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Dynamic Control of Airport Departures:
Algorithm Development and Field Evaluation

Ioannis Simaiakis and Hamsa Balakrishnan

Abstract— Surface congestion leads to significant increases in
taxi times and fuel burn at major airports. In this paper, we
formulate the airport surface congestion management problem
as a dynamic control problem. We address two main challenges:
the random delay between actuation (at the gate) and the
server being controlled (the runway), and the need to develop
control strategies that can be implemented in practice by human
air traffic controllers. The second requirement necessitates a
strategy that periodically updates the rate that departures
pushback from their gates.

We model the runway system as a semi-Markov process using
surface surveillance data. We use this modeling framework
to derive optimal pushback policies to control congestion.
Finally, we present the results of the real-world implementation
and field testing of this control protocol at Boston Logan
International Airport.

I. INTRODUCTION

Airport surface congestion contributes significantly to taxi
times, fuel burn and emissions at airports. Annually, taxi-
out delays at major US airports exceed 32 million minutes,
while taxi-in delays exceed 13 million minutes [1]. The
objective of this paper is to develop a control policy that can
reduce surface congestion and its impacts and is amenable
to implementation in practice.

A. Related work

An airport congestion control strategy in its simplest
form would be a state-dependent pushback policy aimed
at reducing surface congestion. One such approach is the
N-Control strategy, which was initially considered in the
Departure Planner [2], and has been extensively studied
since [3], [4], [5]. The N-Control policy is effectively a
simple threshold heuristic: If the total number of departing
aircraft on the ground exceeds a certain threshold, further
pushbacks are stopped until the number of aircraft on the
ground drops below the threshold. A similar heuristic, based
on the concept of an Acceptable Level of Traffic (ALOT),
is used by Air Traffic Controllers at BOS during extreme
congested situations [6]. The N-Control policy is also closely
related to constant work-in-process (CONWIP) policies in
manufacturing systems, which are used because of their
simplicity, implementability and controllability [7].

More complex policies which attempt to attain some
optimization objective have also been considered for surface
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traffic recently. In 2009, Burgain et al. used more advanced
modeling and optimization tools for the characterization of
optimal pushback policies. They modeled the airport surface
as a Markov chain, and characterized optimal pushback
policies as a function of the state of the system, and not just
the total number of aircraft on the ground [8]. However, the
optimal policies considered were still restricted to threshold
policies, and challenges remained regarding the state space
modeling, and the dimensionality of the problem[5]. All the
above policies (N-Control, CONWIP systems, and Burgain et
al.’s refinements) can be classified as token-based, or surplus-
based policies [9]. In these approaches, every state transition
generates a token, an action or a signal, which is applied at
the input to the system (the pushback process). Equivalently,
every state transition translates to a new surplus level (or lack
thereof) at different buffers of the system, which implies a
different flow of input into the system.

There has been much prior research on the optimal con-
trol of a variety of queuing systems, considering different
decision variables and control objectives [10], [11], [12].
However, several challenges remain when attempting to
apply results from queuing, manufacturing and inventory
control in the context of controlling the departure process.
Firstly, on-off or event-driven control policies for controlling
the pushback process are difficult to implement in practice.
Both the air traffic controllers and the airlines would prefer
a state-dependent dispatch rate that would be valid for a
predefined time period, after which it would be updated. Air
traffic controllers prefer such periodically updated pushback
rate recommendations for workload and procedural reasons,
and airlines prefer them because of their predictability.
Secondly, the control input is applied at the gates during
pushback, whereas the main bottleneck is the runway. The
control strategy cannot be applied directly at the runway
queue, but instead has to accommodate stochastic taxi-out
times between the gate and the runway. Reasons behind the
stochasticity of taxi-out times include the pushback process,
flight checklists, communication delays, and variable taxi
speeds. Finally, Eulerian models that are concerned with con-
trolling aircraft flows rather individual aircraft trajectories,
have been used in the context of air traffic flow management
[13], [14]. However, these dynamic control approaches have
not been previously applied to surface operations.

