
Audio Denoising Using Wavelet

Filter Banks Aimed at Real-Time Application
by

Peter W. Kassakian

B.S., Massachusetts Institute of Technology (1995)

Submitted to the Department of Mechanical Engineering ENG
in partial fulfillment of the requirements for the degree of MASSACHUSE STITUTE

OFT Y
Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY RARIES
June 1999

@ Peter W. Kassakian, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic

copies of this thesis document in whole or in part, and to grant others the right to do so.

Author
Department of Mechanical Engineering

May 20, 1999

Certified by
Bernard C. Lesieutre

Associate Professor of Electrical Engineering
Thesis Supervisor

Certified by--
Derek Rowell

Professor of Mechanical Engineering
Thesis Supervisor

Accepted by
Ai A. Sonin

Chairman, Departmental Committee on Graduate Students

4N

Audio Denoising Using Wavelet
Filter Banks Aimed at Real-Time Application

by
Peter W. Kassakian

Submitted to the Department of Mechanical Engineering
*on May 20, 1999, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

In this thesis we implement an audio denoising system targeted at real-time application. We

investigate the delays associated with wavelet filter bank systems and propose methods to overcome

them. We consider computational delays as well as structural delays and deal with each separately.
We find that good denoising performance is achieved when filters are chosen so as to transform

the input into an appropriately scaled time-frequency domain. Multiplications required for four

different implementations of the system are compared and we conclude that a scheme that performs

multiplications as far downstream as possible proves to be the best of the four options. Finally we

propose several topics for further research including investigations into the human auditory system

as well as studies of creative filter bank topologies.

Thesis Supervisor: Bernard C. Lesieutre
Title: Associate Professor of Electrical Engineering

Thesis Supervisor: Derek Rowell
Title: Professor of Mechanical Engineering

Dedication

to

my father

- 5--

Acknow led gements

I would like to express my gratitude to Professor Lesieutre for advising my thesis and taking a

great interest in a topic that's at best tangential to his current research. He made it a pleasure to

learn about a subject that is multifaceted and complicated.

Also I want to thank Professor Rowell for reading my thesis on behalf of the department.

I'm pleased that he took such an interest in the subject and value his advice on many issues. He

also gave me the gift of a very enjoyable TA experience.

I wish to thank Leslie Regan and Joan Kravit for making me feel welcome in their office.

Also thank you very very much, Vivian, Karin, and Sara.

I want to acknowledge Professor Pratt for allowing me to reconsider my involvement in

his project, and for being a kind and caring individual who I will always remember. Professor

Verghese deserves special mention too, for his guiding words and insights into these strange filter

bank systems.

Finally I want to thank Mom, Meg, Ann, Andrew, and Dennis for their support over the

last few years.

-7-

Contents

1 Introduction

1.1 Organization of Thesis . - - - -

17

17

192 Transformations and Basis Functions

2.1 Transformations

2.1.1 Basis Functions

2.1.2 Orthogonality of Basis Functions . . .

2.1.3 Vector Spaces

2.2 Estimation of a Stochastic Signal

2.2.1 Karhunen-Loeve Transform

2.2.2 Stochastic Signal with White Noise . .

2.2.3 Denoising A Stochastic Signal

. 19

. 19

. 20

. 21

. 22

. 22

. 24

. 25

3 Joint Time-Frequency Analysis

3.1 Smooth Signals and the Time-Frequency Plane .

3.2 Time-Frequency Transforms by Filter Banks .

4 Discrete-Time Wavelets and Perfect Reconstruction

4.1 Conditions for Perfect Reconstruction .

4.1.1 Haar and Conversion from Polyphase Form

4.1.2 Determining Basis Functions .

4.2 Conjugate Transpose .

5 Near Real-Time Processing

-9-

29

29

30

35

35

37

39

40

43

Contents

5.1 Motivation for Real-Time .

5.2 Measures of Performance .

5.3 Computational Delays .

6 Implementation of Wavelet Filter Bank Tree

6.1 Minimal Delay Expected

6.2 Non-Causal Approach

6.3 Non-Time Invariant Impulse Method

6.4 Large Buffers at Each Stage

6.5 Just In Time Multiplication

7 Search for Zero Group Delay

7.1 Unimodularity

7.2 Problems in Design

8 Concluding Remarks

8.1 Block Delay

8.2 Computational Delay

8.3 Delay Associated with Orthogonal Systems

8.4 Future Work

A Program Code (C)

A .1 Zipper.h .

A.2 Muixtree.c

A.3 Treefunctions.c

A .4 Getsnd.c .

A.5 Randsnd.c

A.6 Str.c

- 10 -

43

44

45

47

47

48

49

51

51

53

53

53

57

57

57

58

58

59

59

60

68

71

75

76

. .

. .

. .

. .

. .

. .

. .

Contents

A .7 M akefile . 77

B Paraunitary and Unimodular Filters 79

B.1 Paraunitary Filters 79

B.2 Unim odular Filters . 81

- 11 -

List of Figures

2.1 A Transform .. 19

2.2 Signal {1 1} A deterministic signal of length 2 represented as a point on a plane . 21

2.3 Transformed Signal {v2 0} An orthonormal transformation corresponds to a

rotation of axes. In the above case, the axes are rotated so as to align with the

signal point. 22

2.4 Stochastic Signal of Length 2 A signal specified only by a mean and an autocor-

relation matrix. The ellipses are lines of constant probability. 23

2.5 Noise Corrupted Musical Signal Represented in Time Domain 25

2.6 Noise Corrupted Musical Signal Represented in Transform Domain 26

2.7 Denoised Musical Signal Represented in Transform Domain (Small Co-

efficients Discarded) Here we set a threshold value and remove the smallest

coefficients thereby gaining a higher SNR . 26

2.8 Denoised Musical Signal Represented in Time Domain The signal is recon-

structed from the thresholded coefficients of Figure 2.7. 27

3.1 Wavelet Transform Coefficients Plotted Against Time and Frequency Each

coefficient can be localized in time and frequency simultaneously. The noise is spread

out evenly, and much of it can be removed by setting all the light coefficients to zero. 31

3.2 Time Waveform and Fourier Transform of the Same Signal of Figure 3.1

Although the Fourier transform does give information about the signal of interest

(that it has a lot of low-frequency energy), it doesn't show the structure seen in

F igure 3.1. 32

3.3 General Filter Bank A signal of length N can be filtered into M frequency bands,
resulting in approximately M x N output samples 33

3.4 Two Channel Filter Bank with Downsampling The downsampling operator

makes it possible to maintain the same number of samples in the transform domain

as the time domain. No information is lost if the filters are chosen judiciously. 34

3.5 Four Channel Filter Bank Tree structures such as these prove to be computa-

tionally efficient due to the recursive nature of the tree. 34

- 13 -

List of Figures

4.1 Filter Bank Complete with Reconstruction This is a two-channel filter bank. If
no processing is performed, the filters Ho (z), H1 (z), F0 (z), and F1 (z) can be chosen
to perfectly reconstruct x[n], i.e., s[n] = x[n - 1], where I is the delay in samples.
Larger tree structures can be built from this basic system. 35

4.2 Equivalent Polyphase Form of System in Figure 4.1 The polyphase form is
easier to analyze and also faster to implement since the downsampling occurs before
the filtering. 36

4.3 Polyphase Analysis Bank . 37

4.4 Polyphase Analysis Bank (Expanded) . 38

4.5 First Noble Identity in Block Diagram Form 38

4.6 Analysis Bank (Intermediary Form) . 38

4.7 Analysis Bank (Standard Form) . 39

4.8 Construction of a Single Basis Function Here we construct a basis function
by passing one impulse through a reconstruction bank. Four different shapes will be
produced, along with their respective shifted versions as seen in Figure 4.9 40

4.9 Basis Functions of System in Figure 4.8 Notice that there are only four distinct
basis function shapes. The total number of basis functions will be equal to the length
of the decomposed signal. 41

7.1 Output Sequences for Paraunitary and Unimodular Systems We see that
the unimodular system has the striking advantage of possessing very little shift delay.
The challenge, however, is to design the filters to be useful 55

- 14 -

List of Tables

6.1 Multiplications for the Analysis Tree This filter bank has filters of length 30.

Note that at each stage, there are more channels, but the signal lengths become

shorter, resulting in an almost linear relationship between number of stages and

number of multiplies. .. 49

6.2 Multiplications for the Synthesis Tree Notice that there are slightly more

multiplies associated with reconstructing the signal than with analyzing it. Also

notice that the output signal has been elongated by the approximate length of the

basis functions (- 7332). To conserve perfectly the length of the signal throughout

the transform, a circular transform should be taken. 49

6.3 Multiplications for the Naive Block Causal Analysis Tree Implementation

The number of multiplies associated with this transform is extremely high because

nothing is precalculated, and multiplications occur as far upstream as possible. . . . 52

- 15 -

Chapter 1

Introduction

In this thesis we look at a certain class of systems: wavelet filter bank systems. We are interested

in using them in real-time to denoise audio.

The motivation for this work is derived from the desire to use these relatively efficient systems

to operate in a setting different from internet related application, where wavelets have gained much

attention. Internet compression applications are similar to our denoising system, but do not require

a strictly causal system. Our system is geared towards the goal of denoising a piece of audio on

the fly, so it could be used quickly in recording situations, or for live performance. This idea sets

up an interesting challenge and creates a new angle for viewing these fascinating wavelet systems.

1.1 Organization of Thesis

The thesis is naturally broken into eight chapters, including this one. Chapters 2, 3, and 4 present

background material necessary for the understanding of the more subtle discoveries explained in

the later chapters. Wavelet systems are different from linear time-invariant systems because they

involve a non-time-invariant operator, the downsampler. It's for this reason that these background

chapters are included. The three chapters provide a self-contained foundation of material that can

easily be referred to while reading the remainder of the thesis.

Chapter 2 describes the theoretical basis for the denoising algorithm as seen in from the point

of view of stochastic theory. Several terms are defined which will be used frequently throughout

the thesis. Also included in Chapter 2 are several interesting and key plots that were created using

our system. They have been chosen to make certain theoretical points, however they also represent

a graphical product of our work.

Chapter 3 approaches the system from a different angle; that of the joint time-frequency

plane. We show that this is an intuitively satisfying way to view the process. Showing that filter

banks can naturally arise out of the assumptions of this chapter, we set the stage for the following

chapter which describes discrete wavelets, and wavelet transforms in general. In Chapter 3 we

- 17 -

Introduction

also discuss the very important concept that a good denoising system must take into account the

natural time-frequency characteristics of the human ear, as well as the mathematical structure of

the input signal.

Discrete-time wavelets are introduced in Chapter 4. We derive the conditions for "perfect

reconstruction", and introduce the "polyphase matrix". Also discussed are the delays associated

with orthogonal transforms. This chapter concludes the necessary background for the rest of the

thesis.

Chapter 5 is concerned with the measures of performance for our systems, and presents

results about the time/frequency resolution associated with our system. The chapter introduces in

more detail than previous chapters the problems faced in our actual implementation.

Chapter 6 contains the primary results of our research. We discuss four different methods of

implementing a wavelet filter bank system, and compare the number of multiplies that are required

for computation. The concern in this chapter is that of the computational delay associated with

these types of transforms. Also discussed are general conclusions applicable to other problems in

signal processing.

Chapter 7 presents our findings with respect to overcoming delays not associated with com-

putation, but with the inherent structure of the system. We show that there exists a certain class

of matrices called unimodular, that help to greatly reduce the unavoidable delay suffered by the

heavily studied paraunitary matrices. We see that it is difficult to design such matrices to meet all

of our constraints, and view this topic as an opportunity for future research.

Finally, in the Conclusion, we recount our findings and suggest possible other research areas

that appear fruitful. The Appendix holds the C code used to perform our transformations. The

code takes as arguments an input signal, output data file, threshold for coefficient squelching,
number of frequency bands desired, and four filters for analysis/synthesis.

