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Abstract

Changes in flow strain and mixture composition on the order of a flame time scale

are characteristic of many practical combustion processes. Accurately predicting the
unsteady reponse of burning to these changes requires detailed modeling of species
transport and chemical kinetics. This thesis formulates a detailed one-dimensional
computational model for arbitrary unsteady conditions of strain and mixture, demon-

strating its applicability to subgrid modeling of turbulent combustion. A novel nu-

merical formulation, based on a globalized Newton iterative method and a precondi-

tioned Krylov subspace linear solver, ensures efficient and robust convergence despite
the stiffness of detailed chemistry. The model is validated via comparison with OP-
PDIF, a well-benchmarked steady-state strained flame code. The model is then used

to characterize the fundamental interactions of flow and mixture inhomogeneity-
examining the dynamic response of flame structure and burning to linear variations
in mixture equivalence ratio, and capturing the effect of unsteady strain on a flame

surface interacting with a vortex in two dimensions. The latter example leads to

a redefinition of the appropriate subgrid strain for flame embedding simulation of
premixed turbulent combustion.

Thesis Supervisor: Ahmed F. Ghoniem
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Combustion is a dynamically complex process, reliant on the interplay of fluid flow,

diffusive transport, and chemical kinetics, all occurring over a wide range of length and

time scales. Computational simulation of combustion in practical devices necessarily

applies simplifying assumptions to these physical processes. Indeed, full numerical

simulation of multi-dimensional reacting flow-simulation that resolves all spatial

and temporal scales of turbulence and chemistry-is far beyond the reach of current

computer technology, and will not be feasible in the forseeable future.

A classical practice in combustion simulation has been to assume instantaneous

response of the flame to dynamic changes in flow or mixture composition, using

such devices as a flamelet library or some other closure scheme based on steady-

state flame properties. Yet there is a whole range of combustion processes for which

this assumption is not valid; combustion instability, combustion at high turbulence

intensity, and combustion in stratified charges are but a few phenomena in which

flow and mixture composition changes on the order of a flame time scale do occur.

Capturing the dynamic, unsteady response of flames is thus essential to a physical

understanding of these phenomena. Modeling the effect of such flow and mixture

inhomogeneities is the focus of work in this thesis.
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1.1 Turbulent Combustion Simulation

Combustion in a turbulent flow may take the form of a flame surface convoluted over

a range of length scales by vortical structures. The area and burning rate of this flame

surface is primarily affected by the hydrodynamic strain, i.e., the continually varying

strain rate imposed by turbulent eddies. Figures 1-1 and 1-2 demonstrate the inter-

action of turbulence with a two-dimensional flame front. Figure 1-1 shows snapshots

of a premixed flame interacting with a vortex at 0.5 ms intervals, extracted from a

direct numerical simulation; Figure 1-2 shows a flame front in a sea of homogeneous

turbulence, also obtained via direct numerical simulation. In both cases, the flame

is a thin surface wrapped around vortical structures, and the evolutions of the flame

surface and the flow structures are dynamically linked.

Of course, this model is not applicable to all regimes of turbulent combustion.

Turbulent combustion processes may be classified by Damk6hler and Karlovitz num-

bers, as seen in Figure 1-3. The Damk6hler number is the ratio of the flow (integral)

time scale to chemical time scale

Da = T (1.1)
TR

while the Karlovitz number is taken as the ratio of the flame stretch rate to a critical

stretch rate, using 1F as a flame thickness and SL as the laminar flame speed:

1 dA

Ka = Adt (1.2)
SL/lF

The limit of fast chemistry corresponds to Da > 1, while one expects local quenching

and distributed reaction zones for Ka > 1. Thus the model of a continuous flame

surface wrinkled or corrugated by turbulence, as described above, is valid in the

regime Da > 1, Ka < 1.

In this "flamelet" regime of turbulent combustion, the flame surface occupies only

a fraction of the total volume of reacting flow. Yet solving the fully coupled equations

of reacting flow with detailed chemistry, as in Figures 1-1 and 1-2 is computation-

ally very expensive, prohibitive for all but the most idealized cases. It would be

10



Figure 1-1: Full numerical simulation of flame-vortex interaction.

desirable-for the purposes of computational efficiency, and as a fundamental mod-

eling advance-to decouple the flame surface from the non-reacting portions of the

flow, to develop a subgrid model for the flame, specifically, one that captures the un-

steady effects of strain imposed by the flow. Modeling a turbulent reacting flow in

the flamelet regime would thus consist of dynamically coupling a non-reacting flow

solver with this subgrid model, the flow straining the flame and changing its burning

rate, the flame acting as a source of volumetric expansion and a baroclinic source of

vorticity in the flow. This idea is known as flame embedding, and has been explored in

its initial stages [22]. A detailed and accurate subgrid model is central to the success

of the flame embedding technique and will be developed in subsequent chapters.
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Figure 1-2: Flame surface in homogeneous turbulence.

well-stirred reactor
Da->O, Ka-oo,

distributed reaction zones

thin corrugated flames

l/D

Figure 1-3: Phase diagram of turbulent combustion.
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1.2 Flame Response to Unsteady Strain

Many studies have examined the response of premixed or non-premixed laminar flames

to unsteady strain rates, most often for the purposes of understanding the effect of

turbulence on burning [34, 12, 23, 25, 3, 9, 26, 24, 11, 13, 5]. Strain affects a flame

by changing scalar gradients and thus the rates of diffusive transport feeding the

flame. Accurately predicting the effects of strain therefore requires detailed mod-

els for chemistry and species transport. However, certain qualitative results can be

summarized:

Consider a premixed flame in which, for simplicity, a single Lewis number (Le

a/D) describes the transport of all species. The direct impact of strain is on the

convection-diffusion zone of the flame, but the actual effect of strain on burning, i.e.,

on the reaction zone, depends closely on the Lewis number. For a unity Lewis number,

mass and heat diffusion rates are equal, and the reaction-diffusion zone is essentially

unaffected over a range of weak to intermediate strains. Once the flow time scale

imposed by the strain becomes comparable to the chemical time scale, however, the

temperature in the reaction zone begins to fall and the burning rate decreases. Here

the Karlovitz number is of order unity; at even higher strains (and values of Ka),

flame extinction may be observed.

For nonunity Lewis number, the imbalance between mass and heat flux leads to

changes in flame structure at weak and intermediate strains. Strain shifts values of

temperature and fuel mass fraction relative to one another, thus altering the con-

ditions in the reaction zone. For Le > 1, heat diffuses more quickly than mass;

a smoother temperature profile reduces the temperature in the reaction zone, and

the burning rate decreases monotonically with strain. For Le < 1, fuel diffuses more

quickly than heat, and temperature actually increases at the location of the maximum

reaction rate; the burning rate thus increases with weak to intermediate strain.

At high strain, Lewis number effects become less important. As described above

for unity Lewis number, the burning rate at Ka > 1 must decrease for nonunity

and unity Lewis number flames alike. Flame extinction occurs as the influx of cold

13



reactants exceeds the rate of heat release from chemical reaction and the reaction

zone falls below the ignition temperature. Numerical results supporting these trends

can be found in [231.

Of course, a single Lewis number applied to all species cannot describe a real re-

acting flow. This simplified discussion of strain at varying Lewis numbers emphasizes

the importance of detailed chemistry and transport in accurately modeling a flame,

even to predict the steady-state effect of a given strain rate. In a realistic flame,

the diffusive flux of each mixture component reacts differently to a change in strain

rate, and the superposition of these diffusive fluxes changes the composition and

temperature of the reaction zone, where, in turn, a complex set of chemical pathways

determines the burning rate.

Now consider unsteady strain rates: The effect of oscillatory strain on a flame

depends on the frequency of the applied oscillations. At low frequency the flame may

respond in a quasi-steady manner; at moderate frequency, the flame responds with

a time lag, and thus a phase shift; while at even higher frequency, a flame may be

unresponsive to oscillations in strain. The bounds between these regimes depend on

the relative sizes of the flame time scale and the period of strain oscillations. It is also

important to note that a flame may survive at higher unsteady strains than it would

in a steady-state environment, a result reported by Najm [16] and others. Moreover,

flames in a turbulent environment can undergo quenching and subsequent re-ignition.

All these effects must be captured to model the effects of flow inhomogeneity on

combustion.

1.3 Flame Response to Unsteady Mixture

The response of flames to unsteady changes in mixture composition, or more specif-

ically, to unsteady changes in equivalence ratio, has not been studied extensively.

However, spatial or temporal stratification of a reacting mixture occurs in numerous

practical devices. An outstanding example of this-with unsteadiness on the order

of a flame time scale-occurs in combustion instability and its control.

14



Consider the combustor shown schematically in Figure 1-4. Perturbations in the

heat release rate of the flame will lead to pressure perturbations in the combustion

chamber. If the fuel flow is choked or constant, as with a fuel injector, pressure

perturbations will affect only the air flow and thus create variation in the equiva-

lence ratio of the mixture reaching the flame. This perturbation in < then affects

the heat release in the flame, and a positive feedback can occur, leading to instabil-

ity. Equivalence-ratio driven combustion instabilities like this have been observed in

practice, and discussed in the literature [29].

The preceding argument may be cast in a more rigorous, mathematical form. The

heat release rate 4 acts as a source term in the standard wave equation:

- c2 =2 ( -I 1 ) (1.3 )

Now using a Galerkin expansion and focusing on only one acoustic mode, we obtain

an oscillator equation.

p' =, (t)V)(X) -+ W + 2 = cd (1.4)

The heat release rate depends on both the velocity and equivalence ratio perturba-

tions, and the equivalence ratio perturbation is some function of p' and p'. The first of

these relationships must incorporate the character of unsteady flame response. Under

appropriate conditions, the functional form of d will introduce a negative term in P'

on the left-hand side of the oscillator equation; this negative damping is indicative of

combustion instability.

Combustion instability is typically observed at frequencies of 100-1000 Hz, imply-

ing mixture inhomogeneity on the order of a flame time scale. Moreover, even when

combustion instability is not driven by equivalence ratio, control actuation mecha-

nisms such as fuel injection can still introduce equivalence ratio variation at similar

frequencies.

15



fuel (choked) q'

air (unchoked) 0

Figure 1-4: Schematic of equivalence-ratio driven combustion instability.

1.4 Scope and Goals

Motivated by the physical problems presented above, this thesis will develop a simple

computational model applicable to flame embedding and to arbitrary unsteady condi-

tions of strain and mixture. The formulation of this model is presented in Chapter 2.

To accurately predict unsteady flame response, our model must incorporate de-

tailed chemical kinetics and species transport. Many detailed-chemistry flame codes

are currently available, but most of these codes are aimed at steady-state problems.

Also, these codes tend to lack numerical robustness and to exhibit poor efficiency.

Thus an important thrust of this work will be to develop more robust, computation-

ally efficient numerical methods for stiff, multi-species reacting flow. Implementation

of these numerical methods is described in Chapter 3.

The remainder of the thesis will focus on applications of the computational model.

Validation of the model, through direct comparison with a well-benchmarked steady-

state flame code (Sandia's OPPDIF) is presented in Chapter 4. Chapter 5 finally

uses the code to examine several unsteady problems discussed in the preceding sec-

tions: first, the burning of a stratified mixture, and second, a comparison with direct

numerical simulation of two-dimensional turbulent combustion, thereby refining the

concepts of flame embedding.
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Chapter 2

Model Formulation

Turbulent combustion in the "flamelet" regime, as described in §1.1, takes the form of

a thin flame surface strained by turbulent eddies. Our goal is to develop a model that

captures the effect of flow strain and changing mixture composition on this surface-

in other words, an unsteady subgrid model applicable to flame embedding. Though

motivated by a physical picture of turbulent flow, this model also will lend itself to

more idealized studies of arbitrary strain and mixture inhomogeneity.

2.1 Kinematics of Flame Front Stretching

The first assumption of our model is suggested by the thinness of a turbulent flame

surface in the flamelet regime. Fast chemistry (Da > 1) and a high rate of heat

release insure that scalar gradients normal to the flame surface are much larger than

those tangential to it. Neglecting the tangential gradients, one obtains a locally one-

dimensional flame structure.

Now consider the kinematics of a material element on a two-dimensional flame

front, as shown in Figure 2-1. The motion of any such fluid line segment may be

decomposed into translation, rotation, and strain. In flame coordinates-that is, in

the reference frame of the fluid line segment-the only effect of motion that will be

apparent is that of strain. Translation and rotation may change the mixture that the

flame front encounters, but only strain will alter the flame's internal structure. The

17



Figure 2-1: Deformation of material element on a flame front.

strain is given by the relative change in length of the line segment:

1 dol 61 -Vu (2.1)
16l1 dt 611

Further insight may be obtained by decomposing the flow local to the flame front.

Figure 2-2 shows two initially perpendicular line segments, 1 and m, in a reference

frame F chosen to follow a flame element. The x-axis of this reference frame is always

parallel to the flame surface, while the y-axis is always perpendicular to it. The line

segment I is a material element of the flame front and thus always lies on the x-axis,

while the line segment m is initially coincident with the y-axis. At an initial time t,

the projections of the the line segments on the axes are

11(t) = (t), l (t) = 0 (2.2)

mX(t) =0, mV (t) = m(t) (2.3)

After an elapsed time dt, the projections become

l(t + dt) (1 + dt) 1(t) (2.4)

ly(t + dt) = O dt 1(t) =0 (2.5)
(OX

18



time = t time = t+dt

mm
m1

I X

A Y A Y
- y --- - - -- - ..+

Figure 2-2: Flow-induced deformation in the reference frame of a flame element.

mX(t + dt) = dt m(t) (2.6)
Bay

my(t + dt) = 1 + i-v dt) m(t) (2.7)
ay

where u and v are the flow velocities in the x and y directions, respectively. Note that

our choice of reference frame requires the derivative in Equation 2.5 to equal zero.

As expressed in Equation 2.6, the projection mx grows at the rate Ou/&y; the

segment initially in the y-direction thus rotates without changing its length. This

deformation is consistent with a pure shear flow, corresponding to off-diagonal com-

ponents of the strain rate tensor:

rz = U + (2.8)
Th2 sy ax

The second component of flow local to the flame element is a stagnation point flow,

19
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observed in Equations 2.4 and 2.7. Both line segments are strained along the principal

axes, and because of continuity in an incompressible flow, the rates of strain are equal

and opposite in sign:
u Dv (2.9)

0x Dy

Decomposition of the flow in the vicinity of a flame element is shown schematically

in Figure 2-2.

What does this flow decomposition imply for modeling the effect of inhomo-

geneities on a flame surface? As stated earlier, scalar gradients (e.g., gradients of

temperature, density, species concentrations) normal to the flame are much larger

than those tangential to the flame. In the reference frame F, this can be written

D D
D Dy a(2.10)

ax ay

Now consider the transport equation for a scalar in F; this equation must contain

the following differential operator:

D D D D2  D2

L = -+ U + v- (2.11)
Dt Dx Dy Dx 2  Dy 2

The velocity of the shear flow, Usha, = cy, contributes only to the u in the second

term of Equation 2.11. Following Equation 2.10, this second term can be neglected

entirely, rendering the shear component of the velocity field unimportant in local

transport of scalars. Physically, this can be understood from Figure 2-2; the shear

field simply advects constant values of scalars parallel to the flame surface and cannot

alter the distribution of scalars normal to the flame. As a result, the instantaneous

burning of a turbulent flame surface is locally similar to that of a stagnation point

flow with an appropriately chosen strain rate. Our subgrid model for the effect of

strain and mixture inhomogeneity on burning will center on this stagnation point

flow.

It is important to note that the preceding analysis does not account for curvature

of the flame surface. (The line segments displaced in Figures 2-1 and 2-2 are perfectly

20



straight.) Propagation of a curved flame contributes to the total stretch rate as

follows:
1 d61 = c + 2Sdhm (2.12)

|61| dt

where e is the ordinary hydrodynamic strain, given by the surface divergence of the

velocity field, Sd is the speed of the flame surface normal to itself, and hm is the mean

curvature. This effect is relevant only to premixed flames (Sd # 0), and typically

becomes important only in regions of high curvature (where the radius of curvature is

small relative to the flame thickness)-in the cusp of a vortical structure, for example.

For simplicity, the flame models used in this thesis will ignore curvature effects.

Finally, it is instructive to contrast our subgrid model with traditional flamelet

models for turbulent combustion, as developed by Bray [2]. Both models represent

local burning conditions of the flame surface with a stagnation point flow, but the

model developed here will has the distinction of being unsteady. As discussed in

Chapter 1, the effects of unsteadiness are fundamental to the dynamics of flame-flow

interaction, and modeling them takes an important step towards accurate simulation

of reacting flow.

2.2 Governing Equations for the Elemental Flame

The unsteady combustion zone model developed in this chapter is known as the

elemental flame model, distinguishing it from the quasi-steady flamelet approach [22].

Consider a flame strained in a planar stagnation point flow, with coordinates and flow

velocities shown in Figure 2-3. The flame introduces directionality to this figure and

enables use of the boundary layer approximation; for any scalar (P, gradients parallel

to the flame 2 <p/&x 2 are negligible compared to those perpendicular to the flame,

2 /Oy 2 . We thus write unsteady boundary layer equations for transport of species,

energy, momentum, and mass:

pYk + pu + pv = - a pD + kWk (2.13)
at Ox Dy Oy \ Dy )

21



x

unburned burned

NY
Figure 2-3: Flame strained in a stagnation point flow; the elemental flame model.

OT OT OT 1 0 / T Wkh(
p + pu +pv- - (2.14)

at ax Oy CP ay x y k C,

ap u p -=-- a (2.15)Pat + ax +PDVy ax BYYy

ap a(pu) a(pv)
+ + = =0 (2.16)

at Ox 19y

Here Yk is the mass fraction of species k, Dk is the mixture-averaged diffusion coeffi-

cient for species k, while Wk and zlk are the molecular weight and molar production

rate for species k, respectively. In the remaining equations, C, is the mixture-averaged

specific heat, A is the thermal conductivity, hk is the molar specific heat of species

k, p is the hydrodynamic pressure, and y is the absolute viscosity of the mixture.

Note that the enthalpy flux term is neglected in the energy equation (Equation 2.14)

while thermal diffusion velocity is neglected in each species transport equation (Equa-

tion 2.13). Smooke [33] and others have shown that both effects are unimportant to

the laminar strained flame.

The pressure gradient dp/dx inside the boundary layer is identical to that in

the outer stagnation point flow, since by the usual boundary layer assumption, Ap

across the boundary layer is negligible. Substituting the stagnation point flow velocity

22



profile u,, = c(t) x, voo = -e(t) y into the general x-direction momentum conservation

equation, we obtain the pressure gradient as a function of the imposed strain:

= Pub1noce - Pub U00  (2.17)ax f at

The notation Pub above emphasizes that the density of the unburned mixture is used to

define the pressure gradient. In the diffusion flame, densities outside of the boundary

layer are equal, Pub = p-oo = poo, so this distinction is moot. In the premixed

flame, however, heat release within the flame leads to a products-side stream entering

with lower density-and to maintain a constant pressure gradient, a higher effective

strain. Defining the global strain c on the unburned side, in accordance with the

expression for pressure gradient above, thus insures consistency and clarity across all

flame configurations.

