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Analyses of the J=c�þ�� decay channel of the Xð3872Þ resonance by the CDF, Belle, and LHCb

Collaborations have established its JPC quantum numbers as 1þþ. An analysis of the �þ���0 invariant

mass distribution in the J=c�þ���0 decay channel by the BABAR Collaboration indicated a preference

for 2�þ over 1þþ. We point out that a proper evaluation of the �2 in that analysis increases the probability

for 1þþ from 7.1% to about 18.7%. In the case of quantum numbers 1þþ, where the X has an S-wave

coupling to J=c!, the proximity of the J=c! threshold to D� �D thresholds and the narrow width of the!

suggest that the effects of scattering between J=c! and charm meson pairs could be significant. We

derive invariant mass distributions for J=c�þ���0 and �þ���0 that take into account S-wave

scattering between the D�0 �D0, D�þD�, and J=c! channels. We also analyze the effects of scattering

through the �c1ð2PÞ charmonium resonance. We find that scattering effects are unable to produce

significant changes in the shape of the �þ���0 invariant mass distribution.

DOI: 10.1103/PhysRevD.88.014028 PACS numbers: 12.38.�t, 12.39.St, 13.20.Gd

I. INTRODUCTION

Ever since the discovery of the Xð3872Þ by the Belle
Collaboration in 2003 [1], one of the leading interpreta-
tions has been a charm meson molecule whose constituents
are a superposition of D�0 �D0 and D0 �D�0 [2,3]. This iden-
tification would require the JPC quantum numbers of
Xð3872Þ to be 1þþ. The observation of its decay into
J=c� determined the charge conjugation C to be þ
[4,5]. In 2006, the CDF Collaboration reduced the options
for JPC to 1þþ and 2�þ by analyzing decays into
J=c�þ�� [6]. The LHCb Collaboration recently ruled
out 2�þ, finally establishing the quantum numbers of
Xð3872Þ as 1þþ [7].

The option 2�þ had been disfavored on various theo-
retical grounds, especially if the Xð3872Þ is identified with
the 1D2 charmonium state �0

c2. The prediction of the mass
of �0

c2 in most potentials models is lower than 3872 MeV
by 40 to 100 MeV [8]. The decay of �0

c2 into J=c� should
have strong multipole suppression [9]. The expected pro-
duction rate for D-wave charmonium in a hadron collider
is much smaller than the observed production rate of the
Xð3872Þ at the Tevatron [10]. The decay of D-wave char-
monium into D0 �D0�0 should have angular momentum
suppression [11]. Finally, the degree of isospin violation
required by the observed branching fraction into
J=c�þ�� is difficult to accommodate for D-wave char-
monium [12]. All of these problems are solved, or at least
ameliorated, if the quantum numbers are 1þþ.

Back in 2010, the BABAR Collaboration analyzed de-
cays of Xð3872Þ into J=c�þ���0 and concluded that
2�þ was preferred over 1þþ [13]. They quantified this
preference in terms of a probability that was 7.1% for

1þþ and 61.9% for 2�þ. We will point out that a proper
quantification of the likelihood for the observed result
increases the probability for 1þþ to 18.7%. With the prop-
erly calculated probabilities, the preference for 2�þ over
1þþ is no longer so significant. However, it is still worth
considering whether a more accurate description of the
resonance in the J=c�þ���0 channel would be impor-
tant in the BABAR analysis or in future analyses.
Since it has quantum numbers 1þþ, the X has an S-wave

coupling to J=c!. The proximity of the J=c! threshold
to the D�0 �D0 and D�þD� thresholds and the narrow width
of the ! suggest that the effects of scattering between
J=c! and charm meson pairs could be significant. We
therefore study the effects of scattering between these
coupled channels on the Xð3872Þ resonance in the
J=c�þ���0 channel. We also analyze the effects of
scattering through the �c1ð2PÞ charmonium resonance,
which has quantum numbers 1þþ.
In Sec. II, we introduce our notation for the three

coupled channels and for the many masses that are relevant
to this problem. In Sec. III, we derive the scattering am-
plitudes due to S-wave scattering between the coupled
channels. We use them in Sec. IV to determine the inclu-
sive line shape of the Xð3872Þ resonance and its line shape
in the J=c�þ���0 channel. We also determine the effect
of the �c1ð2PÞ resonance on the line shape. In Sec. V, we
derive a simple expression for the �þ���0 invariant mass
distribution. We examine the BABAR results in Ref. [13]
and point out that a proper evaluation of the �2 signifi-
cantly increases the probability for the quantum numbers
1þþ. We show that the experimental resolution, which was
ignored in previous theoretical analyses, has a significant
effect on the �þ���0 invariant mass distribution. Finally
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we study the effect on that invariant mass distribution of
scattering between the three coupled channels and scatter-
ing through the �c1ð2PÞ charmonium resonance.

II. NOTATION AND MASSES

We consider the effects of scattering between three
JPC ¼ 1þþ channels involving the particle pairs D�0 �D0,
D�þD�, and J=c!. We label the three channels by the
integers 0, 1, and 2 and a vector index n associated with the
polarizations of the spin-1 particles:

j0; ni ¼ 1ffiffiffi
2

p ðjD�0ðnÞ �D0i � jD0 �D�0ðnÞiÞ; (1a)

j1; ni ¼ �1ffiffiffi
2

p ðjD�þðnÞD�i � jDþD��ðnÞiÞ; (1b)

j2; ni ¼ �nmlffiffiffi
2

p jJ=c ðmÞ!ðlÞi: (1c)

The 3� 3matrices that project these channels onto isospin
0 and isospin 1 are

�0 ¼
1
2 � 1

2 0

� 1
2

1
2 0

0 0 1

0
BB@

1
CCA; (2a)

�1 ¼
1
2

1
2 0

1
2

1
2 0

0 0 0

0
BB@

1
CCA: (2b)

We denote the masses of the charm mesons D�0, D0,
D�þ, and Dþ by M�0, M0, M�1, and M1 and the masses of
J=c and! byMc andM!. We denote the reduced masses

for the three channels in Eqs. (1) by �0, �1, and �c!,

respectively. The energy differences �1 and �c! between

the thresholds for D�þD� and J=c! and the D�0 �D0

threshold are

�1 ¼ ðM�1 þM1Þ � ðM�0 þM0Þ � 8:1 MeV; (3a)

�c! ¼ ðMc þM!Þ � ðM�0 þM0Þ � 7:7 MeV: (3b)

We denote the total energy of the pair of particles in their
center-of-momentum frame by M. Their total energy rela-
tive to the D�0 �D0 threshold is

E ¼ M� ðM�0 þM0Þ: (4)

The amplitude for the propagation of a pair of particles
between contact interactions involves the square root of
their total energy relative to threshold. The appropriate
thresholds for the pairs of particles in the channels in
Eqs. (1) are complex, with imaginary parts given by the
sum of the decay widths of the two particles. If one of the
widths is much larger than the other one, it is sufficient to
only take the larger one into account. The resulting thresh-
old factors for the pairs of particles in the channels in
Eqs. (1) are