- 18 -

Chapter 2

Transformations and Basis Functions

2.1 Transformations

In order to discuss different classes of transforms, it's necessary to make clear the definition of a

transform. This thesis uses the term transform liberally. When a sequence of numbers is altered in

any way, it has been transformed. For example, passing a signal through a low-pass filter is a type

of transform; the "convolution" transform. This concept of generalized transforms proves to be a

valuable way of thinking about signal processing in general.

x[n] No TRANSFORM X[k]

Figure 2.1: A Transform

2.1.1 Basis Functions

Another valuable conceptual tool is the idea of basis functions. A signal of length 5 has 5 values

that indicate the weighting of 5 individual basis functions. In the time domain, the basis functions

are {0 0 0 0 1}, {0 0 0 1 0}, {0 0 1 0 O}, etc. Each one of the time basis functions represents a point

in time. Likewise, the discrete Fourier basis functions are the complex exponentials !ej(2,/ 5)0 n,

Iej(27r/5)ln 1eJ(2r/5) 2n 1ej(27/5)3n iej(2x/5)4n. These functions are naturally derived from theI '5 '5 '5 _I

definition of the DFT shown below [13]. All basis functions are referenced to the time (n) domain.

N-1

x[n|=] X[k]e2/N)kn(2.1

k=0

- 19 -

Transformations and Basis Functions

2.1.2 Orthogonality of Basis Functions

Two basis functions are considered orthogonal if they have zero correlation with one another. In

precise terms, if fj[n] and fk[n] are two orthogonal basis functions, they must satisfy

00

(2.2)E fj [n]fk[n] = , j3 k.
n=-oo

A basis is an orthogonal basis if all the basis functions are each orthogonal with one

another. The basis is orthonormal if the correlation of each of the basis functions with itself is 1:

00

fk[n]fk[n] = 1 for all k.
n=-oo

(2.3)

Note that (2.3) is actually a measure of energy since it is a sum of squares. An orthonormal

transform is a transformation that can be written in the form (2.4). This merely states that the

time series x[n] can be written as a weighted sum of mutually orthonormal basis functions:

N-1

x[n] = E X[k]fk[n], fo, fi, ... , fN-1 orthonormal.
k=O

(2.4)

It's worth pointing out a few important properties of orthonormal transforms. The first is

that the transforms are energy preserving. This is seen neatly in the following small proof.

- 20 -

2.1 Transformations

N-I N-I

S x2[n] = (X[]fo[n] + X[1]fi[n] + X[2]f 2[n] +n...)2
n=0 n=0

N-1 N-1

5 2[n] = {(X2[0]f02[n] + X 2 [1If 2[n]+ ...) + (X[O]X[1]fo[n]fi[n] + ...)}
n=O n=O

N-1

X2[n] = X 2 [0] + X 2 [1] + X 2 [2] +
n=0

N-1 N-1

X2[n] = X2[k]
n=O k=O

(2.5)

(2.6)

(2.7)

(2.8)

A second property of orthonormal transforms follows from the above proof. The components

in the transform domain are energetically decoupled. So setting a transform coefficient X[ko] to

zero removes exactly X 2 [ko] of "energy" from the signal in both the time and transform domains.

2.1.3 Vector Spaces

Exploring further the concept of orthonormal transformations, we see that these operations can

be thought of as coordinate system rotations. Take for example a deterministic signal that can be

represented by two points in time, say {1 1}. This signal point can be plotted on the orthonormal

"time" coordinate system shown in Figure 2.2 where the x-axis and y-axis represent the trivial basis

functions {1 0} and {O 1} respectively. Transforming this signal to a different orthonormal basis

corresponds to rotating the axes of the "time" coordinate system. This is proven simply because

of the fact that an orthonormal transform must preserve the energy of the signal. The "energy" of

the signal is calculated by squaring the signal's distance from the origin, in this case 12 + 12 = 2.

1-

-1

-1-

- S

1

Figure 2.2: Signal {1 1} A deterministic signal of length 2 represented as a point on a plane

The coefficients of the transformed signal are constrained by this energy preserving property.

- 21 -

Transformations and Basis Functions

Thus the transform coefficients co, ci must be related by c2 + c2 = 2 This is the equation of a circle

about the origin, so in this two dimensional example all that's needed to specify the orthonormal

transform is a rotation angle.

Note that angle of rotation can be chosen such that all the energy is contained in one

transform coefficient. Choosing the transform in this way implies that one of the basis functions is

pointed exactly in the same direction as the signal of interest. In other words it is a scaled version

of the signal of interest (in this case 1{1 1}). The other basis function[s] would naturally be

orthogonal to the signal, (in this case {1 - 1}). Figure 2.3 shows the geometry of this example.

Figure 2.3: Transformed Signal {V2 0} An orthonormal transformation corresponds to a
rotation of axes. In the above case, the axes are rotated so as to align with the signal point.

As implied above, these concepts hold in many dimensions as well as just two. Of course it

is difficult to visualize a signal of length 5 as being a point in a 5 dimensional space, save visualizing

an infinite dimensional space as would be required in general for a continuous-time signal. The

problem of aligning the axis in the same direction as the signal of interest can be thought of as an

eigenvalue/vector problem.

2.2 Estimation of a Stochastic Signal

2.2.1 Karhunen-Loeve Transform

The example in Section 2.1 showed how a deterministic signal can be represented in two different

orthonormal bases. In this thesis we are concerned with musical signals which are random in

some senses and organized in others. The relation between randomness and organization can

be quantified approximately by the autocorrelation function #$2[m], which explains how strongly

correlated different sample points are with one another. Equation (2.9) defines the autocorrelation

function where E{x} is the expectation of the random variable x. Note that it makes the assumption

that this function is the same for all n, which is reasonable in most cases.

- 22 -

2.2 Estimation of a Stochastic Signal

#xx[m] = E{x[n]x[n + m]} (2.9)

The autocorrelation function allows us to speak in probabilistic terms about random se-

quences. Since we don't know a priori the energy distribution among the samples of a random

process, we settle for what we do know which is the expected energy distribution among the sam-

ples. We will see later that an interesting transformation is one that squeezes the most expected

energy into the least number of transform coefficients. Figures 2.2 and 2.3 show this type of trans-

formation where the signal is not stochastic. The same example is depicted in Figure 2.4, where

the signal is stochastic and can be described by the autocorrelation matrix,

E{x[0]x[0]} {x[0]x[1]}] [#2[0] #Xz[1 i - . (2.10)

£{x[1]x[0]} E{x[1]x[1]} #'2X[-1] #5[0] . 1

Notice that the autocorrelation matrix is related only to the second-order statistics of the

random process. The complete probability density functions for each random variable in the random

sequence are not known. For most circumstances, this is all right, and the autocorrelation matrix

proves useful. Figure 2.4 assumes that the probability density functions of each of the two samples

are both Gaussian with zero mean.

Possible realization

Figure 2.4: Stochastic Signal of Length 2 A signal specified only by a mean and an autocorre-

lation matrix. The ellipses are lines of constant probability.

The same transform used to rotate the coordinate system in Figure 2.3 could be used in this

stochastic example to maximize the expected energy difference between x[0] and x[l]. This linear

orthonormal transformation is called the Karhunen-Loeve transform and is optimal in the sense

that it diagonalizes the autocorrelation matrix, and consequently places the expected energies of the

transform coefficients at their maxima and minima (the eigenvalues of the autocorrelation matrix).

- 23 -

Transformations and Basis Functions

The basis functions are the eigenvectors of the autocorrelation matrix. So in the above example, we

see that the basis functions of the KLT (Karhunen-Loeve Transform) are { -1 }, and {-2 - 9}.

More importantly the expected energies of the transform coefficients (the eigenvalues) are 1.9 and

.1. One is big and one is small.

The KLT transforms a stochastic signal into a signal with very large and very small coef-

ficients. If it were necessary to approximate the signal with only a few coefficients, this property

would be ideal; we needn't keep the tiny coefficients - only the big ones. We might be able to store

99% of the signal's energy in half the number of coefficients. This forms the foundation of most

compression schemes.

2.2.2 Stochastic Signal with White Noise

Consider a stochastic signal comprised of nothing but white noise. Process v[n] is white if there

is no correlation between any two sample points, i.e., the autocorrelation function is given by

Equation 2.11.

#,,[m] = avo6[n] (2.11)

This corresponds to an autocorrelation matrix that is given by Equation 2.12.

&{V[0]v[0]} E{v[0]v[1]}

EFfv[1]v[0]} 6fv[1]v[1]}
q$VV[0] #vv [1]

$vv[-1] pVV[0]

The autocorrelation matrix as shown in Equation 2.12 is a multiple of the identity matrix,
and therefore has eigenvalues that are always av regardless of the orthonormal transform. Geomet-

rically, lines of equal probability form circles - not ellipses, so every orthonormal transform is the

KLT for white noise [14].

- 24 -

aov 0

0 a1V

(2.12)

2.2 Estimation of a Stochastic Signal

2.2.3 Denoising A Stochastic Signal

This leads to the main method of denoising used in this thesis. Given a stochastic signal (music)

corrupted with white noise, we seek a method of extracting the signal from the noise. The method

used is similar to that used in compression. An orthonormal basis is found (preferably related to,

the KL basis), and the signal is transformed to that vector space. Small coefficients are discarded,

and the signal is transformed back to the time domain.

Because the transform is presumed linear, and the signal of interest is a linear sum of music

x[n] and noise v[n], we expect the energy of the musical part to aggregate itself in a few coefficients

(as promised by the KLT) and the distribution of energy of the noise to be unaffected by the

transformation. Therefore removing small coefficients removes more noise than music (especially

if the noise was small to begin with). For example if the musical part of a signal of length 1000

happened to aggregate almost all of its energy into 50 coefficients, removing the other (small)

coefficients would result in removing 95% of the noise (along with a small amount of signal). The

Figures below make this point graphically.

0 50 100 150 200 250 300 350 400 450

Figure 2.5: Noise Corrupted Musical Signal Represented in Time Domain

- 25 -

500

Transformations and Basis Functions

1

Figure 2.6: Noise Corrupted Musical Signal Represented in Transform Domain

l ' I I I I I I I III I
0 50 100 150 200 250 300 350 400 450

Figure 2.7: Denoised Musical Signal Represented in Transform Domain (Small
cients Discarded) Here we set a threshold value and remove the smallest coefficients
gaining a higher SNR

- 26 -

500

Coeffi-
thereby

0 50 100 150 200 250 300 350 400 450 500

Figure 2.8: Denoised Musical Signal Represented in Time Domain The signal is recon-

structed from the thresholded coefficients of Figure 2.7.

Chapter 3

Joint Time-Frequency Analysis

There are multiple ways of understanding the denoising scheme of Chapter 2. Karhunen-Loeve

methods treat a musical signal like an arbitrary stochastic signal. The KL methods make the

assumption that nothing except the autocorrelation matrix and the mean are known about the

signal. Because of this, the KLT bears a high computational cost both in calculating the basis

functions, and in actually transforming the signal [7]. Other methods are better for real-time

processing.

3.1 Smooth Signals and the Time-Frequency Plane

The signals we are interested in denoising in this thesis are smooth, meaning that they are comprised

of bursts of sine waves. That is the nature of music and many other natural processes. Music is

made up of sequences of notes, each with harmonic content and each lasting for finite durations.

Because of this information we can readily establish a basis that approximates the KL basis without

enduring an undue amount of computation. The approximations are more intuitive and can prove

to be more appropriate also.

The goal of the KL basis is to lump large numbers of highly correlated samples into only a few

transform coefficients. Because the signals of interest are made up of small bursts of harmonically

related sine waves, a good basis would be one in which one transform coefficient represented one

sine wave burst.

Good bases like these are important for just the reasons outlined above. One such basis is

the Short-Time Fourier Transform (STFT) [13], defined in Equation 3.1.

L-1

X[n, k] = E x[n + m]w[m]ej(2 x/N)km (3.1)
m=o

- 29 -

Joint Time-Frequency Analysis

The STFT is not orthonormal in general, but possesses the desirable property that the basis

functions are time limited sine waves (similar to musical notes). Applying the STFT is identical

to taking a spectrogram of the signal. It shows how the frequency content of the signal changes

through time. The signal is transformed from the time domain to the time-frequency domain.

The time-frequency domain is a good place to operate from when denoising an audio signal.

Unlike the pure frequency (Fourier) domain, there are many different transforms that could be

classified as time-frequency transforms. This thesis explores the implementation of wavelet

transforms, which are designed to efficiently transform from the time domain to the time-frequency

domain. The wavelet transform's basis functions are little waves of finite duration, hence the name

"wavelet".

