
MIT Open Access Articles

A quasi-static model of drop impact

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Molacek, Jan, and John W. M. Bush. “A quasi-static model of drop impact.” Physics of 
Fluids 24, no. 12 (2012): 127103.

As Published: http://dx.doi.org/10.1063/1.4771607

Publisher: American Institute of Physics (AIP)

Persistent URL: http://hdl.handle.net/1721.1/80701

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/80701


A quasi-static model of drop impact
Jan Moláček and John W. M. Bush 
 
Citation: Phys. Fluids 24, 127103 (2012); doi: 10.1063/1.4771607 
View online: http://dx.doi.org/10.1063/1.4771607 
View Table of Contents: http://pof.aip.org/resource/1/PHFLE6/v24/i12 
Published by the American Institute of Physics. 
 
Related Articles
Direct observation on the behaviour of emulsion droplets and formation of oil pool under point contact 
Appl. Phys. Lett. 101, 241603 (2012) 
Dynamics of concentric and eccentric compound droplets suspended in extensional flows 
Phys. Fluids 24, 123302 (2012) 
The influence of geometry on the flow rate sensitivity to applied voltage within cone-jet mode electrospray 
J. Appl. Phys. 112, 114510 (2012) 
Size-variable droplet actuation by interdigitated electrowetting electrode 
Appl. Phys. Lett. 101, 234102 (2012) 
Monodisperse alginate microgel formation in a three-dimensional microfluidic droplet generator 
Biomicrofluidics 6, 044108 (2012) 
 
Additional information on Phys. Fluids
Journal Homepage: http://pof.aip.org/ 
Journal Information: http://pof.aip.org/about/about_the_journal 
Top downloads: http://pof.aip.org/features/most_downloaded 
Information for Authors: http://pof.aip.org/authors 

Downloaded 19 Dec 2012 to 18.7.29.240. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://pof.aip.org/?ver=pdfcov
http://careers.physicstoday.org/post.cfm?ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Jan Mol�ek&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=John W. M. Bush&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4771607?ver=pdfcov
http://pof.aip.org/resource/1/PHFLE6/v24/i12?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4770382?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4770294?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4768451?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4769433?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4765337?ver=pdfcov
http://pof.aip.org/?ver=pdfcov
http://pof.aip.org/about/about_the_journal?ver=pdfcov
http://pof.aip.org/features/most_downloaded?ver=pdfcov
http://pof.aip.org/authors?ver=pdfcov


PHYSICS OF FLUIDS 24, 127103 (2012)
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(Received 14 July 2012; accepted 16 November 2012; published online 19 December 2012)

We develop a conceptually simple theoretical model of non-wetting drop impact
on a rigid surface at small Weber numbers. Flat and curved impactor surfaces are
considered, and the influence of surface curvature is elucidated. Particular attention is
given to characterizing the contact time of the impact and the coefficient of restitution,
the goal being to provide a reasonable estimate for these two parameters with the
simplest model possible. Approximating the shape of the drop during impact as
quasi-static allows us to derive the governing differential equation for the droplet
motion from a Lagrangian. Predictions of the resulting model are shown to compare
favorably with previously reported experimental results. C© 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4771607]

I. INTRODUCTION

The impact of liquid droplets on solids is important in a variety of industrial and biological
processes. Industrial applications include insecticide and pesticide design,1–3 inkjet printing,4 and
fuel injection, as well as the design of airplane, ship, and windmill blades.5 For many plants and
small creatures, the impact and adherence of a raindrop can lead to tissue damage or other deleterious
consequences, such as compromised photosynthesis in the case of plants and respiration in the case
of insects; thus, the integument of many plants and insects is hydrophobic.6, 7

The nature of small droplet collision depends on the wettability of the impacted solid, which
will in general depend in turn on its surface chemistry and texture.8 If the droplet wets the solid, the
spreading and detachment of the droplet will depend critically on the contact line dynamics.9 In the
present paper, we consider the case of non-wetting impact, in which a thin air layer is maintained
between the droplet and the surface, so that contact line dynamics need not be considered. Such is
the case for relatively low-energy impact of drops on super-hydrophobic surfaces,10 a rigid surface
coated with a liquid film11 or a highly viscous liquid surface.12

We further restrict our attention to low-energy impacts in which the droplet deformation remains
small, allowing for an analytical treatment. Two key parameters that characterize the impact are the
contact time TC and the coefficient of restitution CR. The contact time can be defined as the time over
which the droplet experiences a reaction force from the impacted object; the coefficient of restitution
as the ratio of the normal components of outgoing to incoming velocity: CR = (Vout )n

(Vin )n
. While, strictly

speaking, these definitions can only be approximate due to the interaction between drop and impactor
via viscous forces in the intervening gas, for the class of problems to be considered, the resulting
ambiguity is negligible.

Six physical variables affect the normal impact of a nonwetting drop on a flat rigid surface:
the droplet radius R0 and impact speed Vin , the liquid density ρ, dynamic viscosity μ, and surface
tension σ and the gravitational acceleration g. These give rise to three nondimensional groups.
The Weber number W e = ρR0V 2

in/σ , Bond number Bo = ρgR2
0/σ , and Ohnesorge number Oh

= μ (σρR0)−1/2 prescribe the relative magnitudes of, respectively, inertia, gravity, and viscosity to
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FIG. 1. A drop of radius R0 impacts a rigid surface with radius of curvature R2 (see Figure 2(b)). Several values of the
curvature parameter R = 1 − R0/R2 are shown: from left to right, R = 0, R = 0.5, R = 1, R = 2, and R � 1.

surface tension. Considering the effects of the surrounding gas on the drop dynamics requires the
inclusion of two more physical variables—the gas density ρg and gas viscosity μg—giving rise to two
more nondimensional groups, ρg/ρ and Ohg = μg (σρR0)−1/2. For the parameter range of interest,
ρg/ρ � 1 and Ohg � Oh, the influence of these two parameters is negligible. To incorporate the
influence of substrate curvature, we consider the impacted solid to have a uniform radius of curvature
R2 and introduce the nondimensional group R = 1 − R0/R2 (see Fig. 1). Defining the curvature
of a concave substrate to be negative, we note that R = 1 for a flat surface, R → ∞ for a sharp
pin-shaped surface and R = 0 for a surface whose curvature matches that of the drop.

