
-- A

Hazard Elimination Using Backwards Reachability
Techniques in Discrete and Hybrid Models

by
Natasha Anita Neogi

M.Phil. Honours, Theoretical Physics
Cambridge University, 1997

Submitted to the Department of Aeronautics and Astronautics in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

December 3 rd, 2001

Massachusetts Institute of Technology, 20 . All Rights Reserved.

AERO

MASSACHUJSETTS INSTITUTE
OF TECHNOLOGY

AUG 13 2002

LIBRARIES

Author...........
Deaimet fA-elongfutics -anld As oauws

December 3 rd 2001

Certified by
/ Nancy G. Leveson, Professor

Committee Chair, Department of Aeronautics and Astronautics

Certified by Nancy A. Lynch, Professor

Department of Electrical Engineering and Computer Science

C ertified b y ..
Eric Feron, Associate Professor

Department of Aeronautics and Astronautics

Certified by
Munther DahleProfessor

Department of Electrical Engineering and Computer Science

A ccepted by
Wallace Vander Velde

Chairman, Department Graduate Committee

Hazard Elimination Using Backwards Reachability
Techniques in Discrete and Hybrid Models

by

Natasha A. Neogi

Submitted to the Department of Aeronautics and Astronautics
on February 1st, 2002 in partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

ABSTRACT
One of the most important steps in hazard analysis is determining whether a particular design can
reach a hazardous state and, if it could, how to change the design to ensure that it does not. In most
cases, this is done through testing or simulation or even less rigorous processes -- none of which
provide much confidence for complex systems. Because state spaces for software can be enormous
(which is why testing is not an effective way to accomplish the goal), the innovative Hazard
Automaton Reduction Algorithm (HARA) involves starting at a hypothetical unsafe state and
using backwards reachability techniques to obtain enough information to determine how to design
in order to ensure that state cannot be reached.

State machine models are very powerful, but also present greater challenges in terms of reachabil-
ity, including the backwards reachability needed to implement the Hazard Automaton Reduction
Algorithm. The key to solving the backwards reachability problem lies in converting the state
machine model into a controls state space formulation and creating a state transition matrix. Each
successive step backward from the hazardous state then involves only one n by n matrix manipula-
tion. Therefore, only a finite number of matrix manipulations is necessary to determine whether or
not a state is reachable from another state, thus providing the same information that could be
obtained from a complete backwards reachability graph of the state machine model. Unlike model
checking, the computational cost does not increase as greatly with the number of backward states
that need to be visited to obtain the information necessary to ensure that the design is safe or to
redesign it to be safe. The functionality and optimality of this approach is proved in both discrete
and hybrid cases.

The new approach of the Hazard Automaton Reduction Algorithm combined with backwards
reachability controls techniques was demonstrated on a blackbox model of a real aircraft altitude
switch. The algorithm is being implemented in a commercial specification language (SpecTRM-
RL).

SpecTRM-RL is formally extended to include continuous and hybrid models. An analysis of the
safety of a medium term conflict detection algorithm (MTCD) for aircraft, that is being developed
and tested by Eurocontrol for use in European Air Traffic Control, is performed. Attempts to vali-
date such conflict detection algorithms is currently challenging researchers world wide. Model
checking is unsatisfactory in general for this problem because of the lack of a termination guaran-
tee in backwards reachability using model checking. The new state-space controls approach does
not encounter this problem.

Thesis Supervisor: Nancy G. Leveson, Ph.D.
Title: Professor of Aeronautics and Astronautics

2

To my Family, without whom I would not have been myself and
thus none of this would ever have been possible.

"La perfection est atteinte non quand il ne reste rien a ajouter,
mais quand il ne reste rien a enlever."

Most especially

"Nothing," he said,

to "you-know-who "! For my very own
ChristopherRobin...

Pooh!" he whispered.
"Yes?"

taking Pooh's paw. "I just wanted to be
of you."

And to Mr. John Pivnick, my own "October Sky" story. You are
living proof that grade 10 math teachers do make a difference.

sure

When we ask advice, we are usually looking for an accomplice.

Lao Tze (604-531 B.C.)

Acknowledgements
As I come to the end of my Ph.D at MIT, I find myself with so many people deserving

of my honest thanks for their interest, help and attention to my thesis, I find myself at a
loss as to where to begin! I can only hope to acknowledge a fraction of the people who
have contributed to making my tenure at MIT, both academic and personal, a joy and plea-
sure.

First and foremost, I must thank my advisor, Prof. Nancy Leveson, without whom I
would never have gotten my degree. After a traumatic qualifier exam experience and a try-
ing spring semester, her kindness, encouragement and sheer love of academic research, all
of which she conveyed to me upon our first meeting, persuaded me that a Ph.D could be a
very rewarding experience. I will be forever indebted to Nancy Leveson for introducing
me to the exciting new field of software safety while simultaneously supporting and steer-
ing me in directions in which I could flourish both academically and personally. I cannot
count the times I spent in her office, benefiting from her insight in determining what was a
realistic problem, and her knack for asking the correct questions that no one else was
thinking about. Her ability to mentor her students while simultaneously lending a sympa-
thetic ear to any troubles, be they scholastic or not, will be a trait that I shall always strive
to emulate.

A semester into my work on software safety, I was privileged to be introduced to Prof.
Nancy Lynch. I will always stand in awe of her mathematical brilliance, and her constant
patience with my attempts to formally define and prove properties in a thoroughly logical
manner. Her enthusiasm towards my research, and her great attention to detail formed the
cornerstone of the theoretical backbone of my thesis. I could never have articulated the
algorithm which serves as an essential part of my thesis with one-tenth of the precision
that I managed without her constant guidance, and perpetual willingness to challenge any
point that may have been misconstrued or unclear. I can only aspire to one day achieve her
level of clarity, fluency and succinctness in the language of mathematics.

I was fortunate enough to have the help of two of the best control theorists that I have
ever known. Prof. Eric Feron was always ready to offer council whenever I hit a road-
block, and provided essential advice over lunches at the Royal East. His ability to provide
a humourous slant to any trying aerodynamical problem was always enough to motivate
me to continue! I am left continually amazed by Prof. Munther Dahleh's ability to reduce
even the most difficult of problems into the simplest of concepts. I cannot quantify the
amount of wisdom gleaned from our early morning cups of coffee at Toscinini's speaking
of reachability, controllablity and manifold theory. Thanks are also due to Prof. J.P.
Clarke, who provided a firm grounding in all things human-factors related, as well as a
great deal of knowledge on all things M.I.T related.

3

A year and a half ago, I was gifted with the opportunity to meet "Dr." Professor Kris-
tina Lundqvist. Not only did she provide academic, moral and emotional support through
the latter part of this degree, she is also the best roommate anyone could have hoped for! I
will always treasure your thoughtfulness and friendship, along with your wit and wisdom.
I can never repay all of the kindness and consideration showered on me by Karen Marais.
She is easily the wisest person I have ever met, and all of the times we have shared are a
pearl beyond price at a place like MIT. Karen, you have the most generous spirit of anyone
I know, and you deserve the best out of life! I would like to thank Prof. Margaret Storey,
for all of those pep talks, which helped me continue when I felt hopeless! I could never
forget to acknowledge the help and advice provided to me by my officemate, Dr. Ed Bach-
elder, and his wife Laura who are a veritable whirlwinds of thought and motion! Both of
your compassion and caring make you treasured friends. Mr. Marc Zimmerman was
essential to addicting me to all things internet, and providing a shoulder to cry on as well
as an always favourable outlook to any sad situation. Tom Reynolds and Hayley Davison
are two of my very favourite people in the world, and always have an encouraging word
for me whenever we meet! Your sensitivity and steadfast friendship have provided me
with an anchor for my time at MIT!

It is said that it takes an entire village to raise a child, and I must concur completely, as
it took the entire software engineering lab to cultivate my thesis. I must thank Mirna
Daouk, for the wonderful Friday gossip sessions, and JK Srinivassen for his tea and coffee
runs, both of which were indispensable. Maxim de Villepin, Israel Navarro, Masafumi
and Sayori Katahira, and John Bellingham kept me sane during the past year, and helped
organise countless birthday lunches creating an atmosphere of camaraderie. Victor Chong,
Polly Allen, Katie Weiss, Nick DuLac Elwin Ong and Tomas Viguier have provided an
invigorating new spirit to the lab this year!

Many of my closest friends from MIT I met the first year I was here, at the MVL, and
we subsequently went through qualifiers together, acting to cement an already formidable
bond. Miwa Hayashi is one of the most perceptive people it has ever been my pleasure to
meet, and her friendship has provided a strong keystone to put myself up against during
the most trying times. I would never have had the courage to take my written exams with-
out your support. Susanne 'the mommy' Essig has my eternal admiration for being able to
have it all: pass qualifiers, get married, have a baby and do your PhD! This, of course,
leads directly to our resident lab genius, Joe Saleh. After four and a half years, the scope
of his knowledge and the breadth of his experience leaves me completely awestruck: I can
never recall a conversation with you in which I did not learn something about either you,
or I, or the world in general. I am proud to have you as such a good friend.

I am indebted to Emilio Frazzoli and Kazutaka Takahashi, for their wisdom in all mat-
ters pertaining to controls. I could not imagine any acknowledgements without mention-
ing my dear friends Tulika Bose and Zeeya Merali, X-Stalkers from Cambridge
Extrodinaire. I also have to thank Thalia Papadoupolou (classicist goddess), Misun
(mommy) Yun and Anabela (Aliens?) Carvalho, Flatmates from Cambridge Extrodinaire.

And, most importantly, to my family, and to you-know-who: "...it is much more
Friendly with two". You are everything to me, and will always be.

4

Table of Contents

Abstract ... 2
Acknow ledgem ents .. 3
List of Figures .. 7
N om enclature .. 8
1 Introduction ... 15

1.1 Brief H istorical O verview ... 16
1.2 System Safety ... 20
1.3 Current Softw are Safety Techniques ... 25
1.4 Safety vs. Reliability .. 29
1.5 Objectives: Can We Get to Where We Want to Go? 31
1.6 Scope of D issertation .. 32

2 Literature Review ... 35
2.1 H azard Analysis ... 35
2.2 M odel Checking ... 44

3 Process Control System M odelling .. 53
3.1 D iscrete (Logical) System M odelling .. 53
3.2 Continuous (Evolving) System M odelling ... 55
3.3 H ybrid System M odelling .. 57
3.4 M odel Checking Tools for H ybrid System s .. 69
3.5 Specification Tools and Requirements Methodology .. 74

4 Reachability ... 83
4.1 Finite A utom aton M odels ... 83
4.2 Markov Models ... 84
4.3 D iscrete Tim e State Space System s ... 85
4.4 Continuous Tim e State Space System s .. 88
4.5 Converting D FA m odels into State Space M odels ... 92

5 A State Machine Hazard Analysis and Backwards Reachability 101
5.1 M otivation ... 101
5.2 Informally Defining the Hazard Elimination Algorithm 103
5.3 D efining H azard A utom ata .. 104
5.4 H azard A utom aton Reduction A lgorithm .. 107
5.5 Functionality of the Hazard Automaton Reduction Algorithm 111
5.6 Optimality of the Hazard Automaton Reduction Algorithm 113
5.7 Hybrid Extension of the Hazard Automaton Reduction Algorithm 116

6 A ltitude Switch Exam ple ... 128
6.1 The A ltitude Sw itch ... 128
6.2 SpecTRM -RL M odel of the A ltitude Sw itch ... 130
6.3 A nalysis of H azardous Situation .. 131
6.4 Finding the Critical State ... 135
6.5 Com parison w ith Other M ethods of H azard Analysis ... 137

7 M edium Term Conflict D etection Exam ple ... 142
7.1 M TCD Background ... 142
7.2 M odelling Concerns .. 147

5

7.3 Continuous Model of the Aircraft .. 150
7.4 Hybrid Model of Medium Term Conflict Detection Algorithm 159
7.5 Hazard Automaton Reduction Algorithm Applied to MTCD 165

8 C on clu sion s ... 16 8
8.1 State Explosion and Scalability ... 168
8.2 Hybrid Systems and Hazard Elimination ... 169
8.3 A F in al W ord ... 17 1

R eferen ces ... 17 3
Appendix A: Level 3 SpecTRM-RL Model of Altitude Switch 182
Appendix B: Matrices for State Space Description of the Altitude Switch 204
Appendix C: Level 3 of Hybrid SpecTRM-RL Model of MTCD 206

6

List of Figures

Figure 1.1: Three M ile Island .. 19
Figure 1.2: A riane 5 A ccident .. 22
Figure 1.3: Mars Polar Lander (Simulation) ... 23
Figure 3.1: Form of a SpecTRM-RL Model .. 76
Figure 3.2: Sample And/Or Table from the Altitude Switch Specification 77
Figure 3.3: Process Control Loop ... 78
Figure 3.4: Form of a Hybrid SpecTRM-RL Model .. 82
Figure 4.1: Finite Automaton of the Gambler's Ruin Problem 94
Figure 4.2: Markov Chain of the Gambler's Ruin Problem .. 95
Figure 4.3: Transition M atrix P ... 96
Figure 4.4: State Space Formulation of the Gambler's Ruin Problem 96
Figure 6.1: Altitude Switch Component Diagram ... 129
Figure 6.2: SpecTRM-RL Model of Altitude Switch upon Startup 131
Figure 6.3: Hazardous State of Altitude Switch Model ... 132
Figure 6.4: A Critical State Corresponding to Previous Hazard 136
Figure 7.1: Aircraft Conflict (Buffer Violation) .. 143
Figure 7.2: Special Use Airspace Penetration ... 144
Figure 7.3: Descent Below Lowest Usable Flight Level ... 145
Figure 7.4: MTCD and its Input/Output Environment .. 146
Figure 7.5: Trajectory and B uffer .. 148
Figure 7.6: Linear and Angular Position and Velocity of Aircraft 150
Figure 7.7: Control Angles: Aileron, Elevator and Rudder ... 153
Figure 7.8: SpecTRM-RL Model of MTCD .. 160
Figure 7.9: Trajectory Element in Hybrid SpecTRM-RL .. 161
Figure 7.10: M T A PW Shell .. 163
Figure 7.11: M TA PW K ernel .. 164

7

"Then you should say what you mean," the March Hare
went on.

"I do, " Alice hastily replied; "at least I mean what I say,
that's the same thing, you know."

"Not the same thing a bit!" said the Hatter "Why, you might
just as well say that "I see what I eat" is the same thing as "I

eat what I see!"

Lewis Carroll, Alice in Wonderland

Nomenclature

Chapter 2

6: a transition relation, where 8 = Q x Q

Q: a non-empty set of states

QO: a non-empty set of start states

q: single state in a state machine

Chapter 3

8

Chapter 4

9

Chapter 5
Q: Set of States of the Hazard Automaton A

qO: Start State of the Hazard Automaton A

QH: Set of High Risk States of the Hazard Automaton A

qH: High Risk State of the Hazard Automaton A, qH e QH

10

QL: Set of Low Risk States of the Hazard Automaton A

qL: Low Risk State of the Hazard Automaton A, qL e QL

z: Set of Hazardous States of the Hazard Automaton A

z: Hazardous State of the Hazard Automaton, z e Z

Z: Input Alphabet of the Hazard Automaton A

8: Transition function of the Hazard Automaton A where 8: Q x I -> Q

A: Hazard Automaton where A = (Q, qo, QH, QL1 Z, Y- 8)

w : Finite string of input elements of Z in A

Z*: Set of finite strings of elements of Z

a: Input symbol of the Hazard Automaton A where a E X

q: State of the Hazard Automaton A

Pq: Set of Predecessor States of q in the Hazard Automaton A

Sq: Set of Successor States of q in the Hazard Automaton A

8*: Reachability function for the Hazard Automaton A where 8*: Q x X* - Q

Rq: Set of Reachable States from the state q in the Hazard Automaton A

Aq: Set of Ancestor States from the state q in the Hazard Automaton A

C: Set of Critical States for the Hazard Automaton A

q: Critical State for the Hazard Automaton A, has a low risk sucessor and a hazard-

ous descendent

A': Reduced Hazard Automaton of A, where A' = (Q, qo, QL, QH1 Z, Z, 8') and 8'c- 8

qj: ith state in a valid execution ... qiayq, 1G.I... of the Hazard Automaton A

ay: ith input in a valid execution ...qjjq + I1 ... of the Hazard Automaton A

P,,.A: Set of Predecessor States of q for the reduced Hazard Automaton A'

W: External Variables in a hybrid Hazard Automaton HA

X: Internal Variables in a hybrid Hazard Automaton HA

11

v: Variables in a hybrid Hazard Automaton HA . V = W u X.

Q: States of the hybrid Hazard Automaton HA. Q = val(X).

e): Start states of the hybrid Hazard Automaton HA .

E: External Actions of the hybrid Hazard Automaton HA

H: Internal Actions of the hybrid Hazard Automaton HA

Ac: Actions of the hybrid Hazard Automaton HA, Ac = E u H.

a : Action of the hybrid Hazard Automaton HA , a e A c

D : Discrete transition of the hybrid Hazard Automaton HA , D = val(X) x Ac x val(X)

T: Set of valuations of V that obey prefix, suffix and concatenation closure for the

hybrid Hazard Automaton HA, set of Trajectories of the hybrid Hazard Automa-

ton HA.

T: Trajectory of hybrid Hazard Automaton HA, T E T

HA: hybrid Hazard Automaton, HA = (W, X, Q, E, E, H, D, T).

a1 : i-th action in a valid execution of the hybrid Hazard Automaton HA, a, e Ac

Ti: i-th trajectory in a valid execution of the of hybrid Hazard Automaton HA, T, E T

a: Execution Fragment of a hybrid Hazard Automaton HA. a = ... t a,, ri ai +..

fragsHA: Set of valid execution fragments of HA, u. e fragsHA

trace(a): External behaviour of the hybrid Hazard Automaton HA during the execu-

tion fragment a

tracesHA: Set of traces of external behaviour of the hybrid Hazard Automaton HA

firstqt,: First state in the trajectory 1i of the hybrid Hazard Automaton HA

lastqTi: Last state in the trajectory r1 of the hybrid Hazard Automaton HA

TL: Set of low risk trajectories for the hybrid Hazard Automaton HA

TH: Set of high risk trajectories for the hybrid Hazard Automaton HA TC

12

TC: Critical trajectory, has a low risk trajectory sucessor and a hazardous trajectory

descendent.

13

14

Alice came to afork in the road.
"Which road do I take?" she asked.

"Where do you want to go?" responded the Chesire Cat.
"I don't know," Alice answered.

"Then," said the cat, "it doesn't really matter."

Lewis Carrol: Alice in Wonderland

CHAPTER 1
When one does something right, one only confirms what is
already known: how to do it. A mistake is an indicator of a
gap in one's knowledge. Learning takes place when a mis-

take is identified, its producers are identified and it is
corrected.

R.L. Ackoff, 'Its a Mistake!', Systems Practice, 1994

One can only show the presence of errors, not their
absence.

John Djikstra

Introduction
Etymologically, the word safe is traceable to several sources. For example, the Latin sal-

vus translates into safe, whole, or healthy and is akin to salus, which may be translated as

health or safety. The derivation from the Greek relates to the word holos, which means

complete or entire; and the Sanskrit word sarva means unharmed or entire. The process by

which these roots were transformed into the modem adjective safe becomes evident

through an examination of the old French variations, salf, sauf, sof, and sal, and the varia-

tions used in Middle English, sauf, saf and save.

The Oxford English Dictionary (2nd Ed.), defines the adjective safe as:

1. Free from hurt or damage; unharmed:

Unhurt, uninjured, unharmed; having been preserved from
or escaped some real or apprehended danger. Chiefly (now
only) with quasi-adverb. force after verbs of coming, going,
bringing, etc.

2. Free from danger; secure:

Not exposed to danger; not liable to be harmed or lost;
secure. Of a place or thing: Affording security or immunity;
not exposing to danger; not likely to cause harm or
injury.Of an action, procedure, undertaking, plan, etc.: Free
from risk, not involving danger or mishap, guaranteed

15

against failure. Sometimes = free from risk of error, as in it
is safe to say. In stronger sense: Conducive to safety.

There are, of course, a variety of satisfactory definitions for safety, any one of which

can be used as a starting point for system safety considerations. The definition used in the

following text for safety is derived from [71]:

The freedom from accidents and losses, in the absolute
sense.

It can, of course, be argued that there is no such thing as absolute safety, and thus

safety is often defined in terms of acceptable loss. However, the dilemma then becomes

defining what loss is deemed acceptable, and to whom. Thus, for the purposes of this text,

absolute freedom from loss can be regarded as the ideal state, and the actual state of the

system would wish to asymptotically approach this state.

The antithesis of safety, and the villain of the text, is the hazard. A hazard is defined

[71] as a state or set of conditions of a system (or an object) that, together with other con-

ditions in the environment of the system (or object), will lead inevitably to an accident

(loss event). It must be noted that a hazard is defined with respect to the environment of

the system or component. In addition, what constitutes a hazard depends upon where the

boundaries of the system are drawn. In summary, the definition of a hazard can also be

considered to be somewhat arbitrary, and one of the first steps in designing a system is to

decide what conditions will be considered to be hazards that need to be eliminated or con-

trolled.

1.1 Brief Historical Overview
Until the advent of modem scientific theory, technical progress was made by a sophis-

ticated process of trial and error. Engineers and designers learnt not only by their own mis-

takes but also from other people's misfortunes. This process was quite successful, as

16

evidenced by the rapid progress made by master builders in the design of the great twelfth-

and thirteenth-century cathedrals and abbeys. Admittedly, there were many building col-

lapses, when attempts were made to build vaults too high or columns too slim, but the sur-

vival of so many of these magnificent buildings provides evidence of the development of

their builders' skills.

The role of safety in society was intensified at the time of the Industrial Revolution.

New sources of power, using water or steam, not only gave great opportunities for the

rapid development of manufacturing technology but also provided a terrible potential for

death and injury when things went wrong. The demand for new machinery and factory

premises thus increased. In designing the necessary machines and buildings it had become

possible to make use of the growing body of scientific knowledge, although designers still

relied heavily upon past experiences. Scientific development at that time was along

strongly deterministic lines; theories strove to provide an exact and unambiguous account

of natural phenomena. Failure to produce such an account was invariably considered to be

a limitation of the theory rather than a fundamental impossibility.

Among the first industrial artifacts to give serious concern about public safety were

boiler pressure vessels. In the second half of the nineteenth century, pressure vessel explo-

sions were almost regarded as 'acts of God', since the underlying mechanisms of failure

were poorly understood. Early steamships used sea-water in the boilers, and the boilers

had to be shut down at regular intervals so that the accumulated salt could be removed.

The corrosive properties of salt were apparently not known about, or else not heeded.

Gradually, however, codes of practice for design and operation came into use, and the

needs of insurance dictated regular inspections for any defects. A boiler explosion in Mas-

sachusetts in 1905 was largely responsible for the introduction of the American Society of

17

Mechanical Engineering (ASME) design codes [89]. Also, a better understanding of the

mechanics of metal failure evolved during and after the First World War.

The chemical industry expanded greatly following the First World War. Because of

the overtly hazardous nature of many of the materials being handled, and the need to have

some sort of independent assessment of the hazards of a process plant for the calculation

of insurance premiums, an actuarial approach to safety assessment was adopted within the

industry. Indeed, the term used to this day in the chemical industry, loss prevention, has its

origins in insurance; the loss refers to the financial loss of plants, third party claims and

lost production.

In the years following the Second World War, the growth in military electronics (still

largely based on thermionic valves) began to generate new problems. One study revealed

that only one-third of US military electronic equipment in the late 1940's was available at

any given time, the remainder was under repair [107]. This difficulty lead to the appear-

ance of reliability engineering. Electronic reliability improved greatly in the 1950's as the

vacuum tube was replaced by transistors. Reliability was also of importance in spacecraft,

and the high failure rate of space missions in the late 1950's and early 1960's was steadily

improved in later years.

The nuclear industry grew rapidly in the years following the Second World War. The

industry was exempted from the requirements of full third-party insurance coverage in

some countries (e.g. the Price-Anderson Act in the U.S.A) in an effort to promote devel-

opment of the industry, and because its associated hazards were not, at that time, fully

understood. Although, as was pointed out [89], "all other engineering technologies have

advanced not on the basis of their successes but on the basis of their failures", the nuclear

industry could not afford to do likewise, because of its associated hazards. Indeed, as the

scale of other technologies has increased, many technologies now have the potential to

18

cause unacceptable damage, and progress through failure is seldom nowadays justifiable.

Nevertheless, the nuclear industry has learned much from a number of non-catastrophic

accidents, notably the Windscale fire in 1957 and the Three Mile Island accident in 1979

[111]. Much more is being learned from the Chernobyl accident in 1986, which repre-

sented, in terms of the magnitude of the consequences, about as bad a nuclear power sta-

tion accident as is conceivable.

Figure 1.1: Three Mile Island

At first, the nuclear industry adopted an approach to safety assessment based on the

concept of a 'maximum credible' accident. In this approach, a worst possible accident was

proposed and the plant was designed to accommodate or minimize the effects of the acci-

dent. The difficulty with this approach is that it presupposes that any more severe acci-

dents are 'incredible'. It has been suggested that a more rigorous approach to the

assessment of nuclear plant safety, using probability, was more representative of circum-

stances. The essence of the proposal was as follows: for any given factory or other indus-

trial installation, the acceptable frequency of accidents that may harm third parties varies

inversely with the magnitude of the consequences of those accidents. It was therefore pro-

19

posed that nuclear power stations should have to meet a safety criterion expressed in terms

of probability and consequence.

Whilst the scope and complexity of science and technology have grown at an ever

increasing rate in the last one hundred years, the full implications of these advances did

not, in many instances, begin to be understood by the public until the 1980's. Advances in

transport, power generation and chemicals in particular have often been 'sold' on their

direct and obvious benefits, rather than on a full disclosure of their consequences. The

designers of engineering systems have frequently been able to place their main priority on

performance, with the consideration of safety a secondary objective [115].

The nuclear reactor incident at Three Mile Island (TMI) prompted a very critical look

at the overall safety of that source of power. Paradoxically, the TMI event demonstrated to

scientists and engineers that the overall safety of the plant was in many ways satisfactory,

in that a major catastrophe was prevented despite the events that occurred. Not unreason-

ably, this optimistic interpretation was not shared by the general public [111].

1.2 System Safety
Much of the development of system safety is tied to the development of aerospace safety

directly following World War II. The Air Force was experiencing many aircraft accidents

in which both planes and pilots were lost. Most of these accidents were blamed on the

pilots. However, industry flight engineers argued that the cause was not so simple: Safety

must be designed and built into an aircraft, just as are the qualitites of performance, stabil-

ity and control [71].

System safety arose out of the intercontinental ballistic missile program. When the Air

Force began to develop intercontinental ballistic missiles (ICBM's), there were no pilots

to blame for accidents, yet the liquid-propellant missiles frequently blew up. In the fifties,

20

when the Atlas and Titan ICBM's were being developed, intense pressure was focused on

building a nuclear warhead with delivery capability as a deterrent to nuclear war. On these

first missile projects, system safety was not identified and assigned as a specific responsi-

bility. Instead, each designer, manager, and engineer was assigned responsibility for

safety. Within 18 months after the fleet of 71 Atlas F missiles became operational, four

blew up in their silos during operational testing. Not only were the losses themselves

costly, but the resulting investigations detected serious safety deficiencies in the system

that would require extensive modifications to correct. The decision was made to retire the

entire weapons system and accelerate deployment of the Minuteman missile system. Thus,

a major weapon system, originally designed to be used for ten years, was in service for

less than two years [106].

Aside from the economic aspects of neglecting safety requirements, the advent of

nuclear fission presented a unique problem. The catastrophic consequences of an inadvert-

ent nuclear explosion are so serious that even one accident cannot be tolerated. For safety

reasons, the Atomic Energy Commission established stringent controls on the use and

handling of nuclear materials. In addition, the Department of Defense (DoD), through the

Defense Atomic Support Agency, maintained tight control over all nuclear weapon

designs and uses. Meeting the controls of these agencies was a major influence in identify-

ing system safety as a separate discipline in the late 1950's.

The first military specification on system safety was published by the Air Force (Bal-

listic Systems Division) in 1962, and the Minuteman ICBM became the first weapons sys-

tem to have a contractual system safety program. The first system safety specification was

a document created by the Air Force in 1966 (MIL-S-38130A). In June 1969, this became

MIL-STD-882, System Safety Program for Systems and Associated Subsystems and

21

Equipment: Requirements for, and a system safety program became mandatory on all

DoD-procured products and systems [1].

The space program was the second major application area to use system safety

approaches in a formalized fashion. Until the Apollo 204 fire in 1967 at Cape Kennedy, in

which three astronauts were killed, NASA had basically ignored the issue of system

safety. The accident alerted NASA, and they commissioned the General Electric Company

(among others) to develop policies and procedures that became the model for civilian

aerospace safety.

As computers became increasingly important components of complex systems, con-

cern about the safety aspects of software began to emerge in both NASA and DoD pro-

grams. Some of the earliest software safety activities were attempted on the Space

Transportation System (STS) program in the 1970's.

The rocket exploded seconds after launching

Figure 1.2: Ariane 5 Accident

A recent example of a software failure is the Ariane 5 rocket, which exploded on June

4, 1996, less than forty seconds after it was launched. The committee that investigated the

accident found that it was caused by a software error in the computer that was responsible

for calculating the rocket's movement. During the launch, an exception occurred when a

large 64-bit floating point number was converted to a 16-bit signed integer. This conver-

sion was not protected by code for handling exceptions and caused the computer to fail.

22

The same error also caused the backup computer to fail. As a result incorrect attitude data

was transmitted to the on-board computer, which caused the destruction of the rocket. The

team investigating the failure suggested that several measures be taken in order to prevent

similar incidents in the future, including the verification of the Ariane 5 software.

Similarly, NASA's Mars Exploration program, under its "Faster, Cheaper, Better" phi-

losophy has been plagued with software problems. The Mars Climate Orbiter (MCO)

failed to achieve Mars Orbit on September 2 3rd 1999 due to a navigation error that

resulted in the spacecraft entering Mars atmosphere instead of going into Mars orbit.

Spacecraft operating data needed for navigation were provided to the Jet Propulsion Labo-

ratory navigation team by prime contractor Lockheed Martin in Imperial units rather than

specified Metric units. A lack of proper testing, and improper review of the interface spec-

ifications can be cited as the primary cause for this failure [120]. The MCO project cost

approximately $115 million, not including the launch vehicle.

Figure 1.3: Mars Polar Lander (Simulation)

The Mars Polar Lander (MPL), along with the two Deep Space 2 microprobes, was

launched on January 3 rd 1999. After an 11-month cruise, the spacecraft arrived at Mars on

23

December 3 rd 1999, targeted for a landing zone near the edge of the south polar layered

terrain. The planned communication after landing did not occur, resulting in the determi-

nation that the MPL mission had failed. Extensive tests have demonstrated that the most

probable cause of failure is that spurious signals were generated when the lander legs were

deployed during descent. The spurious signals gave a false indication that the lander had

landed, resulting in a premature shutdown of the lander engines and the destruction of the

lander when it crashed into the Martian surface [120].

It is not uncommon for sensors involved with mechanical operations, such as the

lander leg deployment, to produce spurious signals. For MPL, there was no software

requirements to clear spurious signals prior to using the sensor information to determine

that landing had occurred. During a test of the lander system, the sensors were incorrectly

wired due to a design error. As a result, the spurious signals were not identified by the sys-

tems test, and the systems test was not repeated with properly wired touchdown sensors.

While the most probable direct cause of the failure is premature engine shutdown, it is

important to note that the underlying cause is inadequate software design and systems test-

ing. The MPL mission cost roughly $120 million dollars in total, not counting the cost of

the launch vehicle or the microprobes [120].

Clearly the need for safe and functional hardware and software systems is critical. As

the involvement of such systems in our lives increases, so too does the burden for insuring

their safety. Unfortunately, it is no longer feasible to shut down a malfunctioning system in

order to restore safety: In many cases, a system is less safe when it is shut down, such as

an aeroplane. Even when the failure is non life-threatening, the consequences of having to

replace critical code or circuitry can be economically devastating.

24

1.3 Current Software Safety Techniques
Software in computer based control systems is ever increasing. Computer software and

hardware replace more and more of the functionality of mechanical and electromechanical

system parts. The traditional engineering disciplines are founded on science and mathe-

matics, enabling modelling and prediction of different designs' behaviours. Software engi-

neering has become, however, a craft based more on trial and error. Computers differ from

regular physical systems on two key issues:

1. They exhibit discontinuous behaviour.
2. Software lacks physical restrictions (like mass, energy, size etc.) and lack structural/

functional intrinsic properties (like strength, density etc.)

The main physical entity that can be modelled and measured by software engineers is

time. There exists sound work and theories on the verification of systems' temporal prop-

erties and attributes [111]. Several general approaches to software safety and reliability are

addressed in the following sections.

1.3.1 Abstraction and Modularity
Having no physical limitations, complex software designs are possible and no physical

effort is necessary to accomplish this complexity. Complexity is a source for design faults.

Design faults are often due to a failure to anticipate certain interactions between a sys-

tem's components. As complexity increases, design faults are more prone to occur as more

interactions make it harder to identify all possible behaviours. The most formidable

weapon against complexity is abstraction. Abstraction allows the user to concentrate on

the general problem and disregard the low level details. However, a danger lies in basing

abstraction on modular decomposition in absurdum [106]. Complexity increases if the

system is decomposed modularly further then necessary, due to unforeseen interactions

between modules. Similarly, the notion of information hiding, upon which Object-Ori-

ented methodologies are based, leads to increased abstraction and reuse. However, infor-

25

mation hiding decreases testability, and, if used too zealously, increases complexity. It also

does not necessarily lead to fewer faults.