Figure 3.1 is a plot of the transform coefficients of a wavelet expansion of a piece of music

corrupted by noise. The music consists of a metronome clicking each beat and a guitar playing

an ascending scale. Each dot represents one transform coefficient. Because the basis functions

are localized in both time and frequency, each transform coefficient occupies a region in the time-

frequency plane. In the plot, we can see information about the signal that we couldn't see in either

the pure time or pure frequency domains (Figure 3.2). There are many beautiful elements of wavelet

transforms, and one is that orthogonality is possible. The transform used to create Figure 3.1 is

orthogonal.

Notice that if we just used a low-pass filter to attempt to remove the small coefficients

from the Fourier domain, we run the risk of losing the sharpness (high frequency content) of the

metronome clicks. The joint time-frequency domain allows for removing selective coefficicients

without disturbing the natural time-frequency structure of the music. Most of the music's energy

is in the low frequency bands, but the attack of the metronome clicks are important too. Human

ears hear music in both time and frequency. So the basis functions we choose should reflect a

balance between what's important to the ear, and what's implementable [9]. The Karhunen-Loeve

transform represents an optimal compression algorithm because it creates the best approximation

of the signal with the fewest coefficients, but it might not be what the ear is looking for. This is

why (although related to the KLT sometimes), working in the joint time-frequency plane is better.

3.2 Time-Frequency Transforms by Filter Banks

A way to transform a signal from the time domain to the time-frequency domain is through the use

of filter banks. The signal is put through parallel filters each of which corresponds to a different

frequency band. The outputs of this type of system (shown in Figure 3.3) are multiple streams of

- 30 -

3.2 Time-Frequency Transforms by Filter Banks

C it

II 0 0
41, fi

400 500
Time

600 700 800 900 1000

Figure 3.1: Wavelet Transform Coefficients Plotted Against Time and Frequency Each

coefficient can be localized in time and frequency simultaneously. The noise is spread out evenly,
and much of it can be removed by setting all the light coefficients to zero.

- 31 -

120

100

80

>1

Ur

4)
LL 60

iI

i t40

20

, I

I quoJ ~
100 200 300

Joint Time-Frequency Analysis

x104
4

2-

0

-2--

.-41
0 2 4 6 8 10 12

X104 Time Samples x10 4

4

x14 24 6 8 10 12

2

0

-2

-4

0 2 4 6 8 10 12
Frequency Samples x10 4

Figure 3.2: Time Waveform and Fourier Transform of the Same Signal of Figure 3.1
Although the Fourier transform does give information about the signal of interest (that it has a lot
of low-frequency energy), it doesn't show the structure seen in Figure 3.1.

- 32 -

3.2 Time-Frequency Transforms by Filter Banks

coefficients. The STFT can be organized this way. Because the signal has been smeared through

filters, each transform coefficient no longer corresponds exactly to a point in time. The coefficients

correspond to regions of time, the size of which is dictated by the length of the filters in the bank.

A filter bank as shown in Figure 3.3 produces M times as much data as is contained by the

signal. Most useful transforms maintain the same number of coefficients across domains, and this is

guaranteed to be the case for orthogonal transforms. This is the motivation behind downsampling.

In essence, the downsampling operator discards every other sample of a signal, and squeezes the

remaining sample points into a sequence half its original length. Equation (3.2) defines this operator

precisely.

x[n] Ho(z) yo[n]

H1(z) y1[n]

HM_1(z) yM-1[n]

Figure 3.3: General Filter Bank A signal of length N can be filtered into M frequency bands,
resulting in approximately M x N output samples

y[n] = (4 2)x[n] = x[2n] (3.2)

A two-channel wavelet filter bank is shown in Figure 3.4. It is fine to discard half of the

output samples, because the filters can be designed such that any information lost in one channel

is kept in the other. So if Ho(z) is low-pass, we might wish H1(z) to be high-pass. In this way each

of the two transform samples occupies a different region in frequency. A transform like this cuts

the time-frequency plane into 2 frequency parts, and N/2 time parts, where N is the length of the

time signal.

It's extremely advantageous to maintain the same number of coefficients across the trans-

form. This is because the real challenge of denoising (and taking transforms in general) lies not

necessarily in the theory, but in the computation time. Faster is better. Unless needed for subtle

reasons, redundant data should be discarded.

- 33 -

Joint Time-Frequency Analysis

Ho2z) yo[n]

x[n]

-H1(z) 2 y1[n]

Figure 3.4: Two Channel Filter Bank with Downsampling The downsampling operator
makes it possible to maintain the same number of samples in the transform domain as the time
domain. No information is lost if the filters are chosen judiciously.

Using filter banks and downsampling, one can create systems of arbitrary complexity. For

example, a bank like the one in Figure 3.3 can be designed with the addition of 4 M operators

to eliminate hidden redundancy. Alternatively, two more two-channel banks could be put after

the two outputs yo and y1 of Figure 3.4, resulting in a four-channel system. Carried further, this

branching of banks results in large tree structures that turn out to have very nice computational

properties. Figure 3.5 shows such a structure. Note that a structure like this also is guaranteed to

be orthogonal if the intermediary two-channel banks were orthogonal.

Ho(z) 2 yo[n]

Ho(z) 2

H1 (z) 2 y1 [n]

x[n]

Ho(z) 2 y2 [n]

H(z) 2

HI(z) 2 Y 3[n]

Figure 3.5: Four Channel Filter Bank Tree structures such as these prove to be computationally
efficient due to the recursive nature of the tree.

The next chapter will look closely at filter banks such as the ones illustrated above. In

particular we will find that systems like these can be designed to perfectly reconstruct the input

given the transform. So investigating the inverses of these banks is the primary topic of Chapter 4.

We will calculate the conditions for perfect reconstruction, and also see that we can create many

different filter bank systems that are orthogonal or have other properties if needed.

- 34 -

Chapter ,

Discrete- Time Wavelets and Perfect

Reconstruction

The topic of wavelets is multifaceted. Mathematicians have their reasons for investigating them, as

do engineers. This thesis is concerned with the possibility of using wavelet transforms (transforms

composed of filter banks as depicted in Figure 3.4) to remove noise from a signal in real-time.

The motivation stems from the fact that the transforms are fast (comparable to the FFT) [19],

and they convert from the time domain to the joint time-frequency domain which is ideal for denois-

ing music and most other natural processes. The process is non-linear since it involves squelching

coefficients to zero, not simply filtering them. The transform is non time-invariant since it involves

downsampling. It might be possible to achieve close to real-time denoising in new and improved

ways with wavelets.

4.1 Conditions for Perfect Reconstruction

One of the advantages of working with wavelet transforms is that the analysis transform can be

viewed as a filter bank. Similarly, the synthesis transform (inverse of the analysis transform) can

also be represented as a filter bank. We will look first, though, at the system shown in Figure 4.1.

Ho(z) ej2 N2 F(z)

H1(z) 2 2 F1(z)

Figure 4.1: Filter Bank Complete with Reconstruction This is a two-channel filter bank. If

no processing is performed, the filters Ho(z), H1(z), Fo(z), and F1(z) can be chosen to perfectly
reconstruct x[n], i.e., [n] = x[n - 1], where 1 is the delay in samples. Larger tree structures can be

built from this basic system.

Referring to Figure 4.1, we wish to find filters Ho(z), H1(z), Fo(z), and F1(z) such that

- 35 -

Discrete- Time Wavelets and Perfect Reconstruction

z[n] = x[n - 1], where I is an overall delay. Further, it's desirable to work with causal FIR filters.

Since this thesis is concerned with near real-time processing, I should be made as small as possible.

Depending on what properties of the transform are desired, a small I may or may not be possible.

The system is rewritten in what's known as the polyphase form shown in Figure 4.2. Even-

indexed samples are put through the first channel, and odd-indexed samples through the second.

Then they meet the analysis polyphase matrix, H, (z), which filters the samples appropriately.

Likewise on the synthesis side, the samples are put through the corresponding synthesis polyphase

matrix, G, (z), upsampled (zeros inserted between the samples), and multiplexed. This is a useful

form to work with because the conditions for perfect reconstruction (when no processing occurs) are

reduced to the constraint that the product of the two polyphase matrices equal the identity. Also

the polyphase form is more efficient from a computational point of view, since the downsampling

is done before the filtering, saving computation.

-1 01 12

Figure 4.2: Equivalent Polyphase Form of System in Figure 4.1 The polyphase form is
easier to analyze and also faster to implement since the downsampling occurs before the filtering.

Equation (4.1) shows the requirement for perfect reconstruction in terms of the polyphase

matrices. It's important to recognize that an identity matrix scaled by delay z-1 in between

the downsampling and upsampling will result in perfect reconstruction. If the polyphase matrices

themselves were identities, the system reduces to a demultiplexer/multiplexer. It is more interesting

when the two polyphase matrices are meaningful with respect to the time-frequency plane, i.e., they

perform frequency filtering functions.

G,(z)H, (z) = z-'I (4.1)

Equation 4.1 can be written in expanded form,

Goo(z) Goi(z)] Ho(z) HOi(z)j =z-1 0,(.)
Gio(z) Gii(z) Hio(z) HuI(z) 0 z

Note that if this were a single channel system, i.e., a filter and an inverse filter, it would

- 36 -

4.1 Conditions for Perfect Reconstruction

be impossible to achieve perfect reconstruction unless one of the two filters were IIR. This is not

the case with the two channels, and it is another reason a system like this is special. Many sets of

filters satisfy the perfect reconstruction constraint. It is not the goal of this thesis to analyze the

pros and cons of each set. It serves as good background to mention a few things about a couple of

them, however.

4.1.1 Haar and Conversion from Polyphase Form

Perhaps the simplest set of filters that satisfies PR (perfect reconstruction) is the Haar filter set.

The filters in the Haar Polyphase matrix are scalars - they are zero for all n -$ 0 (4.3). They also

create an orthogonal transform. All orthogonal transforms have the property that the inverse of

the synthesis matrix is the conjugate transpose of the analysis matrix (G, (z) = H*T (z)). This is

trivial for the Haar example.

010 (4.3)
i iJi 1 0 1

G, (z) Hp (z)

It is useful to convert the polyphase form into the more standard filter bank form shown in

Figure 4.1 because it lends insight into which frequency bands the transform coefficients represent.

Figure 4.3 shows the analysis filter in polyphase form. This notation is equivalent to the diagram

in Figure 4.4. To understand the step from Figure 4.4 to Figure 4.6, one must use the "First Noble

Identity" depicted in Figure 4.5 [19]. So Figure 4.7 finally shows the analysis bank in standard

form, in terms of the polyphase filters. This relation can be summarized in (4.4). Similarly, the

relation for the synthesis bank can be written as in (4.5).

2 [Hoo(z) Hoi(z)1 C [n]

x[n] I
1 I 2 [Hio(z) Hu(z)J ci[n]

Figure 4.3: Polyphase Analysis Bank

- 37 -

Discrete- Time Wavelets and Perfect Reconstruction

Figure 4.4: Polyphase Analysis Bank (Expanded)

x[nj M G(z) y[n]

x[n] G(z M) M y[n]

Figure 4.5: First Noble Identity in Block Diagram Form

Figure 4.6: Analysis Bank (Intermediary Form)

- 38 -

x[n]

co[n]

cl [n]

x[n]

co[n]

c1[n]

4.1 Conditions for Perfect Reconstruction

so Hoo (z 2) + z-'Hoi (Z2) 2 co[n]

x[n]

M- H1o(z2
)+ z'HiI(z2

) 2 ci[n]

Figure 4.7: Analysis Bank (Standard Form)

Ho(z) Hoo(z2) Hoi(z2)~

H1 (z) Hio(z2) H11(z2) z- 1

F0z 2 Hz)11

Fo(z)1 Foo(z2) F10 (z2)] z- (4.5)
F1(z) Foi(z 2) Fu(z2) 1 1

With the above relations ((4.4) and (4.5)), we can create a standard filter bank given a

transfer function (polyphase) matrix and its inverse. Only some analysis/inverse pairs are useful,

however. The ones that are useful are usually those that produce low and high pass filters, since

low and high pass filters can serve to transform into the joint time-frequency domain.

In the case of the Haar polyphase matrix, we can use relations (4.4) and (4.5) to find that

the corresponding standard filters are Ho(z) = + z-1 and H1(z) = - z-1. So we see

that the Haar bank does consist of a low and a high pass filter.

