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Bouncing droplets can self-propel laterally along the surface of a vibrated fluid bath by virtue of a resonant
interaction with their own wave field. The resulting walking droplets exhibit features reminiscent of microscopic
quantum particles. Here we present the results of an experimental investigation of droplets walking in a circular
corral. We demonstrate that a coherent wavelike statistical behavior emerges from the complex underlying
dynamics and that the probability distribution is prescribed by the Faraday wave mode of the corral. The statistical
behavior of the walking droplets is demonstrated to be analogous to that of electrons in quantum corrals.
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When a horizontal fluid bath is vibrated vertically in
a sinusoidal fashion with peak acceleration γg (g being
the gravitational acceleration) and frequency f , there is
a critical acceleration γF g above which its free surface
becomes unstable to standing Faraday waves with frequency
f/2 [1,2]. Below this Faraday threshold, when the interface
would otherwise remain flat, a millimetric droplet may be
levitated on the vibrating bath surface [3]. Provided the
air layer between the droplet and bath is sustained during
impact, coalescence is precluded and the drop may bounce
indefinitely [4,5]. When the bouncing is of sufficient amplitude
to have twice the forcing period, the droplet achieves resonance
with its Faraday wave field, as is generated by its impacts.
When this resonance is achieved and the forcing acceleration
exceeds the walking threshold γ > γw, the bouncing drop is
destabilized by its wave field, giving way to a stable walking
state marked by steady horizontal motion [6,7]. Millimetric
droplets can thus walk on a vibrating fluid bath through a
resonant interaction with their own wave field. The resulting
physical picture, in which the droplet is piloted by a guiding
wave field, is reminiscent of that proposed by de Broglie
as the basis of a rational quantum mechanics, pilot-wave
dynamics [8].

The propulsive wave force originates from the droplet
landing on a sloping surface. The local slope is determined
by the wave field generated by previous impacts and so
depends on both the droplet’s path and the spatiotemporal
extent of its wave field. The dynamics of the walking droplets,
henceforth walkers, is thus non-Markovian: Predicting the
evolution of the system requires knowledge not only of its
present state, but of its past. The concept of path memory was
thus introduced to characterize the influence of the walker’s
past on the propulsive wave force [9], a concept that is
quantified in the theoretical developments of Moláček and
Bush [7]. As the forcing acceleration is increased progressively
from the walking threshold γwg towards the Faraday threshold
γF g, the amplitude of the waves increases, their decay rate
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decreases, and the path memory increases progressively. In
an unbounded geometry, the walkers propel themselves in
a straight line at a uniform speed that typically increases
with increasing memory. In more complex geometries, the
interaction of the guiding wave field with boundaries leads
to relatively rich dynamics and complex trajectories [10,11].
In the long-path-memory limit, the walking droplets exhibit
several features previously thought to be exclusive to the
microscopic quantum realm, including single-particle diffrac-
tion, tunneling, quantized orbits, and orbital level splitting
[4,6,10–14].

Couder and Fort [10] demonstrated the diffraction of
individual walkers as they passed through both single- and
double-slit geometries, in response to the diffraction of
their guiding waves. As a single walker passes through a
slit, it appears to be randomly deflected; however, in the
long-path-memory limit, repetition of the experiment reveals
the emergence of a coherent wavelike statistical behavior.
Specifically, the probability of a particular deflection angle
is prescribed by the relative far-field amplitude of a linear
plane wave with the Faraday wavelength impinging on the
slits. Thus, as in quantum mechanics, the statistical behavior
of the system can be described by a wave function that satisfies
a linear wave equation.

We here examine the dynamics and statistics of droplets
walking in a confined circular geometry [see Fig. 1(a)] [15].
The bath consists of a relatively deep layer surrounded by a
shallow layer, the depths chosen to ensure that the droplet
can only walk in the deep corral region. The walker is
thus confined to the corral, while its guiding wave field is
influenced by reflections off the corral edges. Figure 1(b)
illustrates the cavity mode just above the Faraday threshold at
the driving frequency considered. For our walker experiments,
the forcing amplitude is always below the Faraday threshold,
so the free surface would remain flat in the absence of
the droplet. We follow the walker’s trajectory with particle-
tracking software. We proceed by describing the dependence of
the walker dynamics on the proximity to the Faraday threshold,
which can be characterized by the dimensionless parameter
� = (γF − γ )/γF . As � approaches zero, the path memory
necessarily increases.
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FIG. 1. (Color online) (a) Schematic illustration of the experi-
mental apparatus, a fluid bath driven vertically in a sinusoidal manner
with amplitude A0 and frequency f . (b) Faraday mode in a circular
corral of radius R = 10.1 mm and depth h0 = 5 mm, driven at
f = 80 Hz, for which γF = 4.6 and the Faraday wavelength is λF =
4.75 mm. The frequency was selected to ensure that the wave field just
above the Faraday threshold was stationary. Note that the bright rings
correspond to areas of small surface slope, indicating local extrema of
wave amplitude. (c)–(e) Typical trajectories of a walker with diameter
D = 0.8 mm with mean velocity v̄ = 11 mm/s in the same circular
corral at (c) low memory � = 0.18 and intermediate memories
(d) � = 0.1 and (e) � = 0.06.