1.3.2 Robustness
Software is not a physical entity, it is purely a design construct. Software cannot be

worn-out or "broken", per se. All system failures due to errors in the software are design

faults and are built into the system from the beginning. Generally, software is not designed

to be robusti since its focus is primarily on what the system should do, and not on what it

should not do; as a consequence, testing usually does not cover abnormal inputs or out-

puts. In order for software to be robust, its state machine must satisfy the following [71]:

1. Every state must have a behaviour (transition) defined for every possible input.
2. The logical OR of the conditions on every transition out of any state must form a

tautology2

3. Every state must have a software behaviour (transition) defined in case there is no
input for a given period of time.

Applying robust design to software in order to accommodate all design flaws does not

yield completely safe software. If an impossible or unspecified event does happen, a local

reaction may have unfortunate global results and the complex interaction between mod-

ules cannot be determined.

1.3.3 Redundancy

In order for a redundant system to function properly, it must avoid common mode fail-

ures. Design faults are the main source for common mode failures, so fault tolerance

against design faults seems futile. Adaptations of the redundancy concept have been

applied to software, most commonly: N-version programming and Recovery Blocks. Both

approaches use multiple version of dissimilar software produced from a common specifi-

1. Robust systems are designed to cope with unexpected inputs, changed environmental conditions
and errors in the model of the external system.
2. A tautology is a logically complete expression (i.e. always true).

26

cation. Unfortunately, empirical studies have concluded that the benefit of using N-version

programming is questionable [71,106]. Both approaches suffer from the same major

design flaw: they try to compensate for design faults using diverse designs. Thus, they will

not be able to recuperate from faults in the requirements specification and are likely to be

afflicted by common mode faults relating to how people think in general.

1.3.4 Verification and Validation
The task of considering all system behaviours and all the circumstances it might

encounter during operation may be intractable. Software behaviour is generally not con-

tinuous in nature: quantization errors are propagated and boundaries to the representation

of numbers can affect the output. The software's execution path changes for every deci-

sion depending on whether or not a condition is true. For example, a simple sequential list

of 20 if-statements may, in the worst case, yield 220 possible execution paths. A small

change in input can have a severe effect on which execution path is taken, which in turn

may yield an enormous change in output [105].

1.3.5 Formal Methods
Just as traditional engineers can model their designs with different kinds of continuous

mathematics, formal methods attempt to supply computer software engineers with mathe-

matical logic and discrete mathematics as a modelling framework. Formal methods can be

used in two fashions [89]:

1. They can be used as a syntax to describe the semantics of specifications which are
later used as a basis for the development of systems.

2. They can be produced as in the above point, and then used as fundamental tool for
the verification of the design

If both fashions are employed, then it is possible to prove the equivalency of the pro-

gram and the specification. Unfortunately a proof, when possible, cannot guarantee cor-

rect functionality or safety. In order to perform a proof the correct behaviour of the

27

software must first be specified in a formal mathematical language. The task of specifying

the correct behaviour can be as difficult and error-prone as writing the software [71]. The

difficulty comes from the fact that it cannot be known whether or not the actual system has

accurately been modelled. Thus, it is impossible to ascertain whether or not the specifica-

tion is complete. This distinction between model and reality attends all applications of

mathematics in engineering, however, physical validation of mathematical models is pos-

sible for most engineering disciplines.

Nonetheless, using formal methods to verify correspondence between specification

and design does seem like a possible pursuit to gain confidence. The fact that more than

half of all software errors can be traced to the requirements and specifications problems

[80,71] gives the application of formal methods some weight. The mathematical verifica-

tion of large software systems is currently intractable for most cases, but may become fea-

sible in the future with more compact and usable formal methods.

1.3.6 Testing
Software does not wear out over time. It is therefore reasonable to assume that as long

as faults are uncovered, reliability increases for each fault that is eliminated. This notion

relies on the supposition that maintenance does not introduce any new faults. According to

many reliability growth models [32], failures are distributed exponentially with time. Ini-

tially, a system fails frequently, but after faults are discovered and amended the frequency

of failures decreases. One problem with this method is that it would take years to remove a

sufficient amount of errors to achieve a critical standard of reliability. For safety-critical

systems where the required failure rate is 10-9 failures per hour, testing would have to be

performed for at least 115 000 years in order to achieve the required rate. What makes

matters even worse is the fact that more than half of the errors in many systems are due to

ambiguous or incomplete requirements specifications. The intention of testing is often to

28

verify that a specific input will yield a specific output, defined by the specification. No

mention is made of how the system will behave in response to non-specified inputs, and

many testing techniques overlook hazards that can be generated in this fashion. Thus, the

confidence gained by testing software can be severely limited by the specification. This

brings into focus the issues of safety and reliability: a system may be reliable, but not nec-

essarily safe, and vice versa.

1.4 Safety vs. Reliability
Reliability, as defined by Leveson [71], is the characteristic of an item expressed by the

probability that it will perform its required function in the specified manner over a given

period of time and under specified or assumed conditions. Safety, on the other hand, is

defined as the freedom from accidents and losses, in the absolute sense. There are other

definitions of safety that are expressed in terms of 'acceptable risk'. However, risk, accept-

able or otherwise, is merely probability taken personally; in other words, it is the science

of bad mathematics.

Thus, one can say that safety and reliability are overlapping quantities, but not identi-

cal. Techniques that increase reliability, such as parallel redundancy and standby sparing,

may not necessarily increase safety, and in some cases, may deteriorate safety perfor-

mance. Safety can be seen as having a broader scope than failures, and failures do not nec-

essarily compromise safety. Many accidents can occur without component failure. A

system may have high reliability, yet fail catastrophically in a particular fashion or mode.

Generalized probabilities and reliability analyses may not apply to specific, localized con-

ditions, and so no conclusions can be drawn about the safety of such localized systems.

More significantly, accidents are often not the result of a simple combination of compo-

nent failures.

29

When components are operating together at a system level, safety is regarded as an

emergent property. Reliability is a component property, unlike safety, that cannot be

defined or measured without considering the environment. The events leading to an acci-

dent can be a complex combination of faults, failures and mishaps, to say nothing of ordi-

nary contributing circumstances and coincidences. Reliability only quantifies the

frequency of failures, disregarding the consequences of a failure. From a safety point of

view, it is important to consider the consequences of failures, especially the failures that

lead to hazards. Reliability analysis only embraces the possibility that an accident is

related to a failure, it does not consider the potential damage that could result from a suc-

cessful operation of the individual components.

An accident can be the result of a sequence of events, none of which involved a com-

ponent failure: individual components work as specified, but together create a hazardous

system state. Reliability uses a bottom-up approach to evaluate the effect of component

failures on system function, while safety requires a top-down approach that evaluates how

hazardous states can occur from a combination of both incorrect and correct component

behaviour [71].

One of the most critical trade-offs between reliability and safety results from the fact

that redundancy, used to increase reliability, will at the same time decrease safety. The

more reliable a component, the more likely it is to operate spuriously. In many cases, spu-

rious operation may be more hazardous than the failure of the system to function at all.

This does not even consider the fact that, if redundancy is employed without using design

diversity properly, then the system may fall prey to common mode failures. Redundant

components increase complexity, which acts to decrease safety. One can even say that, as

error rates in a system decrease and reliability increases, the safety of the system may be

30

decreasing. This can be due to complacency on the behalf of the operators and/or the envi-

ronment.

This is not meant to paint reliability in an unflattering light; while it cannot replace

system safety, it can certainly supplement it, if used correctly. There must be a clarity in

regards to the purpose of reliability engineering; that is, to improve the system's tolerance

to hazardous random failures. Applying the techniques of reliability assessment towards

system safety can be perilous indeed. Reliability assessment measures the probability of

random failures, not the probability of hazards or accidents. Absurd risk estimates based

on failure rates can result from this type of analysis. Also, if a design error is found, the

simplest solution is to remove the error, not to convince someone that it will never cause

an accident. Hence it can be said that the major drawback in reliability models are not

what they include, but what they do not include.

1.5 Objectives: Can We Get to Where We Want to Go?
Software by itself is not hazardous. It can be conceived that software will be hazardous

when executed on a computer, but even then there exists no real danger. A computer actu-

ally does nothing physical except generate electrical signals. In reality, hazards first occur

when the computer and software start monitoring and controlling physical components.

Thus, safety is a system property, and not a software property.

Traditionally, in order to design and assert that a safety critical system is not only cor-

rect with respect to functionality but also safe, a hazard analysis is undertaken. A hazard

analysis determines what hazards are afflicting the system as a whole. Once a list of haz-

ards has been found, a cause-effect analysis is usually performed. However, to design a

safe system it is not sufficient to only identify the hazards in a system. The knowledge of

their existence must also be taken advantage of during the system design process. The goal

31

is to eliminate the existence of hazards at the lowest reasonably practical level (the

ALARP principle, meaning As Low As Reasonably Practical). When the hazard cannot be

eliminated, one must try to reduce the impact of its existence. If this is not possible, an

attempt must be made to control the hazard. There are several safety design principles that

apply to computer based systems [71].

The approach suggested in this work is to identify the hazards, then attempt to design

them out of the system, using a backwards reachability technique. Basically, once a sys-

tem has been modelled, and the hazards have been identified, one can attempt to trace the

path of propagation of the hazards in a backwards manner. If one begins with the hazard-

ous state, and considers all the possible states to which this hazard is a successor, one can

attempt to divert the system to a non-hazardous path using design techniques. For all pre-

decessor states of the hazard, the ability to take the hazardous path is then blocked,

thereby removing the hazard from this particular behaviour of the system. Thus, the haz-

ard can then be controlled effectively, if not completely designed out of the system. This

dissertation applies this approach to actual aerospace examples in order to verify that a

specific hazard has been eliminated or controlled.

1.6 Scope of Dissertation
The first chapter of this dissertation serves as an introduction to the topic of system safety,

and provides motivation for the ensuing discussion and hazard elimination techniques.

Traditional methods of hazard analysis are investigated in the second chapter of this the-

sis. However, for extremely large systems, such as the Flight Management System of an

aeroplane, these methods may become impractical. Formal methods are also explored,

with the domains of model checking and theorem proving being emphasized. Unfortu-

nately, these methods are often intensely mathematical, and can be difficult to use.

32

Many systems nowadays have both continuous and discrete characteristics. These sys-

tems are aptly named hybrid systems. Different approaches for modelling these systems

are then addressed, with the advantages and disadvantages of each being considered. A

brief survey of model checking tools is conducted, and the modelling language Specifica-

tion Tools and Requirements Methodology-Requirements Language (SpecTRM-RL) is

introduced. The discrete modelling language SpecTRM-RL is then formally extended to

encompass the modelling of hybrid systems.

The notion of reachability is then introduced, in the context of several disciplines

including computer science, operations research and control systems. A technique for

determining the reachability of state space controls systems is developed. Then, a general

mathematical approach to establish backwards reachability as a tool of state machine haz-

ard analysis is proposed. This novel approach involves converting state machines into

state space formulations in order to use control theory techniques to determine reachabil-

ity. A general bound is achieved on the complexity of the approach.

An innovative approach in order to eliminate hazards from an automaton without gen-

erating the entire backwards reachability graph of the automaton is then expounded in a

theoretical manner. The notion of a hazard automaton is introduced, and the Hazard

Automaton Reduction Algorithm (HARA) is formally specified. The algorithm is

regarded as being optimal in the sense that it only eliminates hazardous behaviours from

the system, and does not eliminate non-hazardous or potentially desirable behaviours.

This is formally proved for both the discrete and hybrid cases of the algorithm. There are

subtle differences when the algorithm is applied to a continuous system as opposed to the

discrete case, and these are elucidated fully.

The algorithm is then applied to two real systems. One is modelled as a purely discrete

system, while the other is modelled as a hybrid system. The altitude switch is a simple dis-

33

crete example, and the mathematics of the algorithm is worked through explicitly. The

Medium Term Conflict Detection (MTCD) is a hybrid example, and only a portion of the

entire system is analyzed. Conclusions are then made as to the viability of this approach,

and its scalability for large systems.

34

CHAPTER 2
If I have seen further [than certain other men] it is by stand-

ing upon the shoulders of giants.

Isaac Newton (1642-1727), Letter to Robert Hooke, February 5, 1675.

Literature Review

2.1 Hazard Analysis
Hazard analysis is at the heart of any effective safety program. Although hazard analysis

alone cannot ensure safety, it is a necessary first step. Hazard analysis is not just per-

formed at the start of a project or during fixed steps, it is iterative, and should be continu-

ous throughout the life of the system. Different models allow for various types of analysis

or manipulation of the model to learn more about the system. The models and analysis

techniques also imply different underlying accident and human error models, which influ-

ence the hazards and causes that will be identified and considered. There is often a trade-

off between the difficulty of building and analyzing the model and the quality of informa-

tion that can be derived from it. No one model or analysis technique is useful for all pur-

poses, and more than one type may be required for a project.

2.1.1 Checklists

Checklists are a way to pass on hard-earned experience garnered from projects in engi-

neering. They serve as a repository for mistakes, and provide feedback to the engineering

process. They are the most useful in the design of a well-understood system, for which

standard design features and knowledge have been developed over time. Basic checklists

are simply lists of hazards or specific design features, while other, more thought-provok-

ing variations stimulate inquiry by providing open-ended questions that require more than

a yes or no answer. Checklists are commonly used in all life-cycle phases of a project,

35

including hazard identification, design and operation. They are an excellent way to pass

on lessons learned, especially for hazard identification. However, they may encourage

over-reliance on the part of the user, and they may be cumbersome in length, in order to be

comprehensive. Also, if the circumstances under which the checklist is employed are not

carefully considered, then a more hazardous situation might be created, due to false confi-

dence on the part of the user. Thus, more sophisticated analysis techniques than a checklist

are needed for most complex systems [71].

2.1.2 Fault Tree Analysis

Fault tree analysis (FTA) is utilized extensively in nuclear industries, electronics and,

of course, the aerospace industry. FTA is primarily a means of analyzing the causes of haz-

ards, and does not aid in the identification of hazards. FTA uses Boolean logic to describe

the combinations of individual faults that can constitute a predetermined hazardous event.

Each level refines the one immediately above it by listing more basic events that are nec-

essary and sufficient to cause the problem shown in the level above. Thus, FTA is a top-

down search method. It has four basic steps:

1. System definition
2. Fault Tree Construction
3. Qualitative analysis
4. Quantitative analysis

System definition requires determining top events, initial conditions, existing events and

impermissible events. Once the system is defined, a particular system state and top event

are assumed. Then, the causal events relating to the top event and the logical relations

between them are constructed. This process continues with each level of the tree being

refined until primary events, or leaf nodes, are reached. Qualitative analysis can be per-

formed by reducing the tree to a logically equivalent form showing the specific intersec-

tions of basic events sufficient to cause the initial hazard (top event). Quantitative analysis

36

can be accomplished by assigning probabilities to the occurrence of basic events [57].

Fault tree analysis in software can be used for verification of existing code. It might be

applied to the software design representations to locate problems early. Probabilistic anal-

ysis is not applicable when software logic is described by fault trees [94]. Although

generic fault trees can be constructed before the details of design and construction are

known, they are of limited usefulness. FTA may be applied to completed or existing sys-

tems to prove they are safe. Fault trees can help identify scenarios leading to hazards and

can suggest possibilities for hazard elimination or control. Common-cause failures can

best be identified from the minimum cut sets of the fault tree, and a solution for their

removal can be proposed. However, the most useful fault trees can be constructed only

after the system is completely designed, and thus safety measures are often difficult to

implement so late in the life cycle. FTA shows little more than cause and effect relation-

ships between events, and is not always sufficient to design an effective safety measure.

The relative simplicity of a fault tree can be misleading, and simple AND/OR gates do not

provide any temporal aspects to the analysis. Finally, transitions between states are not

represented; partial failures and multiple failures can cause difficulties [37].

2.1.3 Management Oversight and Risk Tree Analysis
Management Oversight and Risk Tree Analysis (MORT) is basically a standard fault

tree augmented by an analysis of managerial functions, human behaviour, and environ-

mental factors. It aims to identify problems, defects, and oversights that create hazards or

prevent their early identification, by use of an extensive checklist. MORT has the advan-

tages of any checklist, but it also considers organizational, managerial, and information

factors. It is not used very often due to the complexity of the checklist, which possesses 1

500 basic events or factors [109].

37

2.1.4 Event Tree Analysis
Event Tree Analysis (ETA) uses forward search to identify the various possible out-

comes of a given initiating event, by determining all sequences of events that could fol-

low. The initiating event might be a hazardous event, or even some circumstance external

to the system. The states in the forward search are then determined by the success or fail-

ure of other components or pieces of equipment. The event tree is drawn from left to right,

with branches under each heading corresponding to two alternatives:

1. Successful performance of the protection system (upper branch)
2. Failure of the protection system (lower branch)

After the tree is drawn, paths through it can be traced by choosing a branch under each

successive heading, corresponding to each accident scenario.

Event trees tend to become quite large. They are usually applied using a binary state

system, where each branch of the tree has one failure state and one success state. A proba-

bility can then be assigned to each branch of the event tree. If a greater number of discrete

states are defined for each branch, then a branch must be included for each state. The path

explosion problem quickly becomes the dominant drawback to this form of analysis. Tim-

ing issues can cause problems in event tree construction, as can possible dependencies

between the various probabilities arising from common-cause failures [1].

Like FTA, ETA is appropriate only after most of the design is complete. Fault trees lay

out relationships between events, while event trees display relationships between

sequences of events linked by conditional probabilities. Thus, one could say that while

fault trees are more powerful in identifying and simplifying event scenarios, event trees

are better at handling notions of continuity. Event trees are practical when the chronology

of events is stable and the events are independent of one another [70]. However, event

trees can become exceedingly complex, especially when a number of time-ordered system

interactions are involved [29]. A separate tree is required for each initiating event, making

38

it difficult to represent interactions between event states in the separate trees or to consider

the effects of multiple initiating events. The usefulness of event trees depends on being

able to define the set of initiating events that will produce all the important accident

sequences. Defining the functions across the top of an event tree and their order is diffi-

cult. To solve the ordering problem, a detailed understanding of all plant systems, and how

they operate and interact, is necessary. Of course, as with fault trees, continuous, non-

action systems are inappropriate for event tree analysis.

2.1.5 Cause-Consequence Analysis
Cause-Consequence Analysis (CCA) starts with a critical event and determines the

causes of the event (using top-down or backwards search) and the consequences that could

result from it (forwards search). The cause-consequence diagram shows both time depen-

dency and causal relationships among events. The initiating events should be traced back

to spontaneous events covered by statistical data. Several cause charts may be attached to

a consequence chart. Logic symbols used in the charts to describe the relationship between

events are primarily gates (AND, OR), while vertices (AND, OR, XOR, Either OR etc.)

are used to describe the relations between consequences [98].

CCA shows the sequence of events explicitly, which makes the diagrams useful for

studying startup, shutdown and other sequential control problems. They allow the repre-

sentation of time delays, alternative consequence paths, and combination of events. They

also take account of external conditions and the temporal ordering of events. Unfortu-

nately, the diagrams can become unwieldy, separate diagrams are necessary for each initi-

ating event, and outcomes are related only to the cause being analyzed, even though they

could have been caused by other initiating events [37].

39

2.1.6 Hazards and Operability Analysis
Hazards and Operability Analysis (HAZOP) is based on a systems theory model of

accidents that assumes accidents are caused by deviations from the design or operating

intentions. The technique focuses not only on safety, but also on efficient operations.

HAZOP is a qualitative technique whose purpose is to identify all possible deviations

from the design's expected operation and all hazards associated with these deviations.

HAZOP is able to elicit hazards in new designs as well as hazards that have not been con-

sidered previously. Hence, the hazards do not all have to be identified before the analysis,

which is a major asset. HAZOP will consider several factors of a process plant:

1. The design intention of the plant
2. The potential deviations from the design intention
3. The causes of these deviations
4. The consequences of such deviations

There is an automated variant of HAZOP, called Deviation Analysis, which can be applied

to software requirements specification [105].

HAZOP uses detailed process descriptions, and by the time such information is avail-

able, it is too late to make changes in the design. Thus, hazards end up being controlled by

protection devices rather than removed by design changes. HAZOP does not attempt to

provide quantitative results, but systematizes a qualitative approach. This method is sim-

ple and easy to use, and has an open-ended approach to identifying potential problems.

Unfortunately, HAZOP is labour-intensive and is limited by the search pattern that deter-

mines the factors that will be considered. HAZOP covers hazards caused by process devi-

ations, but still leaves out hazards that have more stable determining factors as the only

contributors [110].

2.1.7 Interface Analysis
Various analysis methods are used to evaluate connections and relationships between

components, including incompatibilities and the possibilities for common-cause or com-

40

mon-mode failures. The relationships examined can be categorized as physical, func-

tional, or flow [49]. These analysis methods generally use structured walkthroughs to

examine the interface between components and to determine whether a connection pro-

vides a path for failure propagation. Interface analyses are similar to HAZOP, but general-

ized somewhat, and thus have the same benefits and limitations. Effectiveness depends

upon the procedures used and the thoroughness with which the analysis is applied [71].

2.1.8 Failure Modes and Effects Analysis
Failure Modes and Effects Analysis (FMEA) uses a forward search process based on

an underlying chain-of-events model, where the initiating events are failures of individual

components. The first step is to identify and list all components and their failure modes,

considering all possible operating modes. For each failure mode, the effects on all other

system components are determined along with the effect on the overall system. Then the

probabilities and seriousness of the results of each failure mode are calculated. The results

are documented in a table with column headings such as component, failure probability,

failure mode, percent failures by mode, and effect. FMEA is appropriate when a design

has progressed to the point where hardware items may be easily identified on engineering

drawings and functional diagrams [71].

FMEA is effective for analyzing single units or single failures to enhance individual

item integrity. It can be used to identify redundancy and fail-safe design requirements, sin-

gle-point failure modes, and inspection points and spare part requirements. The strength of

the technique is its completeness, but that means it is also very time consuming and can

become very tedious and costly if applied to all parts of a complex design. All the signifi-

cant failure modes must be known in advance, so FMEA is most appropriate for standard

parts with few and well-known failure modes. The technique itself does not provide any

systematic approach for identifying failure modes or for determining their effects and no

41

real means for discriminating between alternate courses of improvement or mitigation.

FMEA does not normally consider effects of multiple failures. FMEAs pay little attention

to human errors in operating procedures, hazardous characteristics of the equipment, or

adverse environments [48]. FMEAs can be used in safety analyses as long as their limita-

tions are known and understood: Not all failures lead to accidents, and not all accidents are

caused by failures.

On a similar note, Failure Modes, Effects and Criticality Analysis (FMECA) is basi-

cally just a FMEA with a more detailed analysis of the criticality of the failure. Two addi-

tional steps are added to the FMEA:

1. Means of control already present or proposed are determined.
2. The Findings modified with respect to these control procedures.

Sometimes a Critical Items list is generated from the results of the FMEA or FMECA. The

same advantages and disadvantages apply to the FMECA as to the FMEA.

Fault Hazard Analysis (FHA) is basically a FMEA or FMECA with both a broader and

more limited scope. The scope is broadened by considering human error, procedural defi-

ciencies, environmental conditions, and other events that might result in a hazard caused

by normal operations at an undesired time [38]. At the same time, the scope is more

restricted than that of a FMEA or FMECA, since supposedly only failures that could result

in accidents are considered. Two new pieces of information are added about upstream and

downstream effects:

1. Upstream components that could command or initiate the fault in question
2. Factors that could lead to secondary failures

Like FMEAs and FMECAs, FHA primarily provides guidance on what information to

obtain, but it provides no help in actually getting that information. It also tends to concen-

trate primarily on single events or failures [71].

42

2.1.9 State Machine Hazard Analysis
A state machine is a model of the states of a system and the transitions between them.

State machine models are often used in computer science. The main problem with such

models is that a large number of states must be specified in order to model any realistically

complex system. If a model of a system is created and its entire state space generated, it is

theoretically possible to determine if the state space contained any hazardous states. This

involves a forward search that starts from the initial state of the system, generates all pos-

sible paths from that state, and determines whether any of them are hazardous.

State Machine Hazard Analysis (SMHA) was first developed to identify software-

related hazards. SMHA can be used to analyze a design for safety and fault tolerance, to

determine software safety requirements (including timing) directly from the system

design, to identify safety-critical software functions, and to help in the design of failure

detection and recovery procedures as well as fail-safe requirements. SMHA works on a

model, not the design itself, thus it can be used at any stage of the life cycle, including

early in the conceptual stage to evaluate alternative designs and design features.

SMHA's most important limitation is that a model must be built, which may be diffi-

cult and time consuming. A second limitation of SMHA is that the analysis is performed

on a model, not on the system itself-it will apply to the as-built system only if the system

matches the model. Other types of mathematical models, such as logic or algebraic models

of software or systems, also could be used for hazard analysis by using mathematical

proof methods to show that the models satisfy the safety requirements. The most impor-

tant limitation of these algebraic and logic languages is that they are usually very hard to

learn and use. In addition, models and languages used must match the way that engineers

think about the systems they are building, or the translation between the engineer's or

expert's mental model and the written formal model will be error prone. The advantage of

43

using state machine models is that they seem to match the internal models many people

use in trying to understand complex systems [71].

Recall that SMHA initially involved a forward search from the initial state to deter-

mine whether or not any hazardous states could be reached. However, the enormous num-

ber of states makes this approach impractical, even with computerization. In order to

avoid this state explosion problem, models that abstract away from all the states to a

smaller number of higher-level states, from which the entire state machine can be gener-

ated, must be used. The complete state space may never be generated, but many properties

of the state-space can be inferred from the higher-level model.

Furthermore, backwards and top-down search methods would entail starting with the

hazardous states and working backward from each to see if the initial state is reached. The

number of backwards paths is enormous for most real systems, even if only those ending

in hazardous states is considered. A practical solution is to start from the hazardous state

and only work far enough back along the paths to determine how to change the model to

make the hazardous state unreachable. Only a small number of the states will need to be

generated in most cases. The drawback, although not serious, is that the hazardous states

eliminated from the design might not actually have been reachable, so more hazards may

be eliminated than were actually present.

2.2 Model Checking
Model checking is a technique for verifying finite-state concurrent systems such as

sequential circuit designs and communication protocols. It has a number of advantages

over traditional approaches that are based on simulation, testing, and deductive reasoning.

In particular, model checking is automatic and usually quite fast. Also, if the design con-

tains an error, model checking will produce a counter-example that can be used to pinpoint

44

the source of the error.

The main challenge in model checking is dealing with the state space explosion prob-

lem. This problem occurs in systems with many components that can interact with each

other or systems with data structures that can assume many different values. In such cases,

the number of global states can be enormous.

A state machine is a model for computational processes. Systems of interacting com-

ponents are best modelled as some kind of combinable state machines. Complex systems

must sometimes be viewed at a high level of abstraction. A state machine consists of:

Q, a non-empty set of states

Q0 c Q, a non-empty set of start states (2.1)

c G QxQ, a translation relation

and we can write:

q -+ q' to denote (q, q')e (2.2)

Now, a state machine (Q, Q0, 8) is deterministic if: |Q0j = 1 and

Vq e Q, 3 at most one q' such that q --+ q'. That is, the next state is always determined by the

previous state, and the start state is unique. Otherwise, the state machine is non-determin-

istic. The behaviour of the computational process is then modelled by executions of the

state machine. An execution is a (possibly infinite) sequence q0, q1, q2, ... such that:

q0 E Q0 A (2.3)
Vi> 0![qi -4+ ,1] 23

A state is reachable if it is the final state in some finite-length execution. The set of

reachable states of a state machine are of interest, as they define the possible behaviours of

the state machine.

Although the restriction to finite state systems may seem to be a major disadvantage,

model checking is applicable to several very important classes of systems. In some cases,

45

systems that are not finite state may be verified using model checking in combination with

various abstraction and induction principles. Finally, in many cases errors can be found by

restricting unbounded data structures to specific instances that are finite state.

2.2.1 Model Checking Process
Applying model checking to a design involves three separate tasks:

1. Modelling
2. Specification
3. Verification

The first task, modelling, involves converting the design into a formalism accepted by a

model checking tool. In many cases, this is simply a compilation task. In other cases, due

to limitations on time and memory, the modelling of the design may require the use of

abstraction to eliminate unnecessary details. After the system has been modelled, it

becomes necessary to state the properties that must be satisfied by the design. The specifi-

cation is usually given in some logical formalism. It is common to use temporal logic to

state behaviour of the system as it evolves over time. Model checking provides a means

for checking that the model of the design satisfies a given specification, but it is impossi-

ble to determine, via model checking, whether the given specification covers all the prop-

erties that the system should satisfy. Thus, completeness of the design is an external issue.

Finally, in an ideal model checker, verification of the properties is automatic. However, in

practice, it often involves human assistance. For instance, the analysis of verification

results must be done manually. In the case of a negative result, an error trace is generated.

The error-trace is a counter-example that illustrates a behaviour of the model which vio-

lates the property being checked. It requires human intuition to determine whether or not

the error trace has resulted from an actual behavioural violation, or from incorrect model-

ling of the system or specification. A final possibility is that the verification task will fail

46

to terminate due to the size of the model [25].

2.2.2 Temporal Logic
Temporal logics allow for the ordering of events in time without introducing time

explicitly. Temporal logics are often classified according to whether time is assumed to

have a linear or a branching structure. The meaning of a temporal logic formula is always

determined with respect to a labelled state-transition graph, called a Kripke structure [58].

Several researchers, including Burstall [21], Kroger [62], and Pnueli [102], have pro-

posed using temporal logic for reasoning about computer programs. However, Pnueli

[102], was the first to use temporal logic for reasoning about concurrency. His approach

involved proving properties of the program under consideration from a set of axioms that

described the behaviour of the individual statements in the program. However, since

proofs were constructed by hand, the technique was often difficult to use in practice.

The introduction of temporal-logic model checking algorithms by Clarke and Emerson

[22,39] in the early 1980's allowed this type of reasoning to be automated. At roughly the

same time, Quielle and Sifakis [103] gave a model checking algorithm for a subset of

computation tree logic, but they did not analyze its complexity. Later, Clarke, Emerson

and Sistla [22] devised an improved algorithm that was linear in the product of the length

of the formula and the size of the state transition graph. The algorithm was implemented in

the EMC model checker, which was widely distributed and used to check a number of net-

work protocols.

Pnueli and Lichtenstein [78] reanalyzed the complexity of checking linear time formu-

las and discovered that although the complexity appears exponentially in the length of the

formula, it is linear in the size of the global state graph. Based on observation, they argued

that the high complexity of linear-time model checking might still be acceptable for short

formulas.

47

Alternative techniques for verifying concurrent systems have been proposed by a

number of other researchers. Many of these approaches use automata for specifications as

well as for implementations. The implementation is checked to see whether its behaviour

conforms to that of the specification. Because the same type of model is used for both

implementation and specification, an implementation at one level can also be used as a

specification at the next level of refinement.

The use of language containment is implicit in the work of Kurshan [63], which ulti-

mately resulted in the development of a powerful verifier called COSPAN [50]. Vardi and

Wolper [117] first proposed the use of o-automata (automata over infinite words). They

showed how the linear temporal logic model checking problem could be formulated in

terms of language containment between o-automata. Other notions of conformance

between the automata have also been considered, including observational equivalence and

various refinement relations [28].

2.2.3 Symbolic Algorithms

In the fall of 1987, McMillan [95], a graduate student at Carnegie Mellon University,

realized that by using a symbolic representation for the state transition graphs, much larger

systems could be verified. The new symbolic representation was based on Bryant's

ordered binary decision diagrams (OBDD) [18]. OBDD's provide a canonical form for

boolean formulas that is often substantially more compact than the conjunctive or disjunc-

tive normal form, and very efficient algorithms have been developed for manipulating

them. This model checking system developed by McMillan for his doctoral thesis is called

Symbolic Model Verifier (SMV) [95]. It is based on a language for describing hierarchical

finite state concurrent systems. Programs in the language can be annotated by specifica-

tions expressed in temporal logic. The model checker extracts a transition system repre-

48

sented as an OBDD from a program in the SMV language and uses an OBDD-based

search algorithm to determine whether the system satisfies its specification.

A number of other researchers have independently discovered that OBDDs can be

used to represent large state-transition systems. Coudert, Berthet and Madre [30] have

developed an algorithm for showing equivalence between two deterministic finite-state

automata by performing a breadth-first search of the state space of the product automata.

They use OBDD's to represent the transition functions of the two automata in their

algorithm. Similar algorithms have been developed by Pixley [101]. In addition, several

groups including Bose and Fisher [14], Pixley [101] and Coudert, Madre, and Berthet [31]

have experimented with model checking algorithms which use OBDDs. In related work

Bryant, Seger and Beatty [19] have developed an algorithm based on symbolic simulation

for model checking in a restricted linear time logic.

2.2.4 Model Checking for Software
Verifying software causes some problems for model checking. Software tends to be

less structured than hardware. In addition, concurrent software is usually asynchronous,

that is, most of the activities taken by different processes are performed independently.

without a global synchronizing clock. For these reasons, the state explosion phenomenon

is a particularly serious problem for software. Consequently, model checking has been

used infrequently for software verification.

The most successful technique, to date, for dealing with these software model check-

ing problems is based on partial order reduction [45,100]. This technique exploits the

independence of concurrently executed events. Two events are independent of each other

when executing them in either order results in the same global state. The most common

model for representing concurrent software is the interleaving model, in which all of the

events in a single execution are arranged in a linear order called an interleaving sequence.

49

Thus, concurrently executed events appear arbitrarily ordered with respect to one another.

The partial order reduction technique makes it possible to decrease the number of inter-

leaving sequences that must be considered. When a specification cannot distinguish

between two interleaving sequences that differ only by the order in which concurrently

executed events are taken, it is sufficient to analyze only one of them. As a result, the

number of states that are needed for model checking is reduced [116].

The idea of reducing the state space by selecting only a subset of the ways one can

interleave independently executed transitions has been studied by many researchers. One

of the first researchers to propose such a reduction technique was Overman [99]. How-

ever, he only considered a restricted model of concurrency that did not include looping

and nondeterministic choice. The proof system of Katz and Peled [60] suggests using an

equivalence relation between interleaving sequences that correspond to the same partially

ordered execution. Their system includes proof rules for reasoning about a selection of

interleaved sequences rather than all of them. Model checking algorithms that incorporate

the partial order reduction are described in several different papers. The stubborn sets of

Valmari [116], the persistent sets of Godefroid [44], and the ample sets of Peled [100] dif-

fer on the actual details, but contain many similar ideas.