�ðEÞ ¼ ½�2�0ðEþ i��0=2Þ�1=2; (5a)

�1ðEÞ ¼ ½�2�1ðE� �1 þ i��1=2Þ�1=2; (5b)

�c!ðEÞ ¼ ½�2�c!ðE� �c! þ i�!=2Þ�1=2; (5c)

where ��0 � 66 keV, ��1 � 96 keV, and �! � 8:5 MeV
are the decay widths of D�0, D�þ, and !. The reduced
masses are �0 ¼ 966:7 MeV, �1 ¼ 968:7 MeV, and
�c! ¼ 624:8 MeV. It is convenient to introduce a 3� 3

matrix KðEÞ whose diagonal entries are the threshold
factors in Eqs. (5):

KðEÞ ¼
�ðEÞ 0 0

0 �1ðEÞ 0

0 0 �c!ðEÞ

0
BB@

1
CCA: (6)

We denote the mass of the Xð3872Þ byMX and its width
by �X. The most precise determinations of MX and �X

come from the J=c�þ�� decay channel. Measurements
in this channel avoid biases associated with the D�0 �D0

threshold that plague some other decay channels, such as
D0 �D0�0 [14]. The most precise measurements ofMX have
been made by the CDF, Belle, LHCb, and BABAR
Collaborations [15–18]. The PDG average for the mass
is MX ¼ 3871:68� 0:17 MeV [19]. We denote the bind-
ing energy relative to the D�0 �D0 threshold by EX ¼
ðM�0 þM0Þ �MX. Using the PDG averages for M0 and
M�0 �M0, we obtain the binding energy

EX ¼ 0:26� 0:39 MeV: (7)

More precise measurements of M0 by the LHCb
Collaboration [20] and by an analysis of data from the
CLEOc Collaboration [21] have further decreased the un-
certainty in EX, reinforcing the conclusion that Xð3872Þ is
extremely close to the D�0 �D0 threshold. The best
experimental upper bound on �X comes from measure-
ments in the J=c�þ�� decay channel by the Belle
Collaboration [16]:

�X < 1:2 MeV ð90%CLÞ: (8)

A theoretical lower bound is provided by the width of the
constituent D�0: �X > 0:066 MeV.

III. LOW-ENERGY SCATTERING

In this section, we derive the low-energy scattering
amplitudes for the three coupled channels consisting of
neutral and charged charm mesons and J=c!. We then
write down simpler scattering amplitudes for the charm
mesons only in which the effects of the J=c! channel are
taken into account implicitly through one of the scattering
parameters. Finally we write down scattering amplitudes
for the charm mesons that take into account the �c1ð2PÞ
resonance.
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A. Explicit J=c! channel

The low-energy scattering amplitudes fijðEÞ from

S-wave contact interactions between the three coupled
channels defined in Eqs. (1) can be expressed as a 3� 3
matrix:

fðEÞ ¼ ½�Gþ KðEÞ��1; (9)

where KðEÞ is defined in Eq. (6) and G is a symmetric
3� 3 matrix of coupling constants. Imposing the con-
straints from isospin symmetry, this matrix has the form

G ¼ �0

�0 0 �X

0 �0 ��X

�X ��X �V

0
BB@

1
CCA�0 þ �1�1; (10)

where �0 and �1 are the isospin projection matrices
defined in Eqs. (2) and �0, �1, �V , and �X are constants
with dimensions of momentum. The matrix of amplitudes
in Eq. (9) satisfies the Lippmann-Schwinger equation:

fðEÞ ¼ �G�1 þG�1KðEÞfðEÞ: (11)

This can be verified by inserting Eq. (9) for fðEÞ, multi-
plying on the left by G, and multiplying on the right by
�Gþ KðEÞ, in which case it reduces to a trivial identity.
The explicit expressions for the scattering amplitudes
fijðEÞ in Eq. (9) are

f00¼½ð��0��1þ2�1Þð��V þ�c!Þ�2�2
X�=D; (12a)

f01¼½ð�1��0Þð��V þ�c!Þ�2�2
X�=D; (12b)

f11¼½ð��0��1þ2�Þð��V þ�c!Þ�2�2
X�=D; (12c)

f02¼ 2ð��1þ�1Þ�X=D; (12d)

f12¼�2ð��1þ�Þ�X=D; (12e)

f22¼½2�0�1�ð�0þ�1Þð�1þ�Þþ2�1��=D; (12f)

where the denominator is

D ¼ ½2�0�1 � ð�0 þ �1Þð�1 þ �Þ þ 2�1��ð��V þ �c!Þ
� 2ð�2�1 þ �1 þ �Þ�2

X: (13)

For energies above the appropriate thresholds, the nonrela-
tivistically normalized T-matrix elements TijðEÞ for scat-
tering between the three channels are given by the matrix

TðEÞ ¼ 2���1=2fðEÞ��1=2; (14)

where � is the diagonal matrix of reduced masses.
The imaginary parts of the scattering amplitudes fijðEÞ

in Eq. (9) can be expressed as

Im fðEÞ ¼ fðEÞ½ImG� ImKðEÞ�fðEÞ�: (15)

The T-matrix elements for elastic scattering between the
three coupled channels are exactly unitary if the constants
�0, �1, �V , and �X in Eq. (10) are real and if the widths ��0,
��1, and �! in Eqs. (5) are set to zero. In this case, the
imaginary part of fijðEÞ is nonzero only if the energy E

exceeds one of the thresholds 0, �1, and �c!. The effects

of additional inelastic scattering channels can be taken into
account through the analytic continuation of the parame-
ters [22,23]. The dominant effects of inelastic scattering
channels that correspond to decay products of D�0 �D0,
D�þD�, and J=c!, such as D0 �D0�0, DþD��0, and
J=c�þ���0 are taken into account through the widths
��0, ��1, and �! in �, �1, and �c!. The dominant effects of

other inelastic scattering channels can be taken into ac-
count through the coupling constants �0, �1, �V , and �X,
which can have positive imaginary parts. For example, the
isospin-1 decay mode J=c�þ��, in which �þ�� is
dominated by the 	0 resonance, can be taken into account
through the positive imaginary part of �1.
As the energy E approaches the D�0 �D0 threshold at

E ¼ 0, the elastic scattering amplitude for D�0 �D0 must
approach the universal expression [24]

f00ðEÞ ! 1

��þ �ðEÞ : (16)

It is easy to identify � by exploiting the fact that the
denominator D in Eq. (13) is linear in �. Since jEj �
�1, �c!, we can set E ¼ 0 in �1 and �c!. The resulting

expression for the inverse scattering length is

� ¼ 2�0�1 � ð�0 þ �1Þ�1ð0Þ þ 2½2�1 � �1ð0Þ��2
X=½��V þ �c!ð0Þ�

�0 þ �1 � 2�1ð0Þ þ 2�2
X=½��V þ �c!ð0Þ�

: (17)

The binding energy and the width of the Xð3872Þ are
determined by the real and imaginary parts of �. This
puts two constraints on the real parts and the small imagi-
nary parts of the four parameters �0, �1, �V , and �X.

