
Algebraic Multigrid for Stabilized Finite Element

Discretizations of the Navier Stokes Equations

by

Tolulope Olawale Okusanya

B.Sc (Mechanical Eng.), Rutgers University (1994)
S.M. (Aeronautics and Astronautics), M.I.T. (1996)

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

@ Massachusetts Institute of Technology 2002. All rights reserved.

Submitted by .............
DepartmentX- Aeronautics

Certified by .....

Certified by...................

Certified by ............

Certified by .......

and Astronautics
May, 2002

David Darmofal
Associate F rofessor of A *utics and Astronautics

........................ Jaume Peraire

Pofess r of Aeronautics and Astronautics

...... Mark Drela
Professor of Aeronautics and Astronautics

Carlos Cesnik
Associate Professor of erospace Engieering, University of Michigan

Accepted by ........ &. ace E. Vander Velde
Professor of Aeronautics and Astronautics

Chair, Committee on Graduate Students

' AERO

MASSACHUSETTS INSTITUtE
OF TECHNOLOGY

AUG 1 3 2002

LIBRARIES



T -



Algebraic Multigrid for Stabilized Finite Element Discretizations of the

Navier Stokes Equations

by

Tolulope Olawale Okusanya

Submitted to the Department of Aeronautics and Astronautics
on May, 2002, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aeronautics and Astronautics

Abstract

A multilevel method for the solution of systems of equations generated by stabilized Finite
Element discretizations of the Euler and Navier Stokes equations on generalized unstruc-
tured grids is described. The method is based on an elemental agglomeration multigrid
which produces a hierarchical sequence of coarse subspaces. Linear combinations of the ba-
sis functions from a given space form the next subspace and the use of the Galerkin Coarse
Grid Approximation (GCA) within an Algebraic Multigrid (AMG) context properly defines
the hierarchical sequence. The multigrid coarse spaces constructed by the elemental agglom-
eration algorithm are based on a semi-coarsening scheme designed to reduce grid anisotropy.
The multigrid transfer operators are induced by the graph of the coarse space mesh and
proper consideration is given to the boundary conditions for an accurate representation of
the coarse space operators. A generalized line implicit relaxation scheme is also described
where the lines are constructed to follow the direction of strongest coupling. The solution
algorithm is motivated by the decomposition of the system characteristics into acoustic and
convective modes. Analysis of the application of elemental agglomeration AMG (AMGe)
to stabilized numerical schemes shows that a characteristic length based rescaling of the
numerical stabilization is necessary for a consistent multigrid representation.
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Chapter 1

Introduction

Rapid advances in unstructured mesh methods for computational fluid dynamics (CFD)

have been made in recent years and, for the computation of inviscid flows [2-4], have

achieved a considerable level of maturity. Viscous flow technology is also rapidly develop-

ing and the use of unstructured grids has been started [5-7]. Unstructured meshes offer a

practical means for computation and have the advantage of providing both flexible approx-

imations of the domain geometry and easy adaptation/refinement of the mesh.

Accurate and efficient solutions to the compressible Navier-Stokes equations, especially

in the turbulent high Reynolds number limit, remains a challenging problem due in part

to the myriad of associated length scales required to properly resolve flow features. This is

especially true in the boundary layer regions which are characterized by strong gradients

in the normal direction and relatively weak streamwise variations. In order to accurately

resolve the boundary layer in a computationally efficient manner, grid anisotropy is em-

ployed. This introduces two problems that lead to the severe deterioration of many existing

numerical algorithms. The first is the increased stiffness of the discrete problem and the

second is the increase in the number of required mesh points which strains existing compu-

tational resources for problems of practical interest. Hence, the efficiency of current solution

methods remains a critical problem.

A brief review of the state-of-the-art in viscous flow technology is made by considering

two solution algorithms for practical aerodynamic applications. The first is by Pierce et

al [8] which is a structured grid solver that employs a conservative cell-centered semi-discrete

Finite Volume discretization with a characteristic based matrix artificial dissipation. Turbu-
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CHAPTER 1. INTRODUCTION

lence is accounted for by the implementation of the Baldwin-Lomax and Spalart-Allmaras

one-equation turbulence models. The solution scheme is a J-coarsened non-linear multigrid

scheme with a point implicit block-Jacobi preconditioner. For the range of problems tested,

the convergence rate is roughly of the order of 0.94. The second flow solver considered is

by Mavriplis [9] which is an unstructured grid solver that employs a conservative vertex-

centered Finite Volume discretization with a matrix-based artificial dissipation and the

Spalart-Allmaras one-equation turbulence model. The solution scheme is a semi-coarsening

non-linear multigrid scheme with a hybrid point/line implicit block-Jacobi preconditioner

and for the range of problems tested, the convergence rates ranged from 0.78 to 0.965.

These convergence rates are a far cry from the ideal multigrid convergence rate of 0.1 which

has been theoretically proven and demonstrated for elliptic symmetric operators.

While these schemes represent an improvement over standard multigrid implementations

that typically achieve convergence rates of 0.99, it is still not fully clear why optimal rates

are not achieved. However, one conjecture that can be made is due to the common point

between these schemes which is that they are non-compact schemes i.e they have extended

stencils. The computational costs of evaluating and/or storing the flux Jacobians or non-

linear residuals for a non-compact formulation typically results in these schemes employing

a reduced order approximation that may lead to a convergence slowdown. Mavriplis [9] has

conducted a careful study of the use of lower order approximations in multigrid solutions

for Finite-Volume discretizations of the Euler and Navier-Stokes equations. He concludes

that any improvement in the multigrid components will have little effect and the only way

to achieve better convergence rates is through better full Jacobian approximations. In

contrast, the Finite Element Method (FEM) offers better alternatives. FEM formulations

offer advantages which are crucial to the development of an efficient solution scheme. Some

of these advantages include

" Compact scheme: FEM is a compact scheme which results in a nearest neighbor

stencil. This enables an exact derivative for the Jacobian matrix to be taken without

any approximations.

" Higher order formulations: FEM formulations allow for an easy extension to

higher order formulations.

" Variational structure: FEM features a rich variational structure for mathematical

analysis such as error estimation.
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* Grid distortion: FEM formulations also allow for more accurate interpolation within

the computational cells in the presence of strong mesh anisotropy.

However, a current problem with FEM discretizations is that existing solution methods

are typically slower and more memory intensive than for Finite Volume discretizations.

However, the properties of the FEM method, in particular the compactness for higher order

discretizations, we believe are critical to the future development of an accurate and efficient

method for solution of the Navier-Stokes equations. In this thesis, we will present an

Algebraic Multigrid method for solving stabilized FEM discretizations of the Navier-Stokes

equations. Specifically, the contributions of this thesis include:

1. Development of a fast solution method for Euler and Navier-Stokes equations for

non-trivial flows.

2. Implementation of Algebraic Multigrid within a stabilized Finite Element context.

3. Construction of improved multigrid components for convection-dominated flows.

1.1 Multigrid and Preconditioned Krylov Methods

Discretization of the governing partial differential equations on the mesh gives rise to large

non-linear systems of equations such that for 3D problems, the solution of these large

discrete problems is rendered intractable for direct solution methods. As a result, iterative

solution methods based on Krylov subspace methods [10-12] and/or multilevel methods

[9,13], which include multigrid and domain decomposition methods, are attractive.

Subspace methods can be very efficient methods but suffer from a dependence of the

convergence on the scaling of the eigenvalues with mesh size. This shortcoming may be

ameliorated by the use of a suitable preconditioner [14, 15] and have been shown to be

effective for inviscid calculations of the Euler equations. On the other hand, for elliptic

operators, multigrid methods can provide mesh independent convergence rates [16-22] and

offer good scaling of the compute time as well as data storage requirements. Even though

there has been no generalized extension of the mesh independent convergence proof for

systems with hyperbolic components, multigrid methods have been effectively applied to

the Euler equations [23, 24] and have remained a popular approach for the Navier-Stokes

equations [13,25,26]. Reusken [27] shows a grid independent convergence proof for a Finite
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Difference discretization of a 2D model convection-diffusion problem under some simplified

conditions using linear algebra arguments. For some simple cases, Roberts et al demonstrate

Textbook Multigrid Efficiency (TME) in the computation of the steady incompressible Euler

equations [28] and Thomas et al have also demonstrated TME for the steady compressible

Navier-Stokes equations [29]. TME here, is defined by Brandt [30] as solving a discrete

PDE problem in a computational work which is only a small (less than 10) multiple of the

operation count in the discretized system of equations itself

In general, problems for which subspace methods perform well such as elliptic problems,

are also problems on which standard multigrid algorithms perform well. For tougher prob-

lems such as the Navier-Stokes equations, both methods suffer a significant increase in the

work required for convergence. However, multigrid remains a more attractive option due to

the scaling of the computational resources required. For example, in a viscous computation

using an implicit discretization, the size of the system matrix which is typically sparse, is a

constant multiplied by N, where N is the number of unknowns.

For comparison, a much favored Krylov subspace method for this type of computation

is GMRES, with an Incomplete LU (ILU) preconditioner [7,31-33]. Any Krylov subspace

method needs to store a set of search space vectors which is typically of the order of 40 to 50

while the cost of the ILU factorization is of O(N). The storage requirements for multigrid

methods however are bounded by the complexity of the coarsening procedure such that

even in the worst case scenario of a 2:1 coarsening ratio on the multigrid coarse spaces, the

total storage for all the coarse space matrices is less than that for the fine mesh matrix. Let

f < 1 be the ratio of the total multigrid coarse space matrix storage to the fine mesh matrix

storage. Also, let KN be the storage requirements for the Krylov search space vectors. A

direct comparison of the storage cost then gives

CN Fine grid sparse matrix

+ fCN Coarse grid matrices

+ N Fine grid solution array

+ fN Coarse grid solution arrays
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CN Sparse matrix

GMRES/LU cost + N Solution array
+ CN ILU

+ KN Krylov vectors

MULTIGRID (C + 1)(1 + r)
GMRES/ILU (2C + K +1)

2(C+1)
- 2(C+1)+(K-1)
< 1

Hence, a direct comparison of the computational resources shows that a multilevel ap-

proach is more attractive provided that the convergence rates are compared on an equal

basis. Krylov subspace methods may also be implemented in matrix free form [34] but the

more efficient preconditioners such as SSOR and ILU can no longer be used. Multilevel

methods, however, may be used as preconditioners for Krylov subspace iterative solvers

which provides a powerful and flexible framework for computation. Another added benefit

of this is the possibility of reducing the number of Krylov search space vectors.

1.2 Multigrid

The multigrid method essentially considers a decomposition of the solution error into rough

error components, which cannot be resolved on a coarser grid without aliasing, and the

complementary smooth error component which can be resolved on the coarser grid. Given

a hierarchical sequence of successively coarser grids, a recursive partitioning of the solution

error may be made amongst these grids such that the associated error components on each

coarse grid effectively form a basis for the smooth error component on the finest grid. The

partitioning of the error is achieved through a set of interpolation operators for the transfer

of error components between the spaces. The crux of multigrid methods is the elimination

of the rough error modes by means of a relaxation scheme on the current mesh. Hence,
the efficiency of the multigrid performance is dependent on the synergy of the relaxation

scheme with the coarsening algorithms.

Structured meshes have the advantage that the coarse spaces may be naturally defined
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using the fine mesh. However, unstructured meshes do not have a natural grid hierarchy

and as such introduce additional complexities such as proper identification of the coarse

grid problems. Some of the geometric methods for the construction of coarse spaces for

unstructured meshes include the a-priori generation of independent coarse grids which are

overset [35] and the subsequent construction of piecewise interpolants between the grids.

This could be advantageous since the same grid generator can be used for all the grids.

However, since no relationship exists between the fine grid nodes and the coarse grid nodes,

the work involved in computing the interpolants will be O(N 2 ) [18]. This can be reduced

to O(N) using fast graph traversal algorithms [36]. In contrast to this, one may consider

the first mesh as the coarsest mesh and simply refine the elements in order to obtain a finer

mesh. This leads to a set of coarse spaces which are nested and for which interpolation

operators may be easily defined. One serious drawback of this method is the dependence

of the fine grid distribution on the coarse levels. Another approach is based on a nodal

decimation technique which involves selection of a vertex subset and retriangulation. The

selection process is typically based on the fine grid geometry and depends on some pattern

in the fine grid [37,38].

For numerical discretizations of the Euler and Navier-Stokes equations, one fundamen-

tal cause of degradation in standard multigrid algorithms is the decoupling of error modes

in one or more coordinate directions. Navier-Stokes computations using standard Geo-

metric Multigrid formulations suffer an appreciable degradation in performance [39] with

convergence rates of the order of 0.99. One means to combat this is the use of directional

coarsening algorithms in the construction of the coarse grids. Calculations in the inviscid

regions of the mesh use a full coarsening technique which gives a 4:1 element count reduc-

tion in 2D. However, depending on the chosen relaxation scheme, alleviation of the stiffness

due to stretched grids in viscous flow calculations requires semi-coarsening techniques [6]

which typically gives a 2:1 element count reduction in 2D within the boundary layer. These

methods are typically used within a Geometric Multigrid (GMG) context where the coarse

grid equations are based on a rediscretization of the governing PDE on these coarse spaces.

Extensive analysis of Geometric Multigrid as applied to elliptic problems has been done

by Brandt [16,17, 40] from which theoretical properties such as mesh independent conver-

gence have been shown. These methods have also been extended to computational flow

calculations for transonic potential flow [41,42] and are now routine in inviscid Euler com-

putations [24,35,43]. These applications of Geometric Multigrid to the Euler applications
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have met with varying success and in general, the best achievable convergence rates have

been of the order of 0.7.

In contrast to rediscretizing the PDE as in GMG, Algebraic Multigrid (AMG) uses an

algebraic definition for the coarse space operators [44]. Under AMG, the coarse spaces may

be generated in a purely algebraic fashion or with the help of geometric constructs. In

the classic definition of AMG [44], the construction is algebraic which allows for automatic

construction of the coarse spaces and does not require geometric information. Classic AMG

makes use of an abstraction of traditional multigrid principles in an algebraic context leading

to a redefinition of such geometric concepts as grids. Let us consider the linear set of n

algebraic equations

Au = b, {A E Rnxn; u, b E Rn}

where A = {aig}nxn, u = (u1, U2, ... , un)T and M is an M-matrix. A 2-grid problem involves

a definition of the coarse space equations

Aii=b, {ACERNxN'ill6 E JN}

through an algebraic transformation where A = {aij}NxN, ii = (5i1,fL2, -.- , N)T. These

equations now formally play the role of the coarse grid equations as in traditional multigrid

methods. This implies that we may view the fine grid Q as being represented by the set of

unknowns {ui : Vi E [1..n]} from which we may now construct a graph G = (V,E) based

on the matrix. The vertices V are represented by the unknown variable index i and the

edges E are defined using the matrix coefficient entries to determine connectivity. In this

manner, it is possible to construct the coarse grid Q by considering the coarse grid variables

to be a partitioned subset of the fine grid. Let the fine grid variables be partitioned into

two disjoint subsets: The first contains variables contained in the coarse level which we

denote as C-variables (or C-nodes). The complementary set is denoted as F-variables (or

F-nodes). Classic AMG now considers the construction of a Maximal Independent Subset

(MIS) of the C-nodes by using the matrix stencil to define the set S of strongly connected

nodes for a given node i [44,45]. For an M-matrix {aij}, a point i is strongly connected to
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j, or strongly depends on j if

-aij ;> Omax{-aik}, 0 <0 < 1 (1.1)
k#i

An MIS partitioning of a set of vertices in a graph is a subset of vertices which is independent

in the sense that no two vertices in the subset are connected by an edge, and maximal if the

addition of a vertex results in a dependent subset. This MIS set is now chosen to represent

the coarse grid.

The construction of the interpolation operators has given rise to different algorithms.

The original paper by Ruge and Stiben [44] makes use of the assumption that smooth

error components are required to be in the range of the interpolation operators, and as such

gives rise to the definition for algebraic smoothness. Given a simple relaxation scheme G,

an algebraically smooth error e is defined as an error which is slow to converge using the

scheme G i.e

||Ge|| ~ ||e||

This assumes that for these simple schemes, the residual defined for these smooth errors is

small:

Ae = r ~ 0

This now provides the basis for the construction of the interpolation operators [44]. This

method is efficient for M-matrices [46] and has been extended to the case of general matrices

with both positive and negative off-diagonal entries [45]. Brezina et al [47] however, make use

of a different assumption in the construction of the interpolation operators. This assumption

states that the interpolation must be able to approximate an eigenvector of the governing

matrix A with error bound proportional to the size of the associated eigenvalue. They

show improved convergence for AMG when applied to certain classes of problems such as

2D linear elasticity.

Classic AMG can be efficient when applied to a wide range of problems such as scalar

elliptic problems but can also suffer from many deficiencies. Some of these include:

. Standard AMG cannot be applied to non-linear systems since the underlying principles
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are based on a linear algebraic formulation.

* Extension of the standard AMG algorithm to block systems of equations is not clear

and often leads to poor convergence rates.

(a) Nodal Agglomeration (b) Element Agglomeration

Figure 1.1: Agglomeration Types

A hybrid variant of the classic AMG method is Agglomeration Multigrid which operates

by agglomeration of the finite element subspace on the fine grid. One such agglomeration

technique is the nodal agglomeration technique [48-51] which results in the Additive Correc-

tion Multigrid (ACM) method. This involves the agglomeration of connected nodes of the

mesh graph as shown in Fig. 1.1(a). However, a known problem with typical nodal agglom-

eration methods is their inability to accurately represent higher order differential operators

on coarse meshes due to low accuracy multigrid transfer operators [36]. In the case of ACM,
the transfer operators turn out to be simple injection, i.e. zeroth order operators which are

inadequate for even the simplest elliptic problems. Another effective agglomeration method
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is elemental agglomeration [18, 38, 47, 52] for which higher order transfer operators may

be defined. This involves the agglomeration of neighboring elements into macroelements

as shown in Fig. 1.1(b). As can be observed, the coarse space elements are not standard

elements and appropriate basis functions need to be defined. Chan et al [18] present an

elemental agglomeration coarsening technique based on the underlying graph of the fine grid

that does not involve geometry. This technique produces a set of node-nested coarse spaces

which is retriangulated based on fixed patterns in the agglomerated macroelement. This

method offers great potential since the interpolation operators can be based on integers and

lead to savings in storage and CPU time. Also, the algorithm recovers the natural structure

of the coarse grids if the fine grid is regular. However, since the elemental agglomeration

algorithm is purely topology-based, it cannot distinguish between anisotropic and isotropic

mesh regions.

The construction of the multigrid transfer operators has been the focus of much research

in AMG where the coarse space matrices are created algebraically using these operators.

These construction techniques may be classified into matrix based and grid based algo-

rithms. As discussed earlier, the standard interpolation used in classic AMG is a matrix-

based method which uses a fine/coarse node partitioning of the global matrix [18,53]. In

contrast to this method is elemental AMG (AMGe) interpolation which constructs a local

matrix-based interpolation from the elemental stiffness matrices [47, 52]. An element-free

extension of this algorithm which attempts to capture the benefits of AMGe without access

to the elemental stiffness matrix has also been reported by Henson et al [541. This leads to

significant storage saving and both versions of the AMGe interpolation operators have been

shown to exhibit excellent convergence rates for elliptic and elasticity problems.

In the context of structured meshes, mesh stencil-based interpolants [46,55] can be eas-

ily defined. For unstructured meshes, the use of the nodal basis functions has remained

a popular choice for the construction of the interpolants [35, 56]. Leclercg et al [57] de-

scribe the construction and Fourier analysis of an upwind transfer operator for a Finite

Volume discretization of the Euler equations and demonstrated the robustness of the inter-

polant. Extension of the mesh stencil-based interpolant to unstructured meshes for AMG

is described by Chan et al [18] where several interpolants of varying complexities based on

elemental agglomeration are discussed. An energy minimization approach is taken by Wan

et al [58] which exploits the properties of the underlying PDEs while allowing general com-

putational domains. A smoothed aggregation technique as described by Vanek et al [59,60]
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starts with a piecewise constant basis, which has high energy, and then smooths the basis

through the application of a relaxation method. This minimizes the energy of the basis

locally. A review of these algorithms may be found in [61].

The success of AMG formulations has been mostly limited to scalar elliptic applications

where similar mesh independent convergence rates as in GMG have been obtained, as well as

2D elasticity problems [38,47,62]. The early attempts at an AMG approach for the Navier-

Stokes equations by Webster [51] and Raw [50] showed some promise but were limited by

various factors such as degradation of the convergence rates with large grid sizes. Recent

developments by Mavriplis [9,36,63] have shown significant improvements for more practical

applications.

1.3 AMG Approach for Navier-Stokes

In this thesis, we consider the development of a multigrid methodology for the solution of

convection-diffusion based problems, using stabilized Finite Element discretizations with

the final objective of efficiently computing high Reynolds number Navier-Stokes flows.

Non- Cell Flow Propagative
Problem Compactness Stretching Alignment Disparity

. FEM Semi- Line Implicit Block Implicit
Solution Formulation Coarsening Smoother Formulation

Figure 1.2: Diagnosis of multigrid breakdown for the Navier-Stokes equations and solutions.

Fig. 1.2 delineates the various issues which multigrid methods face when applied to

Navier-Stokes flows. For each category, a modification of standard multigrid components

is proposed to effectively deal with the issues. For both inviscid and viscous calculations,

discrete stiffness can arise from the disparity in the propagation speeds of the acoustic and
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convective modes [39]. Hence, explicit schemes which use standard scalar preconditioners

are severely limited by stability constraints. Flow misalignment with the grid serves to

decouple convective error modes in the transverse direction which also leads to a slowdown in

convergence rate of standard multigrid schemes. Viscous computations however, introduce

an extra source of discrete stiffness due to the use of high aspect ratio cells within the

boundary layer. This effect serves to collapse the convective eigenvalues onto the origin while

decoupling the acoustic modes from the streamwise coordinate direction [13]. Motivated by

Fourier analysis, Pierce and Giles develop a preconditioned multigrid methodology based

on point block implicit smoothing and semi-coarsening. While this leaves some error modes

lightly damped, the resulting algorithm is a significant improvement over previous multigrid

performances.

Motivated by the inherent problems of the application of standard multigrid to the

Euler/Navier-Stokes equations, Brandt advocated that a hyperbolic/elliptic splitting of the

advective/acoustic subsystems is a means for obtaining optimal multigrid performance [64].

Based on a local mode analysis for the Euler equations, Brandt shows that the convergence

rate for standard multigrid algorithms which utilize full coarsening and scalar precondition-

ing is limited by the error correction from the coarse spaces. By splitting the acoustic and

hyperbolic subsystems into components which are treated separately, Brandt and Yavneh

demonstrated optimal multigrid convergence rates for the Euler equations [65]. Extension

of this principal idea has been done by a number of researchers such as Thomas et al [29]

for the incompressible Navier-Stokes equations applied to high Reynolds number wakes and

boundary layers as well as the compressible Navier-Stokes equations [66]. Nishikawa et

al [67] utilize the Van Leer-Lee Roe (VLR) preconditioner to obtain a decomposition of

the discrete residual into hyperbolic and elliptic components for a cell-centered Finite Vol-

ume discretization of the Euler equations on a structured grid. A full coarsening approach

for the elliptic subsystem and a semi-coarsening approach for the hyperbolic subsystem is

taken and the formulation is shown to be O(N) with respect to the number of unknowns.

However, the current implementations of Brandt's characteristic splitting idea are not yet

mature and the applications are still limited in scope.

