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Abstract

The Schramm-Loewner evolution (SLEκ) is a candidate for the
scaling limit of random curves arising in two-dimensional critical phe-
nomena. When κ < 8, an instance of SLEκ is a random planar curve
with almost sure Hausdorff dimension d = 1 + κ/8 < 2. This curve is
conventionally parametrized by its half plane capacity, rather than by
any measure of its d-dimensional volume.

For κ < 8, we use a Doob-Meyer decomposition to construct the
unique (under mild assumptions) Markovian parametrization of SLEκ

that transforms like a d-dimensional volume measure under conformal
maps. We prove that this parametrization is non-trivial (i.e., the curve
is not entirely traversed in zero time) for κ < 4(7 −

√
33) = 5.021 · · · .

1 Introduction

1.1 Overview

A number of measures on paths or clusters on two-dimensional lattices aris-
ing from critical statistical mechanical models are believed to exhibit some
kind of conformal invariance in the scaling limit. The Schramm-Loewner
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evolution (SLE — see Section 2.1 for a definition) was created by Schramm
[Sch00] as a candidate for the scaling limit of these measures.

For each fixed κ ∈ (0, 8), an instance γ of SLEκ is a random planar curve
with almost sure Hausdorff dimension d = 1 + κ/8 ∈ (1, 2) [Bef08]. This
curve is conventionally parametrized by its half plane capacity (see Section
2.1), rather than by any measure of its d-dimensional volume. Modulo time
parametrization, it has been shown that several discrete random paths on
grids (e.g., loop-erased random walk [LSW04a], harmonic explorer [SS05])
have SLE as a scaling limit. In these cases, one would expect the natu-
ral discrete parametrization (in which each edge is traversed in the same
amount of time) of the lattice paths to scale to a continuum parametriza-
tion of SLE. The goal of this paper is to construct a candidate for this
parametrization, a candidate which is (like SLE itself) completely char-
acterized by its conformal invariance symmetries, continuity, and Markov
properties.

When κ ≥ 8 (and SLEκ is almost surely space-filling) the natural can-
didate is the area parameter Θt := Area γ([0, t]). One could use something
similar for κ < 8 if one could show that some conventional measure of the
d-dimensional volume of γ([0, t]) (e.g., the d-dimensional Minkowski content
or some sort of Hausdorff content; see Section 2.2) was well-defined and non-
trivial. In that case, one could replace Area γ([0, t]) with the d-dimensional
volume of γ([0, t]). We will take a slightly different route. Instead of di-
rectly constructing a d-dimensional volume measure (using one of the clas-
sical definitions), we will simply assume that there exists a locally finite
measure on γ that transforms like a d-dimensional volume measure under
conformal maps and then use this assumption (together with an argument
based on the Doob-Meyer decomposition) to deduce what the measure must
be. We conjecture that the measure we construct is equivalent to the d-
dimensional Minkowski content, but we will not prove this. Most of the
really hard work in this paper takes place in Section 5, where certain second
moment bounds are used to prove that the measure one obtains from the
Doob-Meyer decomposition is non-trivial (in particular, that it is almost
surely not identically zero). At present, we are only able to prove this for
κ < 4(7 −

√
33) = 5.021 · · · .

We mention that a variant of our approach, due to Alberts and the sec-
ond co-author of this work, appears in [AS], which gives, for κ ∈ (4, 8), a
natural local time parameter for the intersection of an SLEκ curve with the
boundary of the domain it is defined on. The proofs in [AS] cite and utilize
the Doob-Meyer-based techniques first developed for this paper; however,
the second moment arguments in [AS] are very different from the ones ap-
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pearing in Section 5 of this work. It is possible that our techniques will have
other applications. In particular, it would be interesting to see whether nat-
ural d-dimensional volume measures for other random d-dimensional sets
with conformal invariance properties (such as conformal gaskets [SSW09] or
the intersection of an SLEκ,ρ with its boundary) can be constructed using
similar tools. In each of these cases, we expect that obtaining precise second
moment bounds will be the most difficult step.

A precise statement of our main results will appear in Section 3. In the
meantime, we present some additional motivation and definitions.

We thank Brent Werness for useful comments on an earlier draft of this
paper.

1.2 Self avoiding walks: heuristics and motivation

In order to further explain and motivate our main results, we include a
heuristic discussion of a single concrete example: the self-avoiding walk
(SAW). We will not be very precise here; in fact, what we say here about
SAWs is still only conjectural. All of the conjectural statements in this
section can be viewed as consequences of the “conformal invariance Ansatz”
that is generally accepted (often without a precise formulation) in the physics
literature on conformal field theory. Let D ⊂ C be a simply connected
bounded domain, and let z,w be distinct points on ∂D. Suppose that a
lattice ǫZ2 is placed on D and let z̃, w̃ ∈ D be lattice points in ǫZ2 “closest”
to z,w. A SAW ω from z̃ to w̃ is a sequence of distinct points

z̃ = ω0, ω1, . . . , ωk = w̃,

with ωj ∈ ǫZ2 ∩D and |ωj −ωj−1| = ǫ for 1 ≤ j ≤ k. We write |ω| = k. For
each β > 0, we can consider the measure on SAWs from z̃ to w̃ in D that
gives measure e−β|ω|, to each such SAW. There is a critical β0, such that the
partition function

∑

ω:z̃→w̃,ω⊂D

e−β0|ω|

neither grows nor decays exponentially as a function of ǫ as ǫ → 0. It is
believed that if we choose this β0, and normalize so that this is a probability
measure, then there is a limiting measure on paths that is the scaling limit.

It is further believed that the typical number of steps of a SAW in the
measure above is of order ǫ−d where the exponent d = 4/3 can be considered
the fractal dimension of the paths. For fixed ǫ, let us define the scaled
function

ω̂(jǫd) = ωj, j = 0, 1, . . . , |ω|.
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We use linear interpolation to make this a continuous path ω̂ : [0, ǫd|ω|] → C.
Then one expects that the following is true:

• As ǫ → 0, the above probability measure on paths converges to a prob-
ability measure µ#

D(z,w) supported on continuous curves γ : [0, tγ ] →
C with γ(0) = z, γ(tγ) = w, γ(0, tγ ) ⊂ D.

• The probability measures µ#
D(z,w) are conformally invariant. To be

more precise, suppose F : D → D′ is a conformal transformation that
extends to ∂D at least in neighborhoods of z and w. For each γ in
D connecting z and w, we will define a conformally transformed path
F ◦γ (with a parametrization described below) on D′. We then denote

by F ◦µ#
D(z,w) the push-forward of the measure µ#

D(z,w) via the map
γ → F ◦ γ. The conformal invariance assumption is

F ◦ µ#
D(z,w) = µ#

D′(F (z), F (w)). (1)

Let us now define F ◦ γ. The path F ◦ γ will traverse the points F (γ(t))
in order; the only question is how “quickly” does the curve traverse these
points. If we look at how the scaling limit is defined, we can see that if
F (z) = rz for some r > 0, then the lattice spacing ǫ on D corresponds to
lattice space rǫ on F (D) and hence we would expect the time to traverse rγ
should be rd times the time to traverse γ. Using this as a guide locally, we
say that the amount of time needed to traverse F (γ[t1, t2]) is

∫ t2

t1

|F ′(γ(s))|d ds. (2)

This tells us how to parametrize F ◦ γ and we include this as part of the
definition of F ◦ γ. This is analogous to the known conformal invariance of
Brownian motion in C where the time parametrization must be defined as
in (2) with d = 2.

If there is to be a family of probability measures µ#
D(z,w) satisfying (1)

for simply connected D, then we only need to define µ#
H

(0,∞), where H is
the upper half plane. To restrict the set of possible definitions, we introduce
another property that one would expect the scaling limit of SAW to satisfy.
The domain Markov property states that if t is a stopping time for the
random path γ then given γ([0, t]), the conditional law of the remaining
path γ′(s) := γ(t + s) (defined for s ∈ [0,∞)) is

µ#
H\γ([0,t])(γ(t),∞),
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independent of the parametrization of γ([0, t]).
If we consider γ and F ◦ γ as being defined only up to reparametriza-

tion, then Schramm’s theorem states that (1) (here being considered as a
statement about measures on paths defined up to reparametrization) and
the domain Markov property (again interpreted up to reparametrization)
characterize the path as being a chordal SLEκ for some κ > 0. (In the
case of the self-avoiding walk, another property called the “restriction prop-
erty” tells us that we must have κ = 8/3 [LSW03, LSW04b].) Recall that
if κ ∈ (0, 8), Beffara’s theorem (partially proved in [RS05] and completed
in [Bef08]) states that the Hausdorff dimension of SLEκ is almost surely
d = 1 + κ/8.

The main purpose of this paper is to remove the “up to reparametriza-
tion” from the above characterization. Roughly speaking, we will show that
the conformal invariance assumption (1) and the domain Markov property
uniquely characterize the law of the random parametrized path as being
an SLEκ with a particular parametrization that we will construct in this
paper. We may interpret this parametrization as giving a d-dimensional
volume measure on γ, which is uniquely defined up to a multiplicative con-
stant. As mentioned in Section 1.1, one major caveat is that, due to limi-
tations of certain second moment estimates we need, we are currently only
able to prove that this measure is non-trivial (i.e., not identically zero) for
κ < 4(7 −

√
33) = 5.021 · · · , although we expect this to be the case for all

κ < 8.

2 SLE definition and limit constructions

2.1 Schramm-Loewner evolution (SLE)

We now provide a quick review of the definition of the Schramm-Loewner
evolution; see [Law05], especially Chapters 6 and 7, for more details. We
will discuss only chordal SLE in this paper, and we will call it just SLE.

Suppose that γ : (0,∞) → H = {x + iy : y > 0} is a non-crossing
curve with γ(0+) ∈ R and γ(t) → ∞ as t → ∞. Let Ht be the unbounded
component of H \ γ(0, t]. Using the Riemann mapping theorem, one can see
that there is a unique conformal transformation

gt : Ht −→ H

satisfying gt(z) − z → 0 as z → ∞. It has an expansion at infinity

gt(z) = z +
a(t)

z
+ O(|z|−2).
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The coefficient a(t) equals hcap(γ(0, t]) where hcap(A) denotes the half plane
capacity from infinity of a bounded set A. There are a number of ways of
defining hcap, e.g.,

hcap(A) = lim
y→∞

y Eiy[Im(Bτ )],

where B is a complex Brownian motion and τ = inf{t : Bt ∈ R ∪ A}.

Definition The Schramm-Loewner evolution, SLEκ, (from 0 to infinity in
H) is the random curve γ(t) such that gt satisfies

ġt(z) =
a

gt(z) − Vt
, g0(z) = z, (3)

where a = 2/κ and Vt = −Bt is a standard Brownian motion.

Showing that the conformal maps gt are well defined is easy. In fact, for
given z ∈ H, gt(z) is defined up to time Tz = sup{t : Imgt(z) > 0}. Also,
gt is the unique conformal transformation of Ht = {z ∈ H : Tz > t} onto
H satisfying gt(z) − z → 0 as z → ∞. It is not as easy to show that Ht is
given by the unbounded component of H \ γ(0, t] for a curve γ. However,
this was shown for κ 6= 8 by Rohde and Schramm [RS05]. If κ ≤ 4, the
curve is simple and γ(0,∞) ⊂ H. If κ > 4, the curve has double points
and γ(0,∞) ∩ R 6= ∅. For κ ≥ 8, γ(0,∞) is plane filling; we will restrict our
consideration to κ < 8.