In recent work [15] we developed and tested a Pushback
Rate Control protocol (henceforth referred to as PRC.v1.0),
which was an adaptation of the N-Control policy. PRC v1.0
suggested a rate at which aircraft push back from their gates,
so as to keep the airport from reaching highly congested



states. The rate was periodically updated based on the oper-
ating conditions (weather, configuration and arrival demand)
and the total number of active departures on the surface. In
this paper, we develop, using dynamic programing, a refined
version of PRC v1.0, which we call PRC v2.0. We propose a
semi-Markov process model of the runway queuing system,
and derive optimal control policies (the rate at which to
release aircraft from their gates) to balance the tradeoff
between congestion and the risk of low runway utilization.

II. CONTROL STRATEGY REQUIREMENTS

The strategy must be compatible with current levels of
information and automation in the airport tower. In addition,
it must be incorporated into current operational procedures
with minimal controller workload and procedural modifi-
cations. As mentioned in Section I, the preferred form of
a congestion control strategy is one that recommends a
pushback rate for departures to air traffic controllers. This
recommended pushback rate is updated periodically based
on conditions on the airport surface.

In general, the length of the time period, ∆, should equal
the delay between the application of the control input (that is,
setting an arrival rate for the runway server by controlling
the pushback rate) and the time that the runway sees that
rate. For the departure process, this time delay is given by
the travel time from the gates to the departure queue. By
choosing a time horizon that is approximately equal to the
expected travel time from the gates to the departure queue,
the flights released from the gate during a given time period
are expected to reach the departure queue in the next time
period.

III. DEPARTURE PROCESS MODEL

At any time t, the state Nt of the departure process
consists of the number of aircraft traveling from the gates
to the departure queue (Tt ) and the number of aircraft in the
departure queue (Dt ):

Nt = (Tt ,Dt) (1)
Wt = Tt +Dt (2)

Tt and Dt can be observed using surface surveillance data, or
by counting flight strips in the airport tower. Wt is the total
number of aircraft taxiing out, or the total work-in-process
of the departure process.

A. Pushback process
At the beginning of each time period the decision maker

chooses a pushback rate (arrival rate into the surface system)
of λ ∈Λ= [0, λ̂ ]. λ is expressed as the number of pushbacks
per ∆ minutes. The time instances at which the pushback rate
is updated are called epochs. In contrast to typical dynamic
queuing control problems in which the decision maker sets
the arrival rate into a facility, in our case, when setting a
pushback rate at epoch τ , the decision maker authorizes λ

aircraft to push back in that time period. In other words,
λ pushbacks will occur in the time period (τ,τ +∆] with
probability 1 (w.p. 1). Furthermore, λ is an integer: λ ∈
[0,1, . . . , λ̂ ].

B. Runway service process

The model treats the departure runways as a single server
where aircraft line up (queue) to await takeoff. The queuing
system has finite queuing space C, which depends on the
airport layout and operational procedures. At each airport,
there is an upper bound on the number of aircraft that can
queue up, which is the queuing space C of the queuing sys-
tem. The runway service times are modeled as being Erlang
distributed. The shape and rate (k,kµ) of the distribution
are extracted from surveillance (ASDE-X) data, as will be
explained in Section IV. The arrival times at the queuing
system are modeled to be random and independent from each
other. However, at each epoch, the total number or aircraft
taxiing out (traveling from the gate to the departure queue) is
known (denoted Rτ ). We assume that by the next epoch, all of
them (Rτ ) will have reached the runway server. We show later
how this assumption can be relaxed. In summary, the arrival
process at the runway is modeled as a non-stationary Poisson
process, in which the rate is updated every ∆ minutes, and
the process is conditioned on a given number of arrivals at
the runway between two epochs.

This departure runway queuing system resembles a
M(t)/Ek/1 system of queuing space C, with the additional
constraint of Rτ arrivals during the (τ,τ +∆] time interval.
We denote it (M(t)|Rτ)/Ek/1. Assuming that at epoch τ , Rτ

aircraft are taxiing out, the probability density function g of
the rth arrival at the departure runway at time t is:

g(r, t) =
Rτ − (r−1)
(τ +∆)− t

, t ∈ (τ,τ +∆], r = 0,1, . . .Rτ

=
R0− (r−1)

∆− t
, for τ = 0, t ∈ (0,∆], r = 0, . . .R0

(3)

To derive Equation (3), we consider R0− (r−1) uniformly
distributed random variables in the time interval (∆− t]. The
probability that one of these lies in the interval (t, t +dt] is(
R0− (r−1)

)
dt/(∆− t).

The state of the queuing system at time t is denoted by
St = (Rt ,Qt), where Rt is the number of aircraft that were
taxiing out at the start of that epoch but have not reached the
departure queue yet, and Qt ∈ {0,1, . . . ,kC} is the state of the
embedded chain of the semi-Markov process. An example of
the chain for k = 2 and C = 4 is shown in Figure 1.

A service completion of an Erlang process with shape k
and rate kµ is represented with k stages of exponentially
distributed random variables with rate kµ . We call each such
stage “stage of work”. Each state of the Markov chain (r,q)
denotes that there are r aircraft that have been taxiing to the
runway since the start of that epoch, and there are q stages
of work to be completed at the departure runway server, i.e.,
there are min(1,q) aircraft in service and max(b(q−1)/kc,0)
aircraft in the departure queue.

At epoch 0, the Markov chain is in state (R0,Q0). With
reference to Figure 1, the chain is in the bottom level of
the chain (R0 aircraft taxiing) with Q0 stages of work to
be completed. By the end of the time interval ∆, all of
R0 aircraft will have reached the departure queue, and the
Markov chain will be at the top level (0 aircraft taxiing).



Let Pr,q(t) denote the probability that the queuing system
is in state (r,q) at time t, where 0 < t ≤ ∆. The state
probabilities P0,0(∆),P0,1(∆), · · ·P0,kc(∆) describe fully the
state of the queuing system at the end of the time interval ∆.
They are calculated by deriving the first-order differential
equations (Chapman-Kolmogorov equations) that describe
the evolution over the time (0,∆], given R0 arrivals in this
interval: For 0 < t ≤ ∆, and 1≤ r < R0:

dP0,0

dt
= kµP0,1 (4)

dP0,q

dt
= kµP0,q+1− kµP0,q, 1≤ q < k (5)

dP0,q

dt
= kµP0,q+1 +

1
∆− t

P1,q−k− kµP0,q, k ≤ q < kC (6)

dP0,kC

dt
=

1
∆− t

P1,k(C−1)− kµP0,kC (7)

dPr,0

dt
= kµPr,1−

r
∆− t

Pr,0 (8)

dPr,q

dt
= kµPr,q+1− kµPr,q−

r
∆− t

Pr,q, 1≤ q < k (9)

dPr,q

dt
= kµPr,q+1 +

r+1
∆− t

Pr+1,q−k−
r

∆− t
Pr,q

− kµPr,q, k ≤ q≤ k(C−1) (10)
dPr,q

dt
= kµPr,q+1 +

r+1
∆− t

Pr+1,q−k

− kµPr,q, k(C−1)< q < kC (11)
dPr,kC

dt
=

r+1
∆− t

Pr+1,k(C−1))− kµPr,kC (12)

dPR0,0

dt
= kµPR0,1−

R0

∆− t
PR0,0 (13)

dPR0,q

dt
= kµPR0,q+1−

(
R0

∆− t
− kµ

)
PR0,q, 1≤ q≤ k(C−1)

(14)
dPR0,q

dt
= kµPR0,q+1− kµPR0,q, k(C−1)< q < kC (15)

dPR0,kC

dt
=−kµPR0,kC (16)

Solving Equations (4)-(16) numerically for time t = ∆

with initial value (R0,Q0), we obtain the state probabilities
P0,0(∆),P0,1(∆), ...P0,kC(∆). The state of the queuing system
at time ∆, Q∆, is a probabilistic function f of the initial
value (R0,Q0), and the probabilities pq(i) of each state i are
the calculated probabilities P0,i(∆):

Q∆ = f (R0,Q0) (17)
with pq(i)(R0,Q0) = P0,i(∆) for 0≤ i≤ kC (18)

=⇒ ~pq(R0,Q0) = ~P0(∆) (19)

where ~P0(∆) = [P0,0(∆),P0,1(∆), ...P0,kC(∆)].

C. System dynamics

Suppose, at epoch τ , that Rτ aircraft are taxiing, Qτ stages
of work are left to be completed in the queue, and the
decision maker selects a pushback rate λτ . At τ + ∆, Rτ

aircraft will have reached the departure queue, λτ aircraft will

be taxiing, and Qτ+∆ = f (Rτ ,Qτ) stages of work will remain
to be completed. The queuing system therefore evolves
according to the following equation:

(Rτ+∆,Qτ+∆) = (λτ , f (Rτ ,Qτ)) (20)

The probabilities P(r,q)→(i, j)(λ ) that the chain is in state (i, j)
at the next epoch τ +∆ given it is in state (r,q) at the epoch
τ and the pushback rate λ is chosen are:

P(r,q)→(i, j)(λ ) =

{
pq( j)(r,q) if i = λ

0 otherwise
(21)

The state S of the queuing system maps to the state of the
departure process (N) as follows:

Nt =

{ (
λt−∆,max(b(Qt −1)/kc,0)

)
, t ∈ {0,∆, . . .}(

Vt +Rt ,max(b(Qt −1)/kc,0)
)
, otherwise (22)

where Vt is the number of aircraft that pushed back between
the start of the epoch within which t lies, and the time t. We
note that by sampling the system every ∆ time intervals, we
decouple the departure process into two processes that are
independent within each time period, namely, the pushback
process and the runway service process.

D. Choice of cost function

The control strategy sets the arrival rate to balance two
objectives, namely, to minimize the expected departure queue
length and to maximize the runway utilization. These re-
quirements are captured in a cost function, c(q) for a state
(r,q) of the queuing system. This cost is a combination of the
queuing cost and the cost of non-utilization of the runway.
The runway is unutilized when q = 0. If q∈ {1,2, . . .k} both
the queuing and non-utilization costs are zero. For all higher
states, q > k, there is a queuing cost c(q), which is usually
assumed to be a monotonically non-decreasing function of q
with increasing marginal costs [16], [17]: A candidate cost
function with these properties is:

c(q) =
{

l, q = 0
(b(q−1)/kc)2 q = 1, . . . ,kC

(23)

where l2 is the cost of a loss of runway utilization.
We solve Equations (4)-(16) numerically to calculate

~pq(R0,Q0, t) =
[ R0

∑
r=0

Pr,0(t),
R0

∑
r=0

Pr,1(t), . . . ,
R0

∑
r=0

Pr,kC(t)
]

at time

t. Numerical experiments showed that sampling every 0.1
min is sufficiently accurate for calculating the expected cost
of each state, c̄ over the time interval ∆:

c̄(R0,Q0) =
10∆−1

∑
i=0

1
10

~pq(R,Q, i/10) ·~c (24)

E. Dynamic control of the departure process

The Bellman equation for the infinite horizon problem
with discount factor α is:

J∗(r,q) = min
λ∈Λ

{c̄(r,q)+α

kC

∑
j=0

P(r,q)→(λ , j)J
∗(λ , j)}

=⇒ J∗(r,q) = min
λ∈Λ

{c̄(r,q)+α ~pq(r,q) · ~J∗(λ ) (25)
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Fig. 1: State transition diagram for an (M(t)|R0)/E2/1 system with queuing space of 4 customers in the system.

where ~J∗(λ ) = [J∗(λ ,0),J∗(λ ,1), . . . ,J∗(λ ,kC)] for r ∈
{0,1, . . . , λ̂} and q ∈ {0,1, . . . ,kC}.