4.1.2 Determining Basis Functions

Just as it is meaningful to study the filters used to convert into the transform domain, it is important

to know the functions that the transform coefficients represent, i.e., the basis functions. These can

be calculated by eigen methods, or alternatively by simply taking impulse responses of the synthesis

system. All the transforms that we have considered have been linear (perhaps not time-invariant),

so the concept of linear basis functions applies.

In the case of the Haar bank in the above example, all that's needed to determine a basis

function is to reconstruct a signal ,[n] from only one transform coefficient channel (co[n] = 6[n] for

example). In the case of a two channel bank such as Haar, the two basis functions (one for each

channel) are found by running o[n] through an upsampler and then through either Fo(z) or F1 (z).

- 39 -

Discrete- Time Wavelets and Perfect Reconstruction

The remaining N - 2 basis functions are found similarly using 6[n - 1] in place of 6[n]. In a two

channel filter bank shown in Figure 4.1, a shift of 1 in the transform domain corresponds to a shift

of 2 in the time domain. So the basis functions are composed of only two distinct shapes, repeated

and shifted by two from one another.

This concept of synthesizing impulses to create basis functions proves valuable. The Haar

basis function shapes are Vo(z) = + -- 1z-- and Vi(z) =- + z-1. Figure 4.8 shows the

construction of basis functions by this method for a four channel system. It's interesting that every

function can be represented as a sum of these four functions and their shifts by four. By this same

construction the functions of Figure 4.9 are found. It is these basis functions that are referred to

as the "wavelets".

s s2 Fo(z)

2 -- +Fo (z)

688826---+ Fo(z)

S2 - F1(z

666996-2 F- F(z)

Figure 4.8: Construction of a Single Basis Function Here we construct a basis function by
passing one impulse through a reconstruction bank. Four different shapes will be produced, along
with their respective shifted versions as seen in Figure 4.9

4.2 Conjugate Transpose

This section will examine the condition for orthonormality among the basis functions. Orthonor-

mality imposes conditions on the polyphase matrix: it's inverse must be its conjugate transpose.

Another way to arrive at the basis functions is by synthesizing impulse responses as above but

in the polyphase form. This takes the form of a product of the polyphase matrix and a vector of

the form {1 0 0 ...}, {0 1 0 ...}, etc. These multiplications have the effect of isolating columns of

the polyphase matrix. The requirements for orthonormality, given in Chapter 2 are that the basis

functions must have no correlation with one another, and they must have unity correlation with

themselves.

It is just these requirements that are met by matrices that have their conjugate transpose

as their inverse. This can be seen readily by multiplying such matrices by hand. Since they are

- 40 -

4.2 Conjugate Transpose

~~eeseese ee 0 0eeeeeee------- e

------------------------- eee~ee

------------------------- p ~s~p p

---------------------------------s~p

---------------- ------------ ---

---------------- ---------------

---------------------------------e e

- --pp p p p

Figure 4.9: Basis Functions of System in Figure 4.8 Notice that there are only four distinct

basis function shapes. The total number of basis functions will be equal to the length of the

decomposed signal.

inverses of one another, their product is the identity,

Hoo(-z) Hio(-z) Hoo(z) Hoi(z) 1 0

Hoi(-z) Hii(-z) Hio(z) Hu1(z)J [.0 1
(4.6)

The off-diagonal zeros are formed by products like Hoo(-z)Hoi(z) + Hio(-z)H11(z) = 0.

Expanding this expression in the n domain reveals that it is the correlation function we need to

to satisfy the orthogonal part of "orthonormal." The diagonal 1 terms are the normal part of

"orthonormal." This can easily be verified by hand calculation.

Orthogonality implies that inverse of the polyphase matrix must be the conjugate transpose.

This means that if one matrix is causal, the other must necessarily be anti-causal. In order to

circumvent this problem, we are forced to delay one of the matrices and suffer an overall delay

in the system equal to 1, the length of the longest filter. This satisfies the definition of "perfect

reconstruction" as stated in (4.1), but is not desirable. Later chapters will address possible solutions

to this unfortunate reality, by employing non-orthogonal transforms.

- 41

Chapter 5

Near Real- Time Processing

This chapter along with the next chapters describe the original work done for this thesis. We place

our attention on minimizing the delay associated with the types of transforms spoken of in earlier

chapters. We seek to understand what methods of implementation will result in small delays, and

what limitations different types of transforms possess.

5.1 Motivation for Real-Time

In the signal processing world, faster is always better. "Real-time" is a special case of faster because

it implies that the process not only is computationally efficient, but results in an output signal that

has minimal shift delay (preferably no shift delay whatsoever). This is quite an order for most

systems, especially when a complex operation is desired such as denoising audio signals. In this

thesis there is a tradeoff between system performance (perceived quality of processed audio) and

delay.

In the audio world it is advantageous to have systems that are capable of processing in real-

time. Recording engineers require the flexibility to listen to a recording with and without a given

process on the fly. Moreover, an artist who wishes to perform live is only able to use equipment that

can itself perform live in real-time. Noise is a central problem encountered in both recording and

performing. Conventional yet sophisticated denoising apparatae that are widely used in live audio

are really operating only from the time domain. They are comprised of a gate and a filter that are

controlled (sometimes in clever ways) by the signal level. These systems are indeed effective, but

we are interested in the possibility of increased effectiveness through transforming quickly to the

time-frequency domain, and doing the gating there. Perfect reconstruction wavelet filter banks can

be designed to be computationally efficient, and nearly causal which is ideal for this goal.

- 43 -

Near Real- Time Processing

5.2 Measures of Performance

As to be consistent with the audio engineering literature, the primary performance measure of

denoising must be perceptual [8]. Other more quantitative measures such as signal to noise ratio

(SNR) are not fully representative of what sounds good to a human. When a recording has noise

on it, the SNR can generally be increased by lowpass filtering the signal since most of the signal is

in the lower part of the spectrum. But many have experienced the frustration of turning the treble

down on a stereo system in an effort to make noisy music sound clearer. The ear is not fooled by

such a trick. Certain high frequency attacks of notes (impulses) become smeared when lowpassed,
and the ear realizes this and adjusts its perception. In the mind, there is still the same amount of

noise present, even though the SNR has been increased.

This is the reason for transforming into the time-frequency domain. The impulses in the

music can be preserved. Perhaps there is an optimal time-frequency domain with respect to which

the ear perceieves the best [8]. In any case, the optimal domain to operate from should be called

the "musical" domain. The musical signals themselves have been created by humans for humans.

The domain that we work in should be a balance between what is found mathematically and what

is known about humans and what they're expecting to hear in a clean piece of music.

Because we haven't spent a great deal of time invested in designing optimal filter banks with

respect to perception (we've chosen to focus mainly on implementation issues common to all such

filter bank systems), we certainly have not performed any A-B testing with human subjects. We

have discovered that terrific performance is achieved when the basis functions have lengths on the

order of 7000 samples in a 44.1 kHz sampled signal. This corresponds to about 0.16 seconds in

time.

This figure represents a time/frequency balance where the minimal time resolution is 0.16

seconds and the maximal frequency resolution is about 70010 = 6.3 Hz. Basis functions of this length

can be achieved in two ways, assuming a system of the form shown in Figure 3.5. Long filters can be

placed as Ho(z), H1(z), Fo(z), and F1(z), or more stages can be added to the tree. Both methods

yield good results, although different basis functions are realized. The most important requirement

for satisfactory denoising performance is that the basis functions occupy space in an appropriate

time-frequency plane specified only by the length of the basis function. This length determines

the approximate time/frequency balance which by far outweighs any other parameter (like basis

function shape) in importance.

This is not to say that the basis function shapes are not at all important. It is implied if

the basis functions have been created by a lowpass/highpass filter bank structure such as depicted

- 44 -

5.3 Computational Delays

in Figure 3.5 that the functions will be localized in both time and frequency. This means that the

functions actually will represent a time-frequency domain. One could think of many functions that

are localized in time but not in frequency such as a very high frequency oscillation added to a very

slow one. A signal like this might not occupy a single localized region in frequency, but two split

regions, one high and one low. So we are implicitly prioritizing that the shape of the basis functions

be appropriate. This naturally happens in lowpass/highpass filter banks.

5.3 Computational Delays

As this thesis is targeted at real-time implementation, we are naturally concerned about compu-

tational delays associated with the process. The group delay can be found theoretically. It is

independent of system hardware, and is the delay that would occur if the hardware were infinitely

fast. We have discovered that although there are limitations on this delay (particularly if we choose

to work only with orthogonal filter banks), the computational delay proves to be an even harder

challenge. The hardware we used progressed from a Matlab simulation to a Matlab/C hybrid

language, to purely C compiled on a stand-alone Linux system.

Implementing in C is much faster than working in Matlab. But still it is not fast enough to

keep up with the quickly sampled music. It is good in retrospect that this is the case, because it

forced us to examine our computation methods very closely. Even though computers are becoming

ever increasingly fast, the advances spur on more drive for even more sophisticated signal processing.

It is naive to think that more computational power will solve signal processing problems.

Even the simplest of processes take on different forms when one tries to fully implement

them. Take for instance convolution, which is represented by the * symbol. There are multitudes

of methods of implementing this' [5], even though it is only a single concept in the abstract world

of signals and systems. Each method has advantages and liabilities. Such is the case with our large

tree structure. The next chapter, which is at the heart of the thesis, will explain our findings with

respect to this implementation, and will generalize to a variety of other systems.

- 45 -

'Overlap/Add, Overlap/Save, etc., etc.

Chapter 6

Implementation of Wavelet Filter Bank Tree

This chapter examines the heart of the thesis: how best to implement wavelet filter bank systems

with the intent of using them in near real-time. The goal of the thesis is to find a system that can

be implementable in real-time, however this chapter deals primarily with finding the most efficient

method of computation. This was found to be an equally, if not more important concern in the

design of a system for operation in real-time.

Four different methods are considered and their associated computational costs are com-

pared, using the required number of multiplies as a measure of computational efficiency. None of

the methods implemented on our 200 MHz PC could keep up with the sampling rate of the music.

It is natural to attempt to overcome this problem before diving heavily into designing a system

with zero group delay, although the next chapter recounts our efforts to do just that in spite of

significant computational delay.

The following are methods of implementing transforms like the one represented in Figure 3.5,

and its associated synthesis transform.

6.1 Minimal Delay Expected

A system as in Figure 3.5 has with it a certain minimal number of time steps that are necessary

before one output sample is generated. This is what we will refer to as the minimal delay. Whereas

the output of a linear filter depends on the current sample and previous samples, the transform

coefficients in filter bank systems depend on the current block of M = (number of channels) samples,

and past blocks. This is caused by the inclusion of the downsamplers. So for any given tree system,

the minimal delay is equal to the number of channels. This delay is unavoidable, but small in

comparison to other delays.

- 47 -

Implementation of Wavelet Filter Bank Tree

6.2 Non-Causal Approach

The most direct method is implemented by taking the whole signal and running it through each

filter separately, downsampling, running the entire result through the next stage of filters, and so

on. This is clearly not an option for us since it requires the entire signal in advance. It is non-causal,
but might work theoretically for signals that are to be post-processed, such as previously recorded

music. Even if we had access to the whole signal before processing, this idea has the same major

pitfalls that convolving enormous signals has. Unless the signal of interest is short, it is unwieldy

to work with in this way, due to memory constraints.

It is important to study the number of multiplications that are associated with this direct

method, however, because it lends insight into the cost or benefit of computing the same result in

another fashion. We did not actually implement this system for the reasons stated above (memory),
but the number of multiplications can nevertheless be computed.

The specific transform that was studied in this thesis is a 128 channel filter tree with length

30 filters. Assuming an input signal of 10, 000 samples, we can calculate the number multiplications

this direct method would require.

A convolution operation between two signals, of lengths m and n, requires m x n multipli-

cations. Convolution followed by downsampling can be produced in " multiplications, since it

is not necessary to calculate the samples that will be discarded. The length of a convolved signal

becomes m + n - 1. A signal of length n becomes a signal of length ' or if odd n-1 after down-

sampling. Also, upsampling a signal of length n results in a signal of length 2n - 1. Upsampling

followed by filtering requires "2)m multiplications. From these facts, we can derive the number

of multiplications required for all of our implementations.