Studies of liquid drop impact at small and moderate Weber numbers (W e < 30) are scarce in
comparison with their high Weber number counterparts. Foote13 was the first to model numerically
the dynamics of a nearly inviscid drop impacting a solid wall, his computations providing estimates
for the contact time, contact area, and pressure distribution inside the drop. Gopinath and Koch14

modeled the collision of two identical water drops at low Weber numbers by decomposing their
deformation into spherical harmonic modes. In the limit ln (1/W e) � 1, they were able to use
approximations of the behaviour of the Legendre polynomials Pm(x) to show that the contact time
increases logarithmically with decreasing W e. The inherent symmetry of the collision of two
identical drops means that it is in many ways equivalent to the rebound of a single drop from a flat
rigid boundary and allows us to implement their results in the present paper.

Richard and Quéré15 measured the coefficient of restitution CR of small water drops (0.4 mm
≤ R0 ≤ 0.5 mm) bouncing on a super-hydrophobic surface for 0.02 ≤ W e ≤ 2. They reported CR

as large as 0.94, noting that it remains relatively constant above a critical impact velocity below
which it sharply drops to zero, presumably because the contact angle hysteresis becomes important
for sufficiently low Weber numbers. Richard et al.16 measured the contact time TC in the same
configuration for 0.3 ≤ W e ≤ 37 and found it to be nearly independent of the Weber number in
this range, with a slight increase at the lower end of the W e spectrum. Okumura et al.17 measured
the contact time in the same configuration for 0.003 ≤ W e ≤ 1 and two drop radii R0 = 0.4 mm
and R0 = 0.6 mm, and noted an increase of TC with decreasing W e, which they attributed to the
influence of gravity. They also presented a simple model for the drop dynamics, using a linear spring
approximation to the reaction force obtained by approximating the drop distortion as a superposition
of pure translation and vibration in the second fundamental harmonic mode.

Simple scaling suggests that the contact time scales as TC ≈ A
(

ρR3
0

σ

)1/2
, as does the period of

free oscillations of a drop.18 The coefficient A = A (Bo,W e,Oh) is in general a function of the
three nondimensional groups. However, when W e � Bo2, the effects of gravity can be neglected
(Okumura et al.17); similarly, when Oh � 1, the effects of viscosity can be neglected. When these
two conditions are met, we expect A ≈ A (W e). Richard et al.16 found experimentally that A
≈ 2.6 for 1 < W e < 30, while the numerical models of Foote13 and Gopinath and Koch14 indi-
cate that for W e < 1, A (W e) ∼ ln 1

W e . The linear spring model of Okumura et al.17 predicts A
= 2.31 independent of W e, and thus must become invalid for sufficiently low W e. We expect the
coefficient of restitution CR to depend most strongly on Oh, with CR → 0 as Oh → ∞ and CR

→ 1 as Oh → 0. Interestingly, for sufficiently high W e, limOh→0 CR ≈ 0.91 < 1, because part of
the initial translational energy is transferred to oscillations of the drop surface, as demonstrated by
Richard and Quéré.15

We here present a relatively simple model of non-wetting liquid drop impact valid in the limit of
W e � 1 that incorporates the influence of the curvature of the impacted surface. We approximate
the drop shape at any instant by one from the quasi-static family of sessile shapes of a drop in a
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FIG. 2. Axisymmetric sessile drop of density ρ and surface tension σ resting on a surface with radius of curvature R2.
Without gravity, the drop would be spherical with radius R0, under gravitational force g it deforms to a shape given by R
= R(θ ) in spherical coordinates. The drop shape conforms to that of the substrate over the area 0 ≤ θ ≤ α.

homogeneous gravitational field. The precise shape is thus prescribed by the effective Bond number,
which will be the single independent variable in our model. We proceed by finding the first order
approximation to the static drop shape in Sec. II, which yields the change of the drop’s surface and
gravitational potential energies. In Sec. III, we find the spherical harmonic decomposition of the
static shape, from which we derive the kinetic energy and viscous damping associated with a change
of drop shape within the static shape family. We then form the Lagrangian of the system and derive
the equation of motion. In Sec. IV, we analyze the asymptotic behaviour of contact time in the
limit ln 1/W e � 1, both with and without the influence of gravity. We develop a simple numerical
model to which we compare the predictions of the quasi-static model in cases where there are no
existing data. We investigate the role of the substrate curvature on drop dynamics and show that
to leading order the combined effects of curvature and impact speed can be described by a single
nondimensional parameter.

II. THE SHAPE OF A STATIC DROP

The leading order deformation to a static drop caused by a weak uniform gravitational field was
deduced by Chesters,19 and subsequently considered by Smith and van De Ven,20 Shanahan,21 and
Rienstra.22 It will be briefly rederived here, in part to introduce the notation adopted in the paper.
Consider a liquid drop with density ρ, surface tension σ , and undeformed radius R0, that sits on
a solid substrate with constant radius of curvature R2. We set R2 > 0 if the solid is concave (as
in Fig. 2) and R2 < 0 if it is convex. It will be useful to define the relative curvature parameter
R = 1 − R0/R2 (see Fig. 1). Under the influence of a weak gravitational acceleration g, the drop
deforms to an axisymmetric shape given in spherical coordinates by

R(θ ) = R0 (1 + ε f (cos θ )) , (1)

where ε � 1. We place the center of our coordinate system at the droplet’s center of mass, and align
the vector θ = 0 with gravity. We will assume a contact angle close to π , as our goal is to model
the impact of water drops on super-hydrophobic surfaces, or drops which remain separated from
the solid by a thin gas film. The drop shape conforms to that of the underlying solid in the region 0
≤ θ ≤ α. We write cos α = 1 − δ, with δ being the relative contact area, specifically, the ratio of
the contact area to its maximum possible value 2π R2

0 , and assume α = O(ε1/2), so that δ = O(ε), as
will be justified in what follows.