2.2.5 State Explosion: A Way Forward
Although symbolic representations and partial order reduction has greatly increased

the size of systems that can be verified, many realistic systems are still too large to be han-

dled. Thus, it is important to find techniques that can be used in conjunction with the sym-

bolic methods to extend the size of the system that can be verified.

Compositional reasoning exploits the modular structure of complex protocols [27].

Many finite state systems are composed of multiple processes running in parallel. The

specifications for such systems can be decomposed into properties that describe the

50

behaviour of small parts of the system. An obvious strategy is to check each of the local

properties, using only the part of the system that the property describes. If it is possible to

show that the system satisfies each local property, and if the conjunction of the local prop-

erties implies the overall specification, then the complete system must satisfy this specifi-

cation as well. If there are interdependencies in the components, a form of assume-

guarantee reasoning can be employed. When proving a property about one component,

assumptions are made about the behaviour of all the other components. The assumptions

must then be proved when the correctness of the other components is established [47].

Symmetry can also be used to reduce the state explosion problem [24]. Finite state

concurrent systems frequently contain replicated components or structures. Having sym-

metry in a system implies the existence of a non-trivial permutation group that preserves

the state transition graph. Such a group can be used to define an equivalence relation on

the state space of the system and to reduce the state space. The reduced model can be used

to simplify the verification of the properties of the original model express by a temporal

logic formula.

Induction involves reasoning automatically about entire families of finite-state sys-

tems [26]. Such families can arise in the design of reactive systems in software, as well as

hardware. A process control system can be parameterized, defining an infinite family of

systems. The goal is to prove that every system in a given family satisfies some temporal

logic property. In general the problem is undecidable, but it is possible to provide a form

of invariant process that represents the behaviour of an arbitrary member of the family.

Using the invariant, the property can be checked for all members of the family at once. An

inductive argument is then used to verify that the invariant is an appropriate representa-

tive.

51

Finally, the technique employed to the greatest advantage is called abstraction [7,27].

This technique appears to be essential for reasoning about reactive systems that involve

data paths. The use of abstraction is based on the observation that the specifications of sys-

tems that include data paths usually involve fairly simple relationships among the data

values in the system. The abstraction is usually specified by giving a mapping between the

actual data values in a system and a small set of abstract data values. By extending the

mapping to states and transitions, it is possible to produce an abstract version of the sys-

tem under consideration. The abstract system is often much smaller than the actual sys-

tem, and as a result it is usually much simpler to verify properties at the abstract level.

Thus, it seems plausible, that by a combination of clever modelling techniques, and

assiduously chosen abstracted state variables, it is possible to generate an algorithm that

would be able to check a given design, be it software or hardware, for the presence of

identifiable hazards.

52

CHAPTER 3
The sciences do not try to explain, they hardly even try to
interpret, they mainly make models. By a model is meant a
mathematical construct which, with the addition of certain
verbal interpretations, describes observed phenomena. The
justification of such a mathematical construct is solely and

precisely that it is expected to work.

John Von Neumann (1903-57)

Process Control System Modelling
The hazard analysis procedure is influenced by the underlying model of the system being

considered. Thus, when a process control system is being modelled, careful consideration

must be given to how elements are modelled. For instance, software is primarily modelled

as a discrete system, making logical changes given the state of the process system and the

inputs to the system. However, software is employed to control processes, such as the

flight of an aeroplane, which directly involve continuously evolving variables as time

progresses. Depending on how the software and system are modelled, certain hazards can

be masked. Thus, a decision must be made, whether or not to model a component as being

discrete or continuous. Systems which have both discrete and continuous components are

commonly referred to as hybrid systems.

3.1 Discrete (Logical) System Modelling
Consider a machine that can exist in any one of a number of different states. It changes

state depending on an input and its current state. Such a machine is called afinite automa-

ton, a simple idealized computer. Finite automata are defined in terms of their states, the

inputs that they allow, and their reaction to the inputs. Finite automata come in two types,

deterministic and non-deterministic, depending on how well defined the ability to change

53

states is. The main characteristics of finite automata are that they have discrete inputs and

outputs, and they have a finite number of internal states.

3.1.1 Deterministic Finite Automata
Formally, a deterministic finite automaton (DFA) M is defined as a collection of five

things:

1. An input alphabet X.
2. A finite collection of states Q.
3. A start state q0 e Q
4. A finite collection of accept states F _ Q
5. A transition function 8:Q x Z -+ Q
It should be noted that there can be zero accepting states in the automaton, that is,

F= 0. For a deterministic finite automata, the transition function 6 specifies exactly one

next state for each possible combination for a state and an input variable. Consequently,

there is a one-to-one mapping between Q x E and Q, and the state is fully determined by

the information present in the state-input pair (q, a), qi E Q, a e 1. Thus, a deterministic

finite automaton M is described as:

M = (Q, Z, 8, g0, F) (3.1)

A string x is accepted if 8 (qo, x) = q e F. The language L(M) of a DFA M is defined as

L(M)= {x|S(q0, x) e F}, which is the collection of all strings that move M from its initial

state to an accepting state. One final thing to note is that finite strings of any length are

regarded as being acceptable input for a DFA, however, infinite strings are not acceptable

as input.

3.1.2 Non-Deterministic Finite Automata
Non-determinism is a useful concept that has a great impact on the theory of computa-

tion. When a deterministic finite automaton is in a given state and reads the next input

symbol, the next state is always known, that is, it is determined. This is referred to as

54

deterministic computation. In a non-deterministic machine, several choices may exist for

the next state at any point. Non-determinism is a generalization of determinism, so every

deterministic finite automaton (DFA) is automatically a non-deterministic finite automa-

ton (NFA). The main difference between an NFA and a DFA is the transition rule. For an

NFA, the transition rule associates pairs (qj, a), qi e Q, a E I with zero or more next states.

The rule relates the pairs (qj, a), q, e Q, a e Z with a collection of states. Thus, the transi-

tion relation is a rule between Q x Z and Q, or a relation on (Q x Z) x Q. In addition, con-

sider that the empty string E can trigger a state change in a non-deterministic finite

automaton. Define Z. = Z u {}, to be the alphabet of the automaton with the epsilon tran-

sition. Furthermore, define P(Q) to be the powerset of Q, that is, the collection of all sub-

sets of Q.

Hence, a formal definition of a non-deterministic finite automata N is given by:

1. An input alphabet X.
2. A finite collection of states Q.
3. A start state qO e Q
4. A finite collection of accept states F C Q
5. A transition relation A:Q x IE - P(Q)
Thus, a non-deterministic finite automaton N is described as:

N = (Q, Z, A, qO, F) (3.2)

Deterministic and non-deterministic finite automata recognize the same class of lan-

guages. Thus, every nondeterministic finite automaton has an equivalent deterministic

finite automaton. This is exceedingly useful, for if a property can be proved about a DFA,

it can also be proven for its equivalent NFA.

3.2 Continuous (Evolving) System Modelling

For a causal system with m inputs uj(t) and p outputs y;(t) (hence m+p manifest vari-

ables), an nth order state space description is one that introduces n latent variables x;(t)

55

called state variables in order to obtain a particular form for the constraints that define the

model. Letting:

u(t) t)= . ,x(t) = ... (3.3)

-uM(t' y,(t)xn(t)

an nth order state space description takes the form:

i(t)= f(x(t), u(t), t) (3.4)

y(t) = g(x(t), u(t), t) (3.5)

where equations (1.4) and (1.5) are, respectively, the state evolution equations and

instantaneous output equations.

A key feature of a state-space description is the state property:

Given the initial state x(to) and input u(t) for to t < t, (with
to and tf arbitrary), the output y(t) can be computed for
to 0 t <tf and the state x(t) for to<t < t,.

Thus, the state at any time to summarizes everything about the past that is relevant to

the future. Note that the state property holds for functions f(.) that are well behaved

enough for the state evolution equations to have a unique solution for all inputs of interest

and over the entire time axis. Furthermore, if the functions f(.) and g(.) are both linear and

time-invariant, the state space description simplifies to:

f(x(t), u(t), t) = Ax(t) + Bu(t) (3.6)

g(x(t), u(t), t) = Cx(t) + Du(t) (3.7)

It is of note that if a continuous time system is implemented digitally, the continuous

system is sampled and a discrete system is obtained. Thus, the evolution of the discrete

sampled system is formulated by replacing:

i(t) = x(t + 1), t e Positive Integers (3.8)

56

3.3 Hybrid System Modelling
Hybrid systems involve both continuous dynamics as well as discrete phenomena. The

continuous dynamics of hybrid systems may be continuous-time, discrete-time, or mixed

(sampled-data), but are generally given by differential equations. The discrete-variable

dynamics of hybrid systems are generally governed by a digital automaton, or input-out-

put transition system with a countable number of states. A hybrid system can be assumed

to be a run with a sequence of steps. Within each step the system state evolves continu-

ously according to a dynamical law until a transition occurs. Transitions are instantaneous

state changes that separate continuous state evolutions. There are several theoretical for-

mal models for hybrid systems, a few of which are presented in the following sections.

3.3.1 Hybrid Input/Output Automaton
The Hybrid Input/Output Automaton (HIOA) of Lynch [88], is based on the concept of

infinite state machines whose states can change by discrete actions or by continuous tra-

jectories. The discrete transitions are labelled with actions, which allows for the synchro-

nization of transitions of different automata when they are composed in parallel. The

evolution described by a trajectory may be described as either a continuous or discontinu-

ous function. The variables and actions are divided into the categories of internal and

external. External behaviour of an automaton is characterized by hybrid traces, which are

the external actions and trajectories of the evolving external variables. The actual model

is composed of the seven-tuple:

A = (W, X, Q, 9, E, H, D, T) (3.9)

where W is defined as a set of external variables and X is defined as a set of internal vari-

ables, disjoint from each other. V is defined as: V = W u x. The set of states, Q, is defined

as Q < val(X). The non-empty set of start states, E, is defined as e = val(X). The set E of

external actions and the set H of internal actions are disjoint from each other. Ac is defined

57

as Ac = E u H. The set D, of discrete transitions is defined as D = val(X) x Ac x val(X) .

Finally, T is the set of trajectories for V, which obey prefix, suffix, concatenation and ini-

tial external valuation closure (i.e. point trajectories). This model allows one automaton

to be implemented by another, which is useful when modelling both the system and

required properties, as well as for stepwise refinement, where different levels of abstrac-

tion are used. The model includes the notions of implementation, simulation, composition

and hiding operations, and receptiveness.

3.3.1.1 Executions and Traces

Sets of trajectories in HIOAs are described using differential and algebraic equations

and inclusions. Let us consider the time domain T to be R, and t to be a fixed trajectory

over some set V where v e V is a variable for the HIOA. If we misuse the variable name

v to denote the projection of the trajectory T on the variable v, we have a means of

expressing the value of the variable v at all times during the trajectory r. Similarly, if we

view any expression e containing variables from V as a function over the domain of the

trajectory T, we can say that T satisfies the algebraic equation:

v = e (3.10)

which means that the constraint on the variables expressed by the equation v = e holds for

each state on the trajectory t. Furthermore, suppose that the expression e is integrable. We

can say that r satisfies:

v=e (3.11)

iff for every time t in the domain of the trajectory,

v(t) = v(0)+ fe(t')dt' (3.12)

This interpretation of the differential equation makes sense even at points where v is not

differentiable.

58

An execution fragment of a hybrid automaton A is an action-trajectory sequence:

a = Toazia2 ... (3.13)

where:

1. Each T, is a trajectory in T and
2. If r1 is not the last trajectory in a then the last state in 1i can map, under some

action a + 1 , to a first state in some trajectory ,i + I.
An execution fragment records all the details of a particular run of a system, including

all the discrete state changes and all the changes to the state and external variables that

occur while time advances. The set of execution fragments of A is defined as fragsA. An

execution fragment a is defined to be an execution if the first state of cc is a start state of

the hybrid automaton A. The set of executions of A is denoted by execsA. A state is defined

to be reachable if it is the last state of some closed execution of A.

The external behaviour of a hybrid automaton is captured by the set of "traces" of its

execution fragments, which record external actions and the trajectories that describe the

evolution of external variables. Formally, if c is an execution fragment, then the trace of

a, denoted by trace(a), is the restriction of a to the external actions and external vari-

ables. A trace fragment of a hybrid automaton A, from a state x of A, is the trace of an exe-

cution fragment of A whose first state is x. A trace of A is a trace fragment of A from a

start state of A, that is the trace of an execution of A. The set of traces of A is denoted by

tracesA.

Hybrid automata A, and A2 are comparable if they have the same external interface

(i.e. W1=W2 and E1 =E 2). If A, and A2 are comparable, then we can say that A1 implements

A2 if the traces of A, are included among those of A2 (i.e. tracesA, C tracesA2).

3.3.1.2 Simulation Relations

Simulation relations between hybrid automata may be used to show that one hybrid

automaton implements another, in the sense of inclusion of sets of traces.

59

Let A and B be comparable hybrid automata. A simulation from A to B is a relation

R c QA x QB satisfying the following conditions, for all states xA and XB of A and B respec-

tively:

1. If XA e eA then there exists a state XB E 0 B such that xARXB.

2. If xARXB and a is an execution fragment of A consisting of one discrete action sur-
rounded by two point trajectories, with the first state of a being xA , then B has a closed
execution fragment p with the first state of p being xB, trace(p) = trace(a), and the last
state of a maps to the last state of p via the relation R.

3. If xARxB and a is an execution fragment of A consisting of one trajectory, with the
first state of a being xA , then B has a closed execution fragment 0 with the first state of p
being XB , trace(p) = trace(a), and the last state of a maps to the last state of 0 via the
relation R.

The definition of a simulation from A to B yields a correspondence for open trajecto-

ries of A. We state the following theorem without proof:

Theorem 1:

Let A and B be comparable hybrid automata and let R be a simulation from A to B.

Then tracesA CtracesA
2 .

The proof of the preceding theorem can be found in Lynch et al. [84].

3.3.1.3 Composition

The operation of parallel composition for hybrid automata allows an automaton repre-

senting a complex system to be constructed by composing automata representing individ-

ual system components. The composition operation of Lynch et al. [84] identifies external

actions with the same name in different component automata, and likewise for external

variables. When any component automaton performs a discrete step involving an action a,

so do all component automata that have a in their action sets. Likewise, when any compo-

nent automaton performs a trajectory involving a particular evolution of values for an

external variable v, then so do all component automata that have v in their variable set.

60

Composition is defined by Lynch et al. [84] as a partial, binary operation on hybrid

automata. Since internal actions of an automaton A1 are intended to be unobservable by

any other automaton A2 , we allow Al to be composed with A2 only if the internal actions

of Al are disjoint from the actions of A2. Similarly, we require disjointness of the internal

variables of Al and the variables of A2. Formally, the hybrid automata Al and A2 are com-

patible if H, n A2 = H2 r A1 = 0 andX1 r V2 = V2 n X, = 0.

If Al and A2 are compatible, then their composition A1 I| A2 is defined to be the struc-

ture A = (W, X, Q, E, E, H, D, T) where:

1. W =W 1 u W2 and X =X 1 u X2

2. Q = {x e val(X)|(x restricted to Xi) E Q A (x restricted to X2) E Q2}
3. E = {x e val(X)|(x restricted to XI) e Ei A (x restricted to X2) E 021

4.E= E1 uE 2 and H= HIuH 2

5. For each x, x' e Q and each a E A , x aA >x' iff for i=1,2, either

-a e A, and x restricted to X a' : x'restricted to X, or

*a 0 A, and x restricted to X, = x'restricted to X,

6. Tc trajectories(V) is given by T e T,#> T restricted to V, e T, A T restricted to V2 E T2

Another theorem stated without proof is:

Theorem 2:

If Al and A2 are hybrid automata, then A 1 II A2 is a hybrid automata.

Again, the proof is found in Lynch et al. [88]. A form of projection lemma can be

derived from this, which says that the executions of a composition of hybrid automata

project to give the executions of the component automata.

3.3.1.4 Hiding

There are two hiding operators for hybrid automata, one which hides external actions,

and another which hides external variables. The hiding operation reclassifies external

actions or external variables as internal actions or internal variables. We shall call the

action hiding function ActHide and the variable hiding function VarHide.

61

1. If E C EA , then ActHide(EA) is the hybrid automaton B that is equal to A except that
EB = EA-E and HB = HAUE

2. If Wc WA , then VarHide(W,A) is the hybrid automaton B given by:
*WB = WA-W

*XB = XAU W

*QB = {xe val(XB)|(x projected on XA) e QA}

*EB = {x e val(XB)I(x projected on XA) e A}

*DB = {(x, a, x') e val(XB) x AB x val(XB)|(x restricted to XA, a, x' restricted to XA) e DA}

SEB= EA, HB = HA, TB = TA

3.3.1.5 Hybrid Input/Output Automaton
A hybrid input/output automaton (HIOA) A is a 5-tuple (H, U, Y, 1, 0) where:

1. H = (W, X, Q, E, E, H, D, T) is a hybrid automaton.

2. U and Y partition W into input and output variables respectively
3. I and 0 partition E into input and output actions, respectively

The following additional axioms are satisfied:

- Input Action Enabling: For every x e Q and every a e I, there exists x' e Q such that
x -- > x'

- Input Trajectory Enabling
Input action enabling is the input enabling condition for ordinary I/O automata. Input

trajectory enabling is a new, corresponding condition for interaction over time intervals. It

says that an HIOA should be able to accept any input trajectory, that is, any trajectory for

the input variables, either by letting time advance for the entire duration of the input tra-

jectory, or by reacting with a locally controlled action after some part of the input trajec-

tory has occurred. For a more in depth discussion of the HIOA and its properties, several

papers by Lynch et al. are available for reference [84,88].

3.3.2 Graphical Model (Timed Reactive Modules)
Many different approaches have been taken to modeling hybrid systems. A hybrid

model can be viewed as a finite automaton that is equipped with a set of variables. The

control locations of the automaton are labeled with evolution laws, and at a control loca-

tion the values of the variables change continuously with time according to an associated

62

law. The transitions of the automaton are labelled with guarded sets of assignments. A

transition is enabled when the associated guard is true. The execution of the transition

modifies the values of the variables according to the associated law. Each location is also

labelled with an invariant condition that must hold when the control resides at the location.

The model proposed by Alur et al. [2] is based on a graphical method whereby hybrid sys-

tems can be specified as graphs whose edges represent discrete transitions and whose ver-

tices represent continuous activities. A hybrid system H consists of six components:

H = (Loc, Var Lab, Edg, Act, Inv) (3.14)

where Loc is a finite set of vertices called locations. Var is a finite set of real valued vari-

ables. A valuation v for the variables is a function that assigns a real value v(x) E R to each

variable x e Var. A state is a pair (1, v) consisting of a location 1 and a valuation

v(x) e Reals, x E Variables. Then Z is considered to be the set of states. The Alur-Henzinger

model describes Lab as a finite set of synchronization labels that contains the stutter label

T. Edg is a finite set of edges called transitions. Each transition consists of e = (1, a, p, I')

where 1 e Loc is a source location, 1 E Loc is a target location, a E Lab is a synchroniza-

tion label and pt = V x V is a transition relation. Act is a labelling function that assigns to

each location 1 a set of activities. Finally, Inv is an invariant function that assigns to each

location 1 an invariant. The hybrid system H is time-deterministic if for every location

I e Loc and every valuation v E V, there is at most one activity f e Act (1) with f(O) = v. The

activity,f, is denoted by 01[v].

3.3.2.6 Runs of a Hybrid System
At any time instant, the state of a hybrid system is given by a control location and val-

ues for all variables. The state can change in two ways [3]:

1. By a discrete and instantaneous transition that changes both the control location and
the values of the variables according to the transition relation

2. By a time delay that changes only the values of the variables according to the activ-

63

ities of the current location.

The system may stay at a location only if the location invariant is true; that is, some dis-

crete transition must be taken before the invariant becomes false. A run of the hybrid sys-

tem H, then, is a finite or infinite sequence:

p FO -+ a0 -+f a2 -+ (3.15)

of states ac = (ii, vi) e E, non-negative reals t, e R 0, and activities f, e Act(li), such that

for all i < O,

1. f1 (O) = vi
2. V[O t < ti.]f(t) e Inv(1j)

3. the state ay 1 is a transition successor of the state ail = (lA,f (t))

The state a;' is called a time successor of the state ac; the state ai+1 a successor of a,. The

set of runs of the hybrid system H is written as [H].

If all activities are required to be smooth functions, then the run p can be described by

a piecewise smooth function whose values at the points of higher-order discontinuity are

sequences of discrete state changes. Also, for time deterministic systems, the subscripts f1

can be omitted from the next relation -+ .

The run p diverges if p is infinite and the infinite sum Zti diverges. The hybrid sys-
i 0O

tem is nonzeno if every finite run of H is a prefix of some divergent run of H. Nonzeno

systems can be executed.

3.3.2.7 Parallel composition of Hybrid Systems
Let H1 = (Locl, Var Lab1 , Edgj, Act,, Inv,) and H2 = (Loc2, Var Lab2, Edg2, Act 2,

Inv2) be two hybrid system over a common set Var of variables. The two hybrid systems

synchronize on the common set Lab1 n Lab2 of synchronization labels; that is, when-

ever H1 performs a discrete transition with the synchronization label a e Lab, rn Lab2 , then

so does H2 [3].

64

The product H, x H2 is the hybrid system (Loci x Loc 2, Var, Lab, u Lab 2, Edg, Act, Inv)

such that:

* ((li, 12), a, p., (11', 12')) E Edg +

1. (li, a, pi, li') e Edg and (12, a, 92, 12') E Edg2

2. Either ai = a2 = a OR ai e Lab2 and a 2 = T, OR ai = T and a2 0 Labi
3. g= p n 2

* Act(11 , 12) = Act 1 (11) n) Act 2 (12)

* Inv(11, 12) = Inv1(11) n Inv 2(12)

It follows that all runs of the product system are runs of both component systems:

[H1 x H 2]LoL C [HI] and [H1 x H 2]Loc 2 c [H2] (3.16)

where [H1 x H2]Loc, is the projection of [H, x H2] on Loci. Note that the product of two

time-deterministic hybrid systems is also time-deterministic. It is stated here without proof

that for every hybrid system, the set of runs is closed under prefixes, suffixes, stuttering

and fusion. For more detail, see Alur et al. [2,3,4].

3.3.3 Unified Hybrid System Model
Several other models are also used in control systems [15,16]. Branicky presents a unified

model for most control approaches. The discrete state space is specified as Q = Z : (pos-

itive integers). The continuous state space for x(.) is X = {xi}I= where each Xi is a subset

of some Euclidean space Rd', di E Z "0 . The regions Ai, C;, Di E X, are all specified a priori.

There are the autonomous jump sets, controlled jump sets and jump destination sets,

respectively. Let A, C, and D denote the unions UAi x {i}, U Bi x {i}, and UD, x {i},

i i i
i E Z 0 , respectively. The U, V be the sets of continuous and discrete controls, respec-

tively. The following maps are assumed to be known:

1. Vector fields fi: (Xi x X, x U -+ Rd') i E Z :

2. Jump transition maps Gi: A x V - D

3. Autonomous transition delay A,, : A1 x V -+ R 0

4. Controlled transition delay A,,: C, x V --> R 0

As shorthand, define G: A x V -+ D in the obvious manner, and similarly for Aa and A,.

65

The dynamics of the control system can now be described as follows. There is a

sequence of pre-jump times {T1 } and another sequence of post-jump times {fr} satisfying

0 = Fo0 s TI <F 1 <T 2 <1 2 <... 0 -, such that on each interval [. _1 , T) with non-empty inte-

rior x(.) evolves according to the differential equation:

x(t) = (t) , t >0 (3.17)

for some X1 , i E Z 50 . At the next pre-jump time (say, tj) it jumps to some Dk E Xk accord-

ing to one of the two possibilities:

1. x(Te) E Ai, in which case it must jump to x(rF) = Gi(x(T), v1) E D at time
F = tj + a, (x(Tj), vj), vj E V being a control input. This phenomenon is called an autono-
mous jump.

2. x(Tr) E Cg and the controller chooses to (it does not have to) move the trajectory dis-
continuously to x(F1) E D at time r = Tj + A,, (x(Tj), x(rF)). This is called a controlled or
impulsive jump.

For t e [0,00), let [t] = max1{jf rj: t}. The vector field (t) of equation (3.17) is given

by:

(t) = fL(x(t), x[t], u(t)) (3.18)

where i is such that x(t), x[t] E X, and u(.) is a U-valued control process.

This model encapsulates all of the characteristics of Witsenhausen's Model, Tavern-

ini's Model, the Back-Guckenheimer-Meyers Model, the Nerode-Kohn Model, the Ant-

saklis-Stiver-Lemmon Model and Brockett's Model. For more detail, there are several

papers by Branicky et al. [15,16].

3.3.4 Temporal Logic of Actions
The Temporal Logic of Actions (TLA) can be used to model continuous systems. A

temporal formula is built from elementary formulas using Boolean operators and the

unary operator (defined as Always). The semantics of temporal logic is based on behav-

iours, where a behaviour is an infinite sequence of states. We interpret a temporal formula

as an assertion about behaviours. Formally, the meaning of [F] of a formula F is a Boolean

66

valued function on behaviours. Letting a[F] denote the Boolean value that the formula F

assigns to the behaviour a, we can state that a satisfies F iff a[F] equals true. Thus, we

can say that Z F asserts that F is always true. We can also define O F = -,[-'F, which

asserts that F is eventually true. There are several other derived semantic operators in

TLA, which can be found in [68,69]. The Raw Temporal Logic of Actions (RTLA) is

obtained by letting the elementary temporal formulae be actions. An action [A] is a Bool-

ean valued function that assigns the value s[A]s' to the pair of states s, s'. So we define s,s'

to be an A step iff s[A]s' equals true. Thus, we can define [A] to be true for a behaviour iff

the first pair of states in the behaviour is an A step. RTLA formulas are built from actions

using logical operators and the temporal operator. TLA is a subset of RTLA, which adds

the notion of stuttering steps to RTLA. The notions of liveness and fairness, as specified

by Lamport, can be added as well. To finish the definition of the syntax and semantics of

simple TLA, the addition of the unchanged step, which preserves the state of the function,

is needed.

TLA has a limited domain of applicability. TLA is moderately useful for proving sim-

ple invariant properties of programs., and type correctness. Eventuality properties are also

relatively easy to ascertain. Proving one program implements another via simulation rela-

tions is not very easy, as it is occasionally difficult to determine if one has expressed the

correct relation as a valid TLA formula, and intuitive reasoning is sometimes misleading.

TLA is primarily useful for specifying and verifying safety, and to some extent, liveness

properties of discrete systems. This is because one can regard a safety property as specify-

ing that something bad does not happen, and that a liveness property asserts that some-

thing good does eventually happen. Thus, temporal operators are natural constructs to

frame these requirements.

67

The most significant drawback of TLA is that TLA properties are True or False for an

individual behaviour. Thus one cannot express statistical properties of entire sets of behav-

iours [68].

TLA can be used to reason about discrete systems even if its behaviour depends on

continuous physical values. Best and worst case time bounds on algorithms can be

expressed as safety properties and proved with TLA. A real-time algorithm can be speci-

fied by conjoining timing constraints to the TLA specification of the untimed algorithm.

In a real-time specification, the variable now is different from all of the others because the

continuous nature of time is not abstracted away. The specification allows now to assume

any of a continuum of values. The discrete states in a behaviour mean that we are observ-

ing the state of the system, and hence the value of now at a sequence of discrete instants.

There are of course, quantities other than time whose continuous nature we wish to

specify. For instance, in an air traffic control system, we wish to represent the positions

and velocities of the aircraft as continuous variables. Such a system which has inherent

continuously varying quantities is a hybrid system. In general, hybrid systems are treated

by TLA in a manner similar to that of real time system, except that in the specification the

formula RTNow(v) is replaced by one that describes the changes to all variables that repre-

sent continuously changing physical quantities. The Integrate operator will allow you to

specify those changes for many hybrid systems. Some systems will require different oper-

ators. For instance, describing the evolution of some physical quantities might require an

operator for describing the solution for partial differential equations. Theoretically,

though, if you can describe the evolution equations in a mathematical format, you can

technically specify these equations in TLA [68].

68

3.4 Model Checking Tools for Hybrid Systems

3.4.1 HyTech
HyTech is a tool that allows automatic model verification for linear hybrid systems, a

subclass of hybrid systems. Given a temporal requirement, HyTech computes the condi-

tion under which the requirement is satisfied by a linear hybrid system. Hybrid systems

are specified as collections of automata with discrete and continuous components, and

temporal requirements are verified by symbolic model checking. If the verification fails,

then HyTech generates a diagnostic error trace. HyTech was developed by Henzinger, Ho,

and Wong-Toi [52,53].

A hybrid system typically consists of several components that operate concurrently

and communicate with each other. The component automata coordinate through shared

data variables and synchronization labels. The hybrid automaton that models the entire

system is then constructed from the component automata using a product operation. The

definition of the product operation can be found in several papers [55,56].

HyTech can only deal with linear hybrid systems. Here we define a linear hybrid sys-

tem [55]:

A linear term <p over a set of variables V is a linear com-
bination of the variables in V with rational coefficients. A
linear formula is a boolean combination of inequalities
between linear terms. A linear hybrid system is a hybrid
system where invariant, initial, jump, and flow conditions
are all defined by linear formula. Furthermore, the flow
conditions are defined by linear expressions over i only.
(i.e., the flow conditions can not depend on variables x).

The main function that HyTech performs is the verification of safety properties: given

an initial region and an unsafe region, HyTech verifies whether the system starting with

the initial region ends up within the unsafe region. The verification is done by forward or

backward reachability analysis. The verification procedure is not necessarily decidable,

69

i.e., the computation could go on with no guarantee of termination [54,55,56]. The reach-

ability analysis is not necessarily decidable even for linear hybrid automata. In fact, it is

not decidable except for some special cases. It is decidable for timed automata (systems

that have only clocks that run with an identical rate) or simple multi-rate systems. The

simple multi-rate system is a system with clocks only, and no stopwatches. The clocks can

run at different rates but all invariant conditions and guards in jump conditions are of the

form x s k and the assignments are of the form x = k or x = x. For the problems that are

decidable, most of them are PSPACE-hard (see papers [53,54,55,56]).

3.4.2 Stanford Temporal Prover (STeP)
STeP provides a toolset for verifying linear-time temporal properties of reactive and

real-time systems [91]. Its deductive methods include verification rules, verification dia-

grams, decision procedures as well as a tool for invariant generation. STeP contains a

model checker that can automatically verify or disprove linear-temporal properties of

finite-state systems [8]. Assertion graphs are used to simplify and summarize the models

of safety formulas [9], and proofs of specifications generally can be presented using verifi-

cation diagrams [8].

The basic inputs are a reactive system expressed as a transition system, and a system

property to be proved, represented by a temporal logic formula. However, STeP has been

extended to include verification of safety properties of real-time systems using the clock

transition system computational model. Three interface components that STeP contains

are the Top-level Prover, the Interactive Prover, and the Verification Diagram Editor [10].

Specification for system descriptions are given in the form of a Simple Programming

Language (SPL) program. The input to STeP is an SPL program and a temporal-logic for-

mula that represents a property to be verified. When an SPL program is loaded, a fair tran-

sition system is automatically generated. The syntax and semantics are shown in the STeP

70

manual [13]. Also, an SPL program is compiled into a fair transition system. To describe

specific types of systems, STeP provides syntax (support) for Fair Transition Systems,

Modular Transition Systems, Clocked Transition Systems, and Hybrid Transition Systems

(manual).

STeP contains tools for automatic generation of invariants based on analysis of transi-

tion systems for reactive and real-time systems [11,12]. Rules shown in papers by Manna

et. al. [91] are used to prove hybrid system properties. The general validity of a set of first-

order verification conditions is obtained by using the rules to reduce the system validity of

a temporal formula. Moreover, to specify properties (specifications) of reactive systems

linear-time logic is used. Proofs of temporal system specification can often be represented

with verification diagrams [8].

Two techniques for automatically generating hybrid systems invariants are described

in Manna et. al. [91] as follows. The first technique characterizes the set of states that is

either an initial state or can be reached by either a discrete transition or a time-step transi-

tion, starting from anywhere in the state space. The second technique takes advantage of

time invariance properties. Time invariance ensures that the possible effects of taking two

successive transitions of duration DI and D2 are the same as taking one transition of dura-

tion DI + D2.

Two approaches to verifying temporal specification of reactive and concurrent systems

are bottom-up or top-down. Bottom-up is referred to as forward propagation and is a sym-

bolic forward execution of the system yielding an invariant that characterizes the set of

reachable states. Top-down is referred to as backward propagation and is a symbolic back-

ward execution of the system from the states satisfying the invariance property being

proved. The result is an invariant that characterizes the states that maintain the invariant

property. Unfortunately, there is no guarantee for success in forward or backward analysis.

71

Additionally, Bjorner et al. [8] suggests that verification of real-time systems should first

involve verification that the system description is non-Zeno. If the description is Zeno,

then it contains computation prefixes that can be extended to computations in which time

can grow beyond any bound.

3.4.3 UPPAAL
UPPAAL is an integrated tool environment for modeling, validation and verification

of real-time system modeled as networks of timed automata, extended with data types

(bounded integers, arrays, etc.). UPPAAL is developed jointly by Basic Research in Com-

puter Science at Aalborg University in Denmark and the Department of Computer Sys-

tems (DoCS) at Uppsala University in Sweden. It is appropriate for systems that can be

modeled as a collection of non-deterministic processes with finite control structure and

real-valued clocks, communicating through channels or shared variables [119,65]. Typical

application areas include real-time controllers and communication protocols, in particular

those where timing aspects are critical.

