identify deficiencies that require

more understanding. They can then propose new hypothesis and design new experiments, where

its data can be used to further improve the model.

Fig. 1-1. The systems biology approach (figure adapted from http://www.doc.ic.ac.uk/bioinformatics/CISB).

In this thesis, we employ this systems biology approach to study the shear-stress-induced

NO production in endothelial cells. We incorporate all previously known pathways to construct

the NO model (Chapter 2). We also describe experiments on the endothelial glycocalyx, a

glycosaminoglycan layer that has been shown to be a mechanosensor for NO production, seeking

to understand how distinct shear stress waveform regulate its expression (Chapter 3) and how

the glycocalyx might lead to atheroprotection and NO production (Chapter 4). Finally, we

conclude on our studies and discuss the future directions (Chapter 5).

The following sections of this chapter provide reviews of the history and findings of the

endothelium and the endothelial glycocalyx layer.
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1.2 The Endothelium

1.2.1 A Brief History of the Endothelium

Discovery of the Endothelium

In 1852, Dr. Henry Hyde Salter just completed his medical training at King's College and

decided to join Charing Cross Hospital, working as a lecturer in the department of physiology

and pathology under Prof. Robert Bently Todd. Todd, partnered with Sir William Bowman, who

Bowman's capsule is name after, was working on his two finest work: The Cyclopaedia of

Anatomy and Physiology, and Physiological Anatomy and Physiology of Man. Salter joined their

endeavor and assisted the two in completing their projects, which includes isolation of the

epithelial particles, later known as the endothelium, from the aorta of an ox and a horse (Fig. 1-

2). The work is later published in the second volume of the Physiological Anatomy and

Physiology of Man in 1856. In the book, the epithelial particles were described: "[t]he long axis

of each of these particles is parallel to that of the vessel. They are pointed, or, as it were, drawn

out at their extremities...they are sometimes elongated into fusiform fibres. They are remarkable

for the large size and the distinctness of their nuclei which are often visible when the cell wall

cannot be detected. (41)" Salter later became an expert of asthma, a disease he had suffered since

childhood, and is the author of the 1 9 th century's best asthma textbook, "On Asthman: Its

Pathology and Treatment. (38)" Through the effort of Salter, Todd, and Bowman, histologists

began to study the mysterious "epithelial particles."
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Dr. Henry Hyde Salter
(1823-71)

FIg. 192.

Epithellal particles from the
aorta of an O=. Mapided 40
diameters.

Sir Robert Bentley Todd Sir William Bowman
(1809-60) (1816-92)

Vi. 193.

Particle& of epithelium and nuclei from the
aorta of a hors; some of the forner ehibit
the elongated character. Mag. M0 diam.

Fig. 1-2. A) The three pioneers who defined the "epithelial particles." (Photo of HHS is from (38); photos of RBT
and WB are expired copyright images downloaded from wikipedia) B) The very first documentation of the
endothelium (figure adapted from (41)).
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Naming of the Endothelium

The term "endothelium" was first introduced by Wilhelm His, Sr. in 1865 (27). He reasoned that

even though endothelium and epithelium are both a layer of cells lining a tissue, the

developmental origin of the two are quite different. The epithelium arises from all three germ

layers: ectoderm, endoderm, and mesoderm; whereas the endothelium is only derived from the

mesoderm. Usage of the word "endothelium" leads to some controversy in the 1870s due to

etymological and physiological reasons. Dr. Michael Foster argued that since epithelium means

"that which covers or is upon a papilla," consequently the endothelium means "that which is

inside a papilla," making little sense (18). Dr. Foster also further questioned His' view that the

epithelium and endothelium come from distinct origins. Dr. Cavafy, a supporter of the term

endothelium, made a counter argument stating that the prefix, "endo-", means internal rather

than inside (6). Therefore, the term endothelium suggests "an internal skin formation of an

animal". Dr. Cavafy also emphasized the characteristic difference between the endothelium and

the epithelium: the endothelium has a close relationship to the connective tissue, and never form

glands nor secrete; whereas the epithelium has no relationship with the connective tissue, and is

almost always observed with gland formation and secretion. Nevertheless, to Dr. Foster's

dismay, the term "endothelium" is still used until now to define the thin layer of cells that lines

the interior surface of blood vessels.

Though the endothelium were discovered in the middle of the 1 9 th century, relatively

little was known about the important functions of this monolayer until almost a century later,

when the human vascular endothelial cells were successfully cultured in the early 1970s, and

thus commence the field of vascular biology.

The Era of Vascular Biology

Dr. Michael A. Gimbrone, Jr., then a Post-doc under Dr. Judah Folkman in 1973, was among the

first group of scientists who successfully cultured human endothelial cells from umbilical cord

veins (22, 23). Since then, the number of publications studying vascular biology using in vitro

cultured endothelial cells has experienced great growth. Two years after reporting the successful

culture of endothelial cells, Gimbrone and Alexander, who met each other in a poker game at

NIH (personal communication with Dr. Gimbrone), demonstrated endothelial cells as a primary
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source for production of prostaglandin (21), a family of lipid compounds particularly important

in regulation of vascular permeability, vasodilation, and platelet aggregation. One year later in

1976, a research group led by Sir Salvador Moncada and Nobel Laureate Sir John Vane isolated

the most potent form of prostaglandin, prostacyclin (PGI2) (33). In 1980, Furchgott et al. further

demonstrated the importance of the endothelium by showing that its presence is necessary for

acetylcholine-induced relaxation of smooth muscle cells (19). Later effort by Furchgott and

Moncada et al. identified nitric oxide to be the key vasodilator released by endothelial cells to

account for the previous observation (35, 37).

The Endothelial Cells and the Flow

While these progress in endothelial biology was being made, Dr. C. Forbes Dewey, Jr.

revolutionize this field in 1981 by combining biology with mechanics, constructing the first

cone-plate shear stress apparatus to expose the endothelial cells to flow (13). It was found that

the cells are able to respond to flow and align to the direction of the flow. In 1986, Peter Davies

et al. further applied the cells to various laminar or turbulent shear stress waveforms, and

demonstrated turbulent flow characteristic of the atheroprone region of the vasculature may

induce cell turnover (11). Since the invention of the in vitro flow system, thousands of studies

have been made researching on how endothelial cells respond to flow and what is the underlying

mechanotransduction mechanisms behind this process.

Endothelial Dysfunction and Atherosclerosis

By the late 1980s, researchers started to realize the importance of a healthy endothelium toward

protection against vascular diseases. Endothelial dysfunction, the state in which the endothelial

cells can no longer respond to external stimuli to preserve homeostasis, is frequently followed by

deterioration of vascular health and development of several pathologies including atherosclerosis

(20). One of the early sign of atherogenesis is leukocyte adhesion to the endothelium. In 1897

and 1991, E-selectin and VCAM-1 were identified by Bevilacqua et al. and Cybulsky et al.,

respectively, to be some of the most important cell adhesion molecules on top of the endothelial

apical surface (4, 8). The functions and mechanisms of how these cell adhesion molecules

respond to inflammatory stimuli, such as oxidized-LDL or IL-i p, was extensively studied (31,
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49). Due to these research efforts, novel therapies were discovered to decrease the risk of

atherogenesis. One of these drugs is statin, an HMG Co-A reductase inhibitor which leads to a

lower LDL level. Statins were tested among patients with coronary-artery disease in the early

1990s (42) and became the billion-dollar blockbuster Lipitor. Now in the 21s' century,

continuous effort is being made to understand the various aspect of the endothelium in hope to

find innovative therapies for cardiovascular diseases.

1.2.2 Structure and Properties of the Endothelium

The endothelium consists of endothelial cells that are around 30 micron long, 10 micron wide,

and 0.2 - 3 micron thick. The endothelium in adult human is only about 0.2% of total body mass

but its total area is approximately three quarter of a basketball court. This thin but important

layer is responsible for many vascular functions, including:

- Barrier function: The endothelium selectively filters or facilitates the transport of ions

and macromolecules from the vascular lumen to surrounding tissues (30).

e Anti-thrombotic: The endothelium produces factors that inhibit the coagulation cascade.

It also releases prostacyclin and nitric oxide to prevent platelet activation (9).

e Inflammation: The endothelium binds to the inflammatory cytokines and increases

expression of the cell adhesion molecules, which leads to leukocyte adhesion and

transmigration (29).

e Angiogenesis: The endothelium responds to angiogenic growth factors and releases

proteases, degrading the basement membrane to initiate sprouting (5).

e Vasodilation: The endothelium produces nitric oxide in response to shear stress stimuli.

Nitric oxide diffuses to the smooth muscle cells and leads to vasodilation (28).

Recent studies have demonstrated that the integrity of a glycosaminoglycan layer, or the

glycocalyx, on the apical surface of the endothelium is critical for many of the above-mentioned

endothelial functions (39). In chapter 3, we will discuss on several key topics of the glycocalyx,

including how distinct shear stress waveform leads to the expression of components of the

endothelial glycocalxy layer, and how this layer might lead to protection against atherosclerosis.
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1.3 The Glycocalyx

1.3.1 A Brief History of the Glycocalyx

In 1957, Dyrbye and Kirk isolated mucopolysaccharide from human aortic tissue at Washington

University (14), my alma mater. Through paper electrophoresis and enzymatic method, they

have identified three major components constituting the polysaccharide. The first component was

chondroitin sulfate; the second one was a substrate of hyaluronidase - the hyaluronic acid; and

the third one is a sulfated component containing both galactosamine and glucosamine - the

heparan sulfate. Few years later in 1963, the extracellular polysaccharide coating existed in many

cell types are name the glycocalyx by H. Stanley Bennett from the University of Chicago (2).

Due to the fixation method used at that time, the endothelial glycocalyx was destroyed and thus

not observed, and the glycocalyx isolated from aortic tissue was thought mainly located at the

intercellular space between the endothelial cells and the smooth muscle cells.

1.3.2 Observation and Measurement of the Glycocalyx

In the 1990s, Vink and Duling used intravital microscopy to observe red blood cells (RBC) going

through the hamster cremaster muscle capillaries. Interestingly, the width of the capillary

occupied by the RBC and FITC-dextran were significantly smaller than the anatomic capillary

diameter, and treatment of the capillary with oxygen radicals increased the RBC and FITC-

dextran column (46). These data suggest there is a thin surface coating on top of the endothelium

(Fig. 1-3). Due to the fragile nature of the glycocalyx, scientists were not able to have a good

view of this thin layer until 2006, when van den Berg et al. perfected the sample preparation

protocol for electron microscopy and visualized the 0.4 - 0.5 [tm bush-like glycocalyx structure

(Fig. 1-4) (24, 43). Besides intravital microscopy and electron microscopy, researchers have also

attempted to use other techniques to measure the thickness of the glycocalyx. These techniques

include microparticle image velocimetry, two-photon laser scanning microscopy, and confocal

laser scanning microscopy. These data suggest the glycocalyx thickness in vivo or ex vitro are in

the range of 0.02 - 4.5 tm, depending on the measurement method and vessel origin (15).

8



"Light-dye treatment increased capillary tube

hematocrit by 60% in 40-pm-long capillary segments

compared with untreated sites in the same capillaries.

It is concluded that the wall of skeletal muscle

capillaries is decorated with a 0.4- to 0.5-pm-thick

endothelial surface coat, which may represent the true

active interface between blood and the capillary wall."

- Vink & Duling

Fig. 1-3. The width of A) RBC and B) FITC-dextran were significantly smaller than tha antomic capillary diameter.
Width of C) RBC and D) FITC-dextran after light-dye (oxygen radical) treatment (46).
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Glycocalyx

Endothelial
cell

0.2 pm

Fig. 1-4. Electron microscopy images of goat capillary glycocalyx (figures adapted from (24)).

1.3.3 Structure of the Endothelial Glycoclayx

In the past decade, components of the endothelial glycocalyx have been identified (Fig. 1-5). The

glycocalyx is mainly composed of several transmembrae proteins and three glycosaminoglycans

(GAGs): heparan sulfate, chondroitin sulfate, and hyaluronic acid. Heparan-sulfate is attached to

proteoglycans such as syndecans and glypicans; chondroitin sulfate is present on top of

syndecans; and hyaluronic acid binds to protein receptor CD44 (39). The heparan sulfate and

chondroitin sulfate are added to their anchored proteins in the Golgi. Heparan sulfate chain

biosynthesis is a process involving multiple steps: First, a series of saccharides (N-

acetylglucosaimne - glucuronic acid - galactose - galactose - xylose) are added onto the serine

residue of the extracellular domain of syndecan or glypicans. Next, the elongation process starts

with the heparin polymerization reaction conducted by glycosyltransferase I, a protein dimer of

exostosin-1 (EXT1) and exostosin-2 (EXT2). Finally the elongated chain is deacetylated and

sulfated by N-deacetylase/N-sulfotransferase (NDST). Chondroitin sulfate biosynthesis occurs in

a highly similar manner, except that the chondroitin polymerization step is catalyzed by

chondrotinsulfate synthase 1/3 (CHSYl/3) and the sulfation process is carried out by chondroitin

sulfotransferase (CHST) family proteins. In contrast, hyaluronic acid is synthesized at the plasma

membrane by three hyaluronan synthase isoforms (HAS1, HAS2, and HAS3). The long

10



hyaluronic acid chain produced at the membrane is released to the extracellular space and bound

to hyaluronic acid binding protein - CD44.

Hyaluronic Heparan Sulfates

CD44

Sialic acids e n Su tea

GlyowtainGlypicanI7AA).*

Fig. 1-5. Structure of the endothelial glycocalyx layer (figure adapted from (39)).

1.3.4 Functions of the Endothelial Glycocalyx

Scientists have identified many functions of the glycocalyx. Several key functions are listed

below:

" Increase resistance to blood flow and decrease capillary hematocrits: the glycocalyx acts

as an interactive surface between blood and the vessel wall (12, 36)

e Associate or permeate ions, amino acids, macromolecules selectively based on size and

charge: the glycocalyx can directly bind to some biomolecules and increase their local

concentration, and can also selectively block some other biomolecules and prevent them

from reaching the endothelial surface (3, 26).

- Remove oxygen-derived free radicals from the blood: the negatively charged heparan

sulfate binds tightly with a positively charged domain of the extracellular superoxide

dismutase, a radical scavenger, thus reducing the oxidative stress to the endothelium (1).
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* Act as a protection layer against leukocyte adhesion: enzymatic removal of heparan

sulfate in mouse cremaster venules induces leukocyte adhesion (7).

- Conduct mechanotransduction: flow-mediated responses such as cell alignment,

cytoskeleton reorganization, proliferation regulation, and NO production are impaired

when component of the glycocalyx is degraded (17, 25, 32, 40, 48).

Studies from syndecan-1 and syndecan-4 knocked-out mice showed that these mice are healthy

and fertile under normal condition. However, syndecan-4 K.O. mice were observed with delayed

wound healing and impaired angiogenesis after injury (16), and syndecan-1 K.O. mice were

observed with enhanced leukocyte adhesion and transmigration after induced myocardial

infarction by permanent ligation of the left coronary artery (45). Several researches have also

demonstrated the clinical importance of an intact glycocalyx layer. One study showed that an

impaired glycocalyx layer is associated with enhanced intimal LDL accumulation in mice (44).

Another recent study established a correlation between a damaged glycocalyx and renal disease

patients undergoing dialysis (47). The importance of an abundantly and uniformly expressed

glycocalyx layer is further discussed in Chapter 3. In the next chapter, we will continue with the

original motivation to study the glycocalxy pathway - understanding the shear-stress-induced

NO production system.

12



1.4 References

1. Abrahamsson T, Brandt U, Marklund SL, and Sjoqvist PO. Vascular bound recombinant extracellular
superoxide dismutase type C protects against the detrimental effects of superoxide radicals on endothelium-
dependent arterial relaxation. Circ Res 70: 264-271, 1992.

2. Bennett HS. Morphological aspects of extracellular polysaccharides. Journal of Histochemistry &
Cytochemistry 11: 10, 1963.

3. Bernfield M, Gotte M, Park PW, Reizes 0, Fitzgerald ML, Lincecum J, and Zako M. Functions of
cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68: 729-777, 1999.

4. Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, and Gimbrone MA, Jr. Identification of an
inducible endothelial-leukocyte adhesion molecule. Proc Natl Acad Sci US A 84: 9238-9242, 1987.

5. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6: 389-395, 2000.
6. Cavafy J. A note on endothelium. Quarterly Journal ofMicroscopical Science s2: 4, 1874.
7. Constantinescu AA, Vink H, and Spaan JA. Endothelial cell glycocalyx modulates immobilization of

leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23: 1541-1547, 2003.
8. Cybulsky MI, and Gimbrone MA, Jr. Endothelial expression of a mononuclear leukocyte adhesion

molecule during atherogenesis. Science 251: 788-791, 1991.
9. Dahlback B. Blood coagulation. Lancet 355: 1627-1632, 2000.
10. Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 75: 519-560, 1995.
11. Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Jr., and Gimbrone MA, Jr. Turbulent fluid shear stress

induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A 83: 2114-2117, 1986.
12. Desjardins C, and Duling BR. Heparinase treatment suggests a role for the endothelial cell glycocalyx in

regulation of capillary hematocrit. Am JPhysiol 258: H647-654, 1990.
13. Dewey CF, Bussolari SR, Gimbrone MA, and Davies PF. The dynamic response of vascular endothelial

cells to fluid shear stress. JBiomech Eng 103: 177-185, 1981.
14. Dyrbye M, and Kirk JE. Mucopolysaccharides of human arterial tissue. I. Isolation of

mucopolysaccharide material. J Gerontol 12: 20-22, 1957.
15. Ebong EE, Macaluso FP, Spray DC, and Tarbell JM. Imaging the endothelial glycocalyx in vitro by

rapid freezing/freeze substitution transmission electron microscopy. Arterioscler Thromb Vasc Biol 31:
1908-1915, 2011.