A. Drop energetics

The surface energy of the drop is given by

S.E . = σ

∫ π

0

[
2π R

√
R2 + R′2 sin θ

]
dθ

= 2πσ R2
0

∫ 1

−1

[
1 + 2ε f + ε2

(
f 2 + 1

2
f ′2(1 − x2)

)
+ O

(
ε3

) ]
dx, (2)

Downloaded 19 Dec 2012 to 18.7.29.240. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions
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where x = cos θ . The potential energy of the drop is the height of its center of mass above a reference
point, which we choose to be the intersection of the solid and the axis of symmetry of the system.
Then, by definition of our coordinate system, we have, using (1)

P.E . = 4

3
πρgR3

0

[
R(α) cos α + (R(α) sin α)2

2R2

]
= 4

3
πρgR4

0

[
1 + ε f (1 − δ) − δR + O

(
ε2

)]
.

(3)

The volume of the droplet must remain constant under any deformation. Expressing the vol-
ume as an integral of R(θ ) and integrating by parts once, we obtain 4

3π R3
0 = 2π

3

∫ π

0 R3(θ ) sin θdθ .
Substituting again for R(θ ) from (1) and using x = cos θ yields∫ 1

−1
f + ε f 2dx = O

(
ε2

)
. (4)

The condition that the center of mass is located at the origin is equivalent to 0
= π

2

∫ π

0 R4(θ ) sin θ cos θdθ . Once again, substituting from (1) yields∫ 1

−1
f xdx = O (ε) . (5)

In the contact region, the value of f(x) is prescribed by the shape of the substrate

f (x) = R1 − x

ε
+

(
f (1 − δ) − R δ

ε

)
1 − δ ≤ x ≤ 1. (6)

Substituting for
∫ 1
−1 f dx from (4) into (2) gives

S.E . = 2πσ R2
0

[
2 + ε2

∫ 1

−1

(
1

2
f ′2(1 − x2) − f 2

)
dx + O

(
ε3)] . (7)

Minimizing the total energy of the drop ET OT = P.E . + S.E ., subject to the constraints
(4) and (5), leads to minimizing the functional

∫ 1−δ

−1
1
2 f ′2(1 − x2) − f 2 − λ1 f − λ2 f x dx , where

λ1, λ2 are the Lagrange multipliers corresponding to the constraints (4) and (5), respectively. The
Euler-Lagrange equation gives

d

dx

[
f ′(1 − x2)

] + 2 f + λ1 + λ2x = O (ε) . (8)

The general solution of (8) (inhomogeneous Legendre’s equation), which is well-behaved at x
= −1, i.e., at θ = π , is given by

f (x) = λ2

3
x ln(1 − x) + 2 − λ1

2
+ cx . (9)

We determine c and λ1 from constraints (4) and (5). Absorbing λ2 into ε finally gives

f (x) = x

3
ln

(
1 − x

2

)
+ 1

6
+ 4

9
x + O (ε) , (10)

which is equivalent to Eq. (12) in Shanahan.21 Combining expressions (6) and (7), and substituting
for f(x) from (10) yields

S.E . = 2πσ R2
0

[
2 − ε2

9

(
ln

δ

2
+ 11

6

)
+ 1

2
R2δ2 + O

(
ε3

)]
. (11)

Substituting for f(x) from (10) into (3) and adding that to (11) yields an expression for the total
energy

E .T OT

2πσ R2
0

= 2 − ε2

9

(
ln

δ

2
+ 11

6

)
+ 1

2
R2δ2 + 2

3
Bo

[
ε

(
1

3
ln

δ

2
+ 11

18

)
+ δR

]
+ O

(
ε3

)
. (12)
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Differentiating (12) with respect to ε gives ε = Bo, differentiating with respect to δ then gives(
δR − Bo

3

)2
= O

(
Bo3

)
, so

δ = Bo

3R + O
(
Bo3/2) . (13)

We have thus determined the leading order change to the droplet shape due to gravity. The deforma-
tions are of order Bo and so is the relative contact area δ, justifying the claim that α = O

(
Bo1/2

)
.

Using (13) we can now write the expressions for the surface and gravitational potential energy
increments, that is, their change due to the drop deformation. It will be useful later on to include also
the next order correction to these expressions, in order to obtain a better match for Bo near 1. We
have solved for the static shape numerically and, by subtracting the analytically derived first order
dependence, were able to find that the second order correction is well approximated by 2πσ R2

0
Bo3

18R .
Thus,


S.E .

2πσ R2
0

≈ +1

9
Bo2

[
ln

6R
Bo

− 4

3
+ Bo

2R

]
,


P.E .

2πσ R2
0

≈ −2

9
Bo2

[
ln

6R
Bo

− 5

6
+ 3Bo

8R

]
. (14)

Expression (14) is in accord with the result of Morse and Witten,23 who found that the surface
energy of a drop subject to a point force f increases by an amount proportional to f 2ln (1/f).

B. Spherical harmonic decomposition

In order to compute the kinetic energy of the quasi-static drop in Sec. III, we will need the
spherical harmonic decomposition of the static axisymmetric profile:

R(θ ) = R0 (1 + Bof (cos θ )) = R0

(
1 + Bo

∞∑
n=2

bn Pn(cos θ )

)
, (15)

where Pn is the nth Legendre polynomial. The sum begins with n = 2 because b0 = 0 from volume
conservation (4) and b1 = 0 from (5). A static drop minimizes the sum of its surface energy and
gravitational potential energy.

In order to obtain the surface energy in terms of the spherical harmonic components, we
substitute f (x) = ∑∞

n=2 bn Pn(cos x) from (15) into (7), which yields

S.E .