Remark We have defined chordal SLEκ so that it is parametrized by ca-
pacity with

hcap(γ(0, t]) = at.

It is more often defined with the capacity parametrization chosen so that
hcap(γ[0, t]) = 2t. In this case we need to choose Ut = −√

κBt. We will
choose the parametrization in (3), but this is only for our convenience. Under
our parametrization, if z ∈ H \ {0}, then Zt = Zt(z) := gt(z) − Ut satisfies
the Bessel equation

dZt =
a

Zt
dt + dBt.

In this paper we will use both κ and a as notations; throughout, a = 2/κ.

We let
ft = g−1

t , f̂t(z) = ft(z + Ut).

We recall the following scaling relation [Law05, Proposition 6.5].
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Lemma 2.1 (Scaling). If r > 0, then the distribution of gtr2(rz)/r is the
same as that of gt(z); in particular, g′tr2(rz) has the same distribution as
g′t(z).

For κ < 8, we let

d = 1 +
κ

8
= 1 +

1

4a
. (4)

If z ∈ C we will write xz, yz for the real and imaginary parts of z = xz + iyz

and θz for the argument of z. Let

G(z) := yd−2
z [(xz/yz)

2 + 1]
1

2
−2a = |z|d−2 sin

κ
8
+ 8

κ
−2 θz, (5)

denote the “Green’s function” for SLEκ in H. The value of d and the
function G were first found in [RS05] and are characterized by the scaling
rule G(rz) = rd−2 G(z) and the fact that

Mt(z) := |g′t(z)|2−d G(Zt(z)) (6)

is a local martingale. In fact, for a given κ, the scaling rule G(rz) =
rd−2 G(z) and the requirement that (6) is a local martingale uniquely deter-
mines d and (up to a multiplicative constant) G. Note that if K < ∞,

∫

|z|≤K
G(z) dA(z) = Kd

∫

|z|≤1
G(z) dA(z) < ∞. (7)

Here, and throughout this paper, we use dA to denote integration with re-
spect to area. The Green’s function will turn out to describe the expectation
of the measure we intend to construct in later sections, as suggested by the
following proposition.

Proposition 2.2. Suppose that there exists a parametrization for SLEκ

in H satisfying the domain Markov property and the conformal invariance
assumption (1). For a fixed Lebesgue measurable subset S ⊂ H, let Θt(S)
denote the process that gives the amount of time in this parametrization spent
in S before time t (in the half-plane capacity parametrization given above),
and suppose further that Θt(S) is Ft adapted for all such S. If EΘ∞(D)
is finite for all bounded domains D, then it must be the case that (up to
multiplicative constant)

EΘ∞(D) =

∫

D
G(z)dA(z),

and more generally,

E[Θ∞(D) − Θt(D)|Ft] =

∫

D
Mt(z)dA(z).
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Proof. It is immediate from the conformal invariance assumption (which in
particular implies scale invariance) that the measure ν defined by ν(·) =
EΘ∞(·) satisfies ν(r·) = rdν(·) for each fixed r > 0. To prove the proposi-
tion, it is enough to show that ν(·) =

∫

· G(z)dA(z) (up to a constant factor),
since the conditional statement at the end of the proposition then follows
from the domain Markov property and conformal invariance assumptions.

The first observation to make is that ν is absolutely continuous with
respect to Lebesgue measure, with smooth Radon-Nikodym derivative. To
see this, suppose that S is bounded away from the real axis, so that there
exists a t > 0 such that almost surely no point in S is swallowed before time
t. Then the conformal invariance assumption (1) and the domain Markov
property imply that

ν(S) = E

∫

gt(S)
|(g−1

t )′(z)|−ddν(z).

The desired smoothness can be then deduced from the fact that the law
of the pair gt(z), g′t(z) has a smooth Radon-Nikodym derivative that varies
smoothly with z (which follows from the Loewner equation and properties
of Brownian motion). Recalling the scale invariance, we conclude that ν has
the form

|z|d−2 F (θz)dA(z)

for some smooth function F . Standard Ito calculus and the fact that Mt

is a local martingale determine F up to a constant factor, implying that
F (z)|z|d−2 = G(z) (up to a constant factor).

Remark It is not clear whether it is necessary to assume in the statement of
Proposition 2.2 that EΘ∞(D) < ∞ for bounded domains D. It is possible
that if one had EΘ∞(D) = ∞ for some bounded D then one could use
some scaling arguments and the law of large numbers to show that in fact
Θ∞(D) = ∞ almost surely for domains D intersected by the path γ. If
this is the case, then the assumption EΘ∞(D) < ∞ can be replaced by the
weaker assumption that Θ∞(D) < ∞ almost surely.

2.2 Attempting to construct the parametrization as a limit

As we mentioned in the introduction, the parametrization we will construct
in Section 3 is uniquely determined by certain conformal invariance assump-
tions and the domain Markov property. Leaving this fact aside, one could
also motivate our definition by noting its similarity and close relationship to
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some of the other obvious candidates for a d-dimensional volume measure
on an arc of an SLEκ curve.

In this section, we will describe two of the most natural candidates:
Minkowski measure and d-variation. While we are not able to prove that
either of these candidates is well defined, we will point out that both of these
candidates have variants that are more or less equivalent to the measure
we will construct in Section 3. In each case we will define approximate
parametrizations τn(t) and propose that a natural parametrization τ could
be given by

τ(t) = lim
n→∞

τn(t),

if one could show that this limit (in some sense) exists and is non-trivial.
To motivate these constructions, we begin by assuming that any candi-

date for the natural parametrization should satisfy the appropriate scaling
relationship. In particular if γ(t) is an SLEκ curve that is parametrized so
that hcap[γ(0, t]] = at, then γ̃(t) = rγ(t) is an SLEκ curve parametrized
so that hcap[γ(0, t]] = r2at. If it takes time τ(t) to traverse γ(0, t] in the
natural parametrization, then it should take time rd τ(t) to traverse γ̃(0, t]
in the natural parametrization. In particular, it should take roughly time
O(Rd) in the natural parametrization for the path to travel distance R.

2.2.1 Minkowski content

Let
Nt,ǫ = {z ∈ H : dist(z, γ(0, t]) ≤ ǫ},

τn(t) = n2−d area (Nt,1/n).

We call the limit τ(t) = limn→∞ τn(t), if it exists, the Minkowski content of
γ(0, t]. Using the local martingale (6) one can show that as ǫ → 0+,

P{z ∈ N∞,ǫ} ≍ G(z) ǫ2−d. (8)

We remark that a commonly employed alternative to Minkowski content
is the d-dimensional Hausdorff content; the Hausdorff content of a set X ⊂ D
is defined to be the limit as ǫ → 0 of the infimum — over all coverings of X
by balls with some radii ǫ1, ǫ2, . . . < ǫ — of

∑

Φ(ǫi) where Φ(x) = xd. We
have at least some intuition, however, to suggest that the Hausdorff content
of γ([0, t]) will be almost surely zero for all t. Even if this is the case, it may
be that the Hausdorff content is non-trivial when Φ is replaced by another
function (e.g., Φ(x) = xd log log x), in which case we would expect it to be
equivalent, up to constant, to the d-dimensional Minkowski measure.
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2.2.2 Conformal Minkowski content

There is a variant of the Minkowski content that could be called the confor-
mal Minkowski content. Let gt be the conformal maps as above. If t < Tz,
let

Υt(z) =
Im[gt(z)]

|g′t(z)| .

It is not hard to see that Υt(z) is the conformal radius with respect to z
of the domain D(t, z), the component of H \ γ(0, t] containing z. In other
words, if F : D → D(t, z) is a conformal transformation with F (0) = z, then
|F ′(0)| = Υt(z). Using the Schwarz lemma or by doing a simple calculation,
we can see that Υt(z) decreases in t and hence we can define

Υt(z) = ΥTz−(z), t ≥ Tz.

Similarly, Υ(z) = Υ∞(z) is well defined; this is the conformal radius with
respect to z of the domain D(∞, z). The Koebe 1/4-Theorem implies that
Υt(z) ≍ dist[z, γ(0, t]∪R]; in fact, each side is bounded above by four times
the other side. To prove (8) one can show that there is a c∗ such that

P{Υ(z) ≤ ǫ} ∼ c∗ G(z) ǫ2−d, ǫ → 0 + .

This was first established in [Law05] building on the argument in [RS05].
The conformal Minkowski content is defined as in the previous paragraph
replacing Nt,ǫ with

N ∗
t,ǫ = {z ∈ H : Υt(z) ≤ ǫ}.

It is possible that this limit will be easier to establish. Assuming the limit
exists, we can see that the expected amount of time (using the natural
parametrization) that γ(0,∞) spends in a bounded domain D should be
given (up to multiplicative constant) by

∫

D
G(z) dA(z), (9)

where A denotes area. This formula agrees with Proposition 2.2 and will
be the starting point for our construction of the natural parametrization in
Section 3.

2.2.3 d-variation

The idea that it should take roughly time Rd for the path to move distance
R — and thus τ(t2) − τ(t1) should be approximately |γ(t2) − γ(t1)|d —
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motivates the following definition. Let

τn(t) =

⌊tn⌋
∑

k=1

∣

∣

∣

∣

γ

(

k

n

)

− γ

(

k − 1

n

)
∣

∣

∣

∣

d

.

More generally, we can consider

τn(t) =
∑

tj−1,n<t

|γ(tj,n),−γ(tj−1,n)|d ,

where t0,n < t1,n < t2,n < ∞ is a partition, depending on n, whose mesh
goes to zero as n → ∞, and as usual d = 1 + κ/8. It is natural to expect
that for a wide class of partitions this limit exists and is independent of
the choice of partitions. In the case κ = 8/3, a version of this was studied
numerically by Kennedy [Ken07].

2.2.4 A variant of d-variation

We next propose a variant of the d-variation in which an expression involving
derivatives of f̂ ′ (as defined in Section 2.1) takes the place of |γ(t2)−γ(t1)|d.
Suppose τ(t) were the natural parametrization. Since τ(1) < ∞, we would
expect that the average value of

∆nτ(j) := τ

(

j + 1

n

)

− τ

(

j

n

)

would be of order 1/n for typical j ∈ {1, 2, . . . , n}. Consider

γ(j/n)

[

0,
1

n

]

:= gj/n

(

γ

[

j

n
,
j + 1

n

])

.

Since the hcap of this set is a/n, we expect that the diameter of the set is of
order 1/

√
n. Using the scaling properties, we guess that the time needed to

traverse γ(j/n)
[

0, 1
n

]

in the natural parametrization is of order n−d/2. Using
the scaling properties again, we guess that

∆nτ(j) ≈ n−d/2 |f̂ ′
j/n(i/

√
n)|d.