16. Echtermeyer F, Streit M, Wilcox-Adelman S, Saoncella S, Denhez F, Detmar M, and Goetinck P.
Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107: R9-R14,
2001.

17. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, and Tarbell JM. Heparan sulfate proteoglycan is a
mechanosensor on endothelial cells. Circ Res 93: e136-142, 2003.

18. Foster M. Memoirs: On the Term Endothelium. Quarterly Journal of Microscopical Science s2: 5, 1874.
19. Furchgott RF, and Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial

smooth muscle by acetylcholine. Nature 288: 373-376, 1980.
20. Gimbrone MA, Jr. Endothelial dysfunction and atherosclerosis. J Card Surg 4: 180-183, 1989.
21. Gimbrone MA, Jr., and Alexander RW. Angiotensin II stimulation of prostaglandin production in

cultured human vascular endothelium. Science 189: 219-220, 1975.
22. Gimbrone MA, Jr., Cotran RS, and Folkman J. Endothelial regeneration: studies with human

endothelial cells in culture. Ser Haematol 6: 453-455, 1973.
23. Gimbrone MA, Jr., Cotran RS, and Folkman J. Human vascular endothelial cells in culture. Growth and

DNA synthesis. J Cell Biol 60: 673-684, 1974.
24. Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, and Vink H. Fluid shear stress stimulates

incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 290: H458-
452, 2006.

25. Hecker M, Mulsch A, Bassenge E, and Busse R. Vasoconstriction and increased flow: two principal
mechanisms of shear stress-dependent endothelial autacoid release. Am JPhysiol 265: H828-833, 1993.

26. Henry CB, and Duling BR. TNF-alpha increases entry of macromolecules into luminal endothelial cell
glycocalyx. Am JPhysiol Heart Circ Physiol 279: H2815-2823, 2000.

27. His W. Die Haute und Hohlen des Korpers: Academisches Programm. Schweighauser, 1865.
28. Luscher TF, Richard V, Tschudi M, Yang ZH, and Boulanger C. Endothelial control of vascular tone

in large and small coronary arteries. JAm Coll Cardiol 15: 519-527, 1990.

13



29. Luscinskas FW, and Gimbrone MA. Endothelial-dependent mechanisms in chronic inflammatory
leukocyte recruitment. Annu Rev Med 47: 413-421, 1996.

30. Malik AB, Lynch JJ, and Cooper JA. Endothelial barrier function. JInvest Dermatol 93: 62S-67S, 1989.
31. Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, Alexander RW, and

Medford RM. Vascular cell adhesion molecule-i (VCAM-1) gene transcription and expression are
regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest 92:
1866-1874, 1993.

32. Mochizuki S, Vink H, Hiramatsu 0, Kajita T, Shigeto F, Spaan JA, and Kajiya F. Role of hyaluronic
acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am J Physiol Heart
Circ Physiol 285: H722-726, 2003.

33. Moncada S, Gryglewski R, Bunting S, and Vane JR. An enzyme isolated from arteries transforms
prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263: 663-
665, 1976.

34. Nachman RL, and Jaffe EA. Endothelial cell culture: beginnings of modem vascular biology. J Clin
Invest 114: 1037-1040, 2004.

35. Palmer RM, Ferrige AG, and Moncada S. Nitric oxide release accounts for the biological activity of
endothelium-derived relaxing factor. Nature 327: 524-526, 1987.

36. Pries AR, Secomb TW, Gessner T, Sperandio MB, Gross JF, and Gaehtgens P. Resistance to blood
flow in microvessels in vivo. Circ Res 75: 904-915, 1994.

37. Rees DD, Palmer RM, and Moncada S. Role of endothelium-derived nitric oxide in the regulation of
blood pressure. Proc Natl Acad Sci USA 86: 3375-3378, 1989.

38. Sakula A. Henry Hyde Salter (1823-71): a biographical sketch. Thorax 40: 887-888, 1985.
39. Tarbell JM, and Pahakis MY. Mechanotransduction and the glycocalyx. J Intern Med 259: 339-350,

2006.
40. Thi MM, Tarbell JM, Weinbaum S, and Spray DC. The role of the glycocalyx in reorganization of the

actin cytoskeleton under fluid shear stress: a "bumper-car" model. Proc Natl Acad Sci USA 101: 16483-
16488, 2004.

41. Todd RB, and Bowman W. The physiological anatomy and physiology of man. London: J.W. Parker,
1845.

42. Treasure CB, Klein JL, Weintraub WS, Talley JD, Stillabower ME, Kosinski AS, Zhang J, Boccuzzi
SJ, Cedarholm JC, and Alexander RW. Beneficial effects of cholesterol-lowering therapy on the
coronary endothelium in patients with coronary artery disease. N Engl JMed 332: 481-487, 1995.

43. van den Berg BM, Spaan JA, Rolf TM, and Vink H. Atherogenic region and diet diminish glycocalyx
dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart
Circ Physiol 290: H915-920, 2006.

44. van den Berg BM, Spaan JA, and Vink H. Impaired glycocalyx barrier properties contribute to enhanced
intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch 457:
1199-1206, 2009.

45. Vanhoutte D, Schellings MW, Gotte M, Swinnen M, Herias V, Wild MK, Vestweber D,
Chorianopoulos E, Cortes V, Rigotti A, Stepp MA, Van de Werf F, Carmeliet P, Pinto YM, and
Heymans S. Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after
myocardial infarction. Circulation 115: 475-482, 2007.

46. Vink H, and Duling BR. Identification of distinct luminal domains for macromolecules, erythrocytes, and
leukocytes within mammalian capillaries. Circ Res 79: 581-589, 1996.

47. Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, and Vink H. Damage of the
endothelial glycocalyx in dialysis patients. JAm Soc Nephrol 23: 1900-1908, 2012.

48. Yao Y, Rabodzey A, and Dewey CF. Glycocalyx modulates the motility and proliferative response of
vascular endothelium to fluid shear stress. Am JPhysiol Heart Circ Physiol 293: H1023-1030, 2007.

49. Yoshida M, Westlin WF, Wang N, Ingber DE, Rosenzweig A, Resnick N, and Gimbrone MA, Jr.
Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton. J Cell
Biol 133: 445-455, 1996.

14



Chapter 2: In silico Modeling of Shear-stress-induced
Nitric Oxide Production in Endothelial Cells

2.1 Introduction

One of the most important functions of vascular endothelial cells is to produce nitric oxide (NO).

This molecule has a number of different roles in vascular stasis, including acting as a potent

vasodilator and a mediator of inflammation (40). Not surprisingly, human vascular endothelial

cells have developed multiple pathways by which production of NO is regulated by humoral and

biomechnical stimuli via the expression and activation of endothelial nitric oxide synthase

(eNOS). Exploring these different pathways one at a time is difficult because the system is not

separable - multiple pathways contribute to the production rate under all physiological

circumstances. In order to understand and model the rich diversity of responses that have been

observed experimentally, it is necessary to account for an ensemble of these pathways acting

simultaneously over an extended range of time scales.

The advancements of modem biology and computer science have increasingly enabled

researchers to build such multi-pathway models. In the past two decades, experiments have been

conducted which provide quantitative information between molecular species in the cell and their

evolution under specific stimuli, facilitating construction of quantitative biochemical pathways

that may be used as predictors of cellular response under a wider range of physiological or

pathophysiological conditions. This sort of quantitative analysis of molecular pathways provides

a valuable tool for assessing biological mechanisms and validating hypothetical mechanisms by

comparing simulation results with experimental data.

One of the major hurdles in this process has been the development of in silico models

sufficiently detailed to describe the complex phenomena observed. The current state-of-the-art is

to construct quantitative models based on selected sub-paths within a larger molecular pathway.

This process is time consuming, requiring in-depth literature searches, experimentation, and

parameter estimation. These isolated sub-path models are invaluable and often provide insight

into specific biochemical mechanisms. However, these sub-pathway models are often not

independent in vivo nor in vitro, and have cross-sensitivities due to common species and

overlapping reactions. As a result, to address more complex questions, such as the evolution of
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NO under mechanical shear stress, it is necessary to systematically integrate these sub-paths to

provide a more comprehensive and accurate purview of cellular mechanisms.

The current process of integrating multiple molecular pathways involves hand curation of

individual models into a single monolithic model (see Fig. 2-lA). Due to the use of different

model coding environments, variable names, pathway separation methodologies, and solution

strategies, assembly of monolithic models typically requires substantial re-writing of previously

published models. In this process, the links to previously published sub-paths become difficult to

decipher and the manual work may be prone to errors, especially for large networks. The

process of including new data elements to sub-path models that more accurately detail

biochemical reaction steps is also non-trivial and often burdensome. Most importantly,

scientifically, monolithic model integration loses much of the history and progression of pathway

determination and development, particularly the detailed experimental condition where the

original models and parameters are based on (36).
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Fig. 2-1. Comparison between the monolithic and the CytoSolve approaches in building an integrated model.

16

f t



In this paper, an alternative approach, based on the binding-expression concept, is

adapted (see Fig. 2-1B) and the integrated model is viewed as an ontology. Any previously

published sub-path model is retained in its entirety, allowing it to be updated, extracted, replaced,

or removed. Sub-pathway models are then integrated through bindings that identify common

species and alterations made to each model due to their integration. In our work, the creation of

these bindings has been semi-automated through the use of MIRIAM (31) annotations and XML

standard formats - such as SBML (26)- which support computational parsing and reasoning. In

this way, common species and reaction pathways can be identified despite variations in

nomenclature or the number of reactions, thus lowering the complexity bar for the human

curator. These tools are made publicly available through CytoSolve (1), a web-accessible

interface (http://cytosolve.mit.edu/) capable of model integration and simulation.

Main Mechanisms of Shear-stress-regulated eNOS Activation

Transcriptional Regulation

Key Proteins Known Pathway Note References Model Inclusion
AP-1 Shc -> Grb2-Sos -> Ras -> JNK -> AP-1 Transient Chen (1999), Wedgwood eNOS expression

(2003)

NFKB Akt -> IKK -> NFKB Transient (complex) Wang (2003), Davis Not included
(2004), Won (2007)

KLF2 ? -> MEK5 -> ERK5 -> MEF2 -> KLF2 Long term Parmar (2006) eNOS expression

Post-translational Regulation

Phosphorylation

Key Kinases Known Pathway Phosphorylation Site References Model Inclusion
Akt P13K -> AKT Ser 177 Dimmeler (1999) eNOS

phosphorylation
PKA ? -> [cAMP] -> PKA Ser635 (bovine) Boo (2001) Not included
AMPK ? -> [AMP] -> AMPK Ser 177 Young (2009) Not included

Protein Partners

Key Partners Effect on eNOS References Model Inclusion
Caveolin-1 Inactivation Garcia-Cardeia (1996) NO production
Calmodulin Activation, facilitate recruitment of Hsp90 Forstermann (1991), Calcium influx, NO

Gratton (2000) production
Hsp90 Activation, facilitate recruitment of Akt Garcia-Cardefia (1998), NO production

Fontana (2002)

Table 2-1. List of main mechanisms of shear-stress-regulated eNOS activation
46, 47).

(5, 8, 11, 15, 19-22, 24, 39, 42, 43,
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In the case of endothelia-derived NO, many pathway models governing its production

have been previously established (see Table 2-1). In this paper, we integrate four of these

molecular pathway models (see Fig. 2-2) that modulate the activation of endothelial nitric oxide

synthase (eNOS) by shear stress. Specifically, we focus on the calcium-stimulated binding of

calmodulin to eNOS, AKT mediated phosphorylation of eNOS, and up-regulation of eNOS

transcription through AP-1 and KLF2. These pathways are linked by an additional model

describing eNOS' interaction with its protein partners. By integrating these models in

CytoSolve, the dynamic regulation and production of NO by eNOS under both shear stress and

static (no shear stress) conditions can be investigated and tested. This use of the NO model

illustrates the potential of the partitioned model approach and of the CytoSolve tools, which

enable simulation of complex problems involving many parallel pathways that cannot be readily

isolated experimentally.
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Fig. 2-2. The four models of the shear stress-induced NO production system. A) the calcium influx model, B) the
eNOS phosphorylation model, C) the eNOS expression model, and D) the NO production model.
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2.2 Methods

In this section we detail the individual well-characterized pathway models which regulate eNOS

and, as a result, NO production. These models are linked with a new model describing the

interactions of eNOS and its associated binding partners. The section concludes by detailing the

tools used to bind the individual models together, creating a partitioned NO pathway model

capable of describing the multiple phenomena that regulate NO.

2.2.1 Mechanisms of Shear-Stress-induced NO production

Several key signaling pathways have been identified which modulate the activity of eNOS - the

primary source of NO production in vascular endothelial cells. In this section we introduce three

pathway models that alter eNOS activation or regulate eNOS protein expression. To link these

models, an additional model was constructed that describes the binding of calcium, calmodulin

(CaM), Hsp90, eNOS, and phosphorylated eNOS as well as the resulting enzymatic production

of NO. The detailed model schemes, inputs, species, reactions, and parameters are described in

the Appendix).

Shear-stress-induced calcium influx and eNOS activation

In response to increased fluid shear stress, endothelial cells exhibit transient increase in cytosolic

free calcium (see Fig. 2-2A). The influx of calcium is due to mechanisms such as activation of

stress-sensitive calcium channel and activation of G-protein pathway (10). A calcium channel is

directly activated by the fluid shear stress and this leads to intracellular calcium influx. G-

protein coupled receptors can also be activated by shear stress (7). Activated G-protein induces

activity of phospholipase C and production of inositol 1,4,5-trisphosphate (IP3). IP3 binds to its

receptor on the surface of endoplasmic reticulum and promotes calcium release from this

intracellular storage. The increased intracellular Ca2+ then rapidly binds to CaM, a calcium-

binding protein that significantly up-regulates the activity of eNOS. The elevated intracellular

calcium level subsequently leads to increased calcium export via the sodium-calcium exchanger

and re-uptake in intracellular stores, making increase in intracellular Ca 2+ a transient (~5

minutes) event (45).
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To describe the calcium dynamics in response to shear stress, a mathematical model

published by Wiesner et al. was used (44, 45). This model assumes a step change of calcium

influx mediated by the stress-sensitive calcium channel at the onset of shear stress (10

dynes/cm 2 ). The resulting concentration profile of calcium transient is shown in Fig. 2-3A.
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Fig. 2-3. Simulation profiles of shear-induced model inputs: A) cytosolic Ca2 +, B) activated P13K, C) total activated
FAK and activated Src, and D) KLF2.

Shear-stress-induced AKT and eNOS phosphorylation

In addition to calcium-dependent calmodulin binding, eNOS activity can also be up-regulated by

post-translational modifications, most importantly phosphorylation on serine 1177 of the human

eNOS sequence (15). For the model we solely focused on phosphorylation on this site. This

reaction is catalyzed by protein kinases including AKT, PKA, and AMPK (40). The mechanism

of how shear stress activates AMPK is still unclear, but shear-stress-induced AKT and PKA

activation has been shown to be P13K-dependent (5, 15). Phosphorylation of serine 1177 is

significantly decreased when endothelial cells are treated with P13K inhibitor, Ly294002, or

transfected with dominant-negative AKT (15, 17). These data suggest that the PI3K-AKT
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pathway plays the most important role in shear-stress-induced eNOS phosphorylation. Based on

this experimental observation, it is assumed in our model that P13K dependent AKT activation is

the main pathway responsible for eNOS phosphorylation: P13K activation leads to production of

phosphatidylinositol (3,4,5)- trisphosphate (PIP3). PIP3 subsequently recruits cytosolic free AKT

to the membrane; then AKT is phosphorylated by both PDK1 and PDK2 (see Fig. 2-2B). Finally,

phopsphorylated AKT phosphorylate eNOS on serine 1177.

The mathematical model used to describe the AKT activation process is taken from Koh

et al. (29), a model originally established to study the crosstalk between AKT and MAPK

pathways upon receptors binding to growth factors. This model provides a detailed illustration of

the PI3K-AKT pathway, which we assumed is conserved across different human cell types. In

our model, P13K activation was assigned to be the input signal based on a time-dependent

function fit from experimental data by Go et al. (23). Time-dependent functions were used as

model inputs throughout the NO system as proxies for the mechanotransduction process, due to

the fact that how shear stress leads to activation of molecular pathways is still poorly understood.

In this paper, laminar shear stress with the magnitude of 5 dynes/cm 2 was used in the

experiments. In other papers used to generate model inputs in subsequent models, laminar shear

stress or oscillatory shear stress with mean magnitude of 12 dynes/cm 2 were applied. Here we

made a general assumption that endothelial cells respond similarly regarding eNOS activation

given a shear stress stimuli of 5 to 12 dynes/cm2

Shear-stress-induced eNOS expression

A third mechanism leading to an overall increase in NO production is up-regulation of eNOS

expression. Key transcription factors governing shear-stress-induced eNOS promoter activity

include AP- 1, NFKB, and KLF2 (2). The role of NFKB on eNOS expression remains

controversial as recent study indicates that expression of NFKB and eNOS is negatively

correlated under shear stress (46). Therefore, in our model we focused on simulating the effect of

AP-1 and KLF2 on eNOS transcription (Fig. 2-2C). In this model, it is assumed that there is no

interaction between these two transcription factors and no synergy on eNOS transcription.