The number of multiplications that the direct method requires can be found by constructing

Table 6.1. Similarly, on the synthesis side, we can calculate the number of multiplies that would be

required by constructing Table 6.2. The total number of multiplies associated with this process is

the sum of the two totals: 421, 438, 980. As a rule of thumb, the number of multiplies for a system

like this, assuming a long input signal relative to the length of the filters 1, and number of stages

r, will be on the order of 2Nlr, where N is the length of the input signal.

- 48 -

Stage Channels Length of Signal After Multiplies/ Multiplies Total

Filtering/Downsampling Channel

Oa 1 1000000 0 0 0
la 2 500015 15000000 30000000 30000000
2a 4 250022 7500225 30000900 60000900
3a 8 125026 3750330 30002640 90003540
4a 16 62528 1875390 30006240 120009780
5a 32 31279 937920 30013440 150023220
6a 64 15654 469185 30027840 180051060
7a 128 7842 234810 30055680 210106740

Table 6.1: Multiplications for the Analysis Tree This filter bank has filters of length 30. Note
that at each stage, there are more channels, but the signal lengths become shorter, resulting in an
almost linear relationship between number of stages and number of multiplies.

Stage Channels Length of Signal After Multiplies/ Multiplies Total
Upsampling/Filtering Channel

Os 128 7842 0 0 0
is 64 15712 235260 30113280 30113280
2s 32 31452 471360 30167040 60280320
3s 16 62932 943560 30193920 90474240
4s 8 125892 1887960 30207360 120681600
5s 4 251812 3776760 30214080 150895680
6s 2 503652 7554360 30217440 181113120
7s 1 1007332 15109560 30219120 211332240

Table 6.2: Multiplications for the Synthesis Tree Notice that there are slightly more multiplies
associated with reconstructing the signal than with analyzing it. Also notice that the output signal
has been elongated by the approximate length of the basis functions (~ 7332). To conserve perfectly
the length of the signal throughout the transform, a circular transform should be taken.

6.3 Non-Time Invariant Impulse Method

The following method yields a simple way of organizing the somewhat complicated looking tree

structure in Figure 3.5. By realizing that each input sample is not treated identically by the system

(because the downsamplers treat even and odd samples differently), the analysis bank cannot be

characterized by a single impulse response as in a typical linear time-invariant system. The system

is linear block invariant. Within each block of 128 samples, 128 x 128 separate impulse responses

from input to transform domain are needed to completely define the analysis system. Similarly,

the 128 basis function shapes represent the impulse responses of the synthesis bank.

We can rewrite the analysis system as a matrix multiplication, where there are 128 input

- 49 -

6.3 Non-Time Invariant Impulse Method

Implementation of Wavelet Filter Bank Tree

sequences (one for each phase), and 128 output sequences corresponding to the transform coeffi-

cients:

Co(z) Ao,o(z) Ao,1(z) Ao,2(z) . . . Ao,127 (z) Xo(z)

C1(z) A1,o(z) Ai,i(z) A1, 2 (z) . . . A1, 127 (z) X1(z)

C2 (z) A 2 ,o(z) A 2 ,1(z) A 2 ,2 (z) . . . A 2 ,127 (z) X 2 (z)

(6.1)

C 12 7 (z) A 12 7,o(z) A 12 7,1 (z) A 127 ,2 (z) . . . A 127 ,12 7 (z)_ _X 127 (z)_

Each of the entries in the A matrix in (6.1) is an impulse response from one of the input

phases to one of the transform sequences. This representation is conceptually easy to implement in

C, and helped us to see the system more intuitively. Although in the end, it is not as computationally

efficient as using a recursive tree, it provided us with ideas about how to possibly overcome the

delay associated with orthogonal filter banks (see Section 4.2).

For our filter length 30, 128 channel system, the impulse responses in (6.1) are each of length

29. The length of these responses are always on the order of the length of the filters Ho(z), H1(z),

Fo (z), and F1 (z). This can be shown easily using the convolution/downsampling rules outlined

above. The impulse responses of the synthesis bank are of course equal to the length of the basis

functions, which in this case is - 7400.

To calculate the number of multiplications required to process an input signal of length

1000000, we simply compute:

1000000 1000000
128 x 128 x 29 x 128 + 7400 x 18 = 3769812500 (6.2)

128 128

This is significantly more multiplies than implementing using the tree structure. This is one

of the major reasons that wavelet trees have gained so much attention - because they are efficient.

We see a gain of about 9 in number of multiplies for this example. So we must search for an

implementation that possesses the same computational benefits of the tree, but does not require

the entire input signal in advance. The next section explains our findings.

- 50 -

6.4 Large Buffers at Each Stage

6.4 Large Buffers at Each Stage

Here we present a possible solution to the dilemma discovered above. This section and the next

involve subtle, yet important differences in implementation of the tree structure. Not only is the

system of (6.1) relatively inefficient in terms of multiplies, but it requires precalculation of 128 x 128

impulse responses to be stored somewhere within the system's memory. This proved to be very

difficult, even on a PC. The tree structure is quite elegant and only after working to implement the

system in a number of ways did we fully appreciate its compactness and efficiency.

In terms of programming in C, implementing a near real-time tree is not transparent. The

method described in this section makes use of large buffers at each splitting branch of the tree.

Since 128 samples are needed before one transform coefficient is computed, it seemed to make

sense to receive blocks of 128 samples at a time and at that time compute the next 128 transform

coefficients (dependent on the current block and previous blocks). So each buffer holds information

left over from previous blocks of data, to be added appropriately to the current data. In the end,

128 new coefficients are computed (along with unfinished data to be added in the future), and the

next block of input samples can begin processing.

In the implementation of Section 6.3 (using a large matrix of impulse responses), there was

a fair amount of precalculation, but the advantages of the tree structure were lost. Using large

buffers at each stage is the worst of all, because it is essentially equivalent to the impulse method

described in Section 6.3, but without precalculation. This is why it bears such a high computational

cost. The next section will describe the preferred method, which preserves the benefit of the tree

structure seen witnessed with the system described above in Section 6.2, and also operates block

causally.

The required multiplications for this naive block causal tree implementation can be computed

with the aid of Table 6.3:

The synthesis bank yields similarly inefficient values. We turn now to the best of both

worlds, which is a block causal system that also maintains the efficiency promised by the recursive

tree structure.

6.5 Just In Time Multiplication

Although there could very well be other better ways to implement such systems, we found what

we believe to be the optimal method of implementation of systems like the one in Figure 3.5. The

- 51 -

Implementation of Wavelet Filter Bank Tree

Stage Channels Length of Signal After Multiplies/Channel Multiplies Total
Filtering/Downsampling

Oa 1 1 0 0 0
la 2 15 15 30 30
2a 4 22 225 900 930
3a 8 26 300 2640 3570
4a 16 28 390 6240 9810
5a 32 29 420 13440 23250
6a 64 29 435 27840 51090
7a 128 29 435 55680 106770
x1e6 1.0677e11

Table 6.3: Multiplications for the Naive Block Causal Analysis Tree Implementation
The number of multiplies associated with this transform is extremely high because nothing is
precalculated, and multiplications occur as far upstream as possible.

rule of thumb in this approach is to only calculate the samples that are needed for the next stage,
and leave remaining samples in buffers to be processed for the next input block. This has the effect

of producing only 128 samples of output at a time (without leftover samples to be added in the

future). So in order to produce one block of transform coefficients, 128 input samples are needed

at the first stage. Similarly, if we have full buffers at the second stage, we only need 64 samples

from each channel to eventually produce the one block of transform coefficients. This continues,
until of course the seventh stage, when all that is required from the previous stage is 2 samples per

channel.

This produces an algorithm in which multiplications occur only between fully added sample

points. In other words, multiplication is not done on sample groups that will eventually be added

together in the end. In a sense the algorithm combines all like terms before multiplying them,
instead of multiplying a bunch of individual like terms. It is a subtle realization that makes a big

difference.

The computational cost of this method is identical to that of the non-causal approach. The

only disadvantage of this method is that it requires careful and complex programming. But this is

worth it in the end. A copy of the C code is included in the Appendix for reference.

The program works nicely, although it is still much too slow to keep up with the music.

Figure 3.2 was made using data created by this program. This is the wisdom that came from this

programming experience, although there are other programming issues that are interesting, but

less relevant to the thesis. The concept of always multiplying at the last minute can be generalized

to many programming and digital signal processing situations.

- 52 -

Chapter 7

Search for Zero Group Delay

This chapter outlines our efforts to overcome the other significant delay in the system unavoidably

produced by orthogonality. Recalling from Chapter 4 that orthogonal transforms possess an un-

avoidable group delay equal to the length of the longest basis function , we seek an alternative that

would produce a delay equal only to the minimal delay imposed by the block convolution of the

transform. In this chapter we are concerned with the theoretical delay that would occur assuming

infinite computing power. None of the results of the previous chapter have any bearing on the delay

spoken of in this chapter.

We have only begun the search, and have discovered that while many researchers are con-

cerned with the elegance of orthonormal transforms, other transforms can be valuable as well. We

will introduce the concept of unimodular matrices.

7.1 Unimodularity

An orthogonal transform possesses a certain type of polyphase matrix whose inverse (used in

synthesis) is its conjugate transpose. This fact makes a causal analysis matrix necessarily possess

an anti-causal inverse. To be used in a completely causal system, this in turn necessitates a delay

equal to the length of the filters included in the polyphase matrices. Such matrices associated with

orthogonal transforms are called paraunitary.

Unimodular matrices have different properties at the expense of losing orthogonality. All

causal FIR unimodular matrices have causal FIR inverses. This is exactly the property we desire

for a system with a small delay. The challenge is to design such matrices.

7.2 Problems in Design

The important property that these matrices must be designed to have is that they must transform

to a useful domain. The domain of interest to us is the joint time-frequency domain. This implies

- 53 -

Search for Zero Group Delay

that the basis functions must be localized in both time and frequency. It is not at all obvious how

to design to achieve this goal. Assuming it were possible, the system would be able to transform

to this domain using only past sample values, and also able to reconstruct causally after deciding

which samples to keep and which to discard. This would be a very valuable system.

There are simple rules for constructing unimodular matrices, but there are no guarantees

that the matrices created will be useful. The Haar transform is in fact both unimodular and

paraunitary, but it is a special case because it is a scalar matrix (as opposed to a transfer function

matrix). A system that incorporates unimodular polyphase matrices would have a total shift delay

equal to (not greater than) the number of channels (frequency bands) desired.

Take for example the unimodular polyphase pair shown below:

1 -R 1(z)Ro(z) & (z) + 1 R1(z) 1 0
1]= [.0 (7.1)

I-Ro(z) R1()Ro(z) +11 Ro (z) 10 1

If Ro(z) and R 1 (z) are FIR and causal, then these matrices could be used in a larger tree

system with no neccessity for delay. Figure 7.1 shows the output of two systems, one unimodular

and the other paraunitary. The shift delay in the unimodular system is not dependent on basis

function length as it is in the paraunitary case. Both of these plots were generated with five stages.

We see that the unimodular system only suffers a delay of 25 - 32 due to the block invariance of

the tree. This delay is independent of the choice of filters Ro(z) and R 1 (z). The output of the

paraunitary system is unfortunately delayed by the length of its basis functions.

Appendix B contains the filters used to create these plots.

Our first insight into the possibility of unimodular matrices came as we worked with the

impulse response method of the previous chapter. Looking at the system as represented in (6.1),
we see that it is nothing more than a large matrix multiplication. If the A matrix of (6.1) were

unimodular, we would have the desired system [20].

This is an excellent topic for further research. Some research has been done on the topic

already, but for other reasons. If a unimodular matrix has transfer functions with only integers,
its inverse will also only possess integers [2]. This is because the thing that makes the unimodular

matrix special is that the determinant (seen in the denominator of the inverse) is a constant, and for

matrices that only involve integers, the determinant is an integer. There are many mysterious chal-

lenges awaiting. There are numerous other tree topologies, including those involving 43 operators,

- 54 -

7.2 Problems in Design

100 200 300 400 500 600 700 800
Output Generated by Unimodular System (5 stages)

900 1000

'i *

2

4

100 200 300 400 500 600 700 800
Output Generated by Paraunitary System (5 stages)

w.I
900

Figure 7.1: Output Sequences for Paraunitary and Unimodular Systems We see that the
unimodular system has the striking advantage of possessing very little shift delay. The challenge,
however, is to design the filters to be useful

- 55 -

0.,4

0.