B. Implicit J=c! channel

If �X ¼ 0 or if j�V j is much larger than j�c!ðEÞj, the
J=c! channel decouples from the charm meson channels.
The J=c! scattering amplitude f22 in Eq. (12f) reduces to
1=ð��V þ �c!Þ. The scattering amplitudes for the 0 and 1

channels reduce to the scattering amplitudes for charm
mesons derived in Ref. [23]:

f00 ¼ ð��0 � �1 þ 2�1Þ=D0; (18a)

f01 ¼ ð�1 � �0Þ=D0; (18b)

f11 ¼ ð��0 � �1 þ 2�Þ=D0; (18c)

where the denominator is

D0 ¼ 2�0�1 � ð�0 þ �1Þð�1 þ �Þ þ 2�1�: (19)
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These are the appropriate scattering amplitudes if the
Xð3872Þ resonance is generated dynamically by attractive
interactions between the charm mesons.

The charm meson scattering amplitudes f00, f01, and f11
in Eqs. (12), which take into account the J=c! channel
explicitly, can be obtained exactly from the amplitudes in
Eqs. (18) by making the substitution

�0 ! �0 þ 2�2
X

��V þ �c!ðEÞ : (20)

The second term on the right side is the product of the
J=c! scattering amplitude and transition amplitudes pro-
portional to �X. Thus the only effect of the J=c! channel
on scattering between the charm mesons is to resolve the
isospin-0 inverse scattering length into an energy-
dependent term from transitions to J=c! and a constant
�0 that takes into account shorter-distance effects.

C. �c1ð2PÞ resonance
The �c1ð2PÞ charmonium state has quantum numbers

1þþ. If its mass is close enough to that of the Xð3872Þ
resonance, it can have a significant effect on the charm
meson scattering amplitudes near the D�0 �D0 threshold. It
could be responsible for generating the Xð3872Þ resonance
or it could be a separate resonance with quantum numbers
1þþ. If the �c1ð2PÞ is a separate resonance from the
Xð3872Þ, it is expected to be higher in mass. One former
candidate for the �c1ð2PÞ is a state labelled Xð3915Þ by the
Particle Data Group [19]. It was discovered by the BABAR
Collaboration through B decays into Xð3915Þ þ K in the
decay channel Xð3915Þ ! J=c! [25], which implies that
its charge conjugation is C ¼ þ. Its properties were mea-
sured more accurately in Ref. [13]. The Xð3915Þ was also
observed by the Belle Collaboration in the production
channel �� ! Xð3915Þ [26], which would have excluded
1þþ, but that observation could also be attributed instead to
the nearby charmonium state �c2ð2PÞ at 3927 MeV.
However a recent analysis by the BABAR Collaboration
of �� ! Xð3915Þ ! J=c! determined the spin-parity to
be JP ¼ 0þ [27]. This excludes Xð3915Þ as a candidate for
�c1ð2PÞ. At this point, there is no well-established reso-
nance besides the Xð3872Þ that might be identified with
�c1ð2PÞ. We will however for completeness consider the
possibility of a separate 1þþ resonance with mass above
3872 MeV.

The coupled-channel problem for low-energy S-wave
interactions of neutral and charged charm meson pairs with
a 1þþ charmonium resonance was solved in Ref. [28]. The
scattering amplitudes are those for charm mesons in
Eqs. (18) with the substitution

�0 !
�
1

�0

þ g2

E� 


��1 ¼ �0ðE� 
Þ
E� 
þ g2�0

: (21)

These scattering amplitudes were also studied in Ref. [29].
They are exactly unitary for real values of the four

parameters �0, �1, 
, and g. The combination 
� g2�0

can be identified as the energy of the �c1ð2PÞ resonance. In
Ref. [28], charmonium phenomenology was used to obtain
the estimate g ¼ 0:4 for the coupling constant. The meth-
ods of Ref. [28] could be extended to the case with a third
scattering channel J=c! that also couples to the �c1ð2PÞ.

IV. LINE SHAPES OF Xð3872Þ
In this section, we present line shapes for the Xð3872Þ

resonance in the J=c�þ���0 channel. We first discuss
the short-distance factors in a factorization formula for the
line shapes. We give an expression for the line shape in
which the J=c! channel is taken into account explicitly.
We then give an expression for the line shape in which the
effects of the J=c! channel are taken into account im-
plicitly through the scattering parameter �0. Finally we
give an expression for the line shape in which the �c1ð2PÞ
resonance is taken into account.

A. Short-distance factors

For a production process that involves an energy transfer
that is large compared to the low-energy scales �1 and �c!

set by the differences between the thresholds, the inclusive
production rate summed over all resonant final states X
satisfies a factorization formula [30]. If the production
process is a decay, such as B ! K þ X or B ! K� þ X,
the differential decay rate can be expressed as

d� ¼ X
ij

�ijImfijðEÞdE; (22)

where the �ij are short-distance factors that are insensitive

to the resonance energy E.
The expression for the matrix ImfðEÞ in Eq. (15) can be

used to decompose the differential decay rate in Eq. (22)
into contributions proportional to the imaginary parts of
the scattering parameters, which appear in the matrix G,
and the imaginary parts of the threshold factors, which
appear in the matrix K. The short-distance factors �ij in

Eq. (22) are entries of a positive-definite hermitian matrix.
They can be expressed as sums with positive weights of
terms of the form Ck;iðCk;jÞ�, where Ck;i is a short-distance

amplitude for the creation of a pair of particles in the
channel i. The sum is over transition channels k from the
initial state to the additional final-state particles besides
those in the resonance channel. Constraints on these
short-distance amplitudes from the symmetries of QCD
imply constraints on the short-distance factors �ij. The

decay Bþ ! Kþ þ X is particularly simple, because the
transition Bþ ! Kþ between the two spin-0 particles has a
single short-distance amplitude Ci. The short-distance
factors can therefore be expressed as

�ij ¼ CiðCjÞ�: (23)
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The isospin symmetry of decays that proceed at the quark
level through the heavy quark decay b ! c �cs relates
the short-distance amplitudes for B0 ! K0 þ X and
Bþ ! Kþ þ X:

C0

C1

C2

0
BB@

1
CCA

B0!K0

¼
C1

C0

C2

0
BB@

1
CCA

Bþ!Kþ

: (24)

The constraints on the coefficients C0 and C1 were derived
previously [23,28]. The constraint on the coefficients C2

follows from the equality of the short-distance amplitudes
for B0 ! K0 þ ðJ=c!Þ and Bþ ! Kþ þ ðJ=c!Þ, which
is required by isospin symmetry. Using the simple form for
the short-distance factors for B ! X in Eq. (23), the dif-
ferential decay rate in Eq. (22) reduces to

d� ¼ X
ijkl

½CifikðEÞ�½CjfjlðEÞ��½ImGkl � ImKklðEÞ�dE:

(25)

We can obtain order-of-magnitude estimates for the
ratios of jC0j2, jC1j2, and jC2j2 from measured partial
widths of B into K plus appropriate pairs of mesons. The
decay amplitude into three mesons, such as D�0 �D0Kþ, is a
function of two Lorentz invariants whose range extends
over the Dalitz plot for the three mesons. The amplitudes
C0, C1, and C2 are the short-distance factors of the decay
amplitudes in the corner of the Dalitz plot corresponding to
the threshold for the two mesons other than K. Our esti-
mates of their ratios are based on the assumption that the
short-distance factors do not vary dramatically over the
Dalitz plot. The partial widths of B into K plus pairs of
charm mesons have been measured by the BABAR
Collaboration in Ref. [31]. The partial widths into K plus
J=c! were measured by the BABAR Collaboration in
Ref. [13]. Using the data from Bþ decays, we estimate
jC1j2=jC0j2 by dividing the sum of the partial widths for
D�þD� and DþD�� by the sum of the partial widths for
D�0 �D0 andD0 �D�0. Using the data from B0 decays, we must
interchange the numerator and denominator. The resulting
estimates for jC1j2=jC0j2 are 0.14 from Bþ decays and 0.17
from B0 decays. Using the data from Bþ decays, we
estimate jC2j2=jC0j2 by dividing the partial width for
J=c! by the sum of the partial widths for D�0 �D0 and
D0 �D�0. Using the data from B0 decays, we must replace the
denominator by the sum of the partial widths for D�þD�
and DþD��. The resulting estimates for jC2j2=jC0j2 are
0.037 from Bþ decays and 0.036 from B0 decays. These
estimates suggest that the short-distance production rates
for J=c! and for D�þD� and DþD�� are smaller than
those for D�0 �D0 and D0 �D�0 by factors of about 30 and 6.5,
respectively.

The suppression of C2 relative to C0 and C1 does not
necessarily imply that the C2 term in the resonance factor
in Eq. (26) can be neglected. The C0 and C1 terms in the

resonance factor are multiplied by �X, which is an ampli-
tude for a transition between J=c! and a pair of charm
mesons. Since this process involves a rearrangement of
constituent charm quarks between the two mesons, �X

could provide a sufficient suppression factor to make the
C0 and C1 terms comparable in strength to the C2 term. For
production of the resonance in other channels, such as
J=c	 and D0 �D0�0, the C2 term in the resonance factor
should be completely negligible.

B. Explicit J=c! channel

The inclusive differential decay rate for B ! X þ K in
Eq. (25) can be partially resolved into contributions from
individual resonant states by inserting the expressions for
ImfijðEÞ in Eq. (15). The imaginary part of K22 ¼ �c!

comes from cutting the bubble diagram in Fig. 1(a), in
which J=c and! propagate between points where they are
created and annihilated. The term in the differential rate
proportional to Im�c! therefore represents the contribu-

tion from the final state J=c! or from decay products of
this pair of particles,

d�½J=c!� ¼
��������

X
i¼0;1;2

Cifi2ðEÞ
��������

2ð�Im�c!ðEÞÞdE; (26)

where fi2ðEÞ are the scattering amplitudes in Eqs. (12).
The imaginary part of the function �c!ðEÞ in Eq. (5c) can

be expressed in analytic form:

�Im�c!ðEÞ¼�1=2
c!

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE��c!Þ2þ�2

!=4
q

þE��c!

�
1=2

:

(27)

If E is above the threshold �c! by much more than �!=2,

the expression in Eq. (27) reduces to ½2�c!ðE� �c!Þ�1=2.
In this region of E, Eq. (26) is the differential rate for
producing J=c and ! on their mass shells. If E is below
the threshold �c! by much more than �!=2, the expres-

sion in Eq. (27) reduces to ð18�c!=jE� �c!jÞ1=2�!.

In this region of E, Eq. (26) is the differential rate for
producing J=c plus the decay products of a virtual !,
such as �þ���0. The contribution from the specific

FIG. 1. Diagrams for the propagation of J=c! between
contact interactions: (a) simple bubble diagram with a J=c!
cut, (b) diagram with a J=c�þ���0 cut. The J=c , !, and
pions are represented by double solid, wavy, and dashed lines,
respectively.
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decay channel J=c�þ���0 can be obtained from
Eq. (26) by multiplying by the branching fraction
B!!��� � 89%.

As the energy E approaches the D�0 �D0 threshold, the
elastic scattering amplitude for D�0 �D0 approaches the
universal expression in Eq. (16). The pole at �ðEÞ ¼ �

arises from the denominator DðEÞ, which is a common
factor in all the scattering amplitudes in Eq. (12). Thus all
the scattering amplitudes have that same energy depen-
dence near theD�0 �D0 threshold. The linear combination of
scattering amplitudes that appears in the resonance factor
in Eq. (26) has the behavior

X
i

Cifi2ðEÞ ! 2½�1 � �1��XC0 � 2�1�XC1 � ½2�1�0 � ð�1 þ �0Þ�1�C2

½�0 þ �1 � 2�1�½��V þ �c!� þ 2�2
X

1

��þ �ðEÞ ; (28)

where �1 and �c! are evaluated at E ¼ 0. Thus the reso-
nance factor in Eq. (26) has the simple universal form
j � �þ �ðEÞj�2 at energies E small compared to the
thresholds �1 and �c!, which are both approximately
8 MeV.

C. Implicit J=c! channel

If the short-distance factor C2 for the production of
J=c! is sufficiently small, it is not essential to take the
J=c! channel into account explicitly. It can be taken into
account implicitly through the isospin-0 inverse scattering
length �0. In the factorization formula in Eq. (25), �0

appears in the coupling constant matrix G. The contribu-
tion to Imð�0Þ from the J=c! channel can be deduced
from the substitution for �0 given in Eq. (20):

ðIm�0ÞJ=c! ! 2�2
X

j � �V þ �c!ðEÞj2
ð�Im�c!ðEÞÞ; (29)

where the terms with Im�V and Im�X have been dropped
because they do not contribute to the J=c! final state. Our
final result for the decay rate into the J=c! channel is

d�½J=c!� ¼
��������

X
i¼0;1

Ciðfi0ðEÞ � fi1ðEÞÞ
��������

2

� �2
X

j � �V þ �c!ðEÞj2
ð�Im�c!ðEÞÞdE;

(30)

where fi0ðEÞ and fi1ðEÞ are the scattering amplitudes in
Eqs. (18) with the substitution for �0 in Eq. (20). This

result can also be obtained from the expression in Eq. (26)
in which the J=c! channel is taken into account explicitly
by setting C2 ¼ 0.