AP-1, a Jun-Jun homodimer or a Jun-Fos heterodimer, is involved in shear-stress-induced

eNOS expression. A qualitative pathway model describing how shear stress leads to AP-1

nucleus translocation has been previously established (8). In the proposed model, shear stress

21



activates the focal adhesion site and leads to phsophorylation of focal adhesion kinase (FAK),

Src kinase, and the adaptor protein Shc. Activation of these kinases leads to formation of the first

complex, "FAK-Shc", then a second complex between "FAK-Shc" and "Grb2-Sos". The second

complex activates Ras protein, and initiates the MAP kinase cascade through MEKK1, JNKK,

and JNK. JNK phosphorylates Jun and eventually leads to Jun dimer association to form AP-1,

which translocates to nucleus and facilitates eNOS expression.

To quantitatively model the contribution of AP-1 in regulating eNOS expression, two

existing mathematical models were used as the bases. The first model, excerpted from

Hatakeyama et al. (25), describes the activation pathway from Src, FAK to Ras. However, since

the upstream mechanical activation of Src and FAK molecules is not well understood, the

kinetics of these two molecules (Fig. 2-3C) were based on time dependent experimental

measures observed by (32) and (27). Both shear stress experiments in the two papers used a

laminar shear stress of 12 dynes/cm2 . The second model, modified from the Kholodenko study

(28), illustrates the kinetics of how Ras initiates the MAP kinase cascade. These two models

were combined and integrated with reactions including JNK-mediated Jun

phosphorylation/dimerization, AP-1 nuclear translocation, AP-1 mediated eNOS transcription,

eNOS translation, and eNOS mRNA degradation. The rates of these reactions were estimated

based on experimental observation and previously established models. Parameters of this model

were optimized to fit the experimental observation. Further details can be found in the Appendix.

KLF2, the third transcription factor responsible for eNOS expression, is characterized to

lead to long-term up-regulated eNOS transcription. Compared to fast and transient nuclear

translocation of AP-1 in response to shear stress, the increase in KLF2 concentration inside the

nucleus is relatively slow but sustained (47). The upstream mechanosensors for KLF2 expression

are still poorly understood, but its expression is known to be MEK5, ERK5, and MEF2

dependent (39). Due to limited experimental data to construct a complete model, KLF2

activation is simulated based upon a time-course shear stress experiment (1 Hz oscillatory shear

stress of 12±4 dynes/cm 2) data measured by Young et al. (47) (Fig. 2-3D).

Shear-stress-induced NO production

The previously described models establish the concentration profile of cytosolic free calcium,

phosphorylated eNOS, and total eNOS expression in response to shear stress. However, to
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integrate these pathways and understand NO production, one additional model was necessary to

characterize the interactions of eNOS and its binding partners (Fig. 2-2D).

The biphasic binding of Ca2+ to CaM is well-documented in the literature by Bayley (3)

and others (34). This has been shown to occur due to the very rapid dissociation of Ca 2 from

the N-ter EF hand pair compared to the C-ter EF hand pair, although some evidence suggests

cooperative binding of Ca 2+ to CaM (34). Black et al. have shown that a number of sequential

kinetic models can predict binding response (4). Following their result, Ca2 + binding to CaM

was modeled using a four-step process, with two fast and two slow steps. In our model, we

assumed the fast steps are much faster than the slow steps and therefore CaM(Ca2 )2 and

CaM(Ca+) 4 are the only stable CaM- Ca2+ forms. Both species were assumed to bind to eNOS.

Besides CaM, another key regulator for eNOS activation under shear stress is protein

Hsp90. Hsp90 does not bind to eNOS under static condition, but significant binding was detected

just 15 minutes after initiation of shear stress (21). CaM bound eNOS has been shown to

significantly increase the efficiency for Hsp90 recruitment (24). Studies have also shown that the

complex formation of eNOS-CaM-Hsp9O is required for Akt mediated eNOS phosphorylation on

serine 1177 (16). Once phosphorylated, eNOS is stable in the active state with enhanced NO

production efficiency until the phosphate group is removed. A quantitative model is created

based on this scheme. All rate constants were either derived from existing models or optimized

based on experimental data (see Appendix).

2.2.2 Model Integration

All individual models were built using CellDesigner 4.1 (CellDesigner.org), a visual design tool

for cell models and molecular pathways. Each model was coded in SBML, an XML-based

format that is widely used to encode biomolecular pathways. SBML (26) was selected due to its

wide usage in the molecular modeling community and model repositories (such as Biomodels.net

(30) open standard, developers' forum and available API, LibSBML (6)). All models were

encoded using MIRIAM (Minimum Information Requested In Annotation of biochemical

Models) specifications (31) that provide a rigorous set of information that mathematical models

should include in order to be re-used.

An attractive feature of the SBML standard, combined with MARIAM, is the ability to

include RDF (Resource Description Framework) statements. These enable the unique
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identification of biomolecular components across multiple models irrespectively of an individual

model's notation. This is achieved by labeling elements (i.e. species, reactions, etc.) in external

resources (ontologies or databases), which provide a mechanism for identifying common species

and reactions across models. For a generic SBML and MIRIAM-compliant model, it is possible

to associate RDF statements to species, to reactions, and to the model itself, providing a mean to

perform more advanced processing and model merging. For example, a DOI number or PubMed

paper ID provides a unique link to a published article with the model details, while the URI links

to elements in the Systems Biology Ontology (SBO (9)) or the ChEBI (Chemical Entities of

Biological Interest) ontology (12) provide extensive information on individual biochemical

species used within the model.

Writing each SBML model to be MIRIAM compliant requires additional effort, but the

RDF annotations enable models to be parsed and merged by a suitable logical reasoner. For this

work, we used the OREMP (Ontology Reasoning Engine for Molecular Pathways)

computational code (41) which can automatically identify duplicate species across models.

Moreover, OREMP can detect potential redundant reactions or reaction series which are shared

across models. Identification of overlapping reactions is critical as the hidden synergistic action

of two or more separate mathematical statements of the same reaction leads to erroneous

simulation results. The use of both species and reaction annotations becomes very useful in this

process as they enable the automatic match of cross-model components, minimizing user input.

Using an ontological approach, the properties of each model discovered by the OREMP software

can be appended to the description of the sub-models thus archiving these steps for future use.

The duplicate species and reactions between sub-models provide the relevant information

for model integration. They act as "bindings" which provide the map between individual model

species and reactions within a single model and their interaction in the entire merged model. As

newer models become available, they can also be integrated, either augmenting the current

model or replacing redundant paths. This process differs significantly from the monolithic

process, where each individual model is incorporated into a single model, requiring significant

more user effort.
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2.2.3 Solving the Model Pathway

The partitioned models and their bindings provide the necessary information to simulate the

global behavior of all interacting models. Models are aligned using CytoSolve and OREMP in

combination as outlined above, providing the detected duplicates as an editable list to the user.

Once the bindings between models have been constructed, the user may then set up the necessary

initial conditions, measured experimentally or estimated from computer optimization, for

simulating the molecular pathway. Simulation is handled using libSBML to parse the original

SBML models and SOSLib with SUNDIALS (35) to compute the sub-models' evolution through

time. CytoSolve solves the "joint model" not as a monolithic model, but as a separated system of

models. The merging of individual model species' concentrations is handled via a mass-balance

controller, which ensures both that aligned "bound" species maintain the same concentration

throughout the simulation and that the time steps taken are small enough to guarantee

convergence of the separable solution to the true (monolithic) solution (see (1, 37) for further

detail).
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2.3 Results

2.3.1 A simulation of the integrated shear-stress-induced NO production
model

When endothelial cells are exposed to shear stress, one of the first events is influx of calcium

from extracellular space and intracellular storage. Fig. 2-3A illustrates the concentration profile

of intracellular calcium governed by the calcium influx model. The calcium level increases

within the first three minutes after onset of shear stress; this transient response lasts for ten

minutes and quickly goes back to the resting state level.
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Another early event observed after onset of shear stress is activation of phosphoinositide

3-kinase (P13K). The concentration profile (Fig. 2-3B) of P13K is simulated based on a time-

dependent function generated from experimental data. Activation of P13K is short and transient

but accumulation of PIP3 results to down-stream Akt phosphorylation (Fig. 2-4A). This result is
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consistent with experimental observation, where fully active AKT reaches the peak level within

30 minutes after onset of shear stress, and gradually decays back to the initial state in hours (5,

14).

A third early event after initiation of shear stress is activation of focal adhesion complex,

including phosphorylation of both focal adhesion kinase (FAK) and Src kinase (Fig. 2-3C).

Phosphorylation of the two proteins leads to down-stream activation of Ras (Fig. 2-4B) and the

MAP kinase pathway proteins (Fig. 2-4C), and subsequent AP-1 formation and nuclear

translocation (Fig. 2-4D). This process is transient with a time span of few hours and is

responsible for the fast-responding up-regulation of eNOS mRNA and proteins after the cells

experience a change in hemodynamic environment. Besides AP-1, the concentration profile for

KLF2, another important transcription factor for eNOS, is shown in Fig. 2-3D. KLF2 is

responsible for long-term up-regulation of eNOS mRNA and protein.

The above data describe the simulation results of individual pathways. These pathways

interact with each other to control the dynamics of various eNOS species. Under static (no shear

stress) condition, eNOS primarily binds to Cav-1. After the onset of shear stress, calcium is

transported to the cell and bound to calmodulin. Four calcium ions bind to each calmodulin to

make the active form of calmodulin, who associates with eNOS to enhance its catalytic activity

to produce NO (Fig. 2-5A). In the meantime, the calmodulin-eNOS complex recruits Hsp90,

which stabilize the complex and facilitates Akt mediated eNOS phosphorylation. The simulated

concentration profile of phosphorylated eNOS on Ser 1177 (Fig. 2-5B) is consistent with existing

experimental observations (5) and depicts a biphasic pattern. In the first ten minutes, when the

phosphorylated Akt (enzyme) concentration is low but the CaM-eNOS-Hsp9O (substrate)

concentration is high, there is rapid eNOS phosphorylation due to high substrate concentration.

From ten to forty minutes, even though the substrate availability becomes low due to lower

calcium concentration, phosphorylated eNOS level stays high as a result of increasing

phosphorylated Akt.
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Fig. 2-5. Simulation profiles of eNOS species: A) Total Ca 2 /calmodulin activated eNOS; B) total phosphorylated
eNOS (Ser 1177), the simulated data is compared with the experimental observation from (5); C) eNOS mRNA, the
simulated data is compared with our experimental observation; D) total eNOS protein, the simulated data is
compared with the experimental observation from (33).

To maintain long-term NO production, a third mechanism cells employ is increasing

eNOS protein expression. Fig. 2-5C and 2-5D demonstrate the increase in eNOS mRNA and

protein as catalyzed by the two transcription factor AP-l and KLF2. The simulated eNOS

mRNA and protein expression under shear stress are compared with the experimental data from

our lab and Li et al. (33) respectively. The concentration profile of eNOS mRNA also shows a

biphasic pattern as a result of early transcription by AP-l and later transcription by KLF2. This

biphasic effect is smoothed out after the eNOS translation process (Fig. 2-5D).
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Fig. 2-6. Comparison of the simulation results of cumulative NO production against experimental data (18) under
static (no shear stress) and shear stress conditions.

Finally, the total NO production from eNOS is simulated under both static and shear

stress condition. Fig. 2-6 shows the accumulated NO production over time from the integrated

model. We used relative unit for NO since its experimentally observed concentration varies

depending on the cell confluency and media volume of individual experimental setup. The

simulated NO production profile was compared to the experimental data measured by Florian et

al. (18). Under static condition, there is low NO production from background level of

calmodulin-activated eNOS and phosphorylated eNOS. Under shear stress condition, calcium

influx in the first few minutes leads to a quick burst of NO production from calmodulin-activated

eNOS. As calcium goes back to the basal level, phosphorylated eNOS kicks in to support NO

production in the first few hours. The effect of eNOS expression does not come in until few

hours later (described in more detail in the section below).

2.3.2 The model integration approach provides insights into the system that
could not be easily gathered experimentally

Having established a system model that allows us to simulate the shear-stress-induced NO

production that is comparable to the experimental data, we next explored several aspects of the

system that can be simulated easily but difficultly tested experimentally. First, we analyzed the

contribution of individual pathways to the overall NO production. The integrated modeling
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approach allows investigating the relative importance of individual pathways instantaneously.

Fig. 2-7A demonstrates the cumulative NO production contributed by different eNOS species.

The data show that NO produced in the first 10 minutes almost all come from Ca2+/calmodulin

activated eNOS, with later NO produced mostly contributed by phosphorylated eNOS. In

contrast, the NO produced by the intermediate species, Ca2+/calmodulin activated

phosphorylated eNOS, is not significant.

Secondly, we simulate the siRNA gene silencing approaches by selectively silencing

shear-stress-induced activation of individual pathways. This process can be easily done by

removing or modifying species in the system, giving reasonable predictions while saving

tremendous resources. In the NO system, we assess the effect of modifying individual pathways

to the overall NO production. To research on how individual transcription factor affects overall

eNOS protein expression, AP-1 and KLF2 activation was respectively blocked (Fig. 2-7B).

Blocking AP-l activation yields a delayed response in eNOS expression under shear stress,

whereas blocking KLF2 activation leads to no shear-stress-induced eNOS expression after 24

hours.

Finally we attempt to "predict" the effect of transfecting endothelial cells with Akt

siRNA or dominant-negative Akt on eNOS phosphorylation (Fig. 2-7C) under 1 hour of shear

stress. Our simulation data suggests that the relationship between silencing efficiency and the

resulting decrease in eNOS phosphorylation is not linear. An Akt knock-down efficiency of 25%

has little effect on eNOS phosphoryation, a 50% efficiency still retains greater than 60% of

phosphorylated eNOS; it is not until a 75% silencing efficiency is achieved where we observe a

less than 40% eNOS phosphorylation. A similar effect of decreasing eNOS phosphorylation can

be achieved with an alternative approach. Fisslthaler et al. has demonstrated that transfecting the

cells with dominant-negative Akt (DN-Akt) decreases shear-stress-induced eNOS

phosphorylation (17). Here we simulate the condition where there is various amount of DN-Akt

(lX, 2X, 5X, 1OX relative to wild-type) in the system in addition to wild-type eNOS. DN-Akt

competes with the wild-type Akt for binding site on the plasma membrane and significantly

reduces shear-stress-activated eNOS phosphorylation.

When a known pathway is knocked down, which, for a given pathway, would yield no

shear-stress-induced NO production; the integrated model shows robustness to the knockdown

due to parallel pathways. This result emphasizes the importance of systems biology to
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quantitatively understand macroscopic cellular response processes as well as the power of such

analyses for more comprehensive pathway assessment.

A
NO Production Contributed by

Different eNOS Species
7

6

5

4

3

2

1

0
0 50 100 150 200

Time (minutes)

eNOS Protein Expression with
Individual Transcription Factor

Activation Silenced
4

3

2

1

0

0

- Normal Shear Condition
-- KLF2 activation silenced

- API activation silenced

10 15 20 25

Time (hours)

Phosphorylated eNOS Concentration
with Akt Silenced

100%

80%

60%

40%

20%

0%

No change 25% 50% 75%
silencing silencing silencing

Phosphorylated eNOS Concentration
with Dominant-negative Akt Transfection

75
a.

100%

80%

60%

40%

20%

0%
I II.

No change 1X DN-Akt 2X DN-Akt SX DN-Akt 10X DN-Akt

Fig. 2-7. The integrated model allows us to easily assess the contribution of individual eNOS species or simulate the
condition where one pathway is modified. A) Contribution of NO production by different eNOS species, B) eNOS
protein expression with individual transcription factor activation silenced, concentrations of the specific
transcription factor is fixed at the static level. C) Normalized concentration of total phosphorylated eNOS with
addition of (left) Akt siRNA or (right) dominant-negative Akt 1 hour after onset of shear stress. In the Akt siRNA
simulation, total Akt concentration was reduced based on the specific silencing efficiency. In the dominant-negative
Akt (DN-Akt) simulation, DN-Akt follows the exact kinetics of wild-type Akt except losing its catalytic ability in
phosphosrylating eNOS. The amount of wild-type Akt is set constant, where the amount of DN-Akt is IX, 2X, 5X,
and lOX the amount of wild-type Akt.

31

-C

1
04

O
-- Total NO Production

- NO produced by Ca2
-alcium-

activated-phosphorylated eNOS

-- NO produced by Ca3calclum-
activated ONOS

-- NO produced by
phosphorylated eNOS

B

0E

a:

C

8



2.4 Discussion

2.4.1 The Power of Automatic Model Integration

Quantitative modeling of molecular pathways provides a powerful tool for simulating and

predicting function. With more and more comprehensive experimental data, it is rapidly

becoming possible to construct more complete models of molecular pathways. A major

bottleneck in this process, however, is the current model paradigm where models are manually

integrated into a single complex model, obscuring the link to previously published pathways. In

this paper we introduced an alternative model / binding approach where individual models are

written and retained as is in standard MIRIAM compliant SBML format. The alterations,

duplicate species and duplicate reactions are then detailed within the model bindings, providing

clarity on how past models are incorporated into the current model. The tools for this merger

process as well as the simulation of merged models have, as part of our continued work, been

made available by CytoSolve.

