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ABSTRACT

Using a structured approach to understand the interaction between product design
decisions and manufacturing system design is critical to reflect manufacturing system
issues early in the product development process. Early consideration of manufacturing
system issues prevents product design iterations due to manufacturing system constraints
or unnecessary manufacturing system design modification to accommodate new product
designs. However, in academia and industry, few frameworks are available to capture the
interaction between manufacturing system design and product design decisions.

This thesis presents an approach to capture the interaction between manufacturing system
design and product design decisions, which is called manufacturability evaluation
process. The manufacturability evaluation process aims to guide product development
teams to see the effects of their design decisions on manufacturing systems and thus, to
make the right decision from the early stage of product development. The
manufacturability evaluation process satisfies four objectives: 1) to describe the
objectives of manufacturing systems clearly separated from the means of achievement, 2)
to present the impact of various design decisions on the achievement of the objectives of
manufacturing systems, 3) to provide a common platform to effectively communicate the
impact across the organization, and 4) to provide a framework to put existing tools
together to integrate manufacturing system design and product design. The
manufacturability evaluation process is based on a recently developed Manufacturing
System Design Decomposition (MSDD).

This thesis describes three groups of case studies to identify industry practices and
provide application examples of the proposed manufacturability evaluation process. The
manufacturability evaluation process has been successfully applied to the cases. In
addition, the interaction between manufacturing system design and product design
decisions are discussed with industry case study examples in the automotive industry. An
evaluation tool is developed to evaluate the general practices of a company ensuring the
manufacturability of product designs. Furthermore, this thesis provides a basis for future
research to extend the scope of the MSDD into product development areas.

Thesis Supervisor: David S. Cochran, Associate Professor of Mechanical Engineering
Committee Member: Professor Deborah J. Nightingale
Committee Member: Dr. Hugh L. McManus
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1 INTRODUCTION

Product development is a series of organized activities to realize a product concept into a

finished tangible product. Product development begins with the perception of a market

opportunity and ends in the production, sale, and delivery of a product [Ulrich and

Eppinger 2000]. Product design, process design, and manufacturing system design are

core activities in product development. These three core activities significantly affect the

success of a new product development project, which eventually shape the prosperity of a

manufacturing company. Among the core activities, product design had been conceived

as the activity that should be done first, followed by process design and lastly,

manufacturing system design. In some sense, it is a natural sequence since process design

or manufacturing system design exists to turn a given product design into a physical

product. Therefore, it had been customary to finish product design first and deliver

product design data to a production engineering group for process design, and then to

manufacturing group for production.

However, in today's market where competition based on 'time-to-market' is strongly

dominant, it is key for success to minimize the time between product concept and product

realization [Ulrich and Eppinger 2000], [Utterback 1994], [Fine 1998]. The traditional

sequential approach is not competitive in this market environment. One way to shorten

the time between product concept to market is to minimize design iterations caused by

downstream constraints and unnecessary downstream system changes resulting from

inappropriate upstream decisions. Therefore, a new way of product development has been

proposed that considers downstream issues in the earlier phase of product development to

minimize potential problems later on (e.g., Andreasen [1987], Clausing [1994], Clark and

Fujimoto [1991]). For example, manufacturing is supposed to produce given product

designs. However, it can be very costly and time consuming to modify a manufacturing

system [Heragu 1997] to support a new product design that does not fit to the existing

manufacturing system. Therefore, if the existing manufacturing system is considered

during product design and a new product is designed within the existing manufacturing

constraints, the existing manufacturing system can more easily produce the new product
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and thus, total product development time and cost are minimized. This rationale is

summarized in Figure 1-1.

Manufacturing is

supposed to
Product design produce given

oduct design

Manufacturing system
Creative design
while considering
manufacturing as
given constraints

Very costly and time
consuming to modify

FIGURE 1-1. THE RELATIONSHIP BETWEEN MANUFACTURING AND PRODUCT DESIGN

To avoid design iterations and make correct decisions in the early product development

phase, well-planned coordination of the core activities is essential, along with a lively

exchange of information between functional groups responsible for each of the core

activities. A number of structured methodologies have been developed to find the most

efficient way to coordinate these three activities at various abstraction levels. Some of the

examples are: Concurrent Engineering (CE), Robust Design, Simultaneous Engineering

(SE), Design for Manufacturing and Assembly (DFMA), and Total Quality Development

(TQD). Each of these methodologies provides useful tools to coordinate the core

activities and ensure the information exchange between the functional departments

typically responsible for each of the core activities. Typically, the product design (or

engineering) group, production engineering group, and manufacturing (or production)

group are responsible for each of the core activities.

These methodologies, however, often neglect or only partially consider the issues of

manufacturing system design. For example, the traditional DFMA approach proposed by

Boothroyd et al. [1994] focuses on process, material, and equipment issues without

considering scheduling or changeover issues of manufacturing system design. Even in

cases where manufacturing engineers participate in cross-functional product development
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teams, as suggested by the CE and SE approaches, tools are not readily available for

review by manufacturing engineers as to adequateness of a product and process design

from a manufacturing system viewpoint. The result is ad-hoc application of principles

available in academia or rule-of-thumb guidelines based on engineers' personal

experience. This approach often leads to endless design modifications or costly

manufacturing system modifications, which lead to subsequent loss to the company.

Therefore, a systematic approach to understand the interactions among product design,

process design, and manufacturing system design is critical to reflect manufacturing

system issues early in the product development processes and to avoid unnecessary

manufacturing system design modifications to accommodate new product or process

designs. Early consideration of manufacturing system design issues during product

development is important, considering manufacturing systems often cannot be easily

developed or modified [Heragu 1997].

This thesis presents an approach to capture the interactions between manufacturing

system design and product development. This approach helps product development teams

to see the effects of their design decisions on manufacturing systems and thus, to make a

right decision in the early stage of product development. As a basis of the proposed

approach, a recently developed manufacturing system design decomposition (MSDD) is

applied. In addition to the proposed approach, interactions between manufacturing system

design and product development will be discussed with an industry case study example.

Without a clear understanding of the interactions between various aspects of

manufacturing system design (e.g., material flow design, line balancing, etc.) and product

development decisions (e.g., variety decision, product architecture decision, etc.), true

concurrent engineering cannot be achieved. This understanding is important even to

avoid having manufacturing engineers sitting in the corner of the meeting room and

simply wasting their time during numerous product development meetings. If the

manufacturing engineers clearly understand what part of their knowledge can contribute

to avoiding product design decisions that negatively affect manufacturing systems, their

productivity can be greatly improved.
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1.1 Motivation

The introduction of a new product design to an existing manufacturing system affects the

design and operation of the existing manufacturing system. Therefore, extensive

consideration of the consequences of the new product design on the design and operation

of manufacturing systems is necessary. Based on the extensive study of the effect of the

new product design on the performance of manufacturing systems, it can be identified

whether the product design decision affects manufacturing systems in a positive way or a

negative way. Then, if there is any negative impact, it should be decided whether product

designs would be modified or manufacturing systems would be modified in order to

eliminate the identified negative impact. Even when a new manufacturing system or a

production line is constructed for the new product design, the same rationale applies. A

simultaneous consideration of both manufacturing system design and product design

should be made. Except for the financial considerations associated with a development of

a new manufacturing system, the only difference between modifying existing plants and

constructing new ones will be a level of manufacturing constraints given to the product

development team. When a new product is produced at an existing plant, the existing

facility and the existing production of other products within the plant will behave as

manufacturing constraints. However, this rationale is not extensively deployed in a

typical product development process in the auto industry.

In the auto industry, it usually takes about three to four years to develop a new model of a

car. This development is followed by four to five years of consequent commercial

production of the model. During the commercial production, a new car design is

developed and released for continuous sales. According to the cycles of model changes,

manufacturing plants where the new product design is realized are modified, or

sometimes newly constructed to accommodate the new product design. In fact, it is more

typical to modify existing manufacturing plants, considering much longer lifecycle of a

manufacturing plant than that of a product. The modification of existing manufacturing

plants often involves large investment to change the tooling of the existing equipment or

to implement a new production line. Sometimes, a manufacturing plant is re-equipped for

its own sake (e.g., replacing old machinery, changing material flows for system
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improvement, etc.). Figure 1-2 illustrates a typical relationship between product

development projects and manufacturing system design changes.

New Product Development

3 yrs 4 - 5 yrs Production

2 - 3 yrs15 - ?

Manu

Manufacturing System Design
and Modification

Product
Design

yrs

facturing System

FIGURE 1-2. PRODUCT DEVELOPMENT AND MANUFACTURING SYSTEM DESIGN

In any case, the extensive communication and information sharing between

manufacturing and product design is essential to develop a product that can be easily

manufactured in current manufacturing systems and to modify manufacturing systems

according to the new product design with minimum time and costs. Often, however,

manufacturing systems are first designed without considering future product strategy and

then, modified in an ad-hoc way to accommodate new product designs that do not reflect

manufacturing systems constraints. Furthermore, it is not a well-established custom to

manage knowledge gained from the previous manufacturing system design projects and

to utilize it for a new project, which is partially due to the lack of a formal process to

capture the knowledge [Grant 1996]. Figure 1-3 summarizes these problems.
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No Product
FeedbackD -

Manufacturing System

Short-sighted Manufacturing System Modification
Design

Decision

FIGURE 1-3. THROW-OVER-THE-WALL APPROACH

One of the root causes responsible for the lack of consideration of manufacturing system

design during product design is that there is no systematic framework available to link

manufacturing system design with product design. In fact, it is true that several existing

methodologies address the issue of integrating manufacturing and product design. For

example, the traditional DFMA approach helps product designers to avoid manufacturing

problems, and estimate the cost of machining and assembly. Such methodologies as

concurrent engineering and simultaneous engineering provide how to manage a product

development project for better producible product design and more efficient product

development process by presenting the needs for the integration of different corporate

functions. However, there is no distinctive systematic approach to incorporate

manufacturing systems issues (e.g., material flow design, mix-production scheduling,

etc.) with product design decisions. The DFMA approaches are focusing on the impact of

product design on an individual manufacturing process. Concurrent engineering centers

on the organizational issues at a high level of abstraction. In some sense, the vast

literature and industry practices on manufacturing system design is quite separated from

the numerous articles and reports on product development.

Chapter 2 describes three types of typical problems in detail arising from the lack of a

systematic method to see the impact of a product design decision on manufacturing

systems. Please refer to the second chapter for more information on the problems
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identified in industry with regard to the consideration of manufacturing system designs

during product design.

1.2 Problem Statement

To summarize, there is a need for product development teams to see the impact of their

design decisions on manufacturing systems. This need may be transformed into the

following two research problems.

(1) How do product development decisions interact with manufacturing system design?

(2) How can we systematically identify the interactions?

These main research problems are very general and thus, difficult to solve. Therefore,

they need to be subdivided into the subproblems that can be easily handled and solved.

The following four subproblems are identified.

1) How can we represent manufacturing system design?

2) How can we represent product development? What decisions in product

development (especially related to product/process design) affect manufacturing

system design?

3) How to identify the interactions between product/process design and

manufacturing system design?

4) What are the examples of interactions and how the existing approach can be

viewed with the new methodology?

The main research problems are solved by investigating solutions to the subproblems and

developing tentative solutions for the sub-problems. For example, for the first sub-

problem, the MSDD that is explained in Chapter 6 is considered as a tentative solution.

The rationale behind the solutions to the subproblems is discussed throughout the thesis.

Further discussion on the problem statements and the tentative solutions is available in

Chapter 3.
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Based on the solutions to the subproblems, a comprehensive framework that can guide

product development teams to see the impact of their design decisions on manufacturing

systems is proposed. This framework will satisfy the following requirements:

* Clearly describes the objectives of manufacturing systems separated from the

design solutions to achieve the objectives

- Presents the impact of a design decision in various levels of abstraction on the

achievement of the objectives of manufacturing systems

- Provides a common platform to effectively communicate the impact across the

organization

" Integrates existing tools to integrate product design and manufacturing

- Provides an easily-applicable interface to product development team members to

evaluate the manufacturability of their design decisions

1.3 Scope of Research

The goal of this research is to develop a methodology that will enable product

development teams to see the impact of their design decisions on the achievement of the

objectives of manufacturing systems. In order to achieve this goal, a framework to check

the manufacturability of a design decision is proposed. The proposed manufacturability

evaluation process is developed in four steps.

" Development of the manufacturing system design decomposition (MSDD)

. Identification of general design decision categories that affect manufacturing

systems

- Development of the manufacturability evaluation process

- Validation of the manufacturability evaluation process

The MSDD shown in Appendix A is developed based on the axiomatic design

methodology. The MSDD represents a logical decomposition of a high-level functional

requirement and its corresponding solution (design parameter) of manufacturing systems

into low-level requirements and their solutions. With this decomposition structure, the
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MSDD can provide a systematic explanation of the relationships between many elements

of a manufacturing system design. Consequently, the linkage of detailed design

parameters to high-level system objectives can be identified with the use of the MSDD.

The validity of the MSDD has been confirmed by many authors such as Cochran et al

[2000d, 2001a, 2001b], Linck [2001], Duda [2001], and Arinez [2001] through its

successful applications in the real industry problems. Therefore, the validation of the

MSDD itself is not within the scope of this thesis. The MSDD is going to be accepted as

useful to represent the objectives and corresponding solutions of manufacturing systems.

Six general design decision categories that affect manufacturing systems are identified

based on extensive literature research. These categories are product variety, product

architecture, purchasing, material selection, process selection, and detailed design. This

categorization is made just to provide a guide when a specific design is evaluated in

terms of its impact on manufacturing systems. In addition, the proposed categorization is

general enough to significantly affect the proposed manufacturability evaluation process.

Therefore, the effectiveness of the proposed categorization compared to other possible

categorization is not considered or discussed in this thesis.

The proposed manufacturability evaluation framework uses the MSDD to systematically

represent the requirements of manufacturing systems. The evaluation process shows what

objectives of manufacturing systems are affected by a certain design decision. If some

objectives are negatively affected by the design decision, the negative impact should be

eliminated by modifying the design decision or the manufacturing system in

consideration. However, this thesis does not attempt to provide general principles of

eliminating the conflicts since the conflicts between the design decision and the

manufacturing system design may result from various factors of product development

such as marketing, corporate technology strategy, and financing. This thesis focuses on

the interface between product design and manufacturing while the other corporate

functions such as marketing and financing also affect a certain design decision. The

interactions caused by the corporate functions other than product design and

manufacturing are out of the scope of this thesis.
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The validation of the proposed framework is done by providing the application examples

of the proposed framework as well as analyzing the results of two questionnaires sent to

industry. The triangulation strategy is adopted for the validation, which is frequently used

in a qualitative research. Detailed discussion on the research methodology adopted in this

thesis is provided in Chapter 3.

