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We present the results of a combined experimental and theoretical investigation of
millimetric droplets bouncing on a vertically vibrating fluid bath. We first characterize
the system experimentally, deducing the dependence of the droplet dynamics on
the system parameters, specifically the drop size, driving acceleration and driving
frequency. As the driving acceleration is increased, depending on drop size, we
observe the transition from coalescing to vibrating or bouncing states, then period-
doubling events that may culminate in either walking drops or chaotic bouncing states.
The drop’s vertical dynamics depends critically on the ratio of the forcing frequency
to the drop’s natural oscillation frequency. For example, when the data describing
the coalescence–bouncing threshold and period-doubling thresholds are described in
terms of this ratio, they collapse onto a single curve. We observe and rationalize the
coexistence of two non-coalescing states, bouncing and vibrating, for identical system
parameters. In the former state, the contact time is prescribed by the drop dynamics;
in the latter, by the driving frequency. The bouncing states are described by theoretical
models of increasing complexity whose predictions are tested against experimental
data. We first model the drop–bath interaction in terms of a linear spring, then develop
a logarithmic spring model that better captures the drop dynamics over a wider range
of parameter space. While the linear spring model provides a faster, less accurate
option, the logarithmic spring model is found to be more accurate and consistent with
all existing data.

Key words: drops, Faraday waves, waves/free-surface flows

1. Introduction
The impact of a liquid drop on a quiescent liquid bath has been widely studied

due to its visual appeal and its importance in both natural processes and industrial
applications (Schotland 1960; Jayaratne & Mason 1964; Ching, Golay & Johnson
1984; Hallett & Christensen 1984; Cai 1989; Prosperetti & Oguz 1993). While
relatively straightforward to study experimentally since the advent of the high-speed
video camera, drop impact remains a challenging problem to treat analytically or to
simulate numerically. We here consider relatively low-energy impacts, in which the
droplet may rebound cleanly from the surface after a collision in which both the
droplet and bath are only weakly distorted.
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Symbol Meaning Typical value

R0 Drop radius 0.07–0.8 mm
ρ Silicone oil density 949–960 kg m−3

ρa Air density 1.2 kg m−3

σ Drop surface tension 20–21 mN m−1

g Gravitational acceleration 9.81 m s−2

Vin Drop incoming speed 0.1–1 m s−1

Vout Drop outgoing speed 0.01–1 m s−1

µ Drop dynamic viscosity 10−3–10−1 kg m−1 s−1

µa Air dynamic viscosity 1.84× 10−5 kg m−1 s−1

ν Drop kinematic viscosity 10–100 cSt
νa Air kinematic viscosity 15 cSt
TC Contact time 1–20 ms
CR = Vin/Vout Coefficient of restitution 0–0.4

f Bath shaking frequency 40–200 Hz
ω = 2πf Bath angular frequency 250–1250 rad s−1

γ Peak bath acceleration 0–70 m s−2

ωD = (σ/ρR3
0)

1/2 Characteristic drop oscillation
frequency

300–5000 s−1

We = ρR0V2
in/σ Weber number 0.01–1

Bo = ρgR2
0/σ Bond number 10−3–0.4

Oh = µ(σρR0)
−1/2 Drop Ohnesorge number 0.004–2

Oha = µa(σρR0)
−1/2 Air Ohnesorge number 10−4–10−3

Ω = 2πf
√
ρR3

0/σ Vibration number 0–1.4
Γ = γ /g Peak non-dimensional bath acceleration 0–7

TABLE 1. List of symbols used together with typical values encountered in our
experiments, as well as those reported by Protière et al. (2006) and Eddi et al. (2011b).

The dynamics of the drop impact depends in general on the drop inertia, surface
tension, viscous forces within the drop, bath and surrounding air, and gravity.
Restricting attention to the case of a drop’s normal impact on a quiescent bath
of the same liquid reduces the number of relevant physical variables to six:
the gravitational acceleration g, the droplet radius R0 and impact speed Vin, the
liquid density ρ, dynamic viscosity µ and surface tension σ (see table 1). These
give rise to three dimensionless groups: the Weber number We = ρR0V2

in/σ , Bond
number Bo= ρgR2

0/σ and Ohnesorge number Oh= µ(σρR0)
−1/2 prescribe the relative

magnitudes of, respectively, inertial and gravitational pressure and viscous stresses to
curvature pressures associated with surface tension (see table 1 for a summary of
our notation). Considering the effects of the surrounding gas on the drop dynamics
requires the inclusion of two more physical variables, the gas density ρg and gas
viscosity µg, which require in turn two additional dimensionless groups, ρg/ρ and
Ohg = µg(σρR0)

−1/2. For the parameter ranges of interest in our study, ρg/ρ � 1 and
Ohg � Oh. Thus, beyond providing the lubrication layer between drop and bath that
allows the bouncing states, the influence of air on the dynamics is negligible. When
the bath is shaken vertically, two additional parameters enter into the dynamics, the
frequency f and peak acceleration γ of the bath vibration. These give rise to two
new dimensionless groups, the first being the dimensionless bath acceleration Γ = γ /g,
and the second being the ratio of the driving angular frequency ω = 2πf to the
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characteristic drop oscillation frequency ωD = (σ/ρR3
0)

1/2 (Rayleigh 1879). We call this
ratio the vibration number Ω = ω/ωD.

At low forcing amplitude, the drop comes to rest on the vibrating bath, oscillating
with the driving frequency while the air layer drains beneath it. Once the thickness
decreases below the range of molecular forces, the two interfaces connect and the drop
is absorbed into the bath. When the driving acceleration reaches a value corresponding
to the bouncing threshold, the bath can transfer enough momentum during impact to
compensate for the energy lost; consequently, the drop can be sustained indefinitely in
a periodic bouncing motion (Walker 1978). In this bouncing regime, the drop and the
bath never come into contact, which would lead to coalescence; instead, they remain
separated by an air layer that is replenished after each collision (Couder et al. 2005a).
We note that there is also a strict upper bound on the bath acceleration that will permit
stable bouncing states: beyond a critical value γF, known as the Faraday threshold,
the entire bath surface becomes unstable to a standing field of Faraday waves with
frequency f /2 (Faraday 1831; Benjamin & Ursell 1954). For a theory describing the
dependence of the Faraday threshold on viscosity, see Kumar (1996). All experiments
reported here were performed below the Faraday threshold.

As the amplitude of the bath oscillation is increased beyond the bouncing threshold,
the drop’s periodic bouncing may become unstable and undergo a period-doubling
cascade leading to a chaotic vertical motion, a feature common to systems involving
bouncing on vibrating substrates. The most commonly studied scenario, first proposed
by Fermi (1949) as a model of cosmic rays, is the dynamics of a ball bouncing on
a vibrating rigid surface (Pieranski 1983; Pieranski & Bartolino 1985; Everson 1986;
Luna-Acosta 1990; Davis & Virgin 2007). The dynamics of a drop bouncing on a
highly viscous liquid bath has been examined by Terwagne et al. (2008), and that of a
rigid ball bouncing on a vibrated elastic membrane by Eichwald et al. (2010). Gilet &
Bush (2009a,b) examined the dynamics of a liquid drop bouncing on a soap film and
noted the coexistence of multiple bouncing states for a given set of system parameters,
an effect that arises also in our system.

For drops within a certain size range, the interplay between the drop and the
waves it excites on the liquid surface causes the vertical bouncing to become
unstable; as a result, the drop begins to move horizontally, an effect first reported
by Couder et al. (2005b). As the bath acceleration approaches the Faraday threshold
from below, the decay rate of the surface waves created by the drop impacts is
reduced and a particular wavelength is selected, corresponding to the most unstable
Faraday wavenumber. Interaction of walking drops and the surface waves reflected
from the boundaries (Couder & Fort 2006; Eddi et al. 2009b) or from other drops
(Protière et al. 2005; Protière, Boudaoud & Couder 2006; Protière & Couder 2006;
Protière, Bohn & Couder 2008; Eddi et al. 2009a; Fort et al. 2010; Eddi, Boudaoud
& Couder 2011a; Eddi et al. 2011b) leads to a variety of interesting phenomena
reminiscent of quantum mechanics (Bush 2010). Examples include tunnelling across
a subsurface barrier (Eddi et al. 2009b), single-particle diffraction in both single- and
double-slit geometries (Couder & Fort 2006), quantized orbits analogous to Landau
levels in quantum mechanics (Fort et al. 2010) and orbital level splitting (Eddi et al.
2012). Harris et al. (2013) considered a drop walking in confined geometries, and
demonstrated that the resulting probability distribution function is simply related to
the most unstable Faraday wave mode of the cavity. Rationalizing these remarkable
macroscopic quantum-like phenomena provided the motivation for this study. In a
companion paper, we focus on the dynamics of the walking drops (Moláček & Bush
2013, henceforth MBII). Our studies will make clear that, in order to understand the
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role of drop size and driving frequency on the horizontal dynamics, a model of both
the vertical and horizontal drop motion is required. The former will be developed
herein.