In this paper, we considered four primary pathways that govern the activation and

transcription/translation of eNOS, the NO catalyst. All these paths have been shown to work in

tandem to govern the cells transient NO response to shear stress. Indeed, we show that the NO

response consists of three primary phases that act on varying time-scales. The transient response

is thus governed by the ensemble of molecular pathways, and cannot be accurately modeled

considering any component individually. In addition to illustrating the need for model

integration, the introduced pathways demonstrate the power of the model / binding approach. As

the system is composed of individual models, additional pathways models based on new

experimental data can be quickly incorporated into the system without rewriting the existing

model. It also allows us to easily investigate the relative contribution from each pathway and

conduct in silico experiments as demonstrated in Fig. 2-7.

Utilizing MIRIAM standards and references to web-accessible ontologies, this paper also

introduces an approach for automating model integration. This strategy is the opposite of the

monolithic approach where many models are manually assembled to compose a single new

model that is more challenging to further edits, which generally results in valued work with

limited re-usability. In contrast to this approach, the partitioned approach introduced in this
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paper provides an additive model creation paradigm, where previous knowledge, data and effort

can easily be managed, curated, and used by the wider scientific community. This is

accomplished by the model / binding approach, where individual models retain their original

identity. The bindings between individual models provide the necessary interface for both

defining how an original model is used and altered, preserving the original model, its lineage and

making the modeling process more straightforward. In addition, the integration of models via

the partitioned approach makes updating the model much more straightforward while preserving

the remaining bindings and models.

2.4.2 Limitations in Shear-stress-induced NO Pathway Modeling

In this paper, we collect the relevant pathways, species, and reactions to reflect the state of the art

understanding of NO production. Though the NO system provides a quantitative link between

shear stress and NO through activation and transcription pathways that match well with

published experimental data, further work is required to improve and enhance the model. Due to

limitations in available data, some model components were based on experiments using different

endothelial cell types as well as different experimental conditions (varied cultured condition and

mechanisms for applying shear). While these issues are not unique to this model but common to

a number of cellular models, they warrant further experimental investigation and validation.

These weaknesses can be annotated in the model and be transparent for future improvement.

Despite these limitations, the model does demonstrate the general dynamics of multiple

pathways acting in concert to up-regulate NO production.

To further improve the integrated NO model, incorporation of other mechanotransduction

pathways is necessary. For example, the endothelial glycocalyx has been shown to be an

important mechanosensor for shear-stress-induced NO production. Treating the endothelial

surface with heparanase to remove heparan sulfate, one major glycosaminoglycan of the

glycocalyx layer, significantly reduces the NO production resulting from shear stress (18, 38).

The specific signaling pathways that trigger the models used here are still not known. Moreover,

we have used a simple heuristic model based on experimental data to represent the up-regulation

of KLF2 by shear stress. KLF2, a key regulator for eNOS expression, is also a shear-responding

transcription factors leading to anti-inflammatory and anti-thrombotic phenotypes (13). KLF2

expression is known to follow the MEK5-ERK5-MEF2 pathway, but the mechanosensors that
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lead to the activation of this pathway are still unclear (39). These additions are currently limited

by incomplete knowledge of pathway mechanisms and lack of critical kinetic data. However, the

current integrated model creates a platform to identify deficiencies in our current understanding,

to provide more suitable parameters, and to embed additional pathways or information in an

additive way. This process acts as a communal way of documenting what is understood about

cellular mechanisms of NO production in endothelial cells.

2.4.3 Future Model Integration Tools and Development

To facilitate model integration, this paper outlines the use of CytoSolve. While this tool

automates the model integration process with minimal input from the user, further development

could dramatically improve the effectiveness of the integration process, store relevant changes at

various stages in development and provide tools for incorporating input from the wider scientific

community.

One of the major aims of this work was to demonstrate that the combination of separate

biological models to generate a new larger predictive model is difficult, but becomes tractable

with the right tools. Because a model that exists completely independently of other models is of

limited use to the research community, it behooves the community to define processes by which

existing and new models can be augmented, combined, and increased in depth of complexity so

that existing work is properly assimilated.

It is also important to recognize that different models have different aims and often they

operate at different time scales, spatial scales, and different initial conditions; most of the models

have species exchanges on the order of micro- or nano- molars per minute, but this is not

universally suitable for every objective. Because SBML makes it possible to define arbitrary

units by composing IS-ones, it is among CytoSolve's goals to resolve and normalize differing

units in a transparent manner. A new algorithm will extend the current mass-balance introducing

a unit-conversion routine that will be called at run-time, keeping the merged solution

independent of any individual model's representation.

Another future addition will be the extension of the actual cross-model information

sharing process in order to show users other reactions of interest to them. This will provide an

auto-completion for models to include reactions seen in other models. The goal of this

functionality is to accelerate the information sharing and model composition process even more:
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building models on top of others, reducing unnecessary duplicates, and informing researchers of

known existing pathways that may be relevant to their study.
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2.5 Conclusions

In this study, we simulated the process of shear-stress-induced NO production in endothelial

cells by combining a number of existing published pathway models to describe and predict the

complex interactions that occur between them at multiple timescales. The program we used,

CytoSolve, is specifically designed to facilitate the federation of individual biological pathways

in a manner that allows them to run as a combined monolithic model without losing their

individuality and the metadata attached to them. The integrated model reflects the state-of-the-

art understanding of the NO system, and the simulation data are able to describe experimental

observations resulting from complex interactions between multiple pathways. The system level

simulation approach can also provide researchers useful insights into the system that can

traditionally only be achieved with challenging and time consuming experiments. Importantly,

this approach to biological pathway integration is not only helpful for our understanding of

biological system, but also provides a platform to aggregate information in an additive way,

which eventually could allow us to predict biology.
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2.7 Appendix - Model Reactions and Parameters

Model 1: Shear stress-induced calcium influx

Model Diagram (Figure legends at the end of appendix):

degraded 4- IP3 :-precursor
(4) (3)

*Ca2+ (ex) +Ca+ (s) Ca2+ (c) Ca2+ (b)
(2) (51 4 (1)

(6. 7)

List of species:

Species Name Initial Amount Ref.
Ca2+ (b) Calcium complexed to intracellular 3870 nM (1)

binding proteins
Ca+ (ex) Extracellular calcium 1.5 * 106 nM (1)
Ca 2 (s) Calcium in intracellular storage 2.83 * 106 nM (1)
Ca7* (c) Cytosolic calcium 117.2 nM Steady state value for the integrated

I model under "no flow" condition
IP3 Inositol 1,4,5-triphosphate 0 nM (1)

List of reactions:

# Description Rate equation Ref.
1 [Ca2+ (b)] +-> [Ca 2

+ (c)] k4[Ca2*(b)] - k6[Ca2*(c)]- (BT - [Ca2+(b)]) (1)
2 [Ca2+ (ex)] -> [Ca2+ (s)] fracK- Ca 2 + _ [Ca2 (S)]) ([Ca2

2.(eX)] [Ca2 (S)]) (1)
[ kCCE ( K3+Ca02.

3 $->[IP3] R+- T11 (T .t/TI)).+ (1)
2 -I

[Ca2+()]
KI + [Ca2*(c )])

4 [IP3]-> k2 [IP3] (1)

5 [Ca (s)] +[Ca (c )]  kCICR 2+(C)] 3. +
( -Ca- [Ca2 (s)2

k-Kc[CaC 2+ (c)] K2+ [IP 3]

-k4 [Ca2
+(c)] +k,([Ca2+(s)])

4K3 +[Ca2+(c)])

6 [Ca+ (c)] -+ [Ca 2 (ex)] - [Ca2
+(c)] (1)

V"ex K5 +[Ca2+(c)]
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List of parameters:

References for model 1:
(1,2)

42

Units Ref. Ref. value Model value
RT # / cell (1) 4.4 * 10 4  4.4 * 104

ki nM * s-I (1) 1.2 * 10-3 6.0 * 10-4

k2  s-I (1) 2 1
k3 s-(1) 6.64 3.32
k 4  nMes 1  (1) 5000 2500
k5  nM- e s- (1) 1.0 * 10-10  5.0 * 10-11
k6  nM-es~ (1) 0.1 0.05
k7  s- (1) 300 150
K1  nM (1) 0 0
K2  nM (1) 200 200
K3  nM (1) 150 150
K4  nM (1) 80 80
K5  nM (1) 321 321
Khi nM (1) 380 380
kCICR dimensionless (1) 1 1
KCICR nM (1) 0 0
kcCE nM' * s 1  (1) 0 0
BT nM (1) 1.2 * 105  1.2 * 105

Ca2+ nM (1) 100 100
S nM 1 

e s~ (2), based on 10 dynes/cm 2  6000 3000Q shear

nM- s~ (1) 1630 815

nM1 
e ~ (1) 18330 9165V ex _ _ _ _ _ _ _ _ _ _ _ _

nM1 - (1) 4760 2380

s (1) 33 33
s (1) 0.005 0.005

fracK dimensionless (1) 7.1 * 106 7.1 * 106



Model 2: Shear stress-induced AKT phosphorylation

Model Diagram:

PDK2

(9):
pp-Akt:P3P W=i± p-AktPl

( 0):
------- PP2A

P13K

PDK I(Cyto) - P
Al .- p-PI3K

(6)TI ....................
PDK1 (4) (2)
(7) Akt P13P PIP2

3P AkP13P +- (3)

I )

PTEN

List of species:

Species Name *Initial Amount Ref.
P13K PI 3-kinases 99.97 nM Total P13K concentration 100 nM (3)
p-PI3K Phosphorylated PI 3-kinases 0.03 nM ---
PIP2 Phosphatidylinositol-4,5- 6967.27 nM Total PIP2 concentration 7000 nM

biphosphate (3)
PI3P Phosphatidylinositol-3,4,5- 0.35 nM ---

triphosphate
PTEN Phosphatase and tensin 0.1 nM Constant (3)

homolog
Akt Akt, or Protein Kinase B 167.62 nM Total Akt concentration 200 nM (3)
Akt: PI3P Membrane bound Akt 29.2 nM ---
p-Akt:PI3P Monophosphorylated Akt 1.46 nM ---
pp-Akt:PI3P Biphosphorylated Akt 1.72 nM ---
PDK1 (cyto) Cytosolic phosphoinositide- 999.75 nM Total PDK1 concentration 1000 nM

dependent kinase-1 (3)
PDK1 Phosphoinositide-dependent 0.25 nM ---

kinase- 1
PDK2 Phosphoinositide-dependent 3 nM Constant (3)

kinase-2
PP2A Protein phosphatase 2 150 nM Constant (3)
* Initial amounts were obtained by simulating the model under "no flow" condition, with the
reference value as initial concentrations, for a sufficient amount of time to reach steady state.

List of reactions:

# Description Rate equation Ref.

*1 [P13K] [p-PI3K] 08 t \8 t )18 (4)
exp(1 - - )-0.907- t"-(

2 [PIP2] [PI3P] k2
1
P - PI3K][PIP2] (3)

SK.2 +[PIP2]
3 [PI3P] [PIP2] k [PTEN][PI3P] (3)

SK 3 + [PI3P]
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4 [Akt] + [PI3P] < [Akt:PI3P] k4[PI3P][Akt] - kr4[Akt : PI3P] (3)
5 [PDK1 (cyto)] - [PDK1] k5[PI3P][PDKI] (3)
6 [PDK1] -+ [PDK1 (cyto)] k6[PDK1] (3)
7 [p-Akt:PI3P] -+ [Akt:PI3P] k [PP2A][p - Akt: PI3P] (3)

7 K. 7 +[p - Akt: PI3P]
8 [Akt:PI3P] -+ [p-Akt:PI3P] k8 [PDK1I][Akt: PI3P] (3)

Km8 +[Akt: PI3P]
9 [pp-Akt:PI3P] -> [p-Akt:PI3P] k [PP2A][pp - Akt: PI3P] (3)

K.9 + [pp - Akt: PI3P]
10 [p-Akt:PI3P] -- [pp-Akt:PI3P] ko [PDK2][Akt: PI3P] (3)

K. 10 + [Akt: PI3P]
11 [pp-Akt:PI3P] -> [Akt] + [PI3P] k [PP2A][pp - Akt: PI3P] (3)

S Km 11 +[pp - Akt: PI3Pj
* Time-dependent function describing P13K activation was generated from the experimental data in
[4]. The shear stress waveform used in this paper is a laminar flow of 5 dynes/cm 2.

List of parameters:

References
(3,4)

for model 2:
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Units Ref. Ref. value Model value
k2  s-' (3) 0.05 0.2
Km2  nM (3) 6170 6170
k3  s-1 (3) 5.5 7.5
Km3  nM (3) 80.9 80.9
k 4  nM-1 s-i (3) 0.045 0.045
kr4  s4 (3) 0.089 0.089
k5  nM 1 

e s-' (3) 0.0007 0.0007
k6 s-1 (3) 0.98 0.98
k7  s- (3) 0.037 0.037
Km7  nM (3) 8800 8800
k8  s1 (3) 20 20
Km8  nM (3) 80000 80000
k, s~1 (3) 0.04 0.04
Kmg nM (3) 48000 48000
kio s1  (3) 20 20
Kmio nM (3) 80000 80000
ku, s_ (3) 0.163 0.163
Kmn1 nM (3) 48000 48000



Model 3: Shear stress-induced eNOS expression

Model Diagram:

Shc p-FAK FAK

(3)
p-Src (- Src

(8) (2)

p-FAK:Shc

(4......
p-Shc p-FAK:p-Shc <

-+ Grb2:Sos (15)

p-FAK:p-Shc:Grb2:Sos

(7)

(I
JNKK

(13)

MEK

(I
Ras:GDP

(9

(18) (20)
JNK p-JNK p ---

(17) (19)

4) (16)
Sp-JNKK pp-JNKK

(15) .

... ........... AP-l I nactive) , AP- I(activ)
(12) (22)

K I P-imKIA p-MEKKI

KLF2 (mRNA) 23) KLF2
10)

- Ras.GTP -
e(24)

eNOS (gene) 10eNOS (mRNAn)

-- p-Shc:Grb2:Sos
(25)1

eNOS: Cav- I - ...... . eNOS (mRNAc)
(27)

(26)1

degraded

List of species:

Species Name *Initial Ref.
Amount

FAK Focal adhesion kinase 57 nM Total FAK concentration 80 nM (7)
p-FAK Phosphorylated FAK 0.605 nM ---
Src Src kinase 72 nM Total Src concentration 90 nM (7)
p-Src Phosphorylated Src 18 nM ---
Shc Shc adaptor protein 819.25 nM Total Shc concentration 1000 nM (8)
p-FAK:Shc Protein complex 0.857 nM ---
p-FAK:p-Shc Protein complex 15.962 nM ---
Grb2:Sos Grb2:Sos adaptor protein 3.23 nM Total Grb2:Sos concentration 10 nM (8)
p-FAK:p- Protein complex 5.577 nM ---
Shc:Grb2:Sos
p-Shc:Grb2:Sos Protein complex 1.193 nM ---
p-Shc Phosphorylated Shc 157.162 nM ---
Ras:GDP Ras protein (GDP state) 119.384 nM Total Ras concentration 120 nM (8)
Ras:GTP Ras protein (GTP state) 0.616 nM ---
MEKK1 MEKK1 kinase 98.514 nM Total MEKK1 concentration 100 nM

(10)
p-MEKK1 Phosphorylated MEKK1 1.486 nM ---
JNKK JNK-activated kinase 299.706 nM Total JNKK concentration 300 nM (10)
p-JNKK Monophosphorylated JNKK 0.288 nM ---
pp-JNKK Biphosphorylated JNKK 0.006 nM ---
JNK c-Jun N-terminal kinases 299.997 nM Total JNK concentration 300 nM (10)
p-JNK Monophosphorylated JNK 0.003 nM ---
pp-JNK Biphosphorylated JNK 0 nM ---
eNOS Nuclear eNOS mRNA 0.09 nM Estimate
(mRNAn) I
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eNOS Cytosolic eNOS mRNA 3.214 nM Estimate
(mRNAc)
eNOS: Cav-I eNOS (inactive due to Cav- 34.98 nM See model 4

1 binding)
AP- 1 (inactive) Activator Protein-1 50 nM Total AP- 1 concentration 50 nM

(inactive) (estimate)
AP- 1 (active) Activator Protein-I (active) 0 nM I---
KLF2 (protein) Krueppel-like factor 2 10 nM Estimate
* Initial amounts were obtained by simulating the model under "no flow" condition, with the
reference value as initial concentrations, for a sufficient amount of time to reach steady state.