-0.

-0.

1000

Search for Zero Group Delay

44 operators, or block downsampling [12], etc., all with the possibility of efficient implementation,

near zero group delay, and/or other interesting properties.

- 56 -

Chapter 8

Concluding Remarks

This thesis provides a great foundation for further research. The topic of wavelets is subtle, and

there is a lot of room in the field for creativity in the design of systems like the one we studied. In

this thesis we implemented a large tree structure in the fastest way we could find. This involved

looking at different types of delay, and working with each type separately.

8.1 Block Delay

The block delay is the delay associated with the fact that a wavelet tree system can be at best

block causal. That is to say, there is no avoiding a delay equal to the number of channels. This

can be seen readily in the representation in (6.1). In order to produce one transform coefficient

(actually 128 at a time), since this is a matrix multiplication, we need to know at least the first 128

input samples (one for each phase). Although (6.1) yields an inefficient implementation, it lends

insight into the system and is an extremely valuable way of viewing the system. We did implement

a small version of this type of system before discovering the final method of Chapter 6.

8.2 Computational Delay

Much progress was made in this area. We started with little insight into the system other than the

block diagram representation which does not reveal how best to implement itself. After discovering

other representations such as the "impulse" method in (6.1), we were able to overcome the non-

causal implementation directly implied by the block diagram as seen in Figure 3.5. Knowing that

there existed block causal implementations, we sought to find the one that matched the direct

non-causal method in terms of computational complexity as quantified by the number of multiplies

required for processing.

We conclude that a method which performs multiplications as far downstream as possible

produces an efficient implementation, since it naturally combines like terms before requiring a costly

- 57 -

Concluding Remarks

multiply. This result can certainly be applied to other signal processing and programming systems.

8.3 Delay Associated with Orthogonal Systems

Since orthogonal systems are composed of paraunitary matrices (the polyphase matrices are pa-

raunitary as well as the A matrix in (6.1)), they suffer from the unfortunate fact that the inverse

matrices are necessarily anti-causal. This results in a delay equal to the length of the filters Ho(z),

H1 (z), Fo(z), and Fi(z), in order to force the inverse to be causal. This constraint can only be

bypassed by sacrificing the nice properties of orthogonal transforms (energy preserving, etc.). We

found that if unimodular matrices are used in place of these paraunitary matrices, we could achieve

zero delay where there once was a delay equal to the length of the filters.

The design of such systems is not straightforward, because we wish the unimodular matrices

to still possess the property that their eigenvectors (the basis functions) be localized in time and

frequency. This would produce a transform that has the potential of being used to transform

into the time-frequency domain and used for the analysis of music and other natural phenomena.

Although it is easy to find unimodular matrices, we could not find one that has the above property

with the exception of the Haar matrix, which is a degenerate case.

8.4 Future Work

Because of the advances in computing power and interest in signal processing for all sorts of

applications from the internet to music processing to control, there is much research being done in

this area. There are a lot of areas to explore. We dealt with only one type of system - a wavelet tree

with 4 2 operators. There are many other types of systems that could be devised that generalize

this basic form. For example 4 3 operators could be used, or block downsamplers could be used [12].

Another fascinating area which is tied very closely to the work in this thesis is the study of

how the ear hears. The ear hears in a complex, non-linear way and its characteristics influence the

performance of any audio denoising system. There has been much work involved in audio coding

for compression, like MP3, which compresses raw audio by a factor of ten without any perceptual

loss in audio quality. Schemes like MP3 take into account which elements the ear is sensitive to,

and which it isn't. It is quite an achievement.

- 58 -

Appendix A

Program Code (C)

A.1 Zipper.h

int getsound(float *x, char *insoundfile);
int playsnd(unsigned char *y, long int q);
int filesnd(char *argv[], float *h, int q);
int sndconvert(unsigned char *ychar, float *y, int vectorsize);
int getoutimpulse(float *w, char *p);
int getinimpulse(float *w, char *p);
int GlobalAssign(int numbands, int *inlengthmax, int *outlengthmax);
int Threshold(float *f, float thr, int numbands);
int OutProcess(float receive[], float send[], int numbands, int outlength);
int Process(float *h, float *y, const float *x, float thr, long int q, int numbands, int inlength, int outlength); 10
int main(int arge, char *argv[]);
int rndsnd(float *r, long int q);
float ranl(long *idum);

void reverse(char s[]);

int trim(char s[]);

void itoa(int n, char s[]);

void PrintTimeo;

int convolvedown2(float *out, float *s1, float *s2, float Is1, float 1s2);
int convolveup2(float *out, float *s, float *feven, float *fodd, float Is, float Ifeven, float lfodd);
float *convolve(float *ssl, float *ss2, float Is1, float Is2); 20
int TreeFiltAssign(float *filt, char *filename);
int TreeProcess(float *h, float *y, float *x, float thr, long int q, int levels, int fith, float *hO, int hOq, float *hl, int h1q, floal
float ***MakeInputDataBuffers(int *datachunk, int fith, int levels);
float ***MakeOutputDataBuffers(int *sdatachunk, int fith, int levels);
int shift(float *buf, int points, int extent);
int add(float *bufl, float *buf2, int extent);

int AssignToH(float ***stg, float *h, int levels);
int GetEvenOdd(float *feven, float *fodd, float *f, int fq);
int FindHalfLength(int *fevenq, int *foddq, int fq);
int ZeroOut(float *buf, int extent); 30
float Energy(float *sig, int q);
int PrintVector(char *message, float *vec, int vecq);
int MakeOnes(float *x, int q);

- 59 -

Program Code (C)

A.2 Muixtree.c

#include

#include

#include

#include

#include

#include

<math.h>

<stdio.h>

<stdlib.h>

<time.h>

<assert.h>
"zipper.h"

int main(int argc, char *argv[)

I
float thr;

float *x, *y, *h, *r, *hO, *hl, *fO, *fl;

unsigned char *ychar;

int i, q, hOq, h1q, fOq, flq, fith, levels;

if(argc != 9){
printf("usage: muixtree soundfilename outpufilename threshold levels HOfilename Hifilename FOfilename Fif il,

return(1);

}
levels = atoi(argv[4]);

/ *---*/
PrintTime(;

printf("Allocating x ... \n");

x = calloc(5000000, sizeof(float));

assert(x != NULL);

/ *------------ ------- --------------------------- */

printf("Loading sound into variable x...\n");

q = getsound(x, argv[1]);

realloc(x, q*sizeof(float));

thr = atof(argv[3]);

/*--*/

20

30

printf("Loading f ilters .. .\n");

hO = calloc(100, sizeof(float));

hOq = TreeFiltAssign(hO, argv[5]);

- 60 -

10

A.2 Muixtree.c

hO = realloc(hO, hOq*sizeof(float));
h1 = calloc(100, sizeof(float));

hlq = TreeFiltAssign(h1, argv[6]);
h1 = realloc(hl, hlq*sizeof(float)); 40

fO = calloc(100, sizeof(float));

fOq = TreeFiltAssign(fO, argv[7]);
fO = realloc(fO, fOq*sizeof(float));

fl = calloc(100, sizeof(float));

flq = TreeFiltAssign(fl, argv[8]);
fl = realloc(fl, flq*sizeof(float));

flth = hOq;
printf("levels: %d\n", levels);

assert(hOq == flq);

/*------------------------------------ ----- */ 50

printf("Allocating variables ... \n");
y = calloc(q, sizeof(float));

h = calloc(q, sizeof(float));
ychar = calloc(q, sizeof(unsigned char));

r = calloc(q, sizeof(float));

/ *--------------------------------------- */

printf("Adding noise...\n");

rndsnd(r, q); 60

for(i=O; i<q; ++i){

x[i] = x[i] +r[i]/8;

}
/*-- */
PrintTimeo;

printf("TreeProcess started\n");

TreeProcess(h, y, x, thr, q, levels, flth, hO, hOq, hi, hlq, fO, fOq, fi, f1q);
printf("TreeProcess ended\n");

/*--*/
PrintTime(; 70

printf("Converting data to unsigned char...\n");
sndconvert(ychar, y, q);

/*---------- ------------------------------ */
PrintTime();

printf("Sending data to file...\n");

filesnd(argv, x, q);

/* - ---------- ---------------------------- -*
PrintTimeo;

printf("Calculating energies ... \n");

printf("Energy in x = Xf\n", Energy(x, q)); 80

printf("Energy in h = Xf\n", Energy(h, q));

- 61 -

Program Code (C)

printf("Energy in y = Xf\n", Energy(y, q));

/*--*
PrintTimeo;

printf("Playing sound ... \n");

playsnd(ychar, q);

/*--*/
PrintTimeo;

free(x);

free(y); 90

free(h);

free(ychar);

return(O);

}

void PrintTime()

{
char s[20];

timet tm;

100

tm = time(NULL);

strftime(s, 20, "XM:X/.S", localtime(&tm));

printf("Xs\n",s);

}

int Threshold(float *f, float thr, int levels)

{
int i;

for(i=O; i<pow(2, levels); i++) {
if(fabs(f[i]) < thr){ 110

f[i]=O;

}
}
return(0);

I

int TreeFiltAssign(float *filt, char *filename)

{
FILE *fp;
int i; 120

fp = fopen(filename, "r");

assert(fp != NULL);

fseek(fp, 0, SEEKSET);

for(i=0; feof(fp) < 1; ++i){

fscanf(fp, "Xf ", &filt[i]);

- 62 -

A.2 Muixtree.c

}
fclose(fp);

return(i);

130

int TreeProcess(float *h, float *y, float *x, float thr, long int q, int levels, int flth, float *hO, int hOq, float *hl, int h1q, floal

{
float ***astg, ***sstg;

float *temp, *stempO, *stempl, *f0even, *f0odd, *fleven, *flodd;

int i, j, n, tempsize;

int *adatachunk, *sdatachunk, *foevenq, *fooddq, *flevenq, *floddq;

tempsize = 200;

adatachunk = calloc(levels+1, sizeof(int)); 140
sdatachunk = calloc(levels+1, sizeof(int));

temp = calloc(tempsize, sizeof(float));

stempO = calloc(tempsize, sizeof(float));

stemp1 = calloc(tempsize, sizeof(float));

f0evenq = calloc(1, sizeof(float));

fOoddq = calloc(1, sizeof(float));
flevenq = calloc(1, sizeof(float));

floddq = calloc(1, sizeof(float));

FindHalfLength(fOevenq, fOoddq, fOq);
FindHalfLength(flevenq, floddq, flq); 150
fOeven = calloc(fOevenq[O], sizeof(float));

f0odd = calloc(fOoddq[0], sizeof(float));
fleven = calloc(flevenq[0], sizeof(float));

flodd = calloc(floddq[0], sizeof(float));
astg = MakeInputDataBuffers(adatachunk, flth, levels);

sstg = MakeOutputDataBuffers(sdatachunk, flth, levels);

GetEvenOdd(f0even, f0odd, fO, fOq);
GetEvenOdd(fleven, flodd, f1, f1q);
for(n=0; n<q; n=n+pow(2,levels)){

astg[0][0] = x+n; 160
for(i=1; i<levels+1; ++i){

for(j=0; j<pow(2, i); j=j+2){

ZeroOut(temp, tempsize);

convolvedown2(temp, astg[i-1][j/2], hO, (float)(pow(2, levels-i+1)), (float)hOq);
shift(astg[i][j], pow(2, levels-i), adatachunk[i]);

add(astg[i][j], temp, adatachunk[i]);

I
for(j=1; j<pow(2, i); j=j+2){

ZeroOut(temp, tempsize);

convolvedown2(temp, astg[i- 1][(int) (floor((float)j/2))], h1, (float)(pow(2, levels-i+1)), (float)hlq); 170
shift(astg[i] [j], pow(2, levels-i), adatachunk[i]);

- 63 -

Program Code (C)

add(astg[i][j], temp, adatachunk[i]);

}
}
AssignToH(astg, h+n, levels);

Threshold(h+n, thr, levels);

for(i=O; i<pow(2, levels); ++i){

sstg[0][i] = h+n+i;

}
for(i=1; i<levels+1; ++i){ 180

for(j=O; j<pow(2, levels-i); j=j+1){

ZeroOut(stempO, tempsize);