This leads us to define

τn(t) =

⌊tn⌋
∑

k=1

n−d/2 |f̂ ′
k/n(i/

√
n)|d. (10)
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More generally, we could let

τn(t) =

⌊tn⌋
∑

k=1

n−d/2

∫

H

|f̂ ′
k/n(z/

√
n)|d ν(dz), (11)

where ν is a finite measure on H. It will turn out that the parametrization
we construct in Section 3 can be realized as a limit of this form with a
particular choice of ν. We expect that (up to a constant factor) this limit is
independent of ν, but we will not prove this.

3 Natural parametrization

3.1 Notation

We now summarize some of the key notations we will use throughout the
paper. For z ∈ H, we write

Zt(z) = Xt(z) + iYt(z) = gt(z) − Vt,

Rt(z) =
Xt(z)

Yt(z)
, Υt(z) =

Yt(z)

|g′t(z)| ,

Mt(z) = Υt(z)d−2 (Rt(z)2 + 1)
1

2
−2a = |g′t(z)|2−d G(Zt(z)).

At times we will write just Zt,Xt, Yt, Rt,Υt,Mt but it is important to re-
member that these quantities depend on z.

3.2 Definition

We will now give a precise definition of the natural time parametrization. It
will be easier to restrict our attention to the time spent in a fixed domain
bounded away from the real line. Let D denote the set of bounded domains
D ⊂ H with dist(R,D) > 0. We write

D =

∞
⋃

m=1

Dm,

where Dm denotes the set of domains D with

D ⊂ {x + iy : |x| < m, 1/m < y < m}.

Suppose for the moment that Θt(D) denotes the amount of time in the
natural parametrization that the curve spends in the domain D. This is not
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defined at the moment so we are being heuristic. Using (9) or Proposition
2.2 we expect (up to a multiplicative constant that we set equal to one)

E [Θ∞(D)] =

∫

D
G(z) dA(z).

In particular, this expectation is finite for bounded D.
Let Ft denote the σ-algebra generated by {Vs : s ≤ t}. For any process

Θt with finite expectations, we would expect that

E[Θ∞(D) | Ft] = Θt(D) + E[Θ∞(D) − Θt(D) | Ft].

If z ∈ D, with t < Tz, then the Markov property for SLE can be used to see
that the conditional distribution of Υ(z) given Ft is the same as the distri-
bution of |g′t(z)|−1 Υ∗ where Υ∗ is independent of Ft with the distribution
of Υ(Zt(z)). This gives us another heuristic way of deriving the formula in
Proposition 2.2:

lim
δ→0+

δd−2 P{Υ(z) < δ | Ft} = lim
δ→0+

δd−2 P{Υ∗ ≤ δ |g′t(z)|}

= c∗ |g′t(z)|2−d G(Zt(z)) = c∗ Mt(z).

We therefore see that

E[Θ∞(D) − Θt(D) | Ft] = Ψt(D),

where

Ψt(D) =

∫

D
Mt(z) 1{Tz > t} dA(z).

We now use the conclusion of Proposition 2.2 to give a precise definition
for Θt(D). The expectation formula from this proposition is

Ψt(D) = E[Θ∞(D) | Ft] − Θt(D). (12)

The left-hand side is clearly supermartingale in t (since it is a weighted
average of the Mt(x), which are non-negative local martingales and hence
supermartingales). It is reasonable to expect (though we have not proved
this) that Ψt(D) is in fact continuous as a function of D. Assuming the
conclusion of Proposition 2.2, the first term on the right-hand side is a mar-
tingale and the map t 7→ Θt(D) is increasing. The reader may recall the
continuous case of the standard Doob-Meyer theorem [DM82]: any contin-
uous supermartingale can be written uniquely as the sum of a continuous
adapted decreasing process with initial value zero and a continuous local
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martingale. If Ψt(D) is a continuous supermartingale, it then follows that
(12) is its Doob-Meyer decomposition. Since we have a formula for Ψt(D),
we could (if we knew Ψt(D) was continuous) simply define Θt(D) to be the
unique continuous, increasing, adapted process such that

Θt(D) + Ψt(D)

is a local martingale.
Even when it is not known that Ψt(D) is continuous, there is a canonical

Doob-Meyer decomposition that we could use to define Θt(D), although
the details are more complicated (see [DM82]). Rather than focus on these
issues, what we will aim to prove in this paper is that there exists an adapted
continuous decreasing Θt(D) for which Θt(D) + Ψt(D) is a martingale. If
such a process exists, it is obviously unique, since if there were another such
process Θ̃t(D), then Θt(D)− Θ̃t(D) would be a continuous martingale with
paths of bounded variation and hence identically zero. One consequence
of having Θt(D) + Ψt(D) be a martingale (as opposed to merely a local
martingale) is that Θt(D) is not identically zero; this is because Ψt(D)
is a strict supermartingale (i.e., not a martingale), since it is an average
of processes Mt(x) which are strict supermartingales (i.e., not martingales).
Another reason for wanting Θt(D)+Ψt(D) to be a martingale is that this will
imply that Θt (defined below) actually satisfies the hypotheses Proposition
2.2, and (by Proposition 2.2) is the unique process that does so. Showing the
existence of an adapted continuous increasing Θt(D) that makes Θt(D) +
Ψt(D) a martingale takes work. We conjecture that this is true for all κ < 8;
in this paper we prove it for

κ < κ0 := 4(7 −
√

33) = 5.021 · · · . (13)

Definition

• If D ∈ D, then the natural parametrization Θt(D) is the unique con-
tinuous, increasing process such that

Ψt(D) + Θt(D)

is a martingale (assuming such a process exists).

• If Θt(D) exists for each D ∈ D, we define

Θt = lim
m→∞

Θt(Dm),

where Dm = {x + iy : |x| < m, 1/m < y < m}.
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The statement of the main theorem includes a function φ related to the
Loewner flow that is defined later in (25). Roughly speaking, we think of φ
as

φ(z) = P{z ∈ γ(0, 1] | z ∈ γ(0,∞)}.
This equation as written does not make sense because we are conditioning
on an event of probability zero. To be precise it is defined by

E [M1(z)] = M0(z) [1 − φ(z)]. (14)

Note that the conclusion of Proposition 2.2 and our definition of Θ imply
that

EΘ1(D) =

∫

D
φ(z)G(z)dA(z).

This a point worth highlighting: the hypotheses of Proposition 2.2 determine
not only the form of E[Θ∞(D)] (up to multiplicative constant) but also
E[Θ1(D)] and (by scaling) E[Θt(D)] for general t.

In the theorem below, note that (16) is of the form (11) where ν(dz) =
φ(z)G(z) dA(z). Let κ0 be as in (13) and let a0 = 2/κ0. Note that

16

κ
+

κ

16
>

7

2
, 0 < κ < κ0. (15)

We will need this estimate later which puts the restriction on κ.

Theorem 3.1.

• For κ < 8 that are good in the sense of (34) and all D ∈ D, there
is an adapted, increasing, continuous process Θt(D) with Θ0(D) = 0
such that

Ψt(D) + Θt(D)

is a martingale. Moreover, with probability one for all t

Θt(D) =

lim
n→∞

∑

j≤t2n

∫

H

|f̂ ′
j−1

2n
(z)|d φ(z2n/2)G(z) 1{f̂ j−1

2n
(z) ∈ D} dA(z), (16)

where φ is defined in (14).

• If κ < κ0, then κ is good.
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Remark The hypotheses and conclusion of Proposition 2.2 would imply
that the summands in (16) are equal to the conditional expectations

E[Θj2−n(D) − Θ(j−1)2−n(D) | F(j−1)2−n ].

Theorem 3.2. For all κ < 8 and all t < ∞.

lim
m→∞

E [Θt(Dm)] < ∞. (17)

In particular, if κ < 8 is good, then Θt is a continuous process.

Sketch of proofs The remainder of this paper is dedicated to proving
these theorems. For Theorem 3.1, we start by discretizing time and finding
an approximation for Θt(D). This is done in Sections 3.3 and 3.4 and leads
to the sum in (16). This time discretization is the first step in proving
the Doob-Meyer Decomposition for any supermartingale. The difficult step
comes in taking the limit. For general supermartingales, this is subtle and
one can only take a weak limit, see [Mey66]. However, if there are uniform
second moment estimates for the approximations, one can take a limit both
in L2 and with probability one. We state the estimate that we will use in
(34), and we call κ good if such an estimate exists. For completeness, we give
a proof of the convergence in Section 4 assuming this bound; this section is
similar to a proof of the Doob-Meyer Decomposition for L2 martingales in
[Bas95]. Hölder continuity of the paths follows. The hardest part is proving
(34) and this is done in Section 5. Two arguments are given: one easier
proof that works for κ < 4 and a more complicated argument that works
for κ < κ0. We conjecture that all κ < 8 are good. In this section we also
establish (17) for all κ < 8 (see Theorem 5.1). Since t 7→ Θt − Θt(Dm) is
increasing in t, and Θt(Dm) is continuous in t for good κ, the final assertion
in Theorem 3.2 follows immediately.

Before proceeding, let us derive some simple scaling relations. It is well
known that if gt are the conformal maps for SLEκ and r > 0, then g̃t(z) :=
r−1 gtr2(rz) has the same distribution as gt. In fact, it is the solution of the
Loewner equation with driving function Ṽt = r−1 Vr2t. The corresponding
local martingale is

M̃t(z) = |g̃′t(z)|2−d G(g̃t(z) − Ṽt) = |g′tr2(rz)|2−d G(r−1Zt(z))

= r2−d Mr2t(rz),

Ψ̃t(D) =:

∫

D
M̃t(z) dA(z) = r2−d

∫

D
Mr2t(rz) dA(z) = r−d Ψr2t(rD).
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Hence, if Ψt(rD) + Θt(rD) is a local martingale, then so is Ψ̃t(D) + Θ̃t(D),
where

Θ̃t(D) = r−d Θr2t(rD).

This scaling rule implies that it suffices to prove that Θt(D) exists for 0 ≤
t ≤ 1.

3.3 The forward-time local martingale

The process Ψt(D) is defined in terms of the family of local martingales
Mt(z) indexed by starting points z ∈ H. If z 6∈ γ(0, t], then Mt(z) has a
heuristic interpretation as the (appropriately normalized limit of the) prob-
ability that z ∈ γ[t,∞) given γ(0, t].

Let Zt,Xt, Yt, Rt,Υt,Mt be as defined in Section 3.1, recalling that these
quantities implicitly depend on the starting point z ∈ H. The Loewner
equation can be written as

dXt =
aXt

X2
t + Y 2

t

dt + dBt, ∂tYt = − aYt

X2
t + Y 2

t

, (18)

and using Itô’s formula and the chain rule we see that if t < Tz,

∂tΥt = −Υt
2aY 2

t

(X2
t + Y 2

t )2
, dMt = Mt

(1 − 4a)Xt

X2
t + Y 2

t

dBt. (19)

It is straightforward to check that with probability one

sup
0≤s<Tz∧t

Ms(z)

{

= ∞, if z ∈ γ(0, t]
< ∞, otherwise.

(20)

Moreover, if 4 < κ < 8 and z 6∈ γ(0,∞), then Tz < ∞ and

MTz−(z) = 0.