UPPAAL consists of three main parts: a description language, a simulator and a

model-checker. The description language is a non-deterministic guarded command lan-

guage with simple data types (e.g. bounded integers, arrays, etc.). It serves as a modeling

or design language to describe system behavior as networks of automata extended with

clock and data variables. The simulator is a validation tool that enables examination of

possible dynamic executions of a system during early design (or modeling) stages and

thus provides an inexpensive means of fault detection prior to verification by the model-

checker, which covers the exhaustive dynamic behavior of the system. The model-checker

is used to check invariant and reachability properties by exploring the state-space of a sys-

tem, i.e. reachability analysis in terms of symbolic states represented by constraints.

72

The basis of the UPPAAL model is the timed automata of Alur and Dill [2,17] derived

from an extension of the classic finite state automata with clock variables. To provide a

more expressive model and ease the modeling task, timed automata are extended with

more general types of data variables, such as Boolean and integer variables. In the current

implementation of UPPAAL, a system description consists of a collection of timed autom-

ata extended with integer variables in addition to clock variables. The edges of the autom-

ata possess several types of labels: guards, actions, clock resets and assignments. A guard

is a condition on the values of clock and integer variables that must be satisfied in order

for the edge to be taken. A synchronization action is performed when the edge is finally

taken. Clock resets and assignments are then optional means by which variables can be

changed before entry into the new state. Control nodes may possess invariants, which are

constraints on the clock values in order for control to remain in the node.

Formally, states of a UPPAAL model are of the form (l,v) where 1 is a control vector

indicating the current control node for each component of the network and v is an assign-

ment given the current value for each clock and integer variable. The UPPAAL model

determines two types of transitions between states: delay transitions and action transitions.

However, these two types of transitions may be overruled by the presence of urgent chan-

nels and committed locations.

The UPPAAL model checker is designed to check for simple invariant and reachabil-

ity properties. A number of other properties, including bounded reachability properties,

may be checked by reasoning about the system in the context of testing automata.

The two main design criteria for UPPAAL have been efficiency and ease of usage. The

application of on-the-fly searching technique has been crucial to the efficiency of the

UPPAAL model-checker. Another important key to efficiency is the application of a sym-

bolic technique that reduces verification problems to that of efficient manipulation and

73

solving of constraints [119,66,67,6]. To facilitate modeling and debugging, the UPPAAL

model-checker may automatically generate a diagnostic trace that explains why a property

is (or is not) satisfied by a system description. The diagnostic traces generated by the

model-checker can be loaded automatically to the simulator, which may be used for visu-

alization and investigation of the trace.

3.5 Specification Tools and Requirements Methodology
Most accidents in which software plays a part can be traced to requirements errors, not

coding errors [71]. However, few techniques exist for validation of requirements. Specifi-

cation Tools and Requirements Methodology (SpecTRM) is an experimental systems

engineering development environment for heterogeneous safety-critical systems that

includes specification and analysis tools integrated with a safety information system.

Modem high-tech systems are usually complex and made up of electromechanical,

digital, and human components that must work together to achieve a system goal without

creating hazardous states. SpecTRM includes a set of tools to assist in development and

documentation of the complete system specification including requirements traceability

and design rationale, a formal modeling language called SpecTRM-RL for those aspects

that can benefit from the use of formal methods, and a set of analysis tools to assist the

system engineer in detecting requirements and specification flaws and omissions.

The formal modeling language, SpecTRM-RL (SpecTRM Requirements Language),

can be used to specify the blackbox functional requirements for the system components,

including the software, hardware, and human tasks. To validate system design and compo-

nent requirements, various analysis tools can be applied to the system specification. Cur-

rent requirements analysis tools or those in development include completeness and

consistency analysis, software deviation analysis (robustness of the software when operat-

74

ing in an imperfect environment), execution and animation of SpecTRM-RL models, sys-

tem and software hazard analysis, analysis of the potential for inducing human errors such

as mode confusion, test data generation and requirements coverage analysis, and operator

task analysis.

SpecTRM-RL is a formal modeling language that is both executable and analyzable.

At the same time, it is easy enough to read by engineers and programmers that it can serve

as the system specification. A previous language based on similar concepts, named

RSML, is being used for the official system specification of TCAS II, a collision avoid-

ance system required on most commercial aircraft that fly in U.S. airspace [76]. Spec-

TRM-RL builds on what was learned while designing and using RSML in order to make

the language even more readable and reviewable, to eliminate error-prone features (such

as internally broadcast events), and to provide more guidance in building models [75].

SpecTRM Requirements Language (SpecTRM-RL) acts as a formal specification lan-

guage that overlays the low level requirements state machine (RSM) that forms the basis

for the language. The RSM is based on a simple Mealy automaton with outputs on the

transitions between states. The RSM is very low level and is not appropriate as a modeling

language for complex systems. As long as the mapping between SpecTRM-RL to the

RSM is unambiguous and well-defined, formal analysis is possible on both the underlying

RSM formal model as well as the higher-level SpecTRM-RL specification itself [97].

The notation has been designed to be practical for specifying very large and complex

systems and to enhance readability and reviewability. Each component of the system is

specified using SpecTRM-RL models. The models are blackbox in that only externally

visible behavior is specified-no internal (implementation) design is included. The system

specification is the composition of the blackbox component models. A slightly different

notation is used for specifying human procedures to make them more easily understood by

75

human factors experts [72]; the underlying formal model is the same, however, so they can

be executed and analyzed in conjunction with the other system component models.

Environment
Sensors

Measured Variables

TE Measured

M STA " "TE Feedback

Control Input

CONTROL

Suerisr MODE: Controlled
Device

Display Output

Controlled
Command

output

Figure 3.1: Form of a SpecTRM-RL Model

A SpecTRM-RL model has three components: (1) a specification of the supervisory

interface to the component, (2) a specification of the control modes for the component,

and (3) a model of the controlled process or plant including relevant operating modes,

state variables, and interface variables.

76

State Variable

Altitude

Obsolescence: 2 sec
Timing Behaviour:

Exception Handling: Because the Altitude Status Signal changes to obsolete
after 2 seconds, Altitude will change to unknown if all input signals are lost for two
seconds
Description: The altitude variable is used by the altitude switch to indicate whether the
threshold has been reached.
Comments:
References:
Appears in: DOIPowerOn

DEFINITION

= Unknown IF
Powerup T**

Controls.Reset *T*

Analog-Alt=Unknown * T

Dig-Alt1 =Unknown * *T
Dig-Alt2=Unknown * *T

Figure 3.2: Sample And/Or Table from the Altitude Switch Specification

The events and conditions causing transitions between states are described in AND/

OR tables. The behaviour in real systems is too complex to write on arrows between cir-

cles. Instead, we use a tabular representation in disjunctive normal form of a predicate

logic statement over the various states, variables, and modes in the specification. The far

left column of an AND/OR table lists the logical phrases of the predicate. Each of the col-

umns is a conjunction of those phrases and contains the logical values of the expressions.

77

If one of the columns evaluates to true, then the entire table evaluates to true and the tran-

sition is enabled. A column evaluates to true if all of its elements match the truth-values of

the associated predicates (a dot indicates "don't care"). Timing statements are allowed as

well as references to previous values of state variables.

Disturbances D

System Input Is System Output Os

Process7
Manipulated PControlled
Variables V, Variables V

Actuators Sensors
A

t Controller
Output 0 C Input I

Command Signal C

Figure 3.3: Process Control Loop

A multivariable controlled process can, in its most generalized sense, be modeled as

above (Fig 3.3). The process, here denoted by the plant P(s), has the controlled input, Is,

and the disturbance input D, along with the controlled variables Vc and the system output

O. The sensor (S) output I is fed into the controller, which is modeled by C(s). The con-

troller then creates the control signal 0 in order to actuate (A) the correct behavior in the

plant.

The Requirements State Machine (RSM) is defined as a seven-tuple

(Z, Q, go, P, Po, y, 6), with respect to the control loop above where [59]:

1. S is the set of input and output variables, I and 0 to the controller.

78

2. Q is the finite set of states of the controller C and qO is the initial state of C.
3. Pt is the set of Boolean functions over S; they represent predicates on the values and

timing of the inputs I from the sensors. These predicates are called trigger predicates
because they trigger a state change in the RSM.

4. PO is the set of Boolean functions over S; they represent predicates on the outputs 0
of the controller.

5. y is the trigger-to-output relationship mapping from Q x P, to PO. That is, y(q, p),
where q e Q and p E P, gives the predicate describing the output 0 to the actuators to be
generated when the transition with input predicate p is taken out of state q.

6. 8 is the state transition function mapping Q x P, to Q. That is, 8 (q, p) where q e Q
and p E P, defines the next state when the system is in state q and takes the transition hav-
ing p as the input predicate.

In addition, the RSM has the following properties [59]:

1. Predicates in Pt and PO are expressed using the standard Boolean operators and ordi-
nary arithmetic operators. The expression X I represents an input or output occurrence of
X. This expression evaluates to true the moment input X arrives at the black-box boundary
or output X is produced and presented at the black-box boundary. The value of a variable X
is denoted by val(X).

2. When an input I arrives at the black box boundary, it is denoted as Ii or simply I. The
previous occurrence of the same input is denoted I _1 and so forth. The ordering of outputs
is expressed in the same manner. The first variable I arriving at the black box boundary is
referred to as I,, not 10.

3. A clock and a function giving the absolute time of an event are needed to express
timing. The expression t(I 1) denotes the time when I arrives at the black-box boundary.
The clock is started when the system receives the signal to startup.

3.5.1 Extending SpecTRM-RL to Hybrid Systems
For many hazard analysis problems a discrete model suffices. However, for some anal-

ysis problems, a hybrid model is preferable. Adapting this formalism into a language

capable of representing a hybrid model, that is, a model containing both discrete and con-

tinuous components, is relatively simple. The only element missing in the present formu-

lation of SpecTRM-RL is the ability to allow the state of the system to evolve over time,

without any discrete actions occurring.

Thus, in order to adapt the present formalism of SpecTRM-RL, there only remains to

be added the final qualification of a set of time-passage steps:

79

At / qq ->q'
(3.19)

asserting that "from state q the system can move to state q' during a positive amount of

time At in which no trigger predicate is received and thus no discrete action occurs". The

key characteristic of the continuous state evolution under time is the specific interpretation

of the individual time steps. The system must always satisfy the following two properties.

First, if time can advance by a particular amount At = At+ At in two distinct steps (with
2 2

no intervening discrete actions), it can also advance by At in a single step. Secondly, if

time can advance by At in one step from state q to state q', then there exists a trajectory

assignment that maps all times in the interval At = [tiit tfin] to automaton states in a con-

sistent manner in order to explain the evolution of the system from state q to state q'. For

hybrid systems, these trajectories usually have physical significance. They often describe

physical parameters that evolve in a continuous fashion with respect to time, such as posi-

tion, velocity, acceleration, flow of information, etc. In such cases, the trajectories,

denoted by T, are descriptions of continuous functions of time. However, no such assump-

tion is made in this formulation, and the trajectories are not required to be continuous. If

we regard the time argument as ranging over the interval t e {0} u {R'} u 00, that is, the

positive real numbers, along with zero and infinity, we can define a trajectory formally

over a left-closed interval I E [tini, tfin) on the range of t such that:

r(tI) t2 -' >)(t 2) for allt 2 , t1 E I such that t, < t2
(3.20)

Note that with this definition, it is required that the latest time of the open-ended inter-

val Is [te ,, tfin) be the supremum of I. If I is an infinite interval, then the latest time is

regarded as being infinity. So the trajectory over the interval is such that q = 'r(tini,) and

80

q' = T(sup(tfn)). Thus, the trajectory assigns a state to each time in the interval I in a con-

sistent manner.

The two mathematical properties of hybrid traces can be specified as the following

axioms [83]:

Axiom 1:

If q At' > q' and q' si2 > q" then q At 1+At 2 q #
(3.21)

Axiom 2:

Over the interval At = [tini, tfn), in which no discrete action occurs, there exists the

trajectory such that

=r(tini, q ' >q'= r(sup(tfi))
(3.22)

Essentially, Axiom 1 allows for the combination of time intervals that possess no inter-

vening discrete actions, and Axiom 2 allows for the assignment of states to intervening

instances in time in the aforesaid intervals. The case of the zero-time interval (with no

intervening discrete transition) can be considered to be the case such that:

q >) q ' q = q '

(3.23)

With the notion of trajectories defined, in order to map the evolution of the continuous

states during time passage in the SpecTRM-RL framework, it now becomes possible to

specify hybrid systems using SpecTRM-RL.

The general form of a SpecTRM-RL model must be augmented to include an addi-

tional section which captures the continuous nature of the evolving hybrid trajectory of the

system. A new heading, entitled Inferred System Trajectory, is added to the generic Spec-

TRM-RL model form (see Fig. 3.4 on next page):

81

Environment
Sensors

MMeasured

Variables

SUPERVISORY INFERRED SYSTEM Masured
Feedback

MODE STATE
Control Input

CONTROL

Device

-INFERRED SYSTEM
,TRA JECTORY

Display Output

Controlled
Command

outputs

Figure 3.4: Form of a Hybrid SpecTRM-RL Model

The Inferred System Trajectory consists of trajectory elements. These trajectory ele-

ments can be comprised of combinations of input, output, interface or state variables.

Taken together as a whole, the trajectory elements reflect the continuous trajectory of the

system over time. The same sorts of logical predicates that can be formed with state vari-

ables can be formed with trajectory elements (Conjunction, Intersection, Negation etc.).

The trajectory elements have a far reaching impact on the system's reachability. No longer

is the reachability of the system quantized into discrete states, it is mapped onto regions or

reachable space. These issues are further examined in the next chapter.

82

CHAPTER 4
I could be bounded in a nutshell and count myself a king of

infinite space...

William Shakespeare, Hamlet, II.ii.270-273

Reachability
The notion of reachability spans several disciplines, such as automata theory, operations

research, control theory, and mobile computing, to name a few. While the general concept

of reachability is intuitively the same in most topics, a rigorous study of the idea yields

some surprising results. Techniques for identifying reachable states in some disciplines

(i.e. control theory) are mathematically formulated and relatively easy to implement,

while in others (i.e. automata theory) the entire state space may need to be generated. The

ability to convert finite automaton models to state space models allows for reachable

states to be more easily identified. This helps to curtail the state explosion problem

encountered in most reachability analyses.

4.1 Finite Automaton Models
For a deterministic finite automaton, M = (Q, Y, 8, q0, F) as introduced in Section 3.1.1,

the reachability of a state, can be formally defined as:

A state qj in a DFA is reachable from the state qi if there is a
sequence of inputs a = I02... ak that enables the automaton
to transition from qi to qj through a valid set of states.

Thus, in order to find out whether or not one state is actually reachable from another, a

search must be performed through the reachability graph of the automaton. One classifica-

tion of search techniques is forward or backward [71]. A forward, or inductive, search

takes an initiating state and traces it forward in time. The result is a set of states or condi-

83

tions that represent the effects of the initial event. Tracing a state forward can generate a

large number of states, and the problem of identifying a particular reachable state from an

initial state may be unsolvable using a reasonable set of resources. For this reason, for-

ward analysis is often limited to only a small set of initial states. In a backwards, or deduc-

tive, search, the analyst starts with a final event or state and identifies the preceding events

or states. However, the backwards reachability graph that is generated may be even larger

than the forwards reachability graph.

Another classification of search technique is depth-first and breadth-first. Depth-first

searches take an initial state, and then pursue one successor-path to its completion, and

checks whether or not the path has encompassed the desired state. It is obvious that unless

you are very lucky, and the desired state is on the first path pursued, a great many

unneeded paths are generated, which is computationally intensive. Breadth-first searches

generate all successor states to the initial states, check to see if the desired state is within

that set, and then generate all the successor states to the previous set, in order to check

again. As before, it can be very computationally intensive to generate a growing number

of successor states, and this approach rapidly leads to state explosion.

Thus, it can become very computationally intensive in order to determine whether or

not a particular state is reachable within a DFA, or to even generate the set of reachable

states.

4.2 Markov Models
A discrete Markov process or chain can literally be thought of as a finite automaton with a

probabilistic description of its inputs. A Markov process is a stochastic system for which

the occurrence of a future state depends only upon the immediately proceeding state.

Thus, if to < ti < ... < tn represent points in time, and ,, is the random variable which char-

84

acterizes the state of the system at tk, then the probability that the system is in the state x,

at t, given that it was in x,- at t,_ is given by: p,(, _ 1),x,, = P{ ,, = x, I(t(,, _1) = xn _ 1) .

This is called the transition probability, or one step transition probability. Given these

one-step transition probabilities for each state of the system, it is possible to construct a

transition matrix P where pij is the one step transition probability from state x; to state xj.

This is a pivotal notion, in that it introduces the idea that given a state xi, all of the possible

successor (or predecessor) states can be identified using a simple matrix operation.

Final states of a finite automaton are represented as absorbing states of the Markov

0 00 0chain, that is, pii=l. Initial states are represented in the vector a ={ai, a 2, ..., an} of initial

probabilities associated with the likelihood of starting in any given state xi. Thus, the tran-

0 00 0sition matrix P together with the initial probabilities a ={aI, a2 , ... , an} associated with the

states X={xI, x 2 , ---, xn} completely define a Markov chain. The notion of reachability for a

Markov chain can be defined as:

A state xj in a Markov chain is reachable from a state x, if it
is possible to go from xi to xj in a finite number of transi-
tions.

The concept of Markov chains and reachability acts to bridge the gap between finite

automata and the next topic, state space systems.

4.3 Discrete Time State Space Systems

A detailed understanding of how inputs impact the states of a given system can be termed

as a discussion of the reachability of the system. Consider an n-th order discrete time sys-

tem, as defined in Section 3.2:

x(i+ 1) = Ax(i)+ Bu(i) (4.1)

Now, for an arbitrary initial condition x(O), in k steps the system will be in the state:

85

k-i

x(k) = Akx()+ E Ak-i-IBu(i) (4.2)

i=O

or more explicitly:

u(O)

x(k) = A k x())+ [A Ak - IB|A k-2 2B|...|B]u(1))43

u(k- 1)

x(k) = A kx(O) + 91kUk (4.4)

where 91k and Uk are defined from inspection of (4.3) and (4.4). Now, consider

whether one may choose the input sequence u(i), i e [0, k - 1], so as to move the system

from x(O) to a desired target state x(k)=d at a given time k. If there is such an input, it can

be said that the state d is reachable in k steps. Now, assuming there are no constraints

placed on the input, the set of reachable states from the origin in exactly k steps is pre-

cisely the range of the matrix 9 1k. The k-reachable set is therefore a subspace, and the

matrix 91k is called the k-step reachability matrix.

Theorem 4.1:

For k s n s 1,

Range(91) G Range(91n) = Range(911) (4.5)

so the set of states reachable from the origin in some finite number of steps by appro-

priate choice of control input is precisely the subspace of states reachable in n steps.

Proof:

The fact that Range(9lX) c Range(91n) for k n follows trivially from the fact that the

columns of 91k are included among those of 91,. To show that Range(91n) = Range(911) for

1 n, the Cayley-Hamilton theorem says that A' for i n can be written as a linear combi-

nation of A -1, A 2 , ... , A, I, so that all the columns of 911 for 1 !n are linear combinations

86

of the columns of 9,. Thus, the result Range(9i4) _ Range(91n) = Range(1;) follows

directly.

In view of Theorem 4.1, the subspace of states reachable in n steps Range(9 1n) is

referred to as the principle reachable subspace. Hence, any reachable target state exists in

Range(91n), and is reachable in n steps or less. The matrix

91 = [A B|A n-2B|...IB] (4.6)

is termed the reachability matrix. If the entire n x n space is reachable, then the condi-

tion:

Rank(91n) = n (4.7)

that is, the columns of 9, are linearly independent, and span the entire space.

Note that (4.4) shows that getting from a non-zero starting state x(O)=s to a target state

x(k)=d requires that there be a Uk such that:

d-A kS = 1kUk (4.8)

For arbitrary d and s, the requisite condition is the same as that for reachability from

the origin. Thus, we can get from an arbitrary initial state to an arbitrary final state if and

only if the system is reachable from the origin, and we can make the transition in n steps or

less, when the transition is possible.

Now, it follows from the previous analysis that the reachable subspace Range(91n) is A-

invariant. That is, if

x e Range(9n) -> Ax e Range(91) (4.9)

This can easily be seen from the fact that

A91n = [A"BIA" B|... JAB] (4.10)

87

where the last n-1 blocks are present in 91, and the Cayley-Hamilton theorem allows

A"B to be expressed as a linear combination of blocks in 9.. This establishes the fact that

Range(A91n) c Range(91,) (4.11)

It follows directly that

x = 9aa -> Ax = A91na = 9,U G Range(91n) (4.12)

It is generally true that any A-invariant subspace is the span of some eigenvectors and

generalized eigenvectors of A. It turns out that Range(91n) is the smallest A-invariant sub-

space that contains Range(B), but this shall not be proven or pursued. The upshot of this

result is that an interpretation of the reachable space of the system can be realized using

the eigenvectors or generalized eigenvectors of the matrix A. Thus, the system represented

by equation (4.1) may be thought of as having a collection of "Jordan chains" or general-

ized eigenvectors at its core. Reachability, which was first introduced in terms of reaching

target states, turns out also to describe the ability of the system to independently "excite"

or drive the Jordan chains. This is the implication of the reachable subspace being an A-

invariant subspace. The critical issue for achieving reachability of a particular chain, is to

be able to excite the beginning of the chain; this excitation can then propagate down the

chain. An additional condition is needed if several chains have the same eigenvalue; in

this case, we need to be able to independently excite the beginning of each of these chains.

With distinct eigenvalues, we do not need to impose this independence condition; the dis-

tinctness of the eigenvalues permits independent motions.

4.4 Continuous Time State Space Systems
The definition of continuous time reachability is identical to that of discrete time reach-

ability. However, while in the discrete time case reachability can be checked through sim-

ple matrix conditions, it is not so clear that one can derive simple matrix conditions for

88

continuous time systems. It is somewhat surprising to find that the reachability condition

for continuous systems is the same as for discrete systems.

Consider now the n-th order continuous time model:

c(t) = Ax(t) + Bx(t) (4.13)

Consider whether one can choose the input u(t),t E [0, L], so as to move the system

from x(O)=O to a desired target state x(L)=d at a given time L>O. If there is such an input,

we say that the state d is reachable in time L. It can be shown that the choice of L is not

critical, similar to the discrete time scenario. The relationship of x(L) to u(t) under the

above conditions is given by:

x(L) = [e(L-t)A]Bu(t)dt (4.14)
0

x(L) = F T(t)u(t)dt (4.15)
0

x(L) = (F(t), u(t))L (4.16)

where F T (t) = [e(L - t
)A]B and the Gram product of F(t) and u(t) is defined in (4.15). The

set 91 of reachable states forms a subspace, because:

xa(L) = (F(t), Ua(t))L 1 OtXa(L) + fXb(L) = (F(t)

Xb(L) = (F(t), Ub (t))L x Ftua(t)+ 1 xbHt))L

that is, any linear combination of reachable states is reachable. This assumes, of

course, that there are no constraints placed on u(t). Thus, 91 is referred to as the reachable

subspace of the system. Strictly speaking, 91 is the reachable space for target states at time

L, but the choice of L, it will soon be shown, turns out to be irrelevant.

Now, let us define the reachability Gramian (at time L) of the system as:

PL = (F(t), F(t))L (4.18)

89

Theorem 4.2

The reachable subspace 91 is related to the reachability Gramian (at time L) PL as fol-

lows:

91 = Range(PL)

1 = Ranget F(t)F(t)dt)

(4.19)

(4.20)

Proof:

To first show that

91 c Range(PL) (4.21)

it is equivalent to show that:

Range (PL) c 9 1 (4.22)

For this, note that:

q PL = T = 0

(F(t)q, F(t)q) = 0

co q F (t) = 0
(4.23)

-> q x(L) = 0

where the last implication comes from equations (4.2-4). So, any vector in Range- (PL) is

also in 91'. Now, it can be shown that 91 = Range(PL) by showing that any target state

d e Range(PL) is also in 91'. Suppose d = PLa, and pick u(t) = F(t)a. Then:

x(L) = F T(t)F(t)axdt
0

(4.L4)

From here, a further conclusion about the state space system can be drawn:

90

= PLa

Range(PL) = Range([n B|An 2B|...|B])

= 91
(4.25)

Proof:

This can be proved by showing that the orthogonal complements of the above two sub-

spaces are equal.

T T A(L-t)qa P t=h fq e B = 0

as in the proof of Theorem 4. 1. Then:

q Te A(L -t)

q B = 0 set t = L

0 -> qT AB = 0 differentiate and set t = L

q An-I B = 0 differentiate n times and set t = L

ce q T9

(4.26)

(4.27)

Conversely:

q T 9= 0 > q Te B = 0 (4.28)

since by Cayley-Hamilton, eA(L-t) can be written as time varying combinations of

A , A , ... , A, I. This leads directly to:

q T9 = 0=>q eA(L-t)B = 0 T>q PL = 0 (4.29)

Note that from Theorem 4.2 and the fact that 91n does not depend on L, the reachable

subspace is independent of the choice of L. However, the characteristics of the control

input used to attain a particular target state will depend on L; the smaller L is, the "larger"

u(t) is expected to be, in some sense.

91

Theorem 4.3

Thus, it has been shown that the overall conditions for reachability of both continuous

and discrete time systems are the same. Hence, any reachability analysis applied to dis-

crete models can also quite easily be extended to continuous or hybrid models.

4.5 Converting DFA models into State Space Models
The heart of analyzing a system from a safety perspective is identifying and analyzing the

system for hazards, which are states or conditions of the system that combined with some

environmental conditions can lead to an accident or loss event. Once hazards are identi-

fied, steps can be taken to eliminate them, reduce the likelihood of their occurring, or mit-

igate their effects on the system [71]. A hazard analysis requires some type of model of the

system, which may be an informal model in the mind of the analyst, a written informal or

formatted specification of the system, or a formal mathematical model. Different models

allow for different types of analyses and for additional rigor and completeness in the anal-

ysis. The specification model can also be analyzed with respect to specific known hazards.

Different model types facilitate different types of analyses. From the previous sections, it

is observed that substantial techniques exist for determining the reachability of states

when a model is expressed in a state space formulation. The goal of this section is to see

how a deterministic finite automata can be converted into a state space formulation in

order to determine reachability properties. Coupled with the notion of abstraction, the

computational intensity of calculating the reachability of a given state becomes greatly

reduced.

4.5.1 Motivation for System Reformulation
A state is said to be reachable from another state if there is a path from the first state to the

second. In most systems, all desired states must be reachable from the initial state. If a

state is unreachable, there are two possibilities:

92

1. The state has no function in the system and can be eliminated from the model
2. The state should be reachable and the model is incorrect and should be modified

accordingly.
Theoretically, if the entire state space of a model were to be generated, it would be

possible to identify all hazardous states, and all the paths involving these aforesaid states.

Doing so would involve a forward search, as described in Section 4.1, which would have

the drawbacks mentioned. Utilizing a backwards search from a hazardous state to see

whether or not the initial state can be reached can also fall prey to similar difficulties. The

number of backward paths for hazardous states is still enormous for real systems. In com-

plex systems, complete reachability analysis is often impractical, but Leveson and Stolzy

have shown that it is possible to devise algorithms that reduce the necessary state space

search by focusing on a few properties. Their solution is to start from the hazardous state

and only work far enough backwards along the path to determine how to change the model

to make the hazardous state unreachable. Thus, only a subset of the actual reachablility set

will need to be generated [73]. Hence, if the state machine model of a system with n states

were reformulated as a state space model, determining the reduced reachability set would

only involve at most n matrix multiplications of an n x n matrix.

4.5.2 A Simple Example: The Gambler's Ruin
Consider first a very simple discrete example upon which to apply the previous theory.

The classical problem of the Gambler's Ruin involves gambling against a bank with capi-

tal A, in the following fashion:

A coin is flipped, and if the outcome is heads, the bank pays
one dollar to the player, but if the outcome is tails, the
player pays one dollar to the bank.Consider the probability
of flipping a head as p, and that the player has a capital A2-
The game terminates if either the bank or the player loses all
of their capital.

93

The problem becomes:

Is it possible to break the bank?

This problem can be modeled as a simple deterministic finite automata (DFA), where

there are two accepting states: when the capital is zero for either the player or the bank.

Consider flipping a head to be an input of 0, and a tail to be an input of 1. The automaton

becomes (Fig 4.1):

S01

1(2) (A+1,A2) A2_1) 0

90=(AAA2)

Figure 4.1: Finite Automaton of the Gambler's Ruin Problem

It is obvious from this automaton that the absorbing state of breaking the bank is reach-

able. However, there are Ai+A 2+1 states in the entire automaton. By unwinding the

automaton and reformulating it into a state space notation, and then applying the concept

of abstraction, the number of states can be greatly reduced, and computational resources

can be saved.

In order to create a state space model of the automaton, first let us consider reframing

the DFA as a Markov chain. For generality's sake, consider the probability of flipping a

head as being p, and the probability of flipping a tail as being (1-p). The final states of

breaking the bank become absorbing states, and the initial state becomes the only state in

the initial state vector, with a probability of one. A similar diagram of the Markov chain

becomes:

94

Figure 4.2: Markov Chain of the Gambler's Ruin Problem

From elementary mathematics, it is seen that the probability of breaking the bank is:

(ipjA21

P(Breaking Bank) = , p # 1 -p (4.30)
1- p+ 2

P

A1
P(Breaking Bank) = A+ A 2 p =1p (4.31)

Again, it is obvious that it is theoretically possible to break the bank, and thus the final

state is reachable. The Markov chain also has Ai+A 2+1 states. It seems that little progress

has been made, but in reality, a fundamental step has been taken. For, in the creation of the

Markov chain, the one-step transition matrix P has been formulated. If we consider x, to

be the absorbing state of breaking the bank (i.e. the bank has zero dollars and the player

has A1+A2 dollars), and xA I+A +, to be the absorbing state of the player going broke, fill-

ing in the requisite number of states in-between, while taking the probability of flipping a

head as being one-half, the transition matrix P would look something like this:

95

1

2

0

1

2

0

0

0

0

0

1

2

0

1

2

0

0

0

Figure 4.3:

In reality, what we have arrived at is the

lation of the problem. Now, formulating

0

0

1

2

0

0

0

0

0

0

0

1

2

0

0

0

0

0

0

0

1

2
0
1

2

0

0

0

0

0

0

1

Transition Matrix P

state transition matrix A in the state space formu-

the state space equivalent model (as described in

Section 3.2) to the finite automaton becomes trivial. Consider Ai+A 2+1 state variables x,

at the kth coin flip. The

1 dollars at the kth flip.

x,(k + 1)

X2 (k + 1)

x 3 (k + 1)

x 4 (k + 1)

XA +A(k + 1)

XA,+A (k + 1)

XA +A1(k + 1)

state variable x,(k) represents the likelihood of the player having i-

The discrete time state space formulation now looks like:

1

2

0

1
2

0

0

0

0

0

1

2

0

2

0

0

0

0

0

2

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

2
0
1

2

x,(k)

X2 (k)

X3 (k)

x 4 (k)

X A1 + A 2 - k
XA+ (k)

XA (k)

Figure 4.4: State Space Formulation of the Gambler's Ruin Problem

96

Now, this system is still very large, possessing A1 +A2+1 state variables, so that calcu-

lating the range space condition would seem to be very computationally intensive. Thus,

to avoid this, we must now use the concept of abstraction, in order to reduce the number of

state variables.

4.5.3 Abstraction

In order to formulate the Gambler's ruin problem in state space format, one might begin by

creating Ai+A 2+1 state variables in order to mimic the states in the finite automaton.

However, it is much cleverer to consider approaching the problem more abstractly. Instead

of considering each combination of (Banker'sCapital, Player'sCapital) in Fig 4.1 as a

distinct state, and writing out the entire state space, let us view the problem in terms of

winning and losing. Each time the player flips a head, s/he wins a dollar, and each time s/

he flips a tail, a dollar is lost. If we return to the notion that the probability of flipping a

head is p, and that of flipping a tail is (1-p), and let u(i) represent the probability of the

player breaking the bank with i dollars, then, for 1 <i <A 1 + A2 - 1:

u(i) = pu(i + 1) + (1 -p)u(i - 1) (4.32)

isolating for u(i+ 1) gives

u(i + 1) = -u(i) - - u(i - 1) (4.33)
P P

which implies

u(i + 2) = u(i + 1) - 1 u(i) (4.34)
P P

Note that the boundary conditions are expressed as:

u(O) = 0 (4.35)

u(A 1 + A2) = 1 (4.36)

that is, if the player has zero dollars, s/he has lost, and if the player has A1+A2 dollars, s/he

97

has won.

Then let x 1(i) = u(i+ 1) ,x 2 (i) = u(i) be the state variables in order to get:

Xi(i+ 1)1 F
X2(i + 1)]

1
p

1

-1(1 -P)l
p x2(i)

0 j.x 2(i_

or

(4.38)

which is in standard state space format. By inspection, it can be seen that the matrix A is

full rank (for p # 1), as is the matrix A2 . Now, applying the reachability conditions of equa-

tion (4.7) we determine that the entire state space is reachable. Hence, we can conclude

that the state of the player breaking the bank is reachable. This is accomplished by doing a

very simple matrix multiplication on a very small matrix. Hence, the act of determining

reachability becomes very reasonable.

As an aside, using the boundary conditions in equations (4.35-6) we can solve for the

probability the player breaks the bank given an initial capital of A2 dollars:

x(i) = A'x(O), (0) = LPu(2) (4.39)

so with initial player capital of A2 dollars,

x(A2) = A A2u(2)j

0
where the probability of the player breaking the bank is given by x2(A2)-

(4.40)

98

(4.37)

x(i + 1) = AI(i)

So, it is easily observed that the probability of breaking the bank is not zero, and thus it

is confirmed that this final state is reachable. Note that this approach is identical to formu-

lating the problem using Ai+A 2+1 state variables.