Introducing the notation U u u/u_, V - pv, and substituting the pressure

gradient expression into the equation for momentum conservation inside the boundary

layer (Equation 2.15), Equations 2.13-2.16 can be rewritten as follows:

alk aYk aYka ( aYk\
pa + puoU x+V ay- - a (pDk ay) + WkW (2.18)at OX ay 09y ay

aT aT aT 1 a a T sbhk
p + puooU + V - U a + (2.19)

at ax ay C,8ay B y kC,

au Iaf 2 aU aU
puo + puo-U + puoU + puooU 2  Vat eat ax ay

(Iac a au
Pubuoo a +c) +uo- Py) (2.20)

ef at 09y D1y

ap+ U + pUE + p au + av -0 (2.21)
at U xU ax ay

Now consider the solution of the boundary layer equations along the stagnation

streamline, x = 0. Along this streamline, u = U = 0 and by symmetry, aro/ax =

0, where <p is a passive scalar-namely, T, Yk, U, or p. Thus, we can eliminate
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the x-direction convective terms in Equations 2.18-2.21. Note, however, that Du/Dx

and Du,/Dx are nonzero on the stagnation streamline, and that this flow divergence

should be reflected in the momentum and continuity equations. Every term in the

momentum conservation equation (Equation 2.20) is proportional to u, so to retain

this equation in the system, we divide by u,. The resulting equation governs the

strain rate through the reaction zone, where e U can be thought of as the effective

strain. The final set of governing equations takes the following form:

pYk + V (pDY - v bW = 0 (2.22)
O5t ±V O PY ~ y (k = (2.22

DT DT 10 ( -T khk
p +V - A1- -i =0 (2.23)

Dt Dy C,8yO yJ C,

DU 1De DU DU+ 1DE N
p + pU + pU2 E PV y - pu e 0 (2.24)

Ot E 8t Dy O y Dy) EOt

Op DV
Dt + Dy + pUE=0 (2.25)
Ot Oy

Note that the low Mach number assumption has been used in the governing equa-

tions above. Density is calculated as a function of the temperature, species mass

fractions, and thermodynamic pressure (assumed constant) via the ideal gas equation

of state.

At various times, it will be useful to consider a flame strained in an axisymmetric

stagnation point flow rather than in the planar configuration used above. Denoting

the radial coordinate with r and the axial coordinate with y, the velocity profile of

an axisymmetric stagnation point flow is u = f(t) r, v, = -2c(t) y. The governing

equations for this configuration are identical to those derived above (Equations 2.22-

2.24) with the exception of the continuity equation. The revised continuity equation

is:
Op DV

- + + 2pUe = 0 (2.26)
Dt Dy

Boundary conditions for the species and energy equations consist of defining the

composition and temperature of the two incoming streams of the stagnation point
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flow.

y=-oo: Yk=Yk,-oo, T= To

y = +oo: Yk =Yk,+oo, T= T+oo (2.27)

The continuity equation requires only one boundary condition, which specifies zero

velocity at the stagnation point:

y=0: V=0 (2.28)

The momentum conservation equation requires two boundary conditions. At an un-

burned stream, u = uno, so the boundary condition is by definition U = 1. Setting

the spatial gradients in Equation 2.24 to zero gives the boundary condition burned

stream. This far-field boundary condition places an important requirement on the

size of the computational domain; the flame must be far enough from the +oo and

-oo boundaries for spatial gradients in U to vanish. In the case of steady strain, the

burned-stream boundary condition on U is

U Pub (2.29)

where Pb is the density of the burned mixture. For unsteady strain, we must integrate

the resulting ODE for Ub:

DUb 2 UOUf9? Pub (l0C +
at - U -b at + et (2.30)

For a premixed flame, the effective strain rate in the incoming products-side mixture

thus responds dynamically to the imposed strain rate.
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2.3 Transport and Kinetics

To solve the system of governing equations derived in the preceding sections, every

term must be expressed in terms of the fundamental variables: temperature, pressure,

flow velocities, and mixture composition. Conductivity, viscosity, and species diffusion

coefficients vary across the flame according to a prescribed transport model. The

chemical source terms bk-molar production rates for each species-are complex

functions of the local mixture conditions and thus depend on some chosen scheme of

chemical kinetics, whether it is global or detailed. The models used to evaluate these

terms are discussed below.

2.3.1 Transport Model

The transport coefficients p, A, and Dk could be evaluated exactly using Sandia's

TRANSPORT package, an extension to CHEMKIN based on polynomial fits to em-

pirical data. This approach is slow and cumbersome, however; instead we use the

approximations validated by Smooke [33].

Smooke showed that the Lewis number of any given species does not vary sig-

nificantly across the profile of a strained laminar flame. A fixed Lewis number

Lek - a/Dk is thus chosen for each species, capturing the effects of multicompo-

nent differential diffusion. The Prandtl number is chosen constant and equal to 0.75,

while a curve fit is used to calculate the ratio A/C, in cgs units:

= 2.58 x 10-4 (2.31)
C, 298

This curve fit provides excellent results over a wide range of temperatures and pres-

sures. The thermodynamic properties C, and hk are evaluated by CHEMKIN sub-

routines, polynomial functions of local mixture conditions.

For reference, the governing equations are restated below to incorporate the trans-

port approximations just developed. Subsequent chapters will solve the equations in
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this form.
DYk + Yk 0 1 A Yk \.W 0 (2.32)

p +V - ~kk-= 2.2
at Dy Oy (Lek C, OY

pO +V A -T= (2.33)
at Oy COy 19y k C,

aU 1OE + U 0 ( ABU (10
p + pU +pU 2 +V - Pr - pub + ) =-0 (2.34)

at e at Dy ry C Oy eat

+ + pUE = 0 (2.35)
at ay

2.3.2 Chemical Mechanism

The kinetic pathways of a combustion process typically consist of hundreds of ele-

mentary reactions among major and minor species, each with its own rate expression.

These reactions together constitute a chemical mechanism, and can be simplified, or

reduced, to an arbitrary level of detail. For example, if the steady-state heat release

rate of a flame is the only variable of interest, a global mechanism with a single Arrhe-

nius rate expression is sufficient. For detailed flame structure and for proper modeling

of unsteady effects, however, a detailed kinetics mechanism is necessary (along with

multicomponent transport), as discussed in Chapter 1. The reduction of chemical

mechanisms is a field unto itself, and is beyond the scope of this discussion.

The detailed mechanism used for most of the simulations in this thesis is designed

for methane-air combustion and consists of 46 reactions among 16 species. It is a C1

chemical mechanism, and thus is most appropriate to stoichiometric and lean flames.

The larger GRIMech mechanisms use both C1 and C2 chemistry and are perhaps

the most detailed mechanisms available for hydrocarbon combustion, but we eschew

them in favor of computational efficiency. For stoichiometric and lean flames, the

simpler 46-reaction mechanism provides excellent predictions, as reported by Smooke

[33]. The mechanism is shown in Table 2-1.
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1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.
35.
36.
37.
38.
39.

40.
41.

42.
43.
44.
45.
46.

(k = A T**b exp(-E/RT))
A b EREACTIONS CONSIDERED

CH3+H=CH4
CH4+02=CH3+HO2
CH4+H=CH3+H2
CH4+O=CH3+OH
CH4+OH=CH3+H20
CH20+OH=HCO+H20
CH20+H=HCO+H2
CH2O+M=HCO+H+M
CH2O+O=HCO+OH
HCO+OH=CO+H20
HCO+M=H+CO+M
HCO+H=CO+H2
HCO+O=OH+CO
HCO+02=HO2+CO
CO+O+M=CO2+M
CO+OH=CO2+H
CO+02=CO2+O

CH3+02=CH30+O
CH30+M=CH2O+H+M
CH30+H=CH2O+H2
CH30+OH=CH20+H20
CH30+0=CH2O+OH
CH30+02=CH20+HO2
CH3+02=CH20+OH
CH3+O=CH20+H
CH3+OH=CH20+H2
H02+CO=CO2+OH
H2+02=20H
OH+H2=H20+H
H+02=OH+O
O+H2=OH+H

H+02+M=HO2+M
H20
C02
H2
CO
02
N2

H+02+02=HO2+02
H+02+N2=HO2+N2
OH+HO2=H20+02
H+H02=2OH
0+HO2=02+OH
20H=O+H20
H2+M=H+H+M

H20
H
H2

02+M=O+O+M
H+OH+M=H20+M

H20
H+H02=H2+02
H02+HO2=H202+02
H202+M=OH+OH+M
H202+H=HO2+H2
H202+OH=H20+HO2

by
by
by
by
by
by

Enhanced by
Enhanced by
Enhanced by

Enhanced by

2 .100E+01
5. OOOE+00
3.300E+00
2 . OOOE+00
0 . OOOE+00
0 . OOOE+00

6 . OOOE+00
2 . OOOE+00
3 . OOOE+00

1. 90E+36
7. 90E+13
2 .20E+04
1. 60E+06
1. 60E+06
7.53E+12
3. 31E+14
3.31E+16
1.81E+13
5. OOE+12
1. 60E+14
4 . OOE+13
1. OOE+13
3 . OOE+12
3.20E+13
1. 51E+07
1. 60E+13
7. OOE+12
2.40E+13
2 . OOE+13
1.OOE+13
1. OOE+13
6.30E+10
5. 20E+13
6. 80E+13
7.50E+12
5.80E+13
1. 70E+13
1. 17E+09
2. OOE+14
1. 80E+10
2 . 10E+18

6. 70E+19
6. 70E+19
5. OOE+13
2. 50E+14
4. 80E+13
6. OOE+08
2. 23E+12

1. 85E+11
7. 50E+23

2 . 000E+01
2. 50E+13
2 . OOE+12
1. 30E+17
1. 60E+12
1. OOE+13

-7.0
0.0
3.0
2.4
2.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.3
0.0
1.0

-1.0

-1.4
-1.4

0.0
0.0
0.0
1.3
0.5

0.5
-2.6

0.0
0.0
0.0
0.0
0.0

NOTE: A units mole-cm-sec-K, E units cal/mole

Table 2-1: Smooke-46 chemical mechanism for methane-air combustion.
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Enhanced
Enhanced
Enhanced
Enhanced
Enhanced
Enhanced

9050.0
56000.0

8750.0
7400.0
2460.0

167.0
10500.0
81000.0

3082.0
0.0

14700.0
0.0
0.0
0.0

-4200.0
-758.0

41000.0
25652.0
28812.0

0.0
0.0
0.0

2600.0
34574.0

0.0
0.0

22934.0
47780.0

3626.0
16800.0
8826.0

0.0

0.0
0.0

1000.0
1900.0
1000.0

0.0
92600.0

95560.0
0.0

700.0
0.0

45500.0
3800.0
1800.0



Chapter 3

Numerical Solution

The evolution of the elemental flame is governed by a set of one-dimensional partial

differential equations, as derived in the previous chapter. Difficulty in the numerical

solution of these PDEs stems from the inclusion of detailed chemistry. The chemi-

cal source terms usk are composites of elementary rate expressions, where each rate

expression is a strong, usually exponential, function of temperature. Together, these

source terms introduce a wide range of time scales to the governing equations, ex-

tending to the order of nanoseconds. Overcoming the stiffness of detailed chemistry

has been a long-standing challenge in numerical combustion simulation, one which

here necessitated the use of several novel numerical tools.

3.1 Finite-difference Discretization

The governing equations of the elemental flame (Equations 2.32-2.35) must be inte-

grated implicitly, as required by stiffness. A first-order, backward Euler formulation

is used, discretizing the time derivatives as follows:

OT n+T n+1 - T"nn1v~p(T( . - pT n+yn yn+1, .. ) (3.1)p_ (T 7 KYk7 ... V~ At IY
at At

Here and in all subsequent discretizations, the superscript indicates the time layer;

the time derivative in the energy equation is used as an example. In contrast to previ-
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ous formulations [22], all the governing equations-energy conservation, momentum

conservation, species conservation, and continuity-are solved simultaneously.

To prevent the formation of numerical instabilities, convective terms in the species,

energy, and momentum conservation equations are discretized with a first-order up-

wind stencil. This stencil thus depends on the sign of the convective velocity:

V < 0 : V ~T V T+1 - (3.2)
Dy hj
OT T - -, T

V > 0: V-- ~ Vij j (3.3)
Dy hj_

Here, the subscript represents the point on the spatial grid, while h is the grid spacing:

hj -- yj+1 - yj. Diffusion terms are approximated to second-order accuracy. Again,

the energy equation (2.33) is used as an example:

1 O T 1 2 Tj+ yT - T-1)1 D (A - Aj+1/2 + I - Aj-1/2 T (3.4)
C,8ay Oy C,, yj+1 - Yj-1 hj hj-i

The continuity equation (2.35) must be carefully discretized to avoid numerical

oscillations in the mass flux profile. Without an appropriate stencil, oscillations are

observed during translation of the flame with respect to the spatial grid; susceptibil-

ity to oscillations is high since the continuity equation is the only governing equation

without physical dissipation. Thus, an upwind discretization is used. The term 'up-

wind' is written with some qualification, since the continuity equation is not properly

a transport equation and DV/Dy is not a convective term per se. Nonetheless, tak-

ing the positive sign of DV/Dy to suggest a positive upwind velocity, the following

discretization of the continuity equation adds dissipation of the appropriate sign:

Dp DV
+ pUC = 0

Dt Dy
n +1I _ nj !+1 _ V!n+1

pl+l pn+1Un+1vn+1 - 0 (3.5)
At + hj_1 +

This discretization of DV/Dy prevents direct implementation of the stagnation point

boundary condition, Equation 2.28. Instead, a boundary value on the mass flux V
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must be chosen at y = -oc. The boundary value is arbitrary provided that it is large

enough for a flame to stabilize at a lower mass flux, since V decreases in the direction

of the stagnation point. If the boundary value is too large, on the other hand, the

flame (or for that matter, the stagnation point) may not fall within the computational

domain. The boundary value can thus be set to any reasonable number based on the

size of the computational domain and the strain rate. The solution to the problem

matches the mass flux profile to the flame location, as reflected in the profiles of T,

Yk, p, and U. In computations with changing strain rate, the boundary condition on

V must be updated periodically, a process detailed in §3.4.2.

Spatial discretization of the governing equations is performed on a non-uniform

adaptive grid. Non-uniform grid spacing permits a greater clustering of grid points in

regions where spatial gradients are strong, thus ensuring adequate resolution through

the reaction-diffusion zone; a fine grid resolution tends to offset the fact that convec-

tive discretizations are only first-order accurate. Grid points are more sparsely spaced

away from the flame, in regions of constant gradient. This non-uniform allocation of

grid points provides accuracy without sacrificing computational efficiency.

As the flame translates in space or as its internal structure changes, adaptivity of

the grid becomes important. Several criteria for grid resolution are enforced at the

end of each time step, and where these criteria are not met, grid points are added or

removed appropriately. First, the gradient of each scalar must be adequately resolved,

relative to its range:

koy y - Vg| < a max V - min p (3.6)
3 3

Here, V is chosen to include all the dependent variables (T, Yk, U, and V) as well as

each chemical source term wbk; a is a tolerance parameter on the order of 0.1. Second

gradients are subject to an analogous criterion:

" -< max - mm (3.7)
_y By m (y m 3y.
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The final criterion forces the grid to be relatively uniform:

< < 1/<(3.8)

Linear interpolation is used to calculate the value of the dependent variables at any

new grid point.

At the end of each time step, the thickness of the flame's temperature profile is

compared to the distance from each boundary to the nearest end of the flame. If the

flame comes to within two thermal thicknesses of the boundary, the computational

domain is extended and values of each dependent variable are extrapolated to the

new grid points. This criterion for grid extension is most important on the products

side of a premixed flame, where the boundary conditions expect the mixture to have

reached equilibrium, with all spatial gradients in T, Yk, and U falling to zero.

The time step for integration is constant, typically chosen in the range of 1-10 ps.

At each time step, discretization reduces the governing PDEs to a set of nonlinear

algebraic equations. The nonlinear system can be written as:

F (x) =_ 0, F: R" -+* R7 (3.9)

The output of the function F is a column vector containing residuals of the discretized

governing equations, while x is the solution vector, containing profiles of each funda-

mental variable, Yk, T, U, and V. The organization of the values within these column

vectors is important, as it affects the bandwidth and structure of the Jacobian matrix,
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i' OF1/Oxj. Variables and residuals are thus grouped by grid point:

(k=1), j - -(k=K), j

Tj

Ui

x = (3.10)
(k=1), j+1 ... Y(k=K), j+1

Tj +1

Uj+1

resspec(k1),j . spec(k=K), j

reS energy, j

resmntm, j

F es cont, j (3.11)
resspec(k=1 ), j+1 - - - reS spec(k=K), j+1

res energy, j+1

resmntm, j+1

TeS cont , j+1

Here, Tesenergy, j denotes the residual of the energy conservation equation discretized

at grid point j; similar notation applies to the residuals of the conservation equation

for species k (resspec(k), j), the momentum conservation equation (resmntm, j), and the

continuity equation (Tescnt,j).
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3.2 Inexact Newton Method

The most basic means of solving nonlinear equations is Newton's method. The solu-

tion is approached by iteration; a linear model is constructed at each trial solution to

yield a step, or correction, towards a more accurate solution. For a nonlinear system

of equations as in (3.9), the Newton step is given by

F'(xk)sk = -F(xk) (3.12)

where Xk is the current approximate solution and Sk is the step towards the next

solution, Xk+1 = Xk + Sk. As defined in the previous section, F'(xk) is the Jacobian

computed at Xk, Fg = 0F/0xj.

Newton's method converges quadratically in the neighborhood of a solution, a de-

sirable feature when the trial solution is accurate. Far away from a solution, however,

Newton's method is not robust, converging poorly if at all. Directly solving Equa-

tion 3.12 for a Newton step-a computationally expensive undertaking in any large

scale problem-is not effective in this situation. Replacing the Newton condition of

Equation 3.12, we introduce the more flexible inexact Newton condition:

||F(xk)+ F'(xk)skl Thc f\F(xk)f1 (3.13)

This modification of the Newton equation is at the core of the Inexact Newton Back-

trackng (INB) method, developed by Eisenstat and Walker [7].
The key parameter in Equation 3.13 is 7k, known as the forcing term. The inexact

Newton condition essentially restates the exact Newton conditon from the perspective

of an iterative linear solver. An iterative method is used to find an approximate

solution to (3.12), and T7k specifies the tolerance to which this solution (Sk) is found.

For T1k equal to zero, the Newton condition is solved exactly, reducing Equation 3.13

to Equation 3.12, while as 77k approaches 1, computational effort falls to zero.

Proper specification of ?lk can vastly enhance efficiency and convergence of the

nonlinear solver. Far away from a solution, where the linear model of Equation 3.12
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may poorly describe the nonlinear surface of the function F, it makes little sense to

calculate each Newton step exactly. Doing so is computationally expensive and may

result in little or no progress toward a solution; indeed, a less accurate solution of

(3.12) may be more effective in reducing ||Fll. The forcing term is thus chosen close

to 1. If the linear model becomes accurate, however, a precise Newton step is likely to

provide fast reduction in ||Ffl; the forcing term is thus chosen close to zero. Explicit

formulas governing the choice of ?lk at each iteration will be given, but first let us

outline the entire Inexact Newton Backtracking algorithm:

Algorithm 3.1 (Inexact Newton Backtracking Method)

Let x0, qmax E [0, 1), t C (0, 1), and 0 < 0mi < Omax < 1 be given.

For k = 0, 1,... , until convergence:

Choose initial Tik E [0, ,max] and sk such that

||F(xk) + F'(xk)skl nk ||F(xk)H.

While ||F(xk + sk) > [1 - t( - 7Ak)] ||F(xk)I do:

Choose 0 E [Omin,Omax].

Update Sk -- 0 sk and k 1 - 0(1 - 'ik).

Set Xk+1 = Xk + sk.

This algorithm augments the inexact Newton condition with a globalization known

as safeguarded backtracking. Sufficient reduction in the norm of F is enforced at the

'while' loop; if the step sk of the inexact Newton condition does not sufficiently reduce

|IF||, the step is reduced by a scalar factor 0, essentially 'backtracking' along the

search direction. Backtracking continues until the condition on ||FH| is met, for in a

sufficiently small neighborhood of the trial solution Xk, the linear model must indicate

the correct downward path; the Newton equation is consistent. The backtracking

process is considered 'safeguarded' because limits are placed on the choice of 0, and

it is known as a 'globalization' because it vastly improves the domain of convergence

of Newton's method. Indeed, in exact arithmetic, the INB algorithm is guaranteed

to converge from an arbitary initial guess unless Xk has no limit points or Xk only has

limit points at which F' is singular [7].
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As described above, the forcing term rk is updated at each iteration to reflect the

accuracy of the local linear model. Two schemes that provide fast local convergence

while minimizing oversolving are given by Pernice and Walker [19]. For the first, we

select 7o E [0, 1) and choose subsequent values of rA as follows:

IHJF(Xk)fIl - lIF(Xk-l) + F'(Xk-l)SklH11
77k ) - IF(Xk1) , k = 1,2, ... (3.14)

The second scheme updates T/c based on the norm reduction of the previous Newton

iteration, a more indirect measure of the accuracy of the local linear model:

r/k1 ( |F(Xk) , k = 1, 2, ... (3.15)
||F (zk-1) 11

The scaling -y is chosen in [0, 1] and the exponent a is chosen in (1, 2].

In our implementation of the INB method, convergence is declared when |IF(Xk) 12

or ||F(Xk)I,, falls below a specified tolerance, usually 10-9. Equation 3.14 is typically

used to specify the forcing terms, with rT, = 0.5. The remaining parameters are

adjusted arbitrarily to enhance convergence.

3.3 Krylov Subspace Iterative Solver

Iterative solution of the Newton equation (3.12) is a rather large scale problem. For a

typical grid of 150 points and a detailed mechanism of 16 species, the Jacobian matrix

F' is of dimension m ~~ 3000. Given that the Newton equation is solved repeatedly

in the course of a single time step, an efficient linear iterative method is essential to

the performance of the code. Here we turn to a modern class of iterative methods

known as Krylov subspace methods, and we develop preconditioners to accelerate

their convergence.
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3.3.1 BiCGSTAB

Krylov subspace methods are based on the idea of projecting an m-dimensional prob-

lem onto a lower-dimensional Krylov subspace [36]. For a linear system Ax = b, a

Krylov subspace of dimension n is defined as follows:

Kn (b, Ab, ... , An 1 b) (3.16)

At each iteration, the trial solution x,, is chosen from the subspace Cn; iteration

increases the size of the Krylov subspace and thus the accuracy of the solution.

GMRES (Generalized Minimum Residual) is probably the simplest and best-known

Krylov method, and its workings are illustrative: At each step, Arnoldi iterations

construct an orthonormal basis for Kn. A least-squares approximation then finds the

Xn C KC, that minimizes the norm of the residual b - Ax.

In our implementation of the INB algorithm, we use a variant Krylov subspace

method known as BiCGSTAB-Bi- Conjugate Gradients Stabilized. The details of

this method are more complex, and are left better-described elsewhere [36, 10, 30].

BiCGSTAB is based on Lanczos iteration, which, in contrast to the Arnoldi iterations

of GMRES, uses a three-term recurrence relation to construct an orthonormal basis

for C,. BiCGSTAB does not strictly minimize the residual norm at each iteration,

and its convergence is not monotonic. However, it requires less storage space, and in

our experience, provides greater numerical stability.

An important attribute of Krylov subspace methods is that they do not operate

directly on the matrix A. All that is required is matrix-vector products Ax, making it

simple to design procedures that exploit the sparsity of A. For a matrix of dimension

m with only v nonzero entries per row, one can easily compute Ax in O(vrn) rather

than O(m2 ) operations. In the context of the INB algorithm, our matrix A is the

Jacobian, F', and a finite-difference formula is used to calculate the product of F'

with an arbitrary vector v:

1
F'(xk)v ~ - [F(xk + 6v) - F(xk - 6v)] (3.17)
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The scalar perturbation 6 is chosen as follows:

[(1 + i|xk H) Emachl/3 (3.18)

where emach denotes machine epsilon.

3.3.2 ILUTP Preconditioning

The inclusion of detailed chemistry in the governing equations (2.32-2.35) creates

scalar entries of the Jacobian that span several orders of magnitude relative to one

another. Stiffness on the continuous scale thus manifests itself as an extremely ill-

conditioned linear algebra problem. Indeed, the condition number r'(F') is typically

on the order of 10'. The convergence properties of BiCGSTAB and other Krylov

methods are not completely understood, but it is known that they hinge on the

eigenvalue or singular value distribution of the matrix. As a rule of thumb, closely

and uniformly distributed eigenvalues produce fast convergence, and an ill-conditioned

matrix has a spectrum that is quite the opposite. The question then arises of how to

improve the properties of our Jacobian matrix so that BiCGSTAB converges rapidly?

In principle, a Krylov subspace method must converge in n < m steps if it is to be

useful. The answer lies in preconditioning-subjecting the matrix to operations that

improve its eigenvalue spectrum from the perspective of the Krylov subspace solver.

The basic procedure of preconditioning is outlined as follows.' The linear system

Ax = b is replaced by two equations:

AM-y = b (3.19)

MX = y (3.20)

The Krylov subspace solver is applied to the first equation, while x is calculated

from the second. To accelerate convergence of the Krylov solver, M is chosen so

'Actually, this is just right preconditioning. A preconditioner may also be applied on the left
(M 1 Ax = M-b), or on both sides, to preserve hermitian positive definiteness ([ClAC-*] C*
C- 1 b).
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that AM 1 is not too far from normal and its eigenvalues are clustered; AM-- is the

well-behaved matrix that the Krylov solver "sees." On the other hand, M must also

be chosen so that Equation 3.20 is simple to solve. The preconditioner M must lie

somewhere between A and I on a spectrum of approximation; choosing M = A or

M = I would render Equation 3.20 or Equation 3.19, respectively, equivalent to the

original ill-conditioned problem.

The right preconditioner implemented here is based on the idea of incomplete L U

factorization, ILU for short. An exact LU factorization of a sparse matrix like F'

produces two dense matrices L and U; the replacement of zero entries in F' with

nonzero entries in L and U is known as fill-in. Suppose, however, that fill-in were

prevented, that L and U could have nonzero entries only where F' was nonzero. Then,

L and U are the incomplete LU factors of F', and

M =L1 ~F' (3.21)

becomes a useful preconditioner.

Several refinements of ILU factorization have been developed by Saad [30] and

published in his SPARSKIT sparse matrix toolkit. Using this package, we implement

an ILUTP preconditioner, a more accurate ILU factorization that allows some fill-in.

ILUTP preconditioning regulates fill-in in L and U on the basis of two parameters:

one, called ifil, is the absolute number of fill-in elements that are allowed in each row

of L or U; the second, called droptol is threshold value below which a potential fill-in

element is set to zero. The ILUTP approach also provides for pivoting, in which

the original matrix is permuted to insure diagonal dominance. Details of the ILUTP

algorithm are more fully described elsewhere [30].

To improve the stability of the factorization process, we scale each column of the

matrix by its 1-norm prior to computing the preconditioner. The entire precondi-

tioning process can now be summarized as follows, where A is understood to be the

Jacobian F':

ASP ~ LU = M (3.22)
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Ax = b -- +

ASP(LU)-ly b (3.23)

S-P-LUx y (3.24)

S is a diagonal matrix containing the column-scaling parameters and P is the per-

mutation matrix. The Jacobian is scaled and permuted, then factored into L and U.

The original linear problem then consists of solving (3.23) and (3.24). BiCGSTAB is

applied to Equation 3.23; in Equation 3.24, S and P are inverted by inspection, and

back-substitution is used to invert L and U.

Implementing this preconditioning scheme in the context of the INB algorithm

is relatively simple. The preconditioning factors L, U, S, and P are computed and

stored at the start of each Newton iteration. The BiCGSTAB algorithm requires only

matrix-vector products, specifically the product of ASP(LU)- 1 with arbitrary vectors

z. Equation 3.24 is thus used to compute v = SP(LU)-lz, and the output v is sent

to Equation 3.17. Applying the preconditioner thus consists of repeatedly inverting

Equation 3.24. In practice, the preconditioning factors need not be computed at the

start of each Newton iteration, as the Jacobian may not change significantly, and

preconditioning is, after all, approximate. The optimal frequency for updating the

preconditioner rests on, a balance of computational times: the additional time required

to recalculate L, U, S, and P versus the time this saves by speeding the convergence

of BiCGSTAB.

In contrast to the matrix-free formulation of the Krylov subspace solver, comput-

ing the preconditioner by the methods described in this section requires an explicit

Jacobian. At each preconditioner update, entries of the block-tridiagonal Jacobian

are constructed according to the definition, F'(xk)ij = OF(Xk),/aXk,j. Most of these

derivatives can be computed analytically, but those involving chemical source terms

are computed via finite-difference approximation:

k* (TY1, ... , Y,-6Yk*, ... ,YK ) ~ Sk Y, 1, - - - k*, - - - ,.K
OYk* 6Yk,
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where 6 is usually chosen around 10-3; here the derivative with respect to species

mass fraction was chosen as an example. To compute derivatives of Wk analytically

would entail decomposing the chemical rate expressions within CHEMKIN-a difficult

undertaking-and would compromise the modularity of the code with respect to

kinetic schemes. In addition, derivatives of the transport coefficients with respect

to T or Yk cannot be computed easily, since they involve polynomial approximations

within CHEMKIN for C,. These derivatives are omitted from the explicit Jacobian;

the resulting inaccuracy is generally insignificant, since L and U are approximate

factors.

3.4 Initialization Conditions

Despite the robust convergence properties of the INB method, it will not converge

quickly from a completely arbitrary profile. At every time step, the Newton solver

requires a starting point for its iterations, an initial guess x,. Ingenuity in creating

these initialization conditions can yield large computational savings. We analyze this

process in two cases: creating a starting condition for the code at t = 0, and selecting

the inital guess at each time step while the code is running, i.e., for t > 0.

3.4.1 Starting Case

When applying the elemental flame code to a new chemical mechanism or a new flame

configuration, an initial solution vector is assembled to approximate the expected

flame structure as closely as possible. This guess is both x at the n = 0 time step and

the initial guess for x"=1 . A reasonable procedure for creating such an initial guess

is as follows: Hyperbolic tangent functions are used to approximate T(y), U(y),

and the mass fraction profiles of major species. Gaussians are used to approximate

the profiles of minor species. In a premixed flame, an equilibrium code such as

STANJAN provides product-side boundary conditions on T and Yk, and in all cases,

a steady-state version of the continuity equation (2.35) is integrated to find V. The

thickness and height of each profile must be estimated based on knowledge of the
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kinetic mechanism and of typical flame structure at the desired strain rate.

Clearly, this ad hoc scheme cannnot predict the flame structure very closely. To

create a more accurate starting condition for the elemental flame, the initial guess

is subjected to a continuation scheme for gradually introducing the chemical source

terms. Chemistry is the root of stiffness in the governing equations, and thus is

the primary cause of difficult convergence. The continuation scheme places damping

terms-arbitrary scalar factors 6-in front of the chemical source terms in the energy

and species equations (2.33 and 2.32), converting the elemental flame into a weakly-

reacting or non-reacting mixture as follows:

0 Yk + D0Yk 0 (1 A Yk'\ b~ 0(.6p +V -- 'I - 6W = 0 (3.26 )at Dy Oy Lek C Oy

OT OT 1 0 OT 0hk
h + V - = 0 (3.27)at ay C,8 ky C,

The initial guess is used to start the code in a weakly-reacting form, and as time

integration proceeds, the damping terms 0 are gradually increased to unity. Once the

solution vector reaches steady-state, it becomes a physically accurate starting case.

The continuation scheme typically begins with damping terms on the order of

10-3 and brings them to 1.0 in about 10 ms of integration. Precise values depend on

the stiffness of the kinetic scheme, the accuracy of the initial guess, and the flame

time scale.

3.4.2 Mass Flux Projection Method

When t > 0, creating the initial guess for the solution vector at each time step is much

simpler; the inital guess at t = n+ 1 is just x. This procedure creates difficulty in the

case of unsteady strain, however. Recall that to aid in discretization, the boundary

condition on V is imposed at y = -oo. The strain rate E can easily vary one or

two orders of magnitude in a given simulation, however; such a change in strain,

with a fixed boundary value on the mass flux through the flame, causes the flame

to translate rapidly with respect to the grid. The flame nears the boundary of the
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computational domain, and successive regriddings become necessary. This outcome is

not only cumbersome, but computationally taxing; when the flame translates quickly,

x" is a poor guess for xn

To avoid this situation while retaining the boundary condition V(y -oo), we

implement a projection method to update the mass flux profile in the case of unsteady

strain. At the start of time step n + 1, an initial guess for Vn+1 is obtained by

integrating the continuity equation with En+1, U", and p":

n _ n-1 V y n+1, guess - Vn+l, guess

t + j 1 p UJEn+l - 0 (3.28)

In one step, this projection updates the boundary value on V at y = -oc and gen-

erates a new guess for Vn+1 . Updating the boundary value on V minimizes flame

translation for fast convergence.
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Chapter 4

Steady-State Validation

The numerical solution of the elemental flame assembles a number of novel mathemat-

ical techniques. Before the resulting code is applied to problems of flow and mixture

inhomogeneity, it is important to model a standard, well-understood flame configura-

tion and check the accuracy of the results, thus validating the numerical methods, the

transport model, and the underlying formulation of the elemental flame. This chapter

presents a direct comparison of the elemental flame code with Sandia's steady-state

OPPDIF (Opposed Flow Diffusion Flame) solver; both codes are used to compute

the detailed structure of a strained, premixed methane-air flame.

4.1 OPPDIF Formulation

OPPDIF is designed to compute the steady-state structure of an axisymmetric flame

between two opposed nozzles, as shown in Figure 4-1. Though its name suggests oth-

erwise, OPPDIF models reacting flow between two jets of arbitrary composition; thus

premixed combustion may be represented in both single-flame and two-flame config-

urations. The flow conditions are defined by the distance between the two nozzles

and the mass flux of each species through each nozzle, along with the density of each

stream. The flow leaving each nozzle is divergence-free, i.e., the radial velocity com-

ponent at the nozzle equals zero. A similarity solution reduces this two-dimensional

flow to a single dimension, along the centerline. The resulting governing equations
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form a two-point boundary value problem. To satisfy the radial momentum equation,

the radial pressure gradient 1 2P is constant across the domain; it must be computed

as an eigenvalue. Further detail on this formulation may be found in [15].

The OPPDIF formulation differs significantly from that of the elemental flame,

which imposes an outer flow solution for stagnation flow from a point source at minus-

infinity onto a compressible boundary layer. The elemental flame uses a single strain

rate, useful in parametrizing solutions for flamelet modeling, but imposes no length

scale on the problem. (The only length scale is the flame thickness, and this value

is calculated, not imposed.) In contrast, the OPPDIF formulation imposes a length

scale-the nozzle separation-but does not define a characteristic strain; a strain must

be backed out of the final solution. This formulation is better suited to modeling the

experimental configurations actually used to study strained laminar flames, which

physically do create a stagnation plane between opposed jets of uniform flow. A

detailed discussion contrasting one- and two-parameter formulations for the strained

laminar flame may be found in [34, 12].

The species transport model used in OPPDIF is more detailed than that of the

elemental flame (see §2.3.1). At each point in the domain, OPPDIF computes diffu-

sion velocities by a multicomponent formulation; thermal diffusion velocities are not

neglected. For the purposes of comparison, both OPPDIF and the elemental flame

code are run with Smooke's 46-reaction C1 mechanism (Table 2-1), however. The

kinetic scheme has too important an effect on flame structure not to be conserved in

the comparison.

OPPDIF uses a finite-difference discretization on a uniform grid, reserving up-

wind differencing for convective terms, as in the elemental flame. Several iterations

are necessary to obtain a well-resolved solution, however. OPPDIF is first made to

converge on a coarse grid, then this solution is used as the starting condition on a

finer grid. Successively finer grids, typically three or four, are introduced until the

reaction zone of the flame is clearly resolved.
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4.2 Comparison of Results

Though OPPDIF does not model a true stagnation point flow, the flow field local to

the stagnation plane approaches that of a stagnation point. The strain rate effectively

applied to the flame is found by examining the axial velocity profile immediately ahead

of the flame, on the reactants side. Before any expansion due to burning has occurred,

the "cold" hydrodynamic strain is obtained from the usual relation:

E DV (4.1)
Dy

Figure 4-2 shows the velocity profile v for both an OPPDIF solution and the elemental

flame, where both codes have been used to compute an axisymmetric premixed flame

at a strain rate of 100 s-'. The common centerline coordinate has been defined such

that both flames reach their stagnation point at y = 0. Note that the slopes Dv/Dy

are identical immediately ahead of the flame, where expansion is then manifested as

a sharp rise in axial velocity. The strain rate of 100 s-1 was imposed a priori on the

elemental flame, but achieved through an appropriate choice of nozzle velocities and

nozzle separation for the OPPDIF flame.

Of course, the strain fields of the two flames cannot match over the entire domain.

The strain rate in the OPPDIF flame must equal zero at the nozzles, where flow is

divergence-free, and rise towards the center of the domain due to both expansion

within the flame and hydrodynamic, stagnation point, effects. This expectation is

borne out in Figure 4-3, where the dimensionless U of the elemental flame is plotted

along the common centerline coordinate together with a U for the OPPDIF solution.

The equivalent U for the OPPDIF solution is defined as follows:

U = - -= (4.2)

where c is our reactants-side strain, 100 s-1.

Now let us examine the temperature and species profiles through the flame region.

Figure 4-4 shows temperature and selected major species in both flames, with the
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heat release rate in the elemental flame plotted for reference. In this plot and in

subsequent plots of flame structure, the OPPDIF flame has been shifted with respect

to its coordinate so that it lies directly on top of the elemental flame; a point along

the rise of each temperature profile was used to select the appropriate translation.

Because of differences in the flow fields of the two flames, the elemental flame sits

further from the stagnation point. This does not factor negatively in our comparison;

it is the local structures and the burning velocities of the flames that we expect to

agree.

Indeed, close agreement is observed in the temperature and major species profiles

of the OPPDIF solution and the elemental flame. The temperature profile is char-

acteristic of the premixed flame: a fast rise in the peak reaction zone, followed by a

slower rise as CO oxidation proceeds. Figure 4-5 extends the comparison to selected

minor species. Again, close agreement of profile shape, peak value, and peak location

is observed between the two models. The peak in YCH 2O occurs ahead of the peak in

YOH, since CH 20 is formed earlier in the breakdown of methane. Small and persistent

differences in species mass fraction on the products side of the flame may be due to

the fact that the products stream composition in the OPPDIF flame deviated slightly

from equilibrium.

In sum, the steady-state flame structure predicted by the elemental flame code

matches well with that of a well-benchmarked model. Differences in the profiles can

be attributed to the distinct flow fields of the two flames, as well as differences in the

transport models and in grid spacing. It is significant, particularly in the context of

the next chapter, to note that detailed agreement between combustion in the pure

stagnation point flow and combustion in the more experimentally realistic opposed-

jet flow was obtained by matching strains at the reactants-side leading edge of the

flame.
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Figure 4-1: Flow configuration modeled by OPPDIF.
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Figure 4-2: Flow velocity through the flame, elemental flame code vs. OPPDIF.

48

WI

E

-100



Strain field comparison
3.5

3

2.5

2

Z)

1.5

1

0.5

0
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

y [cm]

Figure 4-3: Distribution of effective strain, elemental flame code vs. OPPDIF.
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Figure 4-4: Temperature and major species profiles in the flame region, elemental
flame code vs. OPPDIF.
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Chapter 5

Unsteady Applications

Our focus now returns to the modeling of flow and mixture inhomogeneities. The

combustion zone model developed in the preceding chapters is used to examine and

expand upon the fundamental unsteady interactions presented in Chapter 1. For

clarity, two broad regimes of unsteadiness are treated in separate examples. The

first, unsteady variation in equivalence ratio, is presented in terms of the burning of a

stratified mixture. The second, unsteady variation in strain, is set in the environment

of two-dimensional premixed turbulent combustion: the elemental flame is used to

model the burning and structure of a flame surface interacting with a vortex. Because

this example effectively tests the ability of a subgrid model to capture a complex tur-

bulent interaction, its analysis holds important implications for the flame embedding

technique described in @1.1.

5.1 Burning in a Stratified Mixture

Fast temporal or spatial stratification of a reacting mixture is present in numerous

practical phenomena. One of these phenomena is combustion instability, as described

in §1.3; another is burning in a direct-injection engine, where the equivalence ratio

of the mixture decreases away from the fuel injection port. The goal of this section

is to develop a computation that captures the essential features of both of these

phenomena, one that answers the following question: how does a temporal change in
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on the order of a flame time scale affect flame structure and burning?