In other words, if we extend Mt(z) to t ≥ Tz by Mt(z) = MTz−(z), then
for z 6∈ γ(0,∞), Mt(z) is continuous in t and equals zero if t ≥ Tz. Since
γ(0,∞) has zero area, we can write

Ψt(D) =

∫

D
Mt(z) dA(z) =

∫

D
Mt(z) 1{Tz > t} dA(z). (21)

Proposition 3.3. If z ∈ H, Mt = Mt(z) is a local martingale but not a
martingale. In fact,

E[Mt] = E[M0] [1 − φ(z; t)] = G(z) [1 − φ(z; t)]. (22)
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Here φ(z; t) = P{T ∗
z ≤ t} is the distribution function of

T ∗
z = inf{t : Yt = 0},

where Xt + iYt satisfies

dXt =
(1 − 3a)Xt

X2
t + Y 2

t

dt + dWt, ∂tYt = − aYt

X2
t + Y 2

t

, X0 + iY0 = z, (23)

and Wt is a standard Brownian motion.

Proof. The fact that Mt is a local martingale follows immediately from

dMt =
(1 − 4a)Xt

X2
t + Y 2

t

Mt dBt.

To show that Mt is not a martingale, we will consider E[Mt]. For every n,
let τn = inf{t : Mt ≥ n}. Then

E[Mt] = lim
n→∞

E[Mt; τn > t] = E[M0] − lim
n→∞

E[Mτn ; τn ≤ t].

If z 6∈ γ(0, t], then Mt(z) < ∞. Therefore

lim
n→∞

E[Mτn ; τn ≤ t]

denotes the probability that the process Zt weighted (in the sense of the
Girsanov Theorem) by Mt reaches zero before time t. We claim that for t
sufficiently large,

lim
n→∞

E[Mτn ; τn ≤ t] > 0. (24)

We verify this by using the Girsanov theorem. For fixed n, Mt,n := Mt∧τn

is a nonnegative martingale satisfying

dMt,n =
(1 − 4a)Xt

X2
t + Y 2

t

Mt,n 1{τn > t} dBt.

The Girsanov transformation considers the paths under the new measure
Q = Q(n) defined by

Q(E) = M−1
0 E[Mt,n 1E ]

if E is Ft-measurable. The Girsanov theorem tells us that in the new mea-
sure, Xt satisfies (23) where Wt is a standard Brownian motion in the new
measure. It is fairly straightforward to show that if (Xt, Yt) satisfy (23) and
a > 1/4, then Yt reaches zero in finite time.
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The process satisfying (23) is called two-sided radial SLE2/a from 0 and
∞ to z in H. Actually, it is the distribution only of one of the two arms,
the arm from 0 to z. Heuristically, we think of this as SLE2/a from 0 to
∞ conditioned so that z is on the path. Let T ∗

z = inf{t : Zt = 0} where
Zt = Xt +iYt satisfies (23) with Z0 = z. We have noted that P{τ < ∞} = 1.
The function φ(z; t) will be important. We define

φ(z) = φ(z; 1). (25)

φt(z) = P{t ≤ τz ≤ t + 1} = φ(z; t + 1) − φ(z; t). (26)

In particular, φ0(z) = φ(z). The scaling properties of SLE imply

φ(z; t) = φ(z/
√

t),

Let Q = Qz be the probability measure obtained by weighting by the
local martingale Mt(z). Then φ(z; t) denotes the distribution function of
T = Tz in the measure Q. If t, s > 0, then

Q[t < T < t + s | Ft] = φ(Zt(z); s) 1{T > t}.

Taking expectations, we get

E [Mt(z)φ(Zt(z); s)] = G(z) [φ(z; t + s) − φ(z; t)]. (27)

The next lemma describes the distribution of T under Q in terms of a
functional of a simple one-dimensional diffusion.

Lemma 3.4. Suppose a > 1/4 and Xt + iYt satisfies

dXt =
(1 − 3a)Xt

X2
t + Y 2

t

dt + dWt, ∂Yt = − aYt

X2
t + Y 2

t

dt, X0 = x, Y0 = 1,

where Wt is a standard Brownian motion. Let

T = sup{t : Yt > 0}.

Then

T =

∫ ∞

0
e−2as cosh2 Js ds =

1

4a
+

1

2

∫ ∞

0
e−2as cosh(2Js) ds,

where Jt satisfies

dJt = (
1

2
− 2a) tanh Jt dt + dWt, sinhJ0 = x. (28)
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Proof. Define the time change

σ(s) = inf{t : Yt = e−as}.

Let X̂s = Xσ(s), Ŷs = Yσ(s) = e−as. Since

−a Ŷt = ∂tŶt = −σ̇(t)
a Ŷ 2

t

X̂2
t + Ŷ 2

t

,

we have
σ̇(s) = X̂2

t + Ŷ 2
t = e−2as [K2

s + 1],

where Ks = easX̂s. Note that

dX̂s =

(

1

2
− 3a

)

X̂s ds + e−as
√

K2
s + 1 dWs.

dKs = (1 − 2a) Ks ds +
√

K2
s + 1 dWs, K0 = x. (29)

Using Itô’s formula we see that if Js satisfies (28) and Ks = sinh(Js), then
Ks satisfies (29). Also,

σ(∞) =

∫ ∞

0
σ̇(s) ds =

∫ ∞

0
e−2as [K2

s + 1] ds =

∫ ∞

0
e−2as cosh2 Js ds.

Using the lemma one can readily see that there exist c, β such that

φ(s(x + iy); s2) = φ(x + iy) ≤ c 1{y ≤ 2a} e−βx2

. (30)

3.4 Approximating Θt(D)

If D ∈ D, the change of variables z = Zt(w) in (21) gives

Ψt(D) =

∫

H

|g′t(w)|2−d G(Zt(w)) 1{w ∈ D} dA(w)

=

∫

H

|f̂ ′
t(z)|d G(z) 1{f̂t(z) ∈ D} dA(z), (31)

E [Ψt(D)] =

∫

H

E
[

|f̂ ′
t(z)|d; f̂t(z) ∈ D

]

G(z) dA(z).
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Lemma 3.5. If D ∈ D, s, t ≥ 0,

E[Ψs+t(D) | Fs] = Ψs(D) −
∫

H

|f̂ ′
s(z)|d G(z)φ(z/

√
t) 1{f̂s(z) ∈ D} dA(z),

(32)
where φ(w) is as defined in (22) and (26).

Proof. Recalling the definition of φ(w; t) in (22), we get

E[Ψs+t(D) | Fs]

= E

[
∫

D
Ms+t(w) dA(z) | Fs

]

=

∫

D
E[Ms+t(w) | Fs] dA(w)

=

∫

D
Ms(w) [1 − φ(Zs(w); t)] dA(w)

= Ψs(D) −
∫

D
Ms(w)φ(Zs(w); t) dA(w),

= Ψs(D) −
∫

H

|g′s(w)|2−d G(Zs(w))φ(Zs(w); t) 1{w ∈ D} dA(w).

If we use the change of variables z = Zs(w) and the scaling rule for φ, we
get (32).

Using the last lemma, we see that a natural candidate for the process
Θt(D) is given by

Θt(D) = lim
n→∞

Θt,n(D),

where

Θt,n(D) =
∑

j≤t2n

E[Ψj2−n(D) − Ψ(j−1)2−n(D) | F(j−1)2−n ]

= lim
n→∞

∑

j≤t2n

Ij,n(D),

and

Ij,n(D) =

∫

H

|f̂ ′
(j−1)2−n(z)|d φ(z2n/2)G(z) 1{f̂(j−1)2−n (z) ∈ D} dA(z). (33)

Indeed, it is immediate that for fixed n

Ψt,n(D) + Θt,n(D)
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restricted to t = {k2−n : k = 0, 1, . . .} is a martingale.
To take the limit, one needs further conditions. One sufficient condition

(see Section 4) is a second moment condition.

Definition We say that κ (or a = 2/κ) is good with exponent α > 0 if κ < 8
and the following holds. For every D ∈ D there exist c < ∞ such that for
all n, and all s, t ∈ Qn with 0 < s < t ≤ 1,

E
[

[Θt,n(D) − Θs,n(D)]2
]

≤ c (t − s)1+α. (34)

We say κ is good if this holds for some α > 0

By scaling we see that Ij,n(D) has the same distribution as
∫

H

|f̂ ′
j−1(z2n/2)|d φ(z2n/2)G(z) 1{f̂j−1(z2n/2) ∈ 2n/2 D} dA(z),

and the change of variables w = z2n/2 converts this integral to

2−nd/2

∫

H

|f̂ ′
j−1(w)|d 1{f̂j−1(w) ∈ 2n/2 D} dµ(w),

where dµ(w) = φ(w)G(w) dA(w). Therefore,

Θt,n(D) :=
∑

j≤t2n

Ij,n(D)

has the same distribution as

2−nd/2
∑

j≤t2n

∫

H

|f̂ ′
j−1(w)|d 1{f̂j−1(w) ∈ 2n/2 D} dµ(w). (35)

4 Doob-Meyer decomposition

In this section, we give a proof of the Doob-Meyer decomposition for sub-
martingales satisfying a second moment bound. Although we will apply the
results in this section to Θt(D) with D ∈ D, it will be easier to abstract
the argument and write just Lt = −Θt. Suppose Lt is a submartingale with
respect to Ft with L0 = 0. We call a finite subset of [0, 1], Q, which contains
{0, 1} a partition. We can write the elements of a partition as

0 = r0 < r1 < r2 < rk = 1.

We define

‖Q‖ = max{rj − rj−1}, c∗(Q) = ‖Q‖−1 min{rj − rj−1}.
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Definition Suppose Qn is a sequence of partitions.

• If Q1 ⊂ Q2 ⊂ · · · , we call the sequence increasing and let Q = ∪Qn.

• If there exist 0 < u, c < ∞ such that for each n, ‖Qn‖ ≤ ce−un we call
the sequence geometric.

• If there exists c > 0 such that for all n, c∗(Qn) ≥ c, we call the
sequence regular.

The prototypical example of an increasing, regular, geometric sequence
of partitions is the dyadic rationals

Qn = {k2−n : k = 0, 1, . . . , 2n}.

Suppose Lt, 0 ≤ t ≤ 1 is a submartingale with respect to Ft. Given a
sequence of partitions Qn there exist increasing processes Θr,n, r ∈ Qn such
that

Lr − Θr,n, r ∈ Qn

is a martingale. Indeed if Qn is given by 0 ≤ r0 < r1 < . . . < rkn = 1, then
we can define the increasing process by Θ0,n = 0 and recursively

Θrj ,n = Θrj−1,n + E
[

Lrj − Lrj−1
| Frj−1

]

.

Note Θrj ,n is Frj−1
-measurable and if s, t ∈ Qn with s < t,

E[Θt,n | Fs] = Θs,n + E[Lt − Ls | Fs]. (36)

The proof of the next proposition follows the proof of the Doob-Meyer The-
orem in [Bas95].

Proposition 4.1. Suppose Qn = {r(j, n); j = 0, 1, . . . , kn} is an increasing
sequence of partitions with

δn := ‖Qn‖ → 0.