Figure 1(c) illustrates the circular trajectory of a walker with
short path memory in a circular cavity. As the path memory is
increased progressively, this circular orbit becomes unstable,
giving way to a epicycloidal trajectories with increasing
deviations from the unstable circle [Figs. 1(d) and 1(e)] [15].
Figure 2 illustrates sample images of a walker and its guiding
wave field in the long-path-memory limit. The walker’s pilot-
wave field is continuously evolving: While its peak amplitude
is generally near the point of the droplet’s last impact, its
detailed form depends on the droplet’s past trajectory. At any
instant, the wave field is complex, the result of a superposition
of waves created by the droplet’s previous bounces: In general,
it bears no resemblance to the resonant wave mode of the
cavity. The dynamics in the long-path-memory limit thus

(a)

(b)

FIG. 2. (Color online) (a) Top view of a walker exploring a
circular corral in the long-path-memory limit. Its complex pilot-wave
field is apparent; its trajectory is indicated in white. (b) Oblique view
of a walker and its pilot wave exploring a circular corral. The dashed
line indicates the edge of the corral.

cannot be simply rationalized in terms of stochastic motion
modulated by the wave mode of the cavity. On the contrary, this
pilot-wave dynamics has certain distinct features. Specifically,
the monochromatic guiding wave field constrains the radius
of curvature, which rarely takes values less than half the
Faraday wavelength. The complex guiding wave field in
this long-memory limit thus renders the walker’s trajectory
relatively smooth, but its dynamics chaotic. We note that
this smooth pilot-wave dynamics is markedly different from
that observed when the system is driven above the Faraday
threshold, when the trajectory is relatively erratic and marked
by sharp changes in direction.

Figure 3(a) illustrates sample trajectories of increasing
length, which have been color coded according to the droplet
speed. We note that in the absence of boundaries, the walker
speed would remain constant and its motion rectilinear. In this
long-memory limit, the walker’s trajectory is complex, owing
to the interaction of its extended pilot-wave field with the
boundaries; moreover, the walker speed varies significantly
from its mean (v̄ = 8.66 mm/s) along its path. In the long-
time limit, a pattern emerges in the velocity fluctuations, a
pattern that is echoed in the droplet statistics. The probability
distribution presented in Fig. 3(b) indicates the emergence of a
coherent wavelike statistical behavior for the walking droplet.

The axially symmetrized histogram is shown in Fig. 4(a)
along with the amplitude of the cavity mode |J0(kF r)| with
the Faraday wavelength λF = 2π/kF , as predicted by linear
theory [2]. The correspondence between the two indicates that,
as in quantum mechanics, the statistics of a confined particle
can be prescribed by a wave function satisfying a linear wave
equation. If one fits the data to a linear superposition of cavity
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FIG. 3. (Color) (a) Trajectories of a droplet of diameter D =
0.67 mm walking in a circular corral with radius R = 14.3 mm
and depth h0 = 6.6 mm, driven at f = 70 Hz, for which γF = 3.7.
Trajectories of increasing length in the long-path-memory limit
(� = 0.011) are color coded according to droplet speed (mm/s).
(b) Probability distribution of the walking droplet’s position.

eigenmodes with wavelength closest to λF , the fit can be
slightly improved and the zeros in the predicted probability
amplitude disappear. However, this requires the introduction
of additional fitting parameters, namely, the amplitude ratio of
each mode, so for simplicity we compare only to a single mode.
Doing so indicates that the walker’s probability distribution is
well approximated by the amplitude of the linear Faraday wave
mode of the corral.

There are several features of this pilot-wave dynamics
that contribute to the emergence of the coherent wavelike
statistical pattern. In Fig. 4(b) we demonstrate that fluctuations
in the walker’s speed are correlated with its radial position,
as was suggested by the color-coded trajectories presented
in Fig. 3(a). In general, the walker’s speed is lowest at the
locations of maximum amplitude of the fundamental cavity
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FIG. 4. (Color) (a) Histogram of radial position, (b) velocity
variation from the mean ( ¯|v| = 8.66 mm/s), and (c) radial dependence
of the normalized radial velocity (|vR|/|v|). In (a), the minima in the
probability amplitude approximately correspond to maxima in the
walker velocity, maxima in the normalized radial velocity, and zeros
in the amplitude of the fundamental cavity mode (upper curve). The
section A-B represents a radial slice of the cavity’s Faraday mode,
with bright bands indicating local extrema. Averaging windows and
bin widths are fixed at 0.012R. In (c), values of 1 and 0 correspond
to purely radial and azimuthal motion, respectively. (d) Four sample
trajectories extracted from the complete trajectory indicate a tendency
to orbital motion along particular radii. Different colors serve only to
demarcate different trajectories. In all plots, the dashed lines represent
maxima in the amplitude of the fundamental cavity mode.

mode, augmenting the probability amplitude at these radii.
The spatial distribution of the normalized radial velocity is
presented in Fig. 4(c), where we again observe a spatial
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periodicity, with the locations of the peaks corresponding
roughly to the zeros in the amplitude of the cavity mode.
This correlation may be rationalized in terms of the walkers’
tendency to move azimuthally about preferred radii and
radially in between, as is exemplified in sample trajectories
reported in Fig. 4(d). We can thus understand the probability
distribution as being a manifestation of the characteristics of
the underlying trajectories. In the confined circular geometry,
the pilot-wave dynamics tends to drive the walker along
circular orbits with radii corresponding to maxima of the cavity
mode amplitude. Instead of being trapped on these orbits as in
the low-path-memory limit [Fig. 1(c)], the walker wobbles
around them and drifts between them; nevertheless, these
unstable orbits leave their mark on the probability distribution.

We have examined the hydrodynamic analog of a quantum
particle in a circular domain, demonstrating the emergence
of a coherent statistical behavior in the long-memory limit.
Our results indicate that the statistical behavior is rooted in the
wave-induced spatial dependence of the walking speed and the
tendency for the walker to trace out the unstable orbital states
of the cavity. The experiments reported herein indicate that in
the long-memory limit, walkers in confined geometries, like
quantum particles, have a coherent statistical behavior that
may be characterized by a linear wave theory. Whether or
not the statistical description provided by quantum mechanics
represents a complete description of physical reality was the
subject of the celebrated debate between Einstein [16] and
Bohr [17]. Whatever the case may be in quantum mechanics,
the linear statistics is clearly an incomplete description of
our fluid system and is underlaid by a complex, nonlinear,
pilot-wave dynamics.

It is interesting to consider our results in light of quantum
corral experiments, in which electrons are confined to a corral
composed of iron adatoms on the surface of a copper substrate
[18–20]. We note that the spacing between the adatoms results
in considerable energy loss, as do the shallows surrounding our
fluid corrals. The electron density in the quantum corral was
measured with a scanning-electron microscope and found to
have a wavelike pattern with the de Broglie wavelength of the
trapped electrons λdB . The probability distribution presented
in Fig. 3(b) is thus analogous to that in the circular quantum
corral, with λF playing the role of λdB .

In our fluid system, we are able to observe not only an
analogous statistical wave [Fig. 3(b)], but a real physical wave
that guides the droplet (Fig. 2). While in unbounded geometries
the pilot-wave field assumes a relatively simple form [9] and
gives rise to rectilinear motion, in the corral geometry, its form
is affected by reflections off the boundaries and the resulting
walker motion is irregular, with the degree of irregularity
increasing with path memory. As was the case in the study of
single-particle diffraction [10], in the long-path-memory limit,
the statistical wave function is prescribed by the wavelength
of the pilot wave and the system geometry. We note that
similar results arise for a walker confined to walk along a
line in a narrow rectangular geometry, where the wavelength
of the probability distribution is again prescribed by that of
the guiding wave. A discussion of the results obtained in this
geometry is beyond the scope of the present paper.

Our study indicates that this hydrodynamic system is
closely related to the physical picture of quantum dynamics
envisaged by de Broglie, in which rapid oscillations originating
in the particle give rise to a guiding wave field [8,21,22].
The pilot-wave theories of de Broglie and Bohm [23] are
often conflated [24]; however, it is valuable to distinguish
between them here for the sake of comparison with our system.
According to Bohm, the particle is guided by its statistical
wave, its velocity being equivalent to the quantum velocity of
probability. According to de Broglie’s double-wave solution
[8], the particle is guided by a real wave (of unspecified
origins) in such a way as to execute a dynamics whose
statistics is described by standard quantum theory. Figure 2(a)
indicates the instantaneous surface wave field responsible
for piloting the walker, whose complex form results in a
complex trajectory. Figure 3(b) represents the relatively simple
statistical wave field describing the probability distribution,
whose form is prescribed by the eigenmode of the cavity.
The simple form of the statistical wave conceals the complex
underlying pilot-wave dynamics.
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