2πσ R2
0

= 2 + Bo2
∞∑

m,n=2

bmbn

∫ 1

−1

1

2
(1 − x2)P ′

m P ′
n − Pm Pndx + O

(
Bo3

)
. (16)

Orthogonality of the Legendre polynomials and integration by parts yields

S.E . = 4πσ R2
0 + 2πσ R2

0Bo2
∞∑

m=2

(m − 1)(m + 2)

2m + 1
b2

m + O
(
Bo3) . (17)

Obtaining the gravitational potential energy is less straightforward. It might be tempting to
simply use (3) and write P.E . = 4

3πρgR4
0

[
1 + Bo

∑∞
m=2 bm Pm(1 − δ) − δR

]
with δ given by (13).

This is equivalent to a drop resting on a circular wire of radius R0

√
2δ. An alternative choice would

be to set δ = 0 in the previous expression, which is equivalent to constraining the drop at just one
point. Both approaches are unsatisfactory, especially the latter, as indicated in Fig. 3. Although they
both give correct values of bm in the limit of δ → 0 (i.e., Bo → 0), we want a good approximation
to the next order corrections, which will be used in calculating the kinetic energy and also in the
reference numerical simulation. To that end, we must somehow constrain the drop over the whole
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z/
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(a) (b)

FIG. 3. (a) The static profiles of a liquid drop with Bo = 1 on a flat surface. The three profiles are the sum of the first 50
spherical harmonic modes obtained by minimizing the surface and gravitational potential energy of a drop constrained in
different ways, by averaging the reaction force over: the contact area (Eq. (19)) (solid line), the contact area rim (dashed line),
and the center of the contact area (dashed-dotted line). We see that even for an O(1) Bond number, the averaging method
provides a good approximation to the actual drop shape, which has a perfectly flat base. (b) The static profile of a drop
obtained from the first 50 spherical harmonics using the averaging method (20) for several values of Bo: Bo = 0 (dotted
line), Bo = 0.5 (dashed-dotted line), Bo = 1 (solid line) and Bo = 1.5 (dashed line).

contact area. A simple way to do that is to use the average over that region:

P.E . = 4

3
πρgR4

0

[
1 + 1

δ

∫ 1

1−δ

Bo
∞∑

m=2

bm Pm(x) − (1 − x)Rdx

]
. (18)

Since
∫ 1

1−δ
Pm(x)dx = 2δ−δ2

m(m+1) P ′
m(1 − δ), (18) can be written

P.E . ≈ 4

3
πρgR4

0

[
1 + 2Bo

∞∑
m=2

bm
P ′

m(1 − δ)

m(m + 1)

]
. (19)

Minimizing the sum of (17) and (19) with respect to each bm immediately yields

bm ≈ −2

3

(2m + 1)P ′
m(1 − δ)

(m − 1)m(m + 1)(m + 2)
with δ = Bo

3R . (20)

As Bo → 0, bm → − 1
3

2m+1
(m−1)(m+2) , the result obtained from the point constraint for all Bo. Including

more modes obtained by the point constraint method therefore leads to a shape that diverges
logarithmically at x = 1 (see Fig. 3(a)). This divergence is avoided by our averaging method (20),
which produces a good representation of the contact area even for large values of Bo. In Fig. 3(a), it
is evident that the form obtained by our averaging method is nearly flat over the contact area, instead
of bulging outwards as does the form obtained by the rim constraint method, or curving inwards as
does the form obtained by the point constraint method. In Fig. 3(b), we show the static drop shape
obtained by the averaging method for several values of Bo. Once again, the curves are close to flat
throughout the contact area for all values of Bo considered.

III. QUASI-STATIC DROPLET

We now assume that the drop shape is given by

R(θ, t) = R0 (1 + B(t) f (B, cos θ )) = R0

(
1 + B(t)

∞∑
n=1

bn (B) Pn(cos θ )

)
, (21)

that is, it corresponds to that of a static drop with instantaneous effective Bond numberBoef f = B(t).
The surface and gravitational potential energy of the drop are obtained by simply replacing Bo by
B(t) in (14). We want to calculate the kinetic energy and rate of viscous dissipation corresponding to
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this motion in the center-of-mass frame of reference. Let us first consider the limit of small viscosity,
which is most accessible analytically.

A. Oh � 1: Low viscosity drops

When the ratio of the viscous to surface tension forces, as prescribed by the Ohnesorge number
Oh = μ (ρσ R0)−1/2, is sufficiently small, we can approximate the flow inside the drop by a potential
flow. Axisymmetric solutions of the Laplace equation ∇2φ = 0 in spherical coordinates for the
velocity potential φ, which are continuous at the origin, are of the form rnPn(cos θ ). We can thus
write

φ(r, θ, t) =
∞∑

n=1

R2
0

(
r

R0

)n

�̇n(t)Pn(cos θ ). (22)

The radial component of velocity is then given by

ur (r, θ, t) = er
∂φ

∂r
= R0er

∞∑
n=1

n

(
r

R0

)n−1

�̇n(t)Pn(cos θ ) . (23)

Application of boundary conditions at the surface yields

ur (R0, θ, t) = ∂ R(θ, t)

∂t
= R0 Ḃ(t)

∞∑
n=1

bn Pn(cos θ ), (24)

using (22) and ignoring the terms B(t)ḃn which are of order B2. Therefore, �n(t) = B(t)bn/n. The
kinetic energy of the drop is given by

K.E .0 = 1

2
ρ

∫
V

∇φ · ∇φdV = 1

2
ρ

∫
V

∇ · (φ∇φ) dV = 1

2
ρ

∫
S
φur dS =

= π R5
0ρ

∫ π

0

(∑
m

Ḃbm Pm
1

m

)(∑
n

Ḃbn Pn

)
sin θdθ = πρR5

0 Ḃ2(t)
∞∑

m=2

2b2
m

m(2m + 1)
, (25)

where we have used ∇2φ = 0 and the orthogonality of the Legendre polynomials. Using the rotational
symmetry, the viscous dissipation in the drop can be written as