List of reactions:

# Description Rate equation Ref.
* [FAK] <-+ [p-PI3K] 5 t 4 / t ( 013( (5)

exp(1 -- 4- .4-0 -- )

*2 [Src] ++ [p-Src] ( t 3  03 (1 t)1 3  (6)

ep1(540 )-.06t -( 540)
3 [p-FAK] + [Shc] <-~ [p- k3[p - FAK][Shc] -k, P - FAK: Shc] (8)

FAK:Shc]
4 [p-FAK:Shc] <-+ [p-FAK:p- k4 [p - Src][p - FAK: Shc] - kr4 [p - FAK: p - Shc] (7, 8)

Shc]
5 [p-FAK:Shc] + [Grb2:Sos] < k5[p - FAK: Shc][Grb2: Sos] - (8)

[p-FAK:Shc:Grb2:Sos] kr5[p - FAK : p - Shc: Grb2: Sos]
6 [p-FAK:p-Shc:Grb2:Sos] < k6 [p - FAK : p - Shc: Grb2: Sos] - (8)

[p-FAK] + [p-Shc:Grb2:Sos] kr6[p - FAK][p - Shc: Grb2: Sos]
7 [p-Shc:Grb2:Sos] -+ [p-Shc] + k,[p - Shc: Grb2: Sos] (8)

[Grb2:Sos]
8 [p-Shc] -- [Shc] V8[p - Shc] (8)

K 8 + [p - She]

9 [Ras:GDP] -+ [Ras:GTP] k9 [p - Shc: Grb2: Sos][Ras: GTP] (8)
K. 9 + [Ras: GTP]

10 [Ras:GTP] -+ [Ras:GDP] V 0[Ras: GTP] (8)
K. 10 +[Ras: GTP]

II [MEKKI] -- [p-MEKK1] [Ras: GTP][MEKK1I (10)
K.mI+[MEKKI]

12 [p-MEKK1] -- [MEKK1] V12[p - MEKK1] (10)
Km12 + [p-MEKK1]

13 [JNKK] -+ [p-JNKK] [p - MEKK1][JNKK] (10)
K,+ [JNKK]

14 [p-JNKK] - [JNKK] V 4lp - JNKK] (10)
K 14 + [p - JNKK]

15 [p-JNKK] -+ [pp-JNKK] [p - MEKK1] [p - JNKK] (10)
K 15 + [p - JNKK ]

16 [pp-JNKK] -- [p-JNKK] V,[pp - JNKK] (10)
Km16 + [pp - JNKK]

17 [JNK] -- [p-JNK] k7[pp - JNKK][JNK] (10)
K. 17 + JNK ]

18 [p-JNK] -- [JNK] V 8 p - JNK] (10)
K 18 +[p-JNK]
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19 [p-JNK] -+ [pp-JNK] [pp-JNKK][p-JNKI (10)
K. 19 +[p -JNKI

20 [pp-JNK] -+ [p-JNK] V2o1pp - JNK] (10)
K 20 +[pp -JNK]

21 [AP-1 (inactive)] -- [AP-1 k [pp - JNK][AP - l(inactive] Assum.
(active)] Km21 + [AP - l(inactive]

22 [AP-1 (active)] -+ [AP-1 V22[AP -1(active] Assum.
(inactive)] K,22 +[AP -1(active>]

*23 $ - [KLF2] exp(0.55(5 _ 3600))/(3600- 29.256) (12)

(1+2- exp(0.55(5 t 3600))+exp(1.1(5 - Y3600)))
24 --+ [eNOS (mRNAn)] k24t[AP - (active]+ k 2 4 t2[KLF2] Assum.

25 [eNOS (mRNAn)] -+ [eNOS k2 5[eNOS,,A,,] (9)
(mRNAc)]

26 [eNOS (mRNAc)] - ( k2 6[eNOSmAc 1 (11)

27 $ -+ [eNOS:Cav-1] V27[eNOSRNAc] Assum.

I Km27 + [eNOS,.Ac]

* Time-dependent functions describing FAK, Src activation, and KLF2 expression were generated
from the experimental data in (5, 6, 12). The shear stress waveform used in (5, 6) is a laminar flow of
12 dynes/cm 2, the shear stress waveform used in (12) is an oscillatory (1 Hz) flow of 12*4 dynes/cm 2.

List of parameters:

Units Ref. Ref. value Model value
k3  nM' * s- (8) 0.1 0.1
k,3  S~1 (8) 1.0 1.0
k4  nM' * s- (7) 8.33 8.33
kr4  S-1 (8) 5.0 5.0
k5  nM- e s-1 (8) 60 60
k 5  s4 (8) 546 546
k6  s' (8) 2040 2040
kr6  nM 1 * s- (8) 15700 15700

k 7  s-1 (8) 40.8 40.8

V8  nM- s'I (8) 0.0154 154
Km8  nM (8) 340 340
k9  S-1 (8) 0.222 0.222
Km9  nM (8) 0.181 0.181
Vio nMe s-I (8) 0.289 0.289
Kmio nM (8) 0.0571 0.0571
k .s-1 Estimated from (10) --- 0.035
Km11  nM (10) 10 10
V 1 2  nM* s (10) 0.25 0.125

Km12  nM (10) 8.0 8.0

ki3 s' (10) 0.025 0.005

Km13  nM (10) 15.0 15.0

V 1 4  nMe s-' (10) 0.75 0.375
Km14  nM (10) 15.0 15.0
k15  s1 (10) 0.025 0.005
Km15  nM (10) 15.0 15.0

V 1 6  nMe s4 (10) 0.75 0.375

Km16 nM (10) 15.0 15.0
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References for model 3:
(5-12)
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k17  s-I (10) 0.025 0.002
Km17  nM (10) 15.0 30.0
V 18  nM' s-I (10) 0.5 0.05
Km18  nM (10) 15.0 15.0
ki, s-' (10) 0.025 0.002
Kmig nM (10) 15.0 30.0
V2 0  nMe s-I (10) 0.5 0.05
Km2 o nM (10) 15.0 15.0
k21  s-1 Estimated from fitting exp. data -- 5.0 * 10-5

Km2 1  nM Estimated from fitting exp. data -- 25.0
V22  nMe s-' Estimated from fitting exp. data -- 0.002
Km2 2  nM Estimated from fitting exp. data -- 5
k2 4 tI s-I Estimated from fitting exp. data -- 1.2 * 10-4
k24 2  s-1 Estimated from fitting exp. data -- 9.0 * 10-6
k25  s~1 (9) 0.001 0.001
k2 6  s~1 Estimated from (11) 1.1 * 10~1 2.8 * 10-'
V27  nMe s~1 Estimated from fitting exp. data -- 0.02824
Km27 nM Estimated from fitting exp. data 16



Model 4: Shear stress-induced NO production

Model Diagram:

H 9O S H 90 NO(13)S

Ca2
+ (c) CaM

CaM: 2

(2)

CaM: 4

eNOS:
Ca2+

pp-Akt:P13P (12)

Hsp90:eNOS: ( li ,T Hsp90:-.P-
CaM: 2Ca2+ CaM: 2

(7)
eNOS:CaM: 2Ca2+ ( (9)

tI ~ Ca2+ (c) +

Ca2+

eNOS: Cav- I +-- ---> Hsp90

- eNOS:CaM:4

F_ I II
Ca2+ Hsp9O:eNOS:

CaM: 4Ca2+ (10)

pp-Ak:PI3P

Hsp9O:p-eNOS:
CaM: 4Ca2+

eNOS (15-23)
(all eNOS species)

L-Arg (24) oi

List of species:
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Species Name *Initial Ref.
Amount

Ca2+ (c) Cytosolic calcium 117.2 nM See Model 1
pp-Akt:PI3P Biphosphorylated Akt 1.72 nM See Model 2
CaM Calmodulin 7635.36 nM Total CaM concentration 8000 nM

(estimate)
CaM:2Ca2 + 2 calcium bound calmodulin 347.52 nM ---
CaM:4Ca2 + 4 calcium bound calmodulin 2.83 nM ---
eNOS: Cav-I eNOS (inactive due to Cav-1 34.98 nM Total eNOS concentration 50 nM

binding) (estimate)
eNOS:CaM:2Ca2 * eNOS protein complex 2.12 nM ---
eNOS:CaM:4Ca2  eNOS protein complex with 0.04 nM ---

calcium/calmodulin-induced
activation

Hsp9 0 Heat shock protein 90 199987 nM Total Hsp90 concentration 200000 nM
(estimate)

Hsp90:eNOS: eNOS protein complex 10.98 nM ---
CaM:2Ca2+
Hsp90:p-eNOS: Phosphorylated eNOS 0.11 nM ---
CaM:2Ca2+ protein complex
Hsp90:eNOS: eNOS protein complex with 1.04 nM ---
CaM:4Ca2+ calcium/calmodulin-induced

activation

(5)

Ca2+



Hsp90:p-eNOS: Phosphorylated eNOS 0.01 nM ---
CaM:4Ca2+ protein complex with

calcium/calnodulin-induced
activation

Hsp90:eNOS eNOS protein complex 0.08 nM ---
Hsp90:p-eNOS Phosphorylated eNOS 0.64 nM ---

protein complex
NO Nitric Oxide 0 (relative --

I scale)
* Initial amounts were obtained by simulating the model under "no flow" condition, with the
reference value as initial concentrations, for a sufficient amount of time to reach steady state.

List of reactions:

# Description Rate equation *Ref.
1 [CaM] - [CaM:2Ca+] ki- [CaM][Ca2+ _kj - [CaM: 2Ca2*] Assum.
2 [CaM:2Ca2+] k2 -[CaM: 2Ca2.][Ca 2. - k2,- [CaM : 4Ca2+] Assum.

[CaM:4Ca 2+]

3 [CaM:2Ca+] + k3 -[CaM: 2Ca2
+][eNOS: Cav -1] - k3,- [eNOS: CaM: 2Ca2+] Assum.

[eNOS:Cav-1] -
[eNOS:CaM:2Ca 2+]

4 [CaM:4Ca2+] + k4 - [CaM: 4Ca2+][eNOS: Cav -1] Assum.
[eNOS:Cav-1] ->
[eNOS:CaM:4Ca 2+

5 [eNOS:CaM:4Ca2+] - k5 - [eNOS: CaM: 4Ca2+] - Assum.
[eNOS:CaM:2Ca 2 ] k5,- [eNOS: CaM :2Ca2*][Ca 2+

6 [eNOS:CaM:4Ca2+] + k6 - [eNOS: CaM: 4Ca2+][Hsp90] Assum.
[Hsp90] -+
[Hsp90:eNOS:CaM:4Ca2+

7 [Hsp90:eNOS:CaM:2Ca2+] k7- [Hsp90: eNOS: CaM: 2Ca2+] Assum.
-> [eNOS:CaM:2Ca2+] +

[Hsp90]
8 [Hsp90:eNOS:CaM:4Ca2+] k.- [Hsp90 : eNOS: CaM: 4Ca2+] - Assum.

2 k8,- [ Hsp90: eNOS: CaM: 2Ca2+ ] [Ca2.
[Hsp90:eNOS:CaM:2Ca2

+

9 [Hsp90:p- k,- [Hsp90 : p - eNOS: CaM: 4Ca2 *] - Assum.
eNOS:CaM:4Ca2

+] k,- [Hsp90 : p - eNOS: CaM : 2Ca2*][Ca2+
[Hsp90:p-
eNOS:CaM:2Ca 2+1

10 [Hsp90:eNOS:CaM:4Ca2 +] k10[pp - AKT: PI3P][Hsp9O : eNOS: CaM: 4Ca2*] Assum.
-- [Hsp90:p- K 10 + [Hsp90 : eNOS: CaM: 4Ca2+ -
eNOS:CaM:4Ca2

+ V[Hsp90: p - eNOS: CaM: 4Ca2+]
K,10r + [Hsp90: p - eNOS: CaM: 4Ca 2+

11 [Hsp90:eNOS:CaM:2Ca2+] k1I[pp - AKT: PI3P][Hsp90 : eNOS: CaM: 2Ca2+] Assum.
<- [Hsp90:p- Km1, + [Hsp90: eNOS: CaM : 2Ca2 .]
eNOS:CaM:2Ca2

+] Vr[Hsp90: p - eNOS: CaM : 2Ca2.]

I Kiir + [Hsp9O : p - eNOS: CaM: 2CaI2+

12 [Hsp90:p- k 2 - [Hsp90: p - eNOS: CaM: 2Ca2.] - Assum.
eNOS:CaM:2Ca2

+] : k,.2 - [Hsp90: p - eNOS][CaM: 2Ca2.
[Hsp90:p-eNOS] +
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12 [Hsp90:p- k- [Hsp90: p - eNOS: CaM: 2Ca2
,] _ Assum.

eNOS:CaM:2Ca] + k,2 - [Hsp90: p - eNOS][CaM: 2Ca 2
,j

[Hsp90:p-eNOS] +
[CaM:2Ca 2+]

13 [Hsp90:p-eNOS] -> V[Hsp9O: p - eNOS] Assum.
[Hsp90: eNOS] K 13 + [Hsp90: p - eNOS]

14 [Hsp90:eNOS] - [Hsp9O] k14 - [Hsp90: eNOS] Assum.
+ [eNOS:Cav-1]

15 [eNOS:Cav-1]- $ kD- [eNOS: Cav -1] Assum.
16 [eNOS:CaM:2Ca+] + + kD- [eNOS: CaM: 2Ca2+] Assum.

[CaM:2Ca2 +]
17 [eNOS:CaM:4Ca2+] - * + kD- [eNOS: CaM: 4Ca2+] Assum.

[CaM:4Ca]
18 [Hsp90:eNOS:CaM:2Ca 2 ] kD - [Hsp90: eNOS: CaM: 2Ca2+] Assum.

-> $ + [CaM:2Ca2+] +
[Hsp90]

19 [Hsp90:eNOS:CaM:4Ca2 +] kD- [Hsp90: eNOS: CaM: 4Ca2+] Assum.
-+ $ + [CaM:4Ca 2+] +

[Hsp90]
20 [Hsp90:p- kD [Hsp90: p - eNOS: CaM: 2Ca2+j Assum.

eNOS:CaM:2Ca] - $+
[CaM:2Ca2+] + [Hsp90]

21 [Hsp90:p- kD [Hsp90: p - eNOS: CaM: 4Ca2+] Assum.
eNOS:CaM:4Ca] - $ +
[CaM:4Ca2+] + [Hsp90]

22 [Hsp90:p-eNOS] -> $+ kD [Hsp90: p - eNOS] Assum.
[Hsp90]

23 [Hsp90:eNOS] - $ + kDy [Hsp90: eNOS] Assum.
[Hsp90]

24 $ -+[NO] kCam - [Hsp90 : eNOS: CaM: 4Ca2 . ] + Assum.

kcaM - [Hsp90 : p - eNOS: CaM: 4Ca2 .] +

kcam - [eNOS: CaM: 4Ca2+ ] +
k,- [Hsp90: p - eNOS: CaM: 2Ca2. ] +

k, -[Hsp90 : p - eNOS]

* All reactions from this model were generated based on our assumptions.

List of parameters:

Units Ref. Ref. value Model value
ki nM' e s-' Estimated from (13) --- 0.004
kir s-1 Estimated from (13) --- 10.3
k2  nM-1 e s-' Estimated from (13) --- 0.08
k2 r s1 Estimated from (13) -- 1152
k3  nM-1 s-1 Initial estimate --- _ 1.5 * 10-4

k3 r S-1 Initial estimate --- 1.5

k4  nM- * s-1 Initial estimate --- 0.015

k5  s-' Estimated from (13) --- 115.2
k5r nM 1 

e s-1 Estimated from (13) --- 0.08

k6  nM~ * s-1 Estimated from (15) --- 0.002

k7  s'1 Estimated from (15) --- 1.5
k8 s-1 Estimated from (13) --- 115.2
k8r nM- s~ Estimated from (13) 0.08
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References for model 4:
(13-16)
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k, s-1  Estimated from (13) --- 115.2
ko, nM-1 * s-' Estimated from (13) --- 0.08
kio s-1 Estimated from fitting exp. data --- 0.1
Kmio nM Estimated from fitting exp. data --- 5
Vior nMo s-' Estimated from fitting exp. data --- 4
Kmior nM Estimated from fitting exp. data --- 20
k 1  s- Estimated from fitting exp. data --- _ 0.1
Kmn1  nM Estimated from fitting exp. data --- 5
Viir nM e s~1  Estimated from fitting exp. data --- 4
Kmiir nM Estimated from fitting exp. data --- 20
k12  s-' Initial estimate --- _ 1.5
k12r nM-1 * s~1 Initial estimate --- 1.5 *10-4

V 13  nM e s-' Estimated from fitting exp. data --- 4
Km1 3  nM Estimated from fitting exp. data 20
k14  s-1 Estimated from (15) --- 1.5
kD s~' Estimated from half life (16) 1.13 * 10-5 9.45 * 10-
kcaM s- Estimated from (14) --- 17
k s-' Estimated from (14) --- 5



Model diagram legends:

* -- Irreversible reaction
o IReversible reaction

.--------. Activation/Catalysis 
-

* Model Input Complex association Complex dissociation Reversible complex
[Species] Model specific species association/dissociation

[Species] Species shared with other models
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Chapter 3: Hemodynamic Shear Stress Characteristic
of Atherosclerosis-Resistant Regions Promotes
Glycocalyx Formation in Cultured Endothelial Cells

3.1 Introduction

The vascular endothelium is a single layer of cells lining the inner surface of blood vessels. This

cellular layer not only serves as an interface between blood and surrounding tissues, but also

plays important roles in inflammation (28), angiogenesis (5), blood coagulation (9), and control

of vascular tone (27). Endothelial dysfunction, the state in which the endothelial cells can no

longer respond to external stimuli to preserve homeostasis, is frequently followed by

deterioration of vascular function and development of several vascular pathologies including

atherosclerosis (17). Interestingly, multiple studies have shown in both experimental animals and

human subjects that the location where early lesions of atherosclerosis develop is highly focal in

nature. For example, in the carotid artery, early atherosclerotic lesions are more frequently

observed at the carotid sinus bifurcation, where the endothelium is exposed to disturbed flow and

displays several distinct cell biological features, including scarce expression of the endothelial

glycocalyx layer (EGL) (10, 18, 22, 55, 56). In contrast, the common carotid region is resistant to

the development of early lesions of atherosclerosis where the endothelium is exposed to laminar

flow and displays abundant expression of the EGL (10, 18, 22, 55, 56). Collectively, these

observations have defined a correlation between atheroprotection, shear stress, and EGL

expression.