Suppose there exist β > 0 and c < ∞ such that for all n and all s, t ∈ Qn

E
[

(Θt,n − Θs,n)2
]

≤ c (t − s)β+1. (37)

Then there exists an increasing, continuous process Θt such that Lt − Θt is
a martingale. Moreover, for each t ∈ Q,

Θt = lim
n→∞

Θt,n, (38)
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where the limit is in L2. In particular, for all s < t,

E
[

(Θt − Θs)
2
]

≤ c (t − s)β+1.

If u < β/2, then with probability one, Θt is Hölder continuous of order u. If
the sequence is geometric (i.e., if δn → 0 exponentially in n), then the limit
in (38) exists with probability one.

Proof. We first consider the limit for t = 1. For m ≥ n, let

∆(n,m) = max
{

Θr(j,n),m − Θr(j−1,n),m : j = 1, . . . , kn

}

.

Using (37) and writing k = kn, we can see that

E
[

∆(n,m)2
]

≤
k

∑

j=1

E
[

(Θr(j,n),m − Θr(j−1,n),m)2
]

≤ c

k
∑

j=1

[r(j, n) − r(j − 1, n)]β+1

≤ c δβ
n

k
∑

j=1

[r(j, n) − r(j − 1, n)]

= c δβ
n .

If m ≥ n, then (36) shows that Yt := Θt,m − Θt,n, t ∈ Qn is a martingale,
and (37) shows that it is square-integrable. Hence, with k = kn,

E
[

(Θ1,m − Θ1,n)2
]

=

k
∑

j=1

E
[

(Yr(j,n) − Yr(j−1,n))
2
]

≤ E



(∆(n, n) + ∆(n,m))

k
∑

j=1

∣

∣Yr(j,n) − Yr(j−1,n)

∣

∣





Note that

k
∑

j=1

|Yr(j,n) − Yr(j−1,n)|

≤
k

∑

j=1

(

[Θr(j,n),n − Θr(j−1,n),n] + [Θr(j,n),m − Θr(j−1,n),m]
)

= Θ1,n + Θ1,m.
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Therefore,

E
[

(Θ1,m − Θ1,n)2
]

≤ E [(∆(n, n) + ∆(n,m)) (Θ1,n + Θ1,m)]

≤ E[(∆(n, n) + ∆(n,m))2]1/2 E[(Θ1,n + Θ1,m)2]1/2

≤ c δβ
n (39)

This shows that {Θ1,m} is a Cauchy sequence, and completeness of L2

implies that there is a limit. Similarly, for every t ∈ Q, we can see that there
exists Θt such that

lim
n→∞

E
[

|Θt,n − Θt|2
]

= 0, t ∈ Q.

Moreover, we get the estimate

E[(Θt − Θs)
2] = lim

n→∞
E[(Θt,n − Θs,n)2] ≤ c (t − s)β+1

for
0 ≤ s ≤ t ≤ 1, s, t ∈ Q.

The L2-maximal inequality implies then that

E

[

sup
s≤r≤t

(Θr − Θs)
2

]

≤ c (t − s)β+1 0 ≤ s ≤ t ≤ 1, s, t ∈ Q,

where the supremum is also restricted to r ∈ Q. Let

M(j, n) = sup
{

(Θt − Θs)
2 : (j − 1)2−n ≤ s, t ≤ j2−n, s, t ∈ Q

}

,

Mn = max{M(j, n) : j = 1, . . . , n}.
Since Q is dense, we can then conclude

E[M(j, n)] ≤ c 2−n(β+1),

E[Mn] ≤
2n
∑

j=1

E[M(j, n)] ≤ c 2−nβ.

An application of the triangle inequality shows that if

Zn = sup
{

(Θt − Θs)
2 : 0 ≤ s, t ≤ 1, s, t ∈ Q, |s − t| ≤ 2−n

}

,

then
E[Zn] ≤ c 2−nβ .
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The Chebyshev inequality and the Borel-Cantelli Lemma show that if u <
β/2, with probability one

sup

{ |Θt − Θs|
(t − s)u

: 0 ≤ s, t ≤ 1, s, t ∈ Q
}

< ∞.

In particular, we can choose a continuous version of the process Θt whose
paths are Hölder continuous of order u for every u < β/2.

If the sequence is geometric, then (39) implies that there exist c, v such
that

E
[

(Θ1,n+1 − Θ1,n)2
]

≤ c e−nv,

which implies

P{|Θ1,n+1 − Θ1,n| ≥ e−nv/4} ≤ c e−nv/2.

Hence by the Borel-Cantelli Lemma we can write

Θ1 = Θ1,1 +

∞
∑

n=1

[Θn+1,1 − Θn,1],

where the sum converges absolutely with probability one.

5 Moment bounds

In this section we show that κ is good for κ < 4. Much of what we do applies
to other values of κ, so for now we let κ < 8. Let

dµ(z) = G(z)φ(z) dA(z), dµt(z) = G(z)φ(z; t) dA(z).

We note the scaling rule

dµt(z) = td/2 dµ(z/
√

t).

¿From (30) we can see that

dµt2(x + iy) ≤ c yd−2 [(x/y)2 + 1]
1

2
−2a e−β(x/t)2 1{y ≤ 2at} dx dy. (40)

Note that this implies (with a different c)

dµt2(z) ≤ c [sin θz]
κ
8
+ 8

κ
−2 |z|κ

8
−1 e−β|z|2/t2 dA(z). (41)
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We have shown that Θt,n(D) has the same distribution as Θ̃t,2n/2(D)
where

Θ̃t,n(D) = n−d
∑

j≤tn2

Ij−1,nD ,

and

Is,D =

∫

H

|f̂ ′
s(w)|d 1{fs(w) ∈ D} dµ(w).

In this section we establish the following theorems which are the main esti-
mate.

Theorem 5.1. If κ < 8, there exists c such that for all s,

E[Is,H] ≤ c sd−2. (42)

Theorem 5.2. If κ < 4, then for every m < ∞ there exists c = cm such
that if D ∈ Dm and 1 ≤ s, t ≤ n, then

s2−1
∑

j=0

E[Ij+t2,nD It2,nD] ≤ c (s/t)ζ s2(d−1), s ≤ t, (43)

where ζ = 2 − 3κ
4 . In particular,

E
[

[Θ1,n(D) − Θδ,n(D)]2
]

= 2−nd
∑

(1−δ)2n≤j,k≤2n

E[Ij,2n/2D Ik,2n/2D]

≤ c (1 − δ)d+ ζ
2 = c (1 − δ)2−

κ
4 .

Theorem 5.3. If κ < κ0, then for every m < ∞ there exists c = cm such
that if D ∈ Dm and 1 ≤ s, t ≤ n, then

s2−1
∑

j=0

E[Ij+t2,nD It2,nD] ≤ c (s/t)ζ s2(d−1), s ≤ t, (44)

where ζ = 4
κ − 3κ

16 − 1. In particular,

E
[

[Θ1,n(D) − Θδ,n(D)]2
]

= 2−nd
∑

(1−δ)2n≤j,k≤2n

E[Ij,2n/2D Ik,2n/2D]

≤ c (1 − δ)d+ ζ
2 = c (1 − δ)

1

2
+ 2

κ
+ κ

32 .
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This section is devoted to proving Theorems 5.1—5.3 Note that

Is+t,D It,D =

∫

H

∫

H

|f̂ ′
s+t(z)|d |f̂ ′

t(w)|d 1{f̂t+s(z), f̂t(w) ∈ D} dµ(z) dµ(w).

In particular,

E [Is,D] =

∫

H

E
[

|f̂ ′
s(w)|d; f̂s(w) ∈ D

]

dµ(w), (45)

E [Is+t,D It,D] =
∫

H

∫

H

E
[

|f̂ ′
s+t(z)|d |f̂ ′

t(w)|d; f̂t+s(z), f̂t(w) ∈ D
]

dµ(z) dµ(w). (46)

5.1 Reverse-time flow

We will use the reverse-time flow for the Loewner equation to estimates
moments of f̂ ′. In this subsection we define the reverse flow and set up some
notation that will be useful. Suppose s, t ≥ 0 are given. The expectations
we need to estimate are of the form

E
[

|f̂ ′
t(z)|d

]

, (47)

E
[

|f̂ ′
s+t(z)|d |f̂ ′

t(w)|d; f̂s+t(z) ∈ D, f̂t(w) ∈ D
]

, (48)

We fix s, t ≥ 0 and allow quantities in this subsection to depend implicitly
on s, t.

Let Ũr = Vt+s−r − Vs+t. Then B̃r := −Ũr, 0 ≤ r ≤ s + t is a standard
Brownian motion starting at the origin. Let Ur = Vt−r − Vt = Ũs+r −
Ũs, 0 ≤ r ≤ t. Then Br = −Ur is also a standard Brownian motion and
{Ũr : 0 ≤ r ≤ s} is independent of {Ur : 0 ≤ r ≤ t}.

Let h̃r, 0 ≤ r ≤ s+t be the solution to the reverse-time Loewner equation

∂rh̃r(z) =
a

Ũr − h̃r(z)
, h̃0(z) = z. (49)

Let hr, 0 ≤ r ≤ t be the solution to

∂rhr(z) =
a

Ur − hr(z)
=

a

Ũs+r − [hr(z) + Ũs]
, h0(z) = z.

Let h̃ = h̃s+t, h = ht. Using only the Loewner equation, we can see that

f̂s+t(z) = h̃s+t(z) − Ũs+t, f̂t(w) = ht(w) − Ut,
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h̃s+t(z) = ht(h̃s(z) − Ũs) + Ũs. (50)

Therefore the expectations in (47) and (48) equal

E
[

|h′(z)|d
]

, (51)

E
[

|h̃′(z)|d |h′(w)|d; h̃(z) − Ũs+t ∈ D,h(w) − Ut ∈ D
]

, (52)

respectively. Let

It(z;D) = 1{ht(z) − Ut ∈ D}, It(z,w;D) = It(z;D)It(w;D).

Using (50), we can write (52) as

E
[

|h̃′
s(z)|d |h′

t(hs(z) − Ũs)|d |h′
t(w)|d;It(h̃s(z) − Ũs, w;D)

]

. (53)

We will derive estimates for h, h̃. Let FD(z,w; s+t, t) denote the expectation
in (52) and let

FD(z,w, t) = FD(z,w; t, t) = E
[

|h′
t(z)|d |h′

t(w)|d It(z,w;D)
]

.

We note the scaling relation: if r > 0,

FD(z,w, s + t, t) = FrD(rz, rw; r2(s + t), r2t).

Since h̃s and ht are independent, we can see by conditioning on the σ-algebra
generated by {Ũr : 0 ≤ r ≤ s} we see that (53) yields

F (z,w; s + t, t) = E
[

|h′
s(z)|d FD(hs(z) − Us, w, t)

]

(54)

(since h̃s and hs have the same distribution, we replaced h̃s, Ũs with hs, Us).
We rewrite (45) and (46) as

E [It,D] =

∫

H

E
[

|h′
t(w)|d It(w;D)

]

dµ(w),

E [Is+t,D It,D] =

∫

H

∫

H

FD(z,w, s + t, t) dµ(w) dµ(z). (55)

The expressions on the left-hand side of (43) and (44) involve expec-
tations at two different times. The next lemma shows that we can write
these sums in terms of “two-point” estimates at a single time. Recall the
definition of µs from Section 3.3.
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Lemma 5.4. For all D ∈ D and s ≥ 0,
∫

H

∫

H

FD(z,w, s + t, t) dµ(w) dµ(z) =

∫

H

∫

H

FD(z,w, t) dµ(w) [dµs+1 − dµs](z).