D = 2μ

∫
V

(
∂ur

∂r

)2

+
(

1

r

∂uθ

∂θ
+ ur

r

)2

+
(ur

r

)2
+ 1

2

(
r

∂

∂r

uθ

r
+ 1

r

∂ur

∂θ

)2

dV . (26)

For small Oh, we can substitute for u = ∇φ from (22) into the general formula above, and so derive
the expression

D0 = 8πμR3
0 Ḃ2(t)

∞∑
m=2

m − 1

m
b2

m . (27)

Having computed the coefficients bm we can now derive closed-form expressions for the kinetic
energy and energy dissipation rate. In the Bo → 0 limit, we have bm = − 1

3
2m+1

(m−1)(m+2) , which implies

K.E .0 = 2

9
πρR5

0 Ḃ2
∞∑

m=2

2m + 1

m(m − 1)2(m + 2)2
= 2

9
πρR5

0 Ḃ2CK 0 Bo � 1, (28)

where CK 0 = π2

12 − 17
27 = 0.19284 . . ., and the energy dissipation rate is

D0 = 8

9
πμR3

0 Ḃ2
∞∑

m=2

(2m + 1)2

m(m + 2)2(m − 1)
= 8

9
πμR3

0 Ḃ2CD0 Bo � 1, (29)

where CD0 = π2

4 − 5
12 = 2.0507 . . . .
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For a finite B, we substitute (20) into (25) and (27). It is found that the formulae (28) and (29)
overestimate the kinetic energy and dissipation rate for B = O(1). Although no closed-form expres-
sions could be found for these two quantities at finite B, a reasonable approximation is given by

K.E .0(B) ≈ 2

9
πρR5

0 Ḃ2CK 0 (1 − M(B)) and D0(B) ≈ 8

9
πμR3

0 Ḃ2CD0

(
1 −

√
M(B)

)
, (30)

where M(B) = 8B
27R ln 9R

B .

B. Arbitrary Oh

For arbitrary Oh, the potential flow approximation ceases to be valid and one has to use a
more general method to derive the kinetic energy and viscous dissipation. For small B, the spherical
harmonic modes are still uncoupled, but now we have

K.E . = πρR5
0 Ḃ2(t)

∞∑
m=2

Am(Ohm)
2b2

m

m(2m + 1)
D = 8πμR3

0 Ḃ2(t)
∞∑

m=2

Dm(Ohm)
m

2m + 1
b2

m .

(31)
The scaled Ohnesorge number Ohm ≡ Oh

√
m is introduced for the sake of convenience. The

coefficients Am and Dm are such that the roots of the equation

Amb2 − 2aDmb + 1 = 0, where a = Oh√
m(m − 1)(m + 2)

, (32)

are the two roots with the largest real part of the transendental equation

b2 − 2a(m − 1)
[(2m + 1) − 2m(m + 2)W (b/a)]

1 − 2W (b/a)
b + 1 = 0, where W (x) = Jm+3/2(

√
x)√

x Jm+1/2(
√

x)
.

(33)

Here, Jk(x) is the Bessel function of the first kind of order k and a is defined in (32). For the derivation
of (33), see Chandrasekhar24 or Miller and Scriven.25 The dependence of Am and Dm onOhm is shown
on Fig. 4. From the properties of the Bessel functions, it follows that W (x) → 1

2m+3 as x → 0 and
W (x) → 0 as x → ∞. This allows one to approximate (32) in the limits ofOh → 0 andOh → ∞.25

For low viscosity (Ohm < 0.03), Am → 1 (as derived in Sec. III A) and Dm → (2m+1)(m−1)
m2 . For high

viscosity (Ohm > 1), Dm → (m−1)(2m2+4m+3)
m2(2m+1) and the kinetic energy term is negligible relative to the
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A
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FIG. 4. The dependence of the coefficients Am and Dm from Eq. (31) on the scaled Ohnesorge number Ohm = m1/2Oh.
Curves for m = 2, 4, 10, 40 (triangles, circles, dashed-dotted, and dashed lines, respectively) are shown, together with the
limiting curves for m → ∞ (solid lines) corresponding to planar surface capillary waves.
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FIG. 5. The dependence of the dissipation coefficient CD in Eq. (34) on the Ohnesorge number Oh.

surface energy term and so can be discarded. As m → ∞, the values of Am(Ohm) and Dm(Ohm)
approach limiting values, denoted A∞(Ohm), D∞(Ohm), which coincide with the values obtained
for small surface capillary waves on a planar surface. Note that D∞(0) = 2, while D∞(∞) = 1 (see
Fig. 4).

As in Sec. III A, we substitute for bm from (20) into (31) to find that

K.E .(B,Oh) ≈ 2

9
πρR5

0 Ḃ2CK (Oh) (1 − M) , D(B,Oh) ≈ 8

9
πμR3

0 Ḃ2CD(Oh)
(

1 −
√

M
)

,

(34)
where M(B) = 8B

27R ln 9R
B .

CK is a monotonically increasing function of Oh, but since CK(0) = CK0 = 0.192 while CK(∞)
= 0.212, we can approximate the kinetic term by CK0 henceforth while incurring no more than a
5% error. On the other hand, CD is a monotonically decreasing function of Oh (see Fig. 5) with
CD(0) = π2

4 − 5
12 = 2.051 and CD(∞) = π2

12 + 19
36 = 1.350, so for problems with 0.01 ≤ Oh ≤ 1

one cannot use either of the limiting values without sacrificing accuracy. Prosperetti26, 27 treats this
complication in greater detail.

C. Equation of motion

Having derived the surface, kinetic and gravitational potential energies of the drop, as well as
the viscous dissipation inside it, we can now construct the Lagrangian L = K.E . − 
S.E . − 
P.E .
We switch to a coordinate system fixed to the impacted surface, and assume that it is stationary.
The kinetic energy must thus also include a contribution from movement of the drop’s center of
mass. We define R0b1 to be the vertical displacement of the center of mass relative to where it
would be if the drop remained spherical. Its dependence on B can be obtained from (14) since

P.E . = − 4

3πρgR4
0b1:

b1 = B

3

[
ln

6R
B

− 5

6
+ 3B

8R

]
. (35)

Then, as d
dt b1 = b′

1(B)Ḃ, the Lagrangian is

L = πρR5
0

[
2

3

(
b′

1 Ḃ
)2 + 2

9
CK 0(1 − M(B))Ḃ2

]
− 
S.E .(B) + 4

3
πρgR4

0b1. (36)
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We obtain the drop’s equation of motion using the Euler-Lagrange equation with dissipation28

d

dt

[
∂L

∂ Ḃ

]
+ 1

2

∂D
∂ Ḃ

= ∂L

∂ B
. (37)

After nondimensionalizing the time with τ = t
(
σ/ρR3

0

)1/2
, we deduce[

b′
1

2 + 1 − M

3
CK 0

]
d2 B

dτ 2
+

[
b′

1b′′
1 − M ′

6
CK 0

] (
d B

dτ

)2

+2Oh
1−√

M

3
CD

d B

dτ
+b′

1(B − Bo) = 0,

(38)
where dashes indicate derivatives with respect to B. M(B) is given by (34), CK 0 = π2

12 − 17
27 = 0.1928,

and CD(Oh) is shown on Fig. 5. We have used the relation d
S.E .
d B = − 4

3πσ R2
0b′

1 B, which follows
from the fact that the stationary droplet shape minimizes the sum of potential and surface energy.
Differentiating (35), we obtain

b′
1(B) = 1

3

[
ln

6R
B

− 11

6
+ 3B

4R

]
and b′′

1(B) = 3B/4R − 1

3B
. (39)

When ln(6R/B) � 1, (38) can be greatly simplified by neglecting higher order terms in B, giving[
ln

6R
B

− 11

6

]
Bττ − B2

τ /B + 3 (B − Bo) = 0. (40)

Equation (38), or its small Bo approximation (40), is our final equation describing the dynamics
of a quasi-static droplet. In terms of simplicity and speed of numerical solution, it is surpassed only
by the linear spring model of Okumura et al. In contrast to the latter model however, it compares
favourably even with extensive numerical simulations and experiments, as will be shown in what
follows.

IV. RESULTS

In this section, we compare the results obtained with our quasi-static model with previous
models and, most decisively, experimental results reported in the literature. In order to evaluate the
accuracy of the model for parameters not found in the literature (e.g., different values of R), we have
also created a numerical model by considering the spherical harmonic decomposition of the drop
(15). The Lagrangian constructed from the surface energy (17), potential energy (19), and kinetic
energy (31), together with the constraint∫ 1

1−δ

∑
bm Pm(x) − (1 − x)R dx = 0, (41)

allows one to obtain the equation of motion for each of the modes:

Ambmττ + 2m2Oh Dmbmτ + m(m − 1)(m + 2)bm + δ1mBo + λ
2m + 1

m + 1
P ′

m(1 − δ) = 0, (42)

where τ = t
(
σ/ρR3

0

)1/2
and δij is the Kronecker delta function. δ is defined as the largest solution

of f (1 − x) = Rx (the length over which the drop surface conforms to that of the substrate), where
f (x) = ∑M

m=1 bm Pm(x). λ is the Lagrange multiplier corresponding to the constraint (41) and its
value is determined at each step so that the value of the left-hand side of (41) remains constant
except possibly for discrete jumps when δ changes discontinuously. We used M = 150 modes in our
calculations, but as few as 20 modes are sufficient to achieve good accuracy (relative to the full M
= 150 simulations) within the range of Weber and Bond numbers examined.

A. Contact time of an impacting drop

Our quasi-static model provides a simple way of treating the vibrations and impact of small
drops on a rigid surface for small Weber numbers. Drops impacting with speed V can be modeled
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by the Eq. (38) with initial conditions B(0) = ε, Bτ (0) = W e1/2/b′
1(ε) with ε → 0. The contact

time of impacting drops has been studied experimentally by Richard et al.,15 Okumura et al.,17 and
numerically by Foote13 and Gopinath and Koch.14 Comparing the contact time obtained by solving
(38) numerically with their results will allow us to determine the range of validity of our quasi-static
model.

Note that from (40), we can obtain TC in the low speed limit W e → 0, where we expect
B = O

(
W e1/2

)
from conservation of energy. For Bo � W e1/2, the influence of gravity on the

droplet dynamics can be neglected. By assuming B(τ ) = Asin ωτ with A � 1 and approximating

ln(R/B(t)) ≈ ln(R/A), one can reduce (40) to ω2 ln(R/A) ≈ 3, thus τC = π
ω

≈ π

√
ln(R/A)

3 . From

the initial condition Aω = Bτ (0) ≈ 3W e1/2 ln−1(R/A), it follows that A ln1/2(R/A) ≈ √
3W e1/2

and so τC ≈ π√
3

[
ln R

W e1/2 + ln ln1/2 R
W e1/2 + γ

]1/2
. Analysis of numerical solutions to (40) allows us

to determine γ and so deduce

TC = π

√
ρR3

0

3σ

[
ln

R
W e1/2

+ ln ln1/2 R
W e1/2

+ 0.55

]1/2

+ O
(
ln−1 W e−1/2

)
for Bo � W e1/2.

(43)
The expression (43) represents an improvement on the first analytic expression
for the contact time, formula (2.19) from Gopinath and Koch,14 which states TC

= π

√
ρR3

0
3σ

[
lnW e−1/2 + O

(
ln ln1/2 W e−1/2

)]1/2
for the case of a flat impactor R = 1. (43) implies

that the nondimensional contact time increases without bound as the Weber number approaches zero;
however, in reality the effects of viscosity and other body forces will alter this result for sufficiently
small Weber numbers.

When 1 � Bo ≥ W e1/2, we assume that the drop’s center of mass will oscillate around its equi-
librium position: B(τ ) = Bo (1 + A cos ωτ ). The value of the amplitude A is determined from the
conservation of energy. The kinetic energy associated with the internal circulation is negligible rela-
tive to its translational kinetic energy, as can be seen from (38), their ratio being 3CK 0/ ln2 6R

B � 1.
Thus, the initial kinetic energy of the drop 2

3πρR3
0 V 2 must equal the sum of surface and gravi-

tational potential energy at the instant of maximal drop deformation, i.e., when B = Bo(1 + A).
Substituting for B into (14) yields A2 = 1 + 3W e/

(
Bo2 ln R

Bo

)
, provided ln R

Bo � 1. The con-
tact time equals the difference between the two times when 0 = B(τ ) = Bo (1 + A cos ωτ ), so
τc = 2

ω

(
π − cos−1 A−1

)
. In order to obtain ω, we calculate the frequency of small oscillations

around the equilibrium drop shape. Substituting B(τ ) = Bo
(
1 + εeiωτ

)
into (40) with ε � 1, gives

ω ≈
√

1
3 ln(R/Bo) + CK ln−1(R/Bo). Therefore,

TC ≈ 2

[
ρR3

0

σ

(
ln R

Bo

3
+ CK

ln R
Bo

)]1/2
⎡
⎣π − arccos

(
1 + 3W e

Bo2 ln R
Bo

)−1/2
⎤
⎦ for Bo ≥ W e1/2.

(44)

The results are shown in Figures 6–8. In Fig. 6, we see that the numerical model (42), the
quasi-static models (38) and (40), and the predictions of Gopinath and Koch14 all converge for small
W e, as expected. Our numerical model is also in good agreement with the numerical results of
Foote,13 the difference for W e ∼ 1 being due to the fact that the drop becomes elongated upon
detachment from the surface, thus prolonging the contact time. This effect was included in Foote’s
model, but to capture it within the quasi-static framework, one would need to decouple the contact
area size from the overall drop deformation and solve for the static shape in negative gravity. While
such decoupling would represent an interesting extension of the quasi-static model and presumably
would allow one to better capture the dynamics for W e = O(1), as our primary focus was the small
W e limit, this direction was not pursued. Note also that in the numerical simulation using (42), we
set the contact time to be the time necessary for b1 to pass zero, i.e., for the center of mass to return
to its initial position before the contact. This alternative definition of contact time, while making no
difference within the quasi-static framework, was made to eliminate the effects of the oscillations
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FIG. 6. Comparison of the nondimensional contact time τc = TC/
(
ρR3

0/σ
)1/2

as a function of the Weber number W e
= ρR2

0 V 2
in/σ for Oh = μ/ (ρσ R0)1/2 = 0.005 and Bo = ρgR2

0/σ = 0, obtained with our quasi-static model (38) (solid
line), the simplified model (40) (dashed line), and numerical simulation of the first 250 spherical harmonic modes (42)
(dashed-dotted line). The predictions of Gopinath and Koch14 (�), Foote13 (�), and Okumura17 (horizontal line) are included
for the sake of comparison.

of higher spherical modes on the actual contact time (inevitable for Oh → 0) and thus show the
general trends more clearly.

We can see from Fig. 6 that the full quasi-static model is within 12% of the other results for the
entire range of Weber numbers studied, while the simplified quasi-static model (40) is within 10% for
W e � 0.1. The spring model of Okumura et al.17 predicts τC = π

√
13/24 = 2.312, which we see

is only approximately valid for 0.2 < W e � 1. For smaller Weber numbers, one needs to include
more spherical harmonic modes. In fact, one finds that modeling the first N spherical harmonic

modes together with the constraint
∑N

n=1 bn = 0 (drop pinned at one point) gives τc ≈ π

√
2
3 ln N .
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FIG. 7. The dependence of the nondimensional contact time τc = TC
(
σ/ρR3

0

)1/2
on the rescaled Weber number W e/R2

= ρR0V 2
in/σ (1 − R0/R2)2. Results of the numerical model (42) for several values (0.1 ≤ R ≤ 10) of the curvature parameter

R = 1 − R0/R2 follow a single curve (solid line). The analytic expression (43) (dashed line) is shown for the sake of
comparison.
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FIG. 8. The effects of gravity on the nondimensional contact time τC = TC
√

σ

ρR3
0

as a function of the Weber number

W e = ρR0V 2
in/σ . The results of the numerical model (42) (dashed-dotted line), quasi-static model (38) (solid line), and the

analytical expression (44) (dashed line), all for Bo = 0.05 are plotted, together with the experimental results of Okumura
et al., for Bo = 0.02 (�) and Bo = 0.05 (�). For reference, the result of the numerical model (42) for Bo = 0 (i.e., no
gravity) is also shown (•).

By comparison with formula (43), we see that one should include at least N ≈
√
R

W e1/4 ln1/4 R
W e1/2

modes for reliable results.
The analytic expression (43) suggests that one should use the rescaled Weber number W e/R2

to incorporate the effects of curvature and Weber number into a single nondimensional group;
indeed, the numerical results for different R then collapse onto a single curve (see Fig. 7). It can be
shown that this collapse follows from the nature of the linearized boundary conditions and equations
employed, which are valid approximations provided the contact area, that is, the size of the region
over which the drop’s shape conforms to that of the substrate, remains small relative to the total drop
area. This relative contact area is proportional to δ, which we know from (13) to be B/3R. This
last expression can be quickly derived by considering the pressure jump across the drop interface
in the contact region, approximating the internal pressure by 2σ /R0, and calculating the external
pressure by balancing the drop’s weight and the total reaction force. Since B = O(W e1/2) from the
conservation of energy, the maximum relative contact area scales as W e1/2/R, the square root of
the rescaled Weber number. Therefore, our model should break down when W e/R2 ≈ 1, i.e., when
the impact speed becomes sufficiently high, or the substrate curvature sufficiently close to that of the
drop, that the contact area becomes comparable to the drop area and the nonlinear effects become
important. Little can be said at this point about the drop dynamics in the W e/R2 > 1 regime.