In the approach this thesis takes towards addressing the hyperbolic and elliptic char-

acteristics of the flow equations, no attempt is made at formulating a discretization which

distinguishes between these components. Rather, the multigrid components are specifi-

cally designed to seperately deal with these components as applied to standard Finite Vol-
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ume/Finite Element discretizations. A stabilized FEM discretization is chosen to provide

accurate yet compact discretizations of convection-dominated flows. This formulation has

been made use of by Rannacher et al [68] where a multigrid solution scheme for stabilized

FEM discretizations is implemented. This is based on a preconditioned GMRES formu-

lation using a defect-correction multigrid as the preconditioner, an injection prolongation

operator, an L 2 -projection for the restriction operator and an ILU GauB-Seidel smoother

with node renumbering in the streamwise direction.

The multigrid implementation in this thesis is based on an Algebraic Multigrid (AMG)

formulation for fast and automatic construction of the multigrid components. For strongly

advection-dominated flows, line implicit relaxation schemes have been shown to possess

good smoothing properties using a Fourier analysis of a structured, constant spacing Finite

Difference discretization of a model 2D convection-diffusion equation [27,46,69]. Following

this reasoning, the choice of a line implicit relaxation scheme is made to deal with the

convective modes where the implicit lines are constructed to follow the direction of strongest

coupling. Point implicit relaxation methods based on this idea have been implemented for

structured meshes [13,70] and also successfully applied to unstructured mesh formulations

[9]. These are typically problems for which a primary flow direction can be identified a-priori

such that the points can be sorted in this primary direction. Strongly advected flows exhibit

characteristic directions along which information is propagated. Hence, the convergence rate

for these point implicit methods, which are sensitive to sorting such as GauB-Seidel, is highly

dependent on the flow direction and will probably suffer if there are localized flow regions

for which no choice of a preferential direction can be made a-priori. A hybrid method by

Mavriplis [71] for unstructured meshes makes use of implicit lines within the boundary layer

and point implicit relaxation elsewhere. These lines are constructed by linking up nodes

where the coupling between the nodes is based on the edge length. This helps to reduce

some of the problems associated with the stiffness introduced by the stretched mesh but

does not fully address all the issues related to the degradation of the multigrid algorithm.

The proposed relaxation scheme is a generalized line implicit relaxation scheme where the

nodal coupling is derived from the discretization of the governing differential equation.

The acoustic modes are dealt with by means of the multigrid coarse space which is

effective in handling elliptic error modes. An agglomeration multigrid approach which en-

ables the construction of higher order interpolants was chosen as opposed to a pure algebraic

methodology. The construction of the coarse spaces is through elemental agglomeration due
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to the difficulty of nodal agglomeration to accurately represent the second-order derivative

terms of the Navier-Stokes equations. The coarse space elements are generalized polygons

which obviates the need for retriangulation procedures [38]. The interpolation operator is

an extension of an interpolant developed by Chan et al [18] which is a linear interpolation

on the agglomerated element boundary and constant interpolation over the interior. The

current modification extends the linear interpolation over the agglomerated element inte-

rior. The agglomeration algorithm makes use of semi-coarsening to further remove grid

induced stiffness.

1.4 Summary

This thesis deals with research into the application of an algebraic multigrid formulation

to stabilized Finite Element discretizations of the Euler and Navier-Stokes equations. The

core of this dissertation is the development of the multigrid components to effectively deal

with the elliptic and hyperbolic characteristics of these equations without the need to re-

sort to specialized discretizations. The discussion in the chapters is ordered by increasing

complexity starting with the basic formulation of the multigrid components for scalar el-

liptic operators and culminating in the final application to select Euler and Navier-Stokes

examples.

The first chapter on symmetric elliptic operators begins with the application of AMG to a

simple Galerkin FEM discretization of the Poisson equation. This can be viewed as the first

step towards addressing the acoustic subsystem of the Euler and Navier-Stokes equations.

This chapter focuses on the construction of the interpolation operators and the multigrid

coarse spaces. The generalized multigrid algorithm is described and the construction of the

multigrid components, especially the elemental agglomeration algorithm, within the AMG

context is outlined. Numerical studies into the behavior of the basic multigrid algorithm is

made for the Poisson problem on isotropic meshes and the robustness of the algorithm is

demonstrated. In addition, the algorithm is applied to the Poisson problem on anisotropic

meshes to demonstrate possible issues which arise in the application of standard multigrid

algorithms to viscous computations on stretched grids.

The second chapter on convection-diffusion operators introduces hyperbolic character-

istics by means of a convective component. The model problem considered is the linear,

stationary convection-diffusion equation and a stabilized FEM discretization for this prob-
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lem is implemented. The application of the multigrid algorithm described in the first chapter

is shown to be inadequate for these problems especially in the strongly convective limit. A

modification of the multigrid smoother to a line implicit relaxation scheme is described

which effectively deals with the hyperbolic characteristics. The application of standard

AMG algorithms to stabilized numerical schemes is shown to require a characteristic length

based rescaling of the numerical stabilization for a consistent multigrid representation. This

has not been addressed in the literature and a solution for this problem is proposed. Nu-

merical studies into the behavior of the modified multigrid algorithm is done and improved

convergence rates are demonstrated.

The next two chapters on 2D Euler and Navier-Stokes applications begins with a descrip-

tion of a GLS/FEM discretization of the equations using symmetrizing entropy variables.

The extension of the fully modified multigrid algorithm for the system of equations as well

as a solution strategy for the non-linear equations is described. Numerical studies for several

test cases are performed and improved convergence rates are demonstrated. Several issues

related to the formulation of the stabilization terms are also discussed.

The concluding chapter summarizes the main results of the thesis and provides some

suggestions for possible future work.
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Chapter 2

AMG: Symmetric Elliptic Operators

The multigrid technique has been applied with great success to elliptic PDEs. For symmetric

elliptic operators, efficient multigrid methods exist with mesh independent convergence

rates [46]. Theoretical bounds for the convergence rate of the multigrid algorithm applied

to these problems have been rigorously proven and provide a point for comparison of new

multigrid techniques. This class of problems also provides a basis for the extension of

multigrid to harder problems such as convection-diffusion.

In this chapter, we present an Algebraic Multigrid methodology as applied to a Fi-

nite Element discretization of the Poisson equation. The generalized multigrid algorithm

is described and the construction of the multigrid components within the AMG context is

outlined. The main contribution in this chapter is the development of an elemental agglom-

eration algorithm with improved accuracy interpolation between grid levels. Brandt [17]

has shown that the accuracy of the multigrid interpolation operators is important in the

construction of a multigrid algorithm with grid independent convergence rates. Further-

more, the behavior of standard multigrid algorithms is known to degrade appreciably in

the presence of anisotropy which may be either introduced through variable coefficients or

grid stretching [45,72]. The behavior of the proposed multigrid algorithm when applied to

elliptic anisotropic problems is tested and the results analyzed.
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2.1 Model Problem

The model problem considered is the symmetric two dimensional diffusion problem repre-

sented by the differential equation:

V-(p(x,y)Vu) = -f in Q, (2.1)

U = 9D on FD, (2.2)

p(x, y)Vu - n = gN on PN, (2.3)

The domain Q is a bounded domain in R 2 with boundary F which is made up of a Dirichlet

boundary rD and a Neumann boundary rN = r\FD. The function f = f(x, y) is a given

source function while 9N and 9D are data defined on the boundary F with n being the

outward unit normal to F. The variational weak formulation of Eq. 2.1 can be stated as:

Find u E H1(Q; FD) such that

f p(x, y)Vu -Vv dQ =vf , dQ Vv E HJ(n; FD) (2.4)

where H1 (Q; rD) is the Sobolev space of functions with square integrable first derivatives

that satisfy the Dirichlet boundary conditions and HJ (Q; rD) is the space of functions which

vanish on rD. A unique solution for Eq. 2.4 is guaranteed if I(x, y) is a strictly positive

function and f(x, y) is square integrable, subject to admissible boundary conditions [73}.

Figure 2.1: Domain and Finite Element Discretization using Linear Triangles
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Let us now consider a partitioning of the domain Q as in Fig. 2.1 into ne non-overlapping

triangular elements Qe with boundary F' and n, vertices such that:

fle

Gh = Ge (2.5)
e=1
ne

0 = pe (2.6)
e=1

For a domain with curved boundaries, the Finite Element partitioning of the domain may

create a region I - Qh# 0 as shown in Fig. 2.1 which can be minimized by refinement

through a reduction in the characteristic element size he. Within each element, the solution

and geometry is approximated by a set of kth-order interpolation polynomials Pk which are

C0 continuous across elements and belong to the space H1h C H 1 defined as:

H1h = {Uh I Uh E CO(), UhIne E Pk (Qe) V Qe E Qh} (2.7)

The approximate (or trial) Finite Element solution can now be described as belonging to

the space Sh C H1h which is the finite dimensional subspace of piecewise kth-order C'

continuous functions defined on Gh:

Sh Vh Vh E H1h, Vh = 9D on FD} (2-8)

The classical Galerkin Finite Element Method makes use of a weighted residual formulation

based on Eq. 2.4. We introduce the space Vh of weighting (test) functions which is the same

as the trial function space Sh, up to the Dirichlet boundary conditions:

Vh = {W IWh E Hlh, Wh = 0 on PD} (2.9)

Any function uh in H1h can be written as a linear combination of a set of nodal basis

functions Ni(x, y) such that

uh(X, y) = NuNi(X, y). (2.10)

The coefficients ui are nodal values uh(Xz, yi) and the nodal basis functions are such that
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Ni E Hlh and

Ni (x, yj) = 6ij, (2.11)

where 6Ji represents the Kronecker function. The Galerkin Finite Element formulation for

the discrete problem now reduces to:

Find Uh E Sh such that

B(Uh, Wh)gal + B(Uh, Wh)bc = 0, VWh E (2.12)

where the forms B(., -)gal and B(-, -)bc account for the Galerkin and boundary condition

terms respectively, and are defined as

B(Uh,Wh)gal = (AVUh -VWh - Whf) dQ

B(uh,wh)bc = NWh (VUh - n) dJ = fN whgN dP

The nodal basis functions provide local support such that a choice of wh = Ni, {i = 1...np}
results in Eq. 2.12 being written as a linear system

Ahuh = bh, Ah E JRflPxfP; Uh, bh E R"p (2.13)

where uh is a vector of nodal unknowns and each row of Ah corresponds to a different

weighting function. For the model problem, we make use of linear P1 interpolation poly-

nomials which result in the basis function being the so-called hat function. Eq. 2.12 now

represents a sparse linear system of equations with the following properties [73]:

1. Symmetric: Ah = AT

2. Positive definite: uT AhU > 0 Vu : 0 and IFD 0

3. Diagonally dominant: lasil ;> E |ajij, Vi and isotropic elements.
jii
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2.2 Multigrid: Operation and Components

Given the linear system of equations Ahuh = bh, arising from the Finite Element discretiza-

tion of Eq. 2.1, we consider a multigrid formulation for the solution. Discrete operators

which are derived from Finite Difference, Finite Volume and Finite Element discretizations

tend to be large, sparse matrix systems of equations which are well adapted to iterative

schemes. The application of an iterative scheme or smoother S(u5, bh, Ahn) to the so-

lution of Eq. 2.13 results in a better estimate u' to the solution after a given number of

iterations n, starting from an initial guess uo. The iteration error may be defined by:

en = U - U. (2.14)

Since un represents an approximation to the solution, it does not satisfy Eq. 2.13 exactly

and so we can define a residual rh;

rh = bh - AhUh. (2.15)

We may now take the difference between Eq. 2.13 and Eq. 2.15 and further use the linearity

of the discrete operator to obtain:

rh = Ahuh - A (2.16)

= Ah {U-hu} (2.17)

- Ah{-e } (2.18)

The basic idea behind multigrid is the computation of corrections to the error en on a

coarser grid QH given a set of equations which have been discretized on a fine grid Qh.

Specifically, consider a restriction operator Rh : J"Jnh _+ J"H where nh and nH are the

dimensions of the finite dimensional spaces associated with grids Qh and QH. We may now

define the rough error component erough of en as error components for which

Rherough = o, (2.19)

such that the smooth error component esmooth is simply the complement. This ensures

that the transfer of the error to the coarse grid involves the smooth error component only.
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Hence, the application of a smoother S(uo, bh, Ah, n) to the current estimate of the solution

implies that the selected smoother must be effective in the elimination of erough. A coarseh

grid representation of Eq. 2.18 which can be more efficiently solved is

AHen = -Rhrh (2.20)

where AH and en are the coarse grid representations of Ah and en respectively. The error

correction ey computed on the coarse grid is now interpolated back to the fine grid and

used to update the solution by means of the prolongation operator Ph : JR"H H+ lRnh,

+- - Phe r. (2.21)

2.2.1 Multilevel Algorithm

Given the basic description of the multigrid process, we may now consider a recursive

multilevel formulation. Let {Gk : (k = 0, ... , m) } represent a hierarchy of grids such that

QO = Qh. Let nk be the dimension of the finite dimensional vector space R" associated

with each grid Qk such that nk > nk+1 and let {Ak : (k = 0,... ,m), Ak E JRnkxnk}

be the representations of Ah on these coarse grids such that A0 = Ah. Also, let {Rk

Jnk _ ffnk+1 } and {Pk : JRnk _+ Jnk-1} represent the restriction and prolongation

operators defined on these spaces respectively. Reduction of rough error components on

each grid level k requires a smoother and these smoothers may be different on each grid

level depending on Rk but are typically chosen to be the same.

A recursive application of the 2-grid multigrid algorithm can now be constructed on a

sequence of coarser grids where the error on each coarse grid level k may also be decomposed

into smooth and rough components by means of a suitable definition for Rk. This leads to

the m-grid linear multigrid algorithm (Algorithm 1) where S(u, b, A, v) is the smoothing

procedure.

In our implementation of multigrid, the coarsening procedure terminates when the coarse

grid system of equations Amum = bm is small enough to be solved exactly. Depending on

the scheduling of operations between the coarse spaces, we end up with different multigrid

cycles. Two of the most common cycles are the V(vi, v2 )-cycle (yk = 1) and the W(vi, v2 )-

cycle (yk = 2) which are depicted in Fig. 2.2.
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Algorithm 1 MG(uk, bk, vi, v 2 , m)
if k = m then

Set um = (Am)-' bm
else

Perform vi smoothing sweeps: S(uk, bk, Ak, V1 )
Compute residual: rk = bk - AkUk
Restrict residual: bk+1 = Rkrk
Initialize correction: Uk+1 = 0
for i = 0 to yk do

"Solve" on level k+1: MG(uk+l, bk+1, v1 , v2 , m)
end for
Correct solution: Uk +- Uk + PkUk+1
Perform v2 smoothing sweeps: S(Uk, bk, Ak, vi)

end if

Grid Level

0

1

2

3 -

Figure 2.2: V- and W-cycles
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2.2.2 Multigrid Smoother

Let us consider a general coarse space matrix system given by

Akuk = bk. (2.22)

Let us also consider a splitting of the matrix Ak:

Ak = Mk - Nk (2.23)

where Mk is non-singular. The basic idea in defining a smoother S(uk, bk, Ak, Mk, V) is
to obtain a matrix Mk such that the rough error modes are effectively reduced while the

inversion of Mk is much less expensive than Ak. A basic iterative method for the system

is defined as the following linear fixed-point iteration:

= ui+M (b - Au) (2.24)

= Su + M. 1 b

Sk I-Mk 1 Ak (2.25)

where u' represents the current solution estimate at iteration i. The matrix Mk is the

preconditioning matrix and Sk is called the iteration matrix or smoother. It may be shown

that the iteration error ei= - u satisfies

e -+1 Ske (2.26)

= (Sk)ieo (2.27)

and the residual r' = bk - AkU' satisfies

i+1 =AkSkA-lr' (2.28)

Hence, for the basic iterative method to be convergent

lim |ill = 0 (2.29)
i-00
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where ||Ai| is the contraction number of the matrix A for any vector norm 1-11, and is

defined as

||Ail = sup IAxj (2.30)
x$O ||x||

Theorem 2.1 The basic iterative method Eq. 2.24 will converge for any initial guess u0 if

p(Sk) < 1 (2.31)

where p(Sk) is the spectral radius of the matrix Sk. Convergence conditions for many

relaxation schemes may be found in [46]. Damping may also be introduced using a relaxation

factor w by defining:

uk = SkhU+Mk bk

u i+ = WUk2 + (1-W)u1

= S*u +wMg-Ibk (2.32)

where

S = WSk + (1 - w)I

It may be shown that Eq. 2.32 corresponds to the splitting

= Mk/w, N* = Ak - M* (2.33)

Let us consider the general splitting Ak = Dk - Lk - Uk where Dk is the matrix diagonal,
and -Lk and -Uk are the strictly lower and upper triangular parts of Ak, respectively.

Two popular relaxation schemes we will use throughout this thesis are given by:

Mk= Dk Jacobi (2.34)
Dk - Lk GauB - Seidel

The discrete system defined by Eq. 2.12 is characterized by a linear symmetric positive

definite (SPD) operator for which many theoretical properties have been rigorously proven.
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For SPD matrices, the GauB-Seidel method always converges for any initial guess while the

Jacobi method converges for any initial guess if the matrix is strictly diagonally dominant

[74]. The Jacobi and GauB-Seidel method are two very popular choices for their simplicity

and ability to quickly damp out spatially rough error modes. However, the spectral radius

for both the Jacobi and GauB-Seidel methods is such that

p(M 'Ah) = 1 - 0(h 2 ). (2.35)

Hence, without multigrid, the asymptotic convergence rate of these methods deteriorates

rapidly with increasing grid size.

2.2.3 Interpolation and Coarse Grid Operators

The multigrid algorithm requires an approximation of the fine grid operator on the hierar-

chical coarse spaces. The coarse space matrix Ak may be constructed by rediscretization,

however Algebraic Multigrid (AMG) considers an algebraic alternative to this [46] given by

the recursive relation:

Ak+1= RkAkPk (2.36)

Although the Rk and Pk operators are independent, the choice of Rk = PT results in the

minimization of the error in the solution after coarse grid corrections when measured in

the A-norm, || - IAk, for SPD operators. Given Eq. 2.36, let us assume the restriction and

prolongation operators are independent. Let Vk+1 represent the correction from the coarse

grid and Uk the current solution estimate on the fine grid. The error in the solution after

correction is thus

ek = Uk + PkVk+1 - Ak lbk

Let us measure the error in the A-norm, || -||Ak and minimize the error:

min||ek|lAk = min l(k + Pkvk+1) - Ak 1 bk lAk (2.37)
Vk+1 Vk+1

= min(iik + PkVk+1 - AkI bk) T Ak(Uk + Pkvk+1 - Ak lbk)
Vk+1

44



2.2. MULTIGRID: OPERATION AND COMPONENTS

Differentiation of the quadratic form with respect to Vk+1 and application of the stationarity

condition gives

PT(Ak + A (ii + PkVk+1 - A-j'bk) = 0 (2.38)

For a symmetric matrix Ak, we may easily solve for Vk+1 and obtain

ok+1 = (PTAkP )~1PT(bk - Aki) (2.39)

The Hessian matrix for Eq. 2.37 is

H = 2PTAkPk (2.40)

which shows that Eq. 2.39 is a minimum when Ak is positive definite. The coarse grid

correction from the linear multigrid algorithm is:

Vk+1 = (Ak+1) 1 Rk(bk - Akk) (2.41)

Comparing Equations 2.36, 2.39 and 2.41, we find that

Rk=P (2.42)

The same argument, however, cannot be made for a non-symmetric matrix. This choice

for the interpolation operators also has the added advantage that only one of the operators

needs to be constructed. This algebraic method for coarse space operator construction is

called the Galerkin Coarse Grid Approximation (GCA).

Mesh size independent convergence rate for the multigrid GCA formulation makes use

of a fundamental rule for the accuracy of the interpolation operators [17,46]. This may be

simply stated as:

Theorem 2.2 Let mp and mR be the order (degree plus one) of the polynomials that are

interpolated exactly by the prolongation P and restriction R operators respectively, and 2m

be the order of the governing partial differential equation. A necessary condition for mesh

independent convergence is

mp + ma > 2m
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Chan et al [18] carry out a convergence analysis for domain decomposition based sub-

space correction methods as applied to FEM discretizations of the Poisson problem using

linear elements. In order to obtain grid independent convergence rates, the subspaces have

to satisfy certain properties. This analysis is extended to the convergence rate of the multi-

grid method where the definition of the space associated with Qk is obtained by interpolation

in _k-1. According to the analysis in [18], these multigrid subspaces must satisfy stability

and approximation properties to ensure grid independent convergence. These properties

are:

|7Zuli,n Calui,n, (stability) Vu E Hlh(Q) (2.44)

|I|Zu - ullo,n Chju|1,Q (approximation) Vu E H1h (Q) (2.45)

where 7Z is some continuous interpolation or projection operator unto the subspaces and

is related to Rk. Eq. 2.45 is closely related to the standard Finite Element theory of

interpolating polynomials for linear elements [75] while Eq. 2.44 is a statement regarding

the smoothness of the interpolation operator. If we consider the use of a zeroth degree

interpolant (injection), Eq. 2.44 is violated since it does not lie in H1h. Further consideration

of Eq. 2.45 implies that the interpolating operator Rk has to be at least linear. If we make

this minimal assumption about the order of Rk, then Theorem 2.2 is automatically satisfied

for any choice of interpolation order for Pk. Hence, Theorem 2.2 is a more general statement

of the approximation and stability properties. For a more detailed convergence theory, we

refer to [19-21,76-80].

A promising technique for the construction of these interpolation operators which satisfy

the rules outlined above is based on the agglomeration technique [81, 82] which operates

by fusing neighboring fine grid entities to form coarse grid macroentities. This provides

a natural and automatic way for coarse space construction. The agglomeration technique

defined on the Finite Element space can be vertex based (nodal) [48-51] or element based

[47,52]. Our choice of elemental agglomeration is motivated by the need to address higher

order accuracy for the interpolation operators and has been the subject of recent research

[18, 38, 47, 54,83].

The standard use of nodal agglomeration [48-51] to construct the interpolation opera-

tors results in the definition of the restriction as an injection operator. This presents two

fundamental problems for discretizations of higher order differential operators. First, this
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operator violates the stability property. Secondly, mp and mR are unity and for the Lapla-

cian operator (2m = 2), the accuracy condition (Eq. 2.43) is violated [46]. This results

in suboptimal convergence rates due to mesh dependent scaling errors in the coarse grid

corrections.

Coarse Grid Coarse Grid Op. Restriction Prolongation Convergence
(a) Independent Rediscretization Linear Linear 0.100
(b) Triangulated Seed pts Rediscretization Linear Linear 0.125

(c) Agglomerated GCA Injection Injection 0.512

(d) Agglomerated Scaled GCA Injection Injection 0.254

Table 2.1: Effect of Coarse Grid Operator for Agglomeration Multigrid [36]

Table 2.1 is a reproduction of the results by Mavriplis [36] for the two grid solution of

the isotropic Laplace equation using a multigrid V-cycle with three pre- and post-smoothing

Jacobi sweeps on the fine grid, and 20 sweeps on the coarse grid. A comparison for the

multigrid convergence rates is made for (a) a two grid overset mesh approach using an inde-

pendently generated coarse mesh, (b) a coarse triangular mesh generated by triangulating

the seed points of the agglomerated coarse grid, (c) a nodal agglomeration implementation

of the GCA formulation and (d) a scaled nodal agglomeration implementation of the GCA

formulation where the coarse space matrix is scaled to take the interpolation order deficiency

into account. As can be observed in Table 2.1, there is appreciable degradation in the con-

vergence rate when the interpolation operators are of zeroth degree. Appendix B outlines a

brief one dimensional proof of the inadequacy of nodal agglomeration when applied to the

solution of a simple Poisson equation.