Gilet & Bush (2009b) demonstrated that, for the case of a drop bouncing on a soap
film, the surface energy of the film increases quadratically with the drop’s penetration
depth, and thus the film’s effect on the drop is analogous to that of a linear spring
with a spring constant proportional to the surface tension. When a drop impacts a rigid
surface, one can approximate the drop’s shape by its first two spherical harmonics,
leading to a linear dependence of reaction force on the deformation amplitude and
of the viscous drag on the speed of the drop’s centre of mass (Okumura et al.
2003). Thus, the interactions in these two disparate systems can both be modelled in
terms of a damped linear spring. To model drop impact on a liquid bath, Terwagne
(2011) augmented the model of Okumura et al. (2003) by adding a second spring
that captures the role of surface energy stored in the bath deformation. Such linear
spring models break down when the inertial stresses become comparable to the surface
tension (We & 1), or when the surface deformation ceases to be small relative to the
drop radius. The range of Weber numbers encountered in the current study extends
beyond 1, motivating the introduction of a more complex model.

Protière et al. (2006) were the first to publish a regime diagram indicating the
behaviour of liquid drops bouncing on a liquid bath (specifically, 20 cSt silicone
oil), followed by Eddi et al. (2008), who used 50 cSt oil. We here extend their
measurements, covering a wider range of drop size and driving frequencies, in order
to have a firmer experimental basis for building our theoretical model of the drop
dynamics. The goal of this paper is to rationalize the regime diagrams for the vertical
motion of the bouncing drops, such as that shown in figure 3. In addition to providing
a consistent means by which to describe the vertical dynamics, the model presented
here will provide a crucial prerequisite to rationalizing the drop’s horizontal motion,
which will be the subject of a companion paper (MBII).

In § 2 we describe our experimental arrangement and present our data on the
transitions between different vertical bouncing states. In § 3 we develop a theoretical
description of the vertical dynamics of drops bouncing on a vertically vibrated bath.
We first consider a linear spring model, and examine its range of validity and
shortcomings, which motivate the development of a ‘logarithmic spring’ model in
§ 3.2. The logarithmic spring model best rationalizes the experimentally measured
regime diagrams; moreover, it reproduces the observed dependence of the coefficient
of restitution and contact time on the Weber number. Finally, future directions are
outlined in § 4.

2. Experiments

In order to extend the datasets reported by Protière et al. (2006) and Eddi et al.
(2008), we have recorded the behaviour of droplets of silicone oil of viscosity 20
and 50 cSt over a wide range of drop sizes and driving frequencies. A schematic
illustration of the experimental apparatus is shown in figure 1. A liquid drop of
undeformed radius R0 bounces on a bath of the same liquid (figure 2), in our case
silicone oil with density ρ = 949 kg m−3, surface tension σ = 20.6 × 10−3 N m−1 and
kinematic viscosity ν = 20 cSt, or a more viscous silicone oil with ρ = 960 kg m−3,
σ = 20.8× 10−3 N m−1 and ν = 50 cSt. The bath, of depth hB ≈ 9 mm, is enclosed in
a cylindrical container with diameter D = 76 mm. The container is shaken vertically,
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FIGURE 1. (Colour online) A schematic illustration of the experimental set-up. A liquid
drop bounces on a liquid bath enclosed in a circular container shaken vertically. The drop is
illuminated by a strong light-emitting diode lamp through a diffuser, and its motion recorded
by a high-speed camera that can be synchronized with the shaker.

(a) (b)

g g

FIGURE 2. (Colour online) A droplet of radius R0 = 0.38 mm (a) in flight and (b) during
contact with the bath. The drop motion is determined by the gravitational force g and the
reaction force FR generated during impact.

sinusoidally in time, with peak acceleration γ and frequency f , so that the effective
gravity in the bath frame of reference is g+ γ sin(2πft).

The motion of the drop was observed using a high-speed camera synchronized with
the shaker. The camera resolution is 86 pixel mm−1 and the distance of the drop from
the camera was controlled with approximately 1 % error by keeping the drop in focus,
giving a total error in our drop radius measurement of less than 0.01 mm. The drops
were created by dipping a needle in the bath followed by its fast retraction. In order to
systematically sweep the range of drop radii, we started with a drop at the lower end
of the spectrum (radius of roughly 0.1 mm), and repeatedly enlarged it by merging it
with other small drops. We limit ourselves to the range 0.07 mm< R0 < 0.8 mm, since
larger drops do not exhibit any novel behaviour, while smaller drops tend to coalesce
for the range of driving accelerations considered (0 < γ < 7g). The notation adopted
in this paper together with the range of physical variables considered are defined in
table 1.



Drops bouncing on a vibrating bath 587

Coalescence

Simple bouncing

(1, 1) (2, 2) (2, 1) (4, 2)

Walk

PDC and chaos

Int

Fa
ra

da
y 

th
re

sh
ol

d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6

FIGURE 3. (Colour online) Regime diagram describing the motion of a silicone oil droplet of
viscosity 50 cSt on a bath of the same fluid vibrating with frequency 60 Hz. The horizontal
axis is the dimensionless peak acceleration of the bath Γ = γ /g, while the vertical axis is
the drop radius. The bath surface becomes unstable when Γ exceeds the Faraday threshold
ΓF = 5.46 (vertical line). Only the major dynamical regimes are shown: PDC signifies the
period-doubling cascade, Int the region of intermittent horizontal movement, and Walk the
walking regime. Lines indicate best fits to threshold curves.

2.1. Regime diagrams

A typical regime diagram is shown in figure 3, where we adopt the nomenclature
used by Protière et al. (2006). For a droplet of fixed size, below a certain driving
acceleration γB, the vibrating bath is unable to compensate for the drop’s loss
of mechanical energy during impact, and the droplet coalesces after a series of
increasingly small jumps. For γ > γB, the drop bounces with the same period as
that of the bath. When the driving acceleration is further increased, small drops
(with Ω . 0.6) undergo a period-doubling cascade (denoted PDC in the figure) that
culminates in a chaotic region. Note that the finite (non-zero) duration of contact
between the drop and the bath precludes the existence of the locking regions described
by Luck & Mehta (1993). As the driving amplitude is increased further, one observes
chaotic regions interspersed with islands of periodicity, most significant for our
purposes being the region where the drop bounces with twice the driving period.
It is in this regime that the bouncers achieve resonance with their Faraday wave field
and so transform into walkers.

Compared to the previously published regime diagrams (Protière et al. 2006; Eddi
et al. 2008), our data offer the first insight into the behaviour of the threshold curves
for small drop sizes. The bouncing and period-doubling threshold curves are not nearly
vertical for small drops, as previously suggested, but in fact curve towards higher
values of Γ as R0 → 0. Other novel features are the discontinuity of the bouncing
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threshold curve at R0 = 0.25 mm and the realization that the region between the first
and second period-doubling transitions contains both the (2, 2) and the (2, 1) modes.

Following Gilet & Bush (2009b), we adopt the (m, n) notation to distinguish
between different bouncing modes. In the (m, n) mode, the drop’s vertical motion
has period equal to m driving periods, and within this period the drop contacts the
bath n times. By contact we refer to that part of the drop’s motion when the drop
and bath are being deformed and the air pressure beneath the drop is significantly
elevated above that of the ambient air. We stress that the drop and the bath always
remain separated by an intervening air layer and thus never actually come into contact.
Provided the rebound time is shorter than the time required for the intervening layer
to thin below a certain critical thickness, the drop will detach without coalescing. The
chaotic region is thus difficult to observe experimentally for small drops (i.e. Ω . 0.6):
once the bouncing becomes chaotic, the drop will eventually undergo a chattering
sequence and coalesce.

An interesting feature of the system is that there can be more than one stable
bouncing mode for a given combination of drop size and driving (Terwagne et al.
2013). Indeed, several stable periodic motions may coexist, corresponding to the same
mode (m, n) but having different average mechanical energy (see figures 4, 16 and
17) and average contact time. In order to distinguish between different bouncing states
with the same mode number (m, n), we denote them by (m, n)p. Thus (m, n)1 signifies
the motion with the least average energy (corresponding usually to the longest average
contact time) and the p index increases with increasing average energy. Larger drops
do not undergo a full period-doubling cascade (refer to figure 3): after transitioning
from the (1, 1) mode to the (2, 2) mode, further increase of γ leads to increasing
disparity between the large and small jumps, until the smaller jump disappears
completely. Thus the drop transitions from the (2, 2) mode into the (2, 1) mode. This
mode then undergoes a period-doubling cascade and only then enters a chaotic regime.
Near the Faraday threshold (as occurs at Γ = 5.46 for 50 cSt oil at f = 60 Hz), the
interaction between the drop and the slowly decaying standing waves created by its
previous impacts may lead either to walking or to an intermittent behaviour (denoted
Int in figure 3), where the drop performs a complicated aperiodic horizontal motion
and does not settle into a steady walking state.

In figure 4, we show the vertical motion of 50 cSt silicone oil droplets for several
driving accelerations over the course of five driving periods. We show the five most
prevalent modes, specifically the (1, 1)1, (1, 1)2, (2, 2), (2, 1)1 and (2, 1)2 modes, that
emerge as the driving acceleration is increased progressively. Note that the amplitude
of the drop’s motion increases with driving acceleration. The motion of the bath
surface cannot be directly observed in figure 4 due to the nature of the illumination;
nevertheless, one can determine the contact time from the relative positions of the drop
and its reflection in the bath.

We measured the bouncing threshold and the first two period-doubling thresholds of
silicone oil droplets with ν = 20 cSt and 40 Hz 6 f 6 200 Hz, and with ν = 50 cSt
and 60 Hz 6 f 6 100 Hz. The results are shown in figures 5–8. In figure 5, the
bouncing threshold ΓB = γB(R0, f , ν)/g, the minimum driving acceleration needed to
prevent the drop from coalescing, is shown as a function of the drop size (vertical
axis). We observe that the size of the drop that attains a bouncing state at the lowest
Γ decreases with increasing frequency, while the minimum of ΓB remains roughly
constant. One expects that the minimum of ΓB corresponds to the drop size for which
the driving frequency equals the resonant frequency of the drop–bath system, with a
shift due to the effects of viscosity. Using the vibration number Ω = ω/ωD instead of
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FIGURE 4. The simplest modes of vertical motion for 50 cSt silicone oil drops bouncing on
a liquid bath vibrating with frequency 50 Hz. These are, in order of increasing dimensionless
forcing Γ = γ /g: (a) the (1, 1)1 mode, Γ = 1.3; (b) the (1, 1)2 mode, Γ = 1.4; (c) the (2, 2)2

mode, Γ = 2.35; (d) the (2, 1)1 mode, Γ = 3.6; and (e) the (2, 1)2 mode, Γ = 4.1. The drop
radii are R0 = 0.28 mm in panels (a–c) and R0 = 0.39 mm in panels (d,e). The images were
obtained by joining together vertical sections from successive video frames, each one 1 pixel
wide and passing through the drop’s centre. The camera was recording at 4000 frames per
second. Note that in both the (2, 1) modes shown in panels (d,e) the drop was walking.

R0 on the vertical axis, we see that the data for different frequencies nearly collapse
onto a single curve (figure 6). Henceforth, we shall use Ω in order to display data for
different frequencies in a single diagram.

In figure 6, we observe that the minimum of ΓB occurs at Ω ≈ 0.65 for both
viscosities, which corresponds to R0 ≈ 0.47(σ/ρf 2)

1/3. We note that the minimum of
ΓB does depend weakly on the driving frequency (figure 6b). At higher frequencies,
the typical drop radius near the minimum is smaller and the increasing influence of
air drag and dissipation in the intervening air layer results in a shift of the bouncing
threshold curve towards higher driving amplitudes (e.g. f = 200 Hz in figure 6). On
the other hand, at lower frequencies, the typical drop radius near the minimum is
larger and a relatively large portion of the mechanical energy is lost to the outgoing
surface waves created by the drop motion. Thus there is an optimal frequency, in our
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FIGURE 5. (Colour online) Bouncing thresholds measured for silicone oil droplets of
viscosity (a) 20 cSt and (b) 50 cSt on a vibrating bath of the same oil. The minimum driving
acceleration Γ = γ /g (horizontal axis) required for sustained bouncing is shown as a function
of the drop radius R0 (vertical axis). Experimental results are shown for several driving
frequencies f : 40 Hz (�), 50 Hz (•), 60 Hz (J), 80 Hz (N), 100 Hz (I), 120 Hz (H), 150 Hz
(?) and 200 Hz (�).
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FIGURE 6. (Colour online) Bouncing thresholds. The same experimental data as shown in
figure 5 is now plotted as a function of the vibration number Ω = ω/ωD (vertical axis) instead
of drop diameter R0. Data for different frequencies collapse nearly onto a single curve.

case f = 80 Hz, for which the sum of these two effects is minimized and the global
minimum of ΓB is achieved. We observe ΓB > 0.47 for ν = 20 cSt and ΓB > 0.59 for
ν = 50 cSt.

In figures 6(b) and 7, we see that the bouncing curves exhibit a discontinuity at
approximately Ω = 0.2–0.4. This discontinuity arises because smaller droplets can
exist only in the higher-energy (1, 1)2 mode and coalesce when this mode can no
longer be sustained by the bath vibration. Larger drops can persist in the lower-
energy (1, 1)1 mode without coalescing because the intervening air layer takes a
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FIGURE 7. (Colour online) Detail of figure 6 showing the bouncing thresholds for silicone
oil droplets of viscosity 50 cSt on a vibrating bath of the same oil. The minimum driving
acceleration Γ = γ /g (horizontal axis) needed to prevent the drop from coalescing with the
bath is shown as a function of the vibration number Ω = ω/ωD (vertical axis). Experimental
results are shown for several driving frequencies f : 40 Hz (�), 50 Hz (•), 60 Hz (J) and
80 Hz (N). The discontinuity of the bouncing thresholds between Γ = 1 and Γ = 1.2 is
clearly apparent.
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FIGURE 8. (Colour online) First two period-doubling thresholds for silicone oil droplets
of viscosity (a) 20 cSt and (b) 50 cSt on a vibrating bath of the same oil. For smaller
droplets (Ω < 0.6) these are (1, 1)→ (2, 2) and (2, 2)→ (4, 4) transitions, while for larger
drops (Ω > 0.6) they are (1, 1)→ (2, 2) and (2, 1)→ (4, 2) transitions. The experimentally
measured threshold acceleration Γ = γ /g (horizontal axis) is shown as a function of the
vibration number Ω = ω/ωD (vertical axis) for several driving frequencies f : 40 Hz (�),
50 Hz (•), 60 Hz (J), 80 Hz (N), 100 Hz (I), 120 Hz (H), 150 Hz (?) and 200 Hz (�).

relatively long time to drain. Although determining the exact form of the bouncing
threshold curve theoretically would require a detailed analysis of the intervening air
layer dynamics (Hartland 1969, 1970; Jones & Wilson 1978), we will demonstrate in
§ 3 that the majority of the bouncing threshold curve runs along a mode threshold
obtainable by relatively simple means.
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Figure 8 shows the first two period-doubling thresholds. Smaller drops (Ω < 0.6)
undergo a period-doubling cascade, so the first two thresholds correspond to
(1, 1)→ (2, 2) and (2, 2)→ (4, 4) transitions. Larger drops (Ω > 0.6) transition from
(1, 1) to (2, 2), then reduce the amplitude of their smaller bounce until a simple
period-doubled bouncing mode (2, 1) is reached, and only then commence the period-
doubling cascade (2, 1)→ (4, 2)→ (8, 4)→ · · ·. Note that the low-frequency curves
are shifted to the right of their high-frequency counterparts (60 Hz curve for 20 cSt;
50–60 Hz for 50 cSt), an effect due to the influence of the standing waves created
on the bath by previous drop impacts. At lower frequencies, the Faraday threshold
is closer to the period-doubling threshold; thus, the drop impacts create more slowly
decaying standing waves on the bath surface. By reducing the relative speed between
the drop and bath at impact, the standing waves appear to stabilize the vertical motion,
and so delay the period-doubling transitions.

The bounds of the frequency range explored were prescribed by experimental
constraints. The presence of the Faraday threshold provides a lower limit on the range
of frequencies over which the period-doubled modes can arise. For example, for 20 cSt
silicone oil, period-doubling occurs only for Γ > 1.58 (figure 8), while ΓF < 1.58
for f 6 45 Hz. Thus, for f 6 45 Hz, the period-doubling transitions disappear. The
upper limit on the frequency range is imposed by the finite resolution of our camera.
Since the walking region of ultimate interest is given by Ω = 2πf

√
ρR3

0/σ . 1.5
(see MBII), the typical size of a walker R0 ∼ f−2/3. Thus, for higher frequencies,
the constant error in drop size measurement leads to increasing relative error in Ω .
Similarly, at high frequency, it becomes increasingly difficult to distinguish between
the different bouncing modes, as the motion itself happens over a distance of at most
g(T/2)2/26 gf−2/2, which is of the order of 0.1 mm for f = 200 Hz.

3. Vertical dynamics
3.1. Linear spring model

We proceed by describing the simplest model of the drop’s vertical dynamics,
analogous to works by Okumura et al. (2003), Gilet & Bush (2009b) and Terwagne
(2011), in which the drop–impactor interaction is described in terms of a linear spring.
We non-dimensionalize the vertical displacement of the drop by its radius (see table 2
for a list of dimensionless variables) and time by the characteristic frequency of
drop oscillations ωD =

√
σ/ρR3

0 (Rayleigh 1879). We shall always consider the frame
of reference fixed relative to the shaking platform, and place the origin so that the
undisturbed bath surface is at Z = −1 (see figure 9). Thus, a drop impacting an
undisturbed surface will make a contact with the bath when its centre of mass is
at Z = 0 and its base is at Z = −1. When the drop is not in contact with the bath
(Z > 0), it is acted upon only by gravity (we neglect the air drag, an approximation to
be justified later). Conversely, when it deforms the bath below its equilibrium height,
we assume that the drop experiences an additional reaction force proportional to the
penetration depth (CZ) and its energy is dissipated at a rate proportional to its speed
relative to the bath (D ∂Z/∂τ term). We thus expect the drop centre of mass Z(τ ) to be
governed by the following equation of motion:

∂2Z

∂τ 2
+ H(−Z)

(
D
∂Z

∂τ
+ CZ

)
=−Bo∗(τ ). (3.1)

Here H(x) is the Heaviside step function, which indicates that the bath acts on the
drop only when they are in contact; and Bo∗(τ ) = Bo(1 + Γ sinΩτ) is the effective
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FIGURE 9. (Colour online) A schematic illustration of our choice of coordinates. (a) The
vertical position of the drop’s centre of mass Z is equal to 0 at the initiation of impact, and
(b) would be −1 if it reached the equilibrium level of the bath.

Dimensional
variable

Non-dimensional
variable

Meaning

z Z = z/R0 Drop’s vertical displacement
x X = x/R0 Drop’s horizontal

displacement
h H = h/R0 Bath distortion
t τ = ωDt Time

TC τC = ωDTC Dimensionless contact time
f Ω = 2πf /ωD Vibration number

TABLE 2. List of variables used, along with their dimensionless counterparts. Here R0 is
the drop radius and ωD = (σ/ρR3

0)
1/2 is the characteristic drop oscillation frequency.

Bond number, which reflects the effective gravity in the vibrating bath frame of
reference. The constants C and D can be determined from experiments by measuring,
respectively, the coefficient of restitution CR and the dimensionless contact time
τC of the drop impacting a quiescent bath (Γ = 0). For small Bo (Bo � Zτ (0)),
one can solve (3.1) over the duration of contact subject to the initial conditions
Z(0) = 0 and Zτ (0) = Zτ0 and so obtain Z(τ ) ≈ Zτ0 exp(−Dτ/2) sin(

√
C′τ)/

√
C′,

where C′ = C − D2/4. Then we have the approximate relations τC = π/
√

C′ and
CR = exp(−πD/2

√
C′), or, conversely, D = −2 ln CR/τC and C = (π2 + ln2CR)/τ

2
C. As

there is a one-to-one correspondence between pairs (C,D) and (CR, τC), and the latter
pair is easier to grasp intuitively, we shall henceforth use (CR, τC) to characterize our
linear spring model.

The crucial assumption underlying (3.1) is that, each time the drop strikes
the vibrating bath, the disturbances created by its previous impacts have decayed
sufficiently to be negligible. Similarly, it is assumed that any distortions and internal
motions of the drop have decayed to the point where we can approximate the drop at
impact as being spherical and in rigid-body motion. To check whether this assumption
is reasonable for the range of parameters examined experimentally, we first look
at the decay rate of drop oscillations. For small oscillations, this problem can be
adequately described with a linear theory and has been treated in several classic papers
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(Chandrasekhar 1961; Miller & Scriven 1968; Prosperetti 1980). The instantaneous
drop shape can then be decomposed into spherical harmonics and the evolution of
each mode treated separately by virtue of the linearity. It is found that the second
harmonic mode (corresponding to ellipsoidal deformation) decays the slowest, and the
rate of decay is equal to 3.8µ/ρR2

0 (Miller & Scriven 1968). Even if the oscillations
are large and the linear theory is no longer accurate, we expect the deformations to
decay at a comparable rate. The typical time between two subsequent excitations of
the drop is given by 1/f . Therefore, provided that (µ/ρfR2

0) > 0.5, the oscillations will
decay to less than exp(−19/10)≈ 0.15 of their original magnitude and our assumption
will be valid. This condition can be written in dimensionless form as

Oh>
Ω

4π
. (3.2)

Since we are interested only in the parameter regime for which Ω . 1.5, we thus
arrive at the condition Oh > 0.12. For silicone oil of viscosity 50 and 20 cSt, this is
equivalent to requiring R0 < 8 mm and R0 < 1.3 mm, respectively, both of which are
amply satisfied in our experiments.

When the driving amplitude is sufficiently far from the Faraday threshold, a similar
argument can be made for the decay rate of the local bath deformation near the drop,
composed of waves with wavelength comparable to or smaller than the drop radius.
Note that each drop impact also creates a propagating wave on the bath, which decays
relatively slowly due to its relatively long wavelength. We assume that this propagating
wave is sufficiently far from the drop on its next impact that it has negligible influence
on its dynamics. These inferences, that the drop returns to a spherical form and
the local interface to a plane between impacts, are consistent with our observations,
provided the system is sufficiently far from the Faraday threshold.

We now examine the region of validity of the second assumption used to derive
(3.1), namely, that the influence of air drag on the vertical drop dynamics is negligible.
When the drop is not in contact with the bath and Re < 1, approximating the air drag
using the well-known Stokes formula for a rigid sphere gives

Zττ =−Bo∗(τ )− 9
2OhaZτ . (3.3)

Here Oha = µa/
√
ρσR0 is the air Ohnesorge number, with µa being the dynamic

viscosity of air. The Reynolds number is given by Re= 2R0V/νa = 2(|Zτ |/Oha)(ρa/ρ),
with νa and ρa being the kinematic viscosity and density of the air. Since the
maximum value of the Reynolds number during the bouncing motion is Remax ∼
2gR0/f νa, we have Remax ∼ 4 for f = 100 Hz and R0 = 0.3 mm, and Remax ∼ 16
for f = 40 Hz and R0 = 0.5 mm. Therefore, the Stokes formula cannot be applied
and we must use an approximation to the drag in the regime 1 < Re 6 20. A
good approximation (accurate to within 10 % in the range 1 < Re < 50) is given
by (Flemmer & Banks 1986)

Zττ =−Bo∗(τ )− 9
2OhaZτ (1+ 1

12Re). (3.4)

Thus the air drag is negligible provided that 9OhaZτ (1 + 18
12)/2 � Bo. Since

Zτ 6 Bo(2π/Ω) (acceleration multiplied by time), we arrive at the condition that

45π
2

Oha�Ω or
µa

ρR2
0f
� 0.09. (3.5)
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FIGURE 10. (Colour online) Normal coefficient of restitution CR = Vout/Vin of silicone
oil droplets impacting a bath of the same liquid, as a function of the Weber number
We = ρR0V2

in/σ . Shown are results for 20 cSt (�) and 50 cSt (H) droplets impacting a
quiescent bath, together with values measured from drops impacting a vibrating bath just
above the bouncing threshold, for 20 cSt (•) and 50 cSt (N), respectively.

As R0 > 0.07 mm, we have Oha 6 5× 10−4, and so require Ω � 0.035. This condition
is satisfied in our experiments except for the smallest drops at the lowest frequencies.
We proceed by neglecting the air drag, but bear in mind that, for Ω < 0.2, its influence
may become significant.

Note that, because (3.1) is linear, the coefficient of restitution CR and contact time
τC should be independent of the impact speed Xτ (0) = We1/2. This independence has
been observed experimentally for liquid drops impacting a soap film (Gilet & Bush
2009b), a rigid substrate (Richard & Quéré 2000; Richard, Clanet & Quéré 2002) and
a liquid bath (Jayaratne & Mason 1964; Zou et al. 2011), but only when We > 1. For
We < 1, CR and τC increase with decreasing impact speed, albeit quite weakly, as has
been demonstrated numerically by Foote (1975) and Gopinath & Koch (2001), and
experimentally by Okumura et al. (2003) for the case of a drop impacting a rigid
superhydrophobic surface.

In order to see the dependence of the dynamics on the Weber number in the
liquid–liquid setting of interest, we have measured CR and τC for silicone oil drops of
viscosity 20 and 50 cSt. The contact time was determined as the interval between the
time when the bath beneath the drop first deforms and when the drop visibly detaches
from the bath. The time of detachment is relatively difficult to pinpoint, owing to the
small relative speed of the drop and underlying bath at that time. The measurement
error was thus typically larger than the time difference of successive video frames.
In order to determine CR, we fitted the drop motion before and after the contact to
parabolic trajectories, allowing us to calculate the instantaneous drop speed at both
impact and detachment. With decreasing We, the amplitudes of the drop motion and
bath deformation decrease, leading to a larger relative error in measurement of CR

and τC.
The results are shown in figures 10 and 11. We observe a logarithmic decrease

of both contact time and coefficient of restitution with increasing Weber number, in
line with the numerical predictions of Gopinath & Koch (2001). For small drops
with We > 1, the coefficient of restitution tends to a value of ∼0.11 for 50 cSt oil
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FIGURE 11. (Colour online) Non-dimensionalized contact time τC = TC/(ρR3
0/σ)

1/2 of
silicone oil droplets impacting a bath of the same liquid, as a function of the Weber number
We = ρR0V2

in/σ . Shown are results for 20 cSt (�) and 50 cSt (H) droplets impacting a
quiescent bath, together with values measured from drops impacting a vibrating bath just
above the bouncing threshold, for 20 cSt (•) and 50 cSt (N), respectively.

and ∼0.19 for 20 cSt oil, which should be compared to the value 0.22 obtained by
Jayaratne & Mason (1964) for water (1 cSt). Figure 11 indicates that there is not an
appreciable difference in the contact time between the two oils, unlike for a linear
spring, for which larger damping leads to a longer period. As the Weber number is
decreased, the contact time increases progressively until the point (around We ≈ 0.03)
where gravity prevents drop detachment.

Within a single regime diagram (i.e. for a fixed driving frequency and oil viscosity),
the Weber number changes significantly with drop size and bouncing mode, while
generally remaining below 1 (the lower extreme being We ≈ 0.003 for small drops in
the (1, 1) mode at f = 200 Hz; the upper extreme being We ≈ 2 for large drops in
the (2, 1)2 mode at f = 50 Hz). It is not surprising that the linear spring model with
constant (CR, τC) does not compare favourably with the experiments, since one expects
both CR and τC to depend on We. For example, using constant values of CR within
the experimentally observed range, that is, CR < 0.22 for 50 cSt oil and CR < 0.35 for
20 cSt, leads to a poor match. Note that changing τC (or C) has the effect of stretching
the threshold curves vertically, so by choosing τC ≈ 4.5 we can match the curvature
of the threshold curves. Changing CR (or D) leads mainly to horizontal translation of
the threshold curves on the regime diagram, so by picking the right value we can
hope to fit one of the threshold curves. Figure 12 shows the results of the model with
CR = 0.32 (for ν = 50 cSt) and CR = 0.42 (for ν = 20 cSt). We note that the upper
parts of the other threshold curves are also well fitted by the model, presumably due
to the fact that those parts of the regime diagram are already in the We > 1 regime,
which is nearly linear. Nevertheless, the match for Ω < 0.4 is less satisfactory, and the
values of CR are unrealistic when compared to those reported in figure 10.

A closer examination of the reaction force acting on the drop during rebound (see
figure 21) provides a rationale for the unrealistically high values of CR required to
best fit the data with our linear spring model. During the late stages of contact, the
viscous damping term dominates the spring term in (3.1) and the reaction force acting
on the droplet pulls it towards the bath, a clearly unphysical effect if one neglects the
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FIGURE 12. (Colour online) Comparison of the bouncing thresholds and the first two period-
doubling transitions measured experimentally and calculated using the linear spring model
(3.1). Refer to figure 3 to see where these transitions fit into the regime diagram. The linear
model predictions with CR = 0.42 and τC = 4.2 (solid lines) are compared to experiments
with 20 cSt oil in which coalescence (N), first period doubling (•) and second period
doubling (I) were measured. The predictions of the model with CR = 0.32 and τC = 4.4
(dashed lines) are compared to experiments with 50 cSt oil in which coalescence (H), first
period doubling (�) and second period doubling (J) were measured. The lines shown
are, from the left, the bouncing thresholds, (1, 1)1 ← (1, 1)2 mode transitions, first period-
doubling (1, 1)→ (2, 2) and second period-doubling (2, 2)→ (4, 4) or (2, 1)→ (4, 2).

intervening air layer dynamics. Therefore, a better model would be one in which the
reaction force acting on the drop is always non-negative:

∂2Z

∂τ 2
=−Bo∗(τ )+ H(−Z)max

{
−D

∂Z

∂τ
− CZ, 0

}
. (3.6)

With such a condition, the best match with the experimental data is indeed achieved
with realistic values of CR (specifically CR = 0.3 for 20 cSt oil, and CR = 0.19 for
50 cSt oil), but now the threshold curves in the regime diagrams are matched less well
(see figure 13), especially the bouncing threshold. This shortcoming strongly suggests
a Weber number dependence of CR.

While the linear spring models presented in (3.1) and (3.6) do not provide
satisfactory quantitative agreement with the experiments, and so will be superseded
by an improved model to be developed in § 3.2, they have one major advantage.
Specifically, the simple form of the equation of motion for the drop (3.1) allows
one to obtain an analytic expression for the drop motion during both flight and
contact. It is thus only necessary to obtain numerically the points of first impact and
detachment; the motion in between can then be calculated with great speed, which
makes it possible to obtain qualitatively correct regime diagrams with great resolution.
One such regime diagram is shown in figure 14, obtained by choosing CR = 0.42
and τC = 4.2 in (3.1). The predicted bouncing thresholds shown in figures 12–14
correspond to the highest driving acceleration for which the drop never detaches from
the bath surface (so that Z(τ )6 0 always).

As mentioned previously, there can be several kinds of vertical motion
corresponding to the same bouncing mode number (m, n), which can be thought of
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FIGURE 13. (Colour online) Comparison of the same experimental data as in figure 12 and
the predictions of the second linear spring model (3.6) with CR = 0.3 and τC = 4.2 (solid
lines), and with CR = 0.19 and τC = 4.4 (dashed lines). The lines shown are, from the left, the
bouncing thresholds, (1, 1)1← (1, 1)2 mode transitions, first period-doubling (1, 1)→ (2, 2)
and second period-doubling (2, 2)→ (4, 4) or (2, 1)→ (4, 2).
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FIGURE 14. (Colour online) Regime diagram indicating the behaviour of a bouncing drop
in the Γ –Ω plane, as predicted by the linear spring model (3.1) with CR = 0.42 and
τC = 4.2. Here Ω = ω/ωD is the vibration number and Γ = γ /g is the dimensionless
driving acceleration. In the (m, n) mode, the drop’s motion has period equal to m driving
periods, during which the drop hits the bath n times. PDC indicates a region of period-
doubling cascade and chaos. Solid lines indicate lower boundaries of existence (or stability)
of lower-energy modes, and dash-dotted lines indicate upper boundaries. Similarly, dashed
lines indicate lower boundaries of existence of higher-energy modes, their upper boundaries
being period-doubling transitions marked by dotted lines.
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FIGURE 15. (Colour online) The relative contact time (fraction of the bouncing period spent
in contact with the bath) of a bouncing drop in the Γ –Ω plane, as predicted by the linear
spring model (3.1) with CR = 0.42 and τC = 4.2. Here Ω is the vibration number and Γ is
the dimensionless driving acceleration. Sharp changes of the relative contact time are evident
near Γ ≈ 1 (the bouncing to oscillating transition, or the (1, 1)2→ (1, 1)1 mode transition),
Γ ≈ 2.4 (onset of the (2, 1)2 mode) and Γ ≈ 3.7 (onset of the (3, 1) mode).

as different energy levels. The lowest-energy mode tends to be the one where the
drop spends the most time in contact with the bath. When average mechanical energy
is increased, the drop spends more time in the air and less in contact with the bath.
Figure 15 depicts the relative contact time as predicted by the linear spring model
(3.1), for the highest-energy stable mode. We see two sharp transitions. The first
arises for small drops (Ω < 0.55), when the higher-energy (1, 1)2 bouncing mode can
no longer be sustained and collapses to the least energetic vibrating mode (1, 1)1,
in which the drop oscillates on the bath surface with a large portion of the period
spent in contact with the bath. The second arises for larger drops (Ω > 0.6), when
the higher-energy (2, 1)2 mode cannot be sustained and only the base energy mode
(2, 1)1 exists. Both of these transitions are prominent in our regime diagrams (figures
3–8): the former constitutes the lower part of the bouncing threshold, while the latter
constitutes the upper half of the walking threshold, as will be seen in MBII.

In figures 16–18 we show the two different (1, 1) modes, the two (2, 1) modes and
the (3, 2) bouncing mode, respectively. The dimensionless height of the drop in the
laboratory frame of reference (solid line) and the equilibrium height of the vibrating
bath (dashed line) are shown as functions of dimensionless time τ = ft. In order to
highlight the difference between the vibrating and bouncing states, the periods of
contact between the drop and the bath are marked by a darker shading. In the vibrating
state (figures 16a and 17a) the contact lasts roughly half the period of the drop’s
vertical motion, whereas in the bouncing state (figures 16b and 17b) the contact is



600 J. Moláček and J. W. M. Bush

0.5 1.0 1.5
2 

 

0 2.0 0.5 1.0 1.50 2.0

–1

0

1

2

3

4

–2

(b)

–1

0

1

2

3

4

–2

(a)

FIGURE 16. (Colour online) Comparison of (a) the low-energy ‘vibrating’ (1, 1)1 mode and
(b) the high-energy ‘bouncing’ (1, 1)2 mode, as predicted by the linear spring model (3.1)
with τC = 4.2 and CR = 0.42 for (Γ,Ω)= (1.3, 0.35). The dimensionless vertical position of
the oscillating bath (dashed line) and the droplet’s centre of mass shifted down by one radius
(solid line) are shown as functions of the dimensionless time τ = ft, where f is the bath’s
driving frequency. See figure 4(a,b) for the experimental realizations of these modes.
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FIGURE 17. (Colour online) Comparison of (a) the lower-energy (2, 1)1 mode and (b) the
higher-energy (2, 1)2 mode, as predicted by the linear spring model (3.1) with τC = 4.2 and
CR = 0.42 for (Γ,Ω) = (2.6, 0.7). The dimensionless vertical position of the oscillating bath
(dashed line) and the droplet’s centre of mass shifted down by one radius (solid line) are
shown as functions of the dimensionless time τ = ft. See figure 4(d,e) for the experimental
realizations of these modes.

significantly shorter. The (3, 2) mode shown in figure 18 consists of one long and one
short contact.

3.2. Logarithmic spring model
We have seen that the coefficient of restitution and the contact time of a drop
interacting with a quiescent liquid bath are independent of the Weber number for
We > 1, while for We 6 1 they depend logarithmically on We (see figures 10 and 11).



Drops bouncing on a vibrating bath 601

–4

–2

0

2

4

6

8

10

0 1 2 3 4 5 6

FIGURE 18. (Colour online) The (3, 2) mode, as predicted by the linear spring model (3.1)
with τC = 4.2 and CR = 0.42 for (Γ,Ω)= (2.4, 0.32). The dimensionless vertical position of
the oscillating bath (dashed line) and the droplet’s centre of mass shifted down by one radius
(solid line) are shown as functions of the dimensionless time τ = ft.

Therefore, while in the former regime we can model the drop by a linear spring, in the
latter we need a nonlinear model in order to capture, above all, the dependence of CR

on We. We derive such a model in the Appendix, using a quasi-static approximation
similar to that developed previously for drop impact on a rigid substrate (Moláček &
Bush 2012). The key idea of the resulting ‘quasi-static’ model is the approximation of
the actual instantaneous shape of the drop and the bath by relatively simple shapes,
specifically their quasi-static forms, which may be characterized by a small number of
variables. By calculating the Lagrangian of the system, we can then derive the system
of equations of motion for these variables. We then simplify the system to a single
differential equation (A 14):

d2Z

dτ 2

(
1+ c3

Q2(Z)

)
+ Oh

c2(ν)

Q(Z)

dZ

dτ
+ 3/2

Q(Z)
Z =−Bo∗(τ ), (3.7)

where Q(Z) = ln(c1/|Z|). Here c3 prescribes the kinetic energy associated with the
fluid motion within the two liquid bodies, c2(ν) the amount of viscous dissipation
within them, and c1 the nonlinearity of the spring. For higher values of c1, ln(c1/|Z|)
is less dependent on Z, thus making the spring more linear. The constants ci are
determined from matching to the observed dependence of the normal coefficient of
restitution CR on We (figure 10). The best match found is shown in figure 19, which
was obtained by solving (A 13) for R0 = 0.15 mm and two viscosities (ν = 20 and
50 cSt), with the initial conditions Z(0) = 0 and dZ/dτ = −We. The constants used
were c2 = 12.5 for 20 cSt and c2 = 7.5 for 50 cSt, and c1 = 2 and c3 = 1.4 were
used for both viscosities. Changing c1 alters the slope of the line in figure 19, while
changing c2 shifts the line vertically. The fits were found to be quite insensitive to the
value of c3, suggesting that the internal fluid motion does not play a significant role
in the impact dynamics, which is consistent with the scaling argument presented in
Moláček & Bush (2012). In figure 20, the model predictions for the temporal evolution
of the penetration depth are compared to the experimental data for 0.68 6We 6 0.96.
Clearly, the linear spring model (3.1) overestimates CR, and both linear models (3.1)
and (3.6) underestimate the time elapsed until |Z| = 0, the drop’s ‘rebound time’.
Note that the actual dimensionless contact time for We ≈ 0.8 is approximately 4.3,
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FIGURE 19. (Colour online) The dependence of the normal coefficient of restitution
CR = Vout/Vin for silicone oil droplets impacting a bath of the same liquid, on the Weber
number We = ρR0V2

in/σ . Shown are the experimental results for 20 cSt (�) and 50 cSt (H)
droplets impacting a quiescent bath. Analogous CR values for droplets impacting a vibrating
bath just above the bouncing threshold are also shown, for 20 cSt (•) and 50 cSt (N),
respectively. Solid lines indicate the values obtained using the logarithmic spring model
(A 13) with R0 = 0.15 mm for c1 = 2, c2(20 cSt)= 12.5, c2(50 cSt)= 7.5 and c3 = 1.4.
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FIGURE 20. (Colour online) The dimensionless depth of penetration |Z| = |z|/R0We1/2 of
the drop’s centre of mass below its height at the outset of contact (see figure 9), as a
function of the dimensionless time τ = t(σ/ρR3

0)
1/2. The predictions of the linear spring

model (3.1) (dashed line), alternative linear spring model (3.6) (dash-dotted line) and the
logarithmic spring model (3.7) (solid line) for R0 = 0.3 mm and We = 0.8 are compared to
the experimental values for R0 = 0.14 mm, We = 0.73 (�), R0 = 0.20 mm, We = 0.68 (N)
and R0 = 0.33 mm, We= 0.96 (H).

as the drop detaches while the bath is still deformed. In figure 21, we compare
the predictions of the three models for the evolution of the dimensionless drop
acceleration during contact. The linear models produce substantially different curves
from the logarithmic model, predicting a significant acceleration immediately after
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FIGURE 21. (Colour online) The dimensionless acceleration Zττ = (d2z/dt2)(ρR3
0/σV2

in)
1/2

of the drop’s centre of mass as a function of the dimensionless time τ = t(σ/ρR3
0)

1/2. The
predictions of the linear spring model (3.1) (dashed line), alternative linear spring model
(3.6) (dash-dotted line) and the logarithmic spring model (3.7) (solid line) are shown for
R0 = 0.3 mm and We= 0.8.

impact and a stronger reaction force during the later stages of contact. The first linear
model (3.1) also shows an unphysical negative reaction force during the late stages of
contact, as indicated by the dip below the gravitational acceleration for τ > 3.8.

Using the same combination of constants ci as in figure 19, the regime diagram
predicted using the logarithmic spring model (3.7) matches well with the experimental
data (figure 22). Specifically, the lower part of the experimentally observed bouncing
threshold curve now corresponds to the (1, 1)1← (1, 1)2 mode transition, which was
not the case for the previous models. The mode transition (2, 1)–(4, 2) for 20 cSt
(upper right corner of figure 22a,b) is matched least well; however, the match is still
better than that produced by either of the linear models. Note that we had no freedom
in choosing the curvature (vertical scale) of the threshold curves in figure 22 unlike
the previous cases (figures 12 and 13), where it was determined by the parameter
τC (or spring constant C). In the logarithmic spring model (3.7), the spring constant
is 1.5/Q(Z) and therefore, apart from the weak nonlinear contribution from Q(Z),
is determined from the low-Weber-number analysis. The fact that the curvature and
peaks of the predicted threshold curves correspond to those measured experimentally
provides additional verification of our model.

A useful way to characterize the drop’s impact in relation to the bath vibration is
provided by the impact phase relative to the driving, defined as the weighted average
of the driving phase Ωτ over the contact time:

Φ =
∫
τC

F(τ )(Ωτ) dτ
/∫

τC

F(τ ) dτ (mod 2π), (3.8)

where F(τ ) = ∂2Z/∂τ 2 + Bo∗(τ ) = Zττ (τ ) + Bo(1 + Γ sinΩτ) is the dimensionless
reaction force acting on the drop during contact. Thus, Φ = π corresponds to impact
at maximum upward bath velocity, whereas Φ = 0 corresponds to the impact at
maximum downward bath velocity. The impact phase Φ divided by π is shown in
figure 23 as a function of the driving acceleration Γ = γ /g for three values of Ω ,
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FIGURE 22. (Colour online) Comparison of the regime diagrams measured experimentally
and those calculated using the logarithmic spring model (3.7). (a) The model predictions with
c1 = 2, c3 = 1.4, c2 = 12.5 and f = 80 Hz (solid lines) are compared to experiments with
20 cSt oil in which coalescence (N), first period doubling (•) and second period doubling
(I) were measured. (b) The predictions of the model with c1 = 2, c3 = 1.4, c2 = 7.5 and
f = 80 Hz (dashed lines) are compared to experiments with 50 cSt oil in which coalescence
(N), first period doubling (•) and second period doubling (I) were measured.

specifically Ω = 0.2, 0.5 and 0.8. The results were obtained using the model (3.7)
with c1 = 2, c3 = 1.4, c2 = 7.5 and f = 80 Hz. The weighted average of Φ/π is
indicated by dark lines and dots, while the extent of contact is marked by shaded
regions, with lighter shading indicating that the droplet is in contact during the
corresponding phase only on a small number of impacts per its period of motion.

For Ω = 0.8 (figure 23c), the drop coalesces with the bath when Γ < 0.49. As the
driving is increased above this value, the drop begins to detach from the surface (white
regions), and the contact time decreases, as indicated by the vertical extent of the
shaded region. The impact phase slowly increases from approximately π at Γ = 0.5
to 1.2π at Γ = 1.9, where the first period doubling occurs. There, the even and odd
contacts separate, with the impact phase of one increasing and of the other decreasing.
At Γ ≈ 2.3, one of the ends of contact joins with the beginning of the following
contact, and the completely period-doubled (2, 1)1 mode is formed (note the discrete



Drops bouncing on a vibrating bath 605

(1, 2)

(4, 2)

(2, 2)

(3, 3)

(3, 2)

(6, 4)

C
oa

le
sc

en
ce

(1, 1)
(2, 2)

(4, 4)

(4, 3)

C
oa

le
sc

en
ce

(1, 1)

(2, 2)
(4, 2)

C
oa

le
sc

en
ce

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0

0.5

1.0

1.5

2.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

(a)

(b)

(c)

FIGURE 23. (Colour online) The dependence of the impact phase Φ (solid lines, points),
defined in (3.8), on the driving acceleration Γ = γ /g for three values of the vibration number
Ω: (a) Ω = 0.2, (b) Ω = 0.5 and (c) Ω = 0.8 (refer to figure 22a). Contact is marked by the
shaded regions, wherein the darkness of the shading indicates the relative number of contacts
including the given phase. Where possible, the periodic bouncing modes (m, n) are indicated.

change of impact phase by π). Increasing the driving to Γ ≈ 2.95, the (2, 1)1 vibrating
mode becomes unstable to the (2, 1)2 bouncing mode, with markedly shorter contact
time. Once in this mode, we can decrease the driving acceleration to Γ ≈ 2.7 before
we switch back to the (2, 1)1 mode. Further increase of Γ beyond Γ = 3 leads to a
period-doubling cascade and the onset of chaos at Γ ≈ 3.45.

The most common bouncing modes are labelled in figure 23, where we observe
that the impact phase is higher for higher-energy (bouncing) states than for their
lower-energy counterparts, with the higher-energy state disappearing once the phase
dips below π. This disappearance can be rationalized by considering the vertical
bath speed in an inertial frame of reference, given by −(Bo/Ω) cos(Ωτ), which
achieves its maximum value when Φ = π. Thus, when Φ = π, the bath transfers the
maximum momentum possible to the drop during contact; below this value the drop
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cannot maintain the higher energy level and collapses to a lower-energy bouncing
mode. We note that, with increasing vibration number Ω (or, equivalently, increasing
drop size), the duration of contact increases, chaotic bouncing states are replaced by
periodic states, and the lower-energy modes (1, 1)1 and (2, 1)1 shift to lower driving
accelerations.

4. Discussion

In our experiments, we have classified the drop dynamics for a wide range of
driving frequencies and drop sizes, and reported a number of new bouncing states. We
have reported the full bouncing threshold curve and shown that it can be discontinuous.
We observed the existence of two distinct bouncing states corresponding to the same
mode number (m, n), which we dubbed ‘bouncing’ and ‘vibrating’. The transition
between these two energy levels of the same mode plays a crucial role in the
coalescence of small drops and in the onset of walking for larger drops. For small
drops, the contact time in the (1, 1)1 mode, being roughly half the oscillation period,
is longer than the thinning time of the intervening air layer, resulting in coalescence.
The lower part of the bouncing threshold curve therefore lies along the (1, 1)1–(1, 1)2

transition curve. The peak of the walking region typically occurs on the transition
curve between the (2, 1)1 and the (2, 1)2 modes, as will be shown in MBII. The
dominance of the (2, 1)2 mode beyond this point is responsible for the walking region
having only finite extent.

We have thus delineated the different regimes arising in the vertical dynamics of a
drop bouncing on a vibrating bath and rationalized them using a logarithmic spring
model for the drop–bath interaction. For small driving accelerations, the bath cannot
transfer energy to the drop at a rate sufficient to compensate for viscous dissipation
and wave creation; consequently, the drop coalesces when the intervening air layer
thins below a critical thickness. For higher driving accelerations, simple periodic
bouncing is observed, which tends to become unstable to more complex bouncing
states with longer period, as the driving amplitude is further increased. Generally,
as the driving acceleration is raised, the average contact time of the drop decreases
and the amplitude of its bounce increases, but the change between bouncing modes
is sometimes discrete. For even higher accelerations, chaotic bouncing is the norm,
interspersed with windows of periodicity. Nevertheless, the chaotic regions disappear
for larger drops and near the Faraday threshold, where the standing-wave pattern
created by the drop’s impacts acts to stabilize the vertical motion by reducing the
relative speed of the drop and bath at impact.

We have developed a series of models of increasing sophistication to describe
the dynamics of drops bouncing on a vibrating fluid bath. The dynamics involve
a complex interplay of the drop and bath deformation and also of the air flow in
the intervening layer during contact. However, provided there is no coalescence, the
air film between the drop and the bath serves only to communicate normal stresses
between the two. We have shown that, in the parameter regime of interest, many
factors can be neglected, such as the role of air drag during flight and the residual
bath deformation generated by previous drop impacts. This allowed us to simplify the
dynamics to the point that it could be captured by a single differential equation, with
the reaction force acting during contact modelled as a linear or logarithmic spring.
The linear spring model, which has been used previously to model drop rebound
from a rigid substrate (Okumura et al. 2003), has two free parameters, the spring
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and dissipation constants, which can be determined experimentally by measuring the
contact time TC and coefficient of restitution CR.

The linear spring models, by virtue of their linearity, were unable to correctly model
the dependence of CR on the impact speed. Nevertheless, their integrability allows fast
numerical solution, which might make them preferable in some cases where speed
takes precedence over accuracy. The logarithmic spring model is new, derived by
analysis of the dynamics at very small Weber numbers and extension to the parameter
regime of interest. It has three free parameters, which can be determined by measuring
TC and CR for two different impact speeds. Only the logarithmic spring model
was found to be consistent with the experimental data for Weber numbers smaller
than 1. Even the bouncing threshold, which in general requires understanding of the
intervening layer dynamics, could be almost entirely rationalized by considering mode
transitions and contact time. For applications requiring a highly accurate representation
of the temporal dependence of the reaction force, as will be the case for the model of
walking drops treated in our subsequent paper (MBII), the logarithmic spring model
will be invaluable.

Throughout our analysis, we have assumed that both the drop and bath deformations
are dissipated between impacts, an assumption that breaks down as one approaches the
Faraday threshold. Then, the purely vertical bouncing states can be destabilized by the
standing waves, giving rise to walking states, an effect to be treated in MBII. There,
we couple the drop’s vertical dynamics, as described herein, to its horizontal dynamics.
In order to determine the amplitude of the standing waves created and the tangential
acceleration they impart to the drop, it is necessary to know the impact phase and
the temporal dependence of the reaction force. The model for the vertical dynamics
developed herein provides this information, the absence of which is responsible for
the shortcomings of previous theoretical descriptions (Couder et al. 2005b; Eddi et al.
2011b) of this relatively subtle system.
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Appendix. Derivation of the logarithmic spring equation
We consider the regime We� 1 and build a quasi-static model similar to that

developed for drop impact on a rigid substrate (Moláček & Bush 2012). The actual
instantaneous shapes of the drop and the bath are approximated by relatively simple
shapes characterized by a small number of variables. The family of shapes we choose
is one consisting of sessile shapes of liquid drops resting on a liquid bath (now
not necessarily made of the same liquid as the drop). The reason for this choice is
that, in the We� 1 regime, when the overall rebound dynamics is slow relative to
the dynamics of the typical surface waves created, one expects the surface shapes to
equilibrate to some quasi-static form (Bach, Koch & Gopinath 2004). If the drop has
surface tension σD and density ρD, and the bath σB and ρB, the sessile shape family
has dimensionality three by Buckingham’s theorem; it can be parametrized by two
Bond numbers A = BoD = ρDgR2

0/σD and C = BoB = ρBgR2
0/σB and by the parameter

B= σDBoD/σB. Although in our system we have σ = σB and ρ = ρB, initially we keep
these variables separate in order to describe the deformation of the drop and bath
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independently. Parameter A prescribes the magnitude of the drop’s deformation, B the
vertical bath deformation and C the horizontal extent of bath deformation. Minimizing
the total potential energy of the drop and bath allows one to obtain the sessile
profile of the drop–bath system and the corresponding values of the total surface and
gravitational potential energy. Keeping A, B and C independent for the time being,
while setting σD = σB = σ and ρD = ρB = ρ for the sake of simplicity, we obtain

S E TOT

πσR2
0

≈ 2
9

A2

(
ln

6
(A+ B)C

− 2γ − 1
2

)
+ 2

9
B2

(
ln

6
A+ B
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)
, (A 1a)

PE TOT

πσR2
0Bo
≈−4

9
A

(
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6
(A+ B)C

− 2γ + 1
)
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B

(
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6
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− 5
6

)
+ 2

9
A2

C
. (A 1b)

Here γ = 0.577 216 . . . is the Euler–Mascheroni constant, arising via a small-argument
approximation of the Bessel function K0(x). When the fluid viscosity is sufficiently
low (Oh� 1), the flow inside the drop and bath can be approximated by a potential
flow. Note that, in our experiments, 0.1 < Oh < 1. Expressing the drop deformation
as a sum of spherical harmonic modes, one can then evaluate the kinetic energy
associated with a continuous change of drop shape within the sessile shape family (i.e.
when A = A(t)). The kinetic energy of the bath, moving as a result of time-dependent
parameters B and C, can be similarly obtained using the Hankel transform of the bath
surface deformation. The total kinetic energy of the system is then given by

K E TOT
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Ȧ

A

)2

− 1
6

(
Ȧ
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where
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)
6 0 (A 3)

is the dimensionless height of the drop’s centre of mass (Z = z/R0) and CK0= π2/12−
17/27≈ 0.193. The coordinates are chosen such that Z = 0 when the drop is spherical
and the bath flat (A = B = 0, corresponding to the initiation of impact). The viscous
dissipation inside the drop and bath can also be calculated using the potential flow
approximation, provided the condition Oh� 1 is satisfied. Doing so yields

DTOT

πµR3
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= 2πA2
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Ċ

C

)2
+ 8

9
CD0Ḃ2, (A 4)

where CD0= π2/4 − 5/12 ≈ 2.051. For a more detailed derivation of (A 3) and (A 4),
see Moláček & Bush (2012). Using expressions (A 1)–(A 4), the equations of motion
can be derived using the Euler–Langrange equation with dissipation (see Torby 1984):

d
dt

[
∂L

∂Ẋ

]
+ 1

2
∂DTOT

∂Ẋ
= ∂L
∂X
, (A 5)

where the Lagrangian L =K E TOT −S E TOT −PE TOT . It should be stressed that the
expressions (A 1)–(A 4) are only leading-order approximations valid in the limit of
small deformations (i.e. when A,B,C� 1), which arises for impacts at small We.

In order to avoid dealing with a system of three differential equations with
three variables, we need to further simplify the model. Since the drop and bath
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consist of the same liquid, we expect their deformation to be similar in magnitude
(i.e. A(t) ≈ B(t)), which can be verified either experimentally or by solving the
full 3 × 3 system. Therefore, we set A = B. In the moderate-Weber-number regime
(0.01 <We . 1), deformation of the bath occurs predominantly in the region near the
drop. The horizontal length scale of significant bath deformation, though increasing in
time, then remains comparable to the drop radius R0 throughout the impact, suggesting
that we approximate C by a constant. Doing so, we are left with a single independent
variable A(t). Thus (A 1)–(A 4) simplify to

S E TOT

πσR2
0

≈ 2
9

A2
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2 ln

3
A
− ln C − 2γ − 11
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)
,

PE TOT
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We now express (A 6) and (A 7) in terms of Z instead of A, employing the fact that,
for small A, (A 8) can be rewritten as

A=− 3Z

2 ln(−1/Z)+ · · · . (A 9)

Assuming |Z| � 1 and keeping only the leading-order contributions in each expression,
we obtain

S E TOT

πσR2
0
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ln(α/|Z|) ,
PE TOT
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0Bo
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Switching to the dimensionless time τ = t/(ρR3
0/σ)

1/2 and using (A 5), we derive the
following equation of motion, keeping the leading-order terms only:

d2Z

dτ 2

[
1+ 3CK0 + 1.5πC−3/2

ln2(α/|Z|)
]
+ Oh

6πC−1/2 + 12CD0

ln2(α/|Z|)
dZ

dτ
+ 3/2

ln(α/|Z|)Z =−Bo.
(A 12)

Equation (A 12) suggests that the impact of a drop on a quiescent bath can be
approximated by a ‘logarithmic spring’ model of the form

d2Z

dτ 2

(
1+ c3

ln2(c1/|Z|)
)
+ Oh

c2(Oh)

ln2(c1/|Z|)
dZ

dτ
+ 3/2

ln(c1/|Z|)Z =−Bo, (A 13)

where c1, c2 and c3 are constants to be determined. Replacing Bo in (A 13) by the
effective Bond number Bo∗(τ ) = Bo(1 + Γ sinΩτ), we obtain the logarithmic spring
model for a drop bouncing on a vibrating bath:

d2Z

dτ 2

(
1+ c3

Q2(Z)

)
+ Oh

c2(ν)

Q(Z)

dZ

dτ
+ 3/2

Q(Z)
Z =−Bo∗(τ ), (A 14)

where Q(Z)= ln(c1/|Z|).
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PROTIÈRE, S., BOUDAOUD, A. & COUDER, Y. 2006 Particle–wave association on a fluid interface.
J. Fluid Mech. 554, 85–108.
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