D. �c1ð2PÞ resonance
The scattering amplitudes for charm mesons that take

into account the possibility that the 1þþ charmonium
resonance �c1ð2PÞ is near the Xð3872Þ are given by
Eqs. (18) with the substitution for �0 in Eq. (21). The
corresponding expressions for the line shapes were derived
in Ref. [28]. They take into account the short-distance
production of �c1ð2PÞ as well as charm mesons. The
contributions from the imaginary parts of �0, �1, and 

were taken into account, but the coupling constant g was
assumed to be real. The line shapes were used to carry out a
phenomenological analysis of the J=c�þ��, D0 �D0�0,
and D0 �D0� channels.
We can use the results in Ref. [28] to write down an

expression for the line shape in the J=c! channel. For
simplicity, we ignore the possibility of the short-distance
production of �c1ð2PÞ. The inclusive line shape in Eq. (25)
for isospin-0 channels produced by B ! X þ K reduces to

d�½isospin 0� ¼
��������

X
i¼0;1

Ciðfi0ðEÞ � fi1ðEÞÞ
��������

2

� Imð1=�0 þ g2=ðE� 
ÞÞ�1dE; (31)

where fi0ðEÞ and fi1ðEÞ are the scattering amplitudes in
Eqs. (18) with the substitution for �0 in Eq. (21). The
expression for the imaginary part in Eq. (31) that corre-
sponds to cutting rules is

Im

�
1

�0

þ g2

E� 


��1 ¼ jE� 
j2Imð�0Þ þ j�0j2jgj2Imð�
Þ � 2j�0j2Re½gðE� 
�Þ�ImðgÞ
jE� 
þ g2�0j2

: (32)

The first two terms in the parentheses can be
interpreted as contributions from inelastic charm me-
son scattering and from �c1ð2PÞ decay, respectively.
The imaginary parts of �0 and �
 must be posi-
tive. The third term in Eq. (32) can be attributed to
interference between inelastic charm meson scattering
and �c1ð2PÞ decay. Positivity of the line shape for

all energies E requires ðImgÞ2 � Imð�
ÞImð�0Þ=j�0j2.
The line shape in the J=c�þ���0 channel can be
obtained by inserting Eq. (32) into Eq. (31), by
replacing the imaginary parts of �0, �
, and g
by the J=c! channel contributions to the imaginary
parts, and by multiplying by the branching fraction
B!!���.
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V. THREE-PION INVARIANT MASS
DISTRIBUTION

In this section, we derive a simple expression for the
distribution of the invariant massM3� of the three pions in
the decay channel J=c�þ���0. We describe the results
of the BABAR analysis of the M3� distribution and point
out that the probability for the quantum numbers 1þþ for
the Xð3872Þ was underestimated. We describe previous
theoretical analyses of theM3� distribution, which ignored
the effects of experimental resolution. We also study the
effects of scattering on the M3� distribution.

A. M3� distribution

The differential decay rate in Eq. (26) is differential only
in the energy E. We proceed to derive theM3� distribution
within the same framework. The factor of �Im�c!ðEÞ in
Eq. (26) comes from cutting the bubble diagram in
Fig. 1(a). In the case of the final state J=c�þ���0, we
can obtain an expression that is differential in additional
variables by replacing that cut diagram by a cut of the
diagram in Fig. 1(b) in which the cut passes through
J=c�þ���0. The distribution of the invariant mass
M3� of the pions would be obtained by integrating over
all the other pion variables besides M3�. This distribution
can also be obtained more simply from the J=c! cut
diagram in Fig. 1(a). In the nonrelativistic limit, the rela-
tion betweenM3�, the total energyM ¼ ðM�0 þM0Þ þ E,
and the relative momentum q of the J=c or the virtual! is

M ¼ M3� þMc þ q2=ð2�c!Þ: (33)

If the width of the ! is included in its propagator, the
momentum integral for the J=c! cut diagram multiplied
by 4�ðMc þM!Þ is
�

�c!

Z d3q

ð2�Þ3
�!

jE� �c! � q2=ð2�c!Þ þ i�!=2j2

¼ �!

2�

Z M�Mc

�1
dM3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�c!ðM�Mc �M3�Þ

q
ðM3� �M!Þ2 þ �2

!=4
: (34)

The lower limit on the integral overM3� extends below the
physical lower limit of 3m�, but the unphysical region is
strongly suppressed by the Breit-Wigner factor. Upon in-
tegrating overM3�, Eq. (34) reproduces the expression for
�Im�c!ðEÞ in Eq. (27). An expression for the differential

decay rate that is differential in both E and M3� can
therefore be obtained by replacing �Im�c!ðEÞ by the

integrand on the right side of Eq. (34):

d�½J=c!� ¼
��������
X
i

Cifi2ðEÞ
��������

2 �!q

2�½ðM3� �M!Þ2 þ �2
!=4�

� dM3�dM; (35)

where E ¼ M� ðM�0 þM0Þ and q ¼ ½2�c!ðM�Mc �
M3�Þ�1=2 is the relative momentum of the J=c or the

virtual !. This expression for the differential decay rate
is Lorentz invariant. The dependence onM3� is simply the
product of q and a Breit-Wigner resonance function. The
differential decay rate into J=c�þ���0 can be obtained
by multiplying the right side of Eq. (35) by the branching
fraction B!!���.

B. BABAR data

The BABAR data on the decay of Xð3872Þ into J=c!
that favors the quantum numbers 2�þ over 1þþ is theM3�

distribution shown in Fig. 2 [13]. The J=c�þ���0 in-
variant massM is integrated over the range from 3862.5 to
3882.5 MeV, which extends about 10 MeV above and
below the D�0 �D0 threshold. The range of M3� in Fig. 2
is from 740 to 791.8 MeV, which is approximately M! �
5�! to M! þ �!. The BABAR data in Fig. 2 consists of
34:0� 6:6 events including a background of 8:9� 1:0
events. Also shown in Fig. 2 are histograms of
Monte Carlo events generated by the BABAR
Collaboration under the assumptions that the coupling of
X to J=c! is either S-wave or P-wave. The histograms
are normalized to 34 events. Since the P-wave
Monte Carlo gives a better fit to the M3� distribution, the
BABAR Collaboration concluded that the quantum num-
bers 2�þ are favored over 1þþ.
A quantitative measure of the quality of the fit is �2 of

the histogram with respect to the 6 nonzero data points. In
Ref. [13], the values of �2 per degree of freedom were
given as

�2
BABAR=NDF¼ 10:17=5 for S-waveMonte Carlo; (36a)

�2
BABAR=NDF¼ 3:53=5 for P-waveMonte Carlo: (36b)