From the perspective of the bank, the state in which the player breaks the bank is haz-

ardous. Thus, using the technique of Leveson and Stolzy [73] outlined in Section 4.5.1, the

bank would begin the analysis from that hazard, and attempt to find the first state from

which this disaster could be averted, which would occur in the state where the bank has

one dollar, and the player has AI+A 2-1 dollars. The issue of backwards reachability

becomes simple, because from our formulation we are carrying the predecessor state con-

tinuously with us in the state vector x. Thus, in order to determine what the reachable pre-

decessor states were, we need only look to the second element of the state vector. Hence,

given this state (or family of states), we can determine their usefulness in escaping the

hazard. It is obvious that the predecessor state (1,Ai+A 2-1) is important, because it leads

directly to the hazardous state and to another non-hazardous state (2, Ai+A 2 -1). Hence,

guarding conditions must be put around the critical state of (1, A1+A2+1) by the bank in

order to limit the potentially hazardous situation. In reality, of course, the bank would

determine a margin of safety, say $100, and declare that to be the hazardous state, as no

bank wishes to have its capital diminish to $1. So a family of hazardous states would be

formed (all those states in which the bank has capital less than $100), leading to the cre-

ation of a safety envelope for the problem.

This technique of generating backwards states from the hazardous state in order to

determine the first escape path is developed using the Leveson-Stolzy algorithm [73],

which was originally designed to work on Petri Nets. A Hazard Automaton Reduction

Algorithm is developed from the Leveson-Stolzy algorithm by implementing modifica-

tions which allow the concepts of Leveson-Stolzy to be efficiently applied to automata and

99

state machines. The formal definition of the Hazard Automaton Reduction Algorithm

along with several of its properties and their proofs are detailed in depth in the following

chapter.

100

CHAPTER 5
When asked what it was like to set about proving something,
the mathematician likened proving a theorem to seeing the

peak of a mountain and trying to climb to the top. One
establishes a base camp and begins scaling the mountain's

sheer face, encountering obstacles at every turn, often
retracing one's steps and struggling every foot of the jour-
ney. Finally when the top is reached, one stands examining
the peak, taking in the view of the surrounding countryside

and then noting the automobile road up the other side!

Robert J. Kleinhenz

A State Machine Hazard Analysis and
Backwards Reachability

Whereas system reliability deals with the problems of ensuring that a system, includ-

ing all hardware and software subsystems, performs a required task or mission for a speci-

fied time in a specified environment, system safety is concerned only with ensuring that a

mishap does not occur in the process. Usually there are many possible system failures that

have relatively little "cost" associated with them. Others have such drastic consequences

that an attempt must be made to avoid them at all costs, perhaps even at the cost of attain-

ing some or all the goals of the system.

5.1 Motivation
While software itself cannot be unsafe, it can issue commands to a system it controls that

place the system in a unsafe state. Furthermore, the controlling software should be able to

detect when factors beyond the control of the computer place the system in a hazardous

state and to take steps to eliminate the hazard, or, if that is not possible, initiate procedures

to minimize the hazard.

101

A mishap is an unplanned event or series of events that results in death, injury, illness,

or damage to or loss of property or equipment. Mishaps can be classified according to

their severity from catastrophic to negligible.

A hazard is a set of conditions within a state from which there is a path to a mishap.

Hazards can be categorized by the aggregate probability of the occurrence of the individ-

ual conditions that make up the hazard and by the seriousness of the resulting mishap.

Together, these constitute a measure of the risk of the situation. Risk is formally defined as

the hazard level combined with the likelihood of the hazard leading to an accident (some-

times called danger) and hazard exposure or duration (sometimes called latency).

The first step in safety analysis is to identify the system hazards and assess their sever-

ity and probability (i.e. risk). Often early in the design of a system, the probabilities are

unknown and the analysis is done considering only severity. For simplicity, the states of

the system will be divided into two groups: high risk and low risk. High risk states are

states that lead to catastrophic or unacceptable losses (hazards). It is important to note that

in many, if not most, realistic systems it is impossible to completely eliminate risk: the

goal is to design a system with "acceptable" risk.

The overall goal in designing a safety-critical system is to eliminate hazards from the

design or, if that is not possible, to minimize risk by altering the design so that there is a

very low probability of the hazard occurring. To show that a system is safe, or low risk, it

is necessary to first ensure that given that the specifications are correctly implemented and

no failures occur, the operation of the system will not result in a mishap. Second, the risk

of faults or failures leading to a mishap must be eliminated or minimized by using special-

ized procedures. If it is not possible to eliminate completely the possibility of a hazard

occurring, then in order to reduce risk the exposure time of the hazardous conditions must

be minimized.

102

In order to determine whether or not a system can actually "reach" any high risk states,

all possible states that a system can reach from the initial state due to a legal set of transi-

tion can be generated. This is called a forward reachability graph. However, generating the

entire reachability graph may well be impractical due to the size of the graph for a com-

plex system.

5.2 Informally Defining the Hazard Elimination Algorithm

One way to do a safety hazard analysis is to work backwards from the hazardous state

to determine if it is reachable. This approach is useful when the goal of the analysis is to

prove only that the system cannot reach certain hazardous states, which is often a require-

ment for safety-critical systems. Fault tree analysis is a similar technique used for the

same purpose. The backward approach is itself practical only if one considers a relatively

small number of high risk states. It must be noted that the concern here is with system

safety, not with the correctness of the system. A system is "safe" if it is free from mishaps

even if it does not accomplish its mission or functional objectives.

Now, if a deterministic finite automaton is considered, as defined in Section 3.1, the

transition relation between a pair of states is defined as being a function. The transition

function of the DFA can be used to determine if the hazardous state is reachable by using

the hazardous state as the initial state and determining whether the original initial state is

reachable. It is possible for the backward reachability graph to be as large as the original

graph. Thus, a solution must not require the entire backward reachability graph to be gen-

erated. One possible solution defines and uses a type of state called a critical state.

Consider separating the states in a finite automaton into two disjoint sets:

1. States from which it is possible to reach only low risk states
2. States from which it is possible to reach high risk states and possibly also low risk

states

103

A critical state is a low risk state from which it is possible to reach both a hazardous

state and a low risk state. Thus, if a hazardous state is reachable, there must be a critical

state on the path from the initial state to the hazardous state (including the possibility that

the critical state is the initial state, as long as the initial state is low risk). Otherwise, the

design needs to be completely redone since all executions result in hazardous states.

To ensure that a particular hazardous state can never be reached, it is possible to sim-

ply work backwards to the first critical state and to use design techniques to ensure the bad

path is never taken. This technique is conservative, because in order to reduce the large

amount of computing to produce the entire reachability graph, hazardous states may be

eliminated that in reality may not have been reachable. However, it does no harm to elimi-

nate the possibility of a mishap that would not have occurred. Moreover, eliminating a

nonexistent path may have the effect of eliminating or lessening the possibility of mishaps

caused by extraneous faults and failures.

The algorithm starts with the set of hazardous states. For each member of this set, the

immediately prior state or states are generated. Each of these "one-step backward" states

is then examined to see if it is a potential critical state and can be used to eliminate one

path to the hazardous state. Finally, there exists only the need to look forward one step

from each potentially critical state in order to label it as critical. This is because if the

escape path used to eliminate the hazardous state in question leads eventually to another

hazardous state, the hazardous part of escape path will be eliminated by a critical state that

is a successor to the one being used to eliminate the original hazard in question.

5.3 Defining Hazard Automata
Let us define a Hazard Automaton A as being:

A = (Q, q0, QL, QH, Z, X, 8) (5.1)

104

where Q represents the states of the system, qO the start state of the system,

QH Z Q

and

QL C Q
and

Z C QH,

and

6: Q x I -+ Q

so that 6 is the transition function that maps the present state to the next state where Z

is the input alphabet. Recall that the set of finite strings of elements of I is denoted by X*.

Consider the states QH, QL to be the set of high risk states and low risk states, respec-

tively, that are pre-determined by the engineer or system designer. These states obey the

following properties:

Q = QH uQL

QHn QL = 0

that is, Q, and QL form a partition of Q. Furthermore, we assume:

if q e QL then 3(oy E Z) such that 8(q, o) e QL

Z Qi QH

The initial state of the system must all be an element of the set QL.

gO QL

(5.6)

(5.7)

(5.8)

(5.9)

That is:

(5.10)

Let us next define the notion of predecessor states, successor states and reachable

states.

105

(5.2)

(5.3)

(5.4)

(5.5)

5.3.1 Predecessor, Successor and Reachable States
Predecessor, successor and reachable states can be defined quite easily in a Hazard

Automaton A. Given a state q, the predecessor states of q are all of the states from which

there exists a legal transition under a single given input that takes the predecessor state to

the state q. Similarly, the successor states of q are all of the states for which there exists a

legal transition under a single given input that takes the state q to the successor state. The

reachable states of q are all of the states for which there exist a sequence of legal transi-

tions, under a given input string that takes the state q to the reachable state. More for-

mally:

Define the set of successor states Sq for a state q as:

Sq = U a ({5(q, a)} (5.11)

Define the set of predecessor states Pq for a state q by:

q' e Pq ce q e Sq' (5.12)

Define the reachability function S* such that:

S*(q, aw) = S(6 *(q, w),) (5.13)
S*(q,X) = q

where

6*: Q x X* -> Q (5.14)

for a e I , w = wIw 2 .-. w, being a string over the alphabet of E, and X being the empty

input string. Thus, the set of reachable states Rq from the state q can be defined as:

q' e Rq < Bw e X* [8*(q, w)= q'] . (5.15)

All states in Rq can be considered to be descended from, or have the common ancestor

state q. Similarly, the set of ancestor states Aq can be defined as:

q e Aq c< q e R. (5.16)

106

5.3.2 Critical States
Recall that the Hazard Automaton A possesses three sets of states, QH , QL and Z. The

goal in a hazard analysis is to identify and remove hazards. This is equivalent to rendering

all of the states in Z unreachable. The algorithm outlined in the next section attempts to

do so by utilizing the notion of a critical state.

Define the set of critical states C such that:

f e QLA

q E C<-> 3q' E QH such that q' e Sq A (5.17)

3z e Z such that z e Rq

5.4 Hazard Automaton Reduction Algorithm
The Hazard Automaton Reduction Algorithm (HARA) takes a hazard automaton

A = (Q, qo, QL, QH, Z, X, 8) as an input, along with a single identified hazardous state z e Z

and produces as an output a "reduced" Hazard Automaton A' = (Q', qo', QL', QH', Z, X, 8')

with the hazardous state rendered unreachable 3. A hazard automata

A' = (Q', qo', QL', QH', Z, X', 8') is a reduction of the hazard automata

A = (Q, qo, QL, QH, Z, Y, 8) if:

Q= Q (5.18)

qO' = o (5.19)

QL' = QL (5.20)

QH' QH (5.21)

Z =Z (5.22)

Z' = (5.23)

' C 8 (5.24)

3. HARA returns a "reduced" HA if it is possible to remove the hazard from the original HA with-
out damaging the functionality of the design.

107

HARA disables the transitions in 5 that lead to the hazardous state z. Repeated appli-

cation of the Hazard Automaton Reduction Algorithm can be used to render all identified

hazards in the automaton unreachable, as long as there exists at least a single path of low

risk states from the initial state to a final state.

Given the inputs of a Hazard Automaton A = (Q, qo, QL, QH, Z, Z, 8) and a hazardous

state z e Z to HARA, and the output of a reduced Hazard Automaton

A' = (Q', qo', QL', QH', Z, E', 6') by HARA, the correctness condtions on HARA are as fol-

lows:

Q' = Q (5.25)

qo' = go (5.26)

QL' = QL (5.27)

QH' = QH (5.28)

Z = Z (5.29)

Z = X (5.30)

S-':{(q, a, q')|(q E QL A q' E QH such that q' e Sq A z e Rq,)} (5.31)

This last condition can also be stated in the form that:

-,]w1'*(qO, w) = z (5.32)

indicating that the hazardous state z is no longer reachable in the reduced Hazard

Automaton A'.

Consider the Hazard Automaton:

A = (Q, qO, QL, QH, Z,I,) (5.33)

The following describes the details of the algorithm to identify and render the hazard-

ous state of the Hazard Automaton unreachable 4

A'=HARA(A = (Q, qO, QL, QH, Z, Y, 6) ,z)

4. The DFA has a transition enabled under all inputs, and a transition exists for all inputs.

108

% Initialize variables and Reduced Hazard Automata
StatestoProcess = {Iz
StatesProcessed =

AncestorStates =

% These are the ancestor states of the hazardous state z in the automata A'
PredecessorStates = $
% These are the predecessor states of the state q in the automata A'
6' = 6
A' = (Q, qO, QL, QH, Z, 8')
%Render Hazard z unreachable in Automata
do while StatestoProcess -StatesProcessed # $

choose q e StatestoProcess
%Find Predecessor States of q with respect to the automata A': Pq, A'

PredecessorStates = Pq, A'

%Eliminate each path from the predecessor state to the state q, consider each element of Pq case by case
begin case

Case 1: Pq, A'= A q # q
%State q is unreachable from any other state.

StatestoProcess = StatestoProcess - q
StatesProcessed = StatesProcessed + q

Case 2: Pq, A'# $ A (Pq,A' r AncestorStates) = P ,A
%No new Predecessor states found; State is in an unreachable cycle

StatestoProcess = States toProcess - q
StatesProcessed = StatesProcessed + q

Case 3: Pq, A' # $ A (q, A' n AncestorStates) # PqA
%New Predecessor states found.

AncestorStates = AncestorStates u Pq, A'

StatestoProcess = StatestoProcess - q
StatesProcessed = StatesProcessed + q
for all a e (AncestorStates-StatesProcessed)

choose a E AncestorStates-StatesProcessed
if a e QL

% a is Critical State because it is a low risk state, has low risk sucessor (by definition of low risk state) and
%has the hazard z in its reachability graph.
%Disable hazardous transition by removing from 6

6' = 8'- (a, a, q) where ((q e QH) A (z E Rq))
else

%Go one more step backwards
StatestoProcess = StatestoProcess u {a} - StatesProcessed

endif
endfor

Case 4: Pq= $ A q = q0
% State q is initial state which is defined as a low risk state. This case should have been caught in Case 3,
%and the initial state should have been used as a critical state. An error has occurred.

Terminate Algorithm and Return Error Message
end case

end while
Terminate algorithm and Return A' = (Q, qO, QL1 QH, Z, H, 5')
end

109

The Hazard Automaton Reduction Algorithm takes as input the Hazard Automaton A

and a single identified hazardous state z. It returns as an output the Reduced Hazard

Automaton A', in which the hazard z is no longer reachable. The first section of the algo-

rithm initializes some useful variables, and creates the Reduced Hazard Automaton A'. A

while loop is then set up to terminate when the hazard z is no longer reachable in A'. The

set of predecessor states of the hazard z with respect to the automaton A' (also referred to

as Pq,A) is generated. If there are new predecessor states generated, then the algorithm

goes to Case 3, where the attempt is made to remove the reachability of the hazard z by

disabling the transitions from the predecessor states to the hazardous state z. Case 3

attempts to accomplish this by considering each predecessor state individually, which is

accomplished in thefor loop. Each predecessor state is identified as being either high risk

or low risk. If the predecessor state is low risk, then the transition between the low risk

predecessor state to the hazard is removed, causing the transition function 6' in the

Reduced Hazard Automaton A' to be modified. All further actions in the algorithm are

taken with respect to this newly modified A'. If all of the predecessor states to the hazard

z are low risk, then the for loop in Case 3 will eliminate all transitions to the hazardous

state, and the algorithm will terminate at the while condition and return the Reduced Haz-

ard Automaton A' = (Q, qo, Q, QH , z, 6') .

However, some of the predecessor states of z may be high risk. These high risk prede-

cessor states must be treated as hazardous states, and are added to the set of

StatesToProcess. The algorithm then reencounters the while condition and continues on

as if all of the states in StatesToProcess are hazardous, and the reachable paths to each

one must be eliminated.

The algorithm is guaranteed to terminate due to the fact that, for any hazard automaton

that posesses a path of low risk states from the initial state to the final state, a critical state

110

must exist along the path from the inital state to the final state (if the hazard is reachable).

This is clear because the initial state itself is a low risk state and has a low risk sucessor

(due to the fact that there is a low risk path from the initial state to the final state), which

means that if there is no other low risk predecessor to the hazard other than the initial state,

the initial state itself will become the critical state for the hazard. If the hazard is not

reachable from the initial state, then it will be identified by either Case1 or Case 2 of the

algorithm. Case 1 deals with the situation where a path to the hazard is composed of only

high risk states, and is not reachable from the initial state. Case 2 deals with the situation

where the path to the hazard is trapped in a cycle of high risk states which is not reachable

from the initial state. These paths are then removed from consideration in the algorithm,

and do not result in a non-termination situation. Since these paths were never reachable to

begin with, they do not impact the overall reachability of the hazard in question from the

initial state. Case 4 should never be encountered, and is included for completeness' sake.

Hence, it can be concluded that the Hazard Automaton Reduction Algorithm can take

the Hazard Automaton A = (Q, qO, QL, QH, z, Z, 8) along with the hazardous state z e Z and

produce a reduced automaton A' = (Q, qo, QL, QH, Z, Y, 8'), where the hazardous state z has

been rendered unreachable. All of the hazardous transitions from the low risk critical

states leading to the high risk states that eventually lead to the hazard have been disabled.

5.5 Functionality of the Hazard Automaton Reduction Algorithm
Now, given the algorithm above, it is desirable to show that, if a Hazard Automaton has a

path of low risk states from the initial state to a final state, then the Hazard Automaton

Reduction Algorithm is capable of removing all of the hazards in the automaton. Given

this sort of automaton, the Hazard Automaton Reduction Algorithm, when applied repeat-

edly, will produce a reduced automaton with the critical transitions excised. Hence, it can

be said that the Hazard Automaton Reduction Algorithm can eliminate all hazardous

111

behaviour in an automaton, if that automaton possesses a path of low risk states. More

formally, this theorem can be stated:

Theorem 1:

Given a Hazard Automaton A capable of exhibiting a path of low risk states from the

initial state to a final state, the Hazard Automaton Reduction Algorithm can eliminate all

identified hazardous behaviour of the automaton. All identified hazardous behaviour of A

being eliminated is equivalent to saying that all identified hazards are no longer reachable.

This second framing of the statement shall be proved by contradiction.

Proof:

Suppose not.

This means that:

Ez E Z|&*(q0, w) = z (5.34)

The entire argument by contradiction hinges on the fact that there is a critical state

along the path between each hazardous state and the initial state for any hazard automaton

A that is capable of exhibiting non-hazardous behaviour. Without a critical state on the

path between the hazardous and initial state in the original automaton A, the reachability

of the hazardous state cannot be eliminated. If no critical state exists on the path between

qO and z, then there is no low risk state on the path between qO and z that possesses any

low risk successors. Thus, the initial state qO has no low risk successors, and thus can lead

only to hazardous behaviour. This is in contradiction to the assertion that A posseses a

path of low risk states starting from the initial state and ending in a final state (a state that

has no outgoing transitions).

The only way for there to be no critical state in the set of ancestor states of the hazard

would be if no initial state was an ancestor state of the hazard. If there is no path existing

112

between the hazard and the initial state in the original automaton A, then the hazard is

already unreachable:

,-]*(qO, w) = z, z E Z (5.35)

and since:

' C 6 (5.36)

we have a contradiction of (5.34).

Hence, we can say that HARA renders all identified hazards unreachable in the new

automaton A', which is equivalent to saying that all identified hazardous behaviour in the

reduced automaton A' is eliminated.

5.6 Optimality of the Hazard Automaton Reduction Algorithm
As well as eliminating all identified hazardous behaviour in an automaton, the HARA also

ensures that no reachable, strictly desirable behaviour is eliminated. This is equivalent to

saying that no sequence of purely non-hazardous, low risk states is eliminated. Thus, for

an automaton A which is capable of exhibiting low risk behaviour, not only are all of the

hazards removed, but no desirable low-risk behaviour sequences are removed in A. Thus,

in some fashion, HARA can be construed as being optimal, in the sense that it removes all

of the hazards whilst removing the minimum amount of non-hazardous behaviour traces at

the same time5 . More formally:

5. A sequence of desirable, low risk behaviour is defined as being a path or sequence of states, all
of which are low risk. That is, this sequence of purely low-risk states does not have a hazardous
predecessor along the path from initial state to final state.

113

Theorem 2:

Given a Hazard Automaton A capable of exhibiting a path of low risk states from the

initial state to a final state, the Hazard Automaton Reduction Algorithm does not elimi-

nate any sequence of reachable, desirable, non-hazardous low risk behaviour starting from

the initial state.

Proof:

By contradiction. Suppose not.

Then,

3(qoalq1 ...oYqL), Vi E N, og E 1, q; E QL (5.37)

in the original Hazard Automaton A and qL E QL. However, in A':

,3(S'*(q, w)= qL), w e * (5.38)

This means that, at some point, a transition must have been disabled in the original

automaton, upstream of the low risk state, rendering it unreachable from the initial state in

the new automaton A'. If there is no path from qO to qL, then we have a contradiction to

(5.37), as qL was unreachable to begin with.

So there must be a critical state somewhere along the path from qO to qL in the original

automaton A in order for a transition to be disabled, thereby cutting off the reachability of

the low risk state qL. Thus,

8*(qo, w)= 6 *(6 *(q0 , w'), w")

= S*(qc, w") (5.39)

qL

where qC e C, qc n Rq0 *

In order for the path to qL to have been eliminated, a hazard must exist somewhere along

the reachable path from qO to qL and beyond. Now, if we recall from the definition of a

114

critical state, only a path of high risk states must exist between the critical state and the

hazardous state. The critical state is the first low risk state (with a low risk predecessor)

encountered along the path from the hazard to the initial state. So, each critical state elim-

inates only the path of high risk states (and all of their successors) leading to the hazard.

So, we must have, in A:

3(qciqi---i + n n+ 1z) (5.40)

where

Vi e N, a, E 1, qC E QLZ ZE Z, q, E QH (5.41)

There are two possible ways that the path of low risk states to qL could have been

eliminated.

1. The path of low risk states leading from qc to qL is a successor of one of the high
risk states q, c QH leading to the hazardous state z, or is a successor of z itself.

2. The hazard lies after the path of low risk states to qL (z is successor to q).

5.6.1 Case 1

If the path of low risk states from qc to qL is a successor of one of the high risk states

q, e QH or of the hazard z itself, then the low risk state qL has a hazardous or high risk pre-

decessor along the direct path from the critical state to the low risk state in the original

automaton A. Thus, the behaviour exhibited by the sequence of states, from the low risk

critical state to the low risk eliminated state evinces a hazardous or high risk state. This is

a contradiction to the assertion that a sequence of desirable, low risk, non-hazardous

behaviour beginning in the initial state qO and terminating in the final state qL is elimi-

nated (5.37). After all, if in order to get to the low risk state qL one has to pass through a

high risk state q, e QH, the sequence of states that takes you from one to the other is not

purely low risk.

5.6.2 Case 2
The hazardous state z lies after the state qL. By definition of a low risk state:

115

And now we are saying:

3w 15*(qL, W) = z (5.43)

then we have by definition that qL is a critical state. Since qC = *(qc, w'), the state qL

is encountered before the critical state qc in HARA, making qL the first low risk state with

a low risk successor encountered due to the hazard z. Thus, the critical state qL would be

used to eliminate the hazard z in HARA, and hence could not itself be eliminated in the

process6 . Thus we have a contradiction, as qc is no longer the first low risk state encoun-

tered in the backwards path search due to the hazard z.

5.7 Hybrid Extension of the Hazard Automaton Reduction Algorithm
Now, for the case of a hybrid automaton, we consider the LSVW [84] model:

A = (W, X, Q, 8, E, H, D, T) (5.44)

as defined in Section 3.3.1. The question becomes whether or not we can reduce the

hybrid case into the form of the discrete case, in which case the proceeding two proofs for

functionality and optimality would still hold. The added difficulty of the hybrid case is

that a hazardous state can occur either through a discrete transition or through continuous

time evolution.

However, this problem can be circumvented. Let us create an augmented LSVW

automaton HA = (W, X, Q', E', E, H, D', T) which considers the matter of risk. First augment

the internal state variables X of the hybrid automaton H to X, by adding a single internal

variable, called Risk. This is a variable which can possess one of three values: Low, High

or Hazard. Depending on the state of V = W u X at any given point in the continuous tra-

6. Note that the critical state is no longer critical due to hazardous state z as z would have been
eliminated using ..

116

3q'IS8(qL, CY) = q', q' e QL, CY E X (5.42)

jectories T, or before and after a discrete transition, the variable Risk is assigned a value

by an external engineer, depending on whether the state is low risk, high risk, or hazard-

ous. So, for the augmented LSVW A', we have that:

X = X u {Risk} (5.45)

Q'c val(X') (5.46)

E'= val(X') (5.47)

D' = val(X') x {E u H} x val(X') (5.48)

T is the set of valuations for V = W u X' that obey suffix, prefix and concatenation closure in A' (5.49)

Once this assignment has been made, a hybrid Hazard Automaton HA can be created

from the LSVW automaton A'. The hybrid Hazard Automaton can be defined as:

HA = (W, X', Q', E', E, H', D", T') (5.50)

where X, Q', e' are defined as in Equations (5.45-5.47) and:

H' = Hu{ E } (5.51)

D" Q' x {E u H'}'x Q' (5.52)

T' is the set of valuations for V = W u X that obey suffix, prefix and concatenation closure in HA (5.53)

A discrete e -transition can be inserted into the transition map D' of the hazard autom-

aton HA each time the state variable Risk changes in order to create the transition map D'.

This acts to augment the discrete transition relation D' to include dummy transitions that

do not affect the valuation V of the automaton, but signal a change in the risk behaviour of

the automaton.

With the augmented state set V = W u X and the augmented transition relation D", we

can assert that a hazardous state can only occur as the result of a discrete transition. Thus,

a coarse discretization of the continuous system with respect to risk has been achieved.

The Risk variable acts to abstract away the behaviour of the continuous trajectories, and to

create a superstate that possesses a commonality due to risk behaviour. Hence, a trajectory

117

with risk behaviour "Low" can be seen as a superstate consisting of the infinite number of

valuations within the trajectory. It can move to another superstate with Risk behaviour

High via a discrete transition only. Thus, if we encapsulate the trajectories into superstates

based on risk, the application of the Hazard Automaton Reduction Algorithm occurs just

as it did in the discrete case.

5.7.1 Functionality Proof Sketch
Recall that the definition of functionality in the discrete case only guarantees that all haz-

ards are removed from the automaton. No promises are made with respect to maintaining

the operability of the automaton. Because the hybrid Hazard Automaton is discretized

with respect to the Risk variable, it follows directly from the discrete proof that all of the

hazardous superstates can be removed. For each hazardous superstate, if the predecessor

superstate is achieved by an actual transition in the original D, then the calculation of suc-

cessor superstates and an evaluation of their risk level determine whether or not the prede-

cessor superstate is a critical superstate, and so on. If the predecessor superstate is

achieved solely by an e -transition, then this predecessor superstate is treated as having

only the one hazardous superstate as a successor, and a further one-step backwards calcu-

lation must be performed.

Now, given the algorithm above, it is desirable to show that, if a hybrid Hazard

Automaton HA is capable of exhibiting non-hazardous behaviour, the Hazard Automaton

Reduction Algorithm is capable of removing all of the hazards in the hybrid Hazard

Automaton. Given this sort of automaton, the Hazard Automaton Reduction Algorithm

will produce a Reduced hybrid Hazard Automaton HA' with the the discrete transitions

leading to eventual hazardous trajectories excised. Hence, it can be said that the Hazard

Automaton Reduction Algorithm can eliminate all undesirable behaviour in a hybrid Haz-

118

ard Automaton, if that hybrid Hazard Automaton is capable of exhibiting non-hazardous

behaviour in its present design form.

5.7.2 Optimality

As with the previous subsection, the same argument applies with respect to the optimality

of the hybrid Hazard Automaton. As well as eliminating all identified hazards in a Hazard

Automaton, the Hazard Automaton Reduction Algorithm also ensures that no reachable,

strictly desirable behaviour is eliminated. This is equivalent to saying that no sequence of

purely non-hazardous, low risk behaviour is eliminated. Thus, for a hybrid Hazard Autom-

aton HA capable of exhibiting low risk behaviour, not only are all of the hazards removed,

but no desirable low-risk behaviour sequences are removed in HA'. Thus, in some fashion,

the Hazard Automaton Reduction Algorithm can be construed as being optimal, in the

sense that it removes all of the hazards whilst removing the minimum amount of non-haz-

ardous behaviour at the same time7 .

5.7.3 Simulation Relation
The key to the hybrid proofs for functionality and optimality lies in the simulation

relation between the original hybrid LSVW automaton which has a risk variable as a part

of its internal variables X and the hybrid Hazard Automaton which has the extra epsilon

transitions between continuous trajectory segments of different risk designations. If the

hybrid automaton model of Lynch et al. [84] is considered for the purposes of the proof,

the the augmented LSVW automaton which has Risk as a part of its internal variable set X

can be denoted by:

A' = (W, X, Q, E, E, H, D, T) (5.54)

and the hybrid Hazard Automaton with the augmented transition map can be denoted by:

7. A sequence of desirable, low risk behaviour is defined as being a path or sequence of trajecto-
ries, all of which are low risk. That is, this sequence of purely low-risk trajectories does not have a
hazardous predecessor along the path from initial state to final state

119

HA = (W, X, Q, 8, E, H', D',T) (5

where:

H' = Hu{e} (5.56)

D'c Q x {E u H'} x Q (5.57)

T is the set of valuations for V = W u X that obey suffix, prefix and concatenation closure in HA (5.58)

such that E is the dummy action which precipitates the discrete epsilon transition between

continuous trajectory segments of different risk. Note that the states of the system for each

automaton are identical, it is only the transition map that has been augmented.

Theorem 3:

A simulation relation R exists between the augmented LSVW hybrid automaton [84]

A' and the hybrid Hazard Automaton HA. That is, HA implements A'.

Proof:

The mapping between the two hybrid automata is essentially the identity mapping.

The only difference between the two automata exists in the addition of the "dummy" epsi-

lon action and the "dummy" transition to the transition map of the hybrid Hazard Automa-

ton. However, this epsilon transition can be mapped onto a continuous trajectory without

problem, due to several properties of trajectories in the hybrid automaton model. The

existence of point trajectories, and the fact that trajectories obey prefix, suffix and concat-

enation closure aid in creating a map from A' to HA. The three properties the simulation

relation must obey are checked below.

5.7.3.1 Equivalence of Start States

Obviously, since the states Q of both A' and HA are identical, the start states ® of A'

and HA are identical.

120

(5.55)

5.7.3.2 Equivalence of Discrete Steps

The discrete transition map D' of HA contains all of the discrete transitions in the map

D of A'. That is, D c D'. So, if a is an execution fragment of A' consisting of one discrete

action surrounded by two point trajectories, with the first state in of the execution frag-

ment being x,, then there is obviously a corresponding execution fragment P of HA

which has the first state of the execution fragment p as XHA = XA' Similarly the last states

in the executions a, p are identical. Since the external actions of both A' and HA are iden-

tical, then trace(a) = trace(s).

5.7.3.3 Equivalence of Trajectories

It needs to be proved for a an execution fragment of A' consisting of one trajectory,

with the first state of a being x,, there exists a closed execution fragment p of HA with

the first state of p being XHA , trace(s) = trace(a), and the last state of a mapping to the

last state of P via the relation R.

The trajectories of A' and HA are identical, except for the existence of discrete epsilon

transitions in HA. We must show that the introduction of the discrete epsilon transition in

HA does not disrupt the correspondence of trajectories in A' via the relation R.

Consider the execution fragment a in A' which corresponds to the moment at which a

discrete epsilon transition is taken in HA. The discrete epsilon transition is instantaneous,

so there is no continuous evolution of the trajectory in A' taking place as it occurs. The

execution fragment a consists of two points: the point xA, before the transition occurs and

the point after the transition occurs. The corresponding trajectory P in HA consists of the

discrete epsilon transition surrounded by two point trajectories. The first point in the tra-

jectory XHA of p is equivalent to the point XA in a. A similar correspondence exists for the

final points in the trajectories. The leftmost endpoint of any trajectory can have its external

variables manipulated, due to the existence of point trajectories and because all trajecto-

121

ries are defined over a right-open interval. Given that the external actions and variables for

A' and HA are identical, and that the E action is internal, the leftmost endpoint of p can be

manipulated if necessary in order to ensure trace(a.) = trace(s).

Thus, a simulation relation exists between A' and HA. From Lynch et al. [84] we have

that:

tracesHA C traceSA. (5.59)

The coarsely discretized automaton HA exhibits the same external behaviour as A'. If

we consider aggregate superstates based on risk, derived from trajectory fragments, the

proofs for functionality and optimality of the Hazard Automaton Reduction Algorithm in

hybrid automata resemble their discrete counterparts. If we classify trajectories based on

their risk designation, we have two sets: TL, TH corresponding to low risk trajectories and

high risk trajectories. That is:

Ti projected on X e QL - T E TL (5.60)

'r projected on X E QH -- >, E TH

The set of all hazardous trajectories z is a subset of the set of high risk trajectories. If

we consider an execution fragment a, where c = Toa 1 T1 a 2T 2 a 3 T3 a 4 T4 ... is an action-trajec-

tory sequence, we see that trajectories can be considered to have successors and predeces-

sors. That is, in the execution fragment x, T2 has the successor trajectory T3 and the

predecessor trajectory t1. It also has the ancestor trajectory ro and the descendent trajec-

tory 14 . Again, the sets of predecessor, successor, ancestor and descendent trajectories can

be denoted by T,, Ts, TA, TD respectively. We add the condition that a low risk trajectory

must have at least one low risk successor trajectory. The first state in the trajectory T, is

denoted by firstgqt and the final state in the trajectory is denoted by lastqTi. So, the rela-

tion:

122

firstqt,, + = S(lastqT,, a) where a e {E U H'}

holds.

A critical trajectory is the first low risk trajectory which precedes a hazardous trajec-

tory, and has an immediate low risk successor trajectory. That is, rj = Tc is a critical tra-

jectory if there exists the execution fragments a, a', ax" E fragsHA such that:

a = T agiIT 1... Tj where tj e TL (5.62)

and

aa'E fragsHA where
(5.63)

a' = a'l IT' ... T' and T'k E Z

and

aa" e fragsHA where
(5.64)

a" = a"j+1T + j+ 1 and"j+1 E Tt

The set of critical trajectories is denoted by C.

The hybrid form of the Hazard Automaton Reduction Algorithm takes the hybrid Haz-

ard Automaton HA = (W, X, Q, E, E, H, D, T) and produces the Reduced hybrid Hazard

Automaton HA' = (W, X, Q, E, E, H, D', T) where:

D' = D - (lastqT, afirstqTH) (5.65)

where:

lastqrc E CfirstqT E TH (5.66)

and

-3(a e fragsAI Tia...T,, where firstqTi = firstqTH and T, E Z (5.67)

5.7.4 Proof of Functionality
Now, given the Hazard Automaton Reduction Algorithm, it is desirable to show that, if a

hybrid hazard automata is capable of exhibiting non-hazardous behaviour, the Hazard

Automaton Reduction Algorithm is capable of removing all of the hazards in the automa-

123

(5.61)

ton. Given this sort of automaton, the Hazard Automaton Reduction Algorithm will pro-

duce a reduced hybrid hazard automaton with the critical transitions excised. Hence, it can

be said that the Hazard Automaton Reduction Algorithm can eliminate all undesirable

behaviour in a hybrid hazard automaton, if that hybrid hazard automaton is capable of

exhibiting non-hazardous behaviour in its present design form. More formally, this theo-

rem can be stated:

Theorem 4:

Given a hybrid Hazard Automaton HA capable of exhibiting low risk behaviour, the

Hazard Automaton Reduction Algorithm can eliminate all identified hazardous behaviour

of the hybrid hazard automaton. All identified hazardous behaviour of HA being elimi-

nated is equivalent to saying that all identified hazardous trajectories are no longer reach-

able. This second framing of the statement shall be proved by contradiction.

Proof:

Suppose not.

This means that there exists some execution ax with the trajectory ti = tf where:

-k; E ZIc = T0 a 1 T... a;Tg (5.68)

The entire argument by contradiction hinges on the fact that there is a critical trajec-

tory along the path between each hazardous trajectory and the initial trajectory for any

automaton that is capable of exhibiting non-hazardous behaviour. If no critical trajectory

exists on the path between ro and rH, then there are no low risk states on the path between

ze and TH that possesses any low risk successors. Thus, the initial state Oo = firstq'ro has

no low risk successors, and thus can lead only to hazardous behaviour. This is in contra-

diction to the assertion that HA is capable of exhibiting low risk behaviour.

124

So, given that there must exist a critical trajectory r, along the path from 00 to TH

there exists the execution cH such that:

as = Toaltli...ajt a +I...tH (5.69)

where

a' = a' T I ', ...T' and ' EZc a'j+1 j+1'~ k adT'kE

and ,= TC Ec. This means that:

3a" e fragsHA where

xa" e execs(HA) (5.71)

a" = a"+1 1 t j+ 1 and T"j 1 E TL

which means there must have been, in the original automaton HA:

]1astqa lfirstq' = 8(lastqx,a) where aE {EtuH'} (5.72)

However, if 'rc is the first critical trajectory encountered in the execution aH in a back-

wards reachable fashion from hazardous trajectory T, on the path to the initial trajectory

to, then the transition in (5.69) should have been disabled by HARA. If rc is not the first

critical state encountered, that is, there is a prior critical trajectory encountered in a back-

wards reachable fashion from the hazardous trajectory tH on the path to the initial

trajectory, then the hazardous trajectory should already have been rendered unreachable

by HARA using this prior critical state, and the execution aH should no longer be hazard-

ous. Thus, there is a contradiction.

Hence, we can say that HARA renders all identified hazards unreachable in the new

automaton HA', which is equivalent to saying that all identified hazardous behaviour is

eliminated.

125

5.7.5 Proof of Optimality
As well as eliminating all identified hazards in an automaton, HARA also ensures that no

reachable, strictly desirable behaviour is eliminated. This is equivalent to saying that no

sequence of purely non-hazardous, low risk behaviour is eliminated. Thus, for an automa-

ton HA which is capable of exhibiting low risk behaviour, not only are all of the hazards

removed, but no desirable low-risk behaviour sequences are removed in HA'. Thus, in

some fashion, HARA can be construed as being optimal, in the sense that it removes all of

the hazards whilst removing the minimum amount of non-hazardous behaviour at the

8same time

Theorem 4:

Given a hybrid hazard automaton HA capable of exhibiting low risk behaviour, HARA

does not eliminate any execution of purely low risk behaviour.

Proof:

By contradiction. Suppose not.

Then,

CLI(aL E execSHA)] A [(3ctL) E execsHA.] (5.73)

How would this come to pass? This would mean that in the original automaton HA

{aItL = Toa I. . r such that (Vi) (T e TL) (5.74)

but the corresponding execution no longer exists in HA'.

This is clearly impossible as the only way for any execution fragment to be eliminated

would be if a transition were removed from the transition map D". Transitions are

removed by HARA clearly only between low risk trajectories and high risk trajectories.

8. A sequence of desirable, low risk behaviour is defined as being a sequence of action-trajectory
pairs, for which all trajectories are low risk.

126

The purely low risk execution aL has no change in risk behaviour, and thus no transitions

would need to be removed. Thus, we have an obvious contradiction.

E

Hence, we have proved that HARA is both functional and optimal for both regular and

hybrid hazard automata.

In the next two chapters, the Hazard Automaton Reduction Algorithm will be used in

conjunction with backwards reachability controls techniques to remove hazardous behav-

iour from two aeronautical systems. The first example is the Altitude Switch, which is dis-

crete in nature. The second example is the Medium Term Conflict Detection algorithm for

aircraft conflicts, which is a hybrid system.

127

CHAPTER 6
How can it be that mathematics, being after all a product of
human thought independent of experience, is so admirably

adapted to the objects of reality?

Albert Einstein (1879 - 1955)

Altitude Switch Example
In the next two chapters, a backwards reachability hazard analysis will be performed on

two examples: an aircraft altitude switch and an aircraft Medium Term Conflict Detection

algorithm. The altitude switch is a discrete system, in that it involves only discrete transi-

tions in order to change states. The altitude switch is converted from a SpecTRM-RL

model into a state space model, and then the Hazard Automaton Reduction Algorithm is

applied in conjunction with the controls reachability techniques outlined in Chapter 4. A

hazardous state is then analyzed in the context of the algorithm. The backwards reachable

path of the hazardous state is calculated until a critical state is reached, and then a con-

straint is postulated in order to eliminate this hazardous path.

6.1 The Altitude Switch
The altitude switch (ASW) is a reusable component that turns power on to a device of

interest (DOI) when the aircraft descends below a threshold altitude (2,000 feet) above

ground level. The ASW receives altitude information from an analog radio altimeter and

from two digital radio altimeters, with the altitude taken as the lowest valid altitude seen.

If the altitude cannot be determined for more than two seconds, the ASW indicates a fault

by failing to strobe a watchdog timer. A fault is also indicated if internal failures are

detected in the ASW. The detection of a fault turns on an indicator lamp within the cock-

pit.

128

The ASW receives a status indication from the DOI indicating whether the DOI is

powered on. If the DOI does not indicate that it is powered on within two seconds after

power is applied, a fault is indicated by failing to strobe the watchdog timer. The ASW

does not apply power to the DOI if the DOI is already powered on. If the DOI is powered

off after the aircraft descends below the altitude threshold, the ASW does not reapply

power to the DOI unless the aircraft again descends below the threshold altitude.

The ASW also accepts an inhibit signal that prevents it from turning on power to the

DOI or indicating a fault. All other ASW functions are unaffected by the inhibit signal.

The ASW also accepts a reset signal that returns it to its initial state [96].

The ASW interfaces with the following external devices, as currently implemented:

two digital altimeters, one analog altimeter, the watchdog timer, the cockpit interface and

the DOI (See Fig. 6.1).

Analog altitude
Altimeter status

Reset Signal

DOI Status S gnal

Figure 6.1: Altitude Switch Component Diagram

129

The DOI can be any aircraft component that can receive an electrical signal to control

its operation and provide information about its status. The watchdog timer is used to deter-

mine the failure of the altitude switch or the inability of the altitude switch to ascertain the

aircraft altitude within a certain period of time. Input messages to the ASW contain the

altitude and status from the analog radio altimeter and the altitude and status from the two

digital radio altimeters, along with the inhibit and reset signals from the cockpit interface,

and the DOI status from the DOI. Output messages include the Power-on signal to the

DOI and the strobe signal to the watchdog timer.

Safety analysis of the ASW depends on the DOI. If the DOI is non-safety critical, for

example, a dimmer switch for passenger reading lights, then there are no real safety impli-

cations due to the ASW. However, if the DOI is the landing gear, then the ASW becomes

safety critical. For the purposes of this dissertation, it shall be assumed that the DOI is a

safety critical device, which must be activated once the altitude threshold has been

breached.

6.2 SpecTRM-RL Model of the Altitude Switch
A state machine diagram of the ASW in the SpecTRM-RL modeling language is

shown in Figure 6.2 (see next page). There are state variables for the statuses of each of

the three altimeters, which have three possible values: Unknown, Valid or Invalid. There is

a state variable for the status of the device of interest, which can assume the values

Unknown, On, Off or FaultDetected. The state variable Altitude has four possible values,

Unknown, Below Threshold, AtOrAboveThreshold and CannotBeDetermined. The initial

state of all state variables upon startup is Unknown.

130

AnalogAltimeter DigitalAltimeter1 DigitalAltimeter2

AnalogAltStatus DAlStatusSignal DA2StatusSignal

AnalogAltSignal DA1AltSignal DA2AltSignal

SUPERVISORY MODE INFERRED SYSTEM STATE DOI
DOI-STATUS ALTITUDE

Statual
~I~EonroIL.JSi nal

Inhib 0 BelowThreshold
CONTROL MODE I0 MOEAtOrAboveThreshold DOI

CoultDetected CannotBeDetermined
Controls DOI

K ~OperationalCoan
Rese ANALOG-ALT DIG ALT1 DIGALT2 Command

- IValid Valid

WatchdogStrobe

Watchdog Timer

Figure 6.2: SpecTRM-RL Model of Altitude Switch upon Startup

There are three control modes in which the ASW can be operated: Startup, Opera-

tional, and FaultDetected. The ASW can also transition to the Inhibited control mode if

the pilot presses the inhibit button on the cockpit interface. The ASW begins in Startup

mode upon initialization, then transitions into Operational mode if no faults are detected.

The ASW transitions into FaultDetected mode if there is a failure of the DOI to turn on, or

if the altitude cannot be determined, or if there is an internal fault, such as remaining in

Startup for more that 3 seconds. The default control mode of the ASW is Startup. The truth

tables governing all of the transitions for the Altitude Switch Model in SpecTRM-RL are

given in Appendix A.

6.3 Analysis of Hazardous Situation
Consider the obviously hazardous state of the system whereby the state variable Alti-

tude has the value BelowThreshold and state variable DOIStatus is Off (see Figure 6.3).

In addition, assume that the rest of the ASW is behaving normally, that is, the system is in

131

Operating control mode, and the inhibit command has not been invoked. This means that

the aircraft has passed below the minimum altitude of 2,000 feet but the landing gear has

failed to deploy. The question becomes, is it possible to reach this state?

AnalogAltimeter DigitalAltimeter1 DigitalAltimeter2

AnalogAltStatus DA I StatusSignal DA2StatusSignal

AnalogAltSignal DA I AltSignal DA2AltSignal

SUPERVISORY MODE INFERRED SYSTEM STATE DOI
DO$_STATUS ALTITUDE Status

Cockpit Controls Unknown Unknown Si nal

FIhb CONTROLINMODE
O

AtOrAboveThreshold DOI

Cockpit Startup FaultDetected
Controls DOI

K ~ tetetedUnkown ~ow r~ n Cmmand
Rese ANALOG-ALT DIG ALTI DIGALT2

Re -* Falteete nknow~n ~~Unknown -~Unknown

L hibited -F I d - ivalid Invalid

, WatchdogStrobe

Watchdog Timer

Figure 6.3: Hazardous State of Altitude Switch Model

Ideally, to answer this question, the state machine model of the Altitude Switch must

be converted into a state space model, as per Section 4.5, and the state transition matrix A

and input matrix B must be constructed. Consider a single component of the altitude

switch model, for instance, the DOI. Recall that the state variable DOIStatus has four

possible values: Unknown, On, Off and FaultDetected. The latent variables xi correspond-

ing to the state values must be created: x, corresponding to the value Unknown, x 2 corre-

sponding to On, x 3 corresponding to Off and x4 corresponding to FaultDetected. If the

value of the latent variable is non-zero, then it is possible for the DOIStatus to assume the

state machine value corresponding to the latent variable. For instance, given an initial state

x(0), after k transitions, if the latent variables xi,x 2,X3 and x 4 are, respectively, 1,0,1 and 1,

132

this means that at the kth step, the value of DOI_Status can be Unknown, Off or FaultDe-

tected. The valuation On is not reachable in k steps from the initial state x(O) as x2(k)=0,

and thus the state variable cannot assume that value.

Examining the logic of the ASW upon startup, the value of DOI_Status is initialized to

Unknown. The ASW then receives an input from the DOI. If no input is received, the

DOI_Status remains in Unknown until an input is received from the DOI regarding its sta-

tus. This input received can either be On or Off. The DOI must continually send feedback

to the ASW as to its status. If more than two seconds pass since the last signal was

received from the DOI regarding its status, the variable DOI_Status will transition to

Unknown, unless the present value is FaultDetected.

Consider the input values received by the ASW from the DOI to be either On or Off.

Depending on which value the input takes, the DOI_Status value transitions from

Unknown to On or Off just after startup. The DOI_Status can transition to FaultDetected

only under two scenarios. The first situation occurs as follows:

1. The ASW sends a signal to the DOI commanding it to turn on
2. Feedback is received from the DOI within two seconds stating that the DOI has not

turned on (i.e. DOI status is still off),
3. A fault is then detected, and the variable DOI_Status transitions to Fault Detected.

The second circumstances occur as follows:

1. The ASW sends a signal to the DOI commanding it to turn on
2. Two seconds elapse and no feedback has been received from the DOI regarding its

status
3. A fault is then detected and the variable DOIStatus transitions to FaultDetected.

If three input variables, u1 , u2 and u3 are created, corresponding respectively to the

DOI_StatusSignal values of On, Off and Unknown, the behavior of the state variable

DOI_Status can be represented in control state space as:

133

-000 0 0 -
x 1(k+1) x1(k) J-

1 1 10 0 uik
x 2 (k+ 1) - 000 x2(k) u0(k) (6.1)
x 3 (k + 1) x 3 (k) 0! 0

1 5 u3(k)x 4 (k + 1) 1 0L0 4(k) -

0 0 0 1 _ _ F 2 J _

where the columns of A and B have been normalized, and the presence of input is indi-

cated by ui(k) = 1.

So, for instance, if we start in the Off configuration of the DOIStatus (i.e. x3=1,

x1=x 2=x 4=0), and then receive an input of On (i.e. u1=1 and u2=u3=0), the final configura-

tion becomes xi=x3=x 4 =0 and x2=1. Thus, the DOIStatus has changed from Off to On

from the kth step to the k+1th step. Using equations (4.6) and (4.7) from Chapter 4 the

reachable space of the DOI after any number of steps can be determined.

However, the components of the ASW are highly coupled. The status of the DOI

changes from On to Off when the value of the Altitude state variable becomes

BelowThreshold. The value of the Altitude variable can become BelowThreshold only if

all three altimeter statuses are valid, and all three altimeters input a value below the thresh-

old of 2000 feet. The altimeter statuses are valid only if the ASW has received inputs

within 2 seconds of the last input. It becomes immediately apparent that the entire state

transition matrix must be constructed simultaneously, not on a component by component

basis. However, the block-like nature of each component is preserved in the structure of

the A matrix, and with the appropriate choice of latent variables xi. This leads to a struc-

ture of Jordan chains in the A matrix, which is a direct indicator of the modal behaviour of

the system. Each Jordan chain represents a mode which can be excited independently,

given a judicious choice of input (See Appendix B for full A and B matrices).

134

6.4 Finding the Critical State
In a manner similar to that outlined above, the overall twenty-two row by twenty-two

column state transition matrix A can be constructed, as well as the input matrix B (See

Appendix B). Once these matrices are known, the entire state space can be quantified by

performing twenty-two matrix multiplications using equation (4.6). However, perform-

ing twenty-two matrix multiplications is still a laborious task. Instead of exploring the

entire state space, we wish to simply explore the reachability of a hazardous state until a

critical state is reached. Exploring the reachability graph to a critical state would greatly

reduce the number of matrix multiplications required, since it becomes unnecessary to

reach the initial state and generate the entire graph. The technique would be to encode the

hazardous state as an initial state, propagate the matrix multiplication backwards by one

step, and then translate the latent variables back into their state variables to recover all of

the predecessor states. Then the risk level of each decoded state can be determined. If the

state is revealed to be a low risk state, then only one simple forward multiplication of the

matrix is necessary in order to determine if it has low risk successors. Essentially, the

backwards reachability of a hazardous state x(k) is determined by calculating:

u(O)

x(k) = Akx(O)+ [Ak~1 BIAk- 2
BI...B] [u(1) (6.2)

_u(k- 1)

If the columns are calculated sequentially from right to left, and each column is

unwound into its states, which are then tested to determine their criticality, the computa-

tional intensity of the algorithm is mitigated. Note that this calculation is performed under

all inputs u(i), so that a subspace vector is generated in each multiplication with the input.

A critical state can be found for the hazard depicted in Figure 6.3, in which the altitude

dips below the threshold value but the DOI does not turn on. This critical state occurs

135

when the altitude is at or above the threshold value, and the DOI-Status is Off (see Figure

6.4). This is a critical state because it is a low risk state, but has a high risk descendant, the

aforementioned hazard. To control the reachability of the hazardous state from the critical

state, one need only ensure that the logical specification of the ASW has a predicate which

couples the change in the value of the Altitude variable to an enforced change in the value

of the DOIStatus variable. If the valuation for the Altitude variable changes from

AtOrAboveThreshold to BelowThreshold, then the value of the DOIStatus variable must

change either to On, or the control mode of the ASW must change from Operational to

FaultDetected.

AnalogAltimeter DigitalAltimeter1 DigitalAltimeter2

AnalogAltStatus DAlStatusSignal DA2StatusSignal

AnalogAhSignal DA1AltSignal DA2AltSignal

SUPERVISORY MODE INFERRED SYSTEM STATE DOI

DOISTATUS ALTITUDE Status

Cockpit Control Unknown Unknown Si nal

Inhibi On BelowThreshold
CONTROL MODEDO

Cockpit StarFautDetctd CannotBeDetennied

C L s C o n u 1a n d
Reset--1 ANALOG ALT DIG ALT1 DIG ALT2

- aketce Unknown ~~Unknown -Unknown

- niie L nvalid -L Invald - Inalid

WatchdogStrobe

Watchdog Timer

Figure 6.4: A Critical State Corresponding to Previous Hazard

The change due to the imposed coupling constraints should become apparent in the

structure of the state transition matrix A. Recall that each state machine value is a latent

variable xi. The latent variable corresponding to the value BelowThreshold of the state

variable Altitude should have its transition coupled with the transition of the latent vari-

136

able corresponding to the On value of the state variable DOIStatus. Otherwise, the latent

variables that represent the control modes of the ASW should be forced to change if the

DOIStatus does not transition. That is, the state transition matrix A in the control formu-

lation of the ASW should not possess a vector in its subspace that has the latent variables

for the Altitude, DOI and/or control modes decoupled. Under no circumstances can Alti-

tude be changed without changing either DOIStatus or control modes.

These coupling constraints will change the reachability matrix seen in equation (6.2),

acting to make some of the columns linearly dependent of each other, thereby illustrating

that some of the state space is no longer reachable.

The technique of searching backwards in a control state space is a generic method,

which has the potential to scale up for very large systems. There are already a great many

matrix manipulation packages available, some of which are adept at handling very large

matrices (Matrix X, Matlab etc.). Control theorists have many tools that automatically

check for the reachability of continuous controls state spaces, and these tools can be

adapted to check for the reachability of state machines. The fact that there are so many

established control tools is useful in the sense that a great deal of the development work

has been done, and commercial off-the-shelf technology can be employed once an inter-

face has been written to accurately translate state machine specifications into control the-

ory state space representations.

6.5 Comparison with Other Methods of Hazard Analysis
Commonly used methods for software hazard elimination in industry are still the vet-

eran techniques of simulation and testing. Although provably effective in the very early

stages, when the design is still infested with many hazards, the effectiveness of testing and

simulation drops as the design becomes cleaner, and requires an alarming amount of time

137

to discover increasingly more subtle bugs. These techniques are dependent on the human

who is creating the test cases or simulation scenarios. If that person never considers a cer-

tain given aspect of the environment of the system, then large amounts of the program

may never be tested or simulated. A serious problem is that we are never sure when the

techniques have reached their limits and have no estimate of how many hazards may still

lurk in the design. As the complexity of designs increase, it is possible for these methods

to completely collapse due to their inability to scale up properly [25].

An alternative to simulation and testing is the approach of formal verification. Formal

verification conducts an exhaustive exploration of all possible behaviors of the system.

Hence, when a design is pronounced correct by a formal verification method, it implies

that all behaviors have been explored, and questions of adequate coverage become irrele-

vant. Several approaches to formal verification exist. There is considerable research on the

subject of theorem proving, term rewriters and proof checkers for verification. However,

these techniques can be computationally intensive. Additionally, an extensive background

in logic and theorem proving is required in order to efficiently use a theorem prover [104].

Alternatively, model checking is an approach to verification in which a desired behav-

ioral property is checked over a given system model through exhaustive enumeration of

all the states reachable by the system. Model checking is fully automated, and its applica-

tion requires no user supervision. Anyone qualified to run a simulation of the model is

equally qualified to run the model checker. A model checker will provide a counterexam-

ple that demonstrates the behavior that violates the property being checked [90]. The main

disadvantage of model checking is that state explosion can occur if the system being veri-

fied has many components that make transitions in parallel. In this case the number of glo-

bal system states may grow exponentially with the number of processes. Because of this

138

problem, some researchers in formal verification believe that model checking may not be

practical for very large complex systems.

The most successful technique, to date, for dealing with these software model check-

ing problems is based on partial order reduction [45], whereby concurrently executed

events appear arbitrarily ordered with respect to one another. As a result, the number of

states that are needed for model checking is reduced. The methods of compositional rea-

soning [27], induction [17], symmetry [24] and abstraction [7] have also been used to try

to reduce the state explosion problem in model checking with varying success.

Although symbolic representations and partial order reduction has greatly increased

the size of systems that can be verified, many realistic systems are still too large to be han-

dled. Thus, it is important to find techniques that avoid the need to explore the entire state

space of the model. The Hazard Automaton Reduction Algorithm allows hazards to be

controlled or eliminated without generating the entire reachability graph. This vastly

reduces the state explosion problem, making the problem of hazard elimination more trac-

table. When employed with state space control theory reachability results, the problem

reduces to performing a finite number of matrix multiplications. Hence, an approach

based on the Hazard Automaton Reduction Algorithm coupled with control theory results

seems to be a promising method by which to control or eliminate hazards in very large

complex systems.

For smaller models, the Hazard Automaton Reduction Algorithm could be coupled

with model checking techniques to remove hazards. However, when the hazards become

farther removed from their critical states, as sometimes happens in large models, the bene-

ficial effects of Hazard Automaton Reduction Algorithm are greatly diminished and the

state explosion problem emerges once again. This is not the case if the state space controls

technique is employed, as all of the cost goes into the creation of the large transition

139

matrix. Each successive step backwards involves only one n by n matrix manipulation, so

computational cost does not increase drastically with the distance between the hazard and

the critical state.

The benefits are even greater for hybrid models. SpecTRM-RL has been extended to

include models of a continuous nature. A hybrid model of a Medium Term Conflict Detec-

tion algorithm for aircraft is next analyzed using Hazard Automaton Reduction Algorithm

and controls reachability techniques. For hybrid models, the Hazard Automaton Reduc-

tion Algorithm cannot be coupled with model checking techniques because there are no

termination guarantees in backwards reachability using model checking.

140

141

CHAPTER 7
Knowledge must come through action; you can have no test

which is not fanciful, save by trial.

Sophocles (495 BC - 406 BC), Trachiniae

Medium Term Conflict Detection
Example
Medium Term Conflict Detection (MTCD) is a conflict detection algorithm which will be

used to support Air Traffic Controllers (ATCOs) in their task of monitoring and separating

aircraft. MTCD can be modelled as having both continuous and discrete parts, and falls

under the rubric of hybrid modelling. In this chapter, some background regarding the pur-

pose and function of MTCD will be given, as well as highlighting certain artifacts of the

algorithm which make it difficult to uniquely determine whether a conflict has occurred.

The evolution of a hazard in the hybrid SpecTRM-RL model of MTCD, and its ultimate

elimination using the Hazard Automaton Reduction Algorithm will be detailed.

7.1 MTCD Background
In today's air traffic control (ATC) environment, controllers monitor flights by scanning

flight progress strips and radar displays, in order to predict future air situations. The con-

trollers are monitoring one aircraft and relating its movements to the total air situation at

all moments in the near future through the sector airspace. Controllers are also responsible

for resolving any conflicts that occur. Currently, the majority of flights use fixed point

routings along fixed air traffic service (ATS) routes with limited capacity. One possible

way to increase the capacity of an airspace is to allow random point routings, i.e., routings

that do not follow the fixed ATS routes. Increasing air traffic and increasing use of random

142

point routings impose an even greater workload on controllers, especially in high density

areas. Automated support can help to keep the workload of controllers within acceptable

and safe limits.

The Medium Term Conflict Detection function will assist controllers in monitoring the

air situation continuously and provide conflict data to the controllers through the human

machine interface (HMI). Controllers monitor this operational data on situation displays.

Controllers also remain responsible for the assessment of conflicts, as well as reacting to

them. MTCD must provide controllers with enough time to assess, and, if necessary,

resolve the conflict by deliberate action.

MTCD supports conflict detection for all flights for which a system trajectory is avail-

able. Since the trajectory data that MTCD receives is accurate to only a certain degree,

MTCD creates an uncertainty area around the trajectory data, and uses this expanded vol-

ume for the purposes of conflict detection. MTCD begins conflict detection for a flight

when it is a pre-defined time from entering the area of operation, and continues conflict

detection until the flight leaves the area entirely.

nominal -
routes

segment 2 (

Figure 7.1: Aircraft Conflict (Buffer Violation)

143

MTCD detects four types of conflicts:

1. Aircraft Conflicts: Loss of separation between probable positions of two aircraft,
based on system trajectories and uncertainty areas, the latter are introduced to take
minor deviations into account

2. Nominal Route Overlaps: Loss of separation between system trajectories of two air-
craft

3. Special Use Airspace Penetrations: Loss of the required distance between probable
positions of an aircraft and a special use airspace.

4. Descent Below Lowest Usable Flight Level: Probable positions of an aircraft within
an airspace is below the minimum altitude proscribed for that airspace.

norminal
route

-- - - - %- - -

Figure 7.2: Special Use Airspace Penetration

144

r .

lowst usable flight level

Figure 7.3: Descent Below Lowest Usable Flight Level

MTCD is a planning tool with a typical detection horizon of zero to twenty minutes for

aircraft conflicts, twenty to sixty minutes for nominal route overlaps, and zero to sixty

minutes for special use airspace penetrations and descents below lowest usable flight

level. MTCD is not a conflict alert tool. Conflict alert, with a typical horizon of zero to

two minutes is covered by Eurocontrol by a separate function, called Safety Nets. MTCD

covers all phases of flight. In arrival and departure phases, different separation criteria

apply. MTCD should allow for different separation distances between individual flights

that have been sequenced for arrival or departure.

145

Figure 7.4: MTCD and its Input/Output Environment

MTCD calculations are based on system trajectories of flights, flight plan data and air-

craft data. This data is provided by the Real-Time-Flight Data Processing and Distribution

function. Trajectories can be either system trajectories or tentative trajectories. To be able

to end existing conflicts, Real-Time Flight Data Processing and Distribution must inform

MTCD when a flight leaves the area of operation, or when a tentative trajectory has been

deleted. In addition to trajectory data, MTCD requires environment data, which is pro-

vided by the Environment Data Processing and Distribution function.

146

7.2 Modelling Concerns
In principle, MTCD is quite simple. The traffic and its evolution is specified by a set

of trajectories so all it needs to do is examine these trajectories in pairs and report when-

ever such trajectories come too close.

Complications occur because of the:

1. Model uncertainties in aircraft behaviour
2. Introduction of filtering mechanisms so that high traffic situations can be handled

The following sections discuss how these concerns were addressed and also consider

how a number of fundamental design choices were made.

7.2.1 Evolutive versus Analytical Approaches
Conflicts can be detected through either analytical or evolutive means. An evolutive

algorithm steps through the traffic development at regular intervals (every 10 seconds) and

at every snapshot looks for aircraft that are too close to one another. In contrast, the analyt-

ical approach computes the relative dynamics of trajectories and determines the precise

start and end time of conflicts. The analytical approach is more accurate and in general

faster than the evolutive approach. The evolutive approach is simpler and more extensible

than the analytical approach. It is extensible in the sense that if the detection of other prob-

lems or situations that might occur aside from conflicts needed to be accomplished, then

an evolutive approach might be the only way in order to achieve these additional goals.

MTCD uses the analytical approach. It should be noted that the evolutive approach can

be used to check results obtained analytically.

7.2.2 Uncertainty Modeling
At a specified future time, the position of an aircraft is not known for sure. The

approach used in MTCD is to construct a buffer shape that notionally surrounds an air-

craft's future position. The approach is called geometric because, although the buffer sizes

147

may embody uncertainties, their ultimate values are determined through an optimization

process that involves controller assessment of the MTCD tool.

The current philosophy is that each trajectory segment has uncertainty information

that is derived from the airspace in which the segment is contained. The trajectory seg-

ments should not span more than one airspace. The European Air Traffic Control Harmo-

nization Integration Program (EATCHIP) technical program (TP) drafting group has

decided that the trajectory will be augmented by the uncertainty information (i.e. x, y, z

variances at each point), thereby simplifying MTCD's task. In the approach taken, hori-

zontal and vertical uncertainties are treated separately.

prwious madmal
wayp o int lateral

deviaion

present --
air craft ~-.

position
nominal

route

Figure 7.5: Trajectory and Buffer

Horizontal uncertainties are embodied in a buffer shape that is centered on the air-

craft's nominal position. The shape is a rectangle aligned to the aircraft's path with the cor-

ners rounded by a circle with diameter equal to the long axis of the rectangle. The

dimensions of the buffer shape vary with predictive time in a linear fashion for a given tra-

jectory segment. Conflicts occur when such shapes overlap and this aspect can be easily

demonstrated to controllers. In some ways an ellipse would have been more elegant as a

148

buffer shape, but a satisfactory well conditioned algorithm that predicts the times of over-

laps of expanding ellipses has not been found.

Note that in addition to including aircraft position uncertainty, the buffer shape

includes an allowance for half the separation standard. In this way it is only needed to

determine when buffers overlap in order to detect a conflict, rather than determining when

buffers come within a certain distance (e.g. the separation standard) of each other.

Vertical uncertainty modelling is a fairly simple affair. If a particular altitude separa-

tion threshold is infringed, then a vertical conflict occurs. This altitude separation thresh-

old will depend on the respective aircraft's behaviour (whether the craft is level, climbing,

descending, above or below 2950 feet etc.), and the uncertainty is directly dependent on

that behaviour.

7.2.3 Filters
In terms of computer processing, conflict detection is potentially the most demanding

of automated ATC functions. It involves comparison between pairs of trajectories. This

effort will increase as the square of the number of flights. Thus, for 200 flights there will

be 19 900 comparisons. Determining the exact details of a conflict depends on uncertainty

models, which in turn depend on segment containment in airspace volumes. The amount

of processing is large. Now, in the 200 flight scenario there may only be 100 contemporary

conflicts. Thus, 19800 of the comparison checks would lead to a "no conflict" assessment.

Filters constitute a quick test that easily eliminates most of the non-conflicts from consid-

eration.

The filter compares two trajectories for a given time interval to be checked and indi-

cates whether or not a conflict is possible. If a conflict is possible, the procedure indicates

a filtered time interval in which any conflict must occur. The filtered time interval is deter-

mined by the earliest and latest timeslices in which conflicts may occur, clipped if neces-

149

sary by the time interval checked. For MTCD it may be necessary to perform conflict

checks for up to 60 minutes in advance of the current time, in order to detect nominal route

overlaps.

7.3 Continuous Model of the Aircraft
The basis for analysis, computation or simulation of the unsteady motions of an aeroplane

is the mathematical model of the vehicle and its subsystems. An aeroplane in flight is a

very complicated dynamic system. It consists of an aggregate of elastic bodies so con-

nected that both rigid and elastic relative motions can occur. The external forces that act

on an aeroplane are also complicated functions of its shape and its motion. It seems clear

that realistic analyses of engineering precision are not likely to be accomplished with a

very simple mathematical model.

YY

L N

z

Figure 7.6: Linear and Angular Position and Velocity of Aircraft

To begin formulating the model, first treat the vehicle as a single rigid body with six

degrees of freedom. This body is free to move in the atmosphere under the actions of grav-

ity and aerodynamic forces. It is primarily the nature and complexity of the aerodynamic

150

forces that distinguish flight vehicles from other dynamic systems. If the gyroscopic effect

of spinning rotors is next factored in, along with a discussion of structural distortion, the

complexity of the model increases. If the Earth is treated as being flat and stationary in

inertial space, the model is simplified enormously. This assumption is quite acceptable for

most aeroplane flights.