2.3 Coarse Space Agglomeration

As discussed, the standard application of nodal agglomeration techniques results in sub-

optimal convergence rates when applied to higher order differential equations due to the

violation of the interpolation order rule (Eq. 2.43). An alternative to this is the elemental

agglomeration technique which enables us to easily construct higher order interpolants that

satisfy the interpolation order rule.

The proposed algorithm is based on the fusion of elements into macroelements with a
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subsequent definition of the coarse grid topology and basis functions. This method is applied

recursively to generate the hierarchy of coarse spaces. A review of elemental agglomeration

is given by Chan et al [38] who also propose alternative elemental agglomeration algorithms.

In our approach to elemental agglomeration, the driving force behind the agglomeration

is the reduction of mesh anisotropy which becomes important later in the discretization of

convection-diffusion type equations [6, 71]. This is however, less important for FEM dis-

cretizations of isotropic elliptic problems. One important distinction between this proposed

method and that described by Chan et al [38] is that the coarse mesh elements are not

converted into standard elements by a retriangulation but are generalized polygons formed

by the agglomerated fine mesh elements. This is especially attractive in 3D because of the

complicated rules which may be involved for the retriangulation [38]. One drawback of

this formulation is that the support for the basis functions defined on these macroelements

is larger than standard triangular elements. This algorithm also has the feature that the

resulting coarse space is nested. This implies that the interpolants automatically satisfy the

stability condition (Eq. 2.44) [18,38,52].

2.3.1 Coarse Space Topology

Figure 2.3: Coarse Space Topology

The coarse grid topology is constructed by partitioning the elements into macroelement

48



2.3. COARSE SPACE AGGLOMERATION

groups as shown in Fig. 2.3 for a 2D mesh. A macroedge is defined to be the ordered col-

lection of fine grid edges which are shared by two neighboring macroelements. To complete

the definition of the coarse grid graph, the coarse nodes are chosen to be the fine grid nodes

where three or more macroedges meet. Macroelements with exactly two coarse nodes are

modified by the addition of extra supporting coarse nodes using fine grid nodes which lie

on the macroedge connecting these two coarse nodes as shown in Fig. 2.4

Figure 2.4: Coarse space topology with exceptional macroelement bearing two coarse nodes and
extra support node

2.3.2 Elemental Agglomeration Algorithm

The proposed algorithm is based on the removal of grid anisotropy and makes use of edge

lengths such that the geometry for the coarse spaces is defined entirely in terms of the fine

grid, i.e. the macroedge lengths are simply the sum of the edge lengths of the constituting

fine grid edges. If the fine grid geometry is not specified, then this technique becomes

a purely topological one where the elements are assumed to be isotropic. The decision

to agglomerate two neighboring elements is determined by a geometry based connectivity

concept which we term macroelement skew.

Definition 1 For a macroelement defined by a general polygon, the macroelement skew is

a measure of anisotropy and is defined as the area of the n-gon divided by the area of an
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isotropic n-gon with the same perimeter.

In the extreme cases, this is zero for co-linear polygon vertices and unity for an isotropic

n-gon. Macroelement skew can be extended to 3D through a suitable redefinition such as

ratio of macroelement volume to macroelement circumsphere volume similar to the control

volume skew described by Venkatakrishnan et al [84]. The macroelemental areas for the

coarse spaces are also easy to compute as they are simply sums of the agglomerated element

areas. In order to complete the operators required for this algorithm, we need to define an

edge based connectivity concept which we term edge skew.

Definition 2 For an element which borders a macroelement/element on a given edge, edge

skew is defined as the macroelement skew of the macroelement which would be created if the

element is merged with the macroelement/element across that edge.

We now present the algorithm in detail:

Procedure 1 (Macroelement Construction)

Step 0: Consider the graph of the mesh: G = (VE) and calculate the edge length for the

edges E.

Step 1: Obtain seed element: If there is no seed element in the queue, choose any suitable

element which does not belong to a macroelement group.

Step 2: Perform accretion around the seed element. Fuse unassigned neighboring elements

with edge skew larger than some specified fraction (typically 0.75) of the average edge

skew.

Step 3: Enqueue seed elements. New seed elements are placed in the queue to continue the

algorithm. These are chosen to be elements which share a vertex but no edges with the

last macroelement created. In 3D, this would extend to elements which share a vertex

and/or an edge but no faces with the macroelement.

Step 5: Repeat Step 1 until either all elements belong to a macroelement or there are no

more seed elements.
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After the algorithm terminates, post-processing is necessary to deal with "sliver" ele-

ments. These are fine mesh elements which were not originally selected by the algorithm

to be merged into a macroelement. A determination of which macroelement to merge these

elements with is made a-priori based on edge skew. In the case where the lengths and

areas are equal, the algorithm degenerates to a 4:1 isotropic agglomeration in 2D and fully

recovers the natural coarse structure for a regular grid. Unstructured mesh examples are

shown in Fig. 2.5.

(a) Fine mesh (Level 0) (b) Level 1 agglomeration

Figure 2.5: Multilevel Elemental Agglomeration Example

2.3.3 Coarse Space Basis Functions

The construction of the interpolation operators may be facilitated by the definition of

nodal basis functions on the coarse space and serves as a natural extension of the Finite

Element algorithm on these coarse spaces. As outlined by Chan [18], a number of desirable

properties have to be satisfied by the coarse spaces to ensure a good convergence rate. These

are summarized briefly as:

9 Smoothness: To guarantee satisfaction of the stability property (2.44)

9 Approximation: To guarantee satisfaction of the approximation property (2.45)
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" Small supports: To reduce the density pattern of the coarse space operators

" Conformity: To facilitate analysis and construction of algorithms

" Recursion: To ensure that the coarse spaces have the same properties as the fine grid.

We require the basis functions to at least satisfy the stability (Eq. 2.44) and approx-

imation (Eq. 2.45) conditions, preserve the constant function, and behave like standard

interpolants i.e

{1 ifi~

i(x) ifij (2.46)0 if i # j

Chan et al show that if the interpolant preserves at least the constant function, the ap-

proximation property is assured. The construction of the proposed basis functions makes

use of topology and geometry if provided. If the geometry is not given, then the elements

are assumed to be isotropic which leads to a purely topological interpolant. We now define

the basis functions using graph distance interpolation on both the boundary and interior,

which is geometry weighted to form a more accurate interpolant. This is an extension of an

interpolation proposed by Chan et al [18] which makes use of graph distance interpolation

on the boundary and constant interpolation over the interior. This algorithm leads to a

quasi-linear interpolant as shown in Fig. 2.6.

(o= 1 Do= 1/2 o= 0

X 0

0-/3 =/3
(Do= 0 (D 13/3(o= 0

Coarse
Node (=O

Figure 2.6: Coarse Space Basis Function Based on Graph Distance
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Fig. 2.6 shows the basis function <D defined over the agglomerated macroelement for the

coarse grid node at x0 . This basis function is constructed from a graph distance interpolation

over the macroelement and weighted with edge length. It satisfies Eq. 2.46 such that it has a

value of 1 at x0 and 0 at every other coarse grid node. Interpolation over the macroelement

interior as well as the boundary is also present.

In order to fully describe the algorithm, we give a description of an important component

called the Breadth First Search (BFS) algorithm which is essentially a Greedy algorithm

for graph traversal. The definition for the BFS algorithm [85] is

Definition 3 The Breadth First Search (BFS) is a search algorithm which considers neigh-

bors of a vertex, that is, outgoing edges of the vertex's predecessor in the search, before any

outgoing edges of the vertex such that extremes are searched last.

The BFS algorithm forms an integral part of the coarse space basis function construction

and the detailed description for the BFS algorithm is given in Algorithm 2.3.3:

Algorithm 2 BFS
Unmark all vertices
Choose some starting vertex x
Mark x
Set list L = x
Set tree T = x
Set level set (LS) of x = 0
while L nonempty do

Choose some vertex v from front of list
Visit v
for each unmarked neighbor w do

Mark w
Set LS(w) = LS(v) + 1
Add it to end of list
Add edge v-w to T

end for
end while

The detailed algorithm for the construction of the coarse space interpolant as well as the

coefficients for the prolongation operator Pk in 2D is given below. The restriction operator

Rk is simply defined using the GCA formulation.
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Procedure 2 (Basis Function Construction)

Step 1: For each macroelement, create a local subgraph. In the process, create an ordering

of the boundary edges such that the boundary can be traversed.

Step 2: Extract the list of interior vertices. Extract the ordered list of coarse grid vertices

by traversing the boundary edges.

Step 3: For all fine grid edge vertices which lie between consecutive coarse grid nodes,

construct length weighted interpolation data. The macroedge length is also computed

simultaneously.

Step 4: Interior vertex interpolation. For each coarse grid node in the macroelement, a

Breadth First Search (BFS) iteration on the local subgraph is done with the coarse grid

node as a seed. Both the level set as well as the graph distance from the coarse node

is recorded for all interior (fine) nodes in the subgraph during the process. The graph

distance of each fine grid node from the coarse grid nodes is then computed. For each

fine grid node, these distances are then weighted to sum to unity.

The necessary matrix coefficients for the prolongation operator Pk may now be extracted

from the basis functions as follows.

Procedure 3 (Prolongation Operator Construction)

Step 1: For every fine grid node i in macroelement which corresponds to a coarse grid node

j, set the prolongation operator coefficient

Pk(i,j) = 1 (2.47)

Step 2: For every other fine grid node i in macroelement which does not correspond to a

coarse grid node, given the length weighted graph distance dist(i, j) from every coarse

node j, set the prolongation operator coefficient

1

P(i, dist(ij) (2.48)
zdist(ij)

3
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2.4 Consistency Scaling Formulation

The success of the multigrid methods depends heavily on how good of an approximation

the coarse space matrix Ak+1 is to Ak. Let us choose the restriction operator to be

Rk = OP* (2.49)

where P* is the formal adjoint of the prolongation and u is a suitable scaling factor. The

scaling of Rk is determined by the role of Rk. If Rk is to be used to construct coarse grid

representations of the fine grid unknown Uk, then

Rk (i, j) = 1

However, if Rk is to be used to transfer residuals to the coarse grid, then the correct

value of the scaling depends on the scaling of the fine grid and coarse grid problems. This

implies that the coarse grid discretization should be consistent with the governing PDE in

the same way as the fine grid discretization. Let A3 represent a characteristic area (e.g

control volume area) on the fine grid associated with fine node j and let Ai represent a

corresponding characteristic area on the coarse grid associated with coarse node i. Finite

Volume and Finite Element schemes in 2D lead to a scaling rule which states that

Rk (i, j)A = li

This is derived by considering the integral terms for the interior fluxes. However, the

boundary flux integral terms are line integrals which necessitates a modification of the

restriction operator. Let Lj represent a characteristic length on the fine grid associated

with boundary fine node j and let Li represent a corresponding characteristic length on the

coarse grid associated with boundary coarse node i. The corresponding scaling rule for the

restriction operator as applied to the boundary integral terms is

>3Rk (i, j) L = L
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In order to deal with the dual scaling issues, we introduce the splitting:

Ak = Agal + A c (2.50)

where Aal consists of the Galerkin terms which scale with area and Abc consists of the

boundary condition terms which scale with length. We may now correspondingly split Rk

into R "I and Rbc such that GCA definition for the coarse space matrix becomes

Ak+1 = R galA galp gal + R cA cpbc (2.51)k k k kkk

where

R gal ,gaip galT (2.52)

Rc = ,bcpcT (2.53)

The construction for pgal exactly follows the algorithm described in Sec. 2.3.3. However,

Pbc is constructed by deleting the row entries for all the interior fine grid nodes in Pgal

This works because interpolation for the fine grid boundary nodes is based on the coarse

grid boundary nodes. The construction of the scaling matrices agal and a bc is done by

looping through the elements/edges and sending element/edge contributions (area/length

divided by the number of element/edge vertices) to the associated vertices. However, the

actual operator used in the prolongation process is pgal

Given the modification for the restriction operator, we consider the following splitting

for the residual

rk =rgal + r (2.54)

such that a restriction for the residual can be written as

bk+1 = R alral + R br!c (2.55)

However, restriction at the boundary poses a special problem. In general, it is not possible

to ensure that bk+1 = 0 if rk = 0 unless the restriction operators are specially designed to

satisfy this condition. The proposed solution to this issue is to lump rgal with rbc on the
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boundary nodes according to:

b = R c (ral + r c (2.56)

This has been found to work well in practice.

2.5 Dirichlet Boundary Modification

a

Cu

Cu
Cu
0

l : Coarse grid node
0 : Fine grid node

b C

f

g

Figure 2.7: Dirichlet Boundary Modification for Pk

The prolongation operator needs to be modified in the presence of Dirichlet boundary

conditions where the correction to the fine grid solution is zero [46]. For a given fine grid

node adjacent to a Dirichlet boundary, any matrix coefficient for this node in Pk which

corresponds to a dependency on a coarse grid node that lies on the Dirichlet boundary, is

set to zero. This may be easily exemplified by Fig. 2.7. Let us consider fine grid node A
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such that the standard prolongation operator defined for this node is:

k+1
b

A _ 1 1 1 Uk+1 (2.57)
k 4 4(42.d7

k+1

k+1

The presence of the Dirichlet boundary requires a modification of the prolongation since

there is no coarse grid correction for nodes on this boundary i.e U = = = 0.

Hence, we redefine the prolongation for the fine grid node A as:

k+1
Ub

vA 0 1 0 k+1 (2.58)
k+1

k+1

such that the modified prolongation is employed in the GCA construction of the coarse

grid equations. This has been found to work well in practice and is required for block

systems of equations where Dirichlet boundary conditions may be imposed on a subset

of the unknown vector block such as no-slip boundary conditions in discretizations of the

Navier-Stokes equations.

2.6 Anisotropic Problems

The convergence rate of the standard multigrid algorithm is severely degraded when

anisotropic effects are present. The introduction of anisotropy may be done either through

grid stretching, which is important in convection-diffusion problems where boundary layers

are present, or through variable coefficients in the governing differential equation. The

breakdown of the multigrid algorithm is even more severe for AMG where the coarse space

operators are constructed through algebraic means. Improper formulations which may exist

in the interpolation operators are manifested more strongly in these coarse space operators

than Geometric Multigrid where the coarse space operators are rediscretized independently

of the fine space.

The main problem associated with anisotropy is due to the decoupling of the error
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(a) Semi-Coarsening (b) Semi-Coarsening (Zoom)

Figure 2.8: Semi-coarsening in anisotropic mesh region

modes into preferential directions. Using Fourier analysis applied to the anisotropic diffusion

equation, Wesseling [46] shows that many of the popular smoothers break down in the

presence of anisotropy.

Anisotropy can be dealt with through modification of the smoother to perform implicit

sweeps along the preferential directions [70,71,86] as well as the coarse space semi-coarsening

algorithm [6, 71, 72, 87] where the aim of the coarse space construction is the reduction of

mesh anisotropy. The elemental agglomeration algorithm described above is designed to au-

tomatically include semi-coarsening when the fine grid geometry is supplied and an example

of the coarsening technique is shown in Fig. 2.8. Morano et al [72] present experimental

results for the Laplace equation for several anisotropic cases with high aspect ratio cells

when semi-coarsening is applied.
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2.7 Results

We consider the Poisson problem (Eq. 2.1) where

V 2u = -

u= 0

1 in Q = ]0, 1[2,

on 'D,

The discretization is performed by triangulating the square grid (Q = ]0, 1[2) with a set

of N (= n x n) uniformly distributed points. We use three different fine grid sizes and

compare the multigrid convergence rate for a two grid agglomeration problem. In all cases,

we use a V(2,1) cycle and terminate the algorithm when the L2 norm of the residual is less

than 10-17. Table 2.2 depicts the obtained convergence rates for two different smoothers.

The average multigrid convergence rate is defined as

1

E= Y1rQII) (2.61)

where n is the number of multigrid cycles while the asymptotic convergence rate E is defined

as the average convergence rate computed over the last 5 multigrid cycles.
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Figure 2.9: Agglomeration Multigrid Convergence History for Poisson Problem: Isotropic Mesh
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2.7. RESULTS

Smoother W Average Convergence i Asymptotic Convergence c
21x21 Jacobi 0.8 0.194 0.236

GauB-Seidel 1.0 0.073 0.096
41x41 Jacobi 0.8 0.197 0.210

GauB-Seidel 1.0 0.075 0.105
81x81 Jacobi 0.8 0.206 0.211

GauB-Seidel 1.0 0.071 0.100

Table 2.2: Agglomeration Multigrid Results for Poisson Problem: Isotropic Mesh

The ordering of the nodes for both smoothers as well as the sweep pattern for the

GauB-Seidel smoother is such that for a given node at {(ij) : {1..nx} x {1..ny}}, the

lexicographical ordering is given by {ord(i, j) = j + i x ny} i.e sweeps in the y-direction

with increasing x-direction. The numerical results in Fig. 2.9 and Table 2.2 show that the

proposed AMG convergence rate is uniform with respect to h and also satisfies the GauB-

Seidel theoretical convergence rate of < 0.1 [16] for the Poisson problem discretized on

isotropic meshes.

10 20 30
# cycles

40 50 60

(a) Point Jacobi (b) Point GauB-Seidel

Figure 2.10: Agglomeration Multigrid Convergence History for Poisson Problem: Anisotropic Mesh

Anisotropic results based on grid stretching are shown in Fig. 2.10 and Table 2.3 for

the same domain Q - ]0, 1[2. Comparisons are made for the multigrid convergence rate
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6S Smoother w e w/o semi-coarsening e w/ semi-coarsening

1 Jacobi 0.8 0.211 0.211
GauB-Seidel 1.0 0.100 0.100

2 Jacobi 0.8 0.352 0.315
GauB-Seidel 1.0 0.105 0.100

4 Jacobi 0.8 0.647 0.642
GauB-Seidel 1.0 0.345 0.339

100 Jacobi 0.8 0.979 0.672
GauB-Seidel 1.0 0.949 0.408

Table 2.3: Agglomeration Multigrid Results for Poisson Problem: Anisotropic Mesh

with and without semi-coarsening. The stretched grid is created by uniformly generating

n., points in the x-direction with spacing Ax. The points in the y-direction are generated

using a geometric growth algorithm with an initial spacing of A, where 6, is the initial

aspect ratio, and a growth factor of 1.1 until Ay ~ Ax, after which uniform spacing is used

as shown in Fig. 2.8. For the test cases, nx was chosen to be 81 and a comparison of the

convergence rate for J, = 1, 2, 4 and 100 is made.

The results show an appreciable degradation in the multigrid convergence rates for

these point implicit schemes even with the inclusion of semi-coarsening. The ideal solution

to obtain better convergence rates would be use a line implicit smoother which will be

introduced in the next chapter.
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Chapter 3

AMG: Convection-Diffusion Operators

The direct extension of standard multigrid algorithms as well as the algorithms described in

Chap. 2 to convection-diffusion operators has been shown to result in a degradation in the

convergence performance [46,76]. This is especially true for convection dominated operators

which introduce features that violate certain assumptions these algorithms are based on.

The classic implementation of AMG by Ruge and Stfiben [44] assumes that the underly-

ing matrix belongs to the class of M-matrices that are characterized by diagonal dominance

as well as symmetry which may no longer hold in the presence of strong convection. Chang

et al [45] have extended the method of Ruge and Stfiben to include generalized matrices.

However, some of the results shown for Finite Difference approximations to the convection-

diffusion equation and the anisotropic diffusion equation show that mesh independent con-

vergence rates are not obtained (in some cases, the algorithm actually diverged).

Convergence analysis for smoothers [46,88-90] shows that point iterative schemes typ-

ically have poor convergence properties when applied to Finite Difference approximations

of strongly convective equations. The convergence rate may be improved by the addition of

damping, however for some iterative schemes such as point Jacobi, no amount of damping

will make it convergent

This chapter focuses on application of the multigrid algorithm to the linear convection-

diffusion equation, especially in the high Peclet number limit. The linear convection-

diffusion equation represents a simplification of the target objective of this thesis which

is the multigrid solution of the high Reynolds number Navier-Stokes equations. In this

chapter we consider the modification of the proposed AMG algorithm to a stabilized Fi-
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nite Element discretization of the linear convection-diffusion equation. The stability of the

linear iterative smoothers, when applied to strongly convective flows, is considered and is

modified with the implementation of a multistage scheme. The poor convergence rates of

the point implicit smoothers for strongly convective flows eventually results in the choice

of a line implicit smoother. Finally, the application of multigrid to stabilized numerical

schemes raises several issues regarding the representation of the stabilization and boundary

condition terms on the coarse spaces. The modified multigrid algorithm is applied to sta-

bilized Finite Element discretizations of convection-diffusion problems and the results are

analyzed.

3.1 Model Problem

The model problem considered is the two dimensional stationary linear convection diffusion

problem represented by the differential equation:

V - (Y ) - V- (p(x, y)V) f in Q, (3.1)

where Q is a bounded domain in JR2 with boundary F which is made up of a Dirichlet

boundary FD and a Neumann boundary rN = F\FD. V = (u, v) is a prescribed diver-

gence free velocity field, the coefficient p(x, y) is a strictly positive diffusivity (or viscosity)

coefficient and f is a source function. Let us consider the partition of r into {-, 17+} where

F- = {(x,y) E F: V -n < 0} (inflow boundary) (3.2)

+ =r\- (outflow boundary) (3.3)

and also consider the following boundary subsets:

rD' = D (3.4)
D NF 
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We simplify the boundary conditions by assuming that F- c rD such that Eq. 3.1 is subject

to the boundary conditions:

= gD on FD, (3.6)

-4Y + pV=) - n on r, (3-7)

The behavior of Eq. 3.1 is governed by the Peclet number defined by:

Pe = UL (3.8)

which represents the relative importance of advection to diffusion where U is some reference

speed and L is a characteristic length of the problem. In the advective limit Pe -+ 00,
Eq. 3.1 is a hyperbolic equation which is characterized by the transport of information

along characteristic lines. In this case, the solution may be discontinuous with jumps across

the characteristic lines. Also, boundary conditions may only be specified on the inflow

boundary such that the problem reduces to:

V - (V) = f in Q, (3.9)

= 9D on FD, (3.10)

Hence, discontinuous jumps in the solution may occur if the boundary data 9D is discontin-

uous. The introduction of diffusion results in the solution being continuous over the entire

domain such that any jumps will spread out around the characteristic line over a region of

width O(1/vi%). It is well known that the application of the classical Galerkin Finite Ele-

ment method to the advection-dominated convection-diffusion equation lacks stability [91].

This results in solutions which are polluted with spurious oscillations due to unresolved

internal and boundary layers. Oscillation-free solutions may be obtained by the application

of upwind differencing to the convective terms, however upwind differences are first order

and produce overly diffusive solutions. Hence, we consider the Streamline Upwind/Petrov

Galerkin (SUPG) method introduced by Brooks and Hughes [92] which is a stabilized Finite

Element formulation that is a consistent weighted residual method. This method attempts

to introduce upwinding with no crosswind diffusion while maintaining a higher order dis-

cretization [93, 94]. A generalization of the SUPG method is the Galerkin/Least Squares
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(GLS) method [95] which is equivalent to the SUPG method for purely hyperbolic operators

and/or for piecewise linear elements. Though quite similar to SUPG, the analysis of GLS

is simpler.