We begin by choosing a strain rate of 300 s-1, a reasonable value for burning

in an internal combustion engine [381. To simulate propagation through a stratified

mixture, a change in equivalence ratio from 1.0 to 0.6 is imposed on the reactants

stream. Temporal and spatial stratification are rendered equivalent by the Lagrangian

frame of the elemental flame; the model simply follows the flame surface as new

mixture is encountered.

In the elemental flame model, control of the reactants stream composition comes

from the boundary condition on Yk at y = -oc. An imposed 4(t) at this boundary

will not produce the same change 0(t) at the flame, however. The flame typically

sits some distance away from the edge of the computational domain, so changes in #

at the boundary will be subject to a propagation delay as they travel to the flame;

during this propagation, the change in 4 will also be smoothed out via diffusion. The

stagnation flow geometry thus makes it difficult to impose an exact 4(t) on the flame.

Fortunately, there is no restriction on the location of the reactants-side edge of the

computational domain. To impose a 4(t) at the flame, the computational domain is

resized so that the y = -oc boundary occurs precisely at the flame's leading edge,

thus avoiding the difficulties of propagation delay and its associated diffusion. The

leading edge of the flame is defined at the initial rise of the temperature profile. This

shortened computational domain can be seen in Figures 5-4 through 5-7.

A second challenge in modeling propagation of the strained flame lies in defin-

ing the composition of the products stream. The choice of products-side boundary

condition is aided by two physical interpretations: If the products mixture behind

the propagating flame is well-mixed, then its composition will not change appreciably

during a perturbation in 4. This leads to constant boundary conditions on T and

Yk at y = oc, corresponding to, for instance, the products of combustion at 4 = 1.0.

For reasons that will become clear in §5.1.2, this case is known as the back-supported

flame. If, on the other hand, the products mixture is not well-mixed-if it is itself

stratified-then the products-side of the flame will be affected only by the instanta-

neous products of burning. Now the products stream composition must be updated
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to reflect the changing reactants-side #; such a flame is deemed to lack back-support.

5.1.1 Dynamic Effect of Equivalence Ratio Variation

Before investigating differences in burning with and without back-support, we focus on

the dynamic effect of equivalence ratio variation-how a flame responds to changing

4, and how the time scale of this change affects the response. Figure 5-1 shows the

heat release rate histories Q(t) of two back-supported flames, both subject to the

same absolute change in #, as chosen in the discussion above (# = 1.0 -+ # = 0.6).

The solid line corresponds to a linear change in # over a 10 ms period, while the

dashed line results from a linear change in # over 2 ms. As expected, both flames

reach the same steady-state rate of heat release. For reference, the linear changes in

# are plotted on the same scale.

The heat release rate Q(t) corresponding to the faster change in # exhibits a

greater degree of unsteadiness than its slower counterpart. At the end of the 2 ms

change, Q has traversed only 40% of its total range; this behavior is not surprising,

since 2 ms is approximately a flame time scale. The asterisks in Figure 5-1 represent

the steady-state heat release rates corresponding to the same 2 ms change in #,
underscoring the fact that the response of the flame to this fast change in # is not

steady-state. The heat release rate corresponding to the 10 ms change in 4, however,

is more quasi-steady; at the conclusion of the # change, only a 10% correction in heat

release rate is observed.

5.1.2 Back-support of the Elemental Flame

Updating the composition of the products stream for the non-back-supported flame

presents difficulties similar to those encountered in updating the composition of the re-

actants stream. The flame ordinarily sits far from the products-side boundary, leading

to propagation delay and diffusion of the mixture conditions imposed at the products

stream. To avoid these problems, the y = oc boundary cannot be placed arbitrarily,

however; consistency with respect to the boundary conditions (Equations 2.29-2.30)
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dictates that the computational domain must extend to the point where gradients

on U relax to zero. Here, then, is where the mixture boundary conditions are im-

posed. Based on an interpolation table of equilibrium values for combustion at a

given reactants-side 4, T and Yk are updated' to reflect the appropriate stream of

burned products.

How to time these updates of the products mixture is yet another matter. The

mixture should reflect the instantaneous products of burning, but dynamic effects

insure that the instantaneous burning is not determined by the current reactants-

side #. A reasonable, though approximate, solution to this problem is constructed

as follows. The composition of the products stream should reflect burning at an

equivalence ratio-call this #b-equal to the equivalence ratio 4, imposed on the

reactants side of the flame one flame time scale earlier. For simplicity, we choose a

fixed flame time scale, here equal to 2 ms, though in reality the flame time scale will

itself change with #, and #b.
Using this construction, the effect of back-support is examined by again apply-

ing a 10 ms change in #, from 1.0 to 0.6. Heat release rates for both the back-

supported and non-back-supported flame are plotted in Figure 5-2. The products

side #b follows the same linear path as #,, merely shifted forward in time by 2 ms.

Back-support strengthens the burning in the flame, and the flames reach apprecia-

bly different steady-state heat release rates. Note that the heat release history of the

non-back-supported flame equilibrates more slowly because its product side boundary

conditions continue to change until t = 12 ms, one flame time scale after the change

in 4, is complete.

Figure 5-3 uses the same time-dependent calculations but plots the heat release

rates in terms of #,, emphasizing that the effect of back-support is not inherently a

dynamic one. Each Q is really a function of both #, and #b; for the back-supported

flame, #b is always 1.0, while for the non-back-supported flame, #b lags behind #,
but follows it. Thus the divergence of paths as #, approaches 0.6: the difference in

b between the two flames is increasing. The convergence of data points into vertical

1U is also updated, indirectly, through Equation 2.30.
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groups at #, = 0.6 occurs as heat release rates settle from their dynamic values to

equilibrium.

Understanding the mechanism of back-support requires an examination of flame

structure. Figures 5-4 through 5-7 show temperature and YOH profiles for the 10 ms

change in #,. Six profiles are shown in each plot, beginning at t = 0 and separated by 3

ms intervals. Focusing first on the temperature profiles of the back-supported flame,

one can identify high-temperature points at which the slope of the profile sharply

decreases; these points generally correspond to the temperature in the reaction zone

of the flame. Thus as #, decreases, the reaction zone temperature decreases, an effect

consistent with trends observed in Q. However, as the reaction zone temperature

decreases, the slope on the products side of the reaction zone increases. A diffusive

heat flux from the high-temperature, #b = 1.0 products stream feeds the reaction zone.

In the non-back-supported flame (Figure 5-5), this heat flux is not present. As the

reaction zone temperature drops, the products-stream temperature drops accordingly.

No high-temperature reservoir of heat is present to strengthen the flame.

The burning of the back-supported flame may also be enhanced by radicals in the

products stream, an effect examined with regard to OH in Figures 5-6 and 5-7. The

concentration of OH is certainly higher in the reaction zone of the back-supported

flame than in the reaction zone of the non-back-supported flame. This could be

due to the higher temperature of the back-supported reaction zone, but it may also

result, in part, from a change in diffusive fluxes. The concentration of OH in the

products stream falls with #b, and the diffusive flux of OH out of the reaction zone into

the products may thus be larger in the non-back-supported flame than in the back-

supported flame. This significance of this mechanism is not clear from the given data.

Plotting the profile of each term in the OH species conservation equation-reaction

and diffusion, in particular-would elucidate the effects of radical back-support.

It is important to note that in all the plots of flame structure (Figures 5-4 through

5-7), the flame tends to shift slightly over time with respect to the computational grid.

The location of the reactants-side and products-side boundaries remains fixed in time,

however; though initially chosen to closely surround the flame, as described above,
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the current formulation does not update the boundary coordinates to account for

flame movement. The total range of flame movement does not exceed 0.25 mm, so

this inaccuracy is probably quite negligible.

5.2 Unsteady Strain in a Flame-Vortex Interaction

The impact of flow inhomogeneity on burning is studied in the context of the flame-

vortex interaction of Figure 1-1. The figure shows four snapshots, separated by 1 ms

intervals, of a counterrotating vortex pair moving towards a freely propagating pre-

mixed flame. Since the domain is symmetric, only the left half of the interaction is

shown. The grayscale indicates temperature and the contour lines indicate vorticity.

As discussed in §1.1, the flame surface is stretched and reshaped by the vortex. Data

for this figure comes from a direct numerical simulation of two-dimensional reacting

flow, performed with detailed chemistry and transport [17, 16].

Now consider the flame element on the centerline of the flame-vortex interaction.

As the vortex approaches, strain on the flame element rapidly increases and the

burning rate changes as a result. We would like to model the time-dependent burning

of this flame element using our elemental flame, thus testing the applicability of the

elemental flame as a subgrid model as well as its ability to capture the effects of

unsteady strain.

5.2.1 Matching the Leading Edge Strains

The primary input to the elemental flame model must be the strain history of the

flame element at the centerline of the two-dimensional simulation. A natural idea is

to match the strain at the reactants-side leading edge of the two-dimensional flame

with the leading edge strain (c) of the elemental flame. According to the flamelet hy-

pothesis, we should expect the profiles in the elemental flame and the profiles normal

to the two-dimensional flame surface to have similar structures; this structural simi-

larity includes profiles of strain (or cU, in the elemental flame case). Also, matching

of the leading edge strains led to favorable comparison of the elemental flame with
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OPPDIF.

The strain tangential to a 99% contour of YCH 4 is thus extracted from the centerline

of the flame-vortex interaction. This contour is a reliable indicator of the flame leading

edge, so it follows the flame element in a Lagrangian sense. The leading edge strain

history is plotted as the solid line in Figure 5-8. This strain and its corresponding

Karlovitz number rise 1.6 orders of magnitude over a period comparable to the time

scale of the premixed flame. The burning of the flame element clearly will not respond

quasi-steadily.

With an input strain history e(t) in hand, the elemental flame requires only a

starting condition and appropriate mixture boundary conditions matching those in

the flame-vortex interaction. The premixed flame in the flame-vortex interaction is

a stoichiometric methane-air flame with an additional 20% N2 dilution by volume

present in both the reactants and products. This dilution lowers the adiabatic flame

temperature from 2230 K to approximately 1900 K, thus reducing the burning rate

and lengthening the flame time scale. Dilution is included in the flame-vortex cal-

culation both to reduce the stiffness of the chemistry and to amplify the effects of

unsteady strain. Mixture boundary conditions on the elemental flame reflect this di-

lution but remain fixed in time. Smooke's 46-reaction mechanism (Table 2-1) is used

in computing both the flame-vortex interaction and evolution of the elemental flame.