In the interest of completeness, the rigid-body equations are derived from first princi-

ples. The velocities and accelerations are relative to an inertial frame of reference. The

position and orientation of the airplane are given relative to the Earth-fixed axis frame

(FE), and the center of gravity of the aeroplane (cg) has co-ordinates (x,y,z). The orienta-

tion or the aeroplane is given by a series of three consecutive rotations (W,0,$), the Euler

Angles, whose order is important (Fig 7.6). Any orthogonal axes whose origin is fixed at

the center of gravity of the aeroplane are termed body axes (FB). Since most aircraft are

very nearly symmetrical, it is usual to assume exact symmetry, and to let Cxz be the plane

of symmetry. Then, Cx points forward, Cz downward and Cy to the right. In this case, the

two products of inertia, IXY and Ixz are zero. The directions of C, and Cz are chosen to

coincide with the principal axes of the vehicle, so that the remaining product of inertia Izx

vanishes.

Denote the aerodynamic force exerted on the aircraft body in the body-referential axis

frame as AB = [X y Z] . Let G, = [L M N] represent the total aerodynamic moment of the

aircraft in the body-referential axis frame. Symbolize the body-referenced linear velocity

and angular velocity of the aeroplane as (u, v, w) and (p, q, r). Represent the relative angu-

lar momentum of aircraft rotors as h' = [h' h', h'j . The wind speed in the Earth-reference

frame is given by W = [wx w, Wj . Indicating the mass of the aeroplane as m, the gravita-

tional constant as g, and the inertia of the aeroplane as:

151

I =

the equations of motion become [40]:

[' _Ix -Ix
-IY IY -Ii

L : I -X _I :]
E E E

X-mgsin(O) = m(+qw -rv

Y+mgcs(0)sin($) = m(E +ruE -pw E

Z+mgCOS(0)COS($) = m(V'VE +pvE -qu E

L = I +Izx +qr(Iz -y)-Izxpq+phz'+rh',

M = Iq+ rp(I -)+Izx(p - r2) + rh'x -ph'z

N = I -- Ij + pq(I, - Ix) + Izxqr + ph', - qh'x

p = -Wsin(0)

q = eCOS($) + SfcOs(0)sin($)

r = wCOS(0)cOs ($) - 0 sin($)

= p + q(sin(0) + r Os (p)) tan(0)

0 = qCOS() - rsin($)

= (qsin ($) + r COS($)) sec(0)

E = uECOS(O)COS(f) + VE (sin($)sin(0)COS(N) - COS(p)sin(i)) +

w E(COS()sin(0)sin((4f) - sin($) COS(W)))

E E
YE = u COS(0) sin (W) + vE(sin ($) sin (0) sin (W) + COS($) COS(i)) +

w E(COS()sin(0)sin(xg) - sin($) COS(1))

.E E E Ez = -u sin(0) + vEsin($)cOS(0) + w COs($)COs()

uE = u+ W

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

VE = V+ W, (7.17)

wE = w+Wz (7.18)

There are several assumptions contained in the above equations. The aeroplane is assumed

to be a rigid body, which may have attached to it any number of spinning rotors. The Cxz

plane is regarded to be a plane of mirror symmetry. The axes of any spinning rotors are

152

assumed to be fixed in direction relative to the body axes, and the rotors have constant

angular speed relative to the body axes.

The equations above consist of fifteen coupled nonlinear ordinary differential equa-

tions in the independent variable t, and three algebraic equations. It is clear that the aero-

dynamic forces and moments depend in some manner on three things:

1. The relative motion of the aeroplane with respect to the air
2. The control variables that fix the angles of any movable surfaces
3. The settings of any propulsion controls that determine the thrust vector

A ieron down

0 Aileron up
Roll

Elevator up

Pitch

Rudder deflected

Yar 7 N

Figure 7.7: Control Angles: Aileron, Elevator and Rudder

153

Thus it is universally assumed that the six aerodynamic forces and moments are functions

of the six linearly and angular velocities (u,vw,p,q,r) and of a control vector c =

(6, e, 5,, 8,), of which the first three are the aileron, elevator and rudder angles, and the

last is the throttle control. The control variables, from a mathematical standpoint, are arbi-

trary functions of time. The wind vector would be supplied by the environmental data.

The true implicit variables of the system become:

1. Centre of Gravity Position: XE, YE' ZE

2. Attitude: W, 0, 4
3. Velocity: uE ,E E

4. Angular Velocity: p, q, r

Of the fifteen differential equations (7.1-7.15), three are dependent (7.10-7.12), which

leaves twelve independent differential equations. Thus, the number of independent equa-

tions equals the number of independent variables, and the system is mathematically com-

plete.

The equations of motion must be linearized in order to fit them into a linear state

space description. The equations are linearized by using small-disturbance theory. It is

assumed that the motion of the airplane consists of small deviations from a reference con-

dition of steady flight. The reference value of all the variables are denoted by the subscript

zero, and the small perturbations are denoted by the prefix A. When the reference value is

zero, the A is omitted. All disturbance quantities are assumed to be small, and their

squares and products are negligible compared to first order quantities. The reference flight

condition is assumed to be symmetric and with no angular velocity, so

v0 = Po = q0 = ro = $o = 0. If the stability axes are selected as the body axes for the

aeroplane, then wo = 0, with uo being the reference flight speed, and 00 the reference

angle of climb. Furthermore, the effects of spinning rotors are deemed negligible and the

wind velocity is assumed to be zero.

154

Using the mathematical notation for differentials where:

L a L (7.19)
a = 0

and realizing that in symmetrical flight, the side force Y, the rolling moment L, and the

yawing moment N will be zero, it can be concluded that v, p, r, <, W, YE are all zero. The

derivatives of the asymmetrical or lateral forces and moments YL,N with respect to the

symmetric or longitudinal motion variables u,w,q are zero. The derivatives of the symmet-

ric forces and moments with respect to the asymmetric motion variables may be neglected

in all calculations. All derivatives with respect to rates of change of motion variables may

be neglected, except for Z, and M,. The derivative X, is negligibly small, and the density

of the atmosphere is assumed not to vary with altitude. The linear forces and moments

become:

AX = XUAu+X w+ AXe (7.20)

AY = Yvv+Ypp+ Yrr+ AYc (7.21)

AZ = ZuAu + Zvw + Zw + Zqq + AZe (7.22)

AL = Lvv + Lp + Lr + AL, (7.23)

AM = MuAu + Mww + MI; + Mq + AMc (7.24)

AN = Nvv + Np + Nr + ANc (7.25)

In the preceding equations, the terms on the right with the subscript c are control forces

and moments that result from the control vector c. Using equations (7.20-5) and small dis-

turbance theory, the linear equations of motion become:

155

X X

m m

ZU Z Zq+ mu0
m - Zv m - Ze m - Z,

+ MZ M{~ + MZ j{Mq + M(Z + muo)
I,+ m- Zj I,+*M-Z I, 11 m-Z_ w 0 1

0 01

-gcos(0 0)

-mg sin (00)
m - Zo

-Mwmg sin (00)

I,(m-Z)

0

+

AXC

AZc

m -Z,
AMC Ml AZc

I, I m-Z 1,

0

AiCE = Aucos(0 0) + wsin(60) - uOAOsin(0 0)

AiE = -Ausin(60) + wcos(60) - uOAOcos(6 0)

y Yp
m m

+ IZ,) (+ Izx'N
x x

L+ I +'L,+

0 1

Yr-uo

+ IZ' N,.

N
I 'Lr + LZ

tan (6O)

gcos (0)

0

0

0

[V
I',
r

+

A Yc
m

AL
-f+ I 'N'

I AN
I Z'A L C + A N ,

0

AjE

= rsec(60)

UoWCos(O0) + v

(7.30)

(7.31)

with ix'= (I I ' I = () and I' =-.
I ' I, Z (IIz - IAZ)

As a consequence of the simplifying assumptions made in their derivation, the preced-

ing equations can be divided into two categories: longitudinal (7.26-8) and lateral (7.29-

31). Suppose that <, v, p, r, A YE, ALc and ANc are zero. Then equations (7.29-3 1) are satisfied.

The remaining equations (7.26-8) form a complete set of six homogeneous variables

Au, w, q, AO, AXE, AYE. Modes of motion are possible in which only these variables differ

156

[A]

[A

[AU]

q
-AO

(7.26)

[~]
1<
W

(7.27)

(7.28)

(7.29)

from zero. Such motions are called longitudinal or symmetric motion, and the correspond-

ing equations and variables are named longitudinal. Conversely, if the longitudinal vari-

ables are set to zero, the remaining six equations (7.26-8) form a complete set for the

determination of the variables 0, w, v, p, r, YE* These variables are known as the lateral vari-

ables. The existence of pure longitudinal motions depends on two assumptions: the exist-

ence of a plane of symmetry and the absence of rotor gyroscopic effects. The existence of

pure lateral motion depends on three conditions: the linearization of the equations, the

absence of rotor gyroscopic effects and the ability to neglect all aerodynamic cross cou-

pling.

The equations (7.26-7.31) are in state space format x = Ax + Bc. The state vector for

the longitudinal and lateral systems are, respectively:

x [Au w q r]T (7.32)

x= [v p r j] (7.33)

and the A matrices can be read from equations (7.26) and (7.29). The control vector can

also be broken down into longitudinal and lateral modes respectively:

C= [, 8, (7.34)

c = [a 8] (7.35)

where the elevator angle and throttle are used for longitudinal control, and the aileron and

rudder angles are used for lateral control. To calculate the B matrices, control theory trans-

fer function response techniques must be employed. For the case of the longitudinal

response, from equation (7.26):

157

BAc =

F AXC
m

AZC
m - Z

AM, M. AZc
I I +m-Z.

0

(7.36)

Assume that the incremental aerodynamic forces and moment that result from control

actuation can be given by a set of control derivatives in the form:

[ce [' ' ASe

AZ = Z8, M6 ' Al
AMC M, M cm

From equation (7.37) and (7.36) the B matrix becomes:

B

X
6 ,

m

Z6 ,
(m - Z)

M8,

Iy
+ A

I,(m-Z)
0

x8 ,
m

Z,
(m - Z)

M, +
I,

MiZ6,

I,(m- Z)

0

(7.37)

(7.38)

for the longitudinal equations.

Similarly, for the lateral equations, assume the aerodynamics associated with the two

lateral controls are given by the set of control derivatives:

AY1 Y Y6 8-
A L C = L . L 8 , a

ANJ c N8 N8j~

(7.39)

so B is given by:

158

Y8. Y8,
m m

L8 L6,
B - + I N8, '+ Izx'N8 (7.40)

IzLx.' + N8 a Izx' L6 , + N

0 0

The complete state space description of the linearized model of aircraft dynamics has now

been elucidated. These are the continuous equations used in the SpecTRM-RL model to

calculate the potential trajectories of the aircraft between data updates. At the instant of

data update, the values of the variables are the values that are read in from the Real Time

Flight Data Processing and Distribution system. These values are then taken as the nomi-

nal values for the equations above. During the following time interval, before the next

update, the above equations are propagated forward to determine the trajectory of the air-

craft. At the next update, the trajectory is rectified, and the process begins again.

7.4 Hybrid Model of Medium Term Conflict Detection Algorithm
The dynamic model can be used in conjunction with the flight data, to calculate the contin-

uous trajectory of the aeroplane given the correct initial states and inputs. With these cal-

culated aeroplane trajectories, the algorithm determines whether or not the trajectories will

conflict (either with the trajectory of another aeroplane or with a lowest flight level or

restricted airspace). MTCD also factors in uncertainty in the modeling technique and

flight data, thereby creating buffers around the trajectories, as well as providing a number-

ing and updating convention to account for conflicts and trajectories, enabling their cre-

ation and removal when the plane enters and exits the appropriate sector. An overview of

the SpecTRM-RL model of MTCD is seen below (Fig. 7.8).

159

ENVIRONMENT
DATA

PROCESSING
D

AMAN

MANAGER H-' __

coNTROLLER J-p

FLIGHT DATA CFMU/ RADAR/
PROCESSING DATALINK

C

ESTATE
ht-cdata Detect

)efined Compute

hanged Unknown

,*nown Position
nknown Updated

Unknown
AIRCRAFT

IN

jht-data Detect SECTORS

Defined Compute

'hanged Unknown

Position
lnknown Ilk" ~ t~

k r- Updated

L Unknown

ly
Data Status

New Defined

Recalculated Deleted

Unknown Unknown

Data Status
New Defined

Recalculated Deleted

Unknown Unknown

SepfrationCriterla Uncertainty
Defined r-Defined

Unknown A-L Unknown

Special-Use
Defined

Unknown

AJECTORY

>itchrate,rollrate,yawate,aileroni, elevator.

MN,UncertaintyValue,CogflictStatus)

itchrate,rollrate,yawrate,aileron, elevator,

M,NUncertaintyValuie,ConflictStatus)

Figure 7.8: SpecTRM-RL Model of MTCD

The SpecTRM-RL model of MTCD incorporates the notion of hybrid trajectories by

creating a new component to the generic model form, entitled Inferred System Trajectory.

160

4

4

-Li:-

U

f -Li>--
~

ki -ill:>--
~

X,

Value(aileron, elevator, rudder, throttle, Fx, Fy,
Fz, L, M, N, UncertaintyValue,ConflictStatus)

Control Mode = Active
Flight1 Status = Unknown
Flight1 FlightData = Unknown
Flight1 Position = Updated
Flight1 Detect = Compute
Flight1_Trajectory Type = Unknown
Flight1_Trajectory Data = Recalculated
Flight1_Trajectory Status = Defined
Sector = Defined
Uncertainty = Defined
Tim e-Time(LastU pdate)<U pdateRate

7

7

T
T
T
TV

Figure 7.9: Trajectory Element in Hybrid SpecTRM-RL

161

r'.r

't'O

The inferred trajectories are a model of the continuous processes or plants including

state variables and measured or manipulated process variables as reflected by the inputs

and outputs to the controller. In the case of MTCD, each aircraft has its own unique tra-

jectory.

The continuous input variables included in the trajectory are the position (x,y,z) and

velocity (u,v,w) of the center of mass of the aircraft, angular position (pitch, roll, yaw) and

velocity (pitch rate, roll rate, yaw rate) of the aircraft. The control variables included are

the aileron, elevator and rudder angles, and throttle control. The forces and moments act-

ing on the aeroplane are also included in the trajectory, as is the uncertainty in the modeled

data and the conflict status (Unknown, Buffer Violation, Descent Below Altitude, Special

Airspace Violation, Nominal Route Overlap, No Conflict). Evaluated over time these vari-

ables act to form the continuous trajectory of the system for each aircraft. Combining all

of these aircraft trajectories yields the system trajectory of the entire airspace sector that

MTCD is operating upon.

The logical specification for determining if a conflict has occurred can be expressed

explicitly in the disjoint normal form of the truth tables in SpecTRM-RL. The four differ-

ent types of conflicts are handled separately, with a different function performing the iden-

tification of each type of conflict. For example, in order to determine if an aircraft will

infringe upon a restricted airspace, MTCD employs the Medium Term Area Proximity

Warning (MTAPW) system. The MTAPW sub-algorithm of MTCD determines all poten-

tial special airspace violations for all identified restricted airspaces and all included trajec-

tories. The logical flow of the algorithm is detailed below in Figs 7.10-11. The conditions

in the two diagrams can easily be converted into logical predicates involving only the cal-

culated trajectories and the specified special airspaces. Similar logical diagrams can be

162

drawn for the conflict situations of buffer overlap (aircraft conflict) and descent below

lowest usable flight level. The full SpecTRM-RL description is contained in Appendix C.

YesConflict, 7

Figure 7.10: MTAPW Shell

163

Figure 7.11: MTAPW Kernel

The 4-D position described above refers to the spatial and temporal coordinates of the air-

craft. The sampling step refers to the update rate of the algorithm, which is dependent on

the number of aircraft in the sector. The look-ahead time refers to the 20-60 minute time

horizon on conflict detection for special airspace violations.

164

7.5 Hazard Automaton Reduction Algorithm Applied to MTCD
Consider the case of an aircraft conflict between a plane and a restricted airspace,

which can clearly be defined as the hazardous state that occurs when the trajectory buffer

of the plane overlaps the buffer zone of the special use airspace. MTCD checks for this

condition by modeling the separation distances and uncertainties in a buffer about the

nominal trajectory of the plane, and then tests to see if the plane buffer overlaps the speci-

fied special airspace buffer. Since no reasonable algorithm for calculating the overlap in

varying elliptical buffers is known, MTCD uses first the box test, and then the circle test,

to determine if a conflict has arisen. If both the box and circle tests are positive, then a

conflict is detected by MTCD, and the controller must take appropriate action.

In the present model of the two-aircraft system, more information is necessary in order

to apply the Hazard Automaton Reduction Algorithm. Begin by recalling that the Hazard

Automaton Reduction Algorithm only considers the risk of the states of the system. Create

an internal variable for MTCD called Risk that is a function of the state of the aircraft tra-

jectories in the system, as well as various inputs. The variable Risk is a discrete variable,

and can possess only three values { Low,High,Hazard }. Next, consider augmenting the set

of discrete transitions S. Each time the Risk variable changes value, a discrete transition is

needed. If there is already a discrete transition enabled at this point, then no further work

need be done. If there is no discrete transition, a "dummy" transition must be inserted. An

internal "dummy" trigger predicate P, is created, which is only used in conjunction with

the internal "dummy" transition. This "dummy" trigger enables the "dummy" transition,

causing the system state to change by a discrete action (not simply through a continuous

evolution). The final state of the trajectory prior to the "dummy" transition is identical to

the first state of the trajectory following the "dummy" transition except for the value of the

165

Risk variable. This ensures that the Risk value of the system can only change via discrete

transitions, and not through a continuous evolution of variables.

The Risk variable is used to group multiple aircraft trajectory configurations into fam-

ilies related by their apparent risk and to artificially create "dummy" discrete transitions

which act to coarsely discretize the system. The Hazard Automaton Reduction Algorithm

can be applied to this partially discretized system. It remains only to find the critical con-

figurations of MTCD corresponding to the hazard of loss of separation between an aircraft

and a restricted airspace. Recall that a hazard occurs when the buffer of the plane infringes

upon the buffer of the airspace. The critical state would occur at the last point where it is

possible for the plane to recover and assume a trajectory that would not infringe upon the

buffer of the airspace. If the MTCD algorithm has not detected that a conflict is imminent

past this critical point, then the conflict detection scheme is flawed.

Starting with the hazardous point in the trajectory where the two buffers overlap but no

conflict is detected, the state can be propagated backwards until the point at which discrete

input-enabling is restored. This point can be found because all of the aircraft trajectories

can be uniquely described using their 18 differential equations that define their state

within the system at any given instant. For n aircraft, the backwards reachable space of the

differential equations can be determined by examining the entire reachable range of the

matrix corresponding to the A and B matrices in equations (7.26,7.29,7.38,7.40) defined

by the aircraft differential equations. The initial hazardous condition is encoded as x(O),

and the range of the backwards trajectories is calculated by multiplying out each column

in the reachability matrix using the initial conditions as the nominal flight state for the A

and B matrices in the differential equations. After the entire reachability matrix has been

computed, the state space description for 91, is converted into its equivalent reachable

region in the map of hybrid trajectories. The boundaries of the region can then be checked

166

to see if they are input enabled. If not, then all enabled discrete transitions are taken, and a

new set of nominal flight values is used to calculate the new A and B matrices. The reach-

ability set of the new dynamic equations is calculated, and the region is checked to see if

input enabling is restored. If not, another round of discrete transitions must be taken and

the process begins again. Thus, the full reachability set of the model need never be gener-

ated, the graph need only be generated until it intersects the critical region where input

enabling has been restored.

The point at which input-enabling is restored occurs at the last possible moment when

a controller command to the aircraft in question would be able to avert a potential conflict.

The situation is critical, but not hazardous, if a potential conflict has not been detected and

action can still be taken by the controller in order to avert the conflict. The controller still

has enough time to plan a resolution to the conflict if it were detected. Therefore, the con-

flict is still avoidable even though it has not yet been detected. However, once the control-

ler is no longer able to plan in order to avoid an upcoming conflict, the situation has

become hazardous due to the lack of detection of the potential conflict.

The system designers can use the information from the hazard analysis to redesign the

system to be safer or to assist in making trade-offs between alternative designs. For exam-

ple, to mitigate the identified hazard of a potential conflict going unidentified by MTCD,

the controller might be given a warning every time a plane's trajectory is about to become

inflexible as well as an advisory about how to route other planes accordingly. This design

effectively eliminates the hazardous paths out of the identified critical states. It has draw-

backs, however, because many of these warnings would be unnecessary. Resolving such

trade-offs and perhaps generating better solutions, is the job of the design engineer.

167

CHAPTER 8
It is unwise to be too sure of one's own wisdom. It is healthy

to be reminded that the strongest might weaken and the
wisest might err

Mohindas Gandhi (1869 - 1948)

Conclusions

8.1 State Explosion and Scalability
The Hazard Automaton Reduction Algorithm can reduce the depth of searches needed

to be employed upon complex state spaces in order to eliminate and control hazards.

Instead of testing to see if a hazardous state is reachable from an initial state, the Hazard

Automaton Reduction Algorithm enables the user to search back just sufficiently far in the

reachability graph to determine a state from which the hazard can be successfully con-

trolled or eliminated. Thus, the state explosion problem can be avoided in many instances,

if the critical state is close enough to the hazardous state.

Techniques from modem state space controls theory are particularly suited for deter-

mining the reachability of a state. It becomes necessary to perform only a finite number of

matrix multiplications to determine whether or not a state is reachable from another state.

A state machine model can be converted into a controls state space formulation and a state

transition matrix can be created. In addition, a simple rank calculation can be performed at

the start of the process to determine whether or not the entire state space is reachable at all,

thereby eliminating from consideration all hazards that are not realistic combinations of

state values, and mitigating the state explosion problem.

The Hazard Automaton Reduction Algorithm allows hazards to be controlled or elimi-

nated without generating the entire reachability graph. This vastly reduces the state explo-

168

sion problem, making the problem of hazard elimination more tractable. When employed

with state space control theory reachability results, the problem reduces to performing a

finite number of matrix multiplications. Hence, an approach based on the Hazard Automa-

ton Reduction Algorithm coupled with control theory results is a promising method by

which to control or eliminate hazards in very large complex systems.

For smaller models, the Hazard Automaton Reduction Algorithm could be coupled

with model checking techniques to remove hazards. However, when the hazards become

farther removed from their critical states, as sometimes happens in large models, the bene-

ficial effects of Hazard Automaton Reduction Algorithm are greatly diminished and the

state explosion problem emerges once again. This is not the case if the state space controls

technique is employed, as all of the cost goes into the creation of the large transition

matrix. Each successive step backwards involves only one n by n matrix manipulation, so

computational cost does not increase drastically with the distance between the hazard and

the critical state.

The benefits are even greater for hybrid models. For hybrid models, the Hazard

Automaton Reduction Algorithm could not be coupled with model checking techniques

because there are no termination guarantees in backwards reachability using model check-

ing.

8.2 Hybrid Systems and Hazard Elimination
At present, many linear hybrid model checkers possess the same approach to verifica-

tion [25]. The main function the model checker performs is the verification of safety prop-

erties: given an initial region and an unsafe region, the model checker verifies whether the

system starting with the initial region ends up within the unsafe region. The verification is

done by forward or backward reachability analysis. The verification procedure is not nec-

169

essarily decidable, i.e., the computation could go on with no guarantee of termination. The

lack of termination can result from the model checker using the "Fixed Point" iteration

method in the following fashion [3,25,91]:

For a state assertion $, let Pre($) be a state assertion that is
true for a state q if and only if there exists an f-state q' such
that (q, q') is either a jump or a flow of the system. If the
state assertion 1 =Pre(unsafe) can be computed, then all
states that will enter the unsafe region by trajectories of
length 1 are characterized. The backwards reachability anal-
ysis is carried out by successively applying the Pre operator
to the current reachable region, starting with the unsafe
region. The computation stops whenever the reachable
region intersects the initial region, or there is no new reach-
able region discovered.

It is possible to continue indefinitely using this approach, as it is very difficult to quan-

tify the point at which no new reachable region is discovered. Determining the equality of

the present reachability set to the previous reachability set involves a computation that can

be influenced by the slightest numerical imprecision. Thus, there can be no guarantee that

the terminating condition will ever be reached.

Reachability analysis is not necessarily decidable even for linear hybrid automata. In

fact, it is not decidable except for some special cases. It is decidable for timed automata

(systems which have only clocks that run with an identical rate) or simple multi-rate sys-

tems. And even for the problems that are decidable, most of them are PSPACE-hard

[3,25]. Hence, carrying out a full backwards reachability analysis in a hybrid automaton is

very difficult. The notion of propagating back a limited number of steps until a critical

region is reached is very appealing for hybrid automata because the full reachability of the

system need never be explored.

A formulation in the SpecTRM-RL language for modeling hybrid systems was pre-

sented. The notion of backwards reachability was outlined, in terms of how it could be

170

used to create constraints that would avoid hazardous states in a process control system. A

control theory technique was postulated to calculate the backwards reachable region of a

continuous set of differential equations. These techniques were illustrated by applying

them to a Medium Term Conflict Detection algorithm under development for aircraft col-

lision avoidance. The hazardous condition of a missed detection was investigated, and a

critical region was found. Constraints were then suggested in order to remove the hazard-

ous situation from the forward reachability flow of the critical region. The issue of non-

termination was never encountered due to the close proximity of the critical region to the

hazardous region.

The MTCD model can scale up, simply by adding more aircraft trajectory inputs to the

MTCD interface. Of course, the more aircraft added, the more computationally complex

the algorithm becomes, eventually swamping out the effects of the Hazard Automaton

Reduction Algorithm due to the increased coupling of the continuous state variables.

Additionally, the Hazard Automaton Reduction Algorithm is conservative, which leads to

unreachable hazards being designed out of the system. Future efforts must focus on being

able to manage the computational complexity of the hybrid version of the Hazard Autom-

aton Reduction Algorithm.

8.3 A Final Word
The coupled method of the Hazard Automaton Reduction Algorithm and state space

control reachability guarantees a solution to the control or elimination of hazards in a

purely discrete system design. This strong statement can be made because after a finite

number of matrix multiplications, either the critical state is reached and the hazard can be

controlled or eliminated, or it can be concluded that no such state exists, and therefore the

entire design is hazardous. Thus, after the design has been analyzed using this method,

171

either all the hazards are controlled or the entire system must be redesigned, as there is no

possible solution given the current design.

For hybrid systems, the statement is not as strong. If the critical state cannot be found,

it is entirely possible that it exists on a boundary or region that has yet to be explored.

However, this difficulty in finding the critical region is most likely indicative of a sub-

optimal design. This statement can be made because it is usually best to have control over

a flow of low risk behaviour as near as possible to hazardous behaviour, so that the path

leading to hazardous behaviour can be diverted as late as possible. This would translate, in

some sense, to using the minimum magnitude of input in order to divert the control from

the path toward the hazardous behaviour onto the path of low risk behaviour. Thus, system

redesign should be re-considered if a critical state is not found corresponding to any haz-

ard.

172

The secret to creativity is knowing how to hide your sources.

Albert Einstein (1879 - 1955)

References

[1] Air Force Space Division, System Safety Handbook for the Acquisition Manager,
SDP 127-1, January 12, 1987.

[2] Alur, R, Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P. H., Nicollin, X.,
Olivero, A., Sifakis, J., Youvine, S., The Algorithmic Analysis of Hybrid Systems,
1994.

[3] Alur, R., Costas, Courcoubetis, Henzinger, Thomas A. and Ho, Pei-Hsin. Hybrid
automata: an algorithmic approach to the specification and verification of hybrid
systems. In Hybrid Systems I, Lecture Notes in Computer Science 736, Springer-
Verlag, 1993, pp. 209-229.

[4] Alur, R., Henzinger, Thomas A. and Ho, Pei-Hsin. Automatic symbolic verification
of embedded systems. IEEE Transactions on Software Engineering 22:181-201,
1996. A preliminary version appeared in the Proceedings of the 14th Annual IEEE
Real-time Systems Symposium (RTSS 1993), pp. 2-11.

[5] Anderson, John D., Introduction to Flight, McGraw-Hill Inc., 1989.

[6] Behrmann, G., Larsen, Kim G., Pearson, Justin, Weise, Carsten and Yi, Wang.
Efficient Timed Reachability Analysis Using Clock Difference Diagrams. Computer
Aided Verification 1999.

[7] Bensalem, S., Bouajjani, A., Loiseaux, C. and Sifakis, J. Property Preserving
Simulations. Workshop on Computer Aided Verification. Fourth International
Workshop. CAV'92. Proceedings LNCS 663. Springer 1992. pp. 260-273.

[8] Bjorner, Nikolaj, Browne, Anca and Manna, Zoher. Automatic Generation of
Invariants and Intermediate Assertions. TCS special issue dedicated to CP '95. June
3 1996.

[9] Bjorner, Nikolaj S., Manna, Zoher, and Sipma, Henny B. Deductive Verification of
Real-time Systems Using STeP. Submitted to Elsevier Science.

[10] Bjorner, N. Browne, Anca, Chang, Eddie, Colon, Michael, Kapur, Arjun... STeP:
Deductive-Algorithmic Verification of Reactive and Real-time Systems.
International Conference on Computer Aided Verification, pp. 415-418. vol. 1102of
Lecture Notes in Computer Science, Springer-Verlag, July 1996.

[11] Bjorner, N. S., Browne, A., and Manna, Z. Automatic Generation of Invariants and
Intermediate Assertions. Theoretical Computer Science 173, 1 (Feb. 1997), 49-87.
International vonference on Principles and Practice of Constraint Programming. Vol

173

976. Springer-Verlag. 1995.

[12] Bjorner, N. S., Manna, Z. Sipma, H. B., and Uribe, T. E. Deductive Verification of
Real-Time Systems Using STeP. 4th International AMAST Workshop on Real-Time
Systems. Vol 1231. Spriger-Verlag. May 1997.

[13] Bjorner, N. S., Browne, Anca, Colon, Michael, Finkbeiner, Bernd, Manna, Zoher,
Pichora, Marc, Sipma, Henny B., Uribe, Tomas E. STeP: The Stanford Temporal
Prover Educational Release Version 1.4 User's Manual. July 1998.

[14] Bose, S., and Fisher, A.L., Automatic Verification of Synchronous Circuits Using
Symbolic Logic Simulation and Temporal Logic. In Proceedings of the IMEC-IFIP
International Workshop on Applied Formal Methods for Correct VLSI Design, 1989.

[15] Branicky, Michael, Studies in Hybrid Systems, Sc.D. Thesis, Massachusetts Institute
of Technology, June 1995

[16] Branicky, Michael, Dolginova, Ekaterina and Lynch, Nancy. A Toolbox for Proving
and Maintaining Hybrid Specifications. In Panos J. Antsaklis, editor, Hybrid Systems
IV (HS'96, Cornell University, Ithaca, NY, October 12-16, 1996), volume 1273 of
Lecture Notes in Computer Science. Springer-Verlag 1996.

[17] Browne, M.C., Clarke, E.M. and Dill, D.L. Automatic Circuit Verification using
Temporal Logic: Two New Examples. Formal Aspects of VLSI Design. Elsevier
1986.

[18] Bryant, R.E., Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8):677-691.

[19] Bryant, R.E. and Seger, C-J., Formal Verification of Digial Circuits using Symbolic
Ternary System Models., Workshop on Computer-Aided Verification, 2nd
International Conference, CAV'90. Proceedings, LNCS 531, Springer 1990, pp. 33-
43.

[20] Burch, J.R. et al, Sequential Circuit Verification Using Symbolic Model Checking.
In Proceedings of the 27th ACM/IEEE Design Automation Conference, pp. 46-51.
IEEE, 1990.

[21] Burstall, R.M., Program Proving as Hand Simulation with a Little Induction, In IFIP
Conbress 74, pp. 308-312. North Holland, 1972.

[22] Clarke, E.M., Emerson, E.A., and Sistla, A.P., Automatic Verification of Finite-State
Concurrent Systems Using Temporal Lobic Specifications. ACM Transactions on
Programming Languages and Systems., 8(2): pp 2 2 4 -2 6 3 .

[24] Clarke, E.M., Filkorn, T. and Jha, S. Exploiting Symmetry in Temporal Logic Model
Checking. Proceedings of the 5th Workshop on Computer Aided Verification. June/
July 1993. pp. 450-462.

[25] Clarke, E. M., Grumberg, 0. and Peled, D. Model Checking. MIT Press 2001.

[26]] Clarke, E.M., Grumberg, 0. et al., Parametrized Networks. In Proceedings of the 6th
International Conference on Concurrency Theory, LNCS 962. Springer 1995. pp.
395-407.

174

[27] Clarke, E.M., Long, D.E. and McMillan, K.L. A Language for Compositional
Specification and Verification of Finite State Hardware Controllers. Proceedings of
the 9th International Symposium of Computer Hardware Description Languages and
Their Applications. North Holland 1989. pp. 281-295.

[28] Cleaveland, R.W., Parrow, J., and Steffen, B., The concurrency Workbench.
Proceedings of the 1989 International Workshop on Automatic Verification Methods
for Finite State Systems, LNCS 407. Springer, 1989., pp. 24-37.

[29] Cross, A, Fault Trees and Event Trees. In A.E. Green, Editor, High Risk Safety
Technology, pp. 49-65, John Wiley and Sons, New York, 1982.

[30] Coudert, 0., Berthet, C., and Madres, J.C., Verification of Synchronous Sequential
Machines Based on Symbolic Execution, Proceedings of the 1989 International
Workshop on Automatic Verification Methods for Finite State Systems, LNCS 407,
Springer, 1989, pp. 365-373.

[31] Coudert, 0., Madres, J.C., and Berthet, C., Verifying Temporal Properties of
Sequential Machines Without Building their State Diagrams, Workshop on
Computer-Aided Verification. 2nd International Conference, CAV'90. Proceedings,
LNCS 531, Springer 1990, pp. 23-32.

[32] Cox, S.J. and N.R.S. Tait, Reliability, Safety & Risk Management: An Integrated
Approach, Butterworth-Heinemann Ltd., Oxford, England, 1991, pp. 1-24.