The probabilities for �2 to be larger than these values are
7.1% and 61.9%, respectively. This seems to indicate that
P-wave coupling of X to J=c! (and therefore quantum
numbers 2�þ) is strongly favored over S-wave coupling
(and quantum numbers 1þþ). However �2ðNÞ is a function
of the normalization N of the histograms. The values of �2

given in Ref. [13] were for histograms normalized to
�N ¼ 34 events, which is the central value of the sum of
the data points. Normalizing them in this way is fine for
illustrating differences in their qualitative behavior, as in
Fig. 2. However it is not appropriate for calculating the �2,
because it does not allow for independent fluctuations in
the 6 bins. Instead it requires that any downward fluctua-
tions in some bins be compensated by upward fluctuations
in other bins. Furthermore there is no guarantee that the
probability distribution for �2ð �NÞ is the standard �2 proba-
bility distribution. The quantity that has the probability
distribution of �2 for 5 degrees of freedom in the limit of
ideal measurements is �2ðNÞ minimized with respect to N.
The minimum �2 per degree of freedom for the BABAR
data is
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�2ðNmin Þ=NDF¼7:49=5 for S-waveMonte Carlo; (37a)

�2ðNmin Þ=NDF¼3:25=5 forP-waveMonteCarlo: (37b)

For the S-wave Monte Carlo, the minimum is at Nmin ¼
24:9 and the probability for �2 to be larger than the
observed value is 18.7%. For the P-wave Monte Carlo,
Nmin ¼ 30:3 and the probability for �2 to be larger than the
observed value is 66.2%. While a P-wave coupling is still
favored over S-wave, it is not favored as strongly as
reported in Ref. [13].

In order to compare a theoretical distribution to one that
is measured, it is essential to take into account the experi-
mental resolution. In the BABAR experiment, the experi-
mental resolution on M is �X ¼ 6:7 MeV [13]. The
experimental resolution on M3� was not given in
Ref. [13]. A reasonable estimate is the resolution of the
! mass in a study of the decay �B0 ! D�!��, which was
�! ¼ 5:6 MeV [32]. These resolutions can be taken into
account by convolving the distribution in Eq. (35) with
Gaussians in M and M3�:

Z
dM0

3�dM
0 d�½J=c!�
dM0

3�dM
0
e�ðM�M0Þ2=2�2

Xffiffiffiffiffiffiffi
2�

p
�X

e�ðM3��M0
3�Þ2=2�2

!ffiffiffiffiffiffiffi
2�

p
�!

:

(38)

Although it was not stated explicitly in Ref. [13], the
BABAR data and histograms in Fig. 2 are uncorrected for
acceptances and efficiencies [33]. This can be deduced
from the fact that the central value of each data point for
the combineddistributions fromBþ andB0 decay inFig. 4(c)
of Ref. [13] is equal to the sum of the central values of the
data points for the separate distributions from Bþ decay

and B0 decay in Figs. 4(a) and 4(b). Since the BABAR data
shown in Fig. 2 are uncorrected, direct comparisons with
theoretical distributions forM3� are not appropriate.
In Ref. [13], the generator for BABAR’s P-wave

Monte Carlo differs from the generator for the S-wave
Monte Carlo by a multiplicative factor of q2=ð1þ R2q2Þ,
where q is the relative momentum of the J=c and
R ¼ 3 GeV�1. However, the generator used for BABAR’s
S-wave Monte Carlo is not stated in Ref. [13]. Based on the
limited information provided, a plausible guess is that the
generator is equivalent to Eq. (35) with the resonance
factor jP Cifi2j2 replaced by �ðM�MXÞ, where MX ¼
3873:0 MeV is the central value of the Xð3872Þ mass from
BABAR’s fit to the J=c�þ���0 invariant mass distribu-
tion. This central value corresponds to a negative binding
energy EX ¼ �1:1 MeV, but it is consistent within errors
with the small positive binding energy in Eq. (7).

C. Previous theoretical analyses

There have been two previous theoretical analyses
[12,34] of the M3� distribution shown in Fig. 2. Both
analyses were based on the incorrect implicit assumption
that the BABAR data were corrected for acceptances and
efficiencies. Both analyses also ignored the experimental
resolution.
Hanhart et al. carried out a combined analysis of data

from the Belle Collaboration on the decay into J=c	 and
from the BABAR Collaboration on the decay into J=c!,
comparing the options 1þþ and 2�þ for the quantum
numbers of the Xð3872Þ [12]. The Belle data was the
distribution ofM2� from X ! J=c�þ��, and it consisted
of approximately 200 events in 19 bins [16]. The BABAR

740 750 760 770 780 790
0

2

4

6

8

10

12

14

M3 MeV

E
ve

nt
s

7.
4

M
eV

bi
n

S wave MC

P wave MC

FIG. 2 (color online). Uncorrected distribution of M3� integrated over the J=c�þ���0 invariant mass M from 3862.5 to
3882.5 MeV. The data points are the BABAR data from Ref. [13]. The histograms are for Monte Carlo events generated by BABAR
under the assumption that the coupling of Xð3872Þ to J=c! is S-wave (dashed lines) or P-wave (solid lines) [13]. The vertical dashed
line marks the position of the center of the ! resonance.

ERIC BRAATEN AND DAEKYOUNG KANG PHYSICAL REVIEW D 88, 014028 (2013)

014028-8



data was the distribution ofM3� from X ! J=c�þ���0,
and it consisted of only 25 events in 6 bins [13]. The
theoretical distributions for M2� and M3� in Ref. [12]
take into account 	�! mixing and the energy depen-
dence of the 	 and ! widths. For the mass of the Xð3872Þ,
the authors used MX ¼ 3871:5 MeV, and they ignored its
width. They also ignored the experimental resolutions of
the invariant masses M2� and M3� of the pions and M of
the system consisting of J=c and pions. The resulting
distribution for M3� drops to 0 sharply at 775 MeV. For
the S-wave case, it is well-approximated by Eq. (35) with
the resonance factor jP Cifi2j2 replaced by �ðEÞ. This
simple distribution is illustrated in Fig. 3, where it has
been normalized so that the area under the curve is 34
events. The shape of the curve does not resemble that of the
BABAR data or BABAR’s S-wave Monte Carlo histogram,
primarily because the experimental resolution onM3� was
ignored. As a measure of the quality of the combined fit,
Ref. [12] used the �2 per degree of freedom for the BABAR
and Belle data sets. Given the large error bars in the BABAR
data and the small number of data points, this measure is
sensitive only to the total number of J=c�þ���0 events
and not to the shape of the M3� distribution. The authors
concluded from their analysis that the combined Belle and
BABAR data favor the quantum numbers 1þþ.