In particular, if s is an integer,

s2−1
∑

j=0

E[Ij+t,D It,D] =

∫

H

∫

H

FD(z,w, t) dµ(w) dµs2 (z).

Proof. Using (54), we write
∫

H

∫

H

FD(z,w, s + t, t) dµ(w) dµ(z) =

∫

H

E[Φ] dµ(w),

where

Φ = ΦD(w, s, t) =

∫

H

|h′
s(z)|d FD(hs(z) − Us, w, t)φ(z)G(z) dA(z).

We will change variables,

z′ = hs(z) − Us = f̂s(z).

Here hs(z) = f̂s(z)+Us = g−1
s (z +Us)+Us for a conformal map gs with the

distribution of the forward-time flow with driving function Ûr = Us−r −Us.
Then

z = f̂−1
s (z′) = gs(z

′) − Ûs = Ẑs(z
′),

where Ẑs(·) = gs(·) − Ûs. Then

Φ =

∫

H

|g′s(z′)|2−d F (z′, w, t)G(Ẑs(z
′))φ(Ẑs(z

′)) dA(z′)

=

∫

H

M̂s(z
′)F (z′, w, t)φ(Ẑs(z

′)) dA(z′),

where M̂s denotes the forward direction local martingale as in Section 3.3.
Taking expectation using (27), we get

E[Φ] =

∫

H

F (z′, w, t)G(z′) [φ(z′; s + 1) − φ(z′; s)] dA(z′)

=

∫

H

F (z′, w, t) d[µs+1 − µs](z
′).

This gives the first assertion. The second assertion follows from (55).
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5.2 The reverse-time martingale

In this section we will collect facts about the reverse-time martingale; this is
analyzed in more detail in [Law99]. Suppose that Bt is a standard Brownian
motion and ht(z) is the solution to the reverse-time Loewner equation

∂tht(z) =
a

Ut − ht(z)
, h0(z) = z, (56)

where Ut = −Bt and a = 2/κ. Here z ∈ C \ {0}. The solution exists for all
times t if z 6∈ R and

ht(z) = ht(z).

For fixed t, ht is a conformal transformation of H onto a subdomain of H.
Let

Zt(z) = Xt(z) + iYt(z) = ht(z) − Ut,

and note that
dZt(z) = − a

Zt(z)
dt + dBt,

dXt(z) = − Xt(z)

|Zt(z)|2 dt + dBt, ∂tYt(z) =
a

|Zt(z)|2 .

We use d for stochastic differentials and ∂t for actual derivatives. Differen-
tiation of (56) yields

∂t|h′
t(z)| = |h′

t(z)| a [Xt(z)2 − Yt(z)2]

|Zt(z)|4 ,

∂t

[ |h′
t(z)|

Yt(z)

]

= −
[ |h′

t(z)|
Yt(z)

]

2aYt(z)2

|Zt(z)|4 .

In particular,
|h′

t(x + i)| ≤ Yt(x + i) ≤
√

2at + 1. (57)

Let

Nt(z) = |h′
t(z)|d Yt(z)1−d |Zt(z)| = |h′

t(z)|d Yt(z)−
κ
8 |Zt(z)|.

An Itô’s formula calculation shows that Nt(z) is a martingale satisfying

dNt(z) =
Xt(z)

|Zt(z)|2 Nt(z) dBt.

More generally, if r > 0 and

λ = r
[

1 +
κ

4

]

− κr2

8
,
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then

Nt = Nt,r(z) = |h′
t(z)|λ Y

−κr2

8

t |Zt(z)|r, (58)

is a martingale satisfying

dNt(z) =
r Xt(z)

|Zt(z)|2 Nt(z) dBt. (59)

Note that
ht(z) − ht(w) = Zt(z) − Zt(w),

∂t[Zt(z) − Zt(w)] = [Zt(z) − Zt(w)]
a

Zt(z)Zt(w)
,

∂t|Zt(z) − Zt(w)| = |Zt(z) − Zt(w)|Re

[

a

Zt(z)Zt(w)

]

= |Zt(z) − Zt(w)| a[Xt(z)Xt(w) − Yt(z)Yt(w)]

|Zt(z)|2 |Zt(w)|2 .

∂t [|Zt(z) − Zt(w)| |Zt(z) − Zt(w)|] =

[|Zt(z) − Zt(w)| |Zt(z) − Zt(w)|] 2aXt(z)Xt(w)

|Zt(z)|2 |Zt(w)2| .

Combining this with (59) and the stochastic product rule yields the follow-
ing. We will only use this lemma with m = 2.

Lemma 5.5. Suppose r ∈ R, z1, . . . , zm ∈ H, and Nt(zj) denotes the mar-
tingale in (58). Let

Nt = Nt(z1, . . . , zm) =





m
∏

j=1

Nt(zj)









∏

j 6=k

|Zt(zj) − Zt(zk)||Zt(zj) − Zt(zk)|





− r2κ
4

. (60)

Then Nt is a martingale satisfying

dNt = r Nt





m
∑

j=1

Xj(zj)

|Zj(zj)|2



 dBt.
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5.3 First moment

The proof of Theorem 5.1 relies on the following estimate that can be found
in [Law99, Theorem 9.1]. Since it will not require much extra work here, we
will also give a proof in this paper. Unlike the second moment estimates,
there is no need to restrict this to D ∈ D.

Lemma 5.6. Suppose κ < 8 and û > 2 − κ
8 . Then there exists c such that

for all x, y and s ≥ y,

E
[

|h′
s2(z)|d

]

≤ c sd−2 |z|2−d [sin θz]
2−d−û. (61)

Proof. See Lemma 5.13. Note that scaling implies that it suffices to prove
the result for yz = 1.

Proof of Theorem 5.1 given (61). If κ < 8, we can find û satisfying

2 − κ

8
< û <

8

κ
. (62)

Then,

E[Is2] ≤
∫

H

E
[

|h′
s2(z)|d

]

dµ(z)

≤ c sd−2

∫

H

|z|2−d [sin θz]
2−d−û |z|d−2 [sin θz]

κ
8
+ 8

κ
−2 e−β|z|2 dA(z)

≤ csd−2.

The last inequality uses û < 8/κ.

5.4 Proof of Theorem 5.2

The martingale in (60) yields a simple two-point estimate for the derivatives.
This bound is not always sharp, but it suffices for proving Theorem 5.2.

Proposition 5.7. For every m < ∞, there exists c = cm such that if
D ∈ Dm, z,w ∈ H, s, t > 0,

FsD(z,w; ts2) ≤ c s
3κ
4
−2 y

−κ
8

z |z| y−
κ
8

w |w| |z − w|−κ
4 |z − w|−κ

4 . (63)

Proof. By scaling we may assume s = 1. All constants in this proof depend
on m but not otherwise on D. Let Nt be the martingale from Lemma 5.5
with r = 1. Then

E[Nt] = N0 = y
−κ

8
z |z| y−

κ
8

w |w| |z − w|−κ
4 |z − w|−κ

4 .
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If It(z,w;D) = 1, we have

Yt(z)−
κ
8 |Zt(z)|Yt(w)−

κ
8 |Zt(w)| ≥ c1 > 0,

|ht(z) − ht(w)| |ht(z) − ht(w)| ≤ c2 < ∞.

Therefore,
|h′

t(z)|d |h′
t(w)|d It(z,w;D) ≤ c3 Nt, (64)

and
E

[

|h′
t(z)|d |h′

t(w)|d It(z,w;D)
]

≤ cE[Nt].

Remark The estimate (63) is not sharp if z and w are close in the hyper-
bolic metric. For example, suppose that z = 2w = ǫi. Then using distortion
estimates we see that

|ht(z) − ht(w)| ≍ |h′
t(z)| |z − w| ≍ ǫ |h′

t(z)|.

On the event It(z,w;D) = 1,

Nt ≍ ǫ−
κ
4 |h′

t(z)|2d−κ
4 .

Typically, |h′
t(z)| ≪ ǫ−1, so the estimate (64) in the proof is not sharp.

Proposition 5.8. If κ < 4, then for every positive integer m there exists
c = cm such that if D ∈ Dm and s ≥ 1, t ≥ 1, r > 0

∫

H

∫

H

FtD(z,w, rt2) dµ(w) dµs2(z) ≤ c (s/t)2−
3κ
4 s

κ
4 . (65)

Proof. As in the previous proof, constants in this proof may depend on m
but not otherwise on D. By (63) the left-hand side of (65) is bounded above
by a constant times

t
3κ
4
−2

∫

H

∫

H

y
−κ

8
z |z| y−

κ
8

w |w| |z − w|−κ
4 |z − w|−κ

4 dµ(w) dµs2(z).

Hence it suffices to show that there exists c such that for all s,
∫

H

∫

H

y
−κ

8
z |z| y−

κ
8

w |w| |z − w|−κ
4 |z − w|−κ

4 dµ(w) dµs2(z) < c s2−κ
2 . (66)

Recall from (41) that

dµs2(z) ≤ c e−β(|z|/s)2 y
κ
8
+ 8

κ
−2

z |z|1− 8

κ dA(z). (67)
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We write the integral in (66) as

∫

H

Φ(z) y
−κ

8
z |z| dµs2(z),

where

Φ(z) =

∫

H

y
−κ

8
w |w| |z − w|−κ

4 |z − w|−κ
4 dµ(w).

We will show that
Φ(z) ≤ c |z|−κ

2 (68)

Using this and (67), the integral in (66) is bounded above by a constant
times

∫

H

|z|2−κ
2
− 8

κ e−β(|z|/s)2 y
8

κ
−2

z dA(z) ≤
∫

H

|z|−κ
2 e−β(|z|/s)2 dA(z)

= s2−κ
2

∫ ∞

0
r1−κ

2 e−βr2

dr.

Hence it suffices to prove (68).
Using (40), we see that Φ(z) is bounded by a constant times

Φ∗(z) :=

∫

H

K(z,w) dA(w),

where

K(z,w) = 1{0 < yw < 2a} y
8

κ
−2

w |w|2− 8

κ |z − w|−κ
4 |z − w|−κ

4 e−βx2
w .

We write Φ∗(z) = Φ1(z) + Φ2(z) + Φ3(z) where

Φ1(z) =

∫

|z−w|≤yz/2
K(z,w) dA(w),

Φ2(z) =

∫

yz/2<|z−w|<|z|/2
K(z,w) dA(w).

Φ3(z) =

∫

|z−w|≥|z|/2
K(z,w) dA(w).

If |z − w| ≤ yz/2 and yw ≤ 2a, then

yw ≤ 2a, |w| ≍ |z|, yw ≍ yz, |z − w|−κ
4 |z − w|−κ

4 ≍ |z − w|−κ
4 y

−κ
4

z .
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Also,

x2
w ≥ |w|2 − (2a)2 ≥ |z|2

4
− (2a)2.

Hence

Φ1(z) ≤ c e−β|z|2/4 |z|2− 8

κ y
8

κ
−κ

4
−2

z

∫

|w−z|<yz/2
|z − w|−κ

4 dA(z).

Therefore,

Φ1(z) ≤ c e−β|z|2/2 |z|2− 8

κ y
8

κ
−κ

2
z 1{yz ≤ 4a}

≤ c |z|2−κ
2 e−β|z|2/2 ≤ c |z|−κ

2 .

Suppose |z − w| ≥ |z|/2. Then |z − w| ≍ |z| for |w| ≤ 2|z|, and |z − w|
≍ |w| for |w| ≥ 2|z|. Using κ < 8,

∫

yw<2a,|w−z|≥|z|/2,|w|≤2|z|
y

8

κ
−2

w |w|2− 8

κ |z − w|−κ
2 e−βx2

w dA(w) ≤

c |z|−κ
2

∫

yw<2a,|w|≤2|z|
[sin θw]

8

κ
−2 e−βx2

w dA(w) ≤ c |z|−κ
2 [|z|2 ∧ 1].

∫

yw<2a,|w|>2|z|
y

8

κ
−2

w |w|2− 8

κ |z − w|−κ
2 e−βx2

w dA(w) ≤

ce−β|z|2
∫

yw≤2a,|w|>2|z|
|w|−κ

2 [sin θw]
8

κ
−2 e−βx2

w/2 dA(w) ≤ c |z|−κ
2 .

Therefore, Φ3(z) ≤ c |z|−κ
2 .

We now consider Φ2(z) which is bounded above by a constant times

∫

yw≤2a, yz/2<|z−w|<|z|/2
y

8

κ
−2

w |w|2− 8

κ |z − w|−κ
2 e−βx2

w dA(w).

Note that for w in this range, x2
w ≥ |w|2 − (2a)2 ≥ (|z|/2)2 − (2a)2 and

|w| ≍ |z| and hence we can bound this by

ce−β|z|2/4 |z|2− 8

κ

∫

yw≤2a, yz/2<|z−w|<|z|/2
y

8

κ
−2

w |z − w|−κ
2 dA(w).

The change of variables w 7→ w − xz changes the integral to
∫

yw≤2a, yz/2<|w−iyz|<|z|/2
y

8

κ
−2

w |w − iyz|−
κ
2 dA(w).
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We split this integral into the integral over |w| ≤ 2yz and |w| > 2yz. The
integral over |w| ≤ 2yz is bounded by a constant times

y
−κ

2
z

∫

|w|≤2yz

y
8

κ
−2

w ≤ c y
8

κ
−κ

2
z ≤ c |z| 8

κ
−κ

2 .

The integral over |w| > 2yz is bounded by a constant times
∫

yw≤2a,2yz≤|w|≤|z|/2
y

8

κ
−2

w |w|−κ
2 dA(w) ≤ c |z| 8

κ
−κ

2 .

We therefore get

Φ2(z) ≤ c e−β|z|2/4 |z|2− 8

κ |z| 8

κ
−κ

2 ≤ c |z|2−κ
2 e−β|z|2/4 ≤ c |z|−κ

2 .

5.5 Second moment

Lemma 5.9. If κ < 8 and m < ∞, there exist c = cm such that if and
D ∈ Dm, z,w ∈ H and 2at ≥ yz, yw,

FtD(z,w, t2) ≤ c t−ζ |z| ζ
2 |w| ζ

2 [sin θz]
ζ
2
− 1

4
− 2

κ [sin θw]
ζ
2
− 1

4
− 2

κ , (69)

where

ζ =
4

κ
− 3κ

16
− 1. (70)

Proof. By the Cauchy-Schwarz inequality, it suffices to prove the result for
z = w and by scaling we may assume yz = 1. Therefore, it suffices to prove

FD(x + i, x + i, t2) ≤ c t−ζ (x2 + 1)
1

4
+ 2

κ , t ≥ 1/2a.

We let z = x + i and write Zt = Xt + iYt = ht(z) − Ut. Consider the
martingale Nt = Nt(z) as in (58) with

r =
4

κ
+

1

2
, λ =

2

κ
+

3κ

32
+ 1, r − κr2

8
= λ − κ r

4
=

2

κ
− κ

32
. (71)

Since E[Nt2 ] = M0 and Yt2 , |Zt2 | ≍ t when It2(z; tD) = 1,

E
[

|h′
t2(z)| 2

κ
+ 3κ

32
+1 It2(z; tD)

]

≤ c t
κ
32

− 2

κ (x2 + 1)
2

κ
+ 1

4 .

¿From (57), we know that

|h′
t2(z)| ≤

√

2at2 + 1 ≤ c t.
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Note that

2d −
(

2

κ
+

3κ

32
+ 1

)

= 1 − 2

κ
+

5κ

32
.

Hence

E
[

|h′
t2(z)|2d It2(z; tD)

]

≤ c t1−
2

κ
+ 5κ

32 E
[

|h′
t2(z)| 2

κ
+ 3κ

32
+1 It2(z; tD)

]

≤ c t−ζ (x2 + 1)
2

κ
+ 1

4 .

Remark We have not given the motivation for the choice (71). See [Law99]
for a discussion of this.

Remark The estimate (69) for z 6= w makes use of the Cauchy-Schwarz
inequality

(

E
[

|h′
t(z)|d |h′

t(w)|d It(z,w;D)
])2

≤

E
[

|h′
t(z)|2d It(z;D)

]

E
[

|h′
t(w)|2d It(w;D)

]

.

If z and w are close (for example, if w is in the disk of radius Im(z)/2 about
z), then the distortion theorem tells us that |h′

t(w)| ≍ |h′
t(z)| and then the

two sides of the inequality agree up to a multiplicative constant. However,
if z,w are far apart (in the hyperbolic metric), the right-hand side can be
much larger than the left-hand side. Improving this estimate for z,w far
apart is the key for proving good second moment bounds.

The next lemma proves the s = 0 case of (44). A similar argument
proves (44) for all 0 ≤ s ≤ 3(1 + a), so in the next section we can restrict
our consideration to s ≥ 3(1 + a).

Lemma 5.10. If κ < κ0, there is a c < ∞ such that for all t ≥ 1,
∫

H

∫

H

F (z,w, t2) dµ(z) dµ(w) ≤ c t−ζ .

Proof. Since t ≥ 1, (69) gives

F (z,w, t2) ≤ c t−ζ |z| ζ
2 |w| ζ

2 [sin θz]
− 3κ

32
− 3

4 [sin θw]−
3κ
32

− 3

4 .

Hence by (41) it suffices to show that
∫

H

|z| ζ
2 [sin θz]

− 3κ
32

− 3

4 [sin θz]
κ
8
+ 8

κ
−2 |z|κ

8
−1 e−β|z|2 dA(z) < ∞.

38



This will be true provided that

−3κ

32
− 3

4
+

κ

8
+

8

κ
− 2 > −1,

which holds for κ < κ0 (see (15)).

5.6 The correlation

In this section, we state the hardest estimate and then show how it can be
used to prove the main result. It will be useful to introduce some notation.
For s ≥ 3(1 + a), let

v(w, s) = vm(w, s) = s2−d− ζ
2 sup

[

tζ y
− ζ

2
z [sin θz]

1

4
+ 2

κ FtD(w, z, t2)

]

,

where the supremum is over all D ∈ Dm, t ≥ 2s and all z ∈ H with
|z| ≥ 3(1 + a)s. In other words, if t ≥ |z| ≥ 3(1 + a),

FtD(w, z, t2) ≤ c t−ζ |z|d−2+ ζ
2 y

ζ
2
z [sin θz]

− 1

4
− 2

κ v(w, |z|)
= c t−ζ [sin θz]

ζ
2
− 1

4
− 2

κ |z|d−2+ζ v(w, |z|). (72)

The main estimate is the following. The hardest part, (73), will be proved
in the next subsection.

Proposition 5.11. If κ < κ0, there exists u < 8
κ such that for each m there

exists c < ∞ such that for all s ≥ 3(a + 1) and w ∈ H with yw ≤ 2a,

v(w, s) ≤ c [sin θw]2−d−u |w|2−d = c[sin θw]1−
κ
8
−u |w|2−d. (73)

In particular,
∫

v(w, s) dµ(w) < c,

and hence if D ∈ Dm and z ∈ H,

∫

FtD(w, z, t2) dµ(w) ≤ c t−ζ [sin θz]
ζ
2
− 1

4
− 2

κ |z|d−2+ζ . (74)

Proof. We delay the proof of (73) to Section 5.7, but we will show here how
it implies the other two statements. Using (41), we have

∫

v(w, s) dµ(w) ≤
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c

∫

[sin θw]1−
κ
8
−u |w|2−d |w|d−2 [sin θw]

κ
8
+ 8

κ
−2 e−β|w|2 dA(w) < ∞.

The last inequality uses u < 8/κ. The estimate (74) for |z| ≥ 3(1+a) follows
immediately from (72); for other z it is proved as in Lemma 5.10.

Corollary 5.12. If κ < κ0, then for every m there is a c such that if
D ∈ Dm, s2 ≥ 1, t2 ≥ 1.

s2−1
∑

j=0

∫

H

∫

H

FtD(z,w, j + t2, t2) dµ(w) dµ(z) ≤ c (t/s)−ζs2(d−1).

Proof assuming Proposition 5.11. ¿From Lemma 5.4 and (41), we know that

s2−1
∑

j=0

∫

H

∫

H

F (z,w, j + t2, t2) dµ(w) dµ(z) ≤

c

∫

H

[
∫

H

F (z,w, t2) dµ(w)

]

[sin θz]
κ
8
+ 8

κ
−2 |z|d−2 e−β|z|2/s2

dA(z).

Using the previous lemma and estimating as in Lemma 5.10, we see that for
κ < κ0 this is bounded by a constant times

t−ζ

∫

H

|z|ζ+2(d−2) e−β|z|2/s2

dA(z) = c t−ζ sζ+2d−2.

5.7 Proof of (73)

It was first observed in [RS05] that when studying moments of |h′
t(z)| for

a fixed z it is useful to consider a paraametrization such that Yt(z) grows
deterministically. The next lemma uses this reparametrization to get a re-
sult about fixed time. The idea is to have a stopping time in the new
parametrization that corresponds to a bounded stopping time in the origi-
nal parametrization. A version of this stopping time appears in [Law99] in
the proof of the first moment estimate. If κ < κ0, there exists u satisfying

7

4
− κ

32
< u <

8

κ
. (75)

For convenience, we fix one such value of u. Let Nt(w) be the martingale
from (58) which we can write as

Nt(w) = |h′
t(w)|d Yt(w)2−d [Rt(w)2 + 1]

1

2 , Rt(w) = Xt(w)/Yt(w),

and recall û from (62).
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Lemma 5.13. if a > a0, there exists c such that the following is true. For
each t and each w = x + yi with y ≤ t, there exists a stopping time τ such
that

•
τ ≤ t2,

•
|Us| ≤ (a + 2) t, 0 ≤ s ≤ τ, (76)

•

E

[

|h′
τ (w)|d Y

ζ
2

τ (R2
τ + 1)

1

8
+ 1

κ

]

= E

[

Nτ Y
ζ
2
+d−2

τ (R2
τ + 1)

a
2
− 3

8

]

≤ c (t + 1)d−2+ ζ
2 |w|2−d [sin θw]2−d−u.