ZeroOut(stempl, tempsize);

convolveup2(stempO, sstg[i-1][2*j], fOeven, fOodd, pow(2, i-1), (float)fOevenq[0], (float)fOoddq[O]);

convolveup2(stempl, sstg[i-1][2*j+1], fleven, flodd, pow(2, i-1), (float)flevenq[0], (float)floddq[O]);

add(stempO, stemp1, sdatachunk[i]);

shift(sstg[i][j], pow(2, i), sdatachunk[i]);

add(sstg[i]j], stempO, sdatachunk[i]);

}
190

AssignToY(sstg, y+n, levels);

}
free(astg);

free(sstg);

free(temp);

free(stempO);

free(stempl);

free(fOeven);

free(fOodd);

free(fleven); 200

free(flodd);

free(adatachunk);

free(sdatachunk);

free(fOevenq);

free(fOoddq);

free(flevenq);

free(floddq);

}

210

float ***MakeInputDataBuffers(int *adatachunk, int fith, int levels)

{
int i, j, totalbufsize;

float *master, *temp;

float ***astg;

- 64 -

A.2 Muixtree.c

totalbufsize = 0;

adatachunk[O] = pow(2, levels);

for(i=1; i<levels+1; ++i){

adatachunk[i] = (int)ceil(.5*(float)(pow(2, levels-i+1) + fith - 1)); 220

}
for(i=0; i<levels+1; ++i){

totalbufsize = totalbufsize + pow(2, i)*adatachunk[i];

I
master = calloc(totalbufsize, sizeof(float));

astg = calloc(levels+1, sizeof(float **));

for(i=0; i<levels+1; ++i){
astg[i] = calloc(pow(2, i), sizeof(float *));
assert(astg[i] != NULL);

} 230

astg[0][0] = &master[0];

temp = &astg[0][0][0];

j = 1;
for(i=1; i<levels+1; ++i){

temp = temp + j*adatachunk[i-1];

for(j=0; j<pow(2, i); ++j){
astg[i]j] = temp + j*adatachunk[i];

}
240

return(astg);

I

float ***MakeOutputDataBuffers(int *sdatachunk, int fith, int levels)

{
int i, j, totalbufsize;

float *smaster, *temp;

float ***sstg;

totalbufsize = 0; 250
sdatachunk[0] = 1;

for(i=1; i<levels+1; ++i){

sdatachunk[i] = pow(2, i) - 2 + fith;

}
for(i=0; i<levels+1; ++i){

totalbufsize = totalbufsize + pow(2, levels-i)*sdatachunk[i];

}
printf("totalbuf size = Xd\n", totalbufsize);

smaster = calloc(totalbufsize, sizeof(float));

sstg = calloc(levels+1, sizeof(float **)); 260

for(i=0; i<levels+1; ++i){

- 65 -

Program Code (C)

sstg[i] = calloc(pow(2, levels-i), sizeof(float *));

assert(sstg[i] != NULL);

sstg[O][0] = &smaster[O];

temp = &sstg[O][O][O];

for(i=O; i<levels+1; ++i){

for(j=O; j<pow(2, levels-i); ++j){

sstg[i][L] = temp +j*sdatachunk[i]; 270

}
temp = sstg[i][j-1] + sdatachunk[i];

I
return(sstg);

I

int shift(float *buf, int points, int extent)

{
int i;

280

for(i=O; i< (extent-points) ; ++i)
buf[i] = buf[i+points];

}
for(i=(extent -points); i<extent; ++i){

buf[i] = 0;

}
}

int add(float *bufl, float *buf2, int extent)

{ 290

int i;

for(i=0; i<extent; ++i){
buf1[i] = bufl[i] + buf2[i];

buf2[i] = 0;

}
}

int AssignToH(float ***stg, float *h, int levels)

{ 300

int i;

for(i=O; i<pow(2, levels); ++i){

h[i] = stg[levels][i][0];

}
}

- 66 -

int AssignToY(float ***stg, float *y, int levels)

{
int i;

for(i=O; i<pow(2, levels); ++i){

y[i] = stg[levels] [0] [i];

}
}

int GetEvenOdd(float *feven, float *fodd, float *f, int fq)

{
int i;

}

for(i=0; i<fq-1; i=i+2){

feven[i/2] =fi];

fodd[i/2] = f[i+1];

I

int FindHalfLength(int *fevenq, int *foddq, int fq)

{

if(((float)fq)/2 == ceil(((float)fq)/2)){

fevenq[0] = fq/2;

foddq[0] = fq/2;

}
else{

fevenq[0] = (fq+1)/2;
foddq[O] = (fq-1)/2;

}
return 0;

int ZeroOut(float *buf, int extent)

{
int i;

for(i=0; i<extent; ++i){

buf[i] = 0;

}

float Energy(float *sig, int q)

{

- 67 -

A.2 Muixtree.c

310

320

330

340

350

Program Code (C)

int i;

float e;

printf("q = Xd\n", q);

e = 0;

for(i=0; i<q; ++i){

e = e + pow(sig[i], 2);

}
return e;

}

int PrintVector(char *message, float *vec, int vecq)

{
int i;

printf("Xs\n", message);

if(vecq > 100){

vecq = 100;

for(i=0; i<vecq; ++i){

printf("X20. 16f\n", vec[i]);

}

370

printf("---------------------\n");

I

int MakeOnes(float *x int q)

{
int i;

380

for(i=O; i<q; ++i){

x[i] = 1;

}

A.3 Treefunctions.c

#include

#include

#include

#include

#include

<math.h>

<stdio.h>

<stdlib.h>

<time.h>
"convtest.h"

int convolvedown2(float *out, float *ss1, float *ss2, float Is1, float Is2)

- 68 -

360

int i, j, k, outlength, fringelengthl, fringelength2, middlelength, flagA, flagB, flagC;

float 11, 12;

float *s1, *s2;

if(lsl > 1s2){
11 = is1;
12 = 1s2;
s1 = ssl;

s2 = ss2;

}
else{

11 = 1s2;
12 = Is1;
s1 = ss2;

s2 = ssl;

I

if(ceil(11/2)

flagA = 1;

flagB = 1;

flagC = 0;

== 11/2 && ceil(12/2) == 12/2){

30

}
if(ceil(11/2) != 11/2 && ceil(12/2) == 12/2){

flagA = 1;

flagB = 2;

flagC = 1;

}
if(ceil(ll/2)

flagA = 0;

flagB = 1;

flagC = 0;

}

== 11/2 && ceil(12/2) != 12/2){

40

if(ceil(1l/2) != 11/2 && ceil(12/2) != 12/2){

flagA = 0;

flagB = 2;

flagC = 0;

I
outlength = (int)ceil((11+12-1)/2);

fringelengthl = ceil(12/2);
fringelength2 = fringelengthl-flagC;

for(i=0, j=1; i < fringelengthl; ++i, j=j+2){
for(k=0; k < j; ++k){

out[i] = out[i] + s1l[k*s2b-k-1];

I

- 69 -

{

A.3 Treefunctions.c

10

20

50

Program Code (C)

}
middlelength = outlength - fringelengthl - fringelength2;

for(i=fringelengthl, j=flagA; i < fringelengthl + middlelength; ++i, j=j+2){

for(k=j; k < (int)12 + j; ++k){
out[i] = out[i] + s1[k]*s2[(int)2+j-k-1];

}
} 60

for(i=fringelengthl + middlelength, j=(int)11-(int)12+flagB; i < outlength; ++i, j=j+2){
for(k=j; k< (int)ll; ++k){

out[i] = out[i] + s1[k]*s2[(int)12+j-k-1];

}
}

int convolveup2(float *out, float *s, float *feven, float *fodd, float Is, float ifeven, float lfodd)

{
int i, outlength; 70

float *evenreturn, *oddreturn;

outlength = (int)(1s*2 - 1 + Ifeven + Ifodd - 1);

evenreturn = convolve(feven, s, Ifeven, Is);

oddreturn = convolve(fodd, s, lfodd, Is);

for(i=O; i<outlength; i=i+2){

out[i] = evenreturn[i/2];
out[i+l] = oddreturn[i/2];

}
} 80

float *convolve(float *ssl, float *ss2, float is1, float s2)

{
int i, j, 11, 12, outlength;
float *sl, *s2, *out;

outlength = Isl+1s2-1;

out = calloc(outlength, sizeof(float));

if(Isl > 1s2){
11 = is1; 90

12 = 1s2;
s1 = ssl;

s2 = ss2;

I
else{

11 = 1s2;

12 = is1;
s1 = ss2;

- 70 -

A.4 Getsnd.c

s2 = ssl;

} 100

for(i=0; i<12-1; ++i){

for(j=0; j<i+1; ++j){
out[i] = out[i] + s1{j]*s2[i-j];

}
}
for(i=12-1; i<outlength-12+1; ++i){

for(j=0; j<12; ++j){
out[i] = out[i] + s1[i-12+1+j]*s2[12-j-1];

}
} 110

for(i=outlength-12+1; i<outlength; ++i){

for(j=0; j<outlength-i; ++j){

out[i] = out[i] + s1[i-12+1+j]*s2[12-j-1];

}
}
return out;

}

A.4 Getsnd.c

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/ioctl.h>

#include <linux/soundcard.h>

#include <math.h>

#include "zipper.h" 10

#define RATE 44100

#define CHANNELS 2

#define SIZE 16

int getsound(float *x, char *insoundfile)

{
FILE *ifp;

sizet nmemb; 20

-- 71 -

Program Code (C)

signed short *buf;

unsigned short *bufunsigned;

long int q, i;

nmemb = 10000000;

buf = calloc(2, sizeof(signed short));

bufunsigned = calloc(nmemb, sizeof(unsigned short));

ifp = fopen(insoundfile, "r");
30

i = 0;

fread(buf, sizeof(signed char), 1, ifp);

while(feof(ifp) < 1){

fread(buf, sizeof(signed short), 2, ifp);

bufunsigned[i] = (unsigned short)(buf[0] + pow(2, 15));

x[i] = (float)(bufunsigned[i] - pow(2, 15));

++i;

q =i;

fclose(ifp); 40

free(buf);

free(bufunsigned);

return(q);

}

int sndconvert(unsigned char *ychar, float *y, int vectorsize)

{
int i;

for(i=0; i < vectorsize; ++i){ 50

ychar[i] = (unsigned char)((y[i] + pow(2, 15))/pow(2, 8));

}
return 0;

I

int playsnd(unsigned char *ychar, long int q)

{
int status, fd, arg, i, fmt, formats;

unsigned char *temp; 60

temp = calloc(2, sizeof(unsigned char));

status = fd = open(" /dev/dsp", ORDWR);

if (status == -1) {

- 72 -

A.4 Getsnd.c

perror("error opening /dev/dsp");

exit(l);

}

arg = SIZE; 70

status = ioctl(fd, SOUNDPCMWRITEBITS, &arg);
if (status == -1

perror("SUND_PCMWRITEBITS ioctl failed");

}
if (arg !=SIZE){

perror("unable to set sample size");

}

arg = RATE;

status = ioctl(fd, SOUNDPCMWRITERATE, &arg); 80
if (status == -1) {
perror("error from SOUNDPCMWRITERATE ioctl");
exit(1);

}

arg = CHANNELS;
status = ioctl(fd, SOUNDPCMWRITECHANNELS, &arg);
if (status == -1) {

perror("error from SOUNDPCMWRITECHANNELS ioctl");
exit(l); 90

}
if (arg != CHANNELS){

perror("unable to set number of channels");

}

fmt = AFMTU8;

status = ioctl(fd, SOUNDPCMSETFMT, &fmt);
if(status == -1){

perror("SOUNDPCMSETFMT ioctl failed");

100

/*---... - ---

printf("Supported Formats:\n");

status = ioctl(fd, SOUNDPCMGETFMTS, &formats);

if(formats & AFMT U16_BE){
printf(" AFMTU16_BE is an option\n");

}
if(formats & AFMTU8){

printf(" AFMT U8 is an option\n");

110

- 73 -

Program Code (C)

if(formats & AFMT S16_BE){

printf(" AFMTS16_BE is an option\n");

I
if(formats & AFMTU16_BE){

printf(" AFMT U16_BE is an option\n");

}
if(formats & AFMTS16_LE){

printf(" AFMT S16_LE is an option\n");

}
if(formats & AFMTU16_LE){ 120

printf(" AFMT U16_LE is an option\n");