Introducing the variational form of Eq. 3.1, the discrete problem reduces to finding

QD E Sh such that:

B('Ph, Wh)gal + B(Qh, Wh)gls + B(Qh, Wh)bc = 0, VWh G Vh (3.11)

where the forms B(-, -)gal, B(., -)gs and B(-, -)bc account for the Galerkin, GLS stabilization,

and boundary condition terms respectively. These are defined as

B('Dh,Wh)gal = ( h VWh + PV h - VWh - Whf d

B (gh,wh g =(h 2A Wh - f ) e ' ' h ~ 2 - dQ
e=1 O

B((h,wh)bc = f Wh( S) - n dP - / Wh(MV)h) -ndf = whgN dF

where the coefficient Te is the GLS stabilization parameter which is positive and represents

an intrinsic time scale. Local element Peclet number (Peh) and length scale (he) dependency

for Te [96] is important in order to provide accuracy and proper stability especially in prob-

lems where severe cell stretching is required for computational efficiency in the resolution

of internal/boundary layers. The local element Peclet number Peh is given by

Peh = ||VII he (3.12)

Carette [97] gives a review of several designs for the definition of the elemental length

scale he for linear triangular elements. In general, these definitions fall into two broad

classes which are geometric and projection based methods. The geometric methods consider

the geometry of the element and try to determine some suitable length scale for he while

projection methods consider the projected length of the triangle onto a line parallel to the

local velocity field. We make use of the definition by Mizukami [98] which corresponds to

the maximum of the intersection between the triangle and a line parallel to the local velocity

field as shown in Fig. 3.1.
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V
he

Figure 3.1: Illustration of Linear Triangle Length Scale he

The stability parameter needs to be selected to satisfy the following conditions [97]:

(he 'l
re = 0 Peh > 1 (3.13)

Te = Peh < 1 (3.14)

For the scalar convection-diffusion equation, the definition for Te has usually been done in

a heuristic fashion such that Te takes the general form:

Te = Teconv((Peh) (3.15)

where TecO"v is the convective limit for re given by Eq. 3.13 and is a function of the local

Peclet number Peh. In order for re to satisfy the conditions laid out by Eq. 3.13 and Eq. 3.14,
the asymptotic behavior for re is governed by:

1 as Peh -+ oo (3.16)

S-+CPeh as Peh -+ 0 (3.17)

where C is a constant. In the absence of convection, Peh = 0 which shows that stabilization

is not required for purely diffusive flows. Analysis of the GLS discretization of the one
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dimensional linear scalar convection-diffusion model problem with constant flow, diffusivity,

absence of source and uniform mesh using piecewise linear elements [99], shows that nodally

exact solutions may be obtained with an optimal definition for re:

he -
ropt = 2 (opt (a) (3.18)

1
(opt (a) = coth(a) - - (3.19)

a

a = heU (3.20)
2p

where a is the local element Peclet number. Following this example, Shakib [96] proposes

some simpler forms for re. We make use of one such form such that:

Peh
((Peh) = Peh (3.21)

9 + (Peh) 2

The construction of re now follows. For a triangle Te as shown in Fig. 3.2, we introduce

the affine mapping x = x((), between the master triangle Te, in the parametric space

( = [(, ?,]T, and Te E Q in the mapped space x = [x, y]T. The explicit form for the affine

mapping is given by:

( 1 (X2Y3 - X3Y2) 1 (Y2 -Y-3) (x3 - X2) x (3.22)
I ~ 2Ae (X3y 1 - X1Y3) 2Ae (Y3 - Y1) (X1 - X2) Y

where Ae is the element area given by

0 0 1
1

Ae = X2-zi Y2-1 0 (3.23)

X3-1i Y3-1 0

Let

Ui + U2 + U3 vi + V2 + V3
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y

(x,y) = f(E ,1)

E
1

Figure 3.2: Master Element and Mapping Function

J = X,,7- ,X7

B1 = (y'nii - X,nv)/3,

B2 = (x,Oi - YO)/j,

B3 = -B1 - B2

where (ii, ') is the average of the velocity defined at the three element vertices and J is the
Jacobian of the reverse mapping. The parameter Te is now defined by

D(B 17 B 2, B
3

(|BiL + 1321 + B31)
U1 + U2 + U3

3

Peh
D

(3.24)

(3.25)Te = D Peh
N/9 + Peh2

For the choice of the nodal basis functions and linear P1 interpolation polynomials in Sh

and Vh, Eq. 3.11 represents a sparse linear system of equations which can also be written

fl

1
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simply as

Ah(h = bh

3.2 Multistaging

The application of linear iterative schemes such as point Jacobi to discretizations of hy-

perbolic or almost-hyperbolic partial differential equations has been known to fail due to

the lack of stability of the smoothing algorithm. Consider the basic iterative scheme (as

outlined in Chap. 2) defined by Eq. 3.26:

=>2 + M- 1 (bh - A 4Dn) (3.26)

where <>n is the current solution estimate at iteration n. Application of Theorem 2.1 to the

scheme implies that the eigenvalues of the iteration matrix -M 1 Ah have to lie in a region

in the complex plane defined by

Iz + 1| < 1 (3.27)

Wesseling [46] has shown that the application of the basic iterative scheme given by Eq. 3.26,

to an upwind Finite Difference approximation of the pure convection problem results in a

non-robust smoother for the point Jacobi and point GauB-Seidel schemes. This is a well

known problem especially regarding the application of these point relaxation schemes to

higher order discretizations which causes eigenvalues of the iteration matrix to fall outside

the stability region of the basic iterative scheme. A possible solution for this is to increase

the stability region of the smoother by the introduction of a multistaging scheme. Multistage

methods were developed by Jameson [24] for the solution of the Euler equations which is

a hyperbolic system of equations and have been applied with great success to a variety of

applications [24,100,101]. An N-stage multistage formulation of the basic iterative scheme
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may be implemented as follows. Let:

,1(O) = (
h _

h h + a1Mj bh - Ah

(i+1)
h

_ (O) + ai+iM1 bh - Ah

(n+1 _ (N)
h a

where ai are the multistage coefficients. Standard Runge-Kutta definitions give

1
ai = N i

(3.28)

(3.29)

although optimized coefficients may be found [25,101-104]. For the rest of this thesis, the

optimized multistage coefficients employed are those by Lynn [104] for Roe's n, = 0 scheme.

These coefficients have been optimized for the damping of the high frequency modes for

locally preconditioned discretizations of the full Euler or Navier-Stokes spatial operator.

Table 3.1 shows the numerical values employed for the 3-stage and 5-stage schemes for both

full and semi-coarsening.

3 stage (full) 3 stage (semi) 5 stage (full) 5 stage (semi)

a1  0.2075 0.2239 0.09621 0.08699
a 2  0.5915 0.5653 0.2073 0.1892
a1 1 0.3549 0.3263
a4 0.6223 0.5558
a5 1 1

Table 3.1: Optimized multistage coefficients for full and semi-coarsening by Lynn [104]

Given one step with the full scheme described by Eq. 3.28, the multistage error ampli-

fication factor 1 N which is equivalent to Eq. 2.26 may be defined by:

e n+ I N(z)e (
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where el is the solution error defined by Eq. 2.14, z = -M-Ah and ON is the polynomial

matrix defined by:

N

PNz = I+EcjzJ (3-31)
j=1

N

c3 = J O'. (3.32)
s=N+1-j

Hence, for the multistage formulation to be convergent:

lim ||0"y(z)|| = 0 (3.33)
n->oo

Theorem 3.1 The multistage method Eq. 3.28 will converge for any initial guess <M if

P(#N)) <1 (3.34)

Theorem 3.1 implies that the spectral radius of the matrix z must lie within the stabil-

ity region defined by |N(z)I < 1. Fig. 3.3 shows the stability regions for the optimized

multistage schemes as well as standard Runge-Kutta multistage schemes for comparison.

RK 1 stage -.. RK 1 s ge
RK 3 stage (Kb 5 sttg

-- opt. 3 stage opt.I 5 stage (full)

2 .2 . . .. ..

1 . .... ....
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(a) 3 stage (b) 5 stage

Figure 3.3: Stability Contours
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3.3 Multigrid Smoother for Convection-Diffusion Operators

The efficiency of the multigrid algorithm lies in the synergy of the various multigrid compo-

nents, which can be encapsulated in the smoother and the coarse spaces. The decomposition

of the error is made with the idea that the smoother on each space is responsible for the

elimination of a portion of the error. Convergence analysis of smoothers such as point Ja-

cobi which possess excellent damping properties for elliptic operators has been shown to

exhibit poor convergence rates when applied to strongly convective systems [46,88]. These

systems are characterized by the transport of information along characteristic directions

which causes the error modes to decouple into preferential directions. Point relaxation

schemes result in preferential error smoothing along these directions [49] with a subsequent

deterioration in the multigrid convergence rate.

We propose a solution to the outlined issues by a modification to the algorithms given in

Chap. 2. In highly stretched grid regions and strongly convective regions, the convection-

diffusion model problem is characterized by strong alignment. Hence, we opt to use an

implicit line relaxation scheme as the smoother where the implicit lines are constructed

to follow directions of strong influence. In strongly convective problems, the directions

of strong influence align with the characteristic directions. This can lead to exact solvers

under the right conditions due to the propagation of advected information along these

characteristic directions.

The line smoother developed here for unstructured grids is similar to the geometry

based line implicit scheme described by Mavriplis [6, 71, 105]. In Mavriplis' scheme, the

smoother is a line implicit smoother in regions of highly stretched elements and in the

isotropic regions of the grid, the smoother reverts to a point implicit smoother. While this

represents an improvement, the use of a point implicit solver in the isotropic grid region

which is convection dominated does not fully address the multigrid convergence rate issues.

The proposed line implicit smoother is designed to take into account, the error directional

decoupling issues induced by anisotropic meshes as well as the hyperbolic characteristics of

the governing equation.

Wesseling [46] gives a Fourier analysis for some line implicit smoothers applied to Finite

Difference approximations of the linear convection-diffusion equation and shows that these

are superior smoothers to point implicit schemes. Fig. 3.4 shows an example of the implicit

line construction for a 2D GLS discretization of the linear convection-diffusion equation
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(a) Grid (b) Implicit Lines

Figure 3.4: Implicit Line System

with an imposed velocity field of V = (-y, x).

The use of a line relaxation scheme leads to a natural splitting of the matrix into

tridiagonal sub-matrices which may be solved in O(N) time. The elemental agglomeration

procedure as well as the construction of the interpolation operators and the coarse space

operators remain as previously described.

3.4 Implicit Line Construction

The implicit line construction process is based on the idea of linking strongly coupled nodes.

To measure nodal coupling, we use a matrix based concept which we term coupling measure.

Definition 4 The coupling measure between two connected vertices is a local quantification

of the connectivity/influence between these vertices.

Typically, this is based on the matrix stencil but other measures such as a projection of the

flow velocity on the mesh graph edges or streamlines may be used. This becomes even more

complicated in the case of block systems of equations which arise in discretizations of the

Navier-Stokes equations. In any case, given some local quantification of the local coupling

between any two nodes, we may construct a coupling matrix. For the model problem, we
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simply choose the discrete matrix in Eq. 3.11 as the coupling matrix. Based on the scalar

coupling matrix (ci,j) chosen, let the set of points, denoted by Si, connected to a node be

Si ={j i : ci, 0} (3.35)

We define the coupling measure between any two connected vertices (i, j) by

I = |ci,| {k: k E Si}
max ICi,kI

I ci,iI {k : k E Sg}
maxIc,,k I

coup(ij) = max(#3,#33 ) (3.36)

In convection dominated flows or upwind-type methods, strong coupling tends to be one-

sided which necessitates the two way consideration of Eq. 3.36. We refer to [46,106] for

other methods regarding the detection of strong coupling.

Line construction is done in a two pass process which involves the construction of in-

dividual lines and then a merging of lines to reduce the line count. The construction of a

line begins by choosing a seed node. For a given line, it should ideally be such that any

member node of the line can be chosen as a seed, such that tracing out the line from the

seed node in both directions creates the line. This leads to the concept of forward and

backward mode line construction. In order to describe the algorithm properly, we require

one more definition which we term line tridiagonality.

Definition 5 Line tridiagonality is a matrix based connectivity property. A line which has

no nodes that are coupled to more than two other nodes in the line is said to satisfy this

property. This ensures that the sub-matrix associated with the line is a true tridiagonal

matrix.

In the construction of the implicit lines, overlap of the lines is permitted. We now present

the algorithm in detail:

Procedure 4 (Forward Mode Line Construction)

Step 0: Set overlap counter to zero, create tag vector for the nodes and untag all nodes.

Step 1: Tag the current node and compute coupling measure for all the nodes connected to

the current node.
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Step 2: Compute a coupling measure threshold value which is defined as a fraction (typi-

cally 0.75) of the maximum coupling measure of all coupled nodes.

Step 3: Scan the coupled nodes and choose the one which

(a) Has the largest coupling measure greater than the threshold and

(b) Is untagged and

(c) Is not already in the current line and

(d) Preserves tridiagonality.

Step 4: If the chosen node already exists in another line and is not an extremity of that

line, increment overlap counter. If counter reaches predetermined limit, terminate

line.

Step 5: If the chosen node already exists in another line and is an extremity of that line,

terminate the algorithm and merge the current line with the other line only if tridiag-

onality is preserved.

Step 6: Repeat Step 1 with the chosen node as the current node until no nodes satisfy the

criteria in Step 3 or Step 4 or 5 is triggered.

The forward mode line construction acts as an integral part of the backward mode line

construction. The algorithm for the backward mode line construction is now presented:

Procedure 5 (Backward Mode Line Construction)

Step 0: Create tag vector for the nodes and untag all nodes.

Step 1: Tag the current node and for each untagged node connected to the current node,

perform one iteration of the forward mode algorithm.

Step 2: From all the coupled nodes which would have chosen the current node as the next

node in Step 1, pick the one with the strongest coupling. Repeat Step 1 with the

chosen node as the current node until no nodes satisfy the criterion in Step 2.

Using these two components of line construction, the full algorithm for the line construction

is now given by:
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Procedure 6 (Implicit Line Construction)

Step 1: Obtain seed node which does not belong to any line.

Step 2: Using seed node, perform partial line construction using the forward and backward

mode procedures and merge the two pieces into one contiguous line.

Step 3: Repeat Step 1 until there are no more seed nodes.

Step 4: Perform line merging. Consider the node extremities of each line and scan for

all coupled nodes to these extreme nodes. If any of these coupled nodes is also an

extremity of another line, compute the coupling measure between these two nodes. If

the coupling measure is greater than a threshold value, merge the two lines provided

that tridiagonality is preserved.

The overlap between the lines is kept to a minimum for two reasons. The first is to

reduce the amount of work by the relaxation. The second is to prevent possible amplification

of local modes due to solving a vertex equation multiple times. In order to alleviate such

amplifications, we can parametrically control the amount of overlap in the line construction.

However for the rest of the thesis, all results presented will be based on no overlap.

3.5 Fourier Analysis of Implicit Line Smoother

A simplified Fourier stability analysis of the implicit line smoother as applied to a convective-

diffusive model problem is now presented. We consider the linear scalar convection-diffusion

model (Eq. 3.37) with no body force, constant diffusivity and an imposed velocity field of

V = (V cos A, V sin A). The discretization is done using the Galerkin Least Squares (GLS)

formulation on the grid shown in Fig. 3.5.

V Vu = AV2 u (3.37)

We now consider periodic boundary conditions

u(Lx, y) = u(0, y)

u(x, LY) = u(X,0)
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$Ay
Ly

Ax

Lx

Figure 3.5: Scalar convection-diffusion model domain

which enables us to perform a Fourier decomposition of the exact solution.

variational form is given by:

The GLS

r V

+ j(whV [cos Aux + sin Au]

[cos Aux + sin Auy - p IuiX + u dQ

+ ±y [ U + whUh dQ = 0 (3.38)

nx ny

uh(x, y) = E N (x, y)u
i=1 j=1

nx ny

wh (x, y) = Nij(x, y)w
i=1 j=1

(3.39)

(3.40)

We consider the shape functions Nij (x, y) to be piecewise bilinear interpolants in x and y

such that

Nij(x, y) = F(x)G(y)

V

A

net

V [cos Awh + sin Awh] - p [w + w ])

where

CH APT ER 3.78
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For the stencil shown in Fig. 3.6,

Regions 1 & 3

Regions 2 & 4

Regions 1 & 2

Regions 3 & 4

(i-1, j+1)

(i-1, j)

(i-1, j-1)

(i, j+1)

(i, j-1)

(i+1, j+1)

(i+1, j)

(i+1, j-1)

Figure 3.6: Computational 9 point stencil for Fourier Analysis of Implicit Line Smoother

x-xi-1
Ax

xi+1 -X
Ax

Y-Yj- 1
Ay1 

Ay

(3.41)

(3.42)

3 4

(ij)

1 2
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Substitution into Eq. 3.38 yields

fix fly
0 = h

+ ((w
i=1 j=1
fix fly

+ w
+ 1nx fly

+ E>L wj
i=::1 j=1

VN cos A DNn" + sin A DNmn]

m 1 n=

fn E E

m=1 n=1

p+

[p+

[TV2

rV 2 cos 2 A]
DN ij DNmn \
ax D9X

rV 2 sin 2 D] DNmf\a a Dy

sin A cos A]
DNii DNmn +(ax Dy

umndQ

fndQ}

nd

DN aNmn

Dy ax J

This is of the form

nx ny

((S w Gi (ih)
i=1 j=1

-G=j (u~h)

= 0 iih= u : i =1, ..

= 0 V Wk E g (i =1,..

. ,rnx; j = 1, ... , nY

. ,rn - 1; j = 1, - , ny -1

Evaluation of the integrals lead to the 9-point stencil matrix

[A] = qi [Q] + ri [R] + q2 [Q]T + r 2 [R]IT + zi [Z] + z 2 [Z]T (3.44)

VAy cos A
12

VAx sin A
q2 = 12

= A (p + TV 2 coS 2 A)

(3.45)

(3.46)

(3.47)

(3.43)

Urnd}

where
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r2 = -( + TV 2 sin2 A) (3.48)

rV 2 sin A cos A
zi = 4(3.49)

TV 2 sin A cos A
Z2 = (3.50)

1 0 1

-4 0 4 (3.51)
-1 0 1

- 1 2 -1

[R]= -4 8 -4 (3.52)

--1 2 -1

1 -2 1

[Z) = -2 4 -2 (3.53)

L1 -2 1

We now extract three non-dimensional groups from Equations 3.45 - 3.48

6 A (3.54)

VT
V = (3.55)AX

Peh = VAx (3.56)
I

where Eq. 3.54 represents the mesh aspect ratio, Eq. 3.55 gives a measure of the convec-

tion/diffusion dominance i.e R -+ 0 in the pure diffusion limit and N -+ 1 in the convective

limit (for A = 00), while Eq. 3.56 gives the local mesh Peclet number (also for A = 0'). The
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non-dimensional group R may be further analyzed by considering r such that:

I =
he Peh

V V9 + (Peh)2
(3.57)

For the determination of he, let us consider Fig. 3.7. Misalignment of the flow angle A

V

Ay .v

Figure 3.7: Determination of characteristic length he

with the mesh as well as the mesh aspect ratio (6) results in a dependence of he with both

A and 6. We now take into account, the two following cases of flow misalignment :

Case 1: A < tan- 1 2 (= tan- 1 (6))

Ax

cos A
Ax Peh

V cos A V9 + Peh2

Peh

cos A 9 + Peh2

Case 2: A > tan- 1 AmAx (= tan- (6))

Ay
he = A

sin A
Ay Peh

V sin A /9 + Peh2

6 Peh
sin A V/9 + Peh2

Since the non-dimensional group N = N(6, Peh, A), we are left with the parameter set

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

(3.63)
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(6, Peh, A) for numerical studies. We now consider the splitting of the stencil matrix as

applied to the line implicit smoother such that [A] = [M] - [N]. Depending on the stencil

coefficients, the line creation algorithm will result in one of the two splitting stencils for the

damped line GauB-Seidel smoother:

[M]I
1

=w-

1
[M]2 = -

and

1
[M]1 = -

[M] 2

__1

= w-

for the damped Jacobi smoother.

Fourier Footprint

According to Eq. 2.26, the application of

error at iteration n + 1 that satisfies

the basic iterative scheme results in a solution

e +1 - Se n

where S = M-N. It is now assumed that the operator S has a complete set of eigenfunc-

tions or local modes denoted by IF(0, Oy), {O ,6 ,'} E 0, with E some discrete index set such

0

X

X[ I
X

X

X

(3.64)

(3.65)

0

X

X

0

0

0

0

X
0

0

X

X

X

X
X

0

X
0

X
X
X

I
I0

X

[ 0

0

0

0

0

01
0

(3.66)

(3.67)
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S(62, Oy)T(62, Oy) = A(6xj 6)T(O, O) (3.68)

and A(62, Oy) is the eigenvalue belonging to T(O, 6y) where {6, ,} are the Fourier angles.

Let us now consider a discrete Fourier representation of the exact solution. Let Ix =

{0, 1,... , nx -1} and Iy = {0, 1,... , ny -1}. Then, every uh {I , Iy} - 11? can be written

as

uh(jx, jy) =
mX+px my+py

E k
kx=-mx ky=-my

ck WkT(OX, 0)

where the Fourier eigenmodes, T(0, Oy), are defined as

T(O,y) = e(jzo.+jyoy)

pi= 1, mi = - - 1 for ni even
2

=,2 0,m 1 z-n for ni odd.

For simplicity, it is assumed that nz and ny
Eq. 3.69 are

6_ = 27rk
nx

Oy -
27rky

ny

are odd. The Fourier angles as defined in

kx E Ix

ky E Iy.

The smooth and rough Fourier modes may now be defined by

the grid wave numbers (0) into smooth (E)) and rough (Er),

define

considering a partitioning of

components. In 2D, we may

2rk n, - 1  n -1
E = { : 0 = (6, ),6a = a, ka = - a a... 2 a {, y}}na 22

and

(3.69)

(3.70)

i E {X,y}

i E {x,y}

(3.71)

(3.72)

(3.73)
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such that

0 = Os U Or, Esn Or = 0 (3.74)

Depending on the coarsening algorithm, we have the following partitions:

Full Coarsening: Standard coarsening in both directions as shown in Fig. 3.8(a) gives

2

Os = E8 n (-, -)
a=1

Or = O\Os

(3.75)

(3.76)

Semi Coarsening: Semi-coarsening in the y-direction as shown in Fig. 3.8(b) gives

7r 7rOs = a n {[- 7r, 7r] x ( 2' 2 )}= \2' 2
er = \E)8

(3.77)

(3.78)

The local mode smoothing factor or amplification factor p- is now defined as

i = sup{A(6)| : 0 c r} (3.79)

In order to compute fi, the eigenvalue problem

N T AM T

has to be solved. Based on the stencil matrix, substitution of the eigenmodes TI gives

Ejk N(j, k)ei(jo,+kOy)

jk M(j, k)ei(jOa+kOy),

{ei(k+1)y9 , eiko9, ei(k-1)Oy }N{e(k+1)x, eikOx, ei(k-1)Ox }T

{ei(k+1)0 y, eikoy, ei(k- 1)0V }M{ei(k+1)0x, eik6, ei(k-1 )OX }T

f{ei y 1, e-Oy }N{eiox, 1, e-iO }T

{eio9 , 1, e-io }IM{eio , 1, e-iox }T

(3.80)

(3.81)

(3.82)

Hence, for the scheme to be a smoother, ,b < 1. In the context of a multistage scheme,
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ox ox

(a) Semi-coarsening (b) Full coarsening

Figure 3.8: Smooth (E,) and rough (Er, greyed) wavenumber sets in two dimension

Theorem 3.1 shows that the smoothing factor is determined by the amplification polynomial

PN(z(Ox, Oy)) where z(60, O,) is the eigenvalue of the matrix -M~1A. The operator S and

-M-'A share the same set of eigenfunctions such that

z( 9 X, G0,,) - {ei(k+1)Oy, e ikovy ei(k-1 )Oy }Aei(k+1)Oz, eik, ei(k-1)Ox }T
{ei(k+l)O, eikO, ei(k-1)O }M {ei(k+l)Ox , eikOx, ei(k-1 )Oz}T (3.83)

{e_ { , 1, e-io- }A{eOx, 1, e-ox }T
{eio, 1, e-isI}M{eioz, 1, e-io}T (3.84)

Hence, the multistage smoothing factor is defined by

fi(6, Peh, A, w) = sup{ION (z(OX, Oy))I : {0xO y} E E (3.85)

We consider the 3-stage line GauB-Seidel smoother for different system parameters

as shown in Table 3.2 and Table 3.3 where the smoothing factor for the line GauB-Seidel

smoother is denoted by PG. Table 3.2 represents a mesh aspect ratio of 1 so that full
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6 Peh A R pG (w = 1.0) Matrix Splitting
1 100  00 0.316 0.50 Horizontal
1 100  100 0.321 0.49 Horizontal
1 100 200 0.336 0.48 Horizontal

1 102 00 0.999 0.56 Horizontal

1 102 100 1.015 0.49 Horizontal

1 10 200 1.064 0.49 Horizontal

1 106 00 1.000 0.56 Horizontal

1 106 100 1.015 0.49 Horizontal

1 106 200 1.064 0.49 Horizontal

Table 3.2: Fourier Smoothing Factor:
coefficients

Full coarsening and 3-stage scheme with optimized multistage

Table 3.3: Fourier Smoothing Factor: Semi-coarsening and 3-stage scheme with optimized multi-
stage coefficients
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coarsening is applied. Table 3.3, however represents a mesh aspect ratio of 100 which

introduces strong mesh-induced anisotropic effects and as such, semi-coarsening is applied.

-s -4 -3 -2
Re

(a) Peh=10 0 ,A = 0" (b) Peh=106 ,A = 200

Figure 3.9: Fourier footprints for line GauB-Seidel smoother using full coarsening (6=1)

-6 -4 -3 -2
Re

(a) Peh=100 ,A = 0*

0 1 -5 -4 -3 -2
Re

(b) Peh=10 6 ,A = 20"

Figure 3.10: Fourier footprints for line GauB-Seidel smoother using semi-coarsening (6=10-2)

The last column in Table 3.2 and Table 3.3 denotes the type of line that is created by

--RK 1 stage,

- 1 - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - -

- 2 - - - - - - - - -- - - -- - - -

.- RKIst ge

2 ---

-

-1 I

-10
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the line creation algorithm based on the magnitude of the coefficients in the [A] matrix

stencil. The resulting plots of the Fourier footprint over the Fourier space for some of the

different problems are shown in Fig. 3.9 and Fig. 3.10.

The multistage amplification factors for the implicit line schemes show good damping

properties for these schemes in general, even in the presence of flow misalignment. In all

cases, the implicit GauB-Seidel scheme is stable and in most cases, is stable for a single stage

formulation with light or no damping. The anisotropic mesh results depicted in Table 3.3

show a fairly consistent trend. The strong anisotropy induced by the mesh results in all the

lines being created vertically. The exception to this is the case where Peh = 106, A = 0'

which resulted in horizontal lines. Introduction of flow misalignment as well as higher local

mesh Peclet number have little effect on the amplification factors.

The conclusion of the Fourier analysis performed is that the implicit line GauB-Seidel

smoother in conjunction with a multistaging scheme is a viable option especially in the

anisotropic mesh regions.

3.6 Consistency Scaling Issues for Stabilized Methods

Elemental agglomeration brings up special issues when AMG is applied to convection-

diffusion operators which are discretized using stabilized methods such as SUPG or GLS.

Let us consider the matrix equation (Eq. 2.22) where Ak is some matrix resulting from a

stabilized method such that

Ak = Abase + A7 (3.86)

where A" is the component containing the stabilization parameter and Abae is the base

stiffness matrix (Galerkin + boundary terms for FEM). Artificial dissipation schemes [107]

and stabilization schemes for convection-diffusion operators [93-95] operate by the addition

of a stabilization term of the form rV 2 u, where r - 0(h). As discussed earlier, nodal

agglomeration techniques which use injection based interpolation operators result in con-

sistent coarse space convective terms but fail for the constant-coefficient diffusive terms.

However, elemental agglomeration results in both consistent convective and diffusive terms

on the coarse spaces. Following the analysis of Appendix B, consider a Laplacian operator
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with an 0(h) coefficient:

h d2 U (3.87)
dx2

Discretization of this term on the 1D grid as shown in Appendix B yields

ui+1 - 2ui + ui1 (3.88)
h

such that a rediscretization on a coarse grid with spacing H = 2h would result in the coarse

grid term

ii+1 - 2ii + i1-1 (3.89)
2h

If both the restriction and prolongation operators are based on injection, as is the case in

nodal agglomeration, we may multiply the left hand side of Eq. B.5 by h to obtain the

discrete coarse grid term:

EIi+1 - 2i + i_1 d2ii
H -(3.90)

2h dx2 QH

This is consistent with a rediscretization on the coarse grid. We now perform a similar

analysis with a restriction operator based on injection and a prolongation based on linear

interpolation. We multiply the left hand side of Eq. B.6 by h to obtain the discrete coarse

grid term:

ii+1 - 2'i + I 1- 1  H d2ii
4h~ (3.91)4 h 2 dx2 QH

which is inconsistent with a rediscretization of the stabilization on the coarse grid. This

implies that there is an improper scaling of the stabilization parameter on the coarse grid

due to the h-dependence of the coefficient. This provides an interesting duality between

nodal agglomeration which fails to discretize the constant coefficient diffusive terms but, as

a result of this inaccuracy, properly scales stabilization contributions, whereas for elemental

agglomeration the opposite is true. In order to address this stabilization issue, we introduce

a length scaling matrix o . The matrix is split according to Eq. 3.86 and the coarse grid
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matrices are computed using the GCA formulation

Ak+1 = RkAbasePk + cRkAPk (3.92)

= Abae+A i (3.93)

where a is a diagonal scaling matrix which accounts for h-dependency in AT. This matrix is

currently implemented by computing a characteristic area for each node based on the nodal

control volume and taking the square root of this area. The currently implemented scaling

procedure is only fully appropriate for a full coarsening scheme with isotropic elements.

A more appropriate version for semi-coarsening with anisotropic elements has not been

developed yet.

The effect of -r stabilization scaling is tested by plotting the eigenspectrum of the system

matrix A 0 and the coarse space matrix A1 with and without scaling. The test case consid-

ered is the linear convection diffusion equation discretized over a square domain Q =]0, 1[2

(Fig. 3.4(a)) with a prescribed velocity field U = (-yx) and Peclet number of 106. An eigen-

spectrum decomposition of the fine grid matrix and the first coarse grid matrix is shown

in Fig. 3.11, with and without -r scaling. The convection equation is a hyperbolic equation

with imaginary eigenvalues. However, the numerical discretization introduces dissipation

which is manifested in the real part of the eigenvalues of the discrete system. The eigenval-

ues A for a Finite Difference approximation of the stabilization term are such that A ~

from which we may expect the eigenvalues X for the FEM discretization to follow:

f ~ dQ (3.94)

h (3.95)

For an approximate 4:1 full coarsening ratio of the coarse grid such that ~ 2, we expect

the real portion of the coarse grid matrix eigenvalues to scale similarly. This behavior

is observed in Fig. 3.11(c) where stabilization scaling is performed. Fig. 3.11(b), which

represents the coarse grid matrix obtained without stabilization scaling, does not preserve

this property. In fact, it may be observed that it appears to scale the imaginary parts of

the eigenvalues with h without scaling the real parts.
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0.01-

0.005- .....

Ad***P

Ri

(a) Fine grid matrix A0

0 0.0 0.1 015 0.2 0.25 D3 0 005 0.1 01s 0.2 0.25 0.

(b) Coarse grid matrix A 1 w/o rescaling (c) Coarse grid matrix A 1 w/ rescaling

Figure 3.11: Comparison of scalar convection-diffusion equation eigenspectrum w/ and w/o -r

scaling for Pe = 1e6



3.7. RESULTS: ELLIPTIC OPERATOR (REVISITED)

3.7 Results: Elliptic Operator (revisited)

As observed in Chap. 2, the convergence of the proposed multigrid algorithm degrades

appreciably when applied to the Poisson problem discretized on a stretched grid. This

degradation becomes worse with increasing grid anisotropy and can be partly ameliorated

through semi-coarsening. Unfortunately, the directional decoupling of the error modes due

to the grid stretching is such that semi-coarsening may not be enough as illustrated in

Table 2.3. An effective solution to this is a combination of semi-coarsening and directional

smoothing [6,71].

We revisit the anisotropic grid results of Chap. 2 and apply the modified multigrid

algorithm using the developed line GauB-Seidel implicit smoother to the anisotropic grid

discretization of the Poisson problem (Eq. 2.59), on the same domain Q = ]0, 1[2 and for

the same choice of initial aspect ratio 6. The asymptotic multigrid convergence rates E are

shown in Table 3.4 for the point implicit and line implicit smoothers using semi-coarsening.

As can be observed, grid independent convergence rates are achieved.

is W E (Point Implicit) E (Line Implicit)

1 1.0 0.100 0.054
2 1.0 0.100 0.067
4 1.0 0.339 0.072

100 1.0 0.408 0.059

Table 3.4: Multigrid results for Poisson problem on anisotropic mesh using semi-coarsening: Com-
parison of convergence rates for point and line GauB-Seidel smoothers

3.8 Results: Convection- Diffusion Operator

We consider the linear convection diffusion equation (Eq. 3.1) over a square domain defined

by Q =]0, 1[2 (Fig. 3.12) and prescribed velocity field U = (-yx). The forcing function f
is set to zero, the Neumann outflow boundary on the upper boundary is 9N = 0 and the
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Dirichlet boundary on the other boundaries is

5.0(x - 0.2),

1,
1 - 5( - 0.6),
0,1

for

for

for

0.2

0.4

0.6

x

X

X

K

K

0.4,

0.6,
0.8,

y

y

y

-0

-0

-0
otherwise.

This particular set of conditions is chosen to simulate a boundary layer flow with the nominal

Peclet number

Pe=Uh - Lh _ 1
e A

Cu

Cu

0

(3.96)

0

x

Inflow Profile

Figure 3.12: Computational domain for scalar convection diffusion boundary layer problem

The discretized domain is adapted on the x = 0 boundary to capture the boundary

layer as shown in Fig. 3.4(a). All presented results are based on a V(1,1) multigrid cycle

using the line GauB-Seidel smoother and the solver is terminated when the RMS absolute

error in the residual is less than 10-13. The preconditioning matrix for the proposed line

smoother was stable without any multistaging, hence, all the results presented are based on

a single stage formulation. The relaxation factor w chosen for all the test cases was 0.95.
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cc
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Figure 3.13: Boundary Layer Grid Level Dependency: 60399 points; Pe = 1e6
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Figure 3.14: Boundary Layer Mesh Size Dependency: Pe = 1e6
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5 10 15 20 25 30 35
# cycles

40

(a) 15763 points

10 20 30
# cycles

40 50 60

(b) 60399 points

Figure 3.15: Multigrid Results for Scalar Convection-Diffusion: Peclet number dependency
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3.8. RESULTS: CONVECTION-DIFFUSION OPERATOR

Multigrid Level Dependency:

The dependence of the convergence rate on the number of coarse spaces is shown in

Fig. 3.13. The fine mesh has 60,399 vertices and 119,714 elements and a total of 6 coarse

grids were constructed (7 including the fine grid). In the asymptotic limit, the convergence

rate is the same for all the curves and beyond the two-grid case, the curves fall onto the

same line.

Mesh Size Dependency:

The dependence of the convergence rate on the mesh size is shown in Fig. 3.14. Three

meshes with increasing mesh sizes of 3,849, 15,763 and 60,399 points were used. Good

convergence properties are observed with some departure for the largest mesh. This can

probably be attributed to the fact that the meshes were not generated by refinement as

well as the simplification for the stabilization parameter r which was employed. This may

result in too little/much stabilization in the boundary layer region.

Peclet Number Dependency:

The dependence of the convergence rate on the Peclet number is shown in Fig. 3.15(a)

and Fig. 3.15(b) for a range of Reynolds numbers from 102 to 106. Figures 3.15(a) and

3.15(b) were generated on a set of fine meshes with 15763 and 60399 vertices respectively

which represents an approximate halving of the mesh spacing. In both cases, we find a

similar asymptotic convergence rate. Even more important is the fact that the algorithm

works well for such a wide range of Peclet numbers while maintaining a fairly constant

bound on the number of iterations required for convergence.

The average convergence rates (E) and asymptotic convergence rates (e) for the different

test cases are summarized in Table 3.5.
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Grid Size Pe Average Convergence E Asymptotic Convergence f
3849 102 0.31 0.29
15763 102 0.47 0.50
60399 10 0.67 0.69
3849 104  0.53 0.57

15763 104 0.52 0.55
60399 107 0.55 0.58
3849 106 0.52 0.54
15763 106 0.54 0.54
60399 10 0.65 0.63

Table 3.5: Agglomeration Multigrid Results for scalar convection-diffusion problem
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Chapter 4

Euler Applications

The Euler equations describe the flow of an inviscid fluid and may be considered to be

the limit of the Navier-Stokes equations as the Reynolds number goes to infinity. The

Navier-Stokes equations contains the full set of physical processes which occur in fluid flows

but for many problems, viscosity may be neglected. In attached flows where viscosity is

important, this importance is emphasized in a thin region near solid boundaries such that

the remaining flow is convection-dominated. Hence, the Euler equations provide a good

testbed for multigrid algorithms developed for the Navier-Stokes equations.

Standard multigrid methods have been applied to the Euler equations with varying suc-

cess [23,24, 35, 56] due to inherent properties of the Euler equations. The Euler equations

are a non-linear, non-elliptic system of equations which do not satisfy any of the underlying

assumptions of these standard multigrid algorithms that were designed based on elliptic

operators. Brandt has summarized the current progress and outlined the barriers to achiev-

ing ideal multigrid convergence rates for the equations of fluid dynamics [30]. Using local

mode analysis, Brandt [64] shows that for a p-th order Finite Difference approximation

of the constant-coefficient advection-diffusion equation, the convergence rate of standard

multigrid algorithms asymptotically approaches (1 - 2-P) in the limit of vanishing diffusiv-

ity coefficient. This is based on the argument that the coarse grid only provides a fraction

(1 - 2-P) of the required correction for the smooth error components which limits the conver-

gence rate of the multigrid process. Brandt proposed that in order to obtain ideal multigrid

convergence rates for subsonic, inviscid flows, the discretization must be able to effectively

distinguish between the elliptic and hyperbolic factors of the governing differential opera-
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tor. By splitting the system into advective and elliptic components, the convergence rate

of the full system should be limited by the convergence rate of the slower of the two sub-

systems. This leads to Brandt introducing the distributive relaxation scheme. Typically,

multigrid techniques developed using this principle are based on space marching of the

advective terms while the elliptic terms are treated with multigrid. Using this approach,

Brandt and Yavneh [65] have shown ideal multigrid convergence rates for the incompressible

Navier-Stokes equations for a simple geometry and a Cartesian grid, using a staggered-grid

discretization of the equations. A closely related approach was presented by Ta'asan [108]

for the compressible Euler equations using a set of canonical variables which partitions the

Euler equations into elliptic and hyperbolic components. Ideal multigrid convergence rates

are demonstrated for two dimensional subsonic flows using body fitted grids. An extension

of the distributive relaxation scheme by Brandt for the incompressible Navier-Stokes equa-

tions applied to high Reynolds number wakes and boundary layers was done by Thomas et

al [29]. This was subsequently extended to the compressible Navier-Stokes equations [66].

Roberts et al [28] present an alternative to distributive relaxation and to Ta'asan's

canonical variable decomposition for the steady, incompressible Euler equations. This is

based on a generalization of the approach of Sidilkover and Ascher [109] which applies

a projection operator to the system of equations such that a Poisson equation for the

pressure may be constructed. Ideal multigrid convergence rates were demonstrated for

internal flows for both structured grids using Finite Difference and unstructured grids using

a Finite Volume discretization. However, application of this algorithm to airfoil flows led

to difficulties near stagnation points which were not present in internal flows. An extension

of the algorithm was made in [110] for airfoil flows by the introduction of an artificial

dissipation term which stabilizes the momentum equations in stagnation regions.

The pressure Poisson method may be extended to compressible flows, however it is not

conservative and is not suitable for flows with shocks. Also, the extension to viscous flows is

limited to the incompressible Navier-Stokes equations. Sidilkover obtained a discretization

of the compressible flow equations that overcomes these limitations based on a multidi-

mensional upwind scheme [111, 112] which is shown to be factorizable into advective and

elliptic components. Roberts et al demonstrate ideal multigrid convergence rates based on

a generalization of Sidilkover's factorizable scheme in internal flows for a range of Mach

numbers from low subsonic to supercritical [113]. This is done using a Finite Differencing

scheme on curvilinear, body-fitted grids.
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In our approach to multigrid for the Euler equations, we make use of the principles

developed in Chap. 3 for the scalar convection-diffusion equations. The fundamental idea is

the construction of a line implicit smoother which effectively removes the hyperbolic error

components, while still smoothing the elliptic errors. In this sense, the line implicit smoother

is equivalent to the space marching used by Brandt et al for the hyperbolic components

while the multigrid coarse spaces are used to treat the elliptic components. This chapter

focuses on the extension and application of the proposed multigrid algorithm to the Euler

equations. In this chapter we consider the extension of the proposed AMG algorithm as

applied to a stabilized Finite Element discretization of the Euler equations. As analyzed in

Chap. 3, the application of multigrid to stabilized schemes raises several issues regarding

the representation of the stabilization terms on the coarse spaces. This is further analyzed

for the Euler equations and will be shown to have important consequences for the implicit

line smoother.

4.1 FEM Discretization

The discretization used for the Euler equations is based on the Finite Element code provided

by Wong [114] which we shall now proceed to describe. Let us consider the time dependent

2D compressible Euler equations in conservative form

U,t + F1,xi + F 2 ,X2 = 0, (4.1)

where

p pu1 PU2
p_1pu 1 + p pJ I

U = ,F1 = , F 2 = . (4.2)
puU2 + P

pE u1(pE + p) u2 (pE + p)

such that p is the density; u = {u 1 , U2 }T is the velocity vector; E is the specific total energy

and p is the pressure. The system of equations is closed through the equation of state,

p = (-y - 1)pe, where e = E - |u12/2 is the internal energy and -y is the ratio of specific

heats which is assumed to be constant. The conservative form of the above equation allows
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shock waves to be captured as weak solutions of the governing equations which avoids

difficulties in the use of shock fitting techniques for arbitrary geometries. We may now

non-dimensionalize the above variables using reference values for density (p*), velocity (u*)

and length (L) via

'i - , i =1, 2, p = u 2 ,
- E
E = ;;2 zi = -, i = 1, 2,L

and U= t
L

From this point, we will drop the overbars which denote the non-dimensionalized variables.

Given the reference speed of sound c*, we may now define the reference Mach number:

U*
M = -(

c*

Equation (4.1) can be written in quasi-linear form as

U,t + AiU,xi + A2 U,X2 = 0 (4.4)

where the inviscid Jacobian matrices Ai = Fi,u, i = 1, 2, are non-symmetric but have

real eigenvalues and a complete set of eigenvectors. Equation (4.4) is symmetrized by the

introduction of entropy variables V [115-117], such that the change U = U(V) applied to

(4.1) gives the transformed system

U(V),t + F1 (V),xi + F2 (V),X2 = 0 (4.5)

or equivalently in symmetric quasi-linear form as

AoV, + A1 v,2 1 + A2 V,X2 = 0 (4.6)

where A 0 = U,v is symmetric positive definite, and Ai =

symmetric.

For a hyperbolic system defined by

u,t + f(u)xi = 0

AiA 0 = Fi,v, i = 1,2, are

(4.7)

Barth [116] outlines two fundamental theorems regarding the symmetrization of systems

via entropy functions:

p
p

(4.3)
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Theorem 4.1 (Godunov [118]) If a hyperbolic system (Eq. 4.7) is symmetrized via change

of variables, then there exists a generalized entropy pair {U(u), FZ(u)} : Rd -+ R such that

Ut + F.i < 0 (4.8)

Theorem 4.2 (Mock [119]) If a hyperbolic system (Eq. 4.7) is equipped with a generalized

entropy pair {U(u), F(u)} : Ed J R, then the system is symmetrized under the change of

variables

VT = U (4.9)

An explicit formulation of the flux Jacobians is given by

vTfiU = F U (4.10)

such that an inner product of Eq. 4.7 and the entropy variable yields

vT(u,t + fii) = Ut + F' = 0 (4.11)

for smooth solutions.

Following Harten [117], we introduce a scalar entropy function U(U) = -pg(s), where s

is the non-dimensional entropy s = ln(p/p?). The required change of variables is obtained

by taking

e(y - g/g') - lul 2/2

V = HT = U (4.12)
' e U2

The conditions g' > 0 and g"/g' < 1, ensure that U(U) is a convex function and therefore

AO- = V = H,uu, and AO, are symmetric positive definite. For the Euler equations, if

103



CHAPTER 4. EULER APPLICATIONS

we chose g(s) = ey then V takes the form:

E + P-P

The fluxes F 1 and F 2 expressed as functions of V, are now homogeneous functions of degree

q = -2. Let us now consider the variational formulation for the steady state problem.

The problem is defined in a domain Q with boundary F by

F1 (V),xl + F 2(V),X 2 = 0 in i, (4.14)

AnV = An g on F\Fe, (4.15)

u-n = 0 on rw. (4.16)

where g is boundary defined data and the domain boundary is made up of an imperme-

able solid wall F, and a computational far field boundary Fff = F\Fe. In (4.15, 4.16),
n = [ni, n 2 ]T is the outward unit normal vector to F, and An = AAo , An = Ain1 + A 2 n 2.
Finally, A = AnAo where An denotes the negative definite part of An. Let the spa-

tial domain Q, be discretized into non-overlapping elements Te, such that Q = U Te, and

Te (~ Te, = 0, e : e'. We consider the space of functions Vh, defined over the discretization

and consisting of the continuous functions which are piecewise linear over each element

Vh = {W | W E (C0 (Q))4 , WIT, E (P1(Te)) 4 , VTe E Q}.