The flame-vortex interaction uses a more detailed transport model, identical to that

of OPPDIF, but in light of §4.2, the resulting discrepancy should be minimal.

The computed heat release rate of the elemental flame, obtained by matching the

leading edge strain histories, is shown by the solid line in Figure 5-9. Circles represent

the heat release rate of the two-dimensional flame element, computed by integrating

WT along the centerline coordinate of Figure 1-1. Note that the comparison of heat

release rates does not extend past t = 4 ms; beyond this time, the vortex in the

two-dimensional simulation comes within a diameter of the convective boundary con-

ditions at the top of the domain, and the results become numerically questionable.

The heat release rate falls with increasing strain in both the one-dimensional (el-

emental flame) and two-dimensional results-an expected trend-but the elemental
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flame clearly underpredicts the heat release rate at the two-dimensional flame surface.

This discrepancy widens at higher strains and larger times; the elemental flame even

undergoes quenching near t = 3.5 ms.

Underprediction of Q suggests that the strain in the elemental flame is too high

in comparison to that of the two-dimensional flame element. Suspicion of such a

strain mismatch is confirmed in Figure 5-10. Here, the solid line represents the strain

profile across the centerline element of the two-dimensional flame surface at t = 2

ms; the open circle indicates the location and strain of the flame leading edge. The

average strain in this flame element, particularly the strain around the reaction zone

(indicated by ubT), is significantly lower than the leading edge strain. Indeed, the

strain rate generally seems to fall when moving across the flame from reactants to

products, excepting a small hump around the reaction zone. This strain profile differs

markedly from that of the elemental flame, as exemplified in Figure 4-3. Strain in the

elemental flame rises due to expansion in the reaction zone-from a reactants-side

value of E to a products-side value of cUb.

An explanation for the unusual strain profile in the two-dimensional flame element

is advanced as follows. Ahead of the flame in Figure 5-10, the strain is observed to

decay quite rapidly. This strain profile comes only from the vortex (which sits to

the left of the figure boundary), not from the flame. Extrapolating this non-reacting

strain into the flame region, the dashed line continues to represent the strain profile

in the absence of reaction, due only to decay around the vortex. The vortex-induced

non-reacting strain is in a sense the underlying strain in the flame region. Expansion

within the flame adds to the underlying.strain to produce the measured strain profile

(the solid line), but the underlying decay in strain insures that the measured strain

falls towards the products side.

This flame-vortex interaction may thus be on the boundary of the flamelet regime.

The strain imposed by the vortex on the flame is varying over the length scale of the

flame, while an essential flamelet assumption is that the flame should be thin with

respect to length scales in the flow. In the elemental flame, developed under these

flamelet assumptions, the underlying strain is constant and equal to E, for in the
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absence of reaction, the velocity field would collapse to that of a pure stagnation

point flow.

5.2.2 Matching Average Strains

Though the flame-vortex interaction of Figure 1-1 may not be an ideal test case for the

flamelet concept, it still represents a flow regime of practical importance. A correction

is thus proposed to extend the accuracy of our subgrid model. Rather than matching

strains at the leading edges, the average strain in the two-dimensional flame element

should be matched to the average strain in the elemental flame.

The average strain in the elemental flame, -id, is defined arithmetically

6 ld = + Ub (5.1)

where c is the usual reactants-side strain. (Use of the geometric mean was also

investigated, but found to give less accurate results.) Two methods are proposed for

extracting the two-dimensional average strain, C2d. The first method supposes the

average strain to equal the strain at the heat release peak. Because the 10% contour

of YCH 4 has been found to follow the heat release peak fairly closely [17], the strain

tangent to the 10% contour of YCH 4 is extracted from the centerline and deemed the

'center' average. The second method for extracting 22d takes the arithmetic mean of

two strains at each timestep: the leading edge strain, again calculated at the 99%

contour of YCH 4, and the trailing edge strain, calculated at the 90% contour of YCo
This mean value is deemed the 'two-point' average strain. Both of the resulting strain

histories i2d(t) are shown in Figure 5-8. To confirm that the 10% contour of YCH4

does indeed follow the reaction zone center, the figure plots x marks periodically,

denote the strain directly measured at the WT maximum. The 10% criterion matches

well with these marks, slightly overestimating the center strain only for t > 3 ms.

The elemental flame requires the reactants-side strain c as an input to each time

step. The inversion of Equation 5.1 to calculate c from f1d -- f2d is not as straightfor-

ward as it may seem, however. For unsteady strains, Ub is a function of e and -a,
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according to the instantaneous solution of the ODE in Equation 2.30. Consequently,

Equations 5.1 and 2.30 must be combined to yield a single ODE, which is then inte-

grated implicitly to find Ub from Kid(t). The solution for Ub is substituted back into

Equation 5.1 to yield e.

Outputs from the elemental flame code obtained by matching the average strain

histories are shown in Figure 5-9. The dashed line, corresponding to the center

average, tends to overpredict the heat release rate at initial times, implying that

the heat release peak may under-represent the optimal strain. The dash-dotted line,

corresponding to the two-point average, shows closer agreement with the actual two-

dimensional heat release rate, diverging only at high strains and large time. In general,

both methods of defining the average strain on the two-dimensional flame surface and

matching it to the average strain on the elemental flame show a marked improvement

over the matching of leading edge strains explored in the previous section.

To illustrate the unsteady response of burning to these rapid changes in strain,

steady-state reference points are included in Figure 5-9. These points, computed

with the elemental flame, are the steady-state values of the heat release rate at aver-

age strains corresponding to the instantaneous two-point averages extracted from the

two-dimensional simulation. For t > 3.5 ins, burning persists under the dynamically

applied strain, though at steady-state the flame would have undergone quenching.

With the average strain as an input, the elemental flame model captures this impor-

tant unsteady effect.

Figure 5-11 compares the instantaneous structure of the elemental flame using

the two-point average with the structure of the two-dimensional flame; both sets of

profiles are taken at t = 2 ins, where the heat release rates match closely. This

comparison highlights the inherent difficulty of making the elemental flame exactly

predict the two-dimensional burning. Though the average strains in the two flame

regions are equal, the strain distributions are profoundly different. Disagreement

in the strain distributions causes the remaining scalar profiles to differ in shape, as

demonstrated here by the temperature. These differences in shape in turn affect the

diffusive fluxes, which feed into the complex mechanics of the reaction zone.
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It is notable that the strain at center of the reaction zone, i.e. at the peak of wT,

did not provide the best characterization of the two-dimensional burning. This result

is tempered by the fact that strain at the true reaction zone center falls below our

continuous strain history at later times. Still, examining all the computed burning

rate histories in light of the two-dimensional flame structure suggests a path to more

accurate application of the elemental flame: as strain on the premixed flame increases,

the reaction zone moves further into the products side, where in the two-dimensional

flame, the strain is lower. Overprediction of the strain at t > 3 ms may really be a

symptom of overpredicting the strain at higher strains. A weighted average of strain

over the reaction zone, always following the reaction zone in time, may thus provide

the best characterization of two-dimensional burning. Weighing the strain over the

entire reaction zone rather than just at its peak should better capture the diffusive

fluxes feeding chemical reaction and perhaps avoid overestimating the burning at low

strains.

Finally, an important addition to this analysis would involve applying the elemen-

tal flame subgrid model to a flame surface strained by a weaker vortex-a vortex for

which the length scale of the underlying strain rate variation is large. Equivalently,

one could examine slices of the current two-dimensional flame surface farther from

the vortex than the centerline flame element examined here.
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Figure 5-1: Heat release rate vs. time for linear changes in <; c = 300.
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Figure 5-2: Heat release rate vs. time, back-support and no back-support.
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Figure 5-4: Temperature profiles with changing #, back-supported flame; At = 3 ms.
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Figure 5-5: Temperature profiles with changing <, non-back-supported flame; At = 3
Ms.
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Figure 5-6: OH profiles with changing #, back-supported flame; At = 3 ms.
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Figure 5-7: OH profiles with changing #, non-back-supported flame; At = 3 ms.
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Figure 5-8: Strain histories extracted from the flame-vortex interaction.
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Figure 5-9: One- and two-dimensional heat release rates vs. time for various strain-
matching schemes.
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Figure 5-10: Strain profile in the two-dimensional flame element; t = 2 ms.
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Figure 5-11: Structure of the one- and two-dimensional flame elements; t = 2 ms.
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Chapter 6

Conclusions and Further Work

The preceding chapters have developed a robust and efficient computational model

for combustion under arbitrarily varying strain rate and mixture composition. In its

most basic form, the elemental flame model provides a rich data set for analyzing

kinetic and transport processes within flames. Reduction of this data set can yield

fundamental insights into the mechanisms of unsteady flame response, by linking

detailed flame structure to the modeling of flame dynamics.

The unsteady interactions described at the outset of this research were examined

in carefully-defined but practical contexts. Equivalence-ratio variation on the order

of a flame time scale produced a dynamic burning response and modified the flame

structure. It remains to develop a more elegant method of updating the composition

of the products stream of the non-back-supported flame, one that reformulates the

role of the products stream in the context of a Lagrangian transformation. The un-

steady strain applied by a vortex to a two-dimensional flame surface allowed burning

to persist at strains far higher than the steady-state values at quenching. Use of

the elemental flame as a subgrid model in this context concluded with an important

refinement to the flame embedding and flamelet approaches: the key parameter gov-

erning burning at a premixed flame surface is the average strain, not the cold strain at

the reactants-side leading edge. Further development must clarify how to best define

this average.

The simplicity of the elemental flame model makes possible numerous extensions,
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with wide applicability. Radiation or some other heat loss term can be included to

more realistically model flame extinction. Adding the appropriate chemical kinetics

could lead to accurate NO, predictions, based on the detailed flame structure. The

unsteady evolution of the elemental flame could be used to simulate control feedback

and actuation; instantaneously computed burning parameters of the elemental flame

could be used within an arbitrary control law. Additionally, the detailed computation

of the elemental flame can be used to develop and validate lower-order models for the

control of flame dynamics.
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