1.4 Organization of Thesis

This thesis consists of nine chapters. In the first chapter, the introduction of the research

is given. The motivation of the research is presented along with a clear statement of

research problems. The second chapter emphasizes the problem that this thesis addresses

by showing three examples of problematic situations that can happen when the

information exchange between manufacturing and product design is not clearly defined

and extensively conducted. In the third chapter, the research methodology adopted by the

thesis is explained. A brief review on the existing research methodologies is given, which

is followed by a presentation of the methodologies adopted. The design of the research is

provided in this chapter. The fourth chapter provides a literature review. Existing

literature in the areas of product development and manufacturing system design is briefly

reviewed while a detailed look at the literature related to the information exchange

between manufacturing and product design is given. The fifth chapter reviews the

industry practice related to the information exchange between manufacturing and product

development. Many efforts in the automotive industry to facilitate the communication

between manufacturing and product development are presented in this chapter. The sixth

chapter describes the manufacturing system design decomposition (MSDD) in detail,

which forms a basis for the proposed methodology that is presented in Chapter 7.

Chapter 7 is a main chapter of this thesis. The framework to capture the interactions

between product design and manufacturing is provided with the application examples. In

addition, the rationale behind the proposed framework is discussed in detail. In the eighth

chapter, an evaluation tool derived from the proposed methodology is provided as well as

its industry applications. The relationship between the proposed evaluation tool and the

validity of the proposed methodology is explained in this chapter. Chapter 9 summarizes
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the work presented in this thesis and suggests further research problems in the interface

field between manufacturing and product design.
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2 INDUSTRY PROBLEMS

In this chapter, three examples are provided to illustrate what can happen if there is no or

weak communication between manufacturing and product design. Instead of providing

traditional Design for Manufacturing (DFM) examples, this chapter presents the cases

showing how manufacturing 'systems' are affected by certain product design decisions.

The first example shows how a manufacturing plant has been evolved with the

introduction of new product generation without a serious consideration of manufacturing

system design. The second case presents how a detailed design decision can affect the

overall manufacturing system design. The final example describes a possible problem

within a product development team due to the lack of knowledge on how product design

decisions affect manufacturing system design.

2.1 The Evolution of Plant M

This section describes a problem that a manufacturing plant has experienced because of

the lack of communication between manufacturing and product development. A historical

evolution of a plant is described and the role of new product designs on the modifications

of the plant is discussed. Much of the content is adopted from the case study conducted

by Linck [2001] and Cochran et al. [2001b].

2.1.1 Overview of the plant

Plant M produces plastic bumpers for the OEM companies in the automotive industry. In

average, 7,500 bumpers are shipped to three final customers daily. Seven different styles

of bumpers are produced along with additional service parts for old car models and they

are painted in thirteen different colors. Plant M operates five days a week and three eight-

hour shifts per day. Sometimes, if necessary, additional shifts are scheduled during the

weekends to meet the demand. As is stated, plant M feeds three customers who operate

five days a week and two nine-hour shifts per day. The customer plants also schedule

some weekend shifts when necessary.
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2.1.2 Historic Evolution of the Plant M and Problem Statement

Plant M was constructed in 1976 for the production of plastic bumpers, which replaced

steel bumpers. OEM car manufacturers started to use plastic bumpers as a substitute of

steel bumpers in the late 1970s. At that time, the bumpers were not designed as an

integral part of the car body design. For example, it was not necessary to match the color

of the bumper to the color of the body. UV protective coat was given to the bumper and

some colors were painted, but those processes were for aesthetic reasons only. In

addition, the size was smaller, the required level of quality was much lower, and the part

complexity was lower than today. Today, in many cases, the bumper should provide

integrated feeling with the car body to the customers. Therefore, the bumper is designed

to fit in the curves of the car body and painted with exactly same colors of the car body.

Figure 2-1 illustrates today's plant layout. The manufacturing system consists of four

main areas: injection molding, paint, assembly, and storage. The bumpers are stored in

and retrieved from the AS/RS (Automated Storage and Retrieval System). AGVs

(Automated Guided Vehicles) and electric overhead monorails transport bumpers

between three main production areas and the AS/RS.

Non- ILV
Assembil

S ILVS Shipping
y Assembly Dock

Injection Molding

Non-ILVS 'dAS/RS
Assembly

Paint

Main
Rework

-* Material flow
AS/RS: Automatic Storage and Retrieval System
ILVS: In--Line-Vehicle-Sequence

FIGURE 2-1. SCHEMATIC LAYOUT OF PLANT M (ADAPTED FROM [LINCK 2001])
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The injection molding department runs seventeen injection molding machines with a

clamping force of 4000 tons. As is previously stated, in the 1970s and 1980s, the bumper

was smaller and less complex than today and thus, the molds were also smaller and less

complex than today. Therefore, 2000 - 3000 tons of clamping force was enough to

produce those bumpers. However, the molds used today are larger and more complex,

which require higher clamping force up to 4000 tons. Therefore, the injection molding

machines are running close to their capability limit in these days.

The paint system was installed in the late 1970s. The major system requirements were

high volume capacity, low direct labor requirements, high reliability, and high

repeatability. To satisfy these requirements, a highly automated paint system with a

volume capacity of 14,000 bumpers per day was selected and implemented. As an

additional effort to reduce direct labor requirements, automated loading and unloading

system was sought originally but not realized due to the part handling problems. In

addition to the main automated paint system, other smaller paint systems were

implemented for prototypes or dual color painting. These paint systems were manual due

to the lower volumes required, which are not used any more. The paint system has been

upgraded several times to accommodate product design changes and to satisfy tightening

quality requirements. In a series of upgrades, however, any upgrade was limited by

financial resources and no building extensions were allowed. The present system operates

at its limits with high downtimes (average uptime of the system is about 60%) and fallout

rates (first time through rate can go anywhere between 95% to 25% but the average is

82%).

The original assembly line was a transfer line type and several assemblers worked on a

flow line. However, the assembly content of current bumpers is much lower than the past

and thus, one operator manually does all assembly works at one station. Currently two

types of assembly are done. One is In-Line-Vehicle-Sequence (ILVS) assembly, which

was installed in the summer of 1999. This assembly line assembles bumpers according to

the sequence of cars assembled in the OEM customer plants. In other words, the ILVS

assembly line is directly linked to the final vehicle assembly lines in the customer plants.

Therefore, the delivery is critical. Since the stability of the manufacturing system is not

good enough to run the ILVS assembly line with a small amount of buffers, the plant had
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to heavily invest in bumper buffers. The other is non-ILVS assembly that consists of five

assembly cells. Some of the cells are dedicated to a certain type of bumper style and the

rests are flexible.

The material handling system within the plant is highly automated. The system was

installed between 1982 and 1986, and three major upgrades were made to be the present

state of the material handling system. The material handling system consists of AGVs

(Automated Guided Vehicles), electric overhead monorails, and an AS/RS (Automated

Storage and Retrieval System). The original motivation for the highly automated material

handling system was to manage the increasing product mix, reduce the floor space

required for inventory storage, reduce forklift traffic in the aisles, and reduce direct labor

costs. For further and detailed information on the plant M, please refer to [Linck 2001].

When viewed separately, each of the department seems to have made a series of rational

decisions to adapt its system to the new environment. However, if all system design

decisions were viewed from a holistic system point of view, it is evident that all decisions

were locally optimized rather than optimized as a total system. In addition, it is note-

worthy that one of the driving factors of the system changes is the introduction of new

product design.

The original motivation for the plant was to produce plastic bumpers that would replace

the old metal bumpers. Then, the first stimulus of the system modification was the

introduction of new bumper design that has integrated feeling with the body of a car. The

first problem occurred during this modification since the existing paint system was highly

automated for high speed with a cycle time of 6 - 7 seconds. Due to the hard automation

made for the original paint system, it was very difficult to modify the paint system.

However, considering the large investment made for this paint system, management

decided to modify the existing paint system instead of building a new one. Several tricks

were made to keep the paint system and the rest of the manufacturing system was

designed and modified around the given paint system. As time goes by, the requirement

for variety of bumpers had been increased and a significant portion of manufacturing

floor started to be consumed just for inventory storage to cover the variation of the

process for variety of products. Increasing mix of product and the consequent increase in
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inventory required more frequent forklift transport of parts. To manage the complex

logistics requirement, a highly automated material handling system was implemented.

Another significant investment was made and thus, the rest of manufacturing system was

required to be modified around the new AS/RS, AGVs, and electric overhead monorails.

This brought ad-hoc add-in type of manufacturing system modification, which hurt the

overall performance of the system. During the series of modifications, no critical

feedback was given from the previous projects and the negative loop of manufacturing

system design modification was reinforced by the performance measurement system that

stresses the financial measures (e.g., cost per part, direct labor cost, etc.) only instead of

operation measures (e.g., quality, lead time to customers, etc.). The evolution of the plant

M is summarized in Figure 2-2.

Independent Bumper

Integrated Bumper

Wrong
Equipment
Selection

Product
Design

Manufacturing System
High speed Only ad hoc No criticalpainting system add-in MSD feedback from the

modification previous projects
MSD around

painting Financial Performance
ASRS Measures reinforces this

investment loop over time

FIGURE 2-2. THE EVOLUTION OF THE PLANT M

2.1.3 Conclusion

In this section, a historical view on the evolution of the plant M is provided. This case

represents a problem caused by a lack of communication between manufacturing and

product design in a higher level of manufacturing system design. It describes how add-

hoc responses of manufacturing system to product design changes that are made without
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considering manufacturing system design can drive the evolution of a manufacturing

system in a wrong way. In this case, the erroneous evolution of the manufacturing system

has been reinforced by the performance measurement system that values financial

performance 'measures' only and disregards the system design aspect.

The evolution of the plant would have been very different if the product strategy

emphasizing on product variety had been recognized by manufacturing group and

necessary investment had been made accordingly. Otherwise the management should

have made a product design decision after considering the existing manufacturing system

design to avoid the flawed evolution of the manufacturing system. In this case, the

problem grew slowly and thus, its seriousness was not recognized by the insiders.

2.2 Product and Equipment Design of Plant C

This section describes a problem that a machining department in an ABS (Anti-lock

Braking System) manufacturing plant faced, which was caused by a couple of improperly

angled fluid channels. The lack of communication between manufacturing and product

design combined with traditional mass manufacturing system brought non-value adding

fixture and machine implementation. Much of the content is adopted from the case study

of [Kim 1999], [Weidemann 1998], and Cochran et al. [2001a].

2.2.1 Overview of the Plant and its Product

Plant C produces anti-lock braking systems (ABS) for the OEM companies in the

automotive industry. On the average, about 82,000 ABS units are produced per month

and 4,100 units per day assuming 20 days of production per month. The ABS units

produced in the plant C are supplied to seven final customers who are final vehicle

assemblers. Shipping interval varies from daily to weekly depending on the customers.

There are three types of ABS products. One is ordinary ABS and ASR is an advanced

version of the ABS with an additional function of traction control capability. ASR is an

acronym of "Acceleration Slip Regulation" and sometimes called as traction control

system (TCS). ASR prevents the slip of the wheels during the acceleration by endowing

proper breaking force on the necessary wheels. The most advanced one is vehicle
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dynamics control system (VDC) that is ASR with vehicle dynamic control capability.

VDC helps drivers to make a smooth curve by providing proper breaking force during the

turn. There are numerous variations of these products, mostly driven by specific customer

needs. The basic modular system, however, is same within a product family. The features

that vary are: a selection of variable components that tune the modulator for the specific

automobile, customer specific items for fit in the vehicle, customer specific visual

criteria, customer specific integrated electronic functions, and the base system definition

of either having only anti-lock breaking, ABS with traction control (ASR), or ABS/ASR

with vehicle dynamic control (VDC). The variation in product types requires

manufacturing flexibility and the increased cost due to the required flexibility is

recognized as a problem. This case study focuses on the machining area that produces

seventeen different housings for final products. The overall layout of the plant and the

material flows are presented in Figure 2-3.

--- o moved via Forklift MEs Storg
--- " Manually repacked oae - Receivin 

- Moved in bins of 18 by AGV WIP/BufferArea
- l; Automated single piece flow l Machines

Shipping
26 Machining Centers (batch size: 12) -hppn

r77M~qUMMLMIJII WI]77bnrr a
Arr

nAssemvAssembly Assembly
Area # Area #2 Area #3

Repackaging Washing
from 500 units and
into bins of 18 Inspection ""f""

CustLYOUTer N MAT L FOWarehouse (separaCCby)TAL20]

Suppier y Waehose (eparte) Moved by Truck

FIGURE 2-3. THE LAYOUT AND MATERIAL FLOWS OF PLANT C [COCHRAN ET AL 2001A]

Yong-Suk Kim

III

40



The machining area produces housings with aluminum forged blocks supplied from

outside vendors. There are fourteen different models of ABS housings and three for

ASR/VDC units. ABS housings are different from ASR/VDC housings in terms of its

external sizes, diameters of fluid channels, and the number of fluid channels. Within ABS

housings or ASR/VDC housings, however, the only difference is the number of fluid

channels, which can be easily handled by adjusting drilling operations. Machining area

operates five days a week and three eight-hour shifts per day. Sometimes, if necessary,

additional shift is scheduled during the weekends to follow up the customer demand.

The current manufacturing system design can be characterized by its departmental layout

to maximize the machine utilization rate. The machining area is not balanced to the

assembly lines while the assembly lines are not balanced with the customers. However, in

the machining area, there have been several attempts to adopt some techniques of lean

manufacturing in order to take advantage of its benefits in terms of throughput time and

reduced inventory level. For example, automated guided vehicles (AGVs) are operated to

reduce the time between operations. AGVs are continuously moving between machines

in order to transport parts to downstream operations as soon as their processing is

finished. There are three major departments within the machining area. The first is

machining center group that is equipped with 26 high-precision machining centers. One

operator operates four machining centers and conducts inspection on the finished parts

while the machine is running. The second group is the deburring group of which eight

water-jet deburring machines eliminate burrs produced during machining. Finally, two

huge washing machines are implemented and final inspection is done right after the

washing operation.

2.2.2 Machining Centers, Product Designs, and Problem Statement

The machining centers used in the machining center group are five-axis CNC machines

equipped with three spindles, which can process three parts in parallel (See Figure 2-4).
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FIGURE 2-4. A SCHEMATIC VIEW ON THE INSIDE OF A MACHIING CENTER (TOP VIEW:
LEFT, SIDE VIEW: RIGHT)

These machining centers have been purchased to perform as many operations as possible

in one load to save manual loading/unloading time and minimize the unit cost. They are

high-precision and high-speed machining centers equipped with over 100 tools to achieve

this purpose. However, finishing a part cannot be done in one load because all faces must

be processed. Due to this requirement, ABS housings, for example, have to be manually

unloaded from one position (clamping A in Figure 2-5: left) in a fixture and then loaded

to another position (clamping C in Figure 2-5: left), so that a total of 4 motions to load

and unload are required to finish a part. Tombstone fixtures are applied as a part of the

large investment in the machine to minimize the unit cost by producing as many parts as

possible in one load. Each fixture holds 12 parts at a time. The fixtures used here are

shown in Figure 2-5.