Faccini et al. carried out an analysis [34] that also
included the Belle data on angular distributions for the
decay into J=c�þ�� [16]. The authors used MX ¼
3872 MeV, and they took the width of the Xð3872Þ to be
1.7 MeV. This is larger than the upper bound on the width
in Eq. (8). They ignored the experimental resolutions of
M2�, M3�, and M. For the S-wave case, the resulting

distribution for M3� is well-approximated by Eq. (35)
with jP Cifi2j2 replaced by a Breit-Wigner function of E
centered at E ¼ 0 with width 1.7 MeV. This distribution is
illustrated in Fig. 3, where it has been normalized so that
the area under the curve is 34 events. The sharp cutoff on
M3� at 775 MeV in Ref. [12] has been replaced by a tail
from the Breit-Wigner that extends up to about 785 MeV.
The shape of the curve does not resemble that of the
BABAR data or BABAR’s S-wave Monte Carlo histogram,
primarily because the experimental resolution onM3� was
ignored. In the combined fit to the J=c�þ�� and
J=c�þ���0 data, the �2 per degree of freedom favors
the quantum numbers 1þþ, but this measure is sensitive
only to the total number of J=c�þ���0 events.
According to Ref. [34], the analysis of the J=c�þ���0

data alone excludes 1þþ at the 99.9% confidence level.
However this probability should not be taken seriously,
because experimental resolution was ignored in the analy-
sis and because the BABAR data were not corrected for
acceptances and efficiencies.
To take into account the resolution in the experiment of

Ref. [13], the distribution in Eq. (35) should be convoluted
with a Gaussian in M of width �X ¼ 6:7 MeV and a
Gaussian in M3� of width �! ¼ 5:6 MeV as in Eq. (38).
The M3� distribution is then obtained by integrating over
M from 3862.5 to 3882.5 MeV. If we assume the resonance
factor jP Cifi2j2 is dominated by a region near the D�0 �D0

threshold whose width is small compared to 6.7 MeV, we
can replace the resonance factor by a delta function at
E ¼ 0. The effect of integrating over the 20 MeV range
of E is then to constrain M to be equal to the D�0 �D0

threshold. The experimental resolution on M appears
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FIG. 3 (color online). Distribution ofM3� integrated over the J=c�þ���0 invariant massM from 3862.5 to 3882.5 MeV. The data
points and histograms are as described in Fig. 2. The three curves are calculated from Eq. (35) using (1) the resonance factor �ðEÞ and
no experimental resolution (dotted curve), as in Ref. [12], (2) a Breit-Wigner resonance factor with width 1.7 MeVand no experimental
resolution (dash-dotted curve), as in Ref. [34], (3) the resonance factor �ðEÞ and experimental resolution of 5.6 MeV in M3� (solid
curve). The vertical dashed line marks the position of the center of the ! resonance.
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only in a multiplicative factor, so it does not affect the
shape of the M3� distribution. The resulting M3� distribu-
tion is shown in Fig. 3, where it has been normalized so that
the area under the curve is 34 events. The shape of this
distribution is much closer to both the BABAR data and
BABAR’s S-wave Monte Carlo than the distributions in
which energy resolution was ignored.

Both of the previous theoretical analyses took into
account the energy dependence of the width �! of the !
resonance [12,34]. The energy dependence comes primar-
ily from the total phase space for the decay !� !
�þ���0. The phase space increases by about 2% as the
invariant mass increases by �! � 8:5 MeV from M! �
783 MeV to M! þ �!. Thus the effect of the energy-
dependent width is not very dramatic.

D. Resonance factor

Since the BABAR data in Fig. 2 is uncorrected for
acceptances and efficiencies, direct comparisons with theo-
retical M3� distributions are not appropriate. However,
given the relatively low probability for BABAR’s S-wave
Monte Carlo, it is worth asking whether there are aspects of
the Xð3872Þ resonance that could improve the agreement
between the S-wave Monte Carlo and the data. Better
agreement could have been obtained with a generator
that gives an M3� distribution whose peak is shifted lower
by about 10 MeV by suppressing the distribution above
770 MeV. The differential rate for S-wave coupling to
J=c! in Eq. (35) implies that the M3� distribution has
the form

d�½J=c!�
dM3�

¼ �!

2�½ðM3� �M!Þ2 þ �2
!=4�

�
Z
Emin

dE

��������
X
i

Cifi2ðEÞ
��������

2

qðEÞ; (39)

where qðEÞ¼ ½2�c!ðE��c!�M3�þM!Þ�1=2, Emin ¼
M3��M!þ�c!, and the upper endpoint of the integral

over E is well above the D� �D threshold region. The last
factor in Eq. (39) is the integral of the line shape weighted
by the relative momentum q. We wish to determine
whether the dependence of this factor on M3� could im-
prove the agreement between the S-wave Monte Carlo and
the BABAR data in Fig. 2. The generator for BABAR’s
P-wave Monte Carlo produced a downward shift in the
peak of the M3� distribution by about 10 MeV through an
additional multiplicative factor of q2=ð1þ R2q2Þ. If the
line shape can be approximated by a delta function near
E ¼ 0, the factor of q2 has a zero at M3� ¼ M! � �c! �
775 MeV. We wish to determine whether a comparable
shift can be produced instead by a change in the resonance
factor.

1. Universal resonance factor

According to Eq. (28), the resonance factor sufficiently
near the D�0 �D0 threshold has the universal line shape
j � �þ �ðEÞj�2. This universal resonance factor can not
be approximated by a delta function in E, because it has
power-law tails that decrease as 1=j2�0Ej at large jEj.
When integrated over a smooth distribution in E, it can
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FIG. 4 (color online). Distribution of M3� integrated over the J=c�þ���0 invariant mass M from 3862.5 to 3882.5 MeV. The
experimental resolutions of 6.7 MeV in M and 5.6 MeV in M3� are taken into account. The curves are calculated using the binding
energy EX ¼ 0:26 MeV and a resonance factor that is either a delta function at E ¼ �EX (blue solid curve) or the universal resonance
factor with the minimal width �X ¼ 0:066 MeV (black dashed curves). The shaded band takes into account variations in EX from 0 to
0.65 MeV and in �X from 0.066 to 1.2 MeV.
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be approximated by the sum of a Lorentzian in E and 1=jEj
tails at positive and negative energies. The Lorentzian is
centered at �EX with width �X, where EX and �X are the
binding energy and width of the Xð3872Þ, and it can be
approximated by ð4�EX=�0�XÞ�ðEþ EXÞ. The tails have
the form 1=j2�0Ej that extend from small jEj of order EX

to large jEj of order �1 or �c!. The relative sizes of the

integrals of the line shape over the peak near�EX and over
the tails are approximately 4�EX=�X and ln ð�1=EXÞ, so
the contribution from the tails can be significant. The M3�

distributions for the universal resonance factor j � �þ
�ðEÞj�2 and for �ðEþ EXÞ, with the resolutions in M
and M3� taken into account, are compared in Fig. 4.
Replacing �ðEþ EXÞ by the universal resonance factor
gives a negligible shift in the position of the peak
in M3�. The variations in the M3� distribution for the
universal resonance factor from the uncertainties in EX

and �X are also shown in Fig. 4. The small shifts in the
position of the peak come primarily from the variations
in EX.

2. Interference between scattering channels

BABAR’s P-wave Monte Carlo produced a significant
shift in the position of the peak of the M3� distribution
through a multiplicative factor of q2, which has a zero at
E ¼ �c! þM3� �M!. It is plausible that a significant

shift could also be produced by an approximate zero in the
resonance factor instead. An approximate zero ofP

Cifi2ðEÞ could arise from interference between the scat-
tering channels. To suppress the region of M3� above
765 MeV, the approximate zero of

P
Cifi2ðEÞ would

have to be at an energy E0 above the D�0 �D0 threshold.
The shape of the general resonance factor jP Cifi2j2
depends on the ratios C1=C0 and C2=C0 of the complex
short-distance factors and on the scattering parameters �0,
�1, �X, and �V . The short-distance factors Ci can be
complex, so an approximate zero requires a fine tuning
of these coefficients.