Here Ns = Ns(w), Ys = Ys(w), Rs = Xs(w)/Ys(w).
Moreover, if a > 1/4, there exists c such that

E
[

|h′
t2(w)|d

]

≤ c [(x/y)2 + 1]
û
2

(

t

y
∨ 1

)d−2

. (77)

Proof. By scaling, it suffices to prove the lemma for y = 1, i.e., w = x + i.
Without loss of generality, we assume x ≥ 0. If t ≤ 1, we can choose the
trivial stopping time τ ≡ 0 and (77) is easily derived from the Loewner
equation. Hence we may assume t ≥ 1. We write t = eal, x = eam. For
notational ease we will assume that l,m are integers, but it is easy to adjust
the proof for other l,m. We will define the stopping time for all a > 1/4; it
will be used for proving (77).

We consider a parametrization in which the logarithm of the imaginary
part grows linearly. Let

σ(s) = inf{u : Yu = eas}, X̂s = Xσ(s), Ks = Rσ(s) = e−as X̂s,

and note that Ŷs = Yσ(s) = eas. Using the Loewner equation, we can see
that

∂sσ(s) = X̂2
s + Ŷ 2

s = e2as (K2
s + 1).

Let N̂s = Nσ(s)(x + i),

N̂s = N̂s(x + i) = |h′
σ(s)(x + i)|d e(2−d)as (K2

s + 1)
1

2 .
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Since N̂s is a time change of a martingale, it is easy to see that it is a
martingale. Note that K0 = x = eam.

We first define our stopping time in terms of the new parametrization.
Let ρ be the smallest r such that

X̂2
r + Ŷ 2

r ≥ e2al

(l − r + 1)4
, i.e.,

√

K2
r + 1 ≥ ea(l−r)

(l − r + 1)2
.

One can readily check that the following properties hold.

ρ ≤ l,

ρ = 0 if m ≥ l,

X̂2
s ≤ X̂2

s + Ŷ 2
s ≤ e2al

(l − s + 1)4
, 0 ≤ s ≤ ρ,

σ(ρ) =

∫ ρ

0
e2as [K2

s + 1] ds ≤
∫ l

0

e2al

(l − s + 1)4
ds ≤ e2al,

∫ ρ

0
|X̂r| dr ≤

∫ l

0

eal

(l − s + 1)2
ds ≤ eal.

We define
τ = σ(ρ) ≤ e2al,

i.e., τ is essentially the same stopping time as ρ except using the original
parametrization. Note that

∫ τ

0

|Xt|
X2

t + Y 2
t

dt =

∫ ρ

0
|X̂t| dt ≤ eal.

Recall that

dXs =
aXs

X2
s + Y 2

s

ds − dUs,

which implies

−Us = (Xs − X0) −∞s
0

aXr

X2
r + Y 2

r

dr.

If X0 ≥ eal, then τ = 0 and (76) holds immediately. Otherwise,

|Ut| ≤ |Xt| + |X0| + a

∫ ρ

0

|Xs|
X2

s + Y 2
s

ds ≤ (2 + a) eal.

This gives (76).
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Let Aj be the event

Aj = {t − j < ρ ≤ t − j + 1} = {ea(t−j) < Yτ ≤ ea(t−j+1)}.

On the event Aj , we have

Yτ ≍ eat e−aj , R2
τ + 1 ≍ e2aj j−4.

The Girsanov theorem implies that

E[Nτ1Aj ] = N0 P∗(Aj) = (x2 + 1)
1

2 P∗(Aj) ≍ eam P∗(Aj),

where we use P∗ to denote the probabilities given by weighting by the mar-
tingale Nt. We claim that there exist c, β such that

P∗(Aj) ≤ c jβ e(4a−1)(m−j)a. (78)

To see this, one considers the process in the new parametrization and notes
that after weighting by the martingale N̂ , Kt satisfies

dKs = (1 − 2a) Ks ds +
√

K2
s + 1 dWs, (79)

where Ws is a standard Brownian motion with K0 = x. Equivalently, Ks =
sinh Js where Js satisfies

dJs = −q tanh Js ds + dWs, (80)

with J0 = sinh−1 x, q = 1
2 − 2a. Standard techniques (see [Law99, Section

7]) show that Jt is positive recurrent with invariant density proportional to
[cosh x]−2q. If 0 < x < y, then the probability starting at x of reaching y
before 0 is bounded by c [cosh x/ cosh y]2q. Using these ideas, we get that for
every k,

Px{y ≤ Jt ≤ y + 1 for some k ≤ t ≤ k + 1} ≤ c

(

cosh x

cosh y

)2q

.

On the event Aj , we know that Yt2 ≥ Yτ ≍ eal e−aj . The martingale
property and (78) imply that

E
[

Nt2 1Aj

]

= E
[

Nτ 1Aj

]

= (x2+1)
1

2 P∗(Aj) ≤ c eam
[

1 ∧ jβ e(4a−1)(m−j)a
]

.

Therefore,

e−am eal(2−d) E
[

|h′
t2(z)|d 1Aj

]

≤ c eaj(2−d) e−am E
[

Nt2 1Aj

]

≤ c eaj(2−d)
[

1 ∧ jβ e(4a−1)(m−j)a
]

.
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e−am eat(2−d) E
[

|h′
t2(z)|d

]

≤ c

∞
∑

j=1

eaj(2−d)
[

1 ∧ jβ e(4a−1)(m−j)a
]

≤ c





m
∑

j=1

eaj(2−d) + e(4a−1)m
∞

∑

j=m+1

jβ eaj[(2−d)+1−4a]





≤ c



eam(2−d) + e(4a−1)m
∞
∑

j=m+1

jβ eaj[(2−d)+1−4a]





≤ cmβ eam(2−d).

The last inequality requires

2 − d + 1 − 4a < 0,

which is readily checked for a > 1/4. Therefore,

E
[

|h′
t2(z)|d

]

≤ c td−2 mβ eam(3−d)

≤ c td−2 [log(x2 + 2)]β (x2 + 1)1−
κ
16

≤ c td−2 (x2 + 1)
û
2 .

This establishes (77).
Note that

E

[

Nτ

(

R2
τ + 1

)
a
2
− 3

8 Y
ζ
2
+d−2

τ 1Aj

]

≍

j−2a+ 3

2 eaj(a− 3

4
) e(l−j)a( ζ

2
+d−2) E

[

Nτ 1Aj

]

.

Therefore,

e−am e−al( ζ
2
+d−2) E

[

Nτ

(

R2
τ + 1

)
a
2
− 3

8 Y
ζ
2
+d−2

τ

]

≤ c

∞
∑

j=1

j−2a+ 3

2 eaj(a− 3

4
) e−ja( ζ

2
+2−d)

[

1 ∧ jβ e(4a−1)(m−j)
]

≤ cmβ ema(− ζ
2
+d−2+a− 3

4
).

The last inequality requires

−ζ

2
+ 2 − d + a − 3

4
+ 1 − 4a < 0.
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Recalling that
ζ

2
= a − 3

16a
− 1

2
,

this becomes

−4a − 1

16a
+

7

4
< 0.

This is true if κ < κ0, see (15).

Proposition 5.14. If a > a0, for every ǫ > 0 there is a c such that the
following is true. Assume

z = x + iy, w = x̂ + iŷ ∈ H

with ŷ ≤ 2a + 1 and |z| ≥ 3(a + 1). Then for t ≥ 2, s ≥ 1,

FstD(sz,w, (st)2) ≤ c t−ζ |z| ζ
2 [sin θz]

ζ
2
− 1

4
− 2

κ [sin θw]2−d−u (|w|/s)2−d. (81)

Remark. If |z| ≥ 3(a + 1)s and t ≥ 2s, we can write (81) as

FstD(z,w, t2) ≤ c (t/s)−ζ sd−2 [sin θz]
ζ
2
− 1

4
− 2

κ [sin θw]2−d−u |w|2−d.

Therefore this proposition completes the proof of (73).

Proof. By scaling, FstD(sz,w, (st)2) = FtD(z,w/s, t2); hence, without loss
of generality we may assume s = 1. We assume that τ is a stopping time as
in the previous lemma for w and time 1. In particular, 0 ≤ τ ≤ 1. We can
find a domain D′ such that for all 1/2 ≤ r ≤ 1, rD ⊂ D′.

We write Zs(z) = hs(z) − Us, Zs(w) = hs(w) − Us, etc. for the images
under the flow. By definition, FtD(z,w, t2) = E[Λ] where Λ denotes the
random variable

Λ = ΛD(z,w, t2) :=
∣

∣h′
t2(z)

∣

∣

d ∣

∣h′
t2(w)

∣

∣

d It2(z,w;D),

and note that

E [Λ | Gτ ] = |h′
τ (z)|d |h′

τ (w)|d FtD(Zτ (z), Zτ (w), t2 − τ). (82)

Since |Us| ≤ 2 + a for s ≤ τ , it follows from (49) that

∂s|hs(z)| ≤ 1, |hs(z) − z| ≤ s, s ≤ τ̂ ,
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where τ̂ denotes the minimum of τ and the first time that |hs(z)| ≤ 2 + 2a.
Since |z| ≥ 3 + 3a, this implies the following estimates for 0 ≤ s ≤ τ :

|hs(z) − z| ≤ 1, |hs(z)| ≥ 2 + 3a, |Us − hs(z)| ≥ a,

|Zs(z) − z| ≤ |hs(z) − z| + |Us| ≤ 3 + a.

In particular, since |z| ≥ 3(1 + a), there exists c1, c2 such that

c1 (x2 + 1) ≤ Xs(z)2 + 1 ≤ c2 (x2 + 1), 0 ≤ s ≤ τ,

yz ≤ Ys(z) ≤ c2 yz, 0 ≤ s ≤ τ.

We therefore get

FtD(Zτ (z), Zτ (w), t2 − τ) ≤ supFt̃D′(z̃, Zτ (w), t̃2),

where the supremum is over all t2 − 1 ≤ t̃2 ≤ t2 and all z̃ = x̃ + iỹ with

c1 (x2 + 1) ≤ x̃2 + 1 ≤ c2 (x2 + 1), y ≤ ỹ ≤ c2 y.

Using (69), we get

FtD(Zτ (z), Zτ (w), t2 − τ) ≤

c t−ζ |z| ζ
2 [sin θz]

ζ
2
− 1

4
− 2

κ
(

R2
τ (w) + 1

)
1

8
+ 1

κ Yτ (w)
ζ
2 .

By differentiating (49), we get

|∂sh
′
s(z)| ≤ a |h′

s(z)|, 0 ≤ s ≤ τ, |h′
τ (z)| ≤ ea.

Therefore, plugging into (82), we get

E [Λ | Gτ ] ≤ c t−ζ |z| ζ
2 [sin θz]

ζ
2
− 1

4
− 2

κ |h′
τ (w)|d

(

R2
τ (w) + 1

)
1

8
+ 1

κ Yt(w)
ζ
2 .

Taking expectations, and using the previous lemma, we get

FtD(z,w, t2) ≤ c t−ζ |z| ζ
2 [sin θz]

ζ
2
− 1

4
− 2

κ |w|2−d [sin θw]2−d−u.
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