ABS ASR -FixtureI ASR - FixturelII

B clamping - 8 parts
C clamping -6 parts

Top View

A clamping - 6 parts A clamping -8 parts C clamping -8 parts

FIGURE 2-5. A SCHEMATIC VIEW OF FIXTURES FOR ABS (LEFT) AND ASR/VDC (RIGHT)
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At the beginning of each cycle for ABS housings, 12 blocks of housings are set to the

fixture, half of which are new blocks to position A and another half are the blocks moved

from position A to C. Machining itself is relatively simple. It is necessary to face-cut all

six faces of an aluminum-extruded block and drill about 50 to 100 holes with different

diameters in the block, which consist of the circuits for the brake fluid. In spite of

relatively simple machining processes, some holes with large diameters require large

horsepower and high precision. Therefore, high precision and horsepower machining

centers are currently used.

In the case of ASR/VDC housings, the machining process becomes trickier than that of

ABS housings. ASR/VDC housings have four angled fluid channels that cannot be

handled with the existing fixture for ABS housings. Therefore, new fixtures are designed

as shown in the right side of Figure 2-5. In a new fixturing system, two different fixtures

are used and each fixture is located on a machine. Therefore, two machines are grouped

together to produce ASR/VDC housings. The fixture I type shown in Figure 2-5 has A

type clamping and holds eight fresh housing blocks. The fixture II type has newly

designed B type clamping on top of it as well as C type clamping. Each clamping

position can hold eight parts and thus, fixture II type can hold sixteen parts in one cycle.

Parts are moved from the position A to B and then moved again from the position B to C.

The fixture I type holds only eight parts even though it can hold up to twelve parts

because clamping B can only hold up to eight parts due to the space limitation. Parts are

moved without buffers between clamping positions (A, B, and C) and thus, the number of

parts held by each clamping position should be same.

Several problems can be identified with the production of ASR/VDC housings. First, two

machining centers are required to be dedicated to process ASR/VDC housings since two

fixtures are required for the production of ASR/VDC housings. In addition, it takes about

a day to change the fixtures for ASR/VDC housings to the fixture for ABS housing due to

the high precision required. This deteriorates the mix flexibility of the plant to the

demand fluctuation. Furthermore, both fixture types of I and II should have the capability

of rotating in one degree scale while the rotational capability in 90 degrees is enough for

the fixtures for ABS housings. Another problem is quality. If defective parts were found

after the machining operations and they were made during the processing in the clamping
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B position, a total of eighteen parts are likely to be scrapped. Six finished parts along

with twelve parts in the fixture type II in the run are likely to be defective.

All these troubles are a result of lack of communication between manufacturing and

product design, combined with equipment design driven by unit cost minimization

philosophy that strives to incorporate as many operations as possible in one load of the

machining center. If the holes with unique angles were eliminated through extensive

communication between manufacturing and product design, there would be no need for

new fixture design and consequent separate operation of machining centers dedicated to

ASR/VDC housings. These problems are solved in the new generation of the product. All

fluid channels are designed to be perpendicular to the faces of the housing in the new

ASR/VDC housing design.

2.2.3 Conclusion

In this section, the troubles that manufacturing engineers had to overcome regarding the

production of ASR/VDC housings are presented. It is noteworthy that all troubles are

caused by two fluid channels in unique angles that cannot be handled by the existing

fixture, combined with the manufacturing strategy of incorporating as many operations as

possible in one load of the parts to the machining center. If there had been extensive

information exchange between manufacturing and product design, two angled fluid

channels could have been avoided, causing no trouble to manufacturing. Even though

manufacturing was able to come up with a solution to deal with the given product design,

all efforts to find the solution of two fixtures would have been unnecessary with a review

of the design at the manufacturing site early in the product development process.

In the next generation of the ASR/VDC, all fluid channels are designed to be

perpendicular to the faces of the housings in order to prevent the same problem from

occurring again according to the interview with a manufacturing engineer at plant C. This

is only one solution to the problem, however, and more options to solve this problem may

be found. For example, manufacturing system design may be changed to accommodate

the angled fluid channel design. In any case, the manufacturability of the design decision

can be checked with the framework that is proposed in Chapter 7 of this thesis. The
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proposed framework will show what elements of manufacturing system design can be

affected by each solution option and thus, provide the motivation for searching for new

solution.

2.3 Product Development in Xerox

This section describes a problem that a product development team in Xerox saw during

the development of network printers, DocuPrint N4025 (see Figure 2-6). This case study

is based on the author's term project [Kim et al. 2000].

FIGURE 2-6. DOCUPRLNT 4025 (ADAPTED FROM WWW.XEROX.COM)

2.3.1 Overview of the Company and Its Product

Xerox Corporation provides document solutions that enhance business productivity. Its

activities encompass developing, manufacturing, marketing, servicing and financing a

complete range of document processing products and solutions.

The product lines of Xerox include digital products, light-lens copying, supporting

software and peripheral items for both digital and copying products.
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The digital product line consists of five categories: black-and-white digital multifunction

products (Document Centre products), black-and-white production publishing (DocuTech

products), black-and-white production printing, color copying and printing, and black-

and-white laser printers/other. The company also sells DigiPath Production Software, a

major productivity tool that allows a printer's customers to use the World Wide Web to

streamline print job submission and subsequent archiving, preparation, proofing, and

reprinting. In addition to the digital product line, Xerox markets the broadest line of light-

lens copiers and duplicators in the industry, ranging from a three copies-per-minute

personal copier to a 135 copies-per-minute fully featured duplicator. Many of its state-of-

the-art products retain enhanced fundamental characters of ease of use, reliability, copy

quality, job recovery, and ergonomics as well as productivity-enhancing features,

including zoom enlargement and reduction, highlight color, copying on both sides of the

paper, and collating and stapling which allow the preparation of completed document

sets. The company also sells cut-sheet paper to its customers for use in their document

processing products. The company also offers a wide range of other document processing

products including devices designed to reproduce large engineering and architectural

drawings up to 3 feet by 4 feet in size, facsimile products, scanners, and personal

computer and workstation software.

In February 2000, Xerox introduced the new DocuPrint N Series printers, a family of five

network laser printers ranging from 20 to 40 pages per minute that offer faster speeds,

better paper-handling and productivity, and more value than printers available from other

vendors.

2.3.2 Network Printer Development and Problem Statement

Network printing is a very mature product segment, which has such established market

leaders as Hewlett-Packard (HP) and Lexmark, as well as other fast moving competitors

like Canon and Ricoh. In this market, Xerox is attempting incremental innovation of the

products by improving the processes used in the value chain of product development

through transforming the organization. This is a strategic direction taken at the corporate

level. Management believes that the improved product development process will greatly

contribute to the enhanced customer-recognized values and thus, profit generation in a
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shortened product development cycle. This is possible by adopting new technology

curves and incrementally innovating the product attributes through improved product

development processes. Product development by competitors has moved from years to

months while complexity and newness of products has significantly increased at lower

unit manufacturing costs. "Faster, better and cheaper" is the name of the game.

The product development process of Xerox is called as, "Time to Market (TTM)"

process. Xerox's Time to Market process has been fairly well established. It includes

formation of a Time to Market Team also known as Product Delivery Team, which

brings in all stakeholders within the company together when the product concept has

been approved. The team is chaired by the designate Product Manager and consists of

representatives from various functional parties (see Figure 2-7). The team meets weekly

through out the entire product development period from concept through launch. The

formation of a Time to Market team contributes to two objectives. It allows for early

involvement of all upstream and downstream parties and thus, decisions are made with

consensus of all stakeholders. It also allows for concurrent processes to be initiated and

not wait for sequential handoff between functions. The team's focus moves from one

organization to another as the product development proceeds through logical steps.

The underlying idea is to keep everyone involved in the TTM team to prevent possible

downstream problems caused by upstream decisions. The current structure is designed in

a way that the functional groups know clearly when they are expected to add value to the

process and also get ahead start to provide what is required, as opposed to the standard

industrial practice of sequential handoff between different functions of the organizations.

Xerox hopes that by keeping a large number of people in the TTM team, every functional

organization is well informed and thus, the total product life cycle time cost as well as the

product development time is minimized. As a result of this effort, DocuPrint N4025

family was developed in eight months, even though the Xerox company wide product

development time in average is about 14 months to 18 months.
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FIGURE 2-7. XEROX'S PRODUCT DEVELOPMENT PROCESS CENTERED ON THE TIME-TO-
MARKET TEAM (ADAPTED FROM [KIM ET AL. 2000])

The fast development of DocuPrint N family, however, is partly a result of expediting

and using more man-power than planned. According to [Kim et al. 2000], for example,

240% of planned man-hours were spent on specification design that takes 12% of the

total planned product development man-hours. The TTM team spent 63% more man-

hours than planned on design validation and 16% more on integration testing. This is due

to several causes but one of the major root causes was the lack of clear identification of

information flows between functional parties within the TTM team. Unclear information

flows cause several sources of inefficiency. First, there are too many functional

representatives in the TTM team. The TTM team has as many as 25 representatives from

relevant functional parties or more during the product development. This number of

people deteriorates the efficiency of the TTM meetings and this disadvantage may be

more significant than the advantage that can be gained by making sure every design

decision is made with the consensus of the entire team. Even though Clausing [1994]

mentions about the 'flood of information' to make sure all information is available to
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product designers, Wheelwright and Clark [1992] stressed that development projects do

not need deep, cross-functional integration when all the interfaces between functional

parties are clearly defined.

In addition, it took 7 days to review the project at each phase gate review process during

the DocuPrint N4025 development. There were 4 phase gate reviews and thus, almost

about a month was spent solely on the formal reviewing process. This represents almost

1/9 of the total product development time while reviewing does not necessarily add any

value to the product from the customer point of view. Considering more than 25

representatives were supposed to attend all phase gate review meetings, a great source of

inefficiency is observed. A portion of this time may be minimized through the

standardization of reviewing processes, which can be greatly enhanced by the proposed

methodology in this thesis.

To eliminate the sources of the above-mentioned inefficiency, clear information flows

between each functional party are required. This is possible only by a thorough

understanding of the interactions between upstream decisions and downstream results.

For example, the interactions between product design decisions and manufacturing

system design should be known for the reference of manufacturing engineers in the TTM

team in order to give faster review of the proposed design. Furthermore, if product

designers have a tool to evaluate the impact of their design decisions on planned

manufacturing systems, the first-time-right design decision can be made, which

eliminates the need for continuous design reviews and iterations to solve the

contradictions between manufacturing and product design. Knowing what information

should be exchanged between functional parties along with a tool to support it will

eventually lead to faster product development time and lower product development cost.

2.3.3 Conclusion

In this section, the sources of inefficiency of a large cross-functional product

development team are presented. . This case represents a problem associated with the

organization and management of the product development process, which can arise due

to the lack of knowledge on the interactions between manufacturing and product design.
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Even though Xerox's TTM team approach demonstrated its advantage over the

traditional sequential methods in terms of product development time, there are still rooms

for further improvement. One way for the improvement is to clearly define the

information flows and their contents between functional parties within the product

development team. This improvement is possible only by thorough understanding of the

interactions between downstream and upstream.

In this sense, even though it may be secondary, the knowledge on the interactions

between manufacturing systems and product/process design can greatly contribute to the

reduction of total product development time and cost even with the enhanced concurrent

engineering approach. The proposed methodology in this thesis enables product

development teams to see the interactions between their design decisions with the

manufacturing system design.

2.4 Chapter Summary

In this chapter, three examples are presented to illustrate what can go wrong with the lack

of communication between product design and manufacturing. The first example is in a

higher level of manufacturing system design. It describes the consequence of add-hoc

responses of manufacturing to product design changes on the evolution of a

manufacturing system. The second example is more in a lower level of manufacturing

system design. The troubles caused by just two fluid channels in unique angles on

equipment design and operation, are discussed along with the consequent impact on the

overall manufacturing system performance. The third example is about the organization

and management of product development processes. The sources of inefficiency

associated with large product development teams are identified and it is presented how

well-defined interactions between manufacturing system and product/process design may

contribute to more efficient product development teams.

These examples are only a few of the problems that the author has observed. Motivated

by the observation of the problems like the provided examples, a literature study was

made (Chapter 4) and industry questionnaire was developed (Chapter 5), which
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eventually lead to the development of the proposed framework to capture the interactions

between manufacturing and product design (Chapter 7).
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3 RESEARCH DESIGN

In this chapter, the research design applied in this thesis is presented. Due to the breadth

of the field of product development and manufacturing system design, there lacks a

unified research design that has been applied to the research in the interface area between

product development and manufacturing system design. This chapter is devoted to the

identification of the available research methods that fit to the characteristics of the field

and the objective of the thesis, and the selection of appropriate ones. Overall, this study is

to ensure the thesis is following and adopting scientific approaches to find the answers to

the research questions posed in Chapter 1.

3.1 Introduction

Research design is the complete strategy of attack on the central research problem. It

provides the overall structure for the procedures to be followed, the data to be collected,

and the data analysis to be conducted [Leedy 2001]. It can be said that research design is

the planning of research or the design of a research framework'.

The importance of research design has been addressed by many researchers in the

evaluation study. For example, Robson [1993] addresses the problem of typical

researchers who tend to use their favorite approach without considering any alternative

research approaches. Miles and Huberman [1984] claim that pre-structured research

design can help selective collection of data and facilitate multiple site research. Manstead

and Semin [1988] assert that the strategies and tactics in carrying out a research depend

much on the type of research question that is being answered. These researchers point out

that research design is important to decrease the efforts for collecting and analyzing data,

and to use appropriate research methods that fit to the type of questions to be answered

and the type of data to be collected.

1 According to the Oxford dictionary, a framework is a structure composed of parts framed together,

especially one designed for inclosing or supporting anything. Linck [2001] views a research framework as

a set of ideas, conditions, or assumptions that determine how something will be approached, perceived, or

understood.
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There have been debates on research methods in terms of what scientific research is.

These debates have been more serious in social science since it deals with very different

research questions and collects very different types of data from the natural science.

Patton [1978] points out that evaluation research is dominated by the unquestioned,

natural science paradigm of hypothetico-deductive methodology. He claims that this

dominant paradigm assumes quantitative measurement, experimental design, and

multivariate, parametric statistical analysis to be the essence of "good" science. However,

this traditional approach shows shortcomings when dealing with complex problems

[Parlett and Hamilton 1976] in a real world situation under messy and poorly controlled

settings [Robson 1993]. Patton [1978] describes the alternative paradigm of qualitative

approach, which counts on open-ended interviewing, observation, and holistic analysis.