Our quasi-static and numerical models clearly indicate that both the contact time (Fig. 7) and
the coefficient of restitution (Fig. 9) increase logarithmically with decreasing values of the rescaled
Weber number. The reason for both of these effects is the logarithmic divergence of the static shape
for small contact areas (see Eq. (10)), which allows the drop to localize its deformation to a small
region around the contact area. Viscous dissipation is then similarly localized and therefore restricted
in its total amount, leading to a higher coefficient of restitution. On the other hand, the divergence of
the static shape allows the drop to deform further with the same increase in total surface energy, re-
ducing the effective spring constant associated with the deformation and thus increasing the rebound
time. From (36), we see that the total mechanical energy of the drop scales as ρR5

0 ln2(1/B)Ḃ2,
while the kinetic energy associated with the internal circulation is only of order ρR5

0 Ḃ2 (see
Eq. (28)). Viscosity can only dissipate the latter component, with viscous dissipation scaling as
μR3

0 Ḃ2 (29). Integrating the dissipation over the contact time, which scales like (ρR3
0/σ )1/2 ln(1/B),

we thus expect the relative energy loss during rebound to scale as Oh/ ln(1/B) ∼ Oh/ ln(1/W e)
(see Fig. 9).
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127103-14 J. Moláček and J. W. M. Bush Phys. Fluids 24, 127103 (2012)

10
−3

10
−2

10
−1

10
00

0.2

0.4

0.6

0.8

1

Weber number We

C
oe

ffi
ci

en
t o

f r
es

tit
ut

io
n 

C
R

10
−3

10
−2

10
−1

10
00

0.2

0.4

0.6

0.8

1

Weber number We

C
oe

ffi
ci

en
t o

f r
es

tit
ut

io
n 

C
R Bo=0.03(b)(a) Bo=0

FIG. 9. The dependence of the coefficient of restitution CR on the Weber number W e = ρR0V 2
in/σ with (a) and without (b)

gravity, for a drop impacting a flat substrate (R = 1). Results of the quasi-static model (38) (solid lines) and the full numerical
model (42) (points) are shown for four values of the Ohnesorge number Oh = μ/

√
ρσ R0: Oh = 0.1 (•), Oh = 0.2 (�),

Oh = 0.3 (�), and Oh = 0.4 (�).

The effects of gravity have also been studied by Okumura et al.,17 whose experimental results
are shown in Fig. 8, together with our analytical expression (44), the quasi-static model (38), and
the numerical model (42). The quasi-static model stays within 12% of the experimental data for the
whole range of Weber numbers considered. As a reference, we include the line for zero gravity. We
see that the increase in contact time with decreasing W e found experimentally by Okumura et al.
may be attributed to the effects of small W e and not to gravity.

B. Coefficient of restitution

The quasi-static model (38) provides a fast way of estimating the coefficient of restitution. The
velocity of the droplet center of mass can be obtained from (38) and (39) as b′

1(B)Ḃ, giving

CR = b′
1(B(τc))Ḃ(τc)

b′
1(B(0))Ḃ(0)

, (45)

where τ c is the contact time. The dependence of CR on Ohnesorge number, Weber number, and
Bond number for a flat surface (R = 0) is shown in Fig. 9. In order to check the accuracy of
the quasi-static model, we include the results of the full numerical model (42). As expected, CR

decreases uniformly with increasing viscosity. Nevertheless, as Oh → 0, it does not approach 1,
but a somewhat smaller value due to a transfer of the kinetic energy into the vibrational modes,
as observed by Richard and Quéré. This transfer cannot be captured by the quasi-static model and
therefore the model overestimates CR for lowOh and highW e. The match improves with decreasing
W e and increasing viscosity. In absence of gravity, CR uniformly increases with decreasing Weber
number, but when Bo > 0, it reaches a peak and then sharply drops to zero near W e ≈ Bo · Oh as
the drop fails to detach. Both of these phenomena are captured well by our model.

V. DISCUSSION

We have presented a conceptually simple theoretical model for the dynamics of a drop impact-
ing a rigid substrate, which is valid when the drop deformation remains small and the effects of
contact line dynamics and dissipation in the surrounding gas can be neglected. It has allowed us
to characterize the effects of both the Weber number and substrate curvature on the dynamics. The
form of the equation of motion suggests that in the small deformation limit these two effects are
captured by a single nondimensional group—square root of the rescaled Weber number W e1/2/R,
where R = 1 − R0/R2, which is proportional to the ratio of the maximum contact area to the
drop’s total area. When W e1/2/R < 0.3, the dynamics can be approximated by a simple differential
Eq. (40), which can be interpreted as a logarithmic spring. The model reproduces all the qualitative
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features of the drop dynamics and is in good quantitative agreement (within 10%) with previously
reported experiments and numerical results when W e1/2/R < 0.1. It removes the need to deal with
the complicated interaction between the drop and the impacted substrate considered in the usual nu-
merical simulations, and is very fast to solve numerically. The relatively simple form of the equation
of motion (40) also allows analytical treatment in the W e1/2/R � 1 limit.

Both the coefficient of restitution and the contact time of the impacting drop increase with
decreasing rescaled Weber number. For a fixed impact speed, the rescaled Weber number is reduced
by decreasing the radius of curvature of the substrate. We note that the wettability of the surface will in
general depend not only on the rescaled Weber number through its influence on the impact dynamics,
but also on the surface microstructure and its influence on the sustenance of the lubricating air layer.
The spacing and shape of the microstructure for optimal water-repellency has been considered in the
context of static drops.29–32 An equivalent study of optimal water-repellent design in this dynamic
setting, wherein both micro- and macrostructure are important, is left for future consideration.

Approximating the shape of a deformable substrate by its quasi-static shape would presumably
allow one to extend the quasi-static model presented here to a more general scenario of liquid drops
impacting a liquid bath. Such a model would prove useful in rationalizing the coalescence criteria
for impacting liquid drops33 and the phase diagrams of drops bouncing on a vertically vibrated liquid
bath.34, 35 The development of such models will be the subject of future work.
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