The EGL is a gel like structure present on the apical surface of the endothelial cells (13, 46,

59). It is mainly composed of three glycosaminoglycans (GAGs), heparan sulfate, chondroitin

sulfate, and hyaluronic acid. Heparan sulfate is bound to proteoglycans including syndecan-1,

syndecan-2, syndecan-4, and glypican-1; chondroitin sulfate is bound to biglycan and the above

mentioned syndecans; and hyaluronic acid is electrostatically attached to CD44 (50). All three

negatively charged GAGs tangle together and form the characteristic glycocalyx structure

observed by electron microscopy (48, 55, 59).

One of the main functions of the glycocalyx is to regulate vascular permeability and

modulate binding of molecules that interact with the endothelial receptors. This process is
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achieved through two main mechanisms. The EGL can directly bind to some biomolecules and

increase their local concentration, and it can also selectively block some other biomolecules and

prevent them from reaching the endothelial surface (1, 3, 33). There is also evidence that the

endothelial glycocalyx may act as a mechanosensor. When endothelial cells are subjected to

flow, the cells adapt to the mechanical stimuli by reorganizing the cytoskeleton (24, 34, 53),
aligning to the direction of the flow (42), releasing the vasodilator nitric oxide (NO)(43),
suppressing the proliferation rate (34), and decreasing the migration speed (25). Interestingly,

these flow-mediated responses are impaired when the EGL is compromised: For example,

studies by the laboratory of J. Tarbell have demonstrated that when cultured endothelial cells are

pretreated with heparinase or hyaluronidase to remove heparan sulfate or hyaluronic acid from

the EGL, these cells no longer reorganize the cytoskeleton or produce NO in response to flow

(14, 35, 53). Previous work by our laboratory and others have also shown that after heparanase-

based removal of heparan sulfate proteoglycans, the endothelial cells lose the ability to sense

flow and to modulate its migration speed and proliferation rate (32, 60). Finally, recent studies

by Constantinescu et al. and Mulivor and Lipowsky (8, 33) established a correlation between

damaged EGL and leukocyte adhesion, linking the presence of EGL to endothelial activation.

Collectively, these studies document that expression of the EGL is critical for the endothelium to

properly respond to the hemodynamic environment and to function as a protective barrier in the

context of inflammation.

The abundance of EGL is dynamically controlled by both production and degradation -
transport of newly produced proteoglycans from the ER/Golgi to the cellular membrane, and

endocytic degradation or shedding of the proteoglycans from the cell surface by matrix

metalloprotease family proteins and other enzymes such as heparanase, chondroitinase, and

hyaluronidase. Several in vivo measurements have been made on EGL thickness. The pioneering

intravital microscopy work by Vink and Duling showed the EGL height in hamster muscle

capillaries to be 0.4 to 0.5 [tm (58). A similar value was found in Potter and Damiano's

microparticle image velocimetry measurement on mouse cremaster venules (38) and Chappell's

transmission electron microscopy work on human umbilical vein (6). Recent work by van den

Berg et al. using confocal laser scanning microscopy demonstrated the EGL thickness in mouse

aorta can go as high as 2 to 4 tm (54). The conclusion from these in vivo measurements is that

the EGL is 0.4 - 4 tm thick. However, whether the glycocalyx layer is also present in cultured
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endothelial cells remains a major question in the field. Several studies have demonstrated that the

EGL is almost absent in various cultured endothelial cell types, including human umbilical vein

endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC) (6, 20, 38). In contrast,

data from other studies support the presence of similar EGL abundance in vitro as in vivo (11,

49, 53). A recent work by Ebong et al. using rapid freezing/freeze substitution transmission

electron microscopy has even shown an EGL thickness of 11 Im in cultured BAEC (13). These

contradictory data suggest that the integrity of EGL in vitro may be highly sensitive to factors

such as cell type, cultured condition, and preservation/processing techniques. However, to date

little is known regarding specific biomechanical or biochemical inputs capable of inducing or

suppressing the expression of components of the EGL.

In this study, we hypothesized that the expression of critical components of the EGL is

regulated by specific shear stress waveforms present in atherosclerosis-resistant or

atherosclerosis-susceptible regions of the human vasculature.
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3.2 Material and Methods

Endothelial Cell Culture

Primary human umbilical endothelial cells (HUVEC) were isolated in the Department of

Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital, as

previously described (16). HUVEC were cultured in M199 medium containing 20% calf serum,

1% L-glutamine, 1% penicillin/ streptomycin, 50 pg/ml endothelial cell growth supplement

(Biomedical Technologies, Stoughton, MA), and 100 pg/ml heparin. Cells were incubated in a

humidified incubator at 370 C and 5% CO2. After reaching confluence, cells were detached with

1% trypsin and plated onto a 0.1% gelatin coated 10.8 cm polystyrene plate surface (Plaskolite,

Inc., Columbus, OH) for shear stress experiments.

Hemodynamic Shear Stress in vitro System

The shear experiments implementing the atheroprotective and atheroprone shear stress

waveforms were conducted in a modified dynamic flow system as previously described (10). For

these experiments, the culture medium was supplemented with 1.7 % dextran (MW 1.5-2.8

million, Sigma-Aldrich, St. Louis, MO) to increase media viscosity to 2.1 cP. The flow system

was kept at 37* C and 5% CO2 in humidified air.

Flow Cytometric Analysis

Surface expression of glycosaminoglycans and their protein carriers were measured using flow

cytometry. The following primary antibodies were used: anti-syndecan-1 antibody (1:10, Biotin-

conjugated mouse IgG 1, clone B-A38, Abcam, Cambridge, MA), anti-syndecan-2 antibody

(1:10, APC-conjugated rat IgG2B, R&D Systems, Minneapolis, MN), anti-syndecan-4 antibody

(1:5, Biotin-conjugated goat IgG, R&D Systems), anti-glypican-1 antibody (1:5, Biotin-

conjugated goat IgG, R&D Systems), anti-CD44 antibody (1:5, Biotin-conjugated mouse IgG2B,

BD Biosciences, Bedford, MA), anti-heparan sulfate antibody (1:100, mouse IgM, clone 10E4,

US Biological, Swampscott, MA), anti-chondroitin sulfate antibody (1:50, mouse IgG2A, BD

Pharmingen, San Diego, CA). The primary antibodies were coupled with the appropriate Alexa

Fluor 488 conjugated secondary antibodies below: goat anti-mouse IgM, goat anti-mouse IgG,
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streptavidin (1:400, Invitrogen, Carlsbed, CA). Briefly, HUVEC were detached from the surface

using enzyme-free PBS-based cell dissociation buffer (Invitrogen). The isolated cells were then

resuspended in PBS containing 15% fetal calf serum and 0.2 mM EDTA, and blocked for 30

minutes at 4*C. The appropriate primary antibody was subsequently added to the cell

suspensions and incubated at 4'C for 45 minutes. The cells were then centrifuged at 1200 rcf,

washed once with PBS, and incubated with both the secondary antibody and 7AAD (1:20, BD

Pharmingen) for 30 minutes. Cells were washed an additional two times before the fluorescent

signal is measured with FACS (FACSCablibur, BD Biosciences). The data were analyzed and

quantified with FlowJo (version 9.1, Ashland, OR).

Immunoflourescence Microscopy

Immediately after flow exposure, cells were fixed in 4% paraformaldehyde for 5 minutes. The

cells were subsequently washed three times with PBS at room temperature, then blocked in 1%

BSA for 30 minutes. The samples were then incubated with anti-heparan sulfate antibody (1:100,

10E4, US Biological), anti-syndecan-1 antibody (1:50, B-A38, Abcam), or anti-hyaluronic acid

antibody (1:100, Abcam) for an hour, washed three times with PBS, and then incubated with the

appropriate Alexa Fluor 488 secondary antibody for another hour. For nuclear staining, the cells

were either incubated with DAPI (600 nM, Invitrogen) for 5 minutes, or permeabilized with

0.2% Triton X-100 in PBS for 10 minutes and then incubated with TO-PRO-3 dye (1 pM,

Invitrogen) for 15 minutes. The coverslips were mounted with Gel/Mount mounting medium

(Biomeda, Foster City, CA). Images were taken using a Nikon Eclipse Ti microscope.

Quantification of hyaluronic acid signal was conducted using ImageJ. The relative hyaluronic

acid signal was calculated by subtracting the mean signal intensity of the background (2nd

antibody-only control) from that of the samples. Three fields from a sample were used to derive

the average signal intensity. The histogram and statistics were generated from samples collected

from three independent experiments.

Confocal Immunofluorescence Microscopy

Z-stacks (0.05 micron apart) of the sample were taken using the PerkinElmer UltraView RS

spinning disk confocal imaging system (PerkinElmer, Inc., Waltham, MA). Deconvolution of the
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images was performed using AutoQuant Deconvolution software (MediaCybernetics, Bethesda,

MD) and the 3D reconstruction was made using ImageJ (Image 3D Viewer Toolbox).

Quantitative Analysis of the Glycocalyx Coverage and the Glycocalyx Thickness

Percent coverage of the glycocalyx was calculated by determining the acquired fluorescent

image's percentage of pixels in which heparan sulfate signal intensity is above a specific

threshold. This threshold was set at the value where the corresponding 2"n antibody-only control

had less than 0.5% "positive" pixels. Three fields (432 tm X 329 tm) from a sample were used

to derive the glycocalyx coverage.

shRNA Experiments

HUVEC were transfected at 50% confluency with a lentiviral shRNA targeting human syndecan-

1 (MOI: 5, TRCN000072580, Sigma-Aldrich) or a lentiviral non-target shRNA control (MOI: 5,
SHCO16V, Sigma-Aldrich) in media supplemented with hexadimethrine bromide (8 pg/mL).

Lentiviral particles were washed out after 24 hours and the cells were grown to confluence. The

cells were then treated with puromycin (5 pg/mL, Sigma-Aldrich) for 72 hours to select for

transfected HUVEC followed by incubation in media without puromycin for 48 hours before

conducting the flow experiments.

RNA isolation and Quantitative PCR Analysis

Cells were lysed for RNA isolation and real-time TaqMan PCR was performed as previously

described (36).

Statistics

A 2-tailed Student's t test was used to determine statistical significance between two groups.

Difference at p < 0.05 was considered statistically significant.
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3.3 Results

3.3.1 Expression of components of the endothelial glycocalyx on the cell
surface of static cultured HUVEC

The abundance and composition of the EGL varies across different endothelial cell types. In this

study, we focused on HUVEC since these cells have been extensively used by our laboratory and

others to assess the role of biomechanical forces on endothelial gene expression (10, 12, 16, 36,

47). Interestingly, out of the three GAGs commonly present on the endothelial surface, heparan

sulfate is the only one that has been previously shown to be expressed in HUVEC (Fig. 3-1A)(6,

60). Hyaluronic acid, on the other hand, was reported to be absent in one study (26). The status

of chondroitin sulfate is unclear since there is no study directly measuring the abundance of

chondroitin sulfate expressed in HUVEC. As for the protein anchors of the glycosaminoglycans,

the major carriers of heparan sulfate and chondrotin sulfate are the syndecan and glypican family

proteins. Among the syndecan family members, syndecan-3 is only expressed in the neuronal

cells, and the other three (syndecan-1, 2, 4) have been shown to be expressed in endothelial cells

(3). Among the glypican family, glypican-1 is the only member present in endothelial cells (3,

15). Hyaluronic acid, on the other hand, is non-covalently bound to cell-surface glycoprotein

CD44. For sydecan-2, syndecan-4, glycpican-1, and CD44, their expressions in HUVEC have

been previously documented (Fig. 3-1A). For syndecan-1, there are studies supporting either its

presence or absence in HUVEC (6, 40).
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A

Components of the Endothelial Glycocalyx

Glycosaminoglycans

Name Carrier/Receptor Key Biosynthesis Enzymes Expression in HUVEC Reference
Heparan sulfate Syndecans, Glypicans EXT1. EXT2 Yes (IM) Yao, Chappell
Chondroftin sulfate Syndecans CHSY1 Not Determined
Hyaluronic acid CD44 HAS1, HAS2, HAS3 No (static culture) Lokeshwar

Protein Carriers of Glycosaminoglycans

Gene Name Gene Symbol Expression In HUVEC Reference
Syndecan 1

Syndecan 2
Syndecan 4
Glypican 1
CD44

SDC1
SDC2
SDC4
GPC1
CD44

Unclear (IM, WB)
Yes (WB)
Yes (WB)
Yes (WB)
Yes (FC, IM)

Chappell, Oiao
Qiao
QIao
Mertens
Savani

B Surface Expression of Components of the Glycocalyx in HUVEC Cultured under Static
(No Flow) Conditions
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Fig. 3-1. Components of the endothelial glycocalyx in HUVEC. A) List of protein carriers and glycosaminoglycans
previously documented to be part of the endothelial glycocalyx, and their expression in HUVEC (6, 26, 31, 40, 45,
60) (IM: immunostaining; WB: western blot; FC: flow cytometry). B) Representative flow cytometry analysis of the
endothelial glycocalyx components present in our static cultured HUVEC.
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Because the expression and subcellular localization of glycosaminoglycans and

glycoproteins may be affected by the specific cultured conditions, we first examined the

expression of components of the EGL in our static (no flow) primary cultured HUVEC. We used

FACS analysis to directly assess the surface expression of these EGL components in these cells.

As seen in Fig. 3-1B, these analyses confirmed the cell surface expression of heparan sulfate,

syndecan-1, syndecan-2, syndecan-4, glypican-1, and CD44. However, signals from chondroitin

sulfate and hyaluronic acid were very weak. Therefore, we conclude that the EGL in static

cultured HUVEC comprises heparan sulfate anchored by syndecan-1, syndecan-2, syndecan-4,

and glypican-1.

3.3.2 The expression of heparan sulfate and hyaluronic acid is regulated by
specific shear stress waveforms

Given that heparan sulfate is the predominant GAG in HUVEC, we first sought to test the

hypothesis that shear stress regulates its expression by quantitatively measuring heparan sulfate

expression in endothelial cells exposed to two well-characterized shear stress waveforms, namely

the atheroprotective waveform and the atheroprone waveform (10). Previous studies by Potter et

al. (39) have demonstrated that the time scale for glycocalyx growth is in the order of days.

When the glycocalyx was enzymatically degraded, significant recovery was observed as soon as

3 days, and a full recovery was observed after 5 to 7 days. These data suggested that 2-3 days are

required for the generation of glycocalyx. Therefore, we maintained endothelial cells under static

(no flow) conditions or exposed them to the atheroprotective or atheroprone waveforms for 3

days and 7 days, followed by the quantitative measurement of heparan sulfate surface expression

via FACS. After exposure to atheroprotective flow for 3 days and 7 days, heparan sulfate

expression was significantly increased by 54.6 6.7 % and 80.6 - 33.0 %, respectively (Figs. 3-

2A and 3-2B). In contrast, atheroprone flow suppressed the heparan sulfate expression and

caused a 37.2 t 5.1 % and 28.5 t 10.2% decrease after 3 days and 7 days, respectively. These

data are consistent with our hypothesis that the expression of this GAG is regulated by the

specific shear stress waveform and demonstrates that the differential expression is time

dependent.

Knowing that expression of heparan sulfate can be significantly regulated by shear stress

after 7 days, we next sought to find whether chondroitin sulfate and hyaluronic acid expression,
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though absent in static in vitro cultures, can also be induced by flow. HUVEC were similarly

exposed to atheroprotective or atheroprone flow for 7 days, then chondrotin sulfate surface

expression was measured by FACS and hyaluronic acid expression was evaluated by

immunostaining (due to electrostatic binding to its protein carriers). Our data indicated that

chondroitin sulfate is still absent after exposure to either flow condition (Fig. 3-2C).

Interestingly, expression of hyaluronic acid was strongly up-regulated by the atheroprotective

waveform (Fig. 3-2D). Quantification of the immunostaining data (Fig. 3-2E) showed an

increase to 464.7 - 15.6 % relative to the static culture. Finally we assessed if the

atheroprotective shear-stress-induced hyaluronic acid up-regulation is correlated with the

expression of hyaluronic acid binding protein CD44. As seen in Fig. 3-2F, FACS data indicated

that CD44 expression is not shear-stress-dependent, suggesting that the increase in hyaluronic

acid under atheroprotective condition may be due to higher rate of hyaluronic acid synthesis.

Collectively, our experimental data demonstrated that the two major GAGs of the endothelial

glycocalyx, heparan sulfate and hyaluronic acid, are both strongly promoted by the shear stress

waveform found at the atherosclerosis-resistant regions of human arteries.
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acid, but not chondroitin sulfate. A) Representative flow cytometry histogram of cell surface heparan sulfate
expression after being cultured under static condition or being exposed to the atheroprotective or atheroprone flow
for 3 days (Left) or 7 days (Right). B) Quantitative analysis of the flow cytometry data from three independent
experiments (means t SE; *p < 0.05 vs. static; #p<0.05 vs. atheroprone; N=3). C) Flow cytometry histogram of
chondroitin sulfate surface expression under static condition or after exposure to atheroprone or atheroprotective
shear stress waveform for 7 days. D) Representative immunostaining images of hyaluronic acid under static
condition or after exposure to atheroprotective or atheroprone flow for 7 days. Hyaluronic acid is shown in green,
and nucleus (DAPI) is shown in red. E) Quantitative analysis of the hyaluronic acid staining signal based on the
immunostaining images (means ± SE; *p < 0.05 vs. static and atheroprone; N=3). F) Flow cytometry histogram of
CD44 surface expression under static condition or after exposure to atheroprotective or atheroprone shear stress
waveform for 7 days.