The discrete GLS formulation can then be written as:

Find Vh E Vh such that:

r(Vh) = B(Vh, W)gai + B(Vh, W)gis + B(Vh, W)bc = 0, V W C Vh (4.17)

where the forms B(-, -)gal, B(., )gls and B(., -)bc account for the Galerkin, GLS stabilization,
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and boundary condition terms respectively, and are defined as

B(Vh,W)gat = (-W,xi -F1(Vh) - W,X2 - F 2 (Vh)) dQ, (4.18)

B(Vh, W)gls = f{F1(W) + F 2 (W)} - r {F1(Vh) + F2(Vh)} dc, (4.19)

B(Vh, W)bc = j W -Fff (Vh, g; n) ds. + j W - FW(Vh, n) ds. (4.20)

where r is the stabilization matrix which must be symmetric, positive definite, have di-

mensions of time and scale linearly with the element size [94]. Standard definitions for -r

have been derived which work well in general practice [91, 116] . However, these choices

have inappropriate low Mach number behavior [114] such that there is a degradation in the

solution with decreasing accuracy as the Mach number is reduced. The low Mach number

-r stabilization matrix as described by Wong et al [114] is employed to complete the GLS

algorithm.

For the Euler equations, the numerical flux function F, on the impermeable wall bound-

ary, is simply [0,pni,pn2 , 0 ]T. The numerical flux function on the far field boundary Fff,

is defined by

Fff (V-, V+; n) = (Fn(V-) + Fn(V )) -An (Vf"e(V- V ))|(U(V ) - U(V-)).

Here, |An(Vh)| = A+(Vh) - A-(Vh) is the absolute value of A, evaluated at Vh, and

Voe(Vg, VW), is the Roe average [120], between the states V+ and V-.

4.2 AMG Extension to the Euler Equations

Eq. 4.17 is a non-linear system of equations to which the linear multigrid formulation no

longer applies. For the solution of non-linear equations, either generalized non-linear multi-

grid formulations can be defined for the non-linear problem [24,76] or the linear multigrid

algorithms can be applied to a linearization of the problem in a Newton solution con-

text [50, 51]. A popular non-linear multigrid scheme is the Full Approximation Storage

(FAS) scheme developed by Brandt [76,121]. Non-linear multigrid methods require a re-

evaluation of the full non-linear residual at each iteration on all grid levels but do not require

construction and storage of a Jacobian matrix as in Newton methods. This provides an ad-
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vantage in terms of memory savings but may be costly on a cpu-time efficiency basis when

the non-linear residual is expensive to evaluate. Also, non-linear methods may fail due to

non-existence of a solution to the physical problem when rediscretized on the coarse mesh.

Newton solution methods for non-linear problems which implement linear multigrid

solvers can also fail when the initial guess does not lie in the domain of convergence for the

non-linear problem. This however, may be overcome by the use of a quasi-Newton method

which implements pseudo-time stepping. It has been shown by Mavriplis [9] that in the

asymptotic convergence region, where solution updates are small and the effects of non-

linearities decrease, both the non-linear multigrid algorithm as well as the Newton scheme

converge at the same rate per multigrid cycle provided that equivalent iteration strategies

are employed for both. This however is only valid for an exact Newton linearization for

the Jacobian, which is usually violated in practice where a first order discretization for the

Jacobian is employed and a higher-order discretization for the residual is implemented. In

the current context of this thesis however, we implement the Newton solution strategy with

an exact linearization for the flux Jacobian matrix. This is possible due to the compactness

of the GLS Finite Element discretization which results in a nearest neighbor stencil for the

non-linear residuals.

4.2.1 Newton Scheme

For the extension of the previously described linear multigrid scheme to the Euler equations,

we consider the Newton scheme applied to the time dependent form of Eq. 4.17:

B(Vh, W)t + r(Vh) = 0, V W E Vh (4.21)

where B(Vh, W)t accounts for the time dependent term and is defined by:

B(Vh, W)t = AoW&ah dQ (4.22)

If we consider a simple first order discretization for the time derivative term, then the

Newton scheme for solution advancement may be written as:

[At + J] AV = -r (4.23)

Vn = AVn + Vn (4.24)h -A h h
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where J is the exact Jacobian of the non-linear spatial residual and At is the mass matrix:

At= 1i AOW d (4.25)

or(Vh) (4.26)
aVh

The time step At" is chosen to be the maximum time step allowed by the Courant-Friedrichs-

Lewy (CFL) condition for an explicit first order scheme [122] modified by a function of the

iteration number n:

At" - AtCFL (4.27)
f(n)

where f(1) = 1 and limn, f(n) = 0 which ensures that the pure Newton scheme is

recovered. The mass matrix At may be retained for a number of iterations to ensure

that the system is out of the initial non-linear startup phase after which it is turned off. In

practice however, it is found that this procedure is usually not required for smooth solutions

of the Euler equations or for small enough grid sizes.

Algorithm 3 Non-linear solution procedure for linear m-level multigrid
repeat

Form residual r, and Agal, Abc, Ag1" matrices.
Set grid level Qk=0.
while sizeof(grid level k) > specified size do

Create implicit lines based on Aga'k
Create agglomerated coarse grid Qk+1
Create interpolation operators pgal Rgal Rbck' k' k

Create coarse grid matrices Aja1 , A c ,IA
k+1 k+1

end while
Create Am = Ags + Ags + Ag'S and compute LU factorization of Am
if Ir| > machine tolerance then

Solve linear system using multigrid to specified tolerance
Update solution

end if
until Ir| < machine tolerance

Eq. 4.23 now represents a large sparse block matrix system to which the linear multigrid
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algorithm can be applied. A modification of the Newton algorithm is required to prevent

updates (AV') which would produce infeasible solutions such as negative density. This

is done by implementing a damping procedure that limits individual components of the

update vector. The solution algorithm for the non-linear system of equations may now be

formally described by Algorithm 3

4.2.2 Implicit Line Creation Extension

The line creation algorithm for the line implicit smoother as described in Chap. 2 requires a

scalar coupling matrix which represents the relative coupling between the nodal equations.

For a block matrix system where each matrix coefficient is a local block matrix, a suitable

scalar for the corresponding coupling matrix coefficient is unclear. For the Euler equations,

we have used two formulations for this coupling matrix.

Algebraic Reconstruction:

The first formulation is an attempt to reconstruct an entropy-based stationary linear

convection equation by exploiting the symmetric formulation of the Euler equations. As

discussed, the given choice of the scalar entropy function U(U) results in the fluxes F 1 (V)

and F 2 (V) being homogeneous functions of degree q = -y. Using linear algebra, it can

be shown that

dFiV = qFi i = {1,2} (4.28)
dV

such that

dFj 1 d [dFiV (4.29)
dxi q dxi IdV

1 ~dFi dV +d (dFj (-0= +_ VdF (4.30)
q 1dV dxi dV dxi)V
1 dFi 1 d (dFj+ IV (4.31)
q dxi q dV dxi

dFj 1 d (dFi)V(.2dF- = (-i--vdx V (4.32)
dxi mq - 1 dV dxi

We may now construct the stationary convection equation for the scalar entropy function
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using Eq. 4.11 such that:

dF' ~= VT Z
dxi dxi

= (q 1 )VTfd (dFi) V (4.33)
q - 1 dV dxi

This represents a scaled inner product with respect to the Jacobian of the governing PDE.

Using this idea, we attempt to reconstruct a discrete FEM formulation of Eq. 4.33 based on

the discrete variational weak form of the Euler equations. The scalar matrix derived from

this reconstruction process is chosen to be the weighting matrix for the line construction

algorithm and is defined by:

ci'j = {V[} [Jq~;] {V3 } (4.34)

where Jgal is the Jacobian of the Galerkin term B(-, -)gai. Any homogeneous differential

equation consisting of derivatives only is satisfied by the constant function. This implies

that a linearization cij of any discretization of the problem must satisfy the relation

Zci = 0 (4.35)

It is observed that in general, Eq. 4.35 is only satisfied at convergence.

Rediscretization:

The second formulation for the weighting matrix is based on a GLS rediscretization

of the stationary linear convection equation (Eq. 3.9) using the velocity field V = (ui, U2)

from the current estimate of the velocity field computed during the Newton solution scheme.

The line creation coupling matrix is defined based on the Galerkin terms from the resulting

discretization.

The coarse space definition of the coupling matrix is based on the GCA formulation.

Given the weighting matrix Ck, the coarse space definition for Ck+1 is given by

Ck+1 = RkCkPk (4.36)

The quality of the implicit lines created by the two algorithms may be compared in Fig. 4.1
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(a) Grid (b) Solution

(c) Lines: Reconstruction (d) Lines: Rediscretization

Figure 4.1: Implicit lines construction using the reconstruction and rediscretization schemes for
inviscid flow over a NACA 0012 at Mach 0.1
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for the converged solution of the Euler equations. The problem is the flow around a NACA

0012 airfoil at a zero angle of attack and a freestream Mach number of 0.1. Fig. 4.1(c) shows

the implicit lines created using the algebraic reconstruction while Fig. 4.1(d) shows the

implicit lines created using a rediscretization at convergence. In both cases, no noticeable

difference in the convergence rate was observed.

4.2.3 Interpolation Operator Extension

The extension of AMG to systems of equations where more than one function is being

approximated does not present a clear choice for the definition of the interpolation operators.

Cleary et al [123] and Ruge et al [44] discuss some of the associated issues. In [123],
the authors make use of a function approach where separate interpolation operators are

defined for the functions. This corresponds to the unknown approach described by Ruge

et al [44]. In our approach, we make use of the point approach described in [44] where the

multigrid algorithm is applied in a block manner such that all variables corresponding to

the same point are interpolated together. This implies the assumption that the partitioning

of the error components associated with each variable into rough and smooth components

is identical (Eq. 2.19).

4.3 Consistency Scaling Issues for the Stabilized Euler Equations

As discussed earlier in Chap. 3, the application of AMG to stabilized FEM formulations

implies that a rescaling of the coarse space representation of the discrete operator must be

performed to ensure the consistency of the coarse space operator. Fig. 4.2 show the effect

of -r scaling on a channel flow problem for the compressible Euler equations. The bump is

a sine-squared bump of thickness 0.1, the inlet Mach number is 0.5 and the results show

the eigenspectrum of the iteration matrix -M-1A where A is the residual Jacobian matrix

after 3 Newton steps and M is the Jacobi line implicit preconditioning matrix.

The effect of the stabilization scaling for a sequence of coarse grids is shown in Fig. 4.2.

The stabilization scaling is clearly necessary to bound the eigenvalues on the coarser grids so

that the line relaxation scheme behaves in the same manner on all the grid levels. Without

the scaling, the deterioration of the spectral radius of the iteration matrix becomes rapidly

worse with increasing coarse grid levels and the only choice left is to choose small damping
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factors in the multi-stage scheme resulting in poor convergence for the smoother.

4.4 Results

In order to demonstrate the effectiveness of the proposed multigrid scheme for the compress-

ible Euler equations, we will consider two different test cases and conduct a grid dependency

and Mach number dependency study.

4.4.1 Channel Flow

1i. n = 0

uZ h= 1

flow
1i. n = 0

L =3

Figure 4.3: Channel Flow Geometry for Euler Equations

The first case consists of a channel flow as shown in Fig. 4.3 where the shape of the

bump on the lower wall is a sine-squared bump with a thickness ratio of 0.05. The domain

is discretized into a structured grid by using a uniform grid spacing in the x-direction

and evenly dividing the channel height at any given x-location. The resulting grid is then

triangulated. The implicit line smoother considered is a damped 3-stage symmetric line

GauB-Seidel smoother with a relaxation factor of w = 0.7. The multistage coefficients

chosen are the optimized 3-stage coefficients in Table 3.1.

On each grid, a V(2,1) multigrid cycle is implemented and due to the smoothness of the

solution, no initial time damping (Eq. 4.23) is required. Table 4.1 shows the asymptotic

convergence rate r of the line solver for a number of fine grid sizes and Mach numbers. The

agglomeration algorithm results in full coarsening such that the choice for the number of
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Figure 4.4: Mach Number Contours for M = 0.1 Compressible Euler 241 x 81 Bump Problem

coarse grids results in the same number of elements and vertices on the coarsest grid. As

can be observed from Table 4.1, very good convergence rates are achieved.

Fine Grid Size # of coarse grids E: M = 0.1 c: M = 0.5
31 x 11 1 0.04 0.06
61 x 21 2 0.04 0.06
121 x 41 3 0.04 0.07
241 x 81 4 0.06 0.08

Table 4.1: Compressible Euler Bump Results

4.4.2 Airfoil Flow

The second test case consists of external flow around a NACA 0012 airfoil at angle of

attack of a = 0' and a = 30 as shown in Fig. 4.5. The discretization of the fine grid mesh

is completely unstructured. The implicit line smoother considered is also a damped n-stage

symmetric line GauB-Seidel smoother with a relaxation factor of W = 0.9 and the same

multistage coefficients as chosen in the channel flow problem. Both a 3-stage and a 5-stage

scheme for this test case was chosen in order to compare the convergence rates for both

schemes and as well as to make a fair comparison later on with the Navier-Stokes test cases

which utilize a 5-stage scheme. The multistage coefficients chosen are the optimized 3-stage

and 5-stage coefficients in Table 3.1. On each fine grid problem, a V(2,1) multigrid cycle is

implemented and no initial time damping (Eq. 4.23) is also required.
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Figure 4.5: Unstructured Mesh for NACA 0012 Foil

The termination condition for the linear multigrid solver is chosen to be when the linear

RMS residual is the square of the non-linear residual while the termination condition for

the non-linear Newton method is when the RMS value of the non-linear residual is less

than 10-14. This ensures that Newton quadratic convergence is achieved without always

requiring a linear multigrid solution to machine zero.

Table 4.2 shows the asymptotic convergence rate c for a number of fine grid sizes and

Mach numbers as well as the total element complexity (TEC) and total vertex complexity

(TVC) over all the grids. Given the number of vertices n' and elements n' per grid level,
these complexities for an m-grid (total of fine + coarse) problem are calculated as

TVC = (4.37)
k=O 0
m e

TEC k= (4.38)
k=0 0

The number of coarse grids chosen was such that the number of vertices on the coarsest

grid is less than 500. As can be observed from Table 4.2, excellent and relatively mesh

independent convergence rates are achieved. Fig. 4.7 shows the non-linear Newton and

linear multigrid solver residual history for the compressible Euler computation on the 20,621

node fine grid for a freestream Mach number of 0.5 and a 5-stage multistage scheme.
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Fine Grid Coarse EM=0.1 EM=0.5 EM=0.5
Size Grids TVC TEC (a = 00) (a = 00) (a = 30)

3 Stage 5 stage 3 Stage 5 stage 3 Stage 5 stage
2607 2 1.58 1.34 0.26 0.19 0.24 0.18 0.28 0.18
5258 3 1.64 1.36 0.31 0.22 0.34 0.24 0.25 0.17

10273 4 1.67 1.36 0.28 0.17 0.25 0.24 0.24 0.17
20621 5 1.64 1.36 0.33 0.26 0.34 0.21 0.23 0.21

Table 4.2:
0012 airfoil

Asymptotic linear multigrid convergence rates for compressible Euler flow over a NACA

Figure 4.6: Mach Number contours for freestream M = 0.1 compressible Euler
0012 airfoil at zero angle of attack

flow over a NACA

As a point of comparison, Fig. 4.8 shows the convergence history for the inviscid com-

putation of a compressible flow by Pierce [1] over a NACA 0012 airfoil at freestream Mach

number M = 0.5 and angle of attack a = 3'. The discretization scheme is a conservative cell-

centered semi-discrete Finite Volume scheme for structured grids which uses a characteristic

based matrix dissipation. A full-coarsening FAS multigrid solution scheme is implemented

using a W(1,0) cycle and 5-stage multistage formulation. Fig. 4.8(a) shows the grid used for

the inviscid calculation and Fig. 4.8(b) shows the multigrid convergence history using point

implicit scalar, diagonal and block-Jacobi preconditioning. The best achievable convergence

rate for this problem is around 0.8 while Mavriplis reports rates of around 0.75 [124]. For

the same conditions, the rate achieved by the current code using a W(1,0) cycle, a 5-stage

multistage scheme, a relaxation factor of 1.0 and regular sweeps i.e no symmetric sweeps as

were reported in Table 4.2 is 0.55.
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5 10 s15 20
( of hiOsSt

(a) Non-linear convergence history

10,

(b) Linear convergence history

Figure 4.7: Non-linear Newton outer loop and linear multigrid convergence histories for compress-
ible Euler flow over a NACA 0012 airfoil with 20,621 fine grid nodes at Mach 0.5 and zero angle of
attack using a 5-stage scheme

(a) Grid

0

Multigrid Cycles

(b) Non-linear convergence history

Figure 4.8: Multigrid results by Pierce et al [1] for inviscid flow over NACA 0012 airfoil at freestream
Mach number M = 0.5, a = 30 on a 160x32 0-mesh using scalar, diagonal and block-Jacobi pre-
conditioning
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Chapter 5

Navier Stokes Applications

The severity of the problems associated with discrete stiffness as well as directional decou-

pling for inviscid computations is not as pronounced as in viscous calculations. The use of

standard multigrid algorithms with full coarsening and point implicit smoothers results in

a significant deterioration in the multigrid convergence rates which worsens with increasing

anisotropy [39]. Much of the recent research into the construction of robust multigrid algo-

rithms for the Navier-Stokes equations has been done within the context of Preconditioned

Multigrid Methods [13,25,26,70,125] using semi-coarsening. Pierce shows that the use of a

Jacobi-preconditioning smoother for structured discretizations of the turbulent compress-

ible Navier-Stokes equations with J-coarsening, where the grid is only coarsened in the J

(viscous) direction, leads to an improvement in the convergence rate over standard multigrid

algorithms employing scalar preconditioning [39]. Allmaras [25] and Venkatakrishnan [26]

also compare the convergence rates, using several preconditioners, for the turbulent Navier-

Stokes equations. The results demonstrate that line preconditioning is a viable scheme. In

the context of unstructured meshes, Mavriplis [6,71,105] has implemented a semi-coarsening

scheme based on a nodal agglomeration technique and an implicit line relaxation scheme,

and has demonstrated multigrid convergence rates similar to those obtained by Pierce [39]

in a structured mesh context.

In this chapter, we consider the application of the proposed AMG algorithm to a sta-

bilized Finite Element discretization of the Navier-Stokes equations and numerical studies

are performed to determine the behavior of the algorithm for airfoil flow problems.
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5.1 FEM Discretization

The discretization for the Navier-Stokes equation is also based on the Finite Element code

provided by Wong et al and is an extension of the inviscid FEM code as described in Sec. 4.1.

Let us consider the time dependent 2D compressible Navier-Stokes equations in conservative

form

U,t + F1,1 + F2 ,2 = FI,1 + F2

where

U

P
Pu1

PU2

pE

(5.1)

I I

(5.2)

Pu1{2F 1 =
PUlU2

u1(pE + p)

0

T11

T12

U1711 + U2712 + q1

I ,

I,

PU2

pu1U2
2Pu 2 + p

U2 (pE + p)I
0

T21

T22

U1T21 + U2T22 + q2I.
(5.3)

such that Fi are the inviscid fluxes; F' are the viscous fluxes; p is the density; u = {uIT 2 }T

is the velocity vector; E is the specific total energy and p is the pressure. The system of

equations is closed through the equation of state, p = (-y - 1)pe, where e = E - lu12 /2 is the

internal energy. Here -y is the ratio of specific heats and p is the absolute viscosity, both

of which are assumed to be constant. We may now non-dimensionalize the above variables

and
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using reference values for density (p*), velocity (u*), length (L) and viscosity (p*) via

-p -,n 1, 2, p = 2

p u p
_ p _ i . - u*t

= , L , 1, 2, and t =

The auxiliary equations may now be written as

p Ou 1  2 p Bui 8U2711=2 --- +
Re Oxi 3Re Oxi Ox2

T12 = )21 = -|-
Re ( 1X2 Boi

T2222 oPU2 2 p aOu 1  0U 2

Re Ox 2  3Re oxi 0X2

1 1 OT 1 1 6T
q1 = --- p-, q2 = -P9-Re Pr Ox1  Re Pr OX2'

where the overbars denoting the non-dimensional variables have been dropped. There are

two resulting non-dimensional parameters which are the Reynolds number Re, and the

Prandtl number Pr, defined as:

Re = p*U*L
*C

Pr = p*C,

where C, is the specific heat at constant pressure and r. is the heat conductivity coefficient,

both assumed constant. Equation (5.1) can be written in linearized form as

U,t + A 1 U,1 + A 2 U,2 = (K 1 1 U,1 ),1 + (K12 U,2 ),1 + (K 2 1 U,1 ),2 + (K 22 U, 2 ),2 , (5.4)

where the inviscid Jacobian matrices Ai = Fi,u, i = 1, 2, are unsymmetric but have real

eigenvalues and a complete set of eigenvectors and Kij = F . are the viscous flux Jaco-

bians. Equation (5.4) is symmetrized by the introduction of entropy variables V [115-117],
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such that the change U = U(V) applied to (5.1) gives the transformed system

U(V),t + F 1 (V),1 + F 2 (V),2 = Fv(V), 1 + Fv(V), 2, (5.5)

or equivalently in symmetric quasi-linear form as

AOV,t + A1 V,1 + A2 V,2 = (K1V,1),1 + (k 1 2 V,2 ),1 + (k 21 V, 1 ),2 + (N22 V,2 ),2 , (5.6)

where A0 = U,v is symmetric positive definite, and ki = AjA 0 = Fi,v, i = 1,2, are

symmetric. Following the discussion on the Euler equations discretization in Sec. 4.1, we

introduce a scalar entropy function H(U) = -pg(s), where s is the non-dimensional entropy

s = ln(p/py). For the Navier-Stokes equations, if we chose g(s) = g then V takes the

form:

-y+1-3_ pE'
-- 1 p

V= P (5.7)

such that the matrix K

-l K1 K 1 2

K 2 1 K22

is symmetric as well as positive semi-definite.

Let us now consider the variational formulation for the steady state problem. The

problem is defined in a domain Q with boundary F by

F1 (V),1 + F 2 (V),2 = Fv(V),1 + F2(V),2 in Q, (5.8)

AnV = Ang on F\17, (5.9)

F .n = f on r, (5.10)

where the domain boundary is made up of an impermeable solid wall 17, and a compu-

tational far field boundary F\FW. In (5.9, 5.10), n = [ni,n 2 ]T is the outward unit normal

vector to F, and An = AnA 0 , An = Aini + A 2n 2 . Finally, A- = AnA 0 , and An
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denotes the negative definite part of A,. Let the spatial domain Q, be discretized into

non-overlapping elements Te, such that Q = U Te, and Te n Te, = 0, e = e'. We consider

the space of functions Vh, defined over the discretization and consisting of the continuous

functions which are piecewise linear over each element

Vh = {W |W E (C())4, Wre E (Pi(Te))4 , VTe E }.

The GLS algorithm can then be written as:

Find Vh E Vh such that for all W E Vh,

r(Vh, W) = B(Vh, W)gal + B(Vh, W)g1 s + B(Vh, W)bc = 0, (5.11)

where the forms B(-, -)gal, B(., -),, and B(-, -)bc account for the Galerkin, GLS stabilization,

and boundary condition terms respectively, and are defined as

B(V, W)gal = (-W,1 (F - F")1(Vh) - W,2 - (F - F)2(Vh)) dQ, (5.12)

B(Vh, W)gls = j{(F - F") 1(W) + (F - FV)2 (W)} r {(F - Fv)1(Vh) + (F - Fv)2(Vh)05Cf3)

B(Vh, W)bc = [ W - (Fff + Fv)(Vh, g; n) ds. + f W -Fo(Vh, f; n) ds. (5.14)

where -r is the stabilization matrix which must be symmetric, positive definite, have dimen-

sions of time and scale linearly with the element size. The current implementation in the

code for r is based on the following modification for viscous simulations:

7 =-1 +1- (5.15)

where -ri is the inviscid stabilization matrix defined in [114] and -rv is a viscous modification

defined as

-= 2(kN1 + k 2 2)/he2 . (5.16)

where he is chosen to be the length of the shortest edge of the element.