/ *--
---- *

for(i = 0; i < q; ++i){

temp[O] = ychar[i]*1.2;

status = write(fd, temp, sizeof(unsigned char));

if (status == -1) {

perror("error writing to /dev/dsp"); 130

exit(1);

}
}

status = close(fd);

if (status == -1) {
perror("error cloing /dev/dsp");

exit(1);

I
free(temp); 140

return 0;

I

int filesnd(char *argv[], float *h, int q)

{
FILE *fp;

int i;

fp = fopen(argv[2], "w");

for(i=O; i<q; ++i){ 150

fprintf(fp, "Xf\n", h[i]);

}
fclose(fp);

return 0;

}

- 74 -

A.5 Randsnd.c

A.5 Randsnd.c

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include "zipper.h"

#define IA 16807

#define IM 2147483647

#define AM (1.0/IM)

#define IQ 127773
#define IR 2836 10
#define NTAB 32

#define NDIV (1+(IM-1)/NTAB)

#define EPS 1.2e-7

#define MNMX (1.0-EPS)

int rndsnd(float *r, long int q)

{
int i;

long *idum;

20
idum = calloc(1, sizeof(long));

*idum = -1223;
for(i=O; i<q; ++i){

r[i] = (float)ran1(idum)*pow(2, 15);

}
free(idum);

}

float ranl(long *idum)

30
int j;

long k;

static long iy=0;
static long iv[NTAB];

float temp;

if (*idum <= 0 || !iy){
if (-(*idum) < 1) *idum=1;

else *idum = -(*idum);

-75 -

Program Code (C)

40for (j=NTAB+7; j>=O; j--){
k=(*idum)/IQ;

idum=IA(*idum-k*IQ)--IR*k;

if (*idum <0) *idum+=IM;
if (j< NTAB) ivb] = *idum;

}
iy=iv[0];

}
k = (*idum)/IQ;

idum = IA(*idum-k*IQ)-IR*k;

if (*idum <0) *idum += IM;

j = iy/NDIV;

iy = ivj];

iv[j] = *idum;

if ((temp = AM*iy) > MNMX) return MNMX;

else return temp;

}

50

60

A.6 Str.c

#include
#include

#include

#include
#include

<math.h>

<stdio.h>

<stdlib.h>

<string.h>
"zipper.h"

void itoa(int n, char s[])

{
int i, sign;

if ((sign=n) < 0)

n = -n;

i = 0;

do {
s[i++] = n % 10 + '0';

} while ((n /= 10) > 0);

if (sign < 0)
s[i++] = '-'

- 76 -

10

s[i]= '\0';

reverse(s);

}

int trim(char *s)

{
int n;

for (n = strlen(s)-1; n >= 0; n--)

if (s[n] != I ' && s[n] '\t' && s[n] !='\n)

break;

s[n+1] = '\0';

return n;

}

void reverse(char *s)

{
int c, i, j;

for (i = 0, j= strlen(s)-1; i < j; ++i, -- j) {
c = s[i];

s[i] = sul;
sj] = C;

}
}

A.7 Makefile

muixblock : muixblock.o dataread.o getsnd.o randsnd.o str.o

cc -o muixblock muixblock.o dataread.o getsnd.o randsnd.o str.o

muixtree: muixtree.o getsnd.o randsnd.o treefunctions.o

cc -Im -o muixtree muixtree.o getsnd.o randsnd.o treefunctions.o

muixblock.o : muixblock.c

cc -c -g muixblock.c

muixtree.o muixtree.c

cc -c -g muixtree.c

dataread.o : dataread.c

cc -c -g dataread.c

- 77 -

A.7 Makefile

20

30

40

10

Program Code (C)

getsnd.o : getsnd.c

cc -c -g getsnd.c

randsnd.o : randsnd.c

cc -c -g randsnd.c

str.o : str.c

cc -c -g str.c

treefunctions.o : treefunctions.c

cc -c -g treefunctions.c

- 78 -

20

Appendix B

Paraunitaryand Unimodular Filters

B.1 Paraunitary Filters

What follows are the four filters used the most often in this thesis. They are the Daubechies length
30 filters:

- 79 -

Paraunitary and Unimodular Filters

6.13335991330609e - 08

-6.31688232588197e - 07

1.81127040794067e - 06

3.36298718173796e - 06

-2.81332962660485e - 05

2.57926991553219e - 05

0.00015589648992062

-0.000359565244362443

-0.000373482354137603

0.00194332398038203

-0.000241756490763196

-0.00648773456032142

0.00510100036039435

0.0150839180278113

-0.0208100501697309

-0.0257670073284824

0.054780550584479

0.0338771439235032

-0.111120936037216

-0.039666176555759

0.190146714007163

0.0652829528487984

-0.288882596566965

-0.193204139609152

0.339002535454739

0.645813140357444

0.492631771708155

0.206023863987003

0.0467433948927679

0.00453853736157906

H1(z) =

-0.00453853736157906

0.0467433948927679

-0.206023863987003

0.492631771708155

-0.645813140357444

0.339002535454739

0.193204139609152
-0.288882596566965

-0.0652829528487984

0.190146714007163

0.039666176555759

-0.111120936037216

-0.0338771439235032

0.054780550584479

0.0257670073284824

-0.0208100501697309

-0.0150839180278113

0.00510100036039435

0.00648773456032142

-0.000241756490763196

-0.00194332398038203

-0.000373482354137603

0.000359565244362443

0.00015589648992062

-2.57926991553219e - 05

-2.81332962660485e - 05

-3.36298718173796e - 06

1.81127040794067e - 06

6.31688232588197e - 07

6.13335991330609e - 08

- 80 -

Ho(z) =

B.2 Unimodular Filters

0.00453853736157906

0.0467433948927679
0.206023863987003

0.492631771708155
0.645813140357444

0.339002535454739

-0.193204139609152

-0.288882596566965

0.0652829528487984
0.190146714007163

-0.039666176555759

-0.111120936037216

0.0338771439235032

0.054780550584479
-0.0257670073284824

-0.0208100501697309

0.0150839180278113

0.00510100036039435

-0.00648773456032142
-0.000241756490763196

0.00194332398038203

-0.000373482354137603

-0.000359565244362443

0.00015589648992062
2.5 7 92 6991553219e - 05

- 2. 8 13 3 2 962660485e - 05
3 .3 6 2 98718173796e - 06

1.8 112 7 0 4 0794067e - 06

- 6. 3 16 88 2 32 588197e - 07
6 .13335991330609e - 08

F1(z) =

6.13335991330609e - 08

6.31688232588197e - 07

1.81127040794067e - 06

-3.36298718173796e - 06

-2.81332962660485e - 05

-2.57926991553219e - 05

0.00015589648992062

0.000359565244362443

-0.000373482354137603

-0.00194332398038203

-0.000241756490763196

0.00648773456032142

0.00510100036039435

-0.0150839180278113

-0.0208100501697309

0.0257670073284824
0.054780550584479

-0.0338771439235032

-0.111120936037216

0.039666176555759

0.190146714007163

-0.0652829528487984

-0.288882596566965

0.193204139609152

0.339002535454739

-0.645813140357444

0.492631771708155

-0.206023863987003

0.0467433948927679

-0.00453853736157906

B.2 Unimodular Filters

The following are the filters used in the unimoular example of Chapter 7. These are the direct form
filters that are needed for the computer program of Appendix A.

- 81 -

Fo(z) =

Paraunitary and Unimodular Filters

0.997558593750017

-0.0105974017849973

-0.0151510326456218
-0.0328830116669829

-0.0230868349889613

0.030841381835987
0.0446868225686526

0.187034811718881
0.149613862445247

-0.0279837694169838

-0.0423879964631563

-0.63088076792959
-0.316317568640353

0.714846570552542

0.0257044130802508

-0.230377813308855

0.316317568640353

0

-0.0423879964631563

0

-0.149613862445247

0

0.0446868225686526

0

0.0230868349889613

0

-0.0151510326456218

0

0.00244140624998303

0

0

0

0

H1(z) =

0.230377813308855

1

0.714846570552542

0

0.63088076792959
0

-0.0279837694169838

0

-0.187034811718881
0

0.030841381835987
0

0.0328830116669829

0

-0.0105974017849973
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

- 82 -

Ho(z) =

B.2 Unimodular Filters

-0.230377813308855
1

-0.714846570552542

0
-0.63088076792959

0
0.0279837694169838

0
0.187034811718881

0
-0.030841381835987

0
-0.0328830116669829

0
0.0105974017849973

0
0

0
0

0
0

0
0
0
0
0
0

0
0

0

0

0
0

Fi(z) =

0.997558593750017

0.0105974017849973
-0.0151510326456218

0.0328830116669829
-0.0230868349889613

-0.030841381835987
0.0446868225686526
-0.187034811718881
0.149613862445247

0.0279837694169838

-0.0423879964631563

0.63088076792959
-0.316317568640353

-0.714846570552542
0.0257044130802508

0.230377813308855
0.316317568640353

0
-0.0423879964631563

0
-0.149613862445247

0
0.0446868225686526

0
0.0230868349889613

0
-0.0151510326456218

0
0.00244140624998303

0

0
0
0

-83 -

Fo (z) -

Bibliography

[1] K. G. Beauchamp. Applications of Walsh and Related Functions with an Introduction to

Sequence Theory. Microelectronics and Signal Processing. Acedemic Press, Inc., 1984.

[2] A. R. Calderbank, Ingrid Daubechies, Wim Sweldens, and Boon-Lock Yeo. Lossless image

compression using integer to integer wavelet transforms. In Proceedings of the 1997 Interna-

tional Conference on Image Processing., volume 1, pages 596-599, Santa Barbara, CA, October

1997. IEEE Comp. Soc.

[3] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier

series. Math. Comput., 19(2):297-301, April 1965.

[4] James W. Cooley. How the fft gained acceptance. IEEE SP Magazine, pages 10-13, January

1992.

[5] William G. Gardner. Efficient convolution without input-output delay. AES, Journal of the

Audio Engineering Society, 43(3):127-136, March 1995.

[6] Michael T. Heideman, Don H. Johnson, and C. Sidney Burrus. Gauss and the history of the

fast fourier transform. IEEE ASSP Magazine, pages 14-21, October 1984.

[7] B. R. Hunt. Applications of Digital Signal Processing, chapter 4, page 193. Prentice-Hall

Signal Processing Series. Prentice-Hall Inc., 1978.

[8] Toshio Irinoa and Hideki Kawahara. Signal reconstruction from modified auditory wavelet

transform. IEEE Transactions on Signal Processing, 41(12):3549-3554, December 1993.

[9] Hyuk Jeong and Jeong-Guon Ih. Implementation of a new algorithm using the stft with

variable frequency resolution for the time-frequency auditory model. AES, Journal of the

Audio Engineering Society, 47(4):240-251, April 1999.

[10] Al Kelley and Ira Pohl. A Book on C. Addison-Wesley, 1998.

[11] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall

Software Series. Prentice Hall PTR, 1998.

[12] Masoud R. K. Khansari and Alberto Leon-Garcia. Subband decomposition of signals with

generalized sampling. IEEE Transactions on Signal Processing, 41(12):3365-3376, December

1993.

[13] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing. Prentice-Hall

Signal Processing Series. Prentice-Hall Inc., 1989.

- 84 -

Bibliography

[14] Athanasios Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill
Series in Electrical Engineering; Communications and Signal Processing. WCB/McGraw-Hill,
1991.

[15] Ken C. Pohlmann. Principles of Digital Audio. McGraw-Hill, Inc., third edition, 1995.

[16] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes in C - The Art of Scientific Computing. Cambridge University Press, second edition
edition, 1997.

[17] Shie Qian and Dapang Chen. Joint Time-Frequency Analysis. Prentice Hall PTR, 1996.

[18] Pavan K. Ramarapu and Robert C. Maher. Methods for reducing audible artifacts in a
wavelet-based broad-band denoising system. AES, Journal of the Audio Engineering Soci-
ety, 46(3):178-190, March 1998.

[19] Gilbert Strang and Truong Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press,
1997.

[20] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice-Hall Signal Processing
Series. Prentice-Hall Inc., 1993.

[21] M. V. Wickerhauser and R. R. Coifamn. Entropy based algorithms for best basis selection.
IEEE Transactions on Information Theory, 32:712-718, March 1992.

- 85 -