3.3.3 The distribution of heparan sulfate at the apical endothelial surface is
changed after prolonged exposure to atheroprotective waveform

Since heparan sulfate is the predominant GAG constituent of the glycocalyx, and multiple

studies have demonstrated its functional importance, we further investigated the cell surface

distribution of this GAG in the context of the two distinct shear stress waveforms. Confocal

immunofluorescence microscopy was performed in cells under static condition, and after 3 days

or 7 days of exposure to atheroprotective or atheroprone shear stress waveforms. These

experiments revealed that heparan sulfate distribution is also shear-stress-dependent (Fig. 3-3A).

Under static or atheroprone conditions, heparan sulfate was located mostly in patches and

relatively little heparan sulfate was present on the apical surface. However, a different pattern

was observed for the atheroprotective condition; there was abundant expression of heparan

sulfate uniformly distributed on the apical surface of the monolayer. The 3D reconstruction and

the X-Z volume view of the samples in Fig. 3A were also performed to confirm this finding and

validate that only the heparan sulfate on the apical surface was being analyzed. Quantification of

the immunostaining images (Fig. 3-3B) showed that 42.7% (3 days) - 44.0% (7 days) of the

HUVEC monolayer was covered by the EGL under static conditions. After just 3 days of

atheroprotective shear stress exposure, there was no significant change in glycocalyx coverage

(44.4%). However, we observed a decrease in glycocalyx coverage to 22.9% under the

atheroprone waveform. The difference in glycocalyx coverage became more pronounced after 7

days of flow exposure since the coverage increased to 66.7% in the atheroprotective shear stress

condition, approximately three times the expression present in the atheroprone condition

(22.5%). These data document that the hemodynamic shear stress waveform not only changes

the quantitative amount but also the qualitative distribution of the EGL.
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Fig. 3-3. Prolonged exposure to atheroprotective flow induces expression of heparan sulfate on the apical surface of
endothelial cells. A) Representative microscopic images of endothelial cells under static condition, after 3 days
exposure to atheroprotective or atheroprone flow, or after 7 days exposure to atheroprotective or atheroprone flow. i)
Phase contrast; ii) Heparan sulfate is shown in green, and nucleus (DAPI) is shown in red. iii) 3D reconstruction
from Z-stacks taken with confocal microscopy. Heparan sulfate is shown in green, and nucleus (TO-PRO-3) is
shown in red. iv) X-Z plane side-view of the 3D reconstruction above. B) Quantitative analysis of the percentage
area covered by heparan sulfate based on immunostaining images from three independent experiments (means * SE;
*p < 0.05 vs. static; #p<0.05 between samples; N=3).
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3.3.4 The surface expression of Syndecan-1 is regulated by the specific shear
stress waveforms

Having established that heparan sulfate expression is regulated by distinct shear stress, we next

explored whether its underlying mechanism is through controlling the expression of heparan

sulfate proteoglycans or modulating heparan sulfate biosynthesis. To this end we first measured

the change in surface expression of heparan sulfate carrier proteins, namely syndecan-1,2,4 and

glypican-1 after 7-day exposure to specific shear stress waveforms (Fig. 3-4A). For syndecan-2

and glypican-1, presence of either atheroprotective or atheroprone shear stress decreased their

expression. Syndecan-4 seems to be more highly expressed (though not statistically significant)

under the atheroprone condition compared to the atheroprotective condition. Syndecan-1

expression, most interestingly, was up-regulated after exposure to the atheroprotective flow but

down-regulated after exposure to the atheroprone flow. These flow cytometry data were

confirmed by immunostaining (Fig. 3-4B) and measurement of mRNA expression (Fig. 3-4C,
left panel). Immunostaning of syndecan-1 revealed that the atheroprotective-flow-mediated

expression is suppressed under atheroprone condition. Experiments measuring the mRNA

expression of the heparan sulfate proteoglycan established a high correlation between mRNA

expression and protein expression. For syndecan-1, its mRNA was expressed more than ten

times in the cells exposed to the atheroprotective flow versus the atheroprone flow.

We also assessed whether shear stress affects the expression level of EXT1 and EXT2,
two enzymes responsible for heparan sulfate biosynthesis. As seen in Fig. 3-4C (right panel),
there was no significant change in EXT1 and EXT2 expression under the two shear stress

conditions. These data suggest that expression of EXTI and EXT2 is shear stress independent,

and may not be critical for the flow-mediated expression of heparan sulfate. Therefore,

syndecan-1 transcriptional regulation may play the most important role in shear stress-regulated

heparan sulfate expression.
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Fig. 3-4. Prolonged exposure to atheroprotective flow induces expression of syndecan- 1 on the apical surface of
endothelial cells. A) Left, Flow cytometry histogram of syndecan-1, syndecan-2, syndecan-4, and glypican-1
surface expression under static condition or after exposure to atheroprotective or atheroprone shear stress waveform
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for 7 days. Right, Quantitative analysis of the flow cytometry data from three independent experiments (*p < 0.05
vs. static; #p<0.05 vs. atheroprone; means t SE; N=3). B) Representative immunostaining images of syndecan-1
under static condition or after exposure to atheroprotective or atheroprone flow for 7 days. Syndecan-1 is shown in
green, and nucleus (DAPI) is shown in red. C) mRNA expression of (Left) the heparan sulfate protein carriers and
(Right) key enzyme specifically responsible for heparan sulfate chain biosynthesis (means ± SE, *p < 0.05 vs. static;
#p<0.05 between samples; N=3).

3.3.5 Syndecan-1 silencing blocks the shear-stress-induced heparan sulfate
expression

Having demonstrated that there is a high correlation between the quantitative expression of

heparan sulfate and syndecan-1 under distinct hemodynamic environment, we next tested the

hypothesis that the atheroprotective shear-tress-induced heparan sulfate expression is mediated

through syndecan-1 regulation. To this end, HUVEC were transfected with syndecan-1 shRNA

to silence syndecan-1 expression and compared with cells transfected with control (non-target)

shRNA under both static (no flow) or exposed to atheroprotective shear stress for 7 days. As

seen in Fig. 3-5, the use of Syndecan-1 shRNA led to an averaged 78.6% syndecan-1 silencing

under atheroprotective shear stress (Figs. 3-5A and 3-5B). Notably, the atheroprotective shear-

stress-mediated increase in expression of cell surface heparan sulfate was completely abolished

by suppressing syndecan-1 expression. These data demonstrates that syndecan-1 is the major

heparan sulfate carrier regulated by atheroprotective flow and that syndecan-1 up-regulation is a

critical mechanism behind the atheroprotective shear-stress-induced heparan sulfate expression.
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3.4 Discussion and Conclusions

The abundance of endothelial glycocalyx has been associated with the vasoprotective phenotype

of the endothelium (7, 8, 33, 54). Though there are many studies investigating the numerous

functions of the EGL, few focuses on how the EGL expression is regulated. The data presented

here demonstrate that the expression of some components of the EGL is directly regulated by

specific shear stress waveforms. In particular, we found that the expression of heparan sulfate,

the major GAG of the EGL, is up-regulated after prolonged atheroprotective shear stress

treatment, and down-regulated after exposed to the atheroprone waveform. Moreover, we

documented that heparan sulfate is present at the apical surface in cultured endothelial cells

exposed to the atheroprotective waveform. Besides heparan sulfate, hyaluronic acid expression is

also induced by the atheroprotective waveform, establishing that the hemodynamic shear stress

waveform found in atheroscelerosis-resistant regions is a direct cause of observed abundant EGL

expression.

In the past ten years, several studies have used in vitro cultured endothelial cells to gain a

better understanding of the EGL. Potter et al. (38) and Chappell et al. (6) have recently reported

that the glycocalyx structure observed in vivo is absent in vitro, questioning the conclusion

derived from experiments using in vitro models. Potter et al. used microparticle image

velocimetry to measure EGL thickness and found that the glycocalyx in mouse cremaster muscle

venules (around 520 nm) is much more abundant than either cultured BAEC (20 nm) or cultured

HUVEC (30 nm). Their data are further supported by electron microscopy studies by Chappell

et al., who measured the thickness of the glycocalyx in ex vivo human umbilical vein

endothelium to be 878 nm and that of cultured HUVEC to be 29 nm. However, a most recent

study by Ebong et al. (13) argued that these in vitro estimations may be flawed due to artifact

from alcohol dehydration, substrates used to coat the surface, or media supplements of high

concentration dextran (4%). Importantly, our data indicated the EGL expression for HUVEC

under static conditions is irregular and discontinuous, suggesting that the EGL distribution is

highly heterogeneous and, depending on the area chosen for measurement, its measured

dimensions (e.g., thickness) can be dramatically different.

Several earlier studies have indicated that shear stress may play an important role in

regulating EGL expression: in endothelial cells subjected to flow, GAG synthesis was increased,
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hyaluronic acid incorporation into EGL was induced, and hyaluronan synthase 2 expression was

upregulated (2, 19, 30). Our study has further shown that 7-days exposure to the atheroprotective

shear stress waveform is necessary for the high and uniform apical cell surface expression of

some components of the glycocalyx, such as heparan sulfate and hyaluronic acid in cultured

endothelial cells.

Having demonstrated that the atheroprotective shear stress enhances heparan sulfate

expression, an interesting question arises, what is the mechanism behind this process? The

abundance of the EGL is controlled by several factors: 1) the abundance of its protein carriers; 2)

the expression and activity of enzymes responsible for biosynthesis of GAGs; 3) degradation

following endocytosis; and 4) the expression and activity of matrix metalloprotease responsible

for shedding of the glycoproteins. Here we report on some of these possible mechanisms that

influence the cell surface expression of heparan sulfate. We measured the mRNA and protein

expression of all HUVEC heparan sulfate anchors under static and different flow conditions and

found syndecan-1 to be uniquely up-regulated by the atheroprotective waveform. Furthermore,

silencing of syndecan-1 under flow results in the suppression of shear-stress-induced heparan

sulfate expression, suggesting that among all heparan sulfate proteoglycans, syndecan-1 plays a

critical role in regulating the cell surface expression of heparan sulfate under atheroprotective

shear stress. On the other hand, we did not find the mRNA expression of EXTi and EXT2, the

two key enzymes responsible for heparan sulfate biosynthesis, to be shear-stress-dependent.

Currently, we cannot rule out that the enzymatic activities of these two proteins are regulated

through post-translational modifications leading to an increase in their specific activities, nor a

role for changes in endocytic degradation in controlling the surface expression of heparan

sulfate.

Shedding of the proteoglycans is catalyzed by the matrix metalloproteinase (MMP)

family proteins. Four members from this family, MMP 1, MMP2, MMP3, and MMP9, have been

shown to take parts in shedding of the glycocalyx protein carriers (4). Magid et al. have

demonstrated that the activity of MMP9 promoter and protein level of Tissue Inhibitor of MMP 1

(TIMP-1) can be differentially regulated by shear stress (29). However, because of limited

understanding of the role of shear stress in post-translational regulation of members of MMPs

and TIMPs, we cannon conclude whether MMPs plays an important role behind shear-stress-

induced expression or suppression of components of the glycocalyx. Investigating the
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relationship between shear stress and glycocalyx shedding may be a critical step for our

understanding of the dynamics of glycocaclyx expression.

As we have established the cause-effect relationship between shear stress and the

expression of the components of the EGL, the next question to ask is if this change in EGL

expression contributes to the atheroprone or atheroprotective behaviors observed in vivo in

different ways. First, as previously discussed, the EGL may bind and thus increase the local

concentration of some macromolecules. One of such molecule is the extracellular superoxide

dismutase (EC-SOD), an enzyme responsible for controlling the redox state of the cells. The C

class EC-SOD has been shown to bind tightly to the EGL. This class of EC-SOD possesses a

protein domain containing many positively charged amino acids facilitating its binding to the

negatively charged heparan sulfate (21, 44). By providing more binding sites to the EC-SOD, an

increased EGL expression may help reducing the oxidative stress to the endothelium.

The second impact of a more abundant EGL expression is increased sensitivity to shear

stress. Previously, theoretical models have established that the fluid shear stress acting on the

endothelium by flowing blood is fully dissipated in the glycocalyx layer and the apical

membrane essentially is not expose to shear stress forces. To deliver the force into the cell, the

stress is transmitted by the glycocalyx to the cell cytoskeleton through proteoglycans such as

syndecans or glypicans (51, 59). In this scenario, the heparan sulfate acts as an amplifier that

increases the surface area for the core protein carriers exposed to shear stress. These models

predict that if heparan sulfate is removed, the ability of the cell to sense the fluid shear stress will

be significantly impaired. Indeed, it is evident from previous experimental data that when

heparan sulfate is removed through enzymatic treatment, the endothelial cell can no longer

respond to the mechanical stimuli by modulating the proliferation and migration rate,

reorganizing the cytoskeleton, and aligning to the direction of the flow (32, 53, 60). Some studies

also reported that heparan sulfate and hyaluronic acid are also important for flow-induced NO

production, and enzymatic removal of these two glycosaminoglycans attenuate this effect (14,

35). However, this view has been challenged by a recent paper showing that suppression of flow-

mediate NO production by enzymatic removal of heparan sulfate can be rescued by addition of

tempol, a radical scavenger. These data suggest that increased NO production under flow is

contributed by heparan sulfate hosting the ecSOD and, thereby, increasing the NO half-life,

rather than by heparan sulfate acting as a mechanosensor. This study, on the other hand,
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confirmed that hyalurnoic acid is indeed a mechanosensor for NO production (23). These

theoretical models and experimental data suggest the presence of EGL is critical to the activation

of shear stress-regulated mechanotransduction pathways.

The third impact of a thicker EGL is prevention of leukocyte adhesion, an early step in

atherogenesis. Constantinescu et al. (7, 8) demonstrated that addition of Ox-LDL or enzymatic

removal of heparan sulfate in mouse cremaster venules induces leukocyte adhesion. Perfusing

the venules with heparan sulfate or heparin, however, reverses this effect. van den Berg et al.

further showed the accumulation of Ox-LDL in the intimal layer beneath the EGL is in fact

inversely correlated to the EGL abundance (54). Mulivor and Lipowsky et al. (33) also found

that chemoattractant fMLP leads to glycocalyx shedding and leukocytes attachment in the rat

right internal juguar vein due to MMP activation. Adding doxycycline, a MMP inhibitor,

attenuates this process. Some investigators have attributed these experimental observations to

steric hindrance (41). It is argued that the length of the cell adhesion molecules such as P-selectin

(around 38 nm) is significantly small compared to the thickness of the glycocalyx (around 400 to

4000 nm). Therefore, the heparan sulfate and other GAGs shield the cell adhesion molecules

from interacting with the nearby leukocytes (41). One study supporting this idea observed that

when P-selectin length is shortened by decreasing the number of consensus repeats, it is less

likely for culture cells to recruit neutrophils (37). Several other studies can further be used in

interpreting our data to suggest that syndecan-1 might be the most prominent heparan sulfate

anchor and play the most important role in shear-stress-induced heparan sulfate expression.

Previously studies have demonstrated that Syndecan-1 knockout mice are healthy under normal

condition, but a more dramatic pathological phenotype is shown after being challenged with

pathological stimuli (52). For example, when myocardial infarction was induced in syndecan-1

knockout mice by permanent ligation of the left coronary artery, enhanced leukocyte adhesion

and transendothelial migration were observed (57). Since plasma-B-cell is the only type of

leukocyte presenting syndecan-1 under normal condition, syndecan-1 expression on endothelial

cells may inhibit leukocyte adhesion (52). Collectively, these studies provide evidence that a

thicker EGL layer may be a stronger steric protection against leukocyte attachment.

In conclusion, this study establishes a cause-effect relationship between distinct shear

stress waveforms and the expression of components of the endothelial glycocalyx, revealing a

75



specific environmental cue that may be responsible for the previously documented relationship

between the glycocalyx and atheroprotection.
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Validation of heparan sulfate, hyaluronic acid, and chondroitin sulfate staining: A) Flow

cytometry histogram of heparan sulfate expression on HUVEC treated with vehicle (PBS) or

Heparanase III (50 mU/mL, Ibex Technologies) for 10 minutes. B) Immunoflourescence

microscopy image of cell surface heparan sulfate in the previous experiment. Heparan sulfate is

shown in green, and nucleus (DAPI) is shown in red. C) Representative immunoflourescence

microscopy image of cell surface hyaluronic acid on vascular smooth muscle cells treated with

vehicle (PBS) or Hyaluronidase (50 U/mL, Sigma-Aldrich) for 1 hour. Hyaluronic acid is shown

in green, and nucleus (DAPI) is shown in red. D) Flow cytometry histogram of chondroitin

sulfate expression on HEK293 cells as a positive control.
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Chapter 4: Bridging the Endothelial Glycocalyx to
Atheroprotection and NO Production

4.1 Introduction

In the previous chapter, we have established a cause-effect relationship that distinct

hemodynamic shear stress waveforms regulate the expression of components of the endothelial

glycocalyx. In this chapter, we wish to further bridge the expression of the endothelial

glycocalyx layer (EGL) to protection against atherosclerosis and shear-stress-induced NO

production. To connect the EGL to atheroprotection, we suppressed the surface expression of

heparan sulfate through a siRNA approach and measured how the absence of heparan sulfate

affects leukocyte adhesion. To link the EGL to NO production, we silenced syndecan-1 and

observe whether it changes shear-stress-induced expression of eNOS and its two important

transcriptions factors - KLF2 and KLF4. We also tested, inversely, whether over-expressing

KLF2 affects syndecan-1 and heparan sulfate expression. These experiments provide useful

information that allows us to blueprint the next sets of experiments that are required to advance

our understanding of the glycocalyx and shear-stress-induced NO production.
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4.2 Material and Methods

General

The protocols regarding endothelial cell culture, hemodynamic shear stress in vitro system,

shRNA experiments, FACS analysis, RNA isolation / quantitative PCR analysis, and statistics,

were as described in Chapter 3.

siRNA-mediated Gene Silencing

HUVECs were plated at a density of 30,000 cells/cm 2 and cultured in the HUVEC growth

medium 16 hours before transfection to reach 60% confluency. The sequences of human EXT1

siRNA (30 nM) were: 5'-GGAGC UGCUAUUUACCACAAAUAUU-3' (sense) and 5'-

AAUAUUUGUGGUAAAUAGC AGCUCC-3' (antisense). For transfection, siRNA was firstly

diluted with Opti-MEM reduced serum medium (Invitrogen). Concomitantly, oligofectamine

(Invitrogen) was diluted with Opti-MEM and incubated for 5 minutes at room temperature. The

siRNA and Oligofectamine solutions were then mixed and incubated for another 15 minutes. The

HUVEC were washed twice with Opti-MEM and added with Oligofectamine-siRNA complex

solution. Cells were incubated at 37'C for 6 hours, and then regular HUVEC growth medium

was added (without antibiotics).