For the Navier-Stokes equations, no-slip Dirichlet boundary conditions replace the bound-

ary integral over the solid wall. The numerical flux function on the far field boundary Fff,
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is defined by

11
Fff (V-, Vf; n) = (Fn(V-) + Fn(V+)) -An(Vao"(V-, V+))|(U(V ) - U(V-)).

h h 2 hh 2 h h h(Vh h
Here, |An(Vh)| = A+(Vh) - A-(Vh) is the absolute value of An evaluated at Vh, and

VRoe(V, V-), is the Roe average [120], between the states VZ and V-.

5.2 Limitations of Current FEM Implementation

Some limitations regarding the application of the multigrid algorithm for Navier-Stokes

simulations exist based on the current FEM formulation. First of all, Eq. 5.15 is an ad-

hoc viscous modification by Wong et al of a previously described inviscid stabilization

matrix [114] and it appears to have the wrong limiting behavior with the Reynolds number.

The effect of this is that an incorrect amount of stabilization is applied especially in the

boundary layer region. An eigenspectrum decomposition of the iteration matrix -M 1 A

as defined in Sec. 3.2 will show that there is a rapid growth in the eigenvalues which

can not be easily bounded in the stability region of the iterative scheme. This behavior

becomes increasingly pronounced for larger grid sizes and cell stretching ratios. However, an

implementation of a viscous stabilization matrix which scales properly with local Reynolds

number has been done by Shakib et al [91,96,126].

Currently, turbulence modeling has not been implemented in the FEM formulation.

Research into the implementation of Reynolds Averaged Navier-Stokes (RANS) within a

Finite Element context has been rather limited to date. However, Hauke et al [127] report

a RANS formulation augmented with a turbulent transport equation for stabilized FEM

formulations. Also, implementations of Large Eddy Simulation (LES) turbulence modeling

within a GLS/FEM context has been done by Jansen [128] for unstructured grids and

parallelized [129-131].

In addition, a shock capturing scheme for discontinuities has not been incorporated into

the current GLS/FEM formulation of the discrete equations. However, Barth [116] describes

a discontinuity capturing operator for stabilized GLS/FEM by Galeio et al [132]. Hughes

et al [93,133] also describe a discontinuity capturing operator for stabilized GLS/FEM.

For these reasons, the Reynolds and Mach number at which any test case may be run

is limited to the subsonic, laminar regime.
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5.3 AMG Extension to the Navier-Stokes Equations

The extension of the proposed AMG algorithm to the Navier-Stokes equations closely fol-

lows the Euler equations extension as described in Sec. 4.2. The solution strategy employed

for the non-linear system of equations is the damped Newton scheme described in Sec. 4.2.1

where an exact linearization for the Jacobian matrix is performed. The only difference

between the application of the proposed AMG algorithm to the Navier-Stokes and Euler

equations is in the definition of the implicit line creation coupling matrix and the imple-

mentation of the no-slip Dirichlet boundary condition.

5.3.1 Implicit Line Creation Extension

The definition of the implicit line creation coupling matrix for the Navier-Stokes equations

can no longer be made using the algebraic construction technique described in Sec. 4.2.2

for the Euler equations, based on the choice of the scalar entropy function H(U). The

fluxes are no longer homogeneous in V such that the simplified form of the coupling matrix

coefficients, Eq. 4.34, is not valid. Application of the algebraic reconstruction technique to

the viscous equations results in implicit lines which follow streamlines in the boundary layer

regions during the initial convergence phase. This is followed by the eventual formation of

lines which are normal to the solid wall boundary at convergence. This region is typically

characterized by highly anisotropic cells which means that there exist error modes that will

be strongly aligned normal to the solid wall boundary. The use of implicit lines which are

aligned with the streamlines results in a significant degradation of the convergence rate of

the smoother.

Due to this phenomenon, we choose to rediscretize the stationary linear convection-

diffusion equation Eq. 3.1 using the velocity field V = (ui, U2 ) from the current solution

estimate. The value for the diffusion coefficient is chosen a-priori such that the implicit

lines in the boundary layer regions which are normal to the solid boundaries cover the full

extent of the boundary layer.

5.3.2 Dirichlet Boundary Condition Extension

The imposition of a no-slip velocity condition at a solid wall boundary means that the

interpolation operators as well as the momentum equations need to be modified on the
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Dirichlet boundaries as outlined in Sec. 2.5. On the solid walls, the two momentum equations

are replaced by the Dirichlet conditions

ni = 0 (5.17)

U2 = 0 (5.18)

The modification of the prolongation operator is done by expanding the scalar operator so

that each entry in the matrix is replaced by a local 4 x 1 vector where each entry is set to

the original scalar value. The second and third rows are then simply zeroed out.

5.4 Results

In this chapter, the proposed multigrid algorithm is applied to laminar airfoil flow. The

test case chosen is flow around a NACA 0005 airfoil at angle of attack of a = 0' and a = 30

as shown in Fig. 5.1 where the largest cell aspect ratio is of the order of 500.

In order to expand the stability region, the relaxation scheme considered is a damped

5-stage symmetric line GauB-Seidel smoother with a relaxation factor of w = 0.5. The

multistage coefficients chosen are the optimized 5-stage coefficients by Lynn [104] for Roe's

K = 0 scheme and semi-coarsening as listed in Table 3.1. On each grid, a V(2,1) multigrid

cycle is implemented and in all the test cases, time damping was required to advance the

solution out of the initial non-linear stage due to the unstable growth of the iteration matrix

eigenvalues. Hence, the presented results are based on the algorithm behavior in the Newton

quadratic convergence region.

As with the Euler test cases, the termination condition for the linear multigrid solver

is chosen to be when the linear RMS residual is the square of the non-linear residual while

the termination condition for the non-linear Newton method is when the RMS value of the

non-linear residual is less that 10-14. This ensures that Newton quadratic convergence is

achieved without always requiring a linear multigrid solution to machine zero. The number

of coarse grids chosen for these test cases was such that stability of the iterative scheme is

maintained on the coarsest grids. The stabilization rescaling described in Sec. 3.6 assumes

that the elements are reasonably isotropic such that a well defined length scale may be

obtained. The high mesh anisotropy in the boundary layer region results in an inexact

stabilization scaling which is manifested in the instability of the iterative scheme on the
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Figure 5.1: Unstructured Mesh for NACA 0005 Foil

coarsest meshes as the number of coarse grids is increased. Table 5.1 shows the asymptotic

convergence rate c as well as the total element complexity (TEC) and total vertex complexity

(TVC) as described in Sec. 4.4.2 over all the grids for a sequence of independently generated

fine grid sizes and Mach numbers at a Reynolds number of 5000. As can be observed from

Table 5.1, excellent convergence rates are achieved.

Fine Grid Coarse EM=O.1 EM=0.5 EM=0.5
Size Grids TVC TEC (a = 00) (a =00) (a =30)

8872 2 1.64 1.37 0.16 0.37 0.21
18416 3 1.88 1.44 0.25 0.37 0.57
36388 4 1.67 1.37 0.35 0.35 0.45

Table 5.1: Asymptotic linear multigrid convergence rates for compressible Navier-Stokes flow over
a NACA 0005 airfoil at Re=5000
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Fig. 5.2 shows the non-linear Newton and linear multigrid solver residual history for the

compressible Navier-Stokes computation on the 36,388 node fine grid for a freestream Mach

number of 0.5, zero angle of attack and a 5-stage multistage scheme. For this particular

case, the pseudo-time stepping scheme described in Sec. 4.2.1 is implemented with an ex-

ponentially deceasing CFL number as described by Eq. 4.27. After 35 non-linear Newton

iterations, the time damping term is removed with a corresponding jump in the residual as

shown in Fig. 5.2 followed by Newton convergence.

The convergence rates for the lifting (a = 30) airfoil case shows some degradation and

this may be explained by the interaction of the flow misalignment and the stabilization

scaling for semi-coarsening with anisotropic elements. The inexact stabilization scaling

results in an inappropriate amount of stabilization which is manifested in a degradation of

the two-grid convergence rate on the two coarsest grids, with subsequent pollution of the

total multigrid convergence rate.

10-2 10-2

Point of time damping removal Point A

S 1 0 -- - - - - - -1 0-- - - - P in C . o f10 . 0'

10 int P on

0 5 10 15 20 25 30 35 40 4-5 10~01 12 4
#f of cycles #f of V-cycles

(a) Non-linear convergence history (b) Linear convergence history

Figure 5.2: Non-linear Newton outer ioop and linear multigrid convergence histories for compress-
ible Navier-Stokes flow over a NACA 0005 airfoil at Mach 0.5 and zero angle of attack with 36,388

fine grid nodes and Reynolds number of 5000 using a 5-stage scheme

As a point of comparison, Fig. 5.3 shows the convergence history for the viscous com-

putation of a compressible flow by Pierce [ 1] over a NACA 0012 airfoil at freestream Mach

number M = 0.5, angle of attack a = 00 and Reynolds number of 5000. The discretization
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Figure 5.3: Multigrid results by Pierce et al [1] for viscous flow over NACA 0012 airfoil at freestream
Mach number M = 0.5, a = 0' and Reynolds number of 5000 on a 320x64 O-mesh using scalar,
diagonal and block-Jacobi pre-conditioning

scheme is a conservative cell-centered semi-discrete Finite Volume scheme for structured

grids which uses a characteristic based matrix dissipation. A J-coarsening FAS multigrid

solution scheme is implemented using a W(1,0) cycle and 5-stage multistage formulation.

Fig. 5.3(a) shows the grid used for the viscous calculation and Fig. 5.3(b) shows the multigrid

convergence history using point implicit scalar, diagonal and block-Jacobi preconditioning.

The best achievable convergence rate for this problem is around 0.91. For the same con-

ditions, the rate achieved by the current code using a W(1,0) cycle, a 5-stage multistage

scheme, a relaxation factor of 0.7 and regular sweeps i.e no symmetric sweeps as were

reported in Table 5.1 is 0.81.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, a multigrid formulation has been proposed, analyzed and implemented for

both Euler and Navier-Stokes applications for stabilized Finite Element discretizations. The

success of the formulation is based on a proper choice of the multigrid components with

respect to the characteristics of the underlying operator. As an alternative to recent re-

search into hyperbolic/elliptic characteristic splitting of the discretization, the proposed

formulation uses the relaxation scheme to reduce the hyperbolic error components and the

multigrid coarse space in dealing with the elliptic components.

The contributions of this thesis are summarized as below:

e Fast solution of the Euler and Navier-Stokes equations. A method for the

fast solution of the Euler and Navier-Stokes equations on unstructured meshes with

the promise of handling more realistic flows has been developed. A key point in the

development of this scheme is the utilization of a Finite Element discretization which

results in a compact stencil. This permits the exact derivative for the flux Jacobians

resulting in efficient and grid independent multigrid convergence using a proper choice

of simple multigrid components.

e Application of AMG to stabilized FEM formulations of the Euler and

Navier-Stokes equations. The coarse space operators are constructed in an alge-
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braic fashion using the Galerkin Coarse Grid Approximation which allows the coarse

grid equations to be constructed quickly without rediscretization. A consistent weight-

ing rescaling of the coarse grid equations is performed with particular attention paid

to the boundary conditions. Analysis of the application of Algebraic Multigrid to

stabilized discretizations of the two-dimensional flow equations showed that a length

weighted modification of stabilization terms on the coarse spaces is required to ensure

stability of the multigrid algorithm. Numerical studies of the proposed multigrid for-

mulation for scalar elliptic operators, scalar convection-diffusion operators as well as

the Euler and Navier-Stokes equations have exhibited significant improvements in the

multigrid convergence rates when compared to other similar multigrid formulations.

The convergence rates exhibited by the proposed multigrid algorithm for Euler and

Navier-Stokes are relatively mesh independent and show asymptotic convergence as

the number of coarse grids is increased.

" Implementation of a semi-coarsening elemental agglomeration scheme to

hyperbolic/parabolic systems on unstructured meshes. The construction of

the multigrid coarse spaces is based on an elemental agglomeration algorithm which

allows for fast, automated coarse space construction as well as higher order multigrid

interpolation operators. The coarse space construction is based on a semi-coarsening

scheme which is mesh dependent and has been shown to be superior to full coarsen-

ing schemes for even the simplest elliptic problems. The agglomerated coarse space

elements are generalized polygons which nullifies the need for a possibly expensive

and/or complicated retriangulation.

" Development of an improved coarse space interpolant. The efficiency of the

coarse space error corrections depends on the accuracy of the coarse space interpolants

for the discrete problem. The multigrid interpolation operators are constructed using

an extension of Chan et al [38] such that linear interpolation based on edge length

weighting produces a superior interpolant.

" Development of a generalized line implicit smoother for unstructured meshes.

The proposed multigrid relaxation scheme is a line implicit relaxation scheme where

the lines are constructed to follow the direction of strongest influence which, under

the right conditions, can lead to exact solvers. The developed smoother is a significant
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improvement over similar smoothers [6, 71, 105] especially for viscous computations.

A Fourier analysis of the smoother shows good predicted convergence rates.

6.2 Future Work

The current results in this thesis represent a proof of concept for the central idea of assigning

the tasks of the multigrid components in dealing with the characteristic subsystems of the

flow equations. Suggestions for further research include:

1. Further development of FEM formulation for more realistic applications.

Further development of the current Finite Element formulation is required to handle

more realistic flows. Currently, applications with discontinuities such as shocks can-

not be handled properly due to the lack of a good shock capturing scheme, especially

with higher order elements. Also, the current viscous formulation for the stabilization

matrix in the GLS/FEM discretization does not appear to have the proper limiting

behavior with Reynolds number. A reformulation which has the proper scaling prop-

erties should allow more practical applications at higher Reynolds numbers. Finally,

practical applications at higher Reynolds numbers are precluded without the inclusion

of a turbulence model. Of interest would be the behavior of the proposed multigrid

algorithm in the presence of a turbulence model. Possible issues which may arise are

related to the additional introduced stiffness as well as the degree of coupling with

the flow equations. It is also not clear if an energy stable formulation for a turbulence

model in entropy variables exists.

2. Implementation of the FAS/FMG multigrid formulation. Many of the issues

relating to the consistency of the coarse grid equations arise from the fact that in the

context of the linear multigrid formulation, the coarse grid equations are constructed

algebraically such that special attention via rescaling becomes necessary. A recon-

struction of the non-linear equations within an FAS formulation on the coarse spaces

would remove the need for rescaling as well as the need for the initial time damping

scheme as described in Sec. 4.2.1. This however is not without associated problems

such as how to perform a rediscretization when the coarse space elements are not

standard finite elements. Also present is the issue regarding implicit line construction

since the line creation algorithm is based on a linearization of the non-linear equations.
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This could potentially lead to extra overhead with regards to storage and compute

time. In the current linear multigrid context, the implementation of a Full Multigrid

(FMG) formulation [46] would help in dealing with the initial non-linear behavior of

the system.

3. Higher order finite elements. The use of quadratic or higher order finite elements

for more accurate solutions would be desirable. However, it is not clear how this

might be implemented with the context of the current multigrid formulation. In such

a case, chaining elements within a line as opposed to vertices may offer a better

approach. One idea is to switch the discretization to a Discontinuous Galerkin/Least

Squares (DGLS) formulation which leads to a natural description of the elements as

separable entities that can be linked up in a line. The strong influence basis for the line

creation could then be based on some formulation using the flux continuity between

the elements.

4. Extension to three dimensions. The basic concepts in the proposed algorithm are

extendible to three dimensions and any issues that arise should largely be implemen-

tation ones.

5. Parallelization of the multigrid algorithm. To address large scale applications, a

parallel implementation of the multigrid scheme would be required. This need is most

critical for 3-D applications. It should however be noted that parallel implementations

of line implicit solvers as well as the GauB-Seidel scheme are not trivial, especially in

an unstructured grid context.
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Multigrid Preconditioning Matrix

The linear algorithm described in Algorithm 1 may be viewed as a preconditioner for which

an iteration matrix may be constructed. This can be shown fairly easily for the V-cycle

multigrid cycle. We consider the general V(vi, v2) cycle for the two-level method but sim-

plify it by assuming that we have only one pre-smoothing and one post-smoothing i.e a

V(1,1) cycle. Let Ao represent the fine grid matrix and A 1 represent the coarse grid ma-

trix. For an initial guess u(0) = 0:

1. Symmetric pre-smoothing: U(1) = ST bo

2. Coarse grid correction:

(a) Restrict residual:

q()R(I - AoST ) bo
q(O) = RO( 0-

(b) Coarse grid solve:

q(l) = A 1 Ro (I - AoST )bo

(c) Fine grid correction:

U -(2) (1 + Poq(l)

- [ST + PoA-Ro(I - AoST )]bo
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3. Post-smoothing:

(3) = M-lb U(2) + So(bo - Aou(2 ))

= [So + S - SoAo ST + (I - SoAo)PoA_ 1 Ro(I - AoST )]bo

The multigrid iteration matix Sig now takes the form:

Smg= (I - SoAo)(I - PoAT1RoAo)(I - S Ao) (A.1)

For the extension to multiple levels and variable number of pre- and post-smoothing sweeps,

we refer to [18].



Appendix B

Nodal Agglomeration

It may be easily shown for a 1D Laplacian operator, uniform coarsening using a nodal

agglomeration results in a scaling error.

i-2 i-1I i i+1 i+2 i+3

I I I h II I
Figure B.1: ID two-grid multigrid example

Following the analysis of Mavriplis [36], let us consider a discretization of the Poisson

problem

d 2U
dxf

dx

on the 1D grid as shown in Fig. B.1. This yields

(B.1)

uj+1 - 2ui + u -1 f
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If the coarse grid is created by agglomeration of neighboring pairs of cells as shown in

Fig. B.1, the restriction operator based on injection corresponds to a simple summation of

the i - 1 and i residuals. The prolongation operator based on injection gives

i-2 =Ui-1 = I-1

Ui = Ui+1 = fi (B.3)

Ui+2 = Ui+3 = I+1

where the overbar indicates the coarse grid values. The discrete coarse grid operator at I is

obtained by the Galerkin Coarse Grid Approximation (GCA):

RAPfi = Rf (B.4)

which yields

I--1- 2I + ii+1
2h 2  =f (B.5)

This is inconsistent with a rediscretization on the coarse grid which would yield

f-1- 2ii1 + ii f(B6
4=hf (B.6)Ah2

If we now perform a similar analysis with a restriction operator based on injection and a

prolongation based on linear interpolation, the prolongation operator gives

3 1
Ui-1 = UI-1 + -UL4 4

1 3
Us = -I-1 + -Ii (B.7)4 4

3 1
Ui+2 -I + -I+14 4

Construction of the discrete coarse grid operator at point I now yields Eq. B.6. Hence, the

choice of low-order interpolants results in a scaling factor of 2 for the Laplacian operator.

Let the coarse grid matrix constructed by nodal and elemental agglomeration be A
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and AE respectively. From the analysis above,

AV = 2AE

If we now consider the multigrid iteration matrix (Eq. A.1) for these two methods, we obtain

Sy = (I - SA)(I - PAV'RA)(I - STA)

SE = (I - SA)(I - PAE'RA)(I _ STA)

(B.8)

(B.9)

The instantaneous convergence rate for the multigrid cycle at cycle n +1 is e =

may now compare the relative convergence rates for these two methods:
IrI. We

Ev IIAII H Svll IA 1 1II_ ||Sy IA-1

IISEI

11(1 - SA)I (1 - PA-RA)|I -( STA)||
(I - SA) (I - PAERA)||||(I - ST A)||

II(I-PAV1 RA)I|
(I - PA-RA)||

1 -1| PAV'R|J Ail
1 - 1| PAERIR I|AIl
1 -1| PA-'R|J ||Al

1 - 11 PAE'RjII l

Let C1 = || PA-1R|| and C2 = ||All. Since the multigrid methods are assumed to be

convergent, the condition C1C2 < 1 is satisfied. We then have:

1- 01C2
1- C1C2

=1+ 1 C1C2
2 1 - C1C2

CE



140 APPENDIX B. NODAL AGGLOMERATION



References

[1] N.A. Pierce and M.B.Giles. Preconditioning on stretched meshes. Technical Report
NA-95/10, Oxford University Computing Laboratory, 1995.

[2] V. Venkatakrishnan. A Perspective on Unstructured Grid Flow Solvers. ICA SE Report
95-3, 1995.

[3] A. Jameson. The Present Status, Challenges, and Future Developments in Com-
putational Fluid Dynamics. Proceedings of the 7th AGARD Fluid Dynamics Panel
Symposium, Seville, October 1995.

[4] A. Jameson and J.C. Vassberg. Computational Fluid Dynamics for Aerodynamic
Design: Its Current and Future Impact. 39th AIAA Aerospace Sciences Meeting and
Exhibit, Reno, Nevada, 2001-0538, 2001.

[5] E. Bertolazzi and G. Manzini. A Triangle-Based Unstructured Finite-Volume Method
for Chemically Reactive Hypersonic Flows. Journal of Computational Physics, 166:84-
115, 2001.

[6] D.J. Mavriplis. Multigrid Strategies for Viscous Flow Solvers on Anisotropic Unstruc-
tured Meshes. Journal of Computational Physics, 145:141-165, 1998.

[7] W. K. Anderson, R. D. Rausch, and D. L. Bonhaus. Implicit/multigrid algorithms for
incompressible turbulent flows on unstructured grids. J. Comput. Phys., 128:391-408,
1996.

[8] N.A. Pierce, M.B. Giles, A. Jameson, and L. Martinelli. Accelerating Three-
Dimensional Navier-Stokes Calculations. AIAA, 97-1953, 1997.

[9] D.J. Mavriplis. An Assessment of Linear Versus Non-linear Multigrid Methods for
Unstructured Mesh Solvers. Journal of Computational Physics, 175:302-325, 2001.

[10] D. A. Knoll and W. J. Rider. A multigrid preconditioned Newton-Krylov method.
SIAM J. Sci. Comput., 21:692-710, 1999.

141



REFERENCES

[11] J.M.C. Pereira, M.H. Kobayashi, and J.C.F. Pereira. A Fourth-order-Accurate Finite

Volume Compact Method for the Incompressible Navier-Stokes Solutions. Journal of

Computational Physics, 167:217-243, 2001.

[12] D.A. Knoll and V.A. Mousseau. On Newton-Krylov Multigrid Methods for the Incom-

pressible Navier-Stokes Equations. Journal of Computational Physics, 163:262-267,
2001.

[13] N.A. Pierce and M.B. Giles. Preconditioned Multigrid Methods for Compressible Flow

Calculations on Stretched Meshes. Journal of Computational Physics, 136:425-445,
1997.

[14] T. Barth, T.F. Chan, and Wei-Pai Tang. A Parallel Non-Overlapping Domain Decom-

position Algorithm for Compressible Fluid Flow Problems on Triangulated Domains.

Contemporary Mathematics, 218, 1998.

[15] C. Vuik, P. Wesseling, and S. Zeng. Krylov subspace and multigrid methods applied

to the incompressible Navier-Stokes equations. In N. D. Melson, T. A. Manteuffel,
S. F. McCormick, and C. C. Douglas, editors, Seventh Copper Mountain Conference

on Multigrid Methods, volume CP 3339, pages 737-753, Hampton, VA, 1996. NASA.