Therefore, Reichardt and Cook [1979] propose to use a flexible approach that employs

different research methods depending on the individual research situation. Many other

researchers such as Patton [1980, 1990], Robson [1997], Yin [1994], and Leedy [2001],

have the same view, which is widely accepted in recent days.

The research presented in this thesis follows the flexible approach. Both quantitative and

qualitative methods are used in a mixed way whenever appropriate in order to achieve the

two primary objectives of the thesis: 1) to determine how product development decisions

interact with manufacturing systems and 2) how to systematically capture the

interactions. Considering the characteristics of the research area, however, qualitative

research methods are more frequently applied than quantitative methods. Detailed

explanation of the research methods adopted in this thesis as well as the characteristics of

the field that this research attempts to study is presented in the following sub-chapters.

Before going into the detailed explanation of the adopted research methods, the terms in

the evaluation research used in this chapter need to be described in order to avoid a

confusion of terms. Manstead and Semin [1988] adopt a river-crossing analogy for this

purpose. According to them, the general research focus corresponds to the task of

crossing the river. Specific research questions are similar to asking how many people

want to cross the river, the frequency with which they want to cross, the current of the

river, and so on. The choice of research strategy is analogous to a choice between

swimming, walking, flying, or sailing across. The research tactics or methods (sometimes
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called methodologies) of investigation concern the particular type of boat, bridge,

aircraft, etc.

3.2 Review of Research Procedures

As previously discussed, there are several different research approaches that focus on

different types of problems. Leedy [2001], however, claims that a normal research

process follows the basic format regardless of the research approaches that are adopted.

The basic format of the research process is shown in Figure 3-1.

1. A question is posted.
In the mind of the researcher, a

question arises that has no known
resolution

2. It's a matter of words.
The researcher converts the
question to a clearly stated

research problem.

3. It's worth a guess.
The researcher poses a temp orary

hyp othesis or series of
hypotheses.

4. The search is on.
The literatare is searched for a

possible solution to the problem

5.The search leads
nowhere.

Another avenue mustbe found to
resolve the problem.

6. Data Collection
The researcher looks for data that

may relate to the problem.

7. What do the data say?
The data are analyzed to reveal

their meaning.

8. The data speak.
The researcher interprets the data

and suggests a conclusion.

9. Is research problem
resolved?

Either the data seemingly resolve
the research problem or they do

not resolve it

10. The hypotheses?.
Either the data support the
hypotheses or they do not

FIGURE 3-1. THE BASIC FORMAT OF THE RESEARCH PROCESS [LEEDY 2001]

The research process presented in Figure 3-1 does not end up by the completion of the

proposed ten steps. Leedy [2001] stresses that research is, by its nature, cyclical or more

exactly, helical. The resolution of the research problem or validation of the research
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hypotheses leads to the completion of a cycle but research is rarely conclusive. In

exploring the research problems, additional problems show up and research bursts into

more research.

The research process shown in Figure 3-1 does not mean that every research follows the

exactly same sequence of the presented process. It only shows the general flow of the

research. For example, problem statement or hypothesis generation can be done

iteratively or simultaneously with literature research. Robson [1993] points out this

aspect by stating, "the model with its orderliness and separation into a clear linear

sequence is more of a reconstruction enshrined in methods textbooks and conventional

journal formats than an account of the scientific research process in practice. (...) Real

life science does not escape the messiness of other aspects of real life." He claims that the

approach like interpretive approach tends to generate theories and concepts after data

collection and analysis. In addition, in the interpretive approach, data collection and

analysis are not clearly separated. In other words, initial data collection and analysis may

lead to decide the type of data to be collected and analyzed next time.

In the next section, various approaches to the hypotheses generation, data collection, and

data analysis are reviewed.

3.3 Review of Research Methods

As is presented in section 3.2, research design is the overall planning of the research and

the general approach to planning a research is similar across disciplines. However, the

specific methods to collect and analyze data can be specific according to the research

objectives, the characteristics of data to be collected, or the particular academic

discipline.

Leedy [2001] distinguishes two types of research strategies: quantitative and qualitative.

In general, quantitative or experimental strategy is used to answer questions about

relationships among measured variables with the purpose of explaining, predicting, and

controlling phenomena. In contrast, qualitative research strategy is typically used to

answer questions about the complex nature of phenomena, often with the purpose of

describing and understanding the phenomena from the participants' point of view.

Yong-Suk Kim 55



Quantitative methods usually start with a specific hypothesis to be tested [Leedy 2001].

Then, the variables to be studied are isolated whereas extraneous variables are controlled.

A standardized procedure is normally used to collect some form of numerical data and

statistical methods are applied to draw conclusions from the collected data. Quantitative

methods usually end with confirming whether the hypotheses that were tested are

supported by the data or not.

On the other hand, qualitative methods often begin with general research questions

instead of specific hypotheses [Leedy 2001]. An extensive amount of verbal data are

usually collected from a small number of participants and organized into some form that

gives them coherence. Then the situation studied is portrayed by verbal descriptions. A

qualitative study is likely to end with tentative answers or hypotheses about what was

observed. Table 3-1 highlights the characteristics of two approaches.

TABLE 3-1. CHARACTERISTICS OF QUANTITATIVE AND QUALITATIVE RESEARCH
METHODS (ADAPTED FROM [LEEDY, 2001]).

wnat is me purpose oi me
research?

Quantitative.................

To explain and predict

Qualtati Ve-

To describe and explain
To confirm and validate To explore and interpret
To test theory To build theory
Outcome-oriented Process-oriented

What is the nature of the Focused Holistic
research process? Known variables Unknown variables

Established guidelines Flexible guidelines
Static design Emergent design
Context-free Context-bound
Detached view Personal view

What are the methods of Representative, large Informative, small sample
data collection? sample

Standardized instruments Observations, interviews
What is the form of Deductive analysis Inductive analysis
reasoning used in analysis?
How are the findings Numbers Words
communicated? Statistics, aggregated data Narratives, individual

quotes
Formal voice, scientific Personal voice, literary style
style

Yong-Suk Kim 56

b b 4 4 1 4 0 0 0 ! 0 0 0 0 0 0 : : : ; : .; ; ; ................ ....... .............................. ......... ... .. :: ...... ..................... ......... : I ...... .. .......

. .. ... .. .. . . . .. . . .. .. .. ... .. .. .. .. . ... . .. ... .. .. ... .. .. .. .. ... .. .. ... .. .. .. ... .. .. ... .. .. .. .. ... .. .. ...
...................... I." ...........................I -

III



The categorization of research methods into qualitative and quantitative strategies,

however, is not absolute. In other words, two strategies cannot be clearly separated.

Reichardt and Cook [1979] argue that a researcher can take both strategies in his/her

research since some research methods contain the characteristics of both strategies and

there is overlap between two strategies.

As will be explained in detail in the next sections, the field of this study seems to call for

qualitative strategy more than quantitative strategy, even though both methods are

employed in the study. Leedy [2001] differentiates five categories of qualitative research

methods: case study, ethnography, phenomenological study, grounded theory study, and

content analysis. The characteristics of each method are presented in Table 3-2. Again,

these five categories are not absolutely separable. There are overlaps between different

methods.

Qualitative research studies typically serve one or more of the following purposes

(Peshkin, 1993):

. Description - they can reveal the nature of certain situations, settings, processes,

relationships, systems, or people.

* Interpretation - they enable a researcher to (a) gain insights about the nature of a

particular phenomenon, (b) develop new concepts or theoretical perspectives about

the phenomenon, and/or (c) discover the problems that exists within the phenomenon.

. Verification - they allow a researcher to test the validity of certain assumptions,

claims, theories, or generalizations within real-world contexts.

. Evaluation - they provide a means through which a researcher can judge the

effectiveness of particular policies, practices, or innovations.

In section 3.4, the selection of research strategies and methods for this thesis is discussed.
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TABLE 3-2. DISTINGUISHING CHARACTERISTICS OF DIFFERENT QUALITATIVE DESIGNS
(ADAPTED FROM [LEEDY 2001])

Methods of Data Methods of Data
Design Pupose Focus Collection Analysis

To understand - Observations - Synthesis into an

one person or One case or a - Interviews overall portrait of the

situation (or few cases . Appropriate written case(s)

perhaps a very within its/their documents and/or interpretation of data in

small number) natural setting audiovisual terms of common

in great depth material themes

. Participant

To understand A specific field observation

how behaviors site in which a . Structured or

Etbnography reflect the group of unstructured . Focus on significant

culture of a people share a interviews with events
common informants

group culture . Artifact/document

collection

A particular . Search for "meaning

To understand phenomenon In depth units" that reflect

an experience as it is various aspects of the
Phenomeno- from the typically lived .Purposeful vapriu ectso h
logical study participants' and perceived sampling of 5-25 experience

paricpats ad ereied individuals - Integration of the
point of view by human meaning units into a

beings "typical" experience

. Prescribed and

systematic method of
coding the data into

Human actions categories and

.iand identifying

Grounded theory from interactions, - Interviews interrelationships
inyand how they . Any other relevant . Continual interweaving

theory study data collected in result from and data sources of data collection and
a natural setting influence one data analysis

another - Construction of a
theory from the
categories and
interrelationships

. Identification and
possible sampling . Tabulation of the

oidentify-he Any verbal, of the specific frequency of each
Toseifye Avis bal' material to be characteristic

Content characteristics behavioral analyzed . Descriptive or

analysis ofaacbodstos*bermioal - Coding of the inferential statistical
of a body of form of material in terms of analyses as needed to
material communication predetermined and answer the research

precisely defined question
characteristics
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3.4 Applied Research Procedures and Methods

The interface field of product development and manufacturing system design can be

characterized by a lack of understanding of the variables involved and a very complex

nature of the relationship between the relevant variables. As a consequence, there are few

established research frameworks in the interface area of product development and

manufacturing system design. Therefore, it is necessary to define a new research design

tailored to the specific needs of the research.

The objectives of this research are to understand (1) how product development decisions

interact with manufacturing systems, (2) how to systematically capture the knowledge on

the interactions, and (3) see the effectiveness of the proposed methodology. Considering

the characteristics of the field, for the objective (1) and (2), the traditional hypothetico-

deductive 'scientific' approach that is based on established theories and hypotheses, does

not seem to be appropriate. It is simply because there is no established theory available

that shows the relationships between manufacturing system design and product

development, from which a hypothesis can be derived. To develop a methodology to

capture the interaction knowledge is in fact, one of the research objectives. Therefore,

qualitative research methods are adopted to 'generate' the methodology to capture the

relationship between product development and manufacturing system design.

Another factor that is considered in the selection of research methods is the type data to

be collected. The data and methodology are inextricably interdependent [Leedy 2001].

For this reason, the methodology to be used for a particular research problem must

always take into account the nature of the data to be collected in order to resolve the

problem. The characteristics of the data to be collected in this research is primarily verbal

information of the practices in the industry and the methodologies proposed by the

academia. Therefore, qualitative strategy is more appropriate than quantitative strategy

in general.

After the methodology is available, a hypothesis can be generated on the effectiveness of

the methodology. To support the hypothesis, both qualitative and quantitative methods

are applied. Table 3-3 illustrates the characteristics of the adopted research methods. The

shaded boxes in Table 3-3 indicate the characteristics of the research methods used.
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Even though various research methods are adopted in this research, the general procedure

of the research is followed as is presented in Figure 3-1.

In section 3.4.1 to 3.4.4, details of research steps and adopted research methods are

explained.

TABLE 3-3. CHARACTERISTICS OF THE RESEARCH METHODS ADOPTED FOR THE
RESEARCH PRESENTED IN THIS THESIS

Question Quantitative Qualitative
.. ...... ..... .................. ...... ......................... J. d ....................ex x.......... a ..... ......What is the purpose of the -No and-... X.: bn............ ........ ;;:; : ................ .... .................. -.......................................... .... ..... .... ......... .............. ... .........................................................................research? ............... .-::d :;';: -a .... ... .............Ed * * I e. Vo timm...................... ........ .......... ....... ............ ....... I ........ ..... .... :.:.:L ...... ..................................... ....................... ............... ............ .. ....... .............. ... ............... ............................... ....................... ........ ..... ....... ......... ..... ...... ....... . ........ .................... ........ .......d; d ......To test theory .......... .0

........... ................ -...... ....
............Outcome-orientedhat is the nature of the Focused ...... *.** ............ ........ ............................... ... .. ... ...................................research process? Known variables ........... MM ............ ................. %___._ 1.A 1.T ... 9 .. ...................................................................... --....... .............................. ........... ..... .......................................... ...... .. ........... ... ................. .............. -.................................X: Ie ... ................................... ....... . ..................Established guidelines ............. I ........................... .... .. ..................... ..... ........ .................. .... .. ..................... ...... ............................. .... ................................. ............ I ..........................Static design S ................................. ..... ............. . ..........C o n te x t -f r e e ..................... .................... ........... % .............................................. ........ ... _ -....................................................... _ _ _ ................... ................... ........... ... ................ ... . ................................................ .... .. ....... . ......................... .................. ............................. .....................W .. .......... .........D etached view n ............. ..... ............ % ...................... ........................... -.. .......... ........................... ........ ........................ ....... ... .... -............................ .. ............................ I ............. .... .................. -............. ...................................... ...... ... ........................... .-......... .................... ... ...... ... ..... .. ... ........W hat are the m ethods of R epresentative, large .......... .......... ............. .......... ................... - .....

-nil A.......... ..... ................ .............. ... .....data collection? sample ... .......................... - ................. ............. ....................................................... .............. -... ...... .... ....................................... ..... ............................. .. . ..... .. .... ............ ............. ................ ...... ... ............. . ........................Standardized instruments W.................................. ........ .............. ......... ..... -......... ............. ......... ............ ............ ........... ........ ........ ... ............. ....... --------- ---........ ....... .. ................ .............W h a t is th e fo rm o f ............ ... .... .... .. ...................... ...... ......................... ....................... ........................... I ........... .......... ...... ............. ...... ... ...
............. .. ...... ..... .................. ...jD _e ..................... ............ ................... ... ....... .............. ................. ------ .........................reasoning used in analysis? ................ ................... ............. ..... .............. ...... -... ......... ....................... ..................... ......................................... ...... ............. ........ ............. ......... . ....... ... ................... .......... ............ ............... .............. ............................ ................................ ................... ................... ..................... .. .. .... ........................... ...........-- ------ ........ ................................................. -.... .. .... ..... - --- ............... ...... . .. .. ... ..... ............................... ..How are the findings ......... ..... VOrds.......... .......... _ _ _ ......... .................. %___...___ ..... ...... .... .................... ...... ........................... .................... ........ - .......... ..... ..... ..... .. " --- ------- ...... .. ........................... ......................... ................. .............................. .. ........................ .. ... ........................... ........ ................. .... % .................... .................. .. ........corrim unicated? * . ........... ............................. ........... -_ -.............., ................Statistics, aggregated data .. ....--................................ ......... ......... ... ........... . ................................... ................................... ........ .... . .......................... ............. I..--.............................. -............... ................ ........ ...................................... ...... .........................................................Formal voice, scientific L V-6*** *'i6.*WSM,.................... ... .............................................s t y l e ................ --._-.-..', .................................... ....... -........................ _ _ ............................................ ......... .............................. _ _ ..........