Leukocyte Adhesion Assay

Leukocyte attachment was measured using an established leukocyte attachment assay (3, 7). One

million HL-60 cells pre-stained with CellTracker Orange (Invitrogen) were added to vehicle

(PBS) or IL-l IP (0.1 unit/mL, 4 hours) treated HUVEC. The cells were placed onto a horizontal

rotator at 60 rpm at room temperature for 10 minutes. The unattached HL-60 cells were removed

through gently washing the cells three times with PBS. The attached HL-60 was visualized using

a fluorescent microscope. After imaging, the cells were lysed in the lysis buffer (0.1% NaOH,

0.01% sodium dodecyl sulfate) to allow quantification using a spectrophotometer (SpectraMax

M3, Molecular Device, Sunnyvale, CA).
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Adenoviral-mediated Infection

For KLF2 over-expression experiments, HUVEC at 80 - 90% confluency were infected with

either Ad-GFP (Harvard Gene Therapy Initiative Core) or Ad-mKLF2-GFP (made by the

Garcia-Cardefia lab) at MOI=10. The adenoviral particles were incubated with the cells for 48

hours or 72 hours before the viral particles were washed away with PBS and HUVEC surface

expression of heparan sulfate and syndecan-1 were assessed with FACS.
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4.3 Results

4.3.1 Suppression of heparan sulfate expression by EXT1 siRNA

Knowing that the glycocalyx is differentially expressed under static and specific shear stress

conditions, we developed an efficient way to silence the individual glycosaminoglycan of the

glycoclayx without disturbing the anchored proteins. The genetic target we selected for the

siRNA-based approach is EXT 1, whose protein product forms a dimer with EXT2 protein and is

responsible for heparan sulfate chain elongation, a critical step for heparan sulfate biosynthesis

(5). Fig. 4-lA demonstrates the effectiveness of this approach. Heparan sulfate surface

expression of cells pretreated with EXT1 siRNA versus control siRNA is almost completely

suppressed even 96 hours after adding siRNA, suggesting EXTI siRNA as a useful tool to study

the function of glycocalyx.

4.3.2 Increase in leukocyte adhesion for endothelial cells treated with EXT1
siRNA

Having shown that the glycocalyx is significantly more expressed under atheroprotective

condition, we hypothesized that this athero-resistant phenotype is established through glycocalyx

acting as a physical protection barrier that prevents leukocyte adhesion, an early sign of

atherosclerotic plaque formation. To test this hypothesis, we suppressed the expression of

heparan sulfate via EXTI siRNA. The siRNA silencing is followed by treatment with IL-1 IP (0.1

unit/mL) for 4 hours, then leukocyte adhesion assay. The data shows that when heparan-sulfate

expression is suppressed by EXTI siRNA, a higher number of leukocytes attached to both

vehicle (PBS) treated or IL-l IP activated endothelial cells (Figs. 4-1 B, 4-1C). These data indicate

that the EGL could act as a physical barrier against leukocyte adhesion.

4.3.3 Silencing of syndecan-1 does not affect shear-stress-induced KLF2,
KLF4, or eNOS expression

Having established in our in vitro model that the EGL plays a role in protection against leukocyte

adhesion, we further investigated the role of the EGL as a mechanosensor for shear-stress-
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induced NO production. In chapter 3, we showed that heperan sulfate and its anchored protein,

syndecan-1, are both much more expressed under atheroprotective flow condition. This

observation leads to our hypothesis that the heparan-sulfate / syndecan-1 pair conducts flow-

mediated mechanotranduction and leads to activation of signaling pathways that up-regulate

eNOS gene expression. To test this hypothesis, HUVEC were transfected with control (non-

target) shRNA or syndecan-1 shRNA (to silence syndecan-1 expression and atheroprotective-

flow-induced heparan sulfate expression), and then exposed to atheroprotective shear stress for 7

days. After the 7-days flow exposure, RNA expressions of KLF2, KLF4, and eNOS were

measured. The data (Fig. 4-2) revealed that atheroprotective flow significantly induces KLF2,

KLF4, and eNOS expression. However, syndecan-1 silencing does not affect the shear-stress-

induced expression of these genes. The mechanism of how the endothelial glycocalyx regulates

NO production remains to be discovered.
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Fig. 4-1. EXTI siRNA significantly suppresses the surface expression of heparan sulfate, and suppression of
heparan sulfate surface expression increases leukocyte adhesion in endothelial cells treated with vehicle (PBS) or
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activated with IL- Is (0.1 U/mL, 4 hr, 37*C). A) Representative flow cytometry histogram of heparan sulfate surface
expression in endothelial cells 4 days after Control siRNA or EXTI siRNA treatment. B) Quantitative analysis of
HL-60 cells adhered to the monolayer from three independent experiments (*p < 0.05 vs. control siRNA + vehicle;
#p<0.05 vs. control siRNA + IL-1p; N=3). C) Representative microscopic image of endothelial cells and bound HL-
60 cells (yellow).
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Fig. 4-2. Silencing syndecan-1 expression in endothelial cells does not affect atheroprotective-flow-induced KLF2,
KLF4, and eNOS mRNA expression. The figure shows mRNA expression of syndecan-1 (SDCl), KLF2, KLF4,
and NOS3 (eNOS) in cells treated with control (non-targeting) or syndecan- 1 (SDC 1) shRNA and then maintained
under static conditions or exposed to atheroprotective flow for 7 days. (means ± SE; N=3).

4.3.4 Over-expression of KLF2 does not affect syndecan-1 or heparan sulfate
expression

To further study whether there is a relationship between expression of KLF2 and components of

the endothelial glycocalyx, we tested an alternative hypothesis that KLF2 plays an important role

in up-regulating the expression of syndecan-1 and heparan sulfate. We tested this hypothesis by

infecting HUVEC with adenoviral particle containing mouse KLF2-GFP to over-express KLF2.

Surface expressions of syndecan-1 and heparan sulfate were assessed 48 hours and 72 hours after

infection. Interestingly, these data demonstrated that KLF2 over-expression does not affect

neither syndecan-1 nor heparan-sulfate expression, suggesting that KLF2 alone does not have a

significant impact to glycocalyx expression.
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Fig. 4-3. Over-expressing KLF2 does not affect syndecan-l or heparan sulfate expression. Flow cytometry
histogram of cell surface syndecan-l and heparan sulfate expression after being cultured with Ad-GFP or Ad-KLF2-
GFP for A) 48 hours or B) 72 hours. Cells are gated to select for PI negative (alive) and GFP positive (virus
infected) population.
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4.4 Discussion and Conclusions

In the past decade, many researchers spent much effort on studying the function of the EGL.

These experiments were typically done through enzymatic pre-treatment degrading the specific

GAGs and then studying its effect under flow. In this chapter, we demonstrated an alternative

siRNA approach by suppressing heparan sulfate biosynthesis, avoiding non-specific effect and

allowing long-term study of the EGL function under shear stress conditions.

Heparan sulfate chain biosynthesis is a process involving multiple steps: First, a series of

saccharides (N-acetylglucosaimne - glucuronic acid - galactose - galactose - xylose) are added

onto the serine residue of the extracellular domain of syndecan or glypicans. Next, the elongation

process starts with the polymerization reaction conducted by glycosyltransferase I, a protein

dimer of exostosin-1 (EXTI) and exostosin-2 (EXT2). Finally, the elongated chain is

deacetylated and sulfated by N-deacetylase/N-sulfotransferase (NDST). Previous experiments

done by Busse et al. demonstrated that treating the HEK293 cells with EXTI siRNA

significantly decreases glycosyltransferase I activity and leads to a shorter heparan sulfate chain

(1). Our results show that this EXTI siRNA approach is equally efficient for HUVEC and can be

used for in vitro study of the glycocalyx. The next question is if EXTi siRNA can also be

applied for in vivo study of the glycocalyx. It is known that mutation in both copies of the human

EXT1 gene is lethal. Autosomal dominant mutation in EXTI leads to hereditary multiple

exostoses (HME) and osteochondroma (8). Similarly, homozygous EXT1 -/- knockout mice are

embryonic lethal due to failure in gastrulation. Heterozygous EXTI +/- mice have less than 50%

heparan sulfate synthesis and may have shortened long bones (4). However, the vascular health

of these heterozygous mice has not yet been assessed. In the future, it will be interesting to create

endothelial specific EXTI knockout mice to study the function of the glycocalyx in vivo.

In this chapter, EXT1 siRNA was used as a tool to study the effect of inhibiting heparan

sulfate biosynthesis on leukocyte attachments. Suppressing heparan sulfate biosynthesis

significantly decreases the cell surface expression of heparan sulfate and increases leukocyte

attachments. The data from a control experiment showed that EXTI siRNA does not induce

inflammation response and up-regulation of cell adhesion molecules. Previously, Constantinescu

et al. demonstrated that addition of Ox-LDL or enzymatic removal of mouse cremaster venules

induces leukocyte adhesion. Perfusing the venules with heparan sulfate or heparin, however,
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reverses this effect (2). Mulivor and Lipowsky et al. also found that chemoattractant fMLP leads

to glycocalyx shedding and leukocytes attachment in the rat right internal juguar vein due to

matrix metalloproteases (MMP) activation. Adding doxycycline, a MMP inhibitor, attenuates

this process (6). These in vivo works and our in vitro study provide ample evidence that the

overall integrity of the glycocalyx layer is critical for preventing leukocyte attachment.

Here we provide a theoretical explanation of the above-mentioned observations. We

propose that while cell adhesion molecules increase the binding force between leukocytes and

the endothelium, the glycocalyx layer acts as a spring repelling leukocytes from contacting the

endothelial surface. In non-inflammatory state when there is few cell adhesion molecules

expressed, this repulsion force is large enough to counter the adhesion force. However, under

inflammatory condition when more cell adhesion molecules are expressed or the glycocalyx is

compromised, the repulsion force is weaker than the adhesion force, resulting to leukocyte

adhesion and trans-migration.

While the overall integrity of the glycocalyx is critical against leukocyte adhesion, its

expression is tightly regulated by the specific shear stress waveform exposed to the endothelium.

The data from this experiment indicates that the glycocalyx acts as a critical mediator between

shear stress and atheroprotection.

One of the other mediator roles of the endothelial glycocalyx is acting as a mechano-

sensor or mechano-amplifier. In our study, we also tested on the hypothesis that heparan-sulfate

and its anchored protein syndecan-1 conduct flow-mediated mechanotranduction and lead to

activation of signaling pathways that up-regulate eNOS gene expression. Even though the data is

negative, it does not rule out several possibilities that the endothelial glycocalyx might play a

role in shear-stress-induced nitric oxide production. One of such possibility is that the

mechanotransduction pathways activated by the EGL regulates eNOS phosphorylation rather

than eNOS transcription. It will be interesting in the future to silence individual components of

the EGL and investigate how does it affect both the activating and inhibitory phosphorylation

sites on eNOS under shear stress conditions. The second possibility is that silencing one

individual component is insufficient: the EGL is a complex structure that even if one component

is removed, the other components could still act as a functional mechano-sensor or mechano-

amplifier. As silencing multiple genes at the same time is difficult, it might be necessary to first

develop novel approaches to selectively remove multiple components of the endothelial
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glycocalyx in order to advance our understanding of the mechanotransduction property of the

glycocalyx.

On the other hand, our experiments also demonstrated that over-expressing KLF2 alone

for 48 - 72 hours cannot promote syndecan-1 or heparan sulfate expression. It is possible that

longer incubation time is required to observe a difference. It is also possible that activation of

some other shear-stress-induced genes are required to act with KLF2 to co-promote endothelial

glycoclayx expression. Finally, it is possible that glycocalyx production is completely

independent of KLF2 expression.

In this chapter, we assessed several functional aspect of the endothelial glycocalyx. We

have shown in our in vitro model that the EGL may play a role in protection against leukocyte

adhesion. We also investigate one possible mechanism in which the endothelial glycocalyx

regulates NO production and another mechanism in which endothelial glycocalyx expression is

regulated. The data from these experiments can help us designing future experiments that will

eventually bridge the pathways between the endothelial glycocalyx and shear-stress-mediated

NO production.
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Chapter 5: Conclusions and Outlook

5.1 Summary of Findings

In this thesis, we constructed the first integrated model of shear-stress-induced NO production in

endothelial cells. This system model captures the main events after the cells are exposed to fluid

shear stress, describing the kinetics of all major pathways leading to eNOS activation, eNOS

expression, and NO production. The integrated model is able to describe the experimentally

observed change in NO production with time following the application of shear stress. This

model can also be used to predict the specific effects to the system following interventional

pharmacological or genetic changes. Importantly, this model reflects the up-to-date

understanding of the NO system, providing a platform to aggregate information in an additive

way. Unfortunately, the current model is still incomplete due to limitation of experimental data

in several key pathways, including the KLF2 activation pathway and the pathways regulated by

the endothelial glycocalyx.

To further improve the model, we conducted studies on the endothelial glycocalyx,

seeking to establish the relationships between shear stress, glycocalyx expression, and

atheroprotection. We first tested the hypothesis that the expression of components of the

endothelial glycocalyx is differentially regulated by distinct hemodynamic environments. Our

experiments revealed that heparan sulfate expression is higher and evenly distributed on the

apical surface of endothelial cells exposed to the atheroprotective waveform, and is irregularly

present in cells exposed to the atheroprone waveform. Furthermore, the expression of a heparan

sulfate proteoglycan, syndecan-1, is also differentially regulated by the two waveforms, and its

suppression mutes the atheroprotective-flow-induced cell surface expression of heparan sulfate.

These data suggest that expression of components of the glycocalyx is regulated by the specific

shear stress waveform and may be a novel mechanism behind flow-mediated atheroprotection

We further conducted several experiments to elucidate the functions of the endothelial

glycocalyx and the mechanism of how the glycocalyx activates NO production. We have shown

under static condition that there is increased leukocyte adhesion when heparan sulfate expression

is suppressed by inhibiting its biosynthesis. Furthermore, we silenced syndecan- 1 and measured

how it affects KLF2, KLF4, and eNOS expression after 7 days of atheroprotective flow

exposure. Even though expression of these transcription factors does not change under our tested
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experimental conditions, it is possible that silencing multiple components of the glycocalyx is

necessary to see an effect, or the endothelial glycocalyx affect other NO production mechanisms

such as eNOS phosphosylration. Additional studies are required to understand the endothelial

glycocalyx' function, downstream signaling pathways, and its connection to NO production.
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5.2 Future Directions

The time of the graduate school is limited, but the knowledge to be discovered in the NO system

and the endothelial glycocalyx seems infinite. I believe the following future experiments will be

of great interests to investigators working on these fields:

e Assess whether flow-induced heparan sulfate expression leads to decrease in leukocyte

adhesion. This can be achieved by suppressing shear-stress-induced heparan sulfate

expression using SDC1 shRNA and conducting leukocyte adhesion assay after the cells

are exposed to the atheroprotective flow for 7 days.

" Investigate how heparan-sulfate regulates NO production. One avenue is to suppress

heparan sulfate expression through EXT1 siRNA or SDC1 shRNA and measure change

in phosphorylation at various eNOS sites after onset of flow.

e Study the effect of syndecan-1/ heparan sulfate silencing on expression of vasoprotective

genes. A gene expression microarray analysis can help us capturing all genes regulated

by the endothelial glycocalyx under flow.

- Map signaling pathways down-stream of the endothelial glycocalyx. Once we know the

set of genes regulated by the glycocalyx, it is possible to use bioinformatics tools to

delineate the signaling pathways bridging the glycocalyx to those genes.

- Research the possible protective effect of syndecan-1 expression on the endothelium

using endothelial-specific syndecan- 1 knockout mice in a model of atherosclerosis.

As we increasingly understand the endothelium and the vascular system at the molecular level, I

believe eventually we could use the systems biology approach to predict biology, and possibly

develop therapeutics in a more rational, cost-effective, and efficient way.
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"Much to learn you still have... This is just the beginning."

- Master Yoda

Star Wars: Episode II
Attack of the Clones (2002)
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