[16] A. Brandt. Multi-level adaptive technique (MLAT) for fast numerical solution to

boundary value problems. In H. Cabannes and R. Teman, editors, Proceedings of the

Third International Conference on Numerical Methods in Fluid Mechanics, volume 18
of Lecture Notes in Physics, pages 82-89, Berlin, 1973. Springer-Verlag.

[17] A. Brandt. Multi-level adaptive techniques (MLAT) for partial differential equations:

ideas and software. In J. R. Rice, editor, Mathematical Software III, pages 277-318.

Academic Press, New York, 1977.

[18] T.F. Chan, S. Go, and L. Zikatanov. Lecture Notes on Multilevel Methods for Elliptic

Problems on Unstructured Grids. VKI 28th Computational Fluid Dynamics, pages

1-76, March 1997.

[19] J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu. Convergence estimates for multigrid

algorithms without regularity assumptions. Math. Comp., 57:23-45, 1991.

[20] J. H. Bramble and J. E. Pasciak. Uniform convergence estimates for multigrid V-

cycle algorithms with less than full elliptic regularity. In Domain Decomposition

Methods in Science and Engineering: The Sixth International Conference on Domain

Decomposition, volume 157 of Contemporary Mathematics, pages 17-26, Providence,
Rhode Island, 1994. American Mathematical Society.

142



REFERENCES

[21] J. H. Bramble and J. E. Pasciak. New estimates for multigrid algorithms including
the V-cycle. Math. Comp., 60:447-471, 1993.

[22] J. Wang. Convergence Analysis Without Regularity Assumptions for Multigrid Algo-
rithms Based on SOR Smoothing. SIAM Journal on Numerical Analysis, 29(4):987-
1001, 1992.

[23] R. Ni. A Multiple-Grid Scheme for Solving the Euler Equations. AIAA, 81-1025R,
1982.

[24] A. Jameson. Solution of the Euler Equations by a Multigrid Method. Applied Math-
ematics and Computation, 13:327-356, 1983.

[25] S.R. Allmaras. Multigrid for the 2D Compressible Navier-Stokes Equations. Proceed-
ings of AIAA 1 4 th Computational Fluid Dynamics Conference, Norfolk, VA, 99-3336-
CP, 1999.

[26] V. Venkatakrishnan. Improved Convergence of Compressible Navier-Stokes Solvers.
Proceedings of AIAA 2 9th Fluid Dynamics Conference, Alburquerque, NM, 98-2967,
1999.

[27] A. Reusken. Convergence Analysis of a Multigrid Method for Convection-Diffusion
Equations. Technical Report 169, Institut fuer Geometrie und Praktische Mathematik,
RWTH Aachen, 1998.

[28] T.W. Roberts, D. Sidilkover, and R.C. Swanson. Textbook Multigrid Efficiency for
the Steady Euler Equations. 13th AIAA Computational Fluid Dynamics Conference,
97-1949, 1997.

[29] J.L. Thomas, B. Diskin, and A. Brandt. Textbook Multigrid Efficiency for the In-
compressible Navier-Stokes Equations: High Reynolds Number Wakes and Boundary
Layers. ICASE Report 99-51, 1999.

[30] A. Brandt. Barriers to Achieving Textbook Multigrid Efficiency (TME) in CFD.
ICASE Interim report No. 32, 1998.

[31] E. Nielsen, W.K. Anderson, R. Walters, and D. Keyes. Application of Newton-Krylov
Methodology to A Three Dimensional Unstructured Euler Code. AIAA, 95-1733,
1995.

[32] A. Pueyo and D.W. Zingg. An efficient newton-gmres solver for aerodynamic compu-
tations. AIAA J., 36, no. 11:1991-1997, 1998.

143



REFERENCES

[33] M. Nemec and D.W. Zingg. Towards Efficient Aerodynamic Shape Optimization

Based on the Navier-Stokes Equations. 15th AIAA Computational Fluid Dynamics

Conference, 2001-2532, 2001.

[34] P.N. Brown and Y. Saad. Hybrid Krylov Methods for Non-Linear Systems of Equa-

tions. SIAM J. Sci. Stat. Comput., 11:450-481, 1990.

[35] J. Peraire, J. Peiro, and K. Morgan. Multigrid Solutions of the 3D Compressible Euler

Equations on Unstructured Tetrahedral Grids. International Journal for Numerical

Methods in Engineering, 36:1029-1044, 1993.

[36] D.J. Mavriplis. Multigrid techniques for unstructured meshes. Technical Report 95-27,
ICASE Report 95-27, 1995.

[37] R. Bank and J. Xu. An Algorithm for Coarsening Unstructured Meshes. Numerical

Mathematics, 73:1-36, 1996.

[38] T.F. Chan, J. Xu, and L. Zikatanov. An Agglomeration Multigrid Method for Un-
structured Grids. Technical Report 98-8, Computational and Applied Mathematics

(CAM)/UCLA, February 1998.

[39] N. Pierce. Preconditioned Multigrid Methods for Compressible Flow Calculation on

Stretched Meshes. PhD thesis, University of Oxford, 1997.

[40] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp.,
31:333-390, 1977.

[41] A. Schmilovic and D.A. Caughey. Application of the Multigrid method to Calcu-

lations of Transonic Potential Flow about Wing-Fuselage Combinations. Journal of

Computational Physics, 48:462-484, 1982.

[42] H. Deconinck and C. Hirsch. A multigrid method for the transonic full potential

equation discretized with finite elements on an arbitrary body fitted mesh. J. Comput.

Phys., 48:344-365, 1982.

[43] D. C. Jespersen. A multigrid method for the Euler equations. AIAA, 83-0124, 1983.

[44] J. W. Ruge and K. Stfiben. Algebraic multigrid (AMG). In S. F. McCormick, edi-
tor, Multigrid Methods, volume 3 of Frontiers in Applied Mathematics, pages 73-130.

SIAM, Philadelphia, PA, 1987.

[45] Q. Chang, Y.S. Wong, and H. Fu. On the Algebraic Multigrid Method. Journal of

Computational Physics, 125:279-292, 1996.

144



REFERENCES

[46] P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons, Chichester,
1992.

[47] M. Brezina, A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, T.A. Manteuffel, S.F.
McCormick, and J.W. Ruge. Algebraic Multigrid Based on Element Interpolation
(AMGe). SIAM, 22:1570-1592, 2000.

[48] S.R. Elias, G.D. Stubley, and G.D. Raithby. An Adaptive Agglomeration method
for Additive Correction Multigrid. International Journal for Numerical Methods in
Engineering, 40:887-903, 1997.

[49] B.R. Hutchinson and G.D. Raithby. A Multigrid Method Based on the Additive
Correction Strategy. Numerical Heat Transfer, 9:511-537, 1986.

[50] M. Raw. Robustness of Coupled Algebraic Multigrid for the Navier-Stokes Equations.
AIA A, pages 1-16, 1996.

[51] R. Webster. An Algebraic Multigrid Solver for Navier-Stokes Problems. International
Journal for Numerical Methods in Fluids, 8:761-780, 1994.

[52] J. Jones and P.S. Vassilevski. AMGe Based on Element Agglomeration. Technical
Report UCRL-JC-135441, CASC/Lawrence Livermore National Laboratory, 1999.

[53] J. Fuhrman. Outlines of a modular algebraic multilevel method. In AMLI'96: Proceed-
ings of the Conference on Algebraic Multilevel Iteration Methods with Applications,
volume 1, pages 141-152, Nijmegan, The Netherlands, 1996. University of Nijmegan.

[54] V.E. Henson and P.S. Vassilevski. Element Free AMGe: General Algorithms for
Computing Interpolation Weights in AMG. Technical Report UCRL-JC-139098,
CASC/Lawrence Livermore National Laboratory, 2000.

[55] M.M. Gupta, J. Kouatchou, and J. Zhang. An Accurate and Stable Multigrid Method
for Convection-Diffusion Equations. Technical report, Dept. of Mathematics, The
George Washington University, October 1995.

[56] D.J. Mavriplis. Three Dimensional Unstructured Multigrid for the Euler Equations.
AIAA, 91-1549, 1991.

[57] M. P. Leclercq and B. Stoufflet. Characteristic multigrid method application to solve
the Euler equations with unstructured and unnested grids. J. Comput. Phys., 104:329-
346, 1993.

[58] W.L. Wan, T.F. Chan, and B. Smith. An Energy-Minimizing Interpolation for Robust
Multigrid Methods. SIAM, 21(4):1632-1649, 2000.

145



REFERENCES

[59] P. Vanek, J. Mandel, and M. Brezina. Algebraic multigrid based on smoothed aggre-

gation for second and fourth order problems. Computing, 56:179-196, 1996.

[60] P. Van~k, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation

for second and fourth order elliptic problems. In N. D. Melson, T. A. Manteuffel,
S. F. McCormick, and C. C. Douglas, editors, Seventh Copper Mountain Conference

on Multigrid Methods, volume CP 3339, pages 721-735, Hampton, VA, 1996. NASA.

[61] T.F. Chan and W.L. Wan. Robust Multigrid methods for Elliptic Linear Systems.

Technical Report 99-30, Computational and Applied Mathematics (CAM)/UCLA,
September 1999.

[62] D. Braess. Towards algebraic multigrid for elliptic problems of second order. Com-

puting, 55:379-393, 1995.

[63] D.J. Mavriplis. Multigrid Approaches to Non-linear Diffusion Problems on Unstruc-

tured Meshes. ICASE Report 2001-3, 2001.

[64] A. Brandt. Multigrid techniques: 1984 guide with applications to fluid dynamics.

GMD-Studien Nr. 85. Gesellschaft fir Mathematik und Datenverarbeitung, St. Au-

gustin, 1984.

[65] A. Brandt and I. Yavneh. Accelerated multigrid convergence and high-reynolds recir-

culating flows. SIAM J. Sci. Stat. Comput., 14:607-626, 1993.

[66] J.L. Thomas, B. Diskin, and A. Brandt. Distributed Relaxation Multigrid and Defect

Correction Applied to the Compressible Navier-Stokes Equations. AIAA, 99-3334,
1999.

[67] H. Nishikawa and B. Leer. Optimal Multigrid Convergence by Elliptic/Hyperbolic

Splitting. AIAA, 2002-2951, 2002.

[68] R. Becker, C. Johnson, and R. Rannacher. Adaptive error control for multigrid finite

element methods. Computing, 55:271-288, 1995.

[69] J. H. Bramble and J. E. Pasciak. The analysis of smoothers for multigrid algorithms.

Math. Comp., 58:467-488, 1992.

[70] S.R. Allmaras. Analysis of Semi-Implicit preconditioners for Multigrid Solution of the

2-D Compressible Navier-Stokes Equations. Proceedings of AIAA 1 2 th Computational

Fluid Dynamics Conference, San Diego, 95-1651-CP, 1995.

[71] D.J. Mavriplis. Directional Agglomeration Multigrid Techniques for High Reynolds

Number Viscous Flows. ICASE Report 98-7, pages 1-20, 1998.

146



REFERENCES

[72] E. Morano, D. J. Mavriplis, and V. Venkatakrishnan. Coarsening strategies for un-
structured multigrid techniques with application to anisotropic problems. In N. D.
Melson, T. A. Manteuffel, S. F. McCormick, and C. C. Douglas, editors, Seventh
Copper Mountain Conference on Multigrid Methods, volume CP 3339, pages 591-606,
Hampton, VA, 1996. NASA.

[73] G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall,
Englewood Cliffs, NJ, 1973.

[74] G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University
Press, Baltimore, MD, 2nd ed. edition, 1989.

[75] Clas Johnson. Numerical Solutions of Partial Differential Equations by the Finite
Element Method. Cambridge University Press, New York, NY, 1987.

[76] W. Hackbusch. Multigrid Methods and Applications, volume 4 of Computational Math-
ematics. Springer-Verlag, Berlin, 1985.

[77] J. H. Bramble and J. E. Pasciak. New convergence estimates for multigrid algorithms.
Math. Comp., 49:311-329, 1987.

[78] A. Brandt. Rigorous quantitative analysis of multigrid, I: Constant coefficients two-
level cycle with L 2-norm. SIAM J. Numer. Anal., 31:1695-1730, 1994.

[79] S. Zhang. Optimal order nonnested multigrid methods for solving finite element
equations. III. On degenerate meshes. Math. Comput., 64:23-49, 1995.

[80] S. Zhang. Optimal order nonnested multigrid methods for solving finite element
equations. I. On quasi-uniform meshes. Math. Comput., 55:23-36, 1990.

[81] M. H. Lallemand, H. Steve, and A. Dervieux. Unstructured multigridding by volume
agglomeration: current status. Comput. Fluids, 21:397-433, 1992.

[82] B. Koobus, M. H. Lallemand, and A. Dervieux. Unstructured volume agglomeration
MG: solution of the Poisson equation. Int. J. Numer. Methods Fluids, 18:27-42, 1994.

[83] T.F. Chan and P. Vanek. Multilevel Algebraic Elliptic Solvers. Technical Report 99-9,
Computational and Applied Mathematics (CAM)/UCLA, February 1999.

[84] V. Venkatakrishnan and D. Mavriplis. Agglomeration Multigrid for the 3D Euler
Equations. AIAA, 94-0069, 1994.

[85] National institute of standards and definitions.
http://hissa.nist.gov/dads/terms.html.

147



REFERENCES

[86] I.M. Llorente and N.D. Melson. Robust Multigrid Smoothers for Three Dimensional

Elliptic Equations with Strong Anisotropies. ICASE Report NASA/CR-1998-208700,
1998.

[87] B. Diskin. Solving Upwind-biased Discretizations II: Multigrid Solver Using Semi-
coarsening. ICASE Report 99-25, 1999.

[88] J. Bey and Arnold Reusken. On the Convergence of Basic Iterative Methods for

Convection-Diffusion Equations. Numer. Lin. Alg. Appl., 6:329-352, 1999.

[89] S. Zeng and P. Wesseling. Numerical Study of a Multigrid Method with four smoothing
methods for the Incompressible Navier-Stokes equations in general coordinates. In

N. D. Melson, T. A. Manteuffel, and S. F. McCormick, editors, Sixth Copper Mountain

Conference on Multigrid Methods, volume CP 3224, pages 691-708, Hampton, VA,
1993. NASA.

[90] J. H. Bramble and J. E. Pasciak. The analysis of smoothers for multigrid algorithms.

In T. A. Manteuffel and S. F. McCormick, editors, Preliminary Proceedings of the

Fifth Copper Mountain Conference on Multigrid Methods, volume 1, pages 153-175,
Denver, 1991. University of Colorado.

[91] F. Shakib, T.J.R. Hughes, and Z. Johan. A New Finite Element Formulation for Com-
putational Fluid Dynamics : X. The compressible Euler and Navier-Stokes equations.

Comp. Meth. in Appl. Mech. and Engnr., 89:141-219, 1991.

[92] A.N. Brooks and T.J.R. Hughes. Streamline Upwind/Petrov Galerkin formulations

for Convection Dominated Flows With Particular Emphasis on the Incompressible

Navier-Stokes Equations. Computer Methods in Applied Mechanics and Engineering,
32:199-259, 1982.

[93] T.J.R. Hughes, M. Mallet, and A. Mizukami. A New Finite Element Formulation for

Computational Fluid Dynamics: II. Beyond SUPG. Computer Methods in Applied

Mechanics and Engineering, 54:341-355, 1986.

[94] T.J.R. Hughes, M. Mallet, and A. Mizukami. A New Finite Element Formulation for

Computational Fluid Dynamics: III. The Generalized Streamline Operator for Mul-

tidimensional Advective-Diffusive Systems. Computer Methods in Applied Mechanics

and Engineering, 58:305-328, 1986.

[95] T.J.R. Hughes, L.P. Franca, and G.M. Hulbert. A New Finite Element Formulation

for Computational Fluid Dynamics: VIII. The Galerkin Least-Squares method for ad-

vective diffusive equations. Computer Methods in Applied Mechanics and Engineering,
73:173-189, 1989.

148



REFERENCES

[96] F. Shakib. Finite Element Analysis of the compressible Euler and Navier-Stokes equa-
tions. PhD thesis, Dept. of Mech. Engineering, Stanford, November 1988.

[97] J.C. Carette. Adaptive Unstructured Mesh Algorithms and SUPG Finite Element
Method for Compressible High Reynolds Number Flows. PhD thesis, von Karman
Institute, 1997.

[98] A. Mizukami. An Implementation of the Streamline-Upwind/Petrov-Galerkin Method
for Triangular Elements. Computer Methods in Applied Mechanics and Engineering,
pages 357-364, 1985.

[99] I. Christie, D.F. Griffiths, A.R. Mitchell, and O.C. Zienkiewicz. Finite element meth-
ods for second order differential equations with significant first derivatives. Int. J.
Num. Meth. Engr., 10:1389-1396, 1976.

[100] B. van Leer, W. T. Lee, P. L. Roe, K. G. Powell, and C. H. Tai. Design of optimally
smoothing multistage schemes for the Euler equations. Comm. Appl. Num. Methods,
8:761-769, 1992.

[101] A. Jameson, W. Schmidt, and E. Turkel. Numerical Solution of the Euler Equations by
Finite Volume Methods using Runge-Kutta Time Stepping Schemes. AIAA, 81-1259,
1981.

[102] A. Jameson. Numerical solution of the Euler equations for the compressible inviscid
fluids. In F. Angrand, A. Dervieux, J. A. Desideri, and R. Glowinski, editors, Numer-
ical Methods for the Euler Equations of Fluid Dynamics, volume 21 of Proceedings in
Applied Mathematics, pages 199-245. SIAM, Philadelphia, 1985.

[103] C.H Tai. Acceleration Techniques for Explicit Euler Codes. PhD thesis, Dept. of Aero.
Engineering, University of Michigan, 1990.

[104] J. Lynn. Multigrid Solution of the Euler Equations with Local Preconditioning. PhD
thesis, Dept. of Aero. Engineering, University of Michigan, 1995.

[105] D.J. Mavriplis. Large-scale Parallel Viscous Flow Computations Using an Unstruc-
tured Multigrid Algorithm. ICASE Report 99-44, 1999.

[106] T.F. Chan and P. Vanek. Detection of strong coupling in algebraic multigrid solvers.
Technical Report 00-10, Computational and Applied Mathematics (CAM)/UCLA,
March 2000.

[107] A.Jameson and T.J.Baker. Solution of the Euler Equations for Complex Geometries.
Proceedings of AIAA 6 jh Computational Fluid Dynamics Conference, New York, pages
293-302, 1983.

149



REFERENCES

[108] S. Ta'asan. Canonical-variables Multigrid Method for Steady-State Euler Equations.

ICASE Report 94-14, 1994.

[109] D. Sidilkover and U. M. Ascher. A multigrid solver for the steady state Navier Stokes

equations using the pressure Poisson formulation. Comput. Appl. Math., 14:21-35,
1995.

[110] T.W. Roberts and R.C. Swanson. Extending ideally Converging Multigrid methods

to Airfoil Flows. 14th AIAA Computational Fluid Dynamics Conference, 99-3337,
1999.

[111] D. Sidilkover. A Genuinely Multidimensional Upwind Scheme and Efficient Multigrid
Solver for the Compressible Euler Equations. ICASE Report 94-84, 1994.

[112] D. Sidilkover. Some Approaches Towards Constructing Optimally Efficient Multigrid

Solvers for the Inviscid Flow Equations. Computers and Fluids, 28:551-557, 1999.

[113] T.W. Roberts, D. Sidilkover, and J.L. Thomas. Multigrid Relaxation of a Factoriz-

able,Conservative Discretization of the Compressible Flow Equations. AIAA Fluids

2000 Conference, 00-2285, 2000.

[114] J.S. Wong, D.L. Darmofal, and J. Peraire. The Solution of the Compressible Euler

Equations at Low Mach Numbers using a Stabilized Finite Element Algorithm. Comp.

Meth. in Appl. Mech., 190:5719-5737, 2001.

[115] T.J.R. Hughes, L.P. Franca, and M. Mallet. A New Finite Element Formulation for

Computational Fluid Dynamics: I. Symmetric Forms of the compressible Euler and

Navier-Stokes equations and the second law of thermodynamics. Computer Methods

in Applied Mechanics and Engineering, 54:223-234, 1986.

[116] T. Barth. Numerical Methods for Gasdynamic Systems on Unstructured Meshes.

An Introduction to Recent Developments in Theory and Numerics Conservation Laws

Lecture Notes in Computational Science and Engineering, pages 195-284, 1998.

[117] A. Harten. On the Symmetric Form of Systems of Conservation Laws with Entropy.

Journal of Computational Physics, 49:151-164, 1983.

[118] S.K. Godunov. An Interesting Class of Quasilinear Systems. Dokl. Akad. Nauk. SSSR,
139:521-523, 1961.

[119] M.S. Mock. Systems of Conservation Laws of Mixed Type. J. Diff. Eqns, 37:70-88,

1980.

[120] P.L. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes.

Journal of Computational Physics, 43:357-372, 1981.

150



REFERENCES

[121] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Math. Comp.,
31:333-390, 1977.

[122] M.Giles. Energy Stability Analysis of Multistep Methods on Unstructured Meshes.
Technical Report CFDL-TR-87-1, Computational Fluid Dynamics Laboratory/M.I.T,
1987.

[123] A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, J.E. Jones, T.A. Manteuffel, S.F.
McCormick, G.N. Miranda, and J.W. Ruge. Robustness and Scalability of Algebraic
Multigrid. SIAM, 21:1886-1908, 2000.

[124] D.J. Mavriplis. Personal communication, 2002.

[125] R.S. Montero and I.M. Llorente. Robust Multigrid Algorithms for the Incompressible
Navier-Stokes Equations. ICASE Report 2000-27, 2000.

[126] F. Shakib and T.J.R. Hughes. A New Finite Element Formulation for Computa-
tional Fluid Dynamics : IX. Fourier Analysis of Space-Time Galerkin/Least Squares
Algorithms. Comp. Meth. in Appl. Mech. and Engnr., 87:35-58, 1991.

[127] K. Jansen T.J.R. Hughes, G. Hauke and Z. Johan. Current reflections on stabilized
finite element methods for computational fluid mechanics. In Finite Elements in
Fluids; New Trends and Applications, volume 1, pages 44-68. SEMNI, Barcelona,
1993.

[128] K.E. Jansen. Unstructured grid large eddy simulation of flow over an airfoil. CTR
Annual Research Briefs 1994, pages 161-173, 1994.

[129] K.E. Jansen. Large-eddy simulation using unstructured grids. Invited paper in Ad-
vances in DNS/LES, Greyden Press, pages 117-128, 1997.

[130] K.E. Jansen. Computation of turbulence with stabilized methods. Invited paper in

4th Japan- US Symposium on Finite Element Methods in Large-Scale Computational
Fluid Dynamics, 1998.

[131] K.E. Jansen. A stabilized finite element method for computing turbulence. Computer
Methods in Applied Mechanics and Engineering, 174:299-317, 1999.

[132] A.C. Galeio and E.G. Dutra do Carmo. A consistent approximate upwind Petrov-
Galerkin method for convection-dominated problems. Comp. Meth. Appl. Appl. Mech.
Engrg., 68, 1989.

[133] T.J.R. Hughes and M. Mallet. A New Finite Element Formulation for Computa-
tional Fluid Dynamics: IV. A Discontinuity Capturing Operator for Multidimensional

151



REFERENCES

Advective-Diffusive Systems. Computer Methods in Applied Mechanics and Engineer-

ing, 58:329-336, 1986.

152