3.4.1 Research Steps

This thesis consists of four major steps as is shown in Figure 3-2. The first step is to

identify problems and clearly state the research problem and divide it into manageable

sub-problems. The result of the first step is clearly stated research problem and its sub-

problems. The second step is to investigate existing solutions in the academic literature

and industry practices. The outcome is the confirmation of the lack of methodologies to

solve the raised research questions. The third step is to develop the new methodology to

60Yong-Suk Kim



systematically capture the interaction between product development and manufacturing

systems. The fourth and final step is to find out evidences that support the effectiveness

of the proposed methodology. In this step, some discussions on the new findings in the

interactions between product development and manufacturing systems are made. The

steps are summarized in Figure 3-2.

1.Clear statement of
problems

2.1.Literature review

4.1. Application Examples
of the Methodology

2.2. Industry practice
review

3. Methodology

4.2.Evaluation Tool

FIGURE 3-2. OVERALL RESEARCH STEPS OF THE THESIS.

3.4.2 Problem Definition

As is addressed in the introduction chapter, the main research problems of this research

are two-fold:

(1) How do product development decisions interact with manufacturing system design?

(2) How can we systematically identify the interactions?

Since these two problems are too general to be solved, the following sub problems are

derived from the two main problems.

1) How can we represent manufacturing system design?

2) How can we represent product development?

3) What decisions in product development (especially related to product/process

design) affect manufacturing system design?
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4) How to see the interactions between product/process design and manufacturing

system design?

5) What are the examples of interactions and how can the existing approach be viewed

with the new methodology?

Then tentative solutions for each sub-problem are developed. For example, for the first

sub-problem, the MSDD (explained in Chapter 6) is adopted to represent the objectives

and corresponding solutions of manufacturing systems. For the second and third sub-

problems, the design decisions affecting manufacturing systems are identified and

grouped into six categories. Identifying design decisions affecting manufacturing systems

is considered more important than modeling the entire product development process

within the context of the research. This research aims to find how product design

decisions affect manufacturing systems. For the fourth sub-problem, it is studied how a

specific product design decision affects the achievement of FRs of the MSDD. Using the

MSDD, it can be understood how a product design decision affects the achievement of

the general objectives (FRs) of manufacturing systems. A relationship matrix between the

design decisions and the FRs and DPs of the MSDD is developed as the result. These

tentative solutions are modified and elaborated as the literature review and industry

practice review are conducted.

3.4.3 Literature and Industry Practice Review

To investigate the existing solutions to the research problems, the methodologies

proposed in literature and the practices used in industry are explored and studied. The

methodologies and industry practices studied are used to consider the interactions

between product development decisions and manufacturing in the early phase of product

development. These methods are believed to reduce the design iterations made in the later

phases of product development due to the mistakes made in the earlier phases.

As is presented in Chapter 4, several existing approaches to the research problems are

reviewed, including the classical Design for Manufacturing (DFM) approach. As for the

practices made in industry, cases presented in literature are consulted and a questionnaire

is sent to several companies asking their practices. The questionnaire is designed to
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capture the current practices of industry to facilitate the early consideration of

manufacturing issues in product development. This questionnaire is sent to six different

companies in the automotive industry and the results are presented in Chapter 5. In

addition to the questionnaire, several on-site interviews as well as personal observations

are used to collect additional information.

3.4.4 New Methodology and Validation of the Methodology

Among the five qualitative research methods presented in Table 3-2, the case study

method and grounded theory method seem to be appropriate for the research in this

thesis, considering the purpose of the research methods. Grounded theory is different

from case study in terms of the timing of theory development. With the grounded theory

method, building a theory prior to data collection is avoided in order to form a theory

based on collected data. Case study 2, however, starts with the development of a

theoretical framework prior to data collection [Leedy 2001]. Yin [1994] claims that a

successful case study requires a theoretical framework.

The research presented in this thesis can be grouped into two parts. The first part aims to

develop a methodology to systematically identify the interactions between product

development decisions and manufacturing system design. The second part is to validate

the proposed methodology by collecting supportive evidences for the effectiveness of the

proposed methodology. In this sense, grounded theory method is applied in the first part

of the research and the case study method is used in the second part. Strictly speaking,

however, these two methods are used in a mixed way. The data collected from the

interviews with engineers, personal observations, and the open-ended questionnaire

survey are categorized and used to develop the methodology while the same data are also

applied to modify and refine the methodology in the later part of the research. Robson

2 The difference between survey and case study is subtly defined. Robson [1993] explains that generally a

relatively small amount of information is collected from any one individual by a survey, contrasting with a

case study, where a great deal of information might be obtained from a key informant. Survey is also

different from experiment since normally it does not attempt to manipulate variables or control conditions.
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[1993] points out the same phenomenon in the research of real world investigation - it is

difficult to clearly separate the research methods applied in the real world investigation.

In the first part of the research, a methodology to systematically identify the interactions

between product development decisions and manufacturing system design is developed,

which later serves as the theoretical framework of the case study method. This newly

developed methodology is based on the tentative solutions on the sub-problems of the

research. For instance, the MSDD is developed for the effective representation of

manufacturing system design and some high level product development decisions that

affect manufacturing system design are identified.

Then this methodology is modified and refined based on the multiple-case study method

proposed by Yin [1994]. The multiple-case study framework is shown in Figure 3-3.

ptolConduct Write

Cran n g individual
case stud case report

-> Select cases -

Conduct 2ndWrte
Develop case study 10 individual

theoretical - -case report
framework

Design data
-10 collection -

protocol Conduct --I Write
-- * remaining 10 individual

case studies case report

Define & design Prepare, collect, & analyze Analyze & conclude

FIGURE 3-3. FRAMEWORK FOR MULTIPLE-CASE STUDY RESEARCH (ADAPTED FROM [YIN
1994])

Strictly speaking, two rounds of case studies are made. The first round case studies are to

identify the problems and the existing solutions in industry, regarding the communication

between manufacturing system design and product design. In this stage, the theoretical
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framework was relatively rough and included the MSDD. The data collection protocols

used include: interviews with engineers and managers, personal observations, and the

first round questionnaire. The first round questionnaire was sent to six different

companies in the automotive industry and complementary face-to-face interviews along

with personal observation were followed. According to the case study results, the

methodology was modified and refined to reflect the results. The overall structure of the

first round case studies are presented in Figure 3-4.

Develop
theoretical

framework:
MSDD

Define & design

Write
- Company A companyA

report

Draw cross

yWrite case

-yCompany B company B ---- ocsis

report

Modify
Write theoretical

-10 Company C company C ---- fr-amework:
report

Develop
policy

implications
-Write

- Company F companyF
case report Write cross

.. c as ereport
summary

Prepare, collect, & analyze Analyze & conclude

FIGURE 3-4. THE MULTIPLE-CASE STUDY FRAMEWORK APPLIED IN THE FIRST ROUND
CASE STUDIES TO COMPANIES A, B, C, D, E, AND F, AND LITERATURE.

In the second round, two case studies on the application of the proposed methodology

were conducted. In this stage, a complete theoretical framework was ready to be applied

and the same data collection protocols were used as the first round. Such data collection

protocols as interviews with engineers and managers, personal observations, and the

second round questionnaire were used. The second round questionnaire was sent to three

OEM companies in automotive industry in order to evaluate their practices to ensure the

manufacturability of product designs. According to the case study results, the proposed

Yong-Suk Kim

Select cases
- company A
- company B
- company C -
- company D
- company E
- company F

Design data
collection
protocol

- Interviews

-observations

--.- ---.. .. ---

65



methodology has been fine-tuned. The overall structure of the second round multiple case

studies is shown in Figure 3-5.

The application of the case study method in the second round case studies can be seen as

a validation process. Validation in social science is a confirmation process for gathering

evidence to test hypotheses [Krathwohl, 1998]. The validation of the proposed

methodology is to show that the proposed methodology provides a useful framework for

better consideration of manufacturing system issues in early product development phases.

In this research, one hypothesis may be that the proposed methodology shows the

strengths and weaknesses of the existing approaches in use, which are linked to the

overall performance of the product development system of a company. The usefulness of

the proposed methodology is to be established with the help of a multiple-case study

approach.
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FIGURE 3-5. THE MULTIPLE-CASE STUDY FRAMEWORK APPLIED IN THE SECOND ROUND
CASE STUDIES TO COMPANIES X, Y, A, D, AND F.
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3.5 Validity of Applied Research Methods

The validity of the research methods indicates the accuracy, meaningfulness, and

credibility of the research project as a whole [Leedy 2001]. It is very important to think

about the validity of the applied research methods since the research results are

meaningful and defensible only to the extent that its validity allows. Leedy [2001]

distinguishes two types of validity: internal validity and external validity. The internal

validity of a research study is the extent to which its design and the data that it collects

allow the researcher to draw accurate conclusions about the cause-and-effect and other

relationships within the data. There are several ways to ensure the internal validity of the

research study. The following strategies are used to increase the probability that the

explanations of the researchers are the most likely ones for the observations they have

made [Leedy 2001]:

. Controlled laboratory study - conducting an experiment in a laboratory setting in

order to carefully regulate the environmental conditions.

. Double-blind experiment - both the participants and the method-deliverers are blind

with regard to whether they are in a group hypothesized to be more or less effective

than another group.

* Unobtrusive measures - participants are observed in such a way that they do not

recognize if their behaviors are recorded.

* Triangulation - multiple sources of data are collected with the hope that they all

converge to support a particular hypothesis or theory.

As triangulation strategy is frequently used in qualitative research, it is used in the study

presented in this thesis. By conducting multiple case studies with various data collection

methods including direct observations, surveys, and in-depth interviews, the internal

validity of the research is assured. In addition, the explanation building strategy proposed

by Yin [1994] for ensuring internal validity is adopted.

The external validity of a research study is the extent to which its results apply to

situations beyond the study itself [Leedy 2001]. In other words, it indicates the extent to

which the conclusions drawn can be generalized to other contexts. For this reason,
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sometimes, external validity is called as generalizability. Leedy [2001] presents three

commonly used strategies to enhance the external validity of a research study. They are:

. Real-life setting - research that is conducted in the outside world, although it may not

have the tight controls of a laboratory study, may be more valid in the sense that it

yields results with broader applicability to other real-world context.

" Representative sample - when a sample is studied to draw conclusions about a

category as a whole, which the sample belongs, a representative sample of the

category is studied.

. Replication in a different context - if two research studies conducted in very different

contexts reach the same conclusion, it may be an evidence to show that the

conclusion has validity and applicability across diverse contexts and situations.

The multiple case studies conducted in this thesis show the cases of representative

companies of both OEM companies and first-tier suppliers in the automotive industry in

its real life setting. Therefore, the validity of the research methods is assured in the

automotive industry. In addition, as is described in Chapter 6 and 7, the proposed

methodology is based on a model that can be generally applied to repetitive, discrete part

manufacturing industry. Consequently, the external validity may be extended into

repetitive, discrete part manufacturing industry.

In fact, the concepts of internal and external validity come from experimental research

[Leedy 2001]. In qualitative approaches, the meaning of the term validity may be

understood somewhat differently. Researchers like Lincoln and Guba [1985] and

Creswell [1998] suggest using such words as credibility, dependability, confirmability,

verification, and transferability instead of the term validity, which shows the meaning of

the validity within the qualitative research context. In qualitative research like the study

provided in this thesis, several other strategies can be sought to assure the validity. Leedy

[2001] enumerates:

. Extensive time in the field - the researcher may spend a long time on studying a

particular phenomenon.
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. Negative case analysis - the cases that contradict existing hypotheses are looked for

in order to continually revise the explanation or theory until all cases have been

accounted for.

. Thick description - sufficiently rich description of a situation enables readers to draw

their own conclusions from the presented data.

. Feedback from others - the opinion of colleagues in the field is sought.

" Respondent validation - the research conclusion is taken back to the participants in

the study and the participants are asked if they agree with the conclusion.

For the research presented in this thesis, all above-listed strategies are adopted to ensure

the validity of the study. For instance, the author has been studying the relationship

between manufacturing system design and product development for nearly five years.

Different case studies are conducted to continually revise the proposed methodology as

presented in Figure 3-4 and 3-5. Thick descriptions are given for each case study and the

opinions of engineers in industry and faculty members at universities around the world

(including MIT (USA), Meijo University (Japan), Portland State University (USA),

Tampere University of Technology (Finland), and The Royal Institute of Technology

(Sweden)) are reflected in the development of the proposed methodology.

3.6 Chapter Summary

As is presented in section 3.3, there are two general strategies for research design:

quantitative and qualitative. In general, quantitative strategy represents the traditional

hypothetico-deductive approach based on theory and hypothesis, which favors

experimental methods with a focus on outcomes. Qualitative strategy, on the other hand,

favors qualitative methods listed in Table 3-2, with a focus on processes. Often

qualitative methods are used for exploratory research in the field where no established

theory is available.

In this thesis, qualitative methods are primarily applied due to the characteristics of the

interface area between manufacturing and product development. The interface area

between manufacturing and product development is characterized by the following

factors.
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. Lack of the understanding of the variables (e.g., people, information, etc.) involved

. Complex relationships between the relevant variables

. Real world situations under messy and poorly controlled settings

Multiple case study research framework proposed by Yin [1994] is adopted as an overall

research framework and several case studies are conducted to support the proposed

theoretical framework. By thoroughly considering the research methodology to be used in

the thesis, it is possible to confirm the internal and external validity of the proposed

methodology to capture the interactions between product development and manufacturing

system design.
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4 LITERATURE REVIEW

4.1 Introduction

Reviewing the literature in product development and manufacturing system design is

certainly an overwhelming challenge. Manufacturing system design incorporates

numerous research disciplines such as manufacturing strategy, organization design, and

detailed process engineering. Moreover, product development includes manufacturing

system design as just a portion of it. Research fields within product development range

from customer requirements investigation and creativity science to a study on the

economic consequences of product maintenance programs and a research on product

recycling plans. This chapter focuses on the existing approaches to smoothen the

transition from product design to production. A brief introduction to manufacturing

system design and product development is also provided to suggest reference reading in

those areas. The literature review shows that few approaches are available that address

the issues of manufacturing system design in product development.