We relax the assumption of Equation (20) that Rτ aircraft
taxiing out at epoch τ will reach the queue during the time
interval (τ,τ+∆] and a pushback rate (λτ) set at epoch τ will
arrive at the runway at t > τ +∆ w.p. 1, as follows. For each
λτ and Rτ , i out of λτ aircraft reach the runway during the
time interval (τ,τ +∆] with probability βi. Similarly, i out of
Rτ aircraft reach the runway at t > τ +∆ with probability γi.
Finally, Rτ aircraft reach the runway during the time interval
(τ,τ +∆], and λτ aircraft at t > τ +∆ only with probability
1−∑qa

i −∑qb
i .

Equation (20) becomes:

(Rτ+∆,Qτ+∆)=


(
λτ , f (Rτ ,Qτ)

)
, w.p. 1−∑βi−∑γi(

λτ − i, f (Rτ + i,Dτ)),w.p. βi, i = 1, . . . ,λτ(
λτ + i, f (Rτ − i,Dτ)),w.p. γi, i = 1, . . . ,Rτ

In the most general case, βi and γi are a function of both
R and λ . For these system dynamics, the Bellman equation
for the infinite horizon problem with discount factor α is:

J∗(r,q) = min
λ∈Λ

{
(1−∑βi−∑γi)[c̄(r,q)+α ~pq(r,q) · ~J∗(λ )]

+∑βi[c̄(r+ i,q)+α ~pq(r+ i,q) · ~J∗(λ − i)]

+∑γi[c̄(r− i,q)+α ~pq(r− i,q) · ~J∗(λ + i)]
}
(26)

Equation (26) illustrates the tradeoffs involved with the
choice of appropriate time period, ∆. If the time period is
large, a large fraction of the pushbacks will be likely to
reach the runway in the current time period (large β

′
i s).

This will cause excessive congestion and might eventually
lead to large traffic oscillations. If ∆ is too small (large γ

′
i s),

finer control will be possible. However, as ∆ decreases, the
control strategy tends toward a token-based or surplus-based
strategy, increasing controller workload. We also note that the

portions β , γ and the probabilities pβ and pγ do not need
not be constants and can be a function of λτ .

Finally, we note that this problem satisfies the property
of weak accessibility: Suppose that at the beginning of
epoch 0, the embedded chain is at state (r0,q0). At the
beginning of the next epoch the chain will be at any of the
states (λ0,0),(λ0,1), . . .(λ0,min(r0 +q0,kC)) with non-zero
probability. Suppose that the following control law is applied:
For all (r0,q0), λ0 = λ̂ , where λ̂ > µ . Then, the queuing
system will reach the state (λ̂ ,kC) within a finite number
of epochs with nonzero probability. Also, at the next epoch,
the state will be in any of the states (λ̂ ,0),(λ̂ ,1), . . .(λ̂ ,kC))
with nonzero probability. As before, from any of these
states, the chain will reach the state (λ̂ ,kC) within a finite
number of epochs with nonzero probability. Therefore, the
state (λ̂ ,kC) is recurrent under this control law, and weak
accessibility is satisfied.

Using a discount factor as in Equation (26) may not be
appropriate, since the cost of an unutilized runway remains
constant in time. An alternate formulation is to determine
the average optimal cost per stage, c∗:

c∗+h∗(r,q) =

min
λ∈Λ

{
(1−∑βi−∑γi)[c̄(r,q)+ ~pq(r,q) ·~h∗(λ )]

+∑βi[c̄(r+ i,q)+ ~pq(r+ i,q) ·~h∗(λ − i)]

+∑γi[c̄(r− i,q)+ ~pq(r− i,q) ·~h∗(λ + i)]
} (27)

IV. APPLICATION OF THE CONTROL POLICY AT BOS

This section describes the application of PRC v2.0, as
derived in Equation (27) to the departure process at BOS.
We focus on runway configuration (22L, 27 | 22L, 22R)
under visual meteorological conditions (VMC) during the
evening departure push. The control strategy is restricted to
jet aircraft at BOS, for reasons explained in prior work [15].



A. Selection of time period

The average unimpeded taxi-out time at BOS is 12.6
minutes under VMC [18]. There is an added delay due to
taxiway congestion, which is proportional to the number of
aircraft taxiing out [18], [19]. For non-excessive traffic levels,
the additional average delay in the case of the BOS airport
is 1-2 minutes. This makes 15 minutes a suitable choice
of time-window for BOS. Furthermore, because of lack of
accurate measurements [20], we assume that βi = γi = 0 for
all i′s. Equation (27) then becomes:

c∗+h∗(r,q) = min
λ∈Λ

{
(c̄(r,q)+ ~pq(r,q) ·~h∗(λ )

}
(28)

B. Estimation of the runway service process parameters

We are interested in estimating the parameters of the
runway service process of the BOS airport during peak
evening times. For this reason, we perform the analysis
outlined in recent work [21] using ASDE-X data from
November 2010-June 2011, and isolate 15-minute intervals
during which the runway was under continuous demand.
We obtain 1726 measurements of the runway throughput
(departures/15 min) that provide an empirical distribution of
the departure capacity. Figure 2 shows the resulting empirical
distribution frw in black.

Fig. 2: Empirical ( frw) and modeled ( frm) probability distri-
butions (and first two moments) of the departure capacity of
runway configuration 22L, 27|22L,22R under visual meteo-
rological conditions during evening times.

We assume that the service times are generated from an Er-
lang distribution with parameters (k,kµ). We estimate these
parameters using an approximation based on the method of
moments. The output is the Poisson distribution satisfied by
the kth arrivals of the exponential distribution with service
rate (kµ) in a ∆ time period, and that matches the first
moment and has the smallest absolute error of the second
moment of frw.

For the empirical distribution of Figure 2, we obtain the
parameters of Erlang distribution (7, 4.6). The mean service
time µ2 is 7/4.6 = 1.5min. The variance of the service
time is 0.3 min2. The corresponding distribution, frm, of the
number of takeoffs in ∆ min is depicted in Figure 2 in grey.

The empirical and modeled distributions are similar, as is
also seen in the inset table.

C. Maximum pushback rate and cost function

The set of permissible policies is defined as 0,1, . . . , λ̂ .
At BOS, as in most airports, there is a natural threshold for
the maximum admissible rate of arrivals into the departure
process (pushbacks). At BOS, λ̂ is calculated to be 15 jet
aircraft/15 minutes, that is, Λ = {0,1, . . . ,15}. The space of
the queuing system (C) is estimated to be 30, and the cost of
underutilizing the runway, c(0), is chosen to be equal to the
cost of a queue of 25 departures. c(0) is chosen to reflect
the fact that at BOS, a very long queue can lead to surface
gridlock, and consequently, non-utilization of the runway.

D. Derivation of optimal policies

Given the service time distribution (k,kµ), the time period
∆, the queuing space C, the set Λ and the costs c, Equation
(28) can be solved to obtain the optimal pushback policies.
The efficient solution of Equation (28) is possible using
the policy iteration method with a suitable choice of initial
policy. In selecting initial policies, we use the insights that
(1) For given q, the pushback policy is expected to be a
non-decreasing function of r; (2) For given r, the pushback
policy is expected to be a non-decreasing function of q; (3)
The pushback policy is expected to target for a specific level
of inventory (number of aircraft in the queue). We used a
target inventory, b f = 5 aircraft in the queue. For each state
(r,q), the initial policy λ0(r,q) is calculated as:

dmin(µ2+b f −max(max(r+max(b(q−1)/kc,0)−µ2),0), λ̂ )e

The policy iteration algorithm converges in fewer than 10
iterations. The optimal policies λ

∗ are a function of the
state of the embedded chain (r,q), which is not observable.
However, each state of the chain is mapped to an observed
state of the process, N (Equation 22). For 0 ≤ T ≤ λ̂ , the
optimal pushback rate is approximated by:

λ̄ (T,0) = b
∑

k
j=0 λ ∗(T, j)

k+1
+0.5c (29)

λ̄ (T,D) = b
∑
(d+1)k
j=dk+1 λ ∗(T, j)

k
+0.5c for 1≤ D <C (30)

Figure 3 shows the contours of the optimal pushback
policy λ̄ as a function of the number of aircraft in the
departure queue (D) and the number of aircraft taxiing
(T ). As expected, the optimal pushback rates decrease for
increasing D and T . A different way to characterize the
optimal policies is to plot the expected work-in-process at
the next epoch, Wτ+∆ = Tτ+∆ +Dτ+∆, as a function of the
current state (Tτ ,Dτ), as shown in Figure 4. When Wτ =
Tτ +Dτ ≥ 12, the policy attempts to control the expected
work-in-progress at the next epoch to 13. When Wτ ≥ 23, the
optimal pushback rate is 0, but it is not sufficient to reduce
the expected Wτ+∆ to 13. We also note that when Wτ ≤ 12,
the optimal pushback policy increases the expected Wτ+∆ to
values higher than 13.
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Fig. 3: Optimal pushback policy λ̄ as a function of the
number of aircraft in the departure queue (D) and the number
of aircraft taxiing (T ).

Figure 4 suggests that the algorithm aims at controlling
the process to a desired value of Wτ . The expected Wτ+∆

consists of the expected queue length at τ +∆, Dτ+∆ and the
pushback rate λ̄τ set at at time τ (Equation 22). This implies
that the optimal pushback policy at time τ , is a function of
the expected queue length at time τ +∆.
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Fig. 4: Expected work-in-process, W , at the next epoch (τ∆)
as a function of the number of aircraft in the departure queue
(Dτ ) and the number of aircraft taxiing (Tτ ).

Figure 5 shows the scatterplot between the optimal push-
back rate λ̄τ(Tτ ,Dτ) and the expected Dτ+∆(Tτ ,Dτ), for all
0≤ T ≤ λ̂ and 0≤D < kC, along with a fitted convex non-
increasing function that minimizes absolute deviations from
the data. The equivalent PRC v1.0 strategy, which aims at
keeping Wτ+∆ always at 13 irrespective of the state Nτ ,
is also shown. For the most part, the two strategies are
the same after rounding to the closest integer. However,
when the expected queue length at τ +∆ is less than 4, the
optimal pushback policy increases Wτ+∆ to 14 or 15. In this
region, the departure throughput can be increased with a high
pushback rate at a very low congestion cost. Figure 5 also
shows the benefit of the PRC v1.0 strategy [15]. By simply
aiming at a target Wτ+∆ at the next epoch, the strategy is

suboptimal only when the expected value of Wτ+∆ is 1, 2
or 3. However, these are instances of high risk of runway
non-utilization, and PRC v2.0 accounts better for this risk.
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Fig. 5: Optimal pushback policy λ̄τ as a function of the
expected queue D at the next epoch (τ +∆).

To illustrate how the control algorithm would work in
conjunction with the system dynamics described in Equation
20, we consider a sample path of the certainty equivalent
system: At the first epoch (t = 0), the state is (0,0), that
is, there are no aircraft on the ground. At the next epoch
(t = 15), the expected queue will be zero, and the curve
of Figure 5 recommends that 15 aircraft pushback in the
next 15 minutes (or a pushback rate of 1/ minute). Thus,
S15 = (15,0). Solving the Chapman-Kolmogorov equations
numerically for the queuing model (M(t)|Rτ)/Ek/1, we
find that at the third epoch (t = 30), the expected queue
is 6. As a result, Figure 5 recommends a pushback rate
of (7/15 minutes), so S30 = (7,6). Similarly, S45 = (10,4),
S60 = (5,8), S75 = (10,4), etc. Therefore, after two cycles,
the system stabilizes at a traffic level of 13-14 aircraft. We
also note that the expected queue length at each epoch is
at least 4. Finally, since the pushback rate is bounded at 15
aircraft/15 minutes, the traffic level can reach at most 24
aircraft: This happens in the extreme case in which the state
is (0,10), which implies λ̄ = 14, and no aircraft manages to
takeoff. If this happens, due to an unpredicted runway closure
for example, the next state is (14,10) and the pushback rate
is set to 0, as can be seen from Figure 3.

V. FIELD TESTS AT BOS
The average cost-per-stage control algorithm PRC v2.0

was adapted as follows, and tested at BOS.

A. Conditional capacity forecasts
Parameters such as the fleet mix and the expected number

of landings in the next time period (τ,τ +∆] can provide a
conditional forecast for the runway service time distribution
derived in Section IV-B [21]. These parameters explain some
of the variance of the departure throughput and provide a
more accurate estimate of the expected departure capacity.
These conditional forecasts are incorporated into the algo-
rithm in an approximate fashion:



• At epoch τ , use the conditional service time distri-
butions for the time period (τ,τ +∆] to calculate the
expected queue length at the next epoch, τ +∆.

• Use the PRC v2.0 curve of Figure 5 to calculate the
optimal pushback policy for this expected queue length.

This is a heuristic modification of PRC v2.0 to incorporate
the conditional forecasts given fleet mix and expected num-
ber of landings. We call this control protocol PRC v2.1.
This heuristic was chosen because of its simplicity and
intuitiveness. An alternative would be to augment the state
and include the service time forecast as a state variable.

The conditional service time distributions are character-
ized by different (k,kµ) parameters than the unconditional
one. Figure 5 implies that the expected queue length at the
next epoch (Qτ+∆) can be used as a quasi state for this sys-
tem: Essentially, it is the post-decision state variable. Post-
decision, from epoch τ +∆ onwards, the system dynamics
are accurately accounted for in the curve of Figure 5. Also,
the expected queue, Qτ+∆ can be calculated solving the
Chapman-Kolmogorov equations with the conditional service
time distribution. Thus, the heuristic algorithm is expected
to have near-optimal performance.

B. Results of field testing

During 8 four-hour test periods in 2011, fuel use was
reduced by an estimated 9 US tons (2,650 US gallons), and
aircraft taxi times decreased by an average of 5.3 min for
the 144 flights that were held at the gate, showing that such
a congestion control strategy could yield significant benefits.
A detailed analysis of the field trials can be found is another
paper by the authors [20].

VI. CONCLUSIONS

This paper presented a pushback rate control strategy
for the reduction of taxi-out times, by formulating surface
congestion management as a dynamic control problem. The
runway queuing system was modeled as a semi-Markov
process, and optimal pushback rates were determined. The
final control policies accommodate the practical challenges
of time-delay and current operational procedures.

The proposed pushback rate control refinement
(PRC v2.0) was adapted to Boston airport and field
tested. Over five periods with significant congestion, the
strategy was demonstrated to be effective in limiting
congestion while maintaining runway utilization. Data from
the test periods showed that the algorithm was successful in
maintaining a desired level of demand on the surface, and
that the behavior of the system (state, as well as departure
throughput) was as predicted. Over 750 min of taxi-out
time savings, and a corresponding 9-11 metric tonnes of
reduction in jet fuel burn, are estimated from the use of the
proposed control strategy during these periods.
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