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STABILITY FUNCTIONS

DANIEL BURNS, VICTOR GUILLEMIN, AND ZUOQIN WANG

ABSTRACT. In this article we discuss the role of stability functions in geometric
invariant theory and apply stability function techniques to problems in toric
geometry. In particular we show how one can use these techniques to recover
results of [BGU] and [STZ] on asymptotic properties of sections of holomorphic
line bundles over toric varieties.

1. INTRODUCTION

Suppose (M,w) is a pre-quantizable Kahler manifold, and (L, (-,)) is a pre-
quantization of (M,w). Let V be the metric connection on L. Then the quanti-
zability assumption is equivalent to the condition that the curvature form equals

the negative of the Kéhler form,

(1.1) curv(V) = —w.

For any positive integer k& we will denote the k" tensor power of L by LL*. The
Hermitian structure on L induces a Hermitian structure on IL*. Denote by I'j,o; (ILF)
the space of holomorphic sections of L*. (If M is compact, I';,o;(LF) is a finite
dimensional space, whose dimension is given by the Riemann-Roch theorem,

(1.2) dim Ty (LF) = k4Vol(M) +kd—1/ (M) Awh ™+
M

for k sufficiently large.) We equip this space with the L? norm induced by the

Hermitian structure,

(1.3) (1.3 = [ (s1(0) 5ol 5

(In semi-classical analysis I',,; (IL*) is the Hilbert space of quantum states associated
to M, and k plays the role of the inverse of Planck’s constant.)

If one has a holomorphic action of a compact Lie group on M which lifts to LL
one gets from the data above a Hermitian line bundle on the geometric invariant
theory (GIT) quotient of M. One of the purposes of this paper is to compare the
L? norms of holomorphic sections of L. with the L? norms of holomorphic sections

of this quotient line bundle equipped with the quotient metric. More explicitly,
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2 DANIEL BURNS, VICTOR GUILLEMIN, AND ZUOQIN WANG

suppose G is a connected compact Lie group, g its Lie algebra, and 7 a holomorphic
Hamiltonian action of G on M with a proper moment map ®. Moreover, assume
that there exists a lifting, 7#, of 7 to L, which preserves the Hermitian inner

product (-, -). If the G-action on ®~1(0) is free, the quotient space
Myeqa =®71(0)/G

is a compact Kéhler manifold. Moreover, the Hermitian line bundle (L, (-, -)) on M
naturally descends to a Hermitian line bundle (L,ed, (-, *)red) 00 Myeq, and the cur-
vature form of LL,..q4 is the reduced Kahler form —w;.qq, thus L,.q is a pre-quantum
line bundle over M,..q (c.f. §2 for more details). From these line bundle identifica-

tions one gets a natural map
(1.4) Thot(L¥)% = Thot (Lyeq)
and one can prove

Theorem 1.1 (Quantization commutes with reduction for K&hler manifolds). Sup-
pose that for some kg > 0 the set T'po; (LkO)G contains a nonzero element. Then the

map (1.4) is bijective for every k.

The proof of this theorem in [GuS82] implicitly involves the notion of stability
function and one of the goals of this article will be to make the role of this function
in geometric invariant theory more explicit. To define this function let G¢ be the
complexification of G (See §2) and let M, be the G¢ flow-out of ®~1(0). Modulo
the assumptions in the theorem above Mg, is a Zariski open subset of M, and if G

acts freely on ®~1(0) then G¢ acts freely on M, and
Mg = ®71(0)/G = M, /Ge.

Let m be the projection of Mg; onto M,.q. The stability function associated to this
data is a real-valued C*° map 1 : My — R with the defining property

(1.5) (m*s, 7 s) = VT (8, 8)red

for one or, equivalently, all sections s of our line bundle L,.qy. This function can
also be viewed as a relative potential function, relating the Kéhler form w on My
to the Kéahler form on M,..q4, i.e. 1 satisfies

(1.6) W — T Wpeq = V—1001.

We will show that this function is proper, non-positive, and takes its maximum value
0 precisely on ®~1(0). We will also show that this property suffices to determine
it in general by showing that on the gradient trajectory of any component of ® it
satisfies a simple ODE. Unfortunately this fact turns out to be hard to implement

in practice except in special cases. Most results in this paper will concern only the
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case where the upstairs space M is the complex d-space C? with the flat metric,
e.g. the toric varieties and the quiver varieties.

Another basic property of 1 is that, for any point p € ®71(0), p is the only
critical point of the restriction of 1 to the “orbit” exp (v/—1g)-p (Here exp (v/—1g)
is the “imaginary” part of G¢). Let dr be the (Riemannian) volume form on this
orbit, which is induced by the restriction to exp (v/—1g)-p of the Kihler-Riemannian
metric on M. By applying the method of steepest descent, one gets an asymptotic

expansion

—m/2 )
(1.7) / Mdx ~ <A> 14+ A
exp (vV—1g)-p ™ i=1

for A large, where m is the dimension of G, and ¢; are constants depending on p.
(Throughout this paper we will fix the notations d = dim¢ M, m = dimg G and
n=d—m = dim¢c Myeq.)

The asymptotic formula (1.7) has many applications. First by integrating (1.7)
over the G-orbit through p, we get

(1.8) /Gw ew% ~ @)W/Qv(p) (1+O(/1\)>

as A — oo, where V(p) is the Riemannian volume of the G-orbit through p. Thus

for any holomorphic section s € I'yo; (L’jed),

k m/2 ) s ) 1
(1.9 (2) " Iwmsul = v 2sels+ O

This can be viewed as a “%—form correction” which makes the identification of
Chot(LE ;) with The(L¥)¢ an isometry modulo O(%). (Compare with [HaK], [Li]
for similar results on 1-form corrections).

A second application of (1.7) concerns the measures associated with holomorphic

sections of L*_,: Let p and pi.¢q be the symplectic volume forms on M and M,.q

respectively. Given a sequence of “quantum states”

sk € Thot(Lyeq)
one can, by (1.7), relate the asymptotics of the measures
(1.10) (Sky Sk) lred

defined by these quantum states for appropriately chosen sequences of si’s to the

asymptotics of the corresponding measures
(1.11) (" Sk, T Sp)

on M. In the special case where M is C? with flat metric and M,..q a toric variety

with the quotient metric the asymptotics of (1.11) can be computed explicitly by
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Mellin transform techniques (see [GuW] and [Wan]) and from this computation
together with the identity (1.7) one gets an alternative proof of the asymptotic
properties of (1.10) for toric varieties described in [BGU].

One can also regard the function
(1.12) (Sky Sk) : Mrea — R

as a random variable and study the asymptotic properties of its probability distri-

bution, i.e., the measure

(113) <Sk75k>*/”/7‘ed7

on the real line. These properties, however, can be read off from the asymptotic

behavior of the moments of this measure, which are, by definition just the integrals

(114) mred(lvska,ured) - / <3k58k>ld/f['red7 = 1a25"'
Mred

and by (1.7) the asymptotics of these integrals can be related to the asymptotics

of the corresponding integrals on M viz

(1.15) m(l, 7 sg, 1) :/ (m*sp, )y .
M

In the toric case Shiffman, Tate and Zelditch showed in [STZ] that if s lies in the
weight space o (L*)*, where ay, = ka+ O(3), and v = (®pwps)"™/n! is the pull-
back of the Fubini-Study volume form on the projective space via the monomial

embedding ®p, then, if s, has L? norm 1,

k —n(l—1)/2 Cl
(116) (ﬂ') mred(lysk,y) ~ W

as k tends to infinity, ¢ being a positive constant. From this they derived a “uni-
versal distribution law” for such measures. We will give below a similar asymptotic
result for the moments associated with another volume form, V pi,.q, which can be
derived from (1.7) and an analogous, but somewhat simpler version of (1.16) for
the moments (1.15) upstairs on C.

Related to these results is another application of (1.7): Let
m : (LY, p) — Tho(LY)

be the orthogonal projection of the space of L?-sections of LY onto the space of
holomorphic sections of LN and for f € C*(M) let

My LY, p) — LAY, p)

be the “multiplication by f” operator. If M is compact (which will be the case
below with M replaced by M,.q) then by contracting this operator to I'je (L)
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and taking its trace one gets a measure

(1.17) pn(f) = Te(my Mymy)
which one can also write (somewhat less intrinsically) as the “density of states”
(1.18) UN = Z<3N,i7 SN,i) s

the sy ;’s being an orthonormal basis of T'e (LY) inside L?(L", u). By a theorem
of Boutet de Monvel-Guillemin, gy (f) has an asymptotic expansion,

— 00

(1.19) pv ()~ Y a(HIN'
i=d—1
as N — oo. One of the main results of this paper is a G-invariant version of
Boutet de Monvel-Guillemin’s result. More precisely, if we let WJC\;, be the orthogonal
projection
mi : (LY, p) = Tra(LY)€,
then for any G-invariant function f on M we have the asymptotic expansion
oo
(1.20) uR () = Te(r§Mym) ~ af (f)N'
i=n—1
as N — oo. Moreover, the identity (1.7) enables one to read off this upstairs G-
invariant expansion from the downstairs expansion and vice versa. Notice that for
this G-invariant expansion, we don’t have to require the upstairs manifold to be
compact. For example, for toric varieties, the upstairs space, C¢, is not compact, so
the space of holomorphic sections is infinite dimensional, and Boutet-Guillemin’s re-
sult doesn’t apply; however the G-invariant version of the upstairs asymptotics can,
in this case, be computed directly by Mellin transform techniques ([GuW], [Wan])
together with an Euler-Maclaurin formula for convex lattice polytopes ([GuS06])
and hence one gets from (1.7) an alternative proof of the asymptotic expansion of
pn for toric varieties obtained in [BGU].

As a last application of the techniques of this paper we discuss “Bohr-Sommerfeld”
issues in the context of GIT theory. Let V,.q4 be the Kahlerian connection on L;¢q
with defining property,

curv(Viyed) = —Wred-
A Lagrangian submanifold A,.q C M,eq is said to be Bohr-Sommerfeld if the
connection L;Tedvred is trivial. In this case there exists a covariant constant non-
vanishing section, spg, of Lj‘\redLred. Viewing spg as a “delta section” of L,..q and

of L,¢q, and one

red

projecting it onto I'yp;(Lyeq), one gets a holomorphic section sp

would like to know

(1) Is this section nonzero?
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(2) What, in fact, is this section?
3) What about the sections s of L*¥ ? Do they have interesting asymptotic
Aved red
properties as k — oo? Do they, for instance, “concentrate” asymptotically

on Ared?

We will show that the “downstairs” versions of these questions on M,..q4 can be
translated into “upstairs” versions of these questions on M where they often become
more accessible.

Finally a few words on the organization of this paper. It is divided into three
parts, with part 1, §2-85, focusing on the general theory of stability functions, part
2, 86-88, on stability functions on toric varieties, and part 3, §9-§12, on stability
functions on some non-toric varieties.

More precisely, in §2 we go over some basic facts about Kéahler reduction and
geometric invariant theory and define the reduced line bundle ;4. In §3 we prove
a number of basic properties of the stability function, and in §4 we derive the
asymptotic expansion (1.7), and use it to show that the map between I'o(LE,,)
and Fhol(Lk)G can be made into an asymptotic isometry by means of %-forms.
Then in §5 we deduce from (1.7) the results about density of states, probability
distributions and Bohr-Sommerfeld sections which we described above. In §6 we
review the Delzant description of toric varieties as GIT quotients of C% and discuss
some of its implications. In §7 we derive an explicit formula, in terms of moment
polytope data, for the stability function involved in this description and in §8
specialize the results of §5 to toric varieties and discuss their relation to the results
of [BGU] and [STZ] alluded to above.

Finally in the last sections of this paper we make a tentative first step toward
generalizing the results of §6-§8 to the non-abelian analogues of toric varieties:
spherical varieties. The simplest examples of spherical varieties are the coadjoint
orbits of U(n) viewed as U (n — 1)-manifolds. Following Shaun Martin, we will show
how these varieties can be obtained by symplectic reduction from a linear action
of a compact Lie group on CV, and, as above for toric varieties, compute their
stability functions. In §11, following Joel Kamnitzer [Kam] we show how Martin’s
description of U (n)-coadjoint orbits extends to quiver varieties, and for some special
classes of quiver varieties (e.g. the polygon spaces of Kapovich-Millson [KaM]) show
that there are stability function formulae similar to those for coadjoint orbits. (For
spherical varieties in general the question still seems to be open as to whether they
have “nice” description as GIT quotients analogue to the Delzant description of

toric varieties.)

Acknowledgement. We are grateful to the referee for his helpful comments and

valuable suggestions.
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2. KAHLER REDUCTION VS GEOMETRIC INVARIANT THEORY

2.1. Kahler reduction. Suppose (M,w) is a symplectic manifold, G a connected
compact Lie group acting in a Hamiltonian fashion on M, and ® : M — g¢g* a
moment map, i.e., ¢ is equivariant with respect to the given G-action on M and

the coadjoint G-action on g*, with the defining property
(2.1) d(D,v) = ty,,w, vEg,

where vy; is the vector field on M generated by the one-parameter subgroup
{exp(—tv) | t € R} of G. Furthermore we assume that ® is proper, 0 is a regular
value and that G acts freely on the zero level set ®~1(0). Then by the Marsden-

Weinstein theorem, the quotient space

Myeq = ®71(0)/G
is a connected compact symplectic manifold with symplectic form w,..q satisfying
(2.2) V'w = ToWreds

where ¢ : @71(0) < M is the inclusion map, and 7y : ®~1(0) — M,..q the quotient
map. Moreover, if w is integral, so is wy.eq; and if (M, w) is Kéhler with holomorphic

G-action, then M, .4 is a compact Kéhler manifold and wyeq is a Kéhler form.

2.2. GIT quotients. The Kéahler quotient M,..4 also has the following GIT de-
scription:

Let G¢ be the complexification of G, i.e., G¢ is the unique connected complex
Lie group with Lie algebra gc = g ® v/—1g which contains G as its maximal com-
pact subgroup. We will assume that the action of G on M extends canonically
to a holomorphic action of G¢ on M (This will automatically be the case if M is

compact). The infinitesimal action of G¢ on M is given by
(2.3) wy = Juy

for v € g,w = v/—1v, where J is the automorphism of TM defining the complex
structure.

The set of stable points, M, of M (with respect to this G¢ action) is defined
to be the Ge-flow out of ®~1(0):

(2.4) My = Ge - ®7(0).

This is an open subset of M on which G¢ acts freely, and each Gg¢-orbit in My,
intersects ®~1(0) in precisely one G-orbit, c.f. [GuS82]. Moreover, for any G-
invariant holomorphic section s; of L*, M, contains all p with s(p) # 0. (For
a proof, see the arguments at the end of §3.2). In addition, if M is compact
M — Mg, is just the common zero sets of these si’s. Since My, is a principal G¢

bundle over M, .4, the G¢ action on My, is proper. The quotient space My;/Gc
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has the structure of a complex manifold. Moreover, since each Gc-orbit in My,
intersects ®~1(0) in precisely one G-orbit, this GIT quotient space coincides with
the symplectic quotient:

Myea = Mg /Ge.
In other words, M,.q is a Kéhler manifold with w,.q its Kéhler form, and the

projection map 7 : Mg — Myeq is holomorphic.

2.3. Reduction at the quantum level. Suppose (L, (-, -}) is a pre-quantum line
bundle over M. There is a unique holomorphic connection V on L, (called the
metric connection), which is compatible with the Hermitian inner product on L,
i.e., satisfies the compatibility condition for every locally nonvanishing holomorphic

section s : U — L,
v
(2.5) f = dlog (s, s) € QO(U).

The pre-quantization condition amounts to requiring that the curvature form of the

connection V is —w, i.e.,
(2.6) curv(V) := —/—1901og (s, s) = —w.

To define reduction on the quantum level, we assume that the G action on M can
be lifted to an action 77 of G on L by holomorphic line bundle automorphisms. By
averaging, we may assume that 7% preserves the metric (-,-), and thus preserves

the connection V and the curvature form w. By Kostant’s formula ([Kos]), the

infinitesimal action of g on sections of L is
(2.7) Lys=Vy,s— V=12, v)s
for all smooth sections s € I'(L) and all v € g. Since G acts freely on ®~1(0), the
lifted action 7# is free on +*L. The quotient
Lred = L*L/G
is now a holomorphic line bundle over M,..4.

On the other hand, by [GuS82], the lifted action 7# can be extended canonically
to an action Té# of G¢ on L. Denote by Lg; the restriction of I to the open set
My, then G¢ acts freely on Ly, and we get the GIT description of the quotient
line bundle,

]Lred = Lst/GC~
On L,q4 there is a naturally defined Hermitian structure, (-, -),eq, defined by
(2.8) T5(S, S)rea = L (T s, T*s)

for all s € T'(IL;eq). Moreover, the induced curvature form of L,.q is the reduced
Kéhler form wyeq. In other words, the quotient line bundle (L,cq, (-, )red) is a

pre-quantum line bundle over the quotient space (M ed, wred)-



STABILITY FUNCTIONS 9

3. THE STABILITY FUNCTION

3.1. Definition of the stability function. The stability function ¢ : My — R
is defined to satisfy

(3.1) (m*s,m*8) = V7% (5,8) rea -

More precisely, suppose U is an open subset in My and s : U — L,¢q a non-
vanishing section, then v restricted to 7~1(U) is defined to be

(3.2) Y =log (n*s,m"s) — 7 log (8, $)red -

Obviously this definition is independent of the choice of s.
It is easy to see from the definition that v is a G-invariant function on M, which
vanishes on ®~1(0), and by (2.6),

(3.3) W =T Wreq + V—1 0.

Thus @ can be thought of as a potential function for the restriction of w to My

relative t0 Wyeq.

Remark 3.1. From the definition it is also easy to see that the stability function
depends on the metric on the line bundle. One such dependence that is crucial
in the whole paper is the following: If L is the trivial line bundle over C with
the Bargmann metric and v the stability function for some Kéhler quotient of C
associated with L, then L%V is still the trivial line bundle over C but with a slightly
different metric, i.e. the N** tensor of the Bargmann metric, and the corresponding

stability function becomes N1.

Remark 3.2. (Reduction by stages) Let G = G; x G2 be a product of compact
Lie groups G; and G5. Then by reduction in stages M,.q can be identified with

(M(l))@)7 where Mr(izl is the reduction of M with respect to G; and (Mr(izl)(z) the

red
reduction of M T(izl

with respect to Gy. Let MS and MS* be the set of stable points
in M with respect to the G-action and G1-action respectively, and (Mfi()i)gf the set

of stable points in Ms(tl) with respect to the Gso-action. Denote by 71 the projection
of M onto Mr(i()i We claim that MG ¢ MS* and wfl((M(l))gf) = M. The first

of these assertions is obvious and the second assertion follo;;irom the identification
™ (Mpeg)$) = m H(G2)e®y ™ (0)
= (G1)e(my ' ((G2)c®3 1 (0) N @7 (0))
= (G1)c(Ga)e(ry (93 1(0)) N 1(0))
= Ge(®;1(0) N &1 (0))
= Gc® (0).
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Thus ¢ = 1 + 713, where ) is the stability function associated with reduction of
M by G, 1 the stability function associated with reduction of M by Gy, and 13

the stability function associated with the reduction of Mr(izl by G,.

Remark 3.3. (Action on product manifolds) As in the previous remark let G =
G1 x Go. Let M;, i = 1,2, be Kéhlerian G; manifolds and IL; pre-quantum line
bundles over M;, satisfying the assumptions in the previous sections. Denote by 1);
the stability function on M; associated to L;. Letting G be the product G; x Gs
the stability function on the G-manifold M7 x My associated with the product line
bundle priL; ® priLy is priy; + priis.

3.2. Two useful lemmas. Recall that by (2.3), the vector field wy, for the “imag-
inary vector” w = v/ —1v € /—1g is wy = Juyy.

Lemma 3.4 ([GuS82]). Suppose w = /—1v € /—1g, then wy is the gradient
vector field of (®,v) with respect to the Kdhler metric g.

Proof.
d{(D,v) = ty,,w = w(=Jwp, ) = w(-, Jwpr) = g(war, -).

O

Lemma 3.5. Suppose w = +/—1v € \/—1g, then for any nonvanishing G-invariant
holomorphic section § € Tpq(IL)C,

(3.4) L, log (3,5) = —2(®,v).

Proof. Since
J(’UM =+ V —1’LUM) =wy —V—1oy = —V —I(U]V[ + Vv —1’UJM),

vy + vV —1lwys is a complex vector field of type (0,1). Since § is holomorphic, the

covariant derivative
(3.5) Voud = —V—=1V,,, 5
Since § is G-invariant, by Kostant’s identity (2.7),
(3.6) 0=1L,5=V,,5—V-1{D,v)3.
Thus
Vs =—(P,0v)s.
By metric compatibility, we have for any G-invariant holomorphic section §

Ly,, log (8,5) = —2(D,v).
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In particular suppose M is compact, let § be a G-invariant holomorphic section
of L and p a point where §(p) # 0. The function
(5,3 :Ge p—R
takes its maximum at some point ¢ and since Gg¢ - p is Ge-invariant and
(5,8)(q) = (5,5)(p) > 0
it follows from (3.4) that ®(q) = 0, i.e. ¢ € My. But Mg, is open and Gc-

invariant. Hence p € M. Thus we’ve proved that if p € M — M, then s(p) =0
for all s € Tjo ().

3.3. Analytic properties of the stability function.
Proposition 3.6. Suppose w =+/—1v € \/—1g, then L, = —2(®, v).

Proof. Suppose s is any holomorphic section of the reduced bundle L,.4. Since
7 log(s, $)req is Ge-invariant, we have from (3.2),

Ly, 0 = Ly, log{m™s, 7*s).
Now apply lemma 3.5 to the G-invariant section 7*s. O

The main result of this section is

Theorem 3.7. v is a proper function which takes its mazimum value 0 on ®~1(0).
Moreover, for any p € ®~1(0), the restriction of 1 to the orbit exp/—1g - p has

only one critical point, namely p itself, and this critical point is a global mazximum.

Proof. As before we take w = v/—1v € y/—1g. Since G¢ acts freely on My, we

have a diffeomorphism

(3.7) k:®7H0) x V—1g — My, (p,w) — 7c(expw)p.
We define two functions
(3.8) Yo(p,w,t) = (k") (p, tw)
and
(3.9) $o(p,w,t) = (" O(p, tw), v).
Then proposition 3.6 leads to the following differential equation
(3.10) Lo = —2
. dt 0 — 05
with initial conditions
(3.11) Yo (p, w,0) =0
and
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Since wyy is the gradient vector field of (®,v), and ¢ — k(p,tw) is an integral
curve of wyy, we see that ¢q is a strictly increasing function of ¢. Thus 1) is strictly
increasing for ¢ < 0, strictly decreasing for ¢ > 0, and takes its maximal value 0 at
t = 0. This shows that p is the only critical point in the orbit v/—1g - p.

The fact 1 is proper also follows from the differential equation (3.10), since for

any to > 0 we have
Yo(p,w,t) < Co —2(t — to)Ch, t> 1o

where

CO = |m\a—X1 T;Z)O(p»wﬂf()) <0

and

Cl = min ¢0(p>w7t0) > 0.

|w|=1

O

Remark 3.8. The proof above also gives us an alternate way to compute the stability
function, namely we “only” need to solve the differential equation (3.10) along
each orbit exp(yv/—1g) - p with initial condition (3.11). (Of course a much more

complicated step is to write down explicitly the decomposition of M as a product

-1(0) x vV—1g.)

Corollary 3.9. For any s € T'hoi(Lyed), the norm (m*s, n*s)(p) is bounded on Mg,
and tends to 0 as p goes to the boundary of Ms;.

3.4. Quantization commutes with reduction. As we have mentioned in the
introduction, the properties of the stability function described above were implicitly
involved in the proof of the “quantization commutes with reduction” theorem in
[GuS82]. We end this section by briefly describing this proof. Assume M compact.
Then using elliptic operator techniques one can prove that there exists a non-
vanishing Gc-invariant holomorphic section 3 of L* for k large. But M,; contains all
points p with 5(p) # 0. So the complement of My, is contained in a codimension one
complex subvariety of M. By the corollary above, we see that for any holomorphic
section s of L,.q, 7*s can be extended to a holomorphic section of L by setting
m*s =0 on M — M. This gives the required bijection. For details, c.f. [GuS82].

4. ASYMPTOTIC PROPERTIES OF THE STABILITY FUNCTION

4.1. The basic asymptotics. From the previous section we have seen that the
stability function takes its global maximum 0 exactly at ®~1(0). Thus as A tends
to infinity, e’ tends to 0 exponentially fast off ®~1(0). So in principle, only a very
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small neighborhood of ®~1(0) will contribute to the asymptotics of the integral

d
AW
/Mst re

for f a bounded function in C™ (M) and for A large. In this section we will
derive an asymptotic expansion in A for this integral, beginning with (1.7).

The proof of (1.7) is based on the following method of steepest descent: Let X
be an m-dimensional Riemannian manifold with volume form dx, ¥ : X — R a
real-valued smooth function which has a unique maximum (p) = 0 at a point p,
and is bounded away from zero outside a compact set. Suppose moreover that p is
a nondegenerate critical point of 1. If f € C°°(X) satisfies fe*? in £L}(X, dx) for
A > 1, then

(4.1) / f(2)er @ dx ~ ch)\_%_k, as A — 0o
X k=0

where the ¢i’s are constants. (If X is compact or of finite volume we can weaken
this assumption to “f bounded”, however in the example below X will be neither

compact nor have finite volume.) Moreover,

(4.2) co = (27r)m/27'pf(p)7

where

(43) 1 = Gt dtslene) 2
|dzp(er, -, en)

for any basis ey, - , e, of T, M.

From this general result we obtain:

Theorem 4.1. Let dx be the Riemannian volume form on exp (v/—1g) - p induced
by the restriction to exp (v/—1g)-p of the Kdihler-Riemannian metric on My, where
p is any point in ®~1(0). Let f be a smooth function on M such that the function
fer is integrable on this orbit exp (v/—1g) - p. Then for X large,

—m/2 0o
f(@) e @ dg ~ (i) (f(p) +y° c,»w) :
i=1

where ¢; are constants depending on f,v and p.

(4.4) /
exp v/—=1g-p

Proof. We need to compute the Hessian of 1 restricted to exp (v/—1g) - p at the
point p. By proposition 3.6,
d(dip(wir)) = d(Luwy, ) = —2d(®,v) = —2w(v, -),
S0
d2wp(va w?w) = _QWP(va w/M) = _QQP(va v;\/f) = _2gp(wM7 w?w)

This implies 7, = 2-m/2, [
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4.2. Asymptotics on submanifolds of M. From (4.4) we obtain asymptotic
formulas similar to (4.4) for submanifolds of M, which are foliated by the sets

exp (v/—1g) - p. For example, by the Cartan decomposition
Gc = G x exp (V—1g)
one gets a splitting
Ge-p=G xexp(V—1g) - p.

Moreover, this is an orthogonal splitting on ®~1(0). Thus if we write

wm

W(p) = g(z)dv A dz,
where dv is the Riemannian volume form on the G-orbit G-p, defined by the Kéhler-
Riemannian metric, we see that g(z) is G-invariant and g(p) = 1 on ®~1(0). Thus

if we apply theorem 4.1 we get

Corollary 4.2. As A — oo,

oo

m —m/2
(45) F@M L~ v (3) <f<p> v Zcxp)xi) ,

Gep
where V(p) = Vol(G - p) is the Riemannian volume of the G orbit through p.

Similarly the diffeomorphism (3.7) gives a splitting of M into the imaginary
orbits exp (v/—1g) - p, and by the same argument one gets

Corollary 4.3. As A — oo,

Wi —m/2 0 ‘
(4.6) /M e’wﬁ ~ Vol(®~1(0)) (i) (1 + ;ciw> .

4.3. The Half form correction. Now we apply corollary 4.2 to prove (1.9). Since

M,eq = M /Ge, we have a decomposition of the volume form

wd

(4.7) =

n
w
— g*Zred A A,
n!

where dpu., is the induced volume form on Gg¢ - p,

wﬂ'l

e (a) = hla)

with h(p) = 1 on ®71(0). Now suppose s € T (LE

v.q)- Since the stability function
of L*_, is kv, (1.5) becomes

(7" s, 7 sE) = eFV (Sks Sk)red-
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By (4.5),

wn
sl = [ ([ ) tnsais
Mrea \JGc-p )

n

(5 a0t [ v @ s

T n!

In other words,

k)" S /2, 112 1
(4.8) - I sll™ = IV skllvea + O(1),
T
where V' is the volume function V(¢) = V(75 *(q)).

The presence of the factor V' can be viewed as a “%—form correction” in the
Kostant-Souriau version of geometric quantization. Namely, let K = A%(T% M)
and Kyeq = A" (TH%M,..q)* be the canonical line bundles on M and M,.q and let
<, > and <K, g be the Hermitian inner products on these bundles, then

7T8 Kred = /K
and

WS(V <, >>red) =" <, >

1
So if K2 and K2, are “%-form” bundles on M and M,..q4 (i.e., the square roots of

K and K,.q), then one has a map

1
Thot(LF @ K2) — Ty (LE, @ K2, )

red

which is an isometry modulo an error term of order O(k~!). (See [HaK] and [Li]

for more details.)

5. APPLICATIONS TO SPECTRAL PROBLEMS ON KAHLER QUOTIENTS

5.1. Maximum points of quantum states. Suppose M is a Kéahler manifold
with quantum line bundle L, and § € I'j,,;(L) is a quantum state. The “invariance of
polarization” conjecture of Kostant-Souriau is closely connected with the question:
where does the function (3, §) take its maximum? If C is the set where (3, 5) takes
its maximum, what can one say about C? What is the asymptotic behavior of the
function (3, 3)* in a neighborhood of C'?

To address these questions we begin by recalling the following results:

Proposition 5.1. If C above is a submanifold of M, then

(a) C is an isotropic submanifold of M;

(b) ¢&:3 is a non-vanishing covariant constant section of 15 L;

(c) Moreover if M is a Kdhler G-manifold and § is in U0 (L)€ then C is contained

in the zero level set of ®.
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Proof. (a) Let a = \/—191log(5,5). Then w = da and «, = 0 for every p € C, so

tew = 0.
(b) By (2.5), Vs =0 on C.
(c) By (2.7),
Vo s =V—1{(¢,v)s =0
along C, therefore since s is non-zero on C, (®,v) =0 on C. O

We will call a submanifold C' of M for which the line bundle (&L admits a
nonzero covariant constant section a Bohr-Sommerfeld set. Notice that if sg is a

section of (5L which is non-vanishing, then

Vso =y < dag = Lgw,
S0
so if s is covariant constant then C' has to be isotropic. The most interesting Bohr-
Sommerfeld sets are those which are maximally isotropic, i.e., Lagrangian, and the
term “Bohr-Sommerfeld” is usually reserved for these Lagrangian submanifolds .
A basic problem in Bohr-Sommerfeld theory is obtaining converse results to the
proposition above. Given a Bohr-Sommerfeld set, C', does there exist a holomorphic

section, s, of L taking its maximum on C, i.e., for which the measure
(51) <5k, 5k>,UfL'Louville

becomes more and more concentrated on C as k — oo. As we pointed out in the
introduction this problem is often intractable, however if we are in the setting of
GIT theory with M replaced by M,.q, then the downstairs version of this question
can be translated into the upstairs version of this question which is often easier. In
§5.2 we will discuss the behavior of measures of type (5.1) in general and then in

5.5 discuss this Bohr-Sommerfeld problem.

5.2. Asymptotics of the measures (1.10). We will now apply stability theory
to the measure (1.10) on M, 4. For f an integrable function on M,..q, consider the

asymptotic behavior of the integral

(52) / f<5k7 8k>ured;
Miyea
with s € Tpei(LF ;) and k — oo. It is natural to compare (5.2) with the upstairs
integral
(5.3) / T f(m* s, T Sk ) o
Mt

However, since M,; is noncompact, the integral above may not converge in gen-

eral. To eliminate the possible convergence issues, we multiply the integrand by a
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cutoff function, i.e., a compactly supported function x which is identically 1 on a

neighborhood of ®~1(0). In other words, we consider the integral

(5.4) / X7 fAT" sk, T 81 )
Mst

Obviously different choices of the cutoff function will not affect the asymptotic
behavior of (5.4).
Using the decomposition (4.7) we get

n

* * * wd ki Wred
X f (T sg, T sk) — = e"xdpx ) f(sk, Sk)rea—"]
M., dt st \JGep n!

~ / Vf<3k7 Sk>dﬂreda
Myeq

where V(q) := V(771(q)) is the volume function. We conclude

Proposition 5.2. As k — oo we have
k —m/2 xr—1/_ % *
f{sks k) rea ~ (=) XSV T s, T sk
Miyea i M

where f = *f,V = n*V and x is any cutoff function near ®=1(0).
Similarly if we apply the same arguments to the density of states

(5.5) UN = Z<5N,ia SNi) Hreds

%

N

where {sy;} is an orthonormal basis of L.\ ,,

we get

Proposition 5.3. As N — oo,

(5.6) /M fuNN(%)’m/Z/ xSV g,

Mt

where u§ = TSN, TSN b 1S the upstairs G-invariant measure (1.20).
120 , R

K2

5.3. Asymptotics of the moments. We next describe the role of “upstairs” ver-

sus “downstairs” in describing the asymptotic behavior of the distribution function
(5.7) or([t,00)) = Vol{z | (s, sk)(z) > t},

for s, € Thoi(ILE ), i.e., of the push-forward measure, (s, sk)«/, on the real line R.
The moments (1.14) completely determine this measure, and by theorem 4.1 the

moments (1.14) on M,.q are closely related to the corresponding moments (1.15)
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on M. In fact, by corollary 4.2 and the decomposition (4.7),

* * o\ * | ik _xWred w™
(7" s, sk) = (7" (sk, sk)) €V m" = A h()
Mst, Mst n

m!
Ik —m/2
~ () / <5ka3k>lv,u'red-
n Myea

We conclude
Proposition 5.4. For any integer I, the I'" moments (1.15) satisfy

lk

™

—-m/2
(58) m(l,T(*Sk7/J,) ~ ( ) mTed(lyskuvﬂred)~

as k — oo.

5.4. Asymptotic expansion of the G-invariant density of states. For the
measure (1.17), Boutet-Guillemin showed that it admits an asymptotic expansion
(1.19) in inverse power of N as N — oo if the manifold is compact (See the ap-
pendix for a proof of this result). By applying stability theory above, we get from
the Boutet-Guillemin’s expansion for the downstairs manifold a similar asymptotic
expansion upstairs for the G-invariant density of states without assuming M to be
compact. Namely, since M,..4 is compact, Boutet-Guillemin’s theorem gives one an

asymptotic expansion
—o00
() = Te(rif M) ~ D7 al*!N',
i=n—1
and for 7§ @ L2(LN, u) — The (V) the orthogonal projection onto G-invariant
holomorphic sections, we will deduce from this:

Theorem 5.5. For any compactly supported G-invariant function f on M,

— 00

(5.9) Te(rGMyn§) ~ > af ()N,

i=n—1
as N — oo, and the coefficients aiG can be computed explicitly from aged. In par-

ticular, the leading coefficient a$_,(f) = a°% (foV), where fo(p) = f(75*(p))-

Proof. Let {sn, ;} be an orthonormal basis of 'y, (LY ;) with respect to the volume

form Vi eq, then {m*sy ;} is an orthogonal basis of ' (LY)¢, and

7T*SN ‘,71'*81\7 >
TI‘(’]TGM 7TG’):/ < »J »J f,u,
NN M; =512
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where, by the same argument as in the proof of (4.8), we have

—m/2
N )
|7* s 517 ~ (ﬂ) (1+ZC§-N"> ;

m/2

1 N ~ .

—_— ~ [ — 1 C;,N™"|.
[ sn I <7r> <+ZZ. )

Moreover, it is easy to see that

/ Z<SN7jsz7j>Vf0M7‘ed = li?\?d(fov)
M,

red 7

which implies

Now the theorem follows from straightforward computations

N % ~ —1 * *
Tr(r§GMpr) ~ (ﬂ) (1+ZCiN )/M Z<7T SN T SN 1t
i st j

m —00

-( 2<1+;aw> /L 2 Velhn) | Sonseno

- (JZ) (1+zi:éiN—i) /M f (Nl' /G 'pcz-(ﬂp)dV)Z@N,jaSMjXp)

7‘edi:_% ]
— 00

-(7) ?u@m‘” > N'ev)

; m

==

~ Y af(f)N,

i=n—1
where we used the fact that since f is G-invariant, so is ¢;(f, p). This proves (5.9).

Moreover, since c_,, 2(f,p) = f(p)/m™/?, we see that
aS—l(f) = a2 (foV),
completing the proof. O

5.5. Bohr-Sommerfeld Lagrangians. We assume we are in the same setting
as before, and denote by V,.q the metric connection on L,.4. Suppose A,.q is a

Bohr-Sommerfeld Lagrangian submanifold of M,..q, and sgg is a covariant constant

section, i.e.,
(510) SBS : Ared - L;k\md]llreda (LzredvraﬁsBS = Oa
where ta,., @ Ared — Myeq is the inclusion map. Let A = Fal(Ared), then A C

®~1(0) is a G-invariant Lagrangian submanifold of M. Since

(511) ngredsBS = LT\V’]TSSBs,
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we see that mjsps is a covariant constant section on A. In other words, A is a
Bohr-Sommerfeld Lagrangian submanifold of M. Conversely, if A is a G-invariant
Bohr-Sommerfeld Lagrangian submanifold of M, then A,.q = mo(A) is a Bohr-
Sommerfeld Lagrangian submanifold of M,..q.

Fixing a volume form pa on A, the pair (A,eq, sps) defines a functional | on the

space of holomorphic sections by

l: Fhol(Lred) - (Cv S / <L>/k\md$’ SBS>,U/ATed~
Ared
This in turn defines a global holomorphic section sya,., € I'hor(Liyeq) by duality. In

other words, sy, _, is the holomorphic section on M,..q with the defining property

red

(512) / <5, SAred>Nred = / <LX,,ed S, 3BS>,uAred
Myea Area
for all s € Thoi(Lyeq)- A fundamental problem in Bohr-Sommerfeld theory is to

know whether the section s, _, vanishes identically; and if not, to what extent sp

red red

is “concentrated” on the set A,.q. One can also ask this question for the analogous
section of LF_,.

We apply the upstairs-vs-downstairs philosophy to these problems. For the up-
stairs Bohr-Sommerfeld Lagrangian pair (A, $ps), Sps = m}SBs, as above one can
associate with it a functional I on T, (IL)¢, which by duality defines a global G-
invariant section 35 € T'ho(IL)¢. Obviously I # 0 if and only if [ is nonzero on

I'hoi (L), However, since 3pg is a G-invariant section,
~ o~ ,..,G ~
(8,5Bs) = (57,3Bs),

where 3¢ is the orthogonal projection of § € I'jp(IL) onto I'ypy(L)E. Thus [is

nonzero on 'y, (L)¢ if and only if it is nonzero on I';,,(IL). Thus we proved
Proposition 5.6. sp,_, # 0 if and only if 55 # 0.

A natural question to ask is whether 7*s, . coincides with §5 on Mg, or alter-

red

= 1*55 on ®71(0). In view of the -form correction, we

natively, whether 7§sa 3

red

will modify the definition of the downstairs section sy, to be
(5.13) [ s Vima= [ @hssns) Vi,
Miycd ATed

for s, sA,., € Thot(Lreq). The upstairs version of this is

(5.14) / <§,§A>u:/<LZ‘\§,W(’§sBS>uA
M., A
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for § = m*s. Since A = 75 ' (Areq), the right hand sides of (5.13) and (5.14) coincide.
Thus

(5.15) / (s, 50 ) = / (8,58,ca)V Hred
Mgy M;ea

for all s € Thor(Lyeq)-

Now we assume s; € Fhol(ILffed), s’fBS being the k" tensor power of spg, and

let sg\k) , and §S\k) be the corresponding holomorphic sections. Then equation (5.15)

re

now reads

(5.16) / (g, 80y = / (51255 W trea
Mg, Myea "

for all s € T (L’jed) (However, the sections 55\k) and SE\kT)gd are no longer the Kt

tensor powers of 55 and sy, _, above). Notice that we can choose the two sections in

red
(3.1) to be different nonvanishing sections and still get the same stability function

1. Thus applying stability theory, one has

* * k m
/ (" sp, T sy Y~ (=) /2/ (8 S50 )V e
My M,

™

red

for all s as k — oo. This together with (5.16) implies that asymptotically

k
wrod) e (B

6. TORIC VARIETIES

6.1. The Delzant construction. Let L = C% x C be the trivial line bundle over

C? equipped with the Hermitian inner product
(61) <1, ]_> — 6*|2|2,

where 1: C?¢ — L, 2z — (z,1) is the standard trivialization of L. The line bundle L

is the pre-quantum line bundle for C%, since
curv(V) = —/=1901og (1,1) = \/jZdé Ndz = —w.
Let K = (S1)? be the d-torus, which acts on C? by the diagonal action,
T(eit17. .. ,eitd) . (Zla . 7Zd) = (eitlzl, o ’eitdzd).

This is a Hamiltonian action with moment map
d
(6.2) 6(z) = D lailel,
i=1

where e}, -+, e} is the standard basis of £ = R%.
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Now suppose G C K is an m-dimensional sub-torus of K, g =Lie(G) its Lie
algebra, and Z¢, C g* the weight lattice. Then the restriction of the K-action to G

is still Hamiltonian, with moment map

d
(6.3) ®(z) = Lo¢(z) = Z EAR

where o; = L(ef) € Z§,, and L : ¥ — g* is the transpose of the inclusion g — ¢&.

We assume that the moment map ® is proper, or alternatively, that the a;’s are
polarized: there exists v € g such that o;(v) > 0 forall 1 <¢ < d. Let o € Z;
be fixed, with the property that G acts freely on ®~!(a). Then the symplectic
quotient at level a,

M, = 37(a)/G,

is a symplectic toric manifold; and by Delzant’s theorem, all toric manifolds arise
this way.

The Hamiltonian action of K on C¢ induces a Hamiltonian action of K on M,,

with moment map ®,, defined by

(64) @0l =Py 0my,

where 1o, : ®71(a) — C? is the inclusion map, and 7, : ®~(a) — M, the
projection map. The moment polytope of this Hamiltonian action on M, is

(6.5) Ao =L"a)NRY ={teR* | t; 20, Y tio; = a}.

If we replace L by ¥, i.e. the trivial line bundle over C* with Hermitian inner
product (1,1); = e‘k|z|2, then everything proceeds as above, and the moment

polytope is changed to kA, = Agq-
6.2. Line bundles over toric varieties. As we showed in §2, M, also admits
the following GIT description,

M, = C4(a)/Ge,

where G¢ ~ (C*)" is the complexification of G, and C%,(«) is the G¢ flow-out of

®~!(a). This flow-out is easily seen to be identical with the set

(6.6) Cha)={zeC?| I, elr,},
where

I,={i]| 2z #0}
and

IAa = {It | te Aa}.
Now let G acts on the line bundle L by acting on the trivial section, 1, of L,
by weight . (In Kostant’s formula (2.7) this has the effect of shifting the moment

map ® by «, so that the new moment map becomes ® — « and the a level set of
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® becomes the zero level set of & — «). This action extends to an action of G¢ on
L which acts on the trivial section 1 by the complexification, ac, of the weight «

and we can form the quotient line bundle,
Lo =1:L/G =Lg(a)/Ge,

where L () is the restriction of IL to C%(a).
The holomorphic sections of X are closely related to monomials in C?. In fact,
since L is the trivial line bundle, the monomials

m __ ,mi mad
Z 721 ...Zd

are holomorphic sections of L, and by Kostant’s formula, 2" is a G-invariant section
of L (with respect to the moment map ®,,) if and only if
za(v)zm

#(expv)* 2™ = e

for all v € g; in other words, if and only if m is an integer point in A,. So we

obtain
(6.7) Lhot(L)¢ = span{z™ | m € A, N Z4}.
In view of (6.6), C%,(«) is Zariski open, so the GIT mapping
7 : Thot(L) = Thot(La)
is bijective, although C¢ is noncompact. As a result, the sections
(6.8) Sm =7(2™), m € Ay, NZ

give a basis of I'p(Ly).

To compute the norm of these sections s,,, we introduce the following notation.
Let j: Ay — R;r be the inclusion map, and ¢; the standard i*" coordinate functions
of R, Then the lattice distance of x € A, to the i*" facet of A, is l;(x) = j*t;(w).
On ®~1(«a) one has

(2,2 = o P e e
which implies
(6.9) (Sms S = (@) (- U470 |
where | =I; + - +14. As a corollary, we see that the stability function on C%, ()
is
(6.10) Y(z) = —|z|? + log |2™]* — 7'('*(1):;(2 m;logl; —1).

Finally by the Duistermaat-Heckman theorem the push-forward of the symplectic

measure on M, by ®, is the Lebesgue measure do on A,, so the L? norm of s,, is

<Sm7 Sm>L2 = / l;nl - l;rinde_ldo'.
A

o4
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For toric varieties, the “Bohr-Sommerfeld” issues that we discussed in §5.1
are easily dealt with: Let § be the G-invariant section, z{"'---z;"*, of L, with
(my,-- ,mq) € Ay. Then (3,3) take its maximum on the set ®~(my,--- ,my),
and if (mq,---,mq) is in the interior of A,, this set is a Lagrangian torus: an
orbit of T¢. Moreover, if s is the section of L, corresponding to 3, (s,s) takes
its maximum on the projection of this orbit in M,, which is also a Lagrangian

submanifold.

6.3. Canonical affines. We end this section by briefly describing a covering by
natural coordinate charts on M, — the canonical affines. (For more details c.f.
[DuP]). Let v be a vertex of A. Since A is a Delzant’s polytope, #I, = n and
{a; | i € I} is a lattice basis of Z},. Denote by

(6.11) A, ={teA| L DI},

the open subset in A, obtained by deleting all facets which don’t contain v and let
Zy =D, (A,).

Definition 6.1. The canonical affines in M, are the open subsets

(6.12) U, = 7,/G.

Since {ay | i € I,,} is a lattice basis, for j ¢ I, we have a; = > ¢; ;04, where ¢;;

are integers. Suppose a = Y a;«;, then Z, is defined by the equations
(613) |Zz|2 = a; — Z Cj,i|2j|2, i €1,
1,

and the resulting inequalities

(6.14) ch7i|zj|2 < a;.
So U, can be identified with the set (6.13). The set
1/2
si=(ai— Y ¢lzl
J¢ L
is a cross-section of the G-action on Z,, and the restriction to this cross-section

of the standard symplectic form on C% is v/—1 Zi¢ I dz; N\ dz;. So the reduced

symplectic form is
(6.15) wo =V=1 Y dz Adzj,
J¢l,

in other words, the z;’s with j ¢ I, are Darbouz coordinates on U,.
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7. STABILITY FUNCTIONS ON TORIC VARIETIES

7.1. The general formula. In this section we compute the stability functions for
the toric varieties M, defined above, with upstairs space C? and upstairs metric
(6.1). For z € My, there is a unique g € exp/—1g such that g -z € ® (), and

by definition, if s(z) = 2™ = 7*s,,

P(2) = log (s, 5)(2) — log (s, 5)(g - 2)

(7.1) 2 2 2 2

= —[z]" +log [2""]" + [g - 2" —log (g - 2)™".
Moreover, If the circle group (e, .- e?) is contained in G, or alternatively, if
v = (1,---,1) € g, or alternatively if M, can be obtained by reduction from
CP?~1, then

27 =Y i)zl = (B(2),0),

thus
(7.2) lg- 2> = (®(g - 2),v) = (a,0),

and (7.1) simplifies to
(7.3) ¥(2) = —[” +log |2 * + a(v) — log|(g - 2)™ .

Given a weight 8 € Zf, let x5 : G¢ — C be the character of G¢ associated to 3.
Restricted to exp(v/—1g), x is the map

(7.4) xs(expi€) = e PO,
Now note that by (7.3),
Zm|2

Y(z) = |22 + a(v) +log =™ 2 — log(] | xa. (9)*™)

= —|z|* + a(v) — log H Xavi (g)2mi -

But 2™ = 7*s,y, for s, € Thoi(Ly) if and only if m is in A,, i.e. > m;a; = a, so
we get finally by (7.4), [T xa;(9)™ = Xa(g) and

(7.5) ¥(2) = —|2]> + a(v) — 2log xa(9)-
Recall now that the map
@~ () x exp(v—1g) — Cg,

is bijective, so the inverse of this map followed by projection onto exp(y/—1g) gives

us a map
(7.6) 7 : C§, — exp(V—1g),

and by the computation above we’'ve proved
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Theorem 7.1. The stability function for M, viewed as a GIT quotient of C* with
the trivial line bundle and the flat metric (6.1), is

(7.7) U(2) = —|2* + a(v) — 2(log 7" xa) (2).

For example for CP"~! itself with C? = C" — {0} and a = 1, v(z) = |2] and
hence
(7.8) ¥(2) = —|2|* + 1+ log |2|*.

The formula (7.7) is valid modulo the assumption that M, can be obtained by
reduction from CP?~1, i.e. modulo the assumption (7.2). Dropping this assumption

we have to replace (7.7) by the slightly more complicated formula
(7.9) U(z) = —[2]* + [7(2) 712l — 2(log v xa) (2)-

7.2. Stability function on canonical affines. We can make the formula (7.7)
more explicit by restricting to the canonical affines, U, of §6.3. For any vertex v

of A it is easy to see that

U, =C% /Ge,
where
(7.10) Cck, ={z€C*|I,D L}
is an open subset of C%. By relabelling we may assume I, = {1,2--- ,n}. Since
the relabelling makes aq,- -+, a, € g* into a lattice basis of Zf,, ar = > ¢k 4y for
k > n, where ¢y, ; are integers. Let fi,---, f, be the dual basis of the group lattice,
Zq, then the map
(711) (Cn_)ch (wlv"' awn)'_}wlfl'i‘"""wnfn mod ZG

gives one an isomorphism of G¢ with the complex torus (C*)™ and in terms of this

isomorphism the G¢-action on (C‘iu is given by

n n
(U/l,"' 7wn) 2= <w1217"' 7wn2n7(Hwicn+l’i)zn+l7“' 7(Hw5d)i)zd) .

=1 i=1

Now suppose z € (CdAv. Then the system of equations obtained from (6.13) and
(7.1),

d n

r?|z:i* + Z CM(H r?|z)? = ai, 1<i<n,
k=n+1  j=1

has a unique solution, g = (r1(2), - ,7n(2)) € (RT)" = exp (v/—1g), i.e., the g in

(7.1) is (r1, - ,7rn). Via the identification (7.10) the weight o € Z, corresponds

by (7.11) to the weight (ai,- - ,ay) € Z™ and by (7.7) and (7.9)

(7.12) Pleg = —|2]> + a(v) =2 " ailogri(2)
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in the projective case and

n

(113) ey, = [+ el + STzl 23 aslogrs

k>n i1=1 7

in general.

7.3. Example: The stability function on the Hirzebruch surfaces. As an
example, let’s compute the stability function for Hirzebruch surfaces. Recall that
the Hirzebruch surface H,, is the toric 4-manifold whose moment polytope is the
polygon with vertices (0,0), (0,1),(1,1),(n+1,0). By the Delzant construction, we
see that H, is in fact the toric manifold obtained from the T?-action on C*,
(ei91 , 6i02) = (e’i@l Zl, ei02 227 67;0171;1’7492 2:37 €i02 24).

By the procedure above, we find the stability function

U(2) = —|2|? — aylogr — azlogry + ay + az — nri™ra|zsl?,
where 71,79 are the solution to the system of equations
iz +rird|z)? = ar,

PBlzal? — nr3mr3 2l 4 vzl = ao.

8. APPLICATIONS OF STABILITY THEORY TO TORIC VARIETIES

8.1. Universal rescaled law on toric varieties. In this section we suppose
B € A, is rational, and N is large with N3 € Z?. One of the main results in [STZ]
is the following universal rescaled law for the probability distribution function (5.7)

on toric varieties,

oge/t)"/?
(8:1) N”i“oo(%"/zaww((%)"/?t) - %.

By measure theoretic arguments, they deduce this from moment estimates, (c.f.
§4.1 of [STZ))

-1
(8.2) / dldvy — c—, N — o0,
M., [n/2

where [ is any positive integer, vy is the push-forward measure

3 ().

with ¢n3 = sng/||sngll and v the pullback of the Fubini-Study form via a projective

UN = ('(JZ)”/4¢N[3

embedding. By a simple computation it is easy to see that

(8.3) /wlduN(x) = (]7\:>_

n(l—1) n(l—1)
Pl

N\ ~— 2
/M |¢Nﬁ|2lV: (ﬂ') ma(l7¢Nﬂ7V)'

a
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Instead of considering the pullback of the Fubini-Study measure we will consider
another natural measure on toric varieties: the quotient measure induced by the
upstairs flat metric. The upstairs analogue of (8.1) for toric varieties is rather easy

to prove:

Lemma 8.1. For any , the I moments

—d(l-1)/2 Ng -1
N z c
Proof. See [GuW], or by direct computation. O

Thus we can apply proposition 5.4 to derive (8.2) from (8.4). By (5.8) and (4.8),

n m(l—1)/2
Mg (l, N8 Yoy | j=m/2 (N) = m(l A ‘Ld).
lsnall” n! ™ MRl

Thus

N\ iD/2 ( SN B wz) -1
—_ o\l 7 ) 7 375
T Isngll’ n! [n/2
as N — oo for all [. This together with the measure theoretic arguments alluded to

above implies the distribution law (8.1) for the special volume form Vi, on M,.

Remark 8.2. Here we only consider the case when (3 is an interior point of the
Delzant polytope, which corresponds to the case r = 0 in [STZ]. However, one can
modify the arguments above slightly to show the same result for general r and N3
replaced by NG + o(1).

8.2. Spectral properties of toric varieties. As we have seen, the stability the-
ory derived in §1-85 is particularly useful for toric varieties M,,, since the upstairs
space is the complex space, C?, the Lie group G is abelian, its action on C¢ is
linear, and the G-invariant sections of IL are just linear combinations of monomials.
As a consequence, the expressions (1.11), (1.15), (1.20) etc. are relatively easy to
compute.

For example, consider the density of states
PN = > (SNirSNi)ired;

where {sy;} is an orthonormal basis of ' (YY), then by proposition 5.3,

N\ ™2 *
/M fﬂN ~ <7T) [cd 7_‘_*VXZ<7T*$N,i,7r*.SN7i>,u.

The right hand side has a very simple asymptotic expansion in terms of Stirling
numbers of the first kind (See [GuW], [Wan]) and from this and the results of §5.4
one gets an alternative proof of theorem 1.1 of [BGU]J:
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Theorem 8.3. There exists differential operators P;(x, D) of order 2i such that

N (f) ~ ZNd*m*i/Pi(x, D)f(z)dz, N — oo.
i

In this way the coefficients of the downstairs density of states asymptotics can be
computed explicitly by the coefficients of the asymptotic expansion of the invariant
upstairs density of states asymptotics — the relation of the leading terms is given in
theorem 5.5, and the other coefficients depend on the asymptotics of the Laplace
integral (4.1) together with the value of the stability function near ®~*(0). Similarly
theorem 1.2 of [BGU] can be derived from the results of §5.2 and upstairs analogues
of these results in [GuW].

9. MARTIN’S CONSTRUCTION

The non-abelian generalizations of toric varieties are “spherical” varieties, and
the simplest examples of these are coadjoint orbits and varieties obtained from
coadjoint orbits by symplectic cuts. In the remainder of this paper we apply sta-
bility theory to the coadjoint orbits of the unitary group U(n). It is well known
that the coadjoint orbits of U(n) can be identified with the sets of isospectral
Hermitian matrices H(A) C H(n), i.e., Hermitian matrices with fixed eigenvalues
Al > Xy > >N, For Ay = -+ = M\, > A\, H()\) is CP"~! which is a toric
manifold. Thus the first non-toric case is given by Ay = --- = A, > A1 = -+ - = Ay,
1 < k <n—1, in which case H(\) is the complex Grassmannian Gr(k,C").

9.1. GIT for Grassmannians. Suppose k < n. It is well known that the complex
Grassmannian Gr(k, C") can be realized as the quotient space of C*¥™ by symplectic
reduction or as a GIT quotient as follows:

Let M = My ,,(C) ~ C*" be the space of complex k x n matrices. We equip C*"
with its standard Kéhler metric, the standard trivial line bundle C x CF» — C*»,

and the standard Hermitian inner product on this line bundle,
(9.1) (1,1)(2) = e~ 227,

Now let G = U(k) act on My, by left multiplication. This action preserves the
inner product (9.1), and thus preserves the Kéhler form /—199 Tr ZZ*. It is not

hard to see that it is a Hamiltonian action with moment map
(9.2) @ My, — He, Z— 27",

where Hj, is the space of k x k Hermitian matrices. Here we identify H; with
V—1Hy, = Lie(U(k)), and identify H;, with Lie(U(k))* = H;, via the Killing form.

Notice that the identity matrix I lies in the annihilator of the commutator ideal,

[Hi, Hi]® = {a € H} | {[h1, ha],a) = 0 for all hy, hy € Hy),
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so ® — [ is also a moment map, and it’s clear that the reduced space
Myeq =0 1(1)/G

is the Grassmannian Gr(k,C").

On the other hand, the complexification of U(k) is GL(k,C), and it’s not hard
to see that the set of stable points, M, is exactly the set of k X n matrices A € M
which have rank &, and that the quotient My, /GL(k,C) is again Gr(k,C™) . This
gives us the GIT description of Gr(k,C").

As for the reduced line bundle, L, .4, on M,.q4, this is obtained from the trivial
line bundle on My, by “shifting” the action of GL(k,C) on the trivial line bundle
in conformity with the shifting, “® = & — I”, of the moment map, i.e. by letting
GL(k,C) act on this bundle by the character

v:GL(k,C) — C*,v(A) = det(A).

9.2. Martin’s reduction procedure. For general coadjoint orbit of ¢ (n), Shaun
Martin showed that there is an analogous GIT description. Since he never published
this result, we will roughly outline his argument here, focusing for simplicity on the
case A\ > -+ > A\,.

Let

M = gﬁl,g(C) X 91712,3(((3) X X imn,l,n((C).

Then each component of M is a linear symplectic space, and M is just the linear
symplectic space C»=Dn(n+1)/3  with standard Kahler form w = —/—100log p,

where p is the potential function

n—1
p(Z) = exp(— Z T Z, Z}).

i=1

Consider the group
G=U1)xU2)x---xUn-1)

acting on M by the recipe:
93) 1wy, Un ) (21, Zpr) = (U Z0US - U2 Zy 2Uy U1 Zn1).
Lemma 9.1. The action above is Hamiltonian with moment map
(94) O(Z1, - Zn1) =(Z127,22725 — Z3 21, yZn1Zy 1 — Zrn_9Zp—2).

Proof. Given any H = (Hy, -+ ,Hp,—1) € H1 X -+ X H,—1, denote by Uy (t) the

one parameter subgroup of G generated by H, i.e.,
Ug(t)Z = (exp (V=1tHy)Zy exp (—v—1tH3), -,
exp (V—1tHy_2)Zn_oexp (—V—=1tH,_1),exp (V—1tH, 1) Zp_1) -
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Let vy be the infinitesimal generator of this group, then
L’UH( \ _1810gp) =—-v—-1 ZTT((LUHde)Z:)

Since

[257% le = i(exp (\/ —1tHi)Zi exp (—\/ —1tHZ‘+1))

7 =V-1(H;Z; — Z;iHi1),

t=0

we see that
boy (V=101og p) = Y " Tr(H, Z:Z; — Hi1Z; Zi) = (D(Z), H).
This shows that (9.4) is a moment map of 7. O
Given a = (a1, - ,a,) € R}, let
¢~ Hal) =@ (ar Dy, s an1l, 1),
and let
M, =& '(al)/G
be the reduced space at level (a1ly, -+ ,an_11,—1) € [g,]°. Consider the residual
action of GL(n,C) on M,

(9.5) k:GL(n,C)x M — M, kaZ = (Z1,  Zn_2,Zn 1A7").

Then the actions x and 7 commute, and by the same argument as above we see

that kly(,) is a Hamiltonian action with a moment map
(9.6) UV:M—->H, Y 2Z2)=2Z_1Zn1+anl,.

We thus get a Hamiltonian action of U (n) on the reduced space M, with moment
map V¥, : M, — H,, which satisfies ¥ oi = ¥, oy, where, as usual, i : ®~(al) —

M is the inclusion map and my : ®~*(al) — M, the projection.

Theorem 9.2 ([Mar]). U, is a U(n)-equivariant symplectomorphism of M, onto
H(N), with A\, = > a;.

j=i

Proof. First we prove that ¥, maps M, onto the isospectral set H(A). In view of the
relation Woi = ¥, o0mg, we only need to show Image(¥) = H(A). In fact, if Z,Z has
eigenvalues (11, -, i), then the eigenvalues of Z;Z} are exactly (u1,-- -, pi,0),
so it is straightforward to see that Z»xZ5 = Z; Zf + asls has eigenvalues aq + a9, as,
and in general Z;Z; has eigenvalues a1 +---+a;,a2 +---+a;,--- ,a;. This proves
that ¥, maps M, into H(A), and since G acts transitively on H(\), this map is
onto.

Next note that by dimension-counting dim M, = dim H(A), so ¥, is a finite-to-
one covering. Since the adjoint orbits of U(n) are simply-connected, we conclude

that this map is also injective, and thus a diffeomorphism.
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Since ¥, is a moment map, it is a Poisson mapping between M, and H(n), i.e.,

{f © \Ilaag © \I/a}Ma = {fag}'H(/\) oV,

for any f,g € C*°(H(A)). Thus ¥, is a symplectomorphism between M, and H(\).

Finally the U(n)-equivariance comes from the fact that
WU-2)=UNZ [ Zy U vand,=U(Z' [ Zp 1 +a,],)U T =U-9(Z).
This completes the proof. (I

The GIT description of this reduction procedure is now clear:
Z=(Z1, - ,Zn_1) € My
if and only if Z; is of rank 7 for all 4, and
M, = My /Gc
with G¢ the product

Gec=GL(1,C) x --- x GL(n —1,C).

9.3. Twisted line bundles over U (n)—coadjoint orbits. As in the toric case,
reduction at level 0 of the moment map (9.2) is not very interesting, since the
reduced line bundle is the trivial line bundle. To get the Grassmannian, we shifted
the moment map by the identity matrix. Equivalently, we “twisted” the action of
GL(k,C) on the trivial line bundle C x C*" by a character of GL(k,C). It is to
this shifted moment map/twisted action that we applied the reduction procedure
to obtain a reduced line bundle on Gr(k,C").

Similarly, for U (n)-coadjoint orbits we will twist the G¢ action on the trivial line

bundle over M by characters of G¢. Every character of G is of the form

(9.7) Y=
where v (A) = det(Ag) for A= (Aq,---,A,—1). Let
T M — My n, (Z1,+ Zn-1) = ZpZys1- - Ln-1.
Then 7y, intertwines the action of G¢ on M with the standard left action of U (k)
on My, ,,, and intertwines the action x of U(n) on M with the standard right action

of U(n) on My, ,,. Let Ly be the holomorphic line bundle on My, ,, associated with

the character
(9.8) Yk : GL(k,C) — C*, A+ det(A).
Then the bundle 7L, is the holomorphic line bundle on M associated with ; and

n—1

(9.9) L := ) (mjLy) "

k=1
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is the holomorphic line bundle associated with the character . In particular if s
is a GL(k, C)-invariant holomorphic section of Ly, then

(9.10) (mis1)™ - (mp_y8n—1)™"

is a G¢-invariant holomorphic section of L, and all G¢-invariant holomorphic sec-
tions of I are linear combinations of these sections. Since the representation of

GL(n,C) on the space ' (ILg) is its k-th elementary representation we conclude

Theorem 9.3. The representation of GL(n,C) on the space Tho(IL) is the irre-

ducible representation with highest weight Z?;ll miq;, where aq, -+ ,a,_1 are the
simple roots of GL(n,C).

For the canonical trivializing section of L its Hermitian inner product with itself
is
n—1
[ det(ziZiys-- 2oz} - Z7)™™

i
i=1
and hence the potential function for the L-twisted Kéahler structure on M is

n—1
(9.11) pL=> T Z;Z; —milogdet(Z; -+ Zn_1Z} - Z})
i=1

and the corresponding L-twisted moment map is

(9.12) Ou(Zy, - 1) = (2027 —mady, - 21 2 — M1 Ly).

10. STABILITY THEORY FOR COADJOINT ORBITS

10.1. The stability function on the Grassmannians Gr(k,C"). To compute
this stability function, we first look for the G-invariant sections of the twisted line

bundle. For any index set

J:{j17"' ajk}c{1327 7n}

denote by Z; = Zj, ... j, the k x k sub-matrix consisting of the ji,- -, ji columns
of Z.

Lemma 10.1. The functions s;(Z) = det(Z;) are G-invariant sections of the

trivial line bundle on My, ,, for the twisted G-action.

Proof. Let H be any n x n Hermitian matrix, and vy the generator of the one-
parameter subgroup generated by H. Then by Kostant’s identity (2.7) one only

needs to show

Loy Olog(sy,s5) = —/—1Tr ((ZZ* — I)H).
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This follows from direct computation:
Loy 0log(sy,55) = 1y, 0(—Tr ZZ* +logdet(Z;Z5))
= —Tr((tv,d2)Z7) + 1y, 0 Trlog(Z;Z7)
= = Tr((oyy 42)27) + Tr((00y d2.) 25(25) 7 257)
= V-1Te(H(ZZ* - 1)),

completing the proof. O

Now we are ready to compute the stability function for the Grassmannians.
Without loss of generality, we suppose {ji, - ,jx} = {1, - ,k}. For any rank k
matrix Z € Mg, let B € GL(k,C) be a nonsingular matrix with BZ € ®~1(I).
Thus the stability function at point 7 is

»(Z) = log (| det(Zy.... )%™ TFZZ*) — log (| det((BZ)s.... x)|%e~ 1)
=k —Tr(ZZ*) —log|det B|?
Since B*B = (Z*)~1Z~1, we conclude
(10.1) W(Z)=k—Tr(ZZ") + logdet(ZZ™).

Similarly, if we do reduction at mI instead of I, or alternately, use the moment
map ® —ml, then the invariant sections are given by s;(Z) = det(Z;)™, and the

stability function is
W(Z) = km — Tr(ZZ*) + m?logdet(ZZ*).
10.2. The stability functions on U (n)-coadjoint orbits. These stability func-

tions are computed in more or less the same way as above. By the same arguments

as in the proof of lemma 10.1, one can see that
(10.2) $(Z1,-  Zpn_1) = H(det(Zi)17...7i)mi’m“1

is G-invariant for the moment map ® — (myIy, - ,mp_11p—1).
Now suppose (Z1,- -, Zn—1) € Mg, then there are B; € GL(i,C) such that

(103) BlZlZfo = m1]1
and

. 142 B; = Z; 1 D; 1D 141+ Ml <:<n-—1
10.4 B, Z,Z!Bf = Z} {B_{B;-1Z I 2<9 1

From (10.3) we have
det(B;B}) = my det(Z,Z7) 71,
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and from this and (10.4) we conclude
det(B; Z; Z; BY) = det(m;I; + Bi_1Zi_1Z;_,B,)
=det((m; +mi—1)li—1 + Bi—2Z;i 2Z; 2B ,)
=mi+---+m;.
So we get for all 7,
det(B;B}) = (mq + -~ +m;)det(Z,Z7) " .
Now it is easy to compute
0(2) = log (= X NELD T | det(Zi)y ... o272 )
—tog (e~ = T det(BiZo)n,... o272 )
= szz - ZTr(ZiZZ-*) - Z(ml —m;_1)log|det B;|?
= imi = > T(ZiZ7)+ Y (mi —mi1)(my+ - +my) log det(Z; Z;).

Remark 10.2. Although we only carry out the computations for generic U(n)-
coadjoint orbits, i.e., for the isospectral sets with A\; < --- < A, the same argument
apply to all U (n)-coadjoint orbits. In fact, for the isospectral set with Ay < -+ < A,

whose multiplicities are 1, - ,,, we can take the upstairs space to be

My x (i1 +in) X My +in)x (ia+intis) X P(n—i,)xn

and obtain results for these degenerate coadjoint orbits completely analogous to

those above.

11. STABILITY FUNCTIONS ON QUIVER VARIETIES

It turns out that the results above can be generalized to a much larger class of

manifolds: quiver varieties. We will give a brief account of this below.

11.1. Quiver Varieties. Let’s first recall some notations from quiver algebra the-
ory. A quiver @ is an oriented graph (I, F), where I = {1,2,---,n} is the set
of vertices, and EE C I x I the set of edges. A representation, V', of a quiver as-
signs a Hermitian vector space V; to each vertex ¢ of the quiver and a linear map
Z;; € Hom(V;,V;) to each edge (i,7) € E. The dimension vector of the quiver
representation V' is the vector [ = (I1,---,l,), where [; = dimV;. Thus the space

of representations of () with underlying vector spaces V fixed is the complex space

(11.1) M =Hom(V) := P Hom(V;,V;).
(i.J)EE
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We equip M with its standard symplectic form and consider the unitary group
U\V)=U(Wy) x--- x U(V,) acting on M by

(11.2) (g, un) - (Zig) = (usZigui ).

The isomorphism classes of representations of @ of dimension [ is in bijection with
the GL(V)-orbits on Hom(V'). Geometrically this quotient space can have bad
singularities, and to avoid this problem, one replaces this quotient by its GIT
quotient, or equivalently, the Kéhler quotient of Hom(V') by the U(V')-action. These

quotients are what one calls quiver varieties.

Proposition 11.1. The action (11.2) is Hamiltonian with moment map p : Hom(V') —
g
(11.3)

wZi) =\ Y. ZpnZy— > ZiZa o > ZinZi— Y. ZniZng

(4,1)eE (1,5)eE (4j,m)EE (n,j)EE

The proof involves the same computation as in lemma 9.1, so we will omit it.

Notice that by (11.2) the circle group {(e?I;,,---,e*I; )} act trivially on M,
so we get an induced action of the quotient group G = U(V)/S!. The Lie algebra
of G is given by

{(Hy, - ,H,) | H; Hermitian ,ZTrHl- =0}
and this G-action also has u as its moment map. Letting (A1, -+, \,) € R™ with
L+ + 1A =0,

and supposing that the G-action is free on p~1(\I), the quiver variety associated

to A is by definition the quotient
RA(l) = = (M) /G,

where A\ = (M1, -+, A\ 0,).

We can also modify the definition of quiver varieties to get an effective U(V)-
action. Namely, we attach to @ another collection of Hermitian vector spaces (the
“frame”), V = (V4,---,V,), with dimension vector [ = (l~1, e ,lNT,,), and redefine
the space M to be

HomVV @ Hom(V;, Vj) @@Hom VZ,VZ)
(i,5)€EE i€l

The group U(V) acts on Hom(V, V) by

(U1, sun) - (Zij, Vi) = (uj Ziju; ', Yiugb).
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As above the U(V)-action is Hamiltonian, and the k' component of its moment
map is
W Zig, Yl = D ZinZin— D ZhiZrg — Vi Ve
(J,k)EE (k,j)eE

Now the center S acts nontrivially on Hom(V, V) providing that the “frames” V;
are not all zero, and we define the framed quiver variety R(l, l~) to be the Kéhler
quotient of Hom(V, V) by the U (V)-action above at the level X = (A1 I, - -+ , An 1, ).
As examples, the Grassmannian and the coadjoint orbit of /(n) that we considered
in the previous section are just the framed quiver varieties whose underlying quivers

are depicted below:

(Ck (Cl '(C2 - .. > (Cn—2 > (Cn—l
cr cr

11.2. Stability functions. Asin §10 we equip M with the trivial line bundle and,
for actions of U(V) associated with characters [](det A;)*¢, describe the invariant

sections.

Proposition 11.2. For fized A € Z", the sections
(11.4) s(Ziy) = I det((Ziz)o)
(i,j)EE
are invariant sections with respect to the moment map p— NI, where v;; are integers

satisfying
(115) Zyji _Zyij :)\i~
J J

The proof is essentially the same proof as that of Lemma 10.1.

From now on we will require that the quiver,@, be noncyclic, otherwise there will
be infinitely many G-invariant sections. (Moreover, in the cyclic case the quiver
variety is not compact.) For a general quiver variety whose underlying quiver is
noncyclic, we can, in principle, compute the stability function, using the G-invariant
sections above, as we did for toric varieties in §7; but in practice the computation
can be quite complicated.

However, in the special case that the quiver is a star quiver, i.e., is of the following

shape:
o+—0 - @o+——@

o+—0 - @o+——@

AN

o+—0 - @o+——@
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one can write down the stability functions fairly explicitly: on each “arm”, we just
apply the same technique we used for the coadjoint orbits of U(n).
As an example, we’ll compute the stability function for polygon space. This is
by definition a quiver variety whose underlying quiver is the oriented graph
oy
m + 1@ T 2

‘\:

*m

and for which the V;’s satisfy dimV; =1 for 1 <7 <m and dim V41 = 2. Thus

(11.6) Hom(V) = @ Hom(C,C?) = (C*)™
and
(11.7) G=(SH™ xU(2)/S' ~ (SH)™ x SO(3).

The moment map for this data is
(11.8) (Zvye Zn) = (HN 20 12l 2028 + -+ 2 Zy),

where Z; = (x;,y;) € C2.

Now consider the quiver variety u=1(AI)/G, with A = (Ar, -+, A, A1) satis-
fying

AL+ A+ 2Am41 =0

and \; < 0 for 1 <4 < m. Let’s explain why this variety is called “polygon space”.
The (S1)™-action on (C?)™ is the standard action, so reducing at level (A1, -+, Ay)
gives us a product of spheres SEM X e X SEAM of radii — Ay, -+, —A;,m. So we can
think of an element of SEM X - X S%Am as a polygon path in R? whose it" edge
is a vector of length —\; in SEM. The SO(3)-action on this product of spheres is
the standard diagonal action, and the moment map sums up the points, i.e. takes
as its value the endpoint of the polygon path. However, under the identification
(11.7), the Lie algebra of SO(3) gets identified with H(2)/{alz}. Thus the fact that
the last entry of the moment map (11.8) equals A, 17> implies that this endpoint
is the origin in the Lie algebra of SO(3). In other words, our polygon path is a
polygon. So the quiver variety Ry(1,---,1,2) is just the space of all polygons in
R3 whose sides are of length —Aq,- -+, =\, up to rotation.

Using the invariant section s(2) = [~ z; A to compute the stability function
for this space we have

— iz

|il? + |yil?

$(2) = = S (il + lyil?) + S (M) log faif2 + S (<A = S (=A) log

=2yt — | Z2 + Z)‘i log |;|;
3
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Finally we point out that everything we said above applies to framed quiver
varieties, in which case the U(V)-action is free on ®~1(AI). The coadjoint orbits

of §10 are just special cases of quiver varieties of this type.

APPENDIX

In this appendix we will give a proof of Boutet de Monvel-Guillemin’s theorem
on the asymptotics of the density of states, (1.20), adapted to the Toeplitz operator
setting.

We will begin with a very brief account on the definition of Toeplitz operators.
Let W be a compact strictly pseudoconvex domain with smooth boundary OW.
One defines the space of Hardy functions, H?, to be the L?-closure of the space of
C® functions on OW which can be extended to holomorphic functions on W. The
orthogonal projection 7 : L? — H? is called the Szegd projector, and an operator
T :C®(0W) — C>(0W) is called a Toeplitz operator if it can be written in the
form

T =wnPm
for some pseudodifferential operator P on OW.

Now suppose (L, (-, -)) is a Hermitian line bundle over a compact Kahler manifold
X. Let

D ={(z,v) eL" |vely v <1}
be the disc bundle in the dual bundle. As observed by Grauert, D is a strictly

pseudoconvex domain in .. The manifold we are interested in is its boundary,
M =0D = {(z,v) e L* | v e L, ||v|| = 1},
the unit circle bundle in the dual bundle. Let @ be the operator

Q:H? — H, Qf(r,0) = VT o f(ec™)|
0=0

This is a first order elliptic operator in the Toeplitz sense and is a Zoll operator
(meaning that its spectrum only consists of positive integers). Moreover, the nt"
eigenspace of @ coincides with Iy (L™, X). For any smooth function f € C*°(X),
let My be the operator “multiplication by f”. We may view I'p (L7, X) as a
subspace of H?2, and denote by

mp: LA(L", X) — Th (L7, X)
the orthogonal projection.

Theorem A. There is an asymptotic expansion

—0o0

Tre(m, Mymy,) ~ Z ar(f)nk, n — oo,
k=d—1
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where d = dim X .

Proof. By functorial properties of Toeplitz operators (c.f. [BoG] §13),

Tr(eitQMf) ~ Z apxk(t)
where

Xk (t) = Z nkeint.

n>0
On the other hand,

Tr(e@M;) = Z e™ Ty, Mymy,.

By comparing the coefficient of e, we get the theorem. O

Finally we point out that the coefficients aj, in the asymptotic expansion above
are given by the noncommutative residue trace on the algebra of Toeplitz operators,
[Gui93]. In fact, for R(z) > 0, theorem A gives

Te(Q *m, Mymy,) ~ Z apn® 7.
k=d—1

Summing over n,

Tr(Q *My) ~ Y axl(z — k),
k
where ( is the classical zeta function, which implies

ag—1 = res,—,(Q *My),

the noncommutative residue.
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