Before reviewing the existing literature in the interface area of product design and

production, some terms are defined first to avoid the confusion in the use of terms.

4.1.1 Systems

A system is typically defined as a combination of elements with definite relationships

between the elements to behave as a whole. A number of authors define a system in their

own ways but the main idea seems to be similar. Some examples of different system

definitions are:

* Bruns [1988] defines a system as a set of elements embodying specific

characteristics. Between the elements are relationships representing the functional

connections of the elements. A system has a defined boundary to its environment and

all elements exist within this boundary. Each element itself might be a subsystem. An

open system has inputs from and/or outputs to the environment through the system's

boundary. A dynamic system changes its status with the time. The purpose of a

system is to achieve defined goals.
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" Blanchard and Fabrycky [1998] define a system as a set of interrelated components

working together toward some common objectives or purpose. According to them,

systems are composed of components, attributes, and relationships [Blanchard and

Fabrycky, 1998, pp. 2].

. Wu [2000] defines a system as a collection of components which are interrelated in an

organized way and co-operate towards the accomplishment of certain logical and

purposeful ends.

. Hitomi [1996, 1971] claims that a system has four basic attributes: assemblage,

relationship, goal-seeking, and adaptability to environment. He provides four essential

definitions of systems: abstract (or basic) definition, structural (or static) definition,

transformational (or functional) definition, and procedural (or dynamic) definition

[Hitomi 1996, 1975].

Characteristics of the different definitions of a system are shown in Table 4-1.

Considering most of the system definitions cover more or less the same characteristics of

a system, the working definition of a system within this thesis's context is:

"a system is defined as an assemblage of interrelated components working

together towards the accomplishment of certain goals."

TABLE 4-1 CHARACTERISTICS OF DIFFERENT DEFINITIONS OF A SYSTEM

Elements Aftributes of Relationship Boundary Purpose
elements

Brans [1988] x x x x x

Blanchard &
Fabrycky [1998] X X X X

Wu [2000] x x x

Hitomi [1996] x x x x x

4.1.2 Manufacturing Systems

Different authors propose different definitions of a manufacturing system according to

their experience and perspective (see [Arinez 2000, pp. 27]). Some of the definitions are:

. Wu [2000, pp.25] defines a manufacturing system as, "the collection of physical

resources within the system, whether directly involved with the actual transformation

Yong-Suk Kim 72



and/or distribution of materials or as part of the supporting infrastructure, the

collection of human resources, and the collection of controlling and information

system resources." Accordingly, manufacturing represents "the conversion of a

design into a finished product. This involves a series of value-adding, interrelated

activities and operations such as the design, materials selection, planning,

manufacturing production, quality assurance, management, marketing and

distributing activities, devoted to the transformation of raw materials into marketable

goods [Wu 1994].

. Cochran and Lima [1998] define a manufacturing system as, "a subset of the

production system - is the arrangement and operation of elements (machines, tools,

material, people and information) to produce a value-added physical, informational or

service product whose success and cost is characterized by the measurable parameters

of the system design."

" Gershwin [1994] defines a manufacturing system as, "a set of machines,

transportation elements, computers, storage buffers, people, and other items that are

used together for manufacturing." He defines manufacturing as "the transformation of

material into something useful and portable."

. Chryssolouris [1992] defines a manufacturing system as, "a combination of humans,

machinery, and equipment that are bound by a common material and information

flow."

However, there are common elements among the definitions found in the literature

[Linck 2001]. The objective of a manufacturing system is to produce a valuable good by

transforming input materials through processing them. The elements of manufacturing

systems are resources that are necessary for this transformation such as people,

equipment, material, and information. The relationships between the system elements are

defined by material and information flows through the system and the relationships

represent the organization of the system. The boundary of the manufacturing system,

however, varies depending on the definitions. Cochran [1994] distinguishes

manufacturing systems from production systems. Production systems include the

manufacturing system along with other enterprise functions such as marketing, finance,
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supply chain management, and product development [Cochran 1994]. Wu [1994, 2000],

however, does not distinguish production system and manufacturing system.

The working definition of a manufacturing system in this thesis is:

"A manufacturing system is the arrangement and operation of elements

(machines, tools, material, people and information) that are related to

each other to produce a valuable or useful product."

On the other hand, manufacturing system design refers to a plan to integrate a number of

elements of a manufacturing system into a smoothly functioning whole to achieve the

objectives of a manufacturing system. Arinez [2000] provides a comprehensive review on

different definitions of manufacturing system design. According to him, the definitions

of manufacturing system design available in the literature can be categorized into four

groups: 1) the layout and structural organization of physical elements, 2) procedural

design approaches that suggests a sequence of activities that constitute the manufacturing

system design process, 3) a decision process whereby tradeoffs amongst the variables

associated with resources, structure, and processes are made, and 4) system control and

information flow management.

In this thesis, a mixed definition of Arinez [2000] and Cochran and Dobbs [2001] is used.

Manufacturing system design is, "the specification of the attributes of the manufacturing

system, namely the resources, processes, and its organization. Manufacturing system

design covers all aspects of the creation and operation of a manufacturing system.

Creating the manufacturing system includes equipment selection, physical arrangement

or equipment, work design (manual and automatic), and standardization. The result of

the creating process is the factory as it looks during a shutdown. Operation includes all

aspects, which are necessary to run the created factory (i.e., problem identification and

resolution process)."

4.1.3 Product Design and Development

Ulrich and Eppinger [2000] define a product as "something sold by an enterprise to its

customers," and product development as "a set of activities beginning with the perception

of a market opportunity and ending in the production, sale, and delivery of a product."
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This definition is used in this thesis for product development. Therefore, product

development covers from the initial market research to the production, sales, and delivery

of a product.

As for the definitions of design, several different views are observed in the design

literature. Few design articles define design in a strict way and in fact, design can be

viewed differently from different perspectives [Phal and Beitz 1996] or in different fields

[Suh 2001]. Ulrich and Eppinger [2000] see design as defining physical form of the

product to best meet customer needs. Phal and Beitz [1996] cites Martyrer [1960] to refer

to design as an engineering activity that: 1) affects almost all areas of human life, 2) uses

the laws and insights of science, 3) builds upon special experience, and 4) provides the

prerequisites for the physical realization of solution ideas. Suh [2001] defines design as,

"an interplay between what we want to achieve and how we want to achieve it," in his

Axiomatic Design theory. Pugh [1996] describes designing as "a highly manipulative

activity in which the designer has to continuously and simultaneously pay attention to

and balance several factors that impinge upon and influence design." All these definitions

reflect a certain aspect of design. The definition of product design according to Merriam-

Webster's Collegiate® Dictionary (10 edition) is, "the arrangement of elements or

details in a product."

Within this thesis, product design refers to a conceptual arrangement of elements or

details in a product that is a result of interplays between the objectives of a product and

their solutions. The term, "product design," is distinguished from "process design."

Process design refers to defining how to physically realize the product design.

4.2 Literature Overview - Manufacturing System Design

Numerous articles on manufacturing system design are available. Dounmeingts et al.

[1987] suggest the 'Graphe a Resultats et Activities Interlies' (GRAI) for the design of

production management with an emphasis on decision making and control activities. Rao

and Gu [1997] propose a serial seven-steps for a manufacturing system design process.

Black [1991] proposes a new design approach in his book, 'The Design of a Factory with

a Future'. Wu [2000] suggests a general manufacturing system design approach. Cochran
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et al. [2000a] propose a decomposition-based approach to manufacturing system design.

In the study of lean manufacturing systems, Shingo [1989] and Ohno [1988] elaborate the

philosophy of the 'lean' production and describe the characteristics of the lean

production. Monden [1998] propose a bottom-up approach to design a lean

manufacturing system.

Wu [2000], Arinez [2000], and Linck [2001] provide classification of the manufacturing

system design methods in terms of level of completeness and details, manufacturing

system design activities, and time horizon (phases) respectively. Please refer to the above

authors for further explanation of each of the manufacturing system design related

literature.

However, few authors in manufacturing system design field address the issue of the

impact of product design on manufacturing system. Compared to manufacturing related

literature, product development literature discusses more extensively the issue of

interactions between manufacturing and product design.

4.3 Literature Overview - Product Development

Vast literature is available in the product development processes. Clark and Hujimoto

[1991] explain the strength of Japanese auto companies in their product development

compared to the western auto companies. Ulrich and Eppinger [2000] provide a detailed

explanation of the product design processes as well as frequently used tools. Sobek

[1995] compares Toyota and Chrysler in terms of their product development processes in

detail and proposes the concept of set based concurrent engineering (SBCE). Clausing

[1994] proposes to use a structured and organized product development process, and

provides a step-by-step guide to world class concurrent engineering as well as the tools to

be used during each product development process. Meyer and Lehnerd [1997] show the

advantages of applying the concept of product platform with respect to the traditional

single product development approach. Wheelwright and Clark [1992] suggest a product

development framework including the organization issues such as cross-functional

cooperation, learning, and building capabilities. Suh [1990] proposes mapping between

four design domains for smooth product development. Altshuller [1988] suggests 'theory
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of inventive problem solving' (TIPS or TRIZ) as a framework to find out creative

solutions to solve the design problems. Table 4-2 shows what objectives of product

development are addressed by each method.

TABLE 4-2. PRODUCT DEVELOPMENT LITERATURE REVIEW

Design a functional product that
satisfies the external customer

requirements
Ensure that

external
customer's

requirements
are mutually
understood

Design

product to
achieve

customer's
requirements

Validate
Designs

Design a
producible

product that
satisfies the

internal
customer

requirements

Reduce the

overall
product

design and

process
definition time

Minimize
development

cost

Continuous
improvement

Andreasen and Hein 1987 (+) (+) + + +
Clark and Fujimoto 1991 (N) (+) + (+) + (M) (+)
Wheelwright and Clark 1992 (+) (+) + () ++
Nevins and Whitney 19891+
Martin and Ishii 1997 +

Clausing 1994 + + + + + (+) +
Boothroyd et al. 1994 +
Sobek 1997 + + + (+) (M) (+) (+)
Pugh 1996 + + (+) (+) (+)
Ulrich and Eppinger 2000 + + + + + + (+)
Cunningham 1998 _+

Ulrich 1995+ (+) ()
Krishnan 1996 (+) +
Thornton 2000 (+) + + (+)
Feitzinger and Lee 1997 ()+ (+)
Suh 1990 (+) + ()
Pahl and Beitz 1996 (+) + + (+) (+)
Altushuller 1988 (+) + ()
Meyer and Lehnerd 1997 (+) (+) (+) + +
Cusumano and Nobeoka 1998 (+) + (+)

(+)1
+

abstract, process description
detailed description of what to do, how to do

As is seen in Table 4-2, almost all literature addresses the issues of designing a

producible product that satisfies the requirements from manufacturing from the beginning

of product design. It is observed that there are two major streams to address the

manufacturing issues during the product development. The first stream is to facilitate the

communication between manufacturing and product development. In this approach,

organizing people (i.e., cross-functional product development team, matrix organization

[Ulrich and Eppinger 2000]) and coordinating complex information flows (i.e., parallel

development, critical-path model) are important to design producible products. Authors

such as Andreasen and Hein [1987], Clark and Fujimoto [1991], Wheelwright and Clark

[1992], and Clausing [1994] explain different aspects of this approach in detail. The other
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approach is to study how the product design itself affects manufacturing. For example,

Nevins and Whitney [1989], and Cunningham [1998] address the issue of product

tolerancing and assembly. Boothroyd et al. [1994] propose several methods to estimate

the cost and time of machining and assembly along with material selection issues.

O'Grady [1999] explains the concept of modularity, and Meyer and Lehnerd [1997]

describe the benefits of the product platforms. Both concepts can lead to simpler

manufacturing systems with given product variety. Suh [1990, 2001] proposes to match

process variables with product design parameters during product design in his Axiomatic

Design methodology, which consequently leads to the consideration of manufacturing

issues during product design. Sohenius [2000] proposes a model for concurrent design of

product, process, and manufacturing system. In summary, this approach tries to convey

the content of issues that can arise during the transformation of conceptual product design

to physical implementation.

However, many of these authors are either explaining their methods in a very high level

of abstraction without providing details of the methods (i.e., [Wheelwright and Clark

1992], O'Grady [1999], Sohlenius [2000]), or limit the discussion to specific

manufacturing process engineering issues (i.e., [Boothroyd et al. 1994]). Furthermore,

manufacturing system issues are rarely addressed even though the manufacturing system

plays a significant role during the actual production of the new product.

In the following sections, four approaches are described in detail: concurrent engineering,

product platform/architecture, Design for X (DFX), and Axiomatic Design. These

approaches are not addressed in isolation, however. Most product development literature

deals with the first three approaches at the same time in a mixed way. Axiomatic Design

literature also addresses the first three issues.

4.3.1 Concurrent Engineering Approaches

According to Clausing [1994], products in the U.S. were traditionally developed based on

partial designs, structured for complex products by phased program planning, and

encumbered with a management bureaucracy that adds insufficient value [Clausing

1994]. The traditional product development processes are often represented by
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'functional silos (or chimneys)' in the organization or 'throw-over-the-wall' style serial

development. Clark and Fujimoto [1991] pointed out the disadvantages of this traditional

approach: difficulty in designing for simplicity and reliability, failure to pay enough

attention at the design stage to the likely quality of manufactured product, weak

consideration for manufacturability, longer development time, weak involvement of

suppliers, and neglect of continuous improvement. To overcome the disadvantages

associated with the traditional product development processes, concurrent engineering

proposes to do a concurrent process carried out by a multifunctional product development

team.

Concurrent engineering (CE) has received much attention from the early 1980s, and the

attention given to it has been intensified since about 1988 [Clausing 1994]. The idea of

concurrent engineering gained its popularity by the great success of Japanese automakers

in the U.S. market in the 1980s. Sometimes concurrent engineering is referred to with

different titles such as 'simultaneous engineering (SE)' or 'integrated product and process

development (IPPD).' However, the main idea is similar - collaboration of different

functional parties within a company during the product development processes to address

the issues in downstream and upstream processes simultaneously in order to provide a

successful product at the market price. Therefore, simultaneous and parallel execution of

different phases of product development through collaboration of different functional

groups may be seen as the essence of concurrent engineering.