[33] Dahleh, M. Introduction to Linear State Space Control Theory. Course Notes.
Massachusetts Institute of Technolgy. Fall 1999.

[34] Dang, T. Maler, 0., Reachability Analysis via Face Lifting, in T.A. Henzinger and S.
Sastry (Eds), Hybrid Systems: Computation and Control, LNCS 1386, 96-109,
Springer, 1998.

[35] Daniel, Peter, SAFECOMP '97, Proceedings of the 16th International Conference on
Computer Safety, Reliability and Security, York, 7-10 September 1997, York,
Springer-Verlag, Berlin.

[36] Daniels, B.K., Achieving Safety and Reliability with Computer Systems,
Proceedings of the Safety and Reliability Society Symposium, 1987, Altrincham,
Manchester, UK, 11-12 November 1987. Elsevier Applied Science, London.

[37] Daniels, J.T. and Holden, P.L., Quantification of Risk In Loss Prevention and Safety
Promotion in the Process Industries, pp. 1-12, Queen's College, Cambridge, UK.
Pergamon Press, September 1983.

[38] Duke, B. W., Program Manager's Handbook for System Safety and Military
Standard 882B. Hazard Prevention, pp. 15-21, March/April 1986.

[39] Emerson, E.A., Branching Time Temporal Logic and the Design of Correct
Concurrent Programs. Ph.D Thesis, Harvard University, 1981.

[40] Etkin, Bernard and L.D. Reid, Dynamics of Flight: Stability and Control, John Wiley
and Sons, 1996.

[41] European Air Traffic Control Harmonisation and Integration Programme, Functional

175

Specification for EATCHIP Phase III Medium Term Conflict Detection, 1997.

[42] Fortune, Joyce and Geoff Peters, Learning From Failure-The Systems Approach,
John Wiley and Sons, Chichester, England, 1995, pp. 1-37.

[43] Garland, Stephen and Nancy A. Lynch and Mandana Vaziri. IOA: A Language for
Specifying, Programming and Validating Distributed Systems. User and Reference
Manual. Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, December 1997.

[44] Godefroid, P., Using Partial Orders to Improve Automatic Verification Methods., In
Proceedings of the 2nd Workshop on Computer Verification, LNCS 531, pp. 17 6 -18 5 .
Springer 1990.

[45] Godefroid, P. and Pirottin, D. Refining Dependencies Improves Partial Order
Verification Methods. In Proceedings of the 5th Conference on Computer Aided
Verification. LNCS 697. Springer 1993. pp. 438-449.

[46] Gritzalis, Dimitris, Reliability, Quality and Safety of Software-Intensive Systems,
International Conference on Reliability, Quality and Safety of Software-Intensive
Systems (ENCRESS '97), 29-30 May 1997, Athens, Chapman & Hall, 1997.

[47] Grumberg, 0. and Long, D.E., Model Checking and Modular Verification. ACM
Transactions on Programming Languages and Systems 16:843-872.

[48] Hammer, W. Handbook of System and Product Safety, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1972.

[49] Hammer, W. Product Safety Management and Engineering, Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1980.

[50] Harel, Z., and Kurshan, R.P., COSPAN, Proceedings of the 1996 Workshop on
Computer Aided Verification, LNCS 1102, Springer, 1996, pp. 423-427.

[51] Heimdahl, M.P.E and Nancy Leveson. Completeness and Consistency Analysis of
State-Based Requirements, Published in IEEE Transactions on Software Engineering
(May 1996).

[52] Henzinger, T.A., Pei-Hsin Ho, and Howard Wong-Toi. A user guide to HyTech.
Proceedings of the First International Workshop on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 1995), Lecture Notes in Computer
Science 1019, Springer-Verlag, 1995, pp. 41-71.

[53] Henzinger, T.A., Pei-Hsin Ho, and Howard Wong-Toi, HyTech: the next generation.
Proceedings of the 16th Annual IEEE Real-time Systems Symposium (RTSS 1995),
pp. 56-65.

[54] Henzinger, T.A., Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What's decidable
about hybrid automata? Journal of Computer and System Sciences 57:94-124,
1998. A preliminary version appeared in the Proceedings of the 27th Annual ACM
Symposium on Theory of Computing (STOC 1995), pp. 373-382.

[55] Henzinger. T.A., The theory of hybrid automata. Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 278-292.

176

[56] Henzinger, T.A., Pei-Hsin Ho, and Howard Wong-Toi. HyTech: a model checker for
hybrid systems. Software Tools for Technology Transfer 1:110-122, 1997. A
preliminary version appeared in the Proceedings of the Ninth International
Conference on Computer-aided Verification (CAV 1997), Lecture Notes in
Computer Science 1254, Springer-Verlag, 1997, pp. 460-463.

[57] Hope, S, et. al., Methodologies for Hazard Analysis and Risk Assessment in the
Petroleum Refining and Storage Industry. Hazard Prevention, Pp24-32, July/August
1983.

[58] Hughes, G.E. and Creswell., M.J., Intruduction to Modal Logic. Methuen, 1977.

[59] Jaffe, M.S., Leveson, N.G., Heimdahl, M.P.E, Melhart, B.E., "Software
Requirements Analysis for Real-Time Process-Control Systems", IEEE Transactions
on Software Engineering, Vol 17, No. 3, March 1991, pp. 241-257.

[60] Katz, S, and Peled, D., An efficient Verification Method for Parallel and Distributed
Programs. In Workshop on Linear Time, Branching Time and Partial Order in
Logics and Modelsfor Concurrency, LNCS 354, pp. 489-507. Springer 1998.

[61] Knight, J. and N.G. Leveson., An Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming, IEEE Transactions on Software
Engineering, Vol. SE-12, No. 1, January 1986, pp. 96-109.

[62] Kroger, F., LAR: A Logic of Algorithmic Reasoning. Acta Informatica, 8(3).

[63] Kurshan, R.P. et al. Static Partial Order Reduction. In Tools and Algorithms for the
Construction and Analysis of Systems, LNCS 1384, pp. 34 5 -3 5 7 . Springer, 1998.

[64] Kurzhanski, A.B. and Varaiya,P. Ellipsoidal techniques for reachability analysis. In
N. Lynch and B. Krogh, editors, Hybrid Systems: Computation and Control
(HSCC'00), LNCS 1790, pages 203--213. Springer-Verlag, 2000.

[65] Larsen, K.G., Paul Pettersson and Wang Yi., UPPAAL in a Nutshell. In Springer
International Journal of Software Tools for Technology Transfer 1(1+2), 1997.

[66] Larsen, K.G., Paul Pettersson and Wang Yi.Compositional and Symbolic Model-
Checking of Real-Time Systems. In Proceedings of the 16th IEEE Real-Time
Systems Symposium, Pisa, Italy, 5-7 December, 1995.

[67] Larsen, K.G., Fredrik Larsson, Paul Pettersson and Wang Yi.Efficient Verification of
Real-Time Systems: Compact Data Structure and State-Space Reduction. In
Proceedings of the 18th IEEE Real-Time Systems Symposium, pages 14-24. San
Francisco, California, USA, 3-5 December 1997.

[68] Lamport, Leslie, Specifying Concurrent Systems with TLA+, Leslie Lamport,
Current Draft, 7 December, 2000.

[69] Lamport, Leslie, The Temporal Logic of Actions, ACM Transactions on
Programming Languages and Systems, April 30, 1994.

[70] Lehtela, M., Computer-Aided Failure Mode and Effect Analysis of Electronic
Circuits. Microelectronic Reliability, 30(4):761-773, 1990.

[71] Leveson, N.G. Safeware: System Safety and Computers. Addison-Wesley 1995.

177

[72] Leveson, N.G., Heimdahl, M.P.E. and Reese, J.D. Designing Specifications
Languages for Process Control Systems. Presented at SIGSOFT FOSE '99,
Foundations of Software Engineering. Toulouse. Sept. 1999.

[73] Leveson, N.G. and Stolzy, J.L. Safety Analysis Using Petri Nets. IEEE Transactions
on Software Engineering. SE-13(3):386-397. March 1987.

[74] Leveson, N.G., Completeness in Formal Specification Language Design for Process
Control Systems, Proceeedings of Formal Methods in Software Practice Conference,
August 2000.

[75] Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., and Reese, J.D., Requirements
Specification for Process-Control Systems. Published in IEEE Transactions on
Software Engineering (Sept. 1994)

[76] Leveson, N.G., L. Alfaro, C. Alvarado, M. Brown, E.B. Hunt, M. Jaffe, S. Joslyn, D.
Pinnel, J. Reese, J. Samarziya, S. Sandys, A. Shaw, Z. Zabinsky., Demonstration of
a Safety Analysis on a Complex System. Presented at the Software Engineering
Laboratory Workshop, NASA Goddard, December 1997.

[77] Leveson, N.G., Maxime de Villepin, Mirna Daouk, John Bellingham, Jayakanth
Srinivasan, Natasha Neogi, and Ed Bachelder (MIT) and Nadine Pilon and Geraldine
Flynn (Eurocontrol). A Safety and Human-Centered Approach to Developing New
Air Traffic Management Tools. Air Traffic Management 2001, Albuquerque NM,
December 2001.

[78] Lichtenstein, 0., and Pnueli, A., Checking that Finite State Concurrent Programs
Satisfy their Linear Specification. In Proceedings of the 12th Annual ACM
Symposium on Principles of Programming Language, pp. 97-107. ACM 1985.

[79] Livadas, Carlos and Nancy A. Lynch. Formal Verification of Safety-Critical Hybrid
Systems. Proceedings of 1st International Workshop, Hybrid Systems: Computation
and Control (HSCC'98, Berkeley, CA, April 1998), volume 1386 of Lecture Notes in
Computer Science. Springer-Verlag 1998.

[80] Lutz, R., Targeting safety -related errors during software requirements analysis. In
Proceedings of the First ACM SIGSOFT Symposium on the Foundations of Software
Engineering, 1993.

[81] Lygeros, John and Nancy Lynch. On the Formal Verification of the TCAS Conflict
Resolution Algorithms. Proceedings of the 36th IEEE Conference on Decision and
Control, San Diego, CA, December 1997.

[82] Lygeros, John, Tomlin, Claire and Sastry, Shankar, "Controllers for reachability
specifications for hybrid systems", Automatica, 1999.

[83] Lynch, N., Vaandrager, F., "Forward and Backward Simulations II. Timing Based
Systems", Information and Compuation, Vol 128, No. 1, Academic Press, July 10,
1996.

[84] Lynch, Nancy, Roberto Segala, and Frits Vaandrager. Hybrid 1/0 Automata
Revisited. In Maria Domenica Di Benedetto and Alberto Sangiovanni-Vincentelli,
editors Hybrid Systems: Computation and Control. Fourth International Workshop

178

(HSCC'01, Rome, Italy, March 2001, volume 2034 of Lecture Notes in Computer
Science, pages 403-417, 2001. Springer-Verlag.

[85] Lynch, Nancy, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid I/O
automata. Submitted for journal publication.

[86] Lynch. N, A Three-Level Analysis of a Simple Acceleration Maneuver, with
Uncertainties. Proceedings of the Third AMAST Workshop on Real-Time Systems,
pages 1-22, Salt Lake City, Utah, March 1996.

[87] Lynch. N, Modelling and verification of automated transit systems, using timed
automata, invariants and simulations. In R. Alur, T. Henzinger, and E. Sontag,
editors, Hybrid Systems III: Verification and Control (DIMACS/SYCON Workshop
on Verification and Control of Hybrid Systems, New Brunswick, New Jersey,
October 1995), volume 1066 of Lecture Notes in Computer Science, pages 449-463.
Springer-Verlag 1996.

[88] Lynch, N, Roberto Segala, Frits Vaandrager, and H. B. Weinberg. Hybrid 1/0
Automata. In R. Alur, T. Henzinger, and E. Sontag, editors, Hybrid Systems III:
Verification and Control (DIMACS/SYCON Workshop on Verification and Control
of Hybrid Systems, New Brunswick, New Jersey, October 1995), volume 1066 of
Lecture Notes in Computer Science, pages 496-510. Springer-Verlag 1996.

[89] Malasky, Sol W., System Safety: Planning/Engineering/Management, Hayden Book
Company Inc., Rochelle Park, New Jersey, USA., 1974, pp. 1-36.

[90] Manna, Z. and Pnueli, A., Temporal Verifications of Reactive Systems-Safety.
Springer 1995.

[91] Manna, Z. and Sipma, H., Deductive Verification of Hybrid Systems Using STeP.
Appeared in Hybrid Systems: Computation and Control, International Workshop,
LCNS 1386, Springer-Verlag, Berkely, April 1998.

[92] Manna, Z., and Pnueli, A. Clocked Transition Systems. In Proc. Of the International
Logic and Software Engineering Workshop, Beijeng, China. Aug. 1995.

[93] Manna, Z., and Pnueli, A. Clocked Transition Systems. Presented at the Workshop
on Verification and Control of Hybrid Systems, New Brunswick, NJ. Oct. 1995.

[94] McCormick, Norman, J., Reliability and Risk Analysis. Academic Press, New York,
1981.

[95] McMillan, K., Using Unfolding to Avoid the State Explosion Problem in the
Verification of Asynchronous Circuits, Workshop on Computer-Aided Verfication.
Fourth International WOrkshop, CAV'92. Proceedings, LNCS 663, Springer 1992.,
pp. 164-177.

[96] Miller, S. Modelling Software Requirements for Embedded Systems. Altitude
Switch Specification. Rockwell Collins.

[97] Modugno, F., Leveson, N. G., Reese, J. D., Partridge, K. and Sandys, S.D. Integrated
Safety Analysis of Requirements Specifications. IEEE 1997. pp. 148-159.

[98] Nielsen, D., Use of Cause-Consequence Charts in Practical Systems Analysis. In

179

Theoretical and Applied Aspects of System Reliability and Safety Assessment, pp.
849-880, SIAM, Philadelphia, 1975.

[99] Overman, W.T., Verification of Concurrent Systems: Function and Timing. PhD
Thesis, University of California at Los Angeles, 1981.

[100] Peled, D., Combining Partial Order Reductions with On-the-Fly Model Checking,
Proceedings of the 1994 Workshop on Computer-Aided Verification Methods for
Finite State Systems, LNCS 818. Springer 1994, pp. 377-390.

[101] Pixley, C., Introduction to a Computation THeory and Implementation of Sequential
Hardware Equivalence., Workshop on Computer Aided Verification, 2nd
International Conference, CAV'90. Proceedings, LNCS 513, Springer 1990., pp. 54-
64.

[102] Pnueli, A., The Temporal Logic of Programs, In 18th IEEE Symposium on
Foundation on Computer Science, pp. 46-57. IEEE Computer Society Press, 1977.

[103] Quielle, J.P. and Sifakis, J., Specification and Verification of concurrent Systems in
CESAR. In Proceedings of the 5th International Symposium on Programming,
pp.337-350.

[104] Rajan, S., Shankar, N., and Srivas, M.K. An Integration of Model Checking with
Automated Proof Checking. Proceedings of the 1995 Workshop on Computer Aided
Verification. LNCS 939. Springer 1995. pp. 84-97.

[105] Reese, John Damon, Software Deviation Analysis, PhD thesis, University of
California, Irvine, CA, 1995.

[106] Rogers, William P., Introduction to System Safety Engineering, John Wiley and
Sons, 1971.

[107] Shaw, Roger, Safety and Reliability of Software Based Systems, Twelfth Annual
Centre for Software Reliability Workshop, Springer-Verlang London Limited,
London, England, 1997.

[108] Sontag, Eduardo D., Mathematical Control Theory: Deterministic Finite
Dimensional Systems.Second Edition, Springer, New York, 1998.

[109] Suokas, Juoko, The Role of Management in Accident Prevention, In First
International Congress on Industrial Engineering and Management, Paris, June 11-
13, 1986.

[110] Suokas, Juoko, The Role of Safety Analysis in Accident Prevention. Accident
Analysis and Prevention, 20(1):67-85, 1988.

[111] Terry, J.G., Engineering System Safety, Mechanical Engineering Publications Ltd.,
Alden Press, Oxford, England, 1991, pp. 1-21.

[112] Tomlin, Claire, Lygeros, John and Sastry, Shankar, A Game Theoretic Approach to
Controller Design for Hybrid Systems, Proceedings of the IEEE, Volume 88, Number
7, July 2000.

[113] Tomlin, Claire, Mitchell, Ian, and Ghosh, Ronojoy.,Safety Verification of Conflict
Resolution Maneuvers, IEEE Transactions on Intelligent Transportation Systems,

180

Volume 2, Number 2, June 2001.

[114] Tomlin, Claire, Pappas, George J. and Sastry, Shankar., Conflict Resolution for Air
Traffic Management: A Study in Multi-Agent Hybrid Systems, IEEE Transactions
on Automatic Control, Volume 43, Number 4, April 1998.

[115] Thomson, J.R., Engineering Safety Assessment: An Introduction, Longman
Scientific and Technical, Harlow, England, 1987, pp. 1-8.

[116] Valmari, A, A Stubborn Attack on State Explosion. In Proceedings of the 16th
International Colloquium on Automata, Languages and Programming, LNCS 372.
pp. 761-772. Springer, 1989.

[117] Vardi, M.Y., and Wolper, P., An Automata-Theoretic Approach to Automatic
Program Verification. In Proceedings of the 1st Annual Symposium on Logic in
Computer Science. IEEE Computer Society Press, 1986, pp. 3 3 2 -3 4 4 .

[118] Weinberg, H.B. and Nancy Lynch. Correctness of Vehicle Control Systems - A Case
Study. Proceedings of the 17th IEEE Real-Time Systems Symposium, pages 62-72,
Washington, D. C., December, 1996.

[119] Yi, Wang, Paul Pettersson and Mats Daniels.Automatic Verification of Real-Time
Communicating Systems by Constraint Solving. In Proceedings of the 7th
International Conference on Formal Description Techniques, Berne, Switzerland, 4-
7 October, 1994.

[120] Young, Thomas A., Mars Program Independent Assessment Team Report, March 14,
2000.

181

Appendix A

... the source of all great mathematics is the special case, the
concrete example. It is frequent in mathematics that every
instance of a concept of seemingly great generality is in
essence the same as a small and concrete special case.

Paul R. Halmos, 1985

Level 3 SpecTRM-RL Model of Altitude
Switch

182

-IState Value

DOI-Status

Obsolescence: 2 seconds

Exception-Handling: Goes into unknown state

Description:

Comments:

References:

There is nothing in the requirements that says what to do if a power-off message is sent and
no status message is received from the DOI within 2 seconds. I decided it was safest to have
this indicate a possible fault so the watchdog will time out and light the fault indicator lamp in
the cockpit.

Appears in: DOI-Power-On, Watchdog-Strobe

DEFINITION

= On

I DOI-status-signal = On

= Off

DOI-status-signal = Off

= Unknown

Powerup

Controls.Reset = T

DOI-status-signal = obsolete

I

T

T

T

= Fault-Detected

Time >= (Time sent DOI-Power-On Message) + 2 seconds T T

DOI-status-signal = Off T

Time > Time received DOI-status-signal + 2 seconds T

Column 1: Sent power on message but DOI did not turn on
Column 2: Sent power on message but never got feedback

183

State value---
Altitude

Obsolescence: 2 seconds

Exception-Handling: Because the altitude-status-signals change to obsolete after 2 seconds,
altitude will change to Unknown if all input signals are lost for 2 seconds.

Description:

Comments:

References:

Appears in: DOI-Power-On

DEFINITION
= Unknown

Powerup

Controls.Reset

Analog-ALT = Unknown

Dig-Alt1 = Unknown

Dig-Alt2 = Unknown

T

T

T

T

T

= Below-threshold

Analog-Valid-and-Below

Dig1-Valid-and-Below
Dig2-Valid-and-Below

=At-or-above-threshold

Analog-Valid-and-Above

Dig1-Valid-and-Above
Dig2-Valid-and-Above

= Cannot-be-determined

Analog-Alt = Invalid

Dig-Alt1 = Invalid

Dig-Alt2 = Invalid

T

T

T

T T T F T F F

T T F T F T F

T F T T F F T

T

TTi

184

-State Value

Analog-Alt

Obsolescence: 2 seconds

Exception-Handling: Will change to unknown when analog-alt-signal becomes obsolete
(more than 2 seconds elapse since last message from Analog Altimeter)

Description:

Comments:

References:

Appears in: Altitude

DEFINITION

= Valid

LAnalog-Alt-Status = Valid

= Invalid

[Analog-Alt-Status = Invalid

= Unknown

Analog-Alt-Status = Obsolete

Powerup

Controls.Reset = T

185

1wT

T

T

T

- State Value-

Dig-Alt1

Obsolescence: 2 seconds

Exception-Handling:

Description:

Comments:

References:

Appears in: Altitude

Will change to unknown when DA1 -Status-Signal becomes obsolete
(more than two seconds elapse since last mesage from Digital Altimeter 1).

W

DEFINITION

= Valid

DAl-Status-Signal = Norm Eli

= Invalid

DAl-Status-Signal = {Fail, NCD, Test} Eli1

= Unknown

DA1 -Status-Signal = Obsolete

Powerup

Controls.Reset = T

186

T

T

IT

I

State Value

Dig-Alt2

Obsolescence: 2 seconds

Exception-Handling: Will change to unknown when DA2-Status-Signal becomes obsolete
(more than two seconds elapse since last mesage from Digital Altimeter 2).

Description:

Comments:

References:

Appears in: Altitude

DEFINITION

= Valid

DA2-Status-Signal = Norm

= Invalid

DA2-Status-Signal = {Fail, NCD, Test}

= Unknown

DA2-Status-Signal = Obsolete
Powerup

Controls.Reset = T

187

T

T

T

Input Value

DOI-Status-Signal

Source: DOI

Type: Enumerated

Possible Values (Expected Range): {On, Off}

Exception-Handling:

Arrival Rate (Load): ??

Min-Time-Between-Inputs:
Max-Time-Between-Inputs:

Obsolescence: 2 seconds

Exception-Handling: Assumes value Obsolete

Description:

Comments:

References:

Appears in: DOI-status

DEFINITION

= FIELD (Status in DOI-Status-Message)

Receive DOI-Status-Message FROM DOI T

= PREV (DOI-Status-Signal)

Receive DOI-Status-Message FROM DOI F

Time <= Time (DOI-Status-Message arrived) + 2 seconds T

= Obsolete

Receive DOI-Status-Message FROM DOI F

Time > Time (DOI-Status-Message arrived) + 2 seconds T

Powerup T

188

Input Value

Anal og-Alt-Statu s

Source: Analog Altimeter

Type: Enumerated

Possible Values (Expected Range): {lnvalid, Valid}
Exception-Handling:

Arrival Rate (Load): ??

Min-Time-Between-inputs:
Max-Time-Between-Inputs:

Obsolescence: 2 seconds

Exception-Handling: Assumes value Obsolete
Description:

Comments:

References:

Appears in: Analog-Alt

DEFINITION

= FIELD (Status in Analog-Alt-Message)

Receive Analog-Alt-Message FROM Analog-Altimeter

= PREV (Analog-Alt-Status)

Receive Analog-Alt-Message FROM Analog-Altimeter
Time <= Time (Analog-Alt-Message arrived) + 2 seconds

= Obsolete

Receive Analog-Alt-Message FROM Analog-Altimeter
Time > Time (Analog-Alt-Message arrived) + 2 seconds
Startup

189

1WI

T

F

T

m-Input Value

Analog-Alt-Signal

Source: Analog Altimeter

Type: Enumerated
Possible Values (Expected Range): {Above, Below}

Exception-Handling:

Arrival Rate (Load): ??
Min-Time-Between-Inputs:
Max-Time-Between-Inputs:

Obsolescence: 2 seconds

Exception-Handling: Assumes value Obsolete
Description:

Comments:

References:

Appears in: Altitude

DEFINITION

= FIELD (Altitude in Analog-Alt-Message)

Receive Analog-Alt-Message FROM Analog-Altimeter

= PREV (Analog-Alt-Signal)

Receive Analog-Alt-Message FROM Analog-Altimeter

Time <= Time (Analog-Alt-Message arrived) + 2 seconds T

= Obsolete

Receive Analog-Alt-Message FROM Analog-Altimeter F

Time > Time (Analog-AIt-Message arrived) + 2 seconds T

Powerup (eT

190

Input Value

DA1 -Status-Signal

Source: Digital Altimeter 1

Type: Enumerated

Possible Values (Expected Range): (Fail, NCD, Test, Norm}

Exception-Handling:

Arrival Rate (Load): ??

Min-Time-Between-Inputs:
Max-Time-Between-Inputs:

Obsolescence:2 seconds

Exception-Handling: Assumes value Obsolete

Description:

Comments: Four possible values can be sent signifying Failure Warning, No Computed Data,
Functional Test, and Normal Operation.

References:

Appears in: Dig-Alt1

DEFINITION

= FIELD (Status in DA1 -Message)

Receive DA1-Message FROM Digital-Altimeter-1 j j

= PREV (DAl-Status-Signal)

Receive DA1-Message FROM Digital-Altimeter-1

Time <= Time (DA1 -Message arrived) + 2 seconds T

= Obsolete

Receive DA1 -Message FROM Digital-Altimeter-1

Time > Time (DA1-Message arrived) + 2 seconds T

Powerup T

191

C InputVau

DA1 -Alt-Signal

Source: Digital Altimeter 1
Type: integer

Possible Values (Expected Range): -20..2500
Exception-Handling: Values below -20 are treated as -20 and values above 2500 as 2500

Units: ??

Granularity: ??

Arrival Rate (Load): ??
Min-Time-Between-Inputs:
Max-Time-Between-Inputs:

Obsolescence: 2 seconds
Exception-Handling:

Description:

Comments:

References:
Appears in: Altitude

DEFINITION

= FIELD (Altitude in DA1 -Message)

Receive DA1-Message FROM Digital-altimeter-1

= PREV (DAl-Alt-Signal)

Receive DA1-Message FROM Digital-altimeter-1 nF

= Obsolete

Receive DA1 -Message FROM Digital-Altimeter-1 F

Time > Time (DA1 -Message arrived) + 2 seconds T

Powerup T

192

-- nput Value

DA2-Status-Signal

Source: Digital Altimeter 1
Type: Enumerated

Possible Values (Expected Range): {Fail, NCD, Test, Norm}
Exception-Handling:

Arrival Rate (Load): ??
Min-Time-Between-Inputs:
Max-Time-Between-Inputs:

Obsolescence: 2 seconds

Exception-Handling: Assumes value Obsolete
Description:

Comments: Four possible values can be sent signifying Failure Warning, No Computed Data,
Functional Test, and Normal Operation.

References:

Appears in: Dig-Alt2

DEFINITION

= FIELD (Status in DA2-Message)

Receive DA2-Message FROM Digital-Altimeter-2

= PREV (Dig2-Status-Signal)

Receive DA2-Message FROM Digital-Altimeter-2 F

Time <= Time (DA2-Message arrived) + 2 seconds T

= Obsolete

Receive DA2-Message FROM Digital-Altimeter-2 F

Time > Time (DA2-Message arrived) + 2 seconds T

Powerup T

193

InputVau

DA2-Alt-Signal

Source: Digital Altimeter 2

Type: integer

Possible Values (Expected Range): -20..2500

Exception-Handling: Values below -20 are treated as -20 and values above 2500 as 2500

Units: ??

Granularity: ??

Arrival Rate (Load): ??

Min-Time-Between-Inputs:
Max-Time-Between-Inputs:

Obsolescence: 2 seconds

Exception-Handling:

Description:

Comments:

References:

Appears in: Altitude

DEFINITION

= FIELD (Altitude in DA2-Message)

Receive DA2-Message FROM Digital-altimeter-2

= PREV (DA2-Alt-Signal)

Receive DA2-Message FROM Digital-altimeter-2 I

= Obsolete

Receive DA2-Message FROM Digital-Altimeter-2 F

Time > Time (DA2-Message arrived) + 2 seconds T

Powerup T

194

Control Input

Inhibit

Source: Cockpit Inibit Button

Type: Enumerated

Possible Values (Expected Range): {on, off}

Arrival Rate (Load):

Min-Time-Between-Inputs:
Max-Time-Between-Inputs:

Obsolescence: None

Description:

Comments:

References:

Appears in: ASW

DEFINITION

= FIELD (Value in Inhibit-Message)

Receive Inhibit-Message from CockpitI

= PREV (Inhibit)

Receive Inhibit-Message from Cockpit

= Obsolete

Powerup

195

Control Input

Reset

Source: Cockpit Reset Button

Type: Signal

Possible Values (Expected Range): {High}

Arrival Rate (Load):

Min-Time-Between-Inputs:
Max-Time-Between-Inputs:

Obsolescence: Not applicable (lasts only one step)

Description:

Comments:

References:

Appears in: Analog-Alt, DOI-Status, Altitude, Analog.Alt, Dig-Alt1, Dig-Alt2, ASW

DEFINITION

= True

IReceive Inhibit Signal I W
= False

Prev (Reset) = True T

Powerup T

196

LMacro
Analog-Valid-and-Below

Description:

Comments:
References:

Appears in: Altitude2

DEFINITION

Analog-alt = Valid

Analog-Alt-Signal = below
T
TW

I Macro F
Analog-Valid-and-Above

Description:

Comments:

References:

Appears in: Altitude2

DEFINITION

Analog-alt = Valid

Analog-Alt-Signal = above
T
Ti

197

Macro

Dig1 -Valid-and-Below

Description:

Comments:

References:

Appears in: Altitude2

DEFINITION

Dig1-alt = Valid T

DAl-Alt-Signal < 2000 THRES]

Macro

Digi -Valid-and-Above

Description:

Comments:

References:

Appears in: Altitude2

DEFINITION

Dig-Alt1 = Valid

DAl-Alt-Signal >= 2 0 0 T HRES T

198

dMacro--

Dig2-Val id-and-Below

Description:

Comments:

References:

Appears in: Altitude2

DEFINITION

Dig2-alt = Valid T

DA2-Alt-Signal < 2000 THRES

Macro

Dig2-Valid-and-Above

Description:

Comments:

References:

Appears in: Altitude2

DEFINITION

Dig-Alt2 = Valid

DA2-Alt-Signal >= 2 0 0
THRES T

199

Output Command

DOI-Power-On

Destination: DOI
Acceptable Values: {high}

Initiation Delay: 0 milliseconds

Completion Deadline: 50 milliseconds

Exception-Handling: (What to do if cannot issue command within deadline time)
Feedback Information:

Variables: DOI-status-signal
Values: high (on)

Relationship: Should be on if ASW sent signal to turn on
Min. time (latency): 2 seconds
Max. time: 4 seconds
Exception Handling: DOI-Status changed to Fault-Detected

Reversed By: Turned off by some other component or components. Do not know which ones.
Comments: I am assuming that if we do not know if the DOI is on, it is better to turn it on again, i.e., that

the reason for the restriction is simply hysteresis and not possible damage to the device.

This product in the family will turn on the DOE only when the aircraft descends below the
threshold altitude. Only this page needs to change for a product in the family that is
triggered by rising above the threshold.

References:

CONTENTS

= discrete signal on line PWR set to high

TRIGGERING CONDITION

Operating Mode Operational T

Not Inhibited T
State Values DOI-Status = On F

Altitude = Below-threshhold T

Prev(Altitude) = At-or-above-threshold T

200

Output Command

DOI-Power-On

Destination: DOI

Acceptable Values: {high}

Initiation Delay: 0 milliseconds

Completion Deadline: 50 milliseconds

Exception-Handling: (What to do if cannot issue command within deadline time)
Feedback Information:

Variables: DOI-status-signal

Values: high (on)

Relationship: Should be on if ASW sent signal to turn on
Min. time (latency): 2 seconds
Max. time: 4 seconds
Exception Handling: DOI-Status changed to Fault-Detected

Reversed By: Turned off by some other component or components. Do not know which ones.
Comments: I am assuming that if we do not know if the DOI is on, it is better to turn it on again, i.e., that

the reason for the restriction is simply hysteresis and not possible damage to the device.

This product in the family will turn on the DOE only when the aircraft descends below the
threshold altitude. Only this page needs to change for a product in the family that is
triggered by rising above the threshold.

References:

CONTENTS

= discrete signal on line PWR set to high

TRIGGERING CONDITION

Operating Mode Operational T

Not Inhibited T

State Values DOI-Status = On F

Altitude = Below-threshhold T

Prev(Altitude) = At-or-above-threshold T

201

Watchdog-Strobe

Destination: Watchdog Timer

Acceptable Values: high signal (on)

Min-Time-Between-Outputs: 0

Max-Time-Between-Outputs: 200PERIOD msec

Exception-Handling:

Feedback Information: None

Reversed By: Not necessary

Comments:

References:

CONTENTS

= High signal on line WDT

TRIGGERING CONDITION

Operating Mode Operational

Startup

Inhibited

State Values Time <= (Time sent Watchdog Strobe) + 200 msec

DOI-Status = Fault-detected

Time >= (Time entered Altitude.Cannot-be-determined) + 2 nL secs.

202

T

T

T

T

T

F

F

-0perating M~ode

ASW

Description:

Comments: No information about how an internal fault is detected, what types detected, etc.
References:

Appears in: DOI-power-on, Watchdog-strobe

DEFINITION

= Startup

Powerup M
= Operational

Controls.Reset = T T

Startup T T T

Analog-Alt = Valid T

Dig-Alt1 = Valid T

Dig-Alt2 = Valid T

= Internal-Fault-Detected

Internal-fault -detected

Startup

Time >= Time entered Startup + 3 secs

203

T

T

T

Appendix B

omnia apud me mathematicafiunt.

Rend Descartes (1596-1650)

Matrices for State Space Description of
the Altitude Switch

204

205

Appendix C

Does anyone believe that the difference between the Leb-
esgue and Riemann integrals can have physical signifi-

cance, and that whether say, an airplane would or would
not fly could depend on this difference? If such were

claimed, I should not care to fly in that plane.

Richard W. Hamming, 1988

Level 3 of Hybrid SpecTRM-RL Model of
MTCD

206