We can examine this possibility with a simplified form
of the resonance factor that has fewer adjustable parame-
ters. We set C2 ¼ 0, which implies that production of the
Xð3872Þ resonance is dominated by the creation of charm
meson pairs at short distance rather than J=c!. This
assumption is motivated by the suppression of C2 sug-
gested by the estimates in Sec. IVA. The resonance
factor then reduces to C0f02 þ C1f12, where the scatter-
ing amplitudes f02ðEÞ and f12ðEÞ are given in Eqs. (12d)
and (12e). The numerator of the resonance factor is
proportional to C0ð��1 þ �1Þ � C1ð��1 þ �Þ. If there
is an interference zero at E0, the short-distance coeffi-
cients must satisfy

C1

C0

¼ ��1 þ �1ðE0Þ
��1 þ �ðE0Þ : (40)

We further assume j�Vj 	 j�c!ðEÞj, which implies that

the J=c! channel would not have a bound state near
threshold in the absence of the Xð3872Þ resonance. The
denominator DðEÞ in f02ðEÞ and f12ðEÞ then reduces to
the denominator D0ðEÞ for the 2-channel case in Eq. (19),
with �0 replaced by

�eff
0 ¼ �0 � 2�2

X=�V: (41)

The scattering parameter �1 is determined by the value of
� as in Eq. (17), which reduces to

� ¼ 2�eff
0 �1 � ð�eff

0 þ �1Þ�1ð0Þ
�eff
0 þ �1 � 2�1ð0Þ

: (42)

Thus �eff
0 is the only scattering parameter that affects the

shape of the resonance factor.
The adjustable parameters in our simplified resonance

factor are �eff
0 and E0. We wish to determine whether the

peak in the M3� distribution can be shifted downward by
about 10 MeV by adjusting these parameters. We there-
fore consider E0 in the range between 0 and 10 MeV.
For some values of �eff

0 , there is another resonance with

energy below Xð3872Þ, which is inconsistent with obser-
vations. Demanding no such resonance constrains �eff

0 <
�1ð0Þ=2 � 60 MeV. There can also be a substantial
enhancement near E ¼ �1 from a cusp associated with
the opening up of the D�þD� threshold. This has the
opposite effect of the suppression above the threshold
that we want. To avoid the enhancement, we require
j�eff

0 þ �1j> 2j�1ð0Þj, which combined with Eq. (42)

implies �eff
0 > 50 MeV or �eff

0 <�300 MeV. For the

given regions of E0 and �eff
0 , we are unable to obtain a

significant shift in the peak of the M3� distribution to
lower mass.

3. Interference from tail of �c1ð2PÞ resonance
Another way to suppress the resonance factor for E

above the D�0 �D0 threshold is through interference with
the low-energy tail of the �c1ð2PÞ resonance. The in-
clusive line shape in the isospin-0 channel is given in
Eq. (31). It can be resolved into contributions propor-
tional to the imaginary parts of �0, �
, and g by using
Eq. (32). The line shape in the J=c! channel can be
obtained by replacing the imaginary parts of �0, �
,
and g in Eq. (32) by the contributions to those imagi-
nary parts from the J=c! channel, and allowing those
imaginary parts to be energy-dependent. For example,
the substitution for Im(�0) is given in Eq. (29). If we
use the assumption j�V j 	 j�c!ðEÞj, the substitution for

Imð�0Þ reduces to �Im�c!ðEÞ multiplied by a constant.

The substitutions for �
 and g would reduce to similar
forms. The expression in Eq. (32) then reduces to the
product of the resonance factor 1=jE� 
þ g2�0j2, the
threshold factor �Im�c!ðEÞ, and a quadratic function
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of the energy E. The maximum possible interference
effect corresponds to total destructive interference at
some energy E0 above the D�0 �D0 threshold. In this
case, the quadratic function of E reduces to ðE� E0Þ2
and the expression in Eq. (32) reduces to

�
Im

�
1

�0

þ g2

E� 


��1
�
J=c!

! �Im�c!ðEÞ
jE� 
þ g2�0j2

2�2
X

j�V j2
ðE� E0Þ2; (43)

We vary the position of the interference zero by chang-
ing E0 between 0 and 10 MeV. We are unable to obtain
a significant shift in the peak of the distributions to
smaller M3� by tuning the interference position E0.
We are also unable to obtain a significant shift using
zeroes in both the Xð3872Þ resonance factor jP Cifi2j2
and the �c1ð2PÞ resonance factor in Eq. (43).

VI. SUMMARY

The quantum numbers of the Xð3872Þ have been defi-
nitely established as 1þþ from analyses of the J=c�þ��
decay channel. This settles an issue raised by a BABAR
analysis of the M3� distribution for the J=c�þ���0

decay channel that preferred 2�þ over 1þþ [13]. We
pointed out that in the BABAR analysis, the quoted values
of �2 were not minimized with respect to the adjustable
normalizations of the Monte Carlo distributions. Upon
minimization of the �2, the probability for 1þþ is in-
creased significantly from 7.1% to 18.7% while the proba-
bility for 2�þ is increased only slightly from 61.9% to
66.2%. Thus the preference for 2�þ over 1þþ was over-
stated in Ref. [13].

For the benefit of future analyses of the Xð3872Þ reso-
nance in the J=c�þ���0 decay channel, we considered

whether a more accurate description of the resonance could
have further improved the agreement between the BABAR
data and the BABAR S-wave Monte Carlo for the 1þþ case.
To describe the resonance more accurately, we derived the
low-energy scattering amplitudes due to S-wave couplings
between the three channels in Eq. (1): neutral charm meson
pairs, charged charm meson pairs, and J=c!. We also
considered how the scattering would be affected by an
additional �c1ð2PÞ resonance with quantum numbers
1þþ. We used the scattering amplitudes to derive the line
shape for the J=c�þ���0 decay channel and also the
M3� distribution.
The BABAR P-wave Monte Carlo that was preferred by

the BABAR data over the S-wave Monte Carlo gave anM3�

distribution whose peak was about 10 MeV lower. We
considered several mechanisms for shifting the peak for
the S-wave case to lower values ofM3�. We considered the
effects of the power-law tails of the universal scattering
amplitude. We considered interference between the charm-
meson scattering channels. We also considered the inter-
ference from the tail of a higher �c1ð2PÞ resonance. For all
these mechanisms, theM3� distribution was robust against
a shift in the peak shift to lower values. We conclude that,
given the resolution in the BABAR experiment, a more
accurate description of the Xð3872Þ resonance in the
J=c�þ���0 decay channel is not essential. The effects
we have considered may however be important in future
analyses of this decay channel with higher resolution.
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