Two things are important for successful implementation of concurrent engineering. First,

concurrent engineering aims for parallel processing of different phases of product

development rather than serial processing. Therefore, it is very important to define the

dependencies between design activities and to organize the activities according to the

dependencies and the timing. In other words, clear identification and careful control of

information flows among product development activities at different phases of product

development are essential. Second, there are a large number of people involved in

product development. Therefore, organizing the people according to the identified

information flows is important. Since it is people who perform the actual product

development activities, it is crucial to organize them properly so that the necessary

information flows freely between them in a timely manner.
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Therefore, in concurrent engineering literature, the smooth transition from product design

to manufacturing is ensured by the above-mentioned two factors: information flow

control or/and organization management. However, in terms of the smooth transition

from product design to manufacturing by considering manufacturing system design

issues, concurrent engineering approach shows weaknesses in revealing the actual

content of the interactions between the manufacturing system and product/process design.

In other words, concurrent engineering literature does not provide in-depth knowledge on

what information should be exchanged between functional parties to smoothen the

transition from product design to manufacturing.

4.3.2 Product Platform/Product Architecture Approach

This approach starts from the assumption that the best way to success is to give

customers what they want to have. However, the product variety comes with costs. In

other words, this approach is about the strategy and methods to provide a wide variety of

products without significantly increasing design and manufacturing costs. Before

illustrating how the ideas of product platform and product architecture affect the

manufacturing system, the definitions of relevant terms are necessary to avoid the

confusion. Product platform is defined as, "a set of subsystems and interfaces that form a

common structure from which a stream of derivative products can be efficiently

developed and produced" [Mayer and Lehnerd 1997]. Consequently, product platform is

related to the use of a common structure that can be applied to various products. Product

architecture is, "the scheme by which the functional elements of the product are arranged

into physical chunks and by which chunks interact" [Ulrich and Eppinger 2000]. There

are two types of product architecture: modular architecture and integrated architecture.

Product family is, "a set of products that share common technology and address a related

set of market applications." [Mayer and Lehnerd 1997] Therefore, a product family can

be developed based on a product platform by carefully considering the product

architecture.

Mayer and Lehnerd [1997] claim that a platform approach to product development

dramatically reduces manufacturing costs. This is true from two perspectives. First, a

platform approach enables the reduction of complexity in fabrication with given product
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variety since many products share the same platform. In addition, assembly takes its

benefit in terms of decreased assembly complexity since the variety of components dealt

with in assembly is significantly reduced with the given product variety. Second, a plat

form approach provides significant economies of scale in the procurement of components

and materials, because many of these are shared by various products. Some examples of

platform approach are the component sharing program of Black Decker in 1970s and

Sunbeam in 1980s. Utterback [1994], Lehnerd [1987], and Meyer and Lehnerd [1997]

present the examples in detail.

Product architecture is also closely related to part sharing. In some sense, part sharing

through a platform design should be supported by modular product architecture.

According to Ulrich and Eppinger [2000], modular product architecture has the following

two properties:

- Physical building blocks of a product implement one or a few functional elements in

their entirety and,

. The interactions between the physical building blocks of a product are well defined

and generally fundamental to the primary functions of the product.

To use a common platform to derive a stream of products, the interactions between

platform components and other components should be clearly defined and thus, it should

be supported by modular architecture. The platform components can be extremely

complex internally but their external interfaces should be clearly defined [O'Grady

1999]. The opposite of the modular architecture is an integral architecture. The

characteristics of the integral architecture are as follows:

. Functional elements of the product are implemented using more than one physical

building blocks of the product.

" A single physical building block of the product implements many functional

elements.

" The interactions between physical blocks are ill defined and sometimes are incidental

to the primary functions of the products.
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Modularity, however, is a relative property. In other words, an architecture is more or less

modular when it is compared with other architectures. An absolutely modular architecture

does not exist as an absolutely integral architecture does not exist.

In terms of interaction between manufacturing and product architecture, different product

architectures can affect manufacturing systems in controversial ways. First, the number

of components can be reduced through component integration with integral product

architecture, which can lead to simpler assembly and material handling. Typical Design

for Manufacturing and Assembly (DFMA) approach encourages the reduction of part

counts [i.e., Boothroyd et al. 1994]. On the other hand, components sharing through

modular product architectures can greatly reduce the manufacturing complexity while

providing more product variety. For example, modular product design enables the delay

of product differentiation within manufacturing systems up to the end of production lines,

which significantly reduces the complexity associated with handling product variety at

the front of production lines [Andreasen and Hein 1987], [Lee 1993], [Lee and Billington

1994], [Lee and Tang 1997]. Therefore, product architecture decisions should be made

after thoroughly investigating the impact of the decision on manufacturing systems.

However, there is some controversial evidence as to the usefulness of the part

commonality and part sharing. For example, Fisher et al. [1995] point out that many

attempts to increase the commonality of parts eventually failed due to the lack of

providing the literal meaning of 'variety' that are recognized by the customers. In the

same context, postponing the differentiation point may not work. In other words,

reducing complexity of manufacturing systems by part sharing or differentiation point

postponement may be possible, but if the real variety of products recognized by the

customers is not provided, reduced complexity is meaningless.

In summary, part sharing through product platform or modular architecture has been

proposed to save manufacturing costs through the elimination of complexity in

fabrication and assembly within manufacturing systems. It also provides the benefit of

economies of scale in part and material procurement. In addition to these benefits,

modular product architecture makes the delay of product differentiation within
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manufacturing systems, which leads to the reduction of complexity associated with

handling product variety.

4.3.3 DFX Approaches

One of the most widely accepted engineering design philosophies associated with

manufacturing is "Design for X" (DFX) approach. Here X can stand for many criteria.

For example, in their design embodiment section, Phal and Beitz [1996] enumerate many

DFX ideas such as 'Design for Ergonomics,' 'Design for Aesthetics,' 'Design for

Production,' 'Design for Ease of Assembly,' 'Design to Standards,' 'Design for Ease of

Maintenance,' 'Design for Recycling,' 'Design for Minimum risk,' 'Design for Quality,'

and 'Design for Minimum Cost.' Ulrich and Eppinger [2000] claim that the general ideas

that apply to methodologies for achieving any of the Xs in DFX are the following:

. Detail design decision can have substantial impact on product quality and cost.

" Development teams face multiple, and often conflicting, goals.

. It is important to have metrics with which to compare alternative designs.

" Dramatic improvements often require substantial creative efforts early in the process.

" A well-defined method assists the decision-making process.

Among these methodologies, the most common is Design for Manufacturing (DFM).

Ulrich and Eppinger [2000] view the traditional DFM approach as a means to achieve

cost savings. They categorize the DFM activities into components cost reduction,

assembly cost reduction, and supporting production cost reduction, and propose five steps

for the DFM method as is shown in Figure 4-1 [Ulrich and Eppinger 2000]. The five

steps are: 1) estimate the manufacturing costs, 2) reduce the components costs, 3) reduce

the assembly costs, 4) reduce the costs of supporting production, and 5) consider the

impact of DFM decisions on other factors. In order to support cost savings in components

and assembly, Boothroyd [1979], Dewhurst and Boothroyd [1987], Boothroyd and

Dewhurst [1990], and Boothroyd and Radovanovik [1989] propose several DFM tools to

estimate manufacturing cost and time at the early conceptual design stage as well as

design guidelines for ease of manufacturing. According to Boothroyd et al. [1994],
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DFMA tools are designed to serve as analysis tools to help concurrent engineering teams

to study proposed designs and to evaluate them from the point of view of manufacturing

difficulty and cost. However, in many cases, these DFM tools focus on the design

interactions with manufacturing in the process level or the component level.

Proposed

Design

Estimate the
Manufacturing

Costs

Reduce the Costs of Reduce the Costs of Reduce the Costs of

Components Assembly Spotn

Consider the Impact
of DFM Decisions
on Other Factors

Recompute the
Manufacturing

Costs

Enough?

Acceptable
Design

FIGURE 4-1. THE DESIGN FOR MANUFACTURING (DFM) METHOD [ULRICH AND EPPINGER
2000].

Cost savings in supporting production are about saving the overhead of manufacturing.

Ulrich and Eppinger [2000] illustrate a series of examples for cost savings in supporting

production through DFM. A reduction in the number of parts may reduce the demands on
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inventory management. A reduction in assembly content can lead to the reduction of the

number of workers required for assembly and therefore, reduces the cost of supervision

and human resources. The demands on engineering support and quality control can be

greatly decreased by standardized components. Still, the DFM approach lacks of a

framework to show the consequences of DFM rules on manufacturing systems.

Specifically, it is not known whether the application of a DFM 'rule' will bring positive

or negative consequences on a manufacturing system's ability to meet its requirements.

For example, a part count decrease by applying the DFM rules may require new

manufacturing processes to be developed, which may increase cost. Manufacturing

systems can be simplified by the reduced number of parts but also can be complicated by

the issues such as training of operators for new processes and quality assurance for new

processes. Therefore, controversial results may arise from the application of typical DFM

rules. This problem suggests that DFM rules should be applied only in the context of the

manufacturing requirements.

Another interesting DFX approach regarding its relationship with manufacturing systems

is the 'Design for Variety' (DFV) approach. In the DFV approach, Ishii et al. [1995], and

Martin and Ishii [1996] proposed metrics to measure the cost impact of product variety.

DFV is unique from the perspective that it provides quantifiable indices to measure and

compare the costs of product variety. In their research, Martin and Ishii [1997] claim that

the manufacturing cost of dealing with a variety of products consists of direct and indirect

costs. The direct costs are easy to calculate and include increased capital equipment,

more training of personnel, the engineering time required to make new drawings and

analyze the new design, run certification or qualification tests, and to find new suppliers.

However, indirect costs are more difficult to consider and include raw material inventory,

work in process inventory, finished goods inventory, post-sales service inventory,

reduction in capacity due to set-up, and the increased logistics of managing the product

variety. With these concepts, three indices that measure the commonality of the parts, the

differentiation point in manufacturing processes, and setup costs are proposed. The costs

related to the increased product variety can be decreased by increasing the commonality

of parts, postponing the differentiation point, and decreasing setup costs.
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The DFV approach mentions the possible impact of product design on manufacturing

systems in terms of various aspects of manufacturing systems such as equipment,

training, engineering, and suppliers. However, it does not provide a framework that

integrates the impact of product design on various sides of manufacturing and does not

show how these relationships can interact with each other.

4.3.4 Axiomatic Design Approach

The approach of Axiomatic Design to integrate manufacturing to product design is

unique since it proposes simultaneous consideration of process during the product design

processes. The details of the Axiomatic Design methodology are provided in section 6.2.

According to Suh [1990, 2001], design is interaction between what to achieve and how to

achieve in four design domains of customer, functional, physical, and process. He claims

that customer attributes (CAs) should be mapped to functional requirements (FRs), which

are satisfied by design parameters (DPs) (Figure 4-2). DPs are physically implemented by

process variables (PVs), which are typically quantities such as temperature, pressure, and

flow rate that can be changed on equipment to yield a desired output value of a product

characteristic. The mapping between elements in different domains is governed by the

zigzagging principle that guides the decomposition process from a high system level to

lower detailed levels. The zigzagging principle suggests that designers should zigzag

between the design domains during the design process. For example, a high level FR

satisfied by the corresponding DP can be further decomposed, if necessary, into sub-FRs

but these sub-FRs are constrained by the DP. Therefore, during the decomposition

process, the higher level DP should be always considered.
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{CAs} {FRs} {DPs} {PVs}

Customer Functional Physical Process
domain domain domain domain

FIGURE 4-2. DESIGN PROCESS OF AXIOMATIC DESIGN

In Axiomatic Design, the manufacturability of design is assured by the zigzagging

principle. Since the PVs at the high level of decomposition govern the low level DPs,

manufacturing is always considered during the design. Therefore, it can be said that

Axiomatic Design supports the design for manufacturing by its inherent design process.

However, it is not very clear how to decompose between physical domain (DP) and

process domain (PV). Suh [2001] describes the required design matrices between FRs

and DPs, and DPs and PVs but he does not provide the detailed steps for simultaneous

decomposition between three domains of functional, physical, and process. Furthermore,

few examples are available that show the decomposition across three design domains.

With regard to this problem, several authors proposed their own approaches to clarify the

physical realization process of DPs. For example, Arinez and Cochran [1999] propose an

approach for mapping from the physical domain of product and production system design

to process domain. They propose to use both product design decomposition and

production system design decomposition to find the PVs in the common process domain.

In other words, based on the DPs of product design and the DPs of production system

design, PVs in the process domain can be derived. The benefits of this approach are the

consideration of both product design and production system design for process design.

Furthermore, it enables to trace the requirements for communication between designers

when alternative decomposition in process domain exists. Their approach is summarized

in Figure 4-3.
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Product Design

Functional Domain Physical Domaliv

Production System

-------- -- ~ P

Functional Domain Physical Domain

FIGURE 4-3. COMMON PROCESS DESIGN BETWEEN PRODUCT AND PRODUCTION SYSTEM
DESIGN [ARINEZ AND COCHRAN 1999].

In their approach, they take an example of compressor crankshaft design, which is shown

in Figure 4-4. From the eleven product design FRs and DPs, eight process variables that

affect product design are derived. In addition, three more process variables are derived

from the three FR - DP pairs of production system design.
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Product Design

{FR}PD {DP}PD
FR1: Mate to clutch plate X 0 5 O 5 0 5 5 O0 DP1 - Drive spline geometry
FR2: Mate with housing support bearings 5 X 5 5 5 5 0 5 5 5 5 DP2 - Shaft bearing geometry
FR3 - Mate to piston bearing 5 5 X 0 5 5 0 5 5 5 5 DP3 - Piston bearing geometry
FR4 - Minimum torque load S X X X 5 5 5 5 5 5 5 DP4 - Overall shaft geometry
FR5 - Maximum shaft weight 5 5 0 X X 5 5 0 5 5 5 DP5 - Shaft material density
FR6 - Maximum shaft deflection 0 X & X O 5 5 0 DP6 - Modulus of elasticity
FR7 - Maximum volumetric wear 0 X X 0 0 0 X 0 0 0 0 DP7 - Surface hardness
FR8 - Minimum fatigue life 0 00 0 0 0 X X 0 0 0 DP8 - Shaft material fatigue strength
FR9 - Maximum leakage via shaft seal 0 0 0 0 0 0 0 0 X 0 0 DP9 - Seal diameter surface finish
FR10 - Maximum compressor housing space 0 0 00 X O 0 O 0 X 0 DP10 - Shaft (length/diameter) ratio
FRIl - Lubricant flow between shaft ends 0 10 0 01 0 0 0 0 X DPI 1 - Lubricant passage geometry

{DP}PD {PV}PD
DP4 - Overall shaft geometry X 0 0 0 0 0 0 0 PV4 - Overall machining process plan
DPI - Drive spline geometry X X0 010 0 0 0 PV1 - Spline generation process variables
DP8 - Shaft material fatigue strength 0 0 X 10 0 0 0 PV8 - Heat treat process variables
DP7 - Surface hardness 0 5 X X 0 00 0 PV7 - Quenching process variables
DP2 - Shaft bearing geometry X 0 X X X 0 0 0 PV2 - Bearing grinding process variables
DP9 - Seal diameter surface finish X 0 X X X X O 0 PV9 - Polishing process variables
DP 11 - Lubricant passage geometry X 0 0 0 0 1 X 0 PV1 1 - Machining process plan for passage

DP3 - Piston bearing geometry I X OXX d X m PV3 - Piston grinding process variables

Production System Design

{oFRiPSDh{DP}PSD {PV}PSD
FR1 - Reduce tasks that ti DP1 - Autonomous operation PV1 - Level of machine
operator to themachine s X s of machines and stations X h a automation

DP6 (modublusoreroofeatcity)0aren okdlothercrreponinPV s.- nl aditioam it fail

more than one machine r implemented in a cell layout X poduct esig
FR3 - Plan resources for I DP3 - Standardized work loopsxXx V Wokcnetprlp
different operating volumes X X IXI for different volumesXXXP3- okcneF e op_

FIGURE 4-4. CRANKSHAFT DESIGN INTEGRATED WITH PRODUCTION SYSTEM DESIGN

[ARINEZ AND COCHRAN 1999].

This approach, however, is somewhat different from the original Axiomatic Design

approach in a couple of perspectives. First, Axiomatic Design stresses the importance of

one-to-one relationship between FRs, DPs and PVs. Arinez and Cochran, however,

provided eight PVs from eleven product DPs in their example shown in Figure 4-4.

Additional three pairs of DPs and PVs are derived from the FRs of the production system

design. Therefore, some DPs of product design such as DP5 (shaft material density) and

DP6 (modulus of elasticity) are not linked to their corresponding PVs. In addition, it fails

to capture the feedback relation between manufacturing and product design.
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On the other hand, Sohlenius proposes the following framework shown in Figure 4-5,

which is a further development of the approach of Arinez and Cochran. In his roadmap

for concurrent product and business process design, he distinguishes the product design

from manufacturing system design. Each design has functional requirements, design

parameters, and process variables of Axiomatic Design. In manufacturing system design,

however, functional requirements are called as manufacturing requirements (MR), design

parameters as manufacturing parameters (MP), and process variables as manufacturing

implementations (MI).

Product Design

-+ TIPS DFX +

QFD Robust

Design

FR DP PV

CRAxoai MR MP MI

Design

BR

Context

Manufacturing System Design

FIGURE 4-5. ROADMAP FOR CONCURRENT PRODUCT AND BUSINESS PROCESS DESIGN

(ADAPTED FROM [SOHLENIUS 2000]).

In his approach, design starts from customer requirements (CR), which are mapped to

product design FRs and business requirements (BR). The mapping from CR to FR can be

facilitated by using tools such as quality function deployment (QFD) [Clausing 1989,

1994]. The FRs are mapped to DPs according to the Axiomatic Design principles. The

theory of inventive problem solving (TIPS or TRIZ) [Altshuller 1988], [Kim and

Cochran 2000] can help to come up with innovative DPs to satisfy FRs. Robust design

principles [Phadke 1989] may also be applied for the selection of DPs. The PVs are
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derived from the DPs that constitute part of the MRs along with BRs. DFX approach may

be applied during the mapping between DPs and MRs. MRs are futher mapped to MPs

and MIs. All these elements are subject to the context. Sohlenius' approach is unique in

terms that it defines manufacturing requirements derived from product design parameters

and customer requirements. However, it does not provide the details of the mapping

processes or any example of the whole mapping process. Due to this lack of detail, the

actual application of the design roadmap should be classified as under development.

4.4 Chapter Summary

In this chapter, various approaches in the literature to enhance the early consideration of

manufacturing systems issues during product development are reviewed. First, the terms

such as system, manufacturing system, product development, and design are defined to

avoid the mix use of different concepts with the same term. Then, a list of literature in

manufacturing system design is provided, which is followed by the literature in product

development. Several approaches to integrate manufacturing system issues with product.

design are explained in detail. They are: concurrent engineering, product

platform/architecture approach, DFX approach, and Axiomatic Design approach. Basic

ideas of different approaches are presented and their strengths and weaknesses are

discussed.

Two problems are identified with the existing approaches proposed in the literature.

Many of the proposed approaches are either explaining their methods in a very high level

of abstraction without providing details of the methods or are limited to the discussion on

specific manufacturing process engineering issues. Furthermore, few frameworks are

available to capture the interactions between product/process decisions and

manufacturing systems, even though manufacturing system plays a significant role during

the actual production of the new product.
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5 INDUSTRY PRACTICES CASE STUDIES

In this chapter, the results of the first-round questionnaire are presented. The first-round

questionnaire is designed to investigate what industry does to facilitate the information

exchange between manufacturing and product design. This questionnaire falls under the

research step 2.2 in Figure 3-2. Overall, six companies participated in the first-round

questionnaire. The motivation of the first-round questionnaire and its design are also

provided along with a brief explanation on the profiles of the participating companies to

show the characteristics of their business.

5.1 Introduction

Recently, concurrent engineering gained enormous popularity and has become a norm in

product development in major U.S. companies. Concurrent engineering emphasizes

collaboration and communication between stakeholders of a product development project

early in the product development process in order to minimize the mistakes or iterations

in later phases. This technique allows minimization of product development time and

costs. In the current volatile market, minimizing product development time and costs to

reflect the most recent customer requirements is essential for product success. Therefore,

it can be seen that the advantages of concurrent engineering can affect the prosperity of a

manufacturing company.

One of most interesting aspects of concurrent engineering is the collaboration of

manufacturing groups and product design groups to design producible products in the

very early phases of product development. Extensive information sharing between

product design groups and manufacturing groups is important for a smooth transition

from product concept to production.

The following sections evaluate the various methods used in industry for information

sharing.
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5.2 Motivation

Companies often use different methods to facilitate the communication between product

design groups and manufacturing groups. For example, some companies emphasize

cross-functional teams and informal communication among the team members for

creative and project-specific solutions. Other companies emphasize the use of

standardized written documentation to avoid unnecessary waste associated with trial and

error. Therefore, it is difficult to understand exactly why some methods work well for

some companies and not for others, and why certain methods are more effective than

others. The first-round questionnaire is one step in a series of research activities to

determine the effectiveness of each method and propose a general framework for the

design for manufacturing systems (DFMS). The list of questions for the first-round

questionnaire is provided in Appendix E.

The first-round questionnaire was designed to identify various methods deployed in

industry to improve communication between people in product design groups and

manufacturing groups. Company A received the first version of the first round

questionnaire in the fall of 2000, and a response was received in January of 2001. To

increase clarity, modifications of several questions were made after a thorough review of

the responses from company A. After the revision, a second version of the first-round

questionnaire was sent to five other companies.

The questions of the first-round questionnaire are designed to identify the industry

practices with regard to design guidelines for manufacturing, system interface between

manufacturing and product design, product design decisions in general, manufacturing

system design in general, and performance measures. Although the main goal of this

research is to find out the communication processes between product design and

manufacturing, questions on product design decision, manufacturing system design, and

performance measures are added for better understanding of the communication

processes. Knowledge of each company's view on product design, manufacturing system

design, and performance measurement is believed to help rationalization of the

communication process used in each company.

Yong-Suk Kim 93



5.3 General Profiles of Participating Companies

Company A is an OEM company in the Japanese automotive industry. This company also

has several transplants in North America. The main products of company A are cars,

trucks, and buses. Respondents to the first-round questionnaire include production

engineering planning, vehicle planning, and corporate planning divisions. Many

respondents are general managers.

Company B

Company B is a U.S. first-tier parts supplier for the automotive industry. This company

was spun off from its mother OEM company several years ago. Company B is a top five

automotive supplier in the world. Respondents to the first-round questionnaire are

comprised from different product divisions, such as electronics and power train.

Company C

Company C is a German first-tier parts supplier for the automotive industry. Company C

operates several transplants in the U.S. Company C is a top five auto supplier in the

world. Respondents to the first-round questionnaire are engineers in the U.S. transplants.

Company D

Company D is an OEM company in the automotive industry based in the U.S. The

respondent to the first-round questionnaire is an engineer in the die engineering

department.

Company E

Company E is a German-based OEM company in the automotive industry. Company E

produces high performance, high-end vehicles. Respondents to the first-round

questionnaire are engineers from a plant in southern Germany.

Company F

Company F is a Korean-based OEM company in the automotive industry. Company F

produces cars, trucks, and buses. The respondent to the first-round questionnaire is a

design engineer in the bus division.
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5.4 Data Collection Methods

For company A, the first round questionnaire was translated by Prof Kawada, a Japanese

professor in Meijo University. Prof Kawada interviewed the engineers and managers of

company A and translated the responses to English. A complementary interview was held

in the summer of 2001 in Japan by the author to increase the understanding of the

answers. The responses to the complementary questions were recorded.

From company B, five different answers were received from five different product

groups. Their answers are excellent in terms of diversity and details. A follow-up meeting

was held at company B headquarters in Dearborn on June 29"', 2001 to clarify the terms

used in the answers and get a clear overall picture of the system used in company B.

Participants from company B include engineers from interior (instrument panel, doors,

seats, etc), exterior (bumpers, etc.), electronics, power train, and climate control.

For companies C, D, E, and F, the first round questionnaire was sent by email. The

answers were documented by the engineers of each company and sent to the author by

electronic files.

5.5 General Overview on the Received Answers

The answers received from six major players in the auto industry revealed that those six

companies are pursuing more or less similar goals and implementing similar tools as

suggested by the academia. All of the companies stressed the importance of the

communication between product design groups and manufacturing groups (including

production engineering groups) in order to streamline product development activities,

which results in faster introduction of new products without significant cost increase. The

use of cross-functional teams or design for manufacturing guidelines is becoming a norm

in the automotive industry. Knowledge management to minimize the repeating mistakes

is extensively pursued. All respondents are aware of the disadvantages associated with

the traditional 'throw-over-the-wall' approach with functional chimneys. However, for

some companies, lower level divisions may not take the advantage of the many tools

developed at the corporate level. This may be due to the a loose enforcement of

Yong-Suk Kim 95



III

corporate-wide tool use or a lack of continuous support to encourage the propagation of

tool use.

Among the answers received from the participating companies, especially interesting are

the answers from company B. Five answers from five different product groups were

received. According to the received answers, each division pursues different strategies for

the integration of manufacturing and product design. This is partly due to the different

characteristics of the products that each division produces. However, the major reason is

a consequence of the fact that each division worked as an independent organization when

company B was a part of its mother company. The division that achieves the best

integration is electronics. The electronics division produces circuit board products for

automotive vehicles in several plants around the world. The integration between these

plants as well as between manufacturing and product design is achieved by the core

cross-functional team, 'Copy-Exact' team. This team supports the software tool that is

globally used to check the manufacturability of new product designs, the new process

technology options, and the availability of new components. On the other hand, in other

divisions, a corporate-wide product development manual is often used as a basis to

consider manufacturing issues. This manual describes the processes that should be

followed for new product development and clearly defines participating groups, their

responsibilities, and information flows between these groups. Based on this manual,

electronic knowledge databases are currently being developed or are already in use in

some divisions. The use of knowledge databases reduces product development time by

eliminating the time to solve a problem that had occurred before. The knowledge

databases also help product designers eliminate the problem permanently. However,

some divisions heavily count on the personal experience and knowledge of its individuals

instead of using the standardized knowledge base.

Company A is highly recognized and referred for its excellence in manufacturing as well

as product development. The quality of new products from the production line is known

to be superior to other companies according to the JD power awards. Therefore, it is

expected that company A implements many of the benchmark tools for excellence in

product development proposed by academia, such as cross-functional product

development teams, knowledge bases to avoid repeating mistakes in product designs, and
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product design guidelines for manufacturing. These tools are identified in the answers to

the first-round questionnaire. For example, a design knowledge base is implemented in

company A. This knowledge base is well managed and continuously updated. More

importantly, it is extensively used by most of the engineers in the company. In addition,

many improvement examples can be found that are the result of enthusiastic collaboration

of the product design group and manufacturing group.

Company A, however, seems to be weak in terms of the integration of tools used in

different plants. For example, each plant seems to pursue its own modified version of the

knowledge base to avoid design iterations caused by poor producibility of the product

design, which they believe is more effective than the tools used at other plants. The

difference becomes more significant in the case of overseas plants.

A similar trend is observed in the propagation of 'best practices' within company A.

Some engineers of the company A believe that standardization is obsolete in company A

for its product development related knowledge base. Instead of implementing the same

practices and tools, each plant pursues its own, which is believed to be better than the

existing best practice. Competition between plants is believed to stimulate the

improvement and it is naturally admitted as 'pride of engineers.' This practice is possible

because of the relatively loose control from the headquarters in Japan over overseas

plants.

This approach is very different from the approach taken by the electronics division of

company B. This division pursues maintaining a common best-practice knowledgebase

for all of its plants worldwide. A specific team is assigned to maintain and update the

software tools and it is their responsibility to make this tool available to all of its plants

worldwide. Any best practice developed in one of the plants is thoroughly reviewed by

the copy-exact team and then updated to the database as is necessary.

As for company C, it seems that there were not many intensive efforts for the integration

between manufacturing and product design at the overseas plant according to the received

answers to the first-round questionnaire. However, over the past several years, company

C has been strengthening the link between manufacturing and product design groups by

deploying several tools such as DFM tools and APQP (Advanced Product Quality
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Planning) processes. Company C also intensively works with outside consultants to

streamline the time-to-market.

In the case of company D, it may not be appropriate to generalize the practice of

company D from a set of answers received from a die manufacturing engineer. For

example, the collected answers reported a lack of support for continuous update of the

manual they use while company D does have a highly detailed manual for its product

development processes. This example may show that it is not an easy task at all to make

the communication happen between manufacturing and product design engineers in

charge even with the enormous amount of resources spent to support the communication

at the corporate level.

Company E seems to maintain some implicit information flow paths between

manufacturing and product design. However, there is no written product design guideline

available to design manufacturable goods. Instead, manufacturing engineers can affect

product designs in various ways. Human network is one way that is frequently used for

the information exchange and PC-network tool to which all involved parties have

accesses is another way in use. In addition, manufacturing engineers can raise their issues

at the periodic quality meetings. Basic principles of concurrent engineering are pursued

such as project leaders, temporary project offices, and quality meetings that all involved

parties attend.

Company F seems to be heavily influenced by the practices of Japanese auto companies.

Several reasons can be inferred such as geographic closeness between Korea and Japan,

and its long-term relationship with a Japanese partner company as a technology source.

Company F has a documented design guideline and product development schedule

standard. However, the design guideline of company F does not capture the

manufacturability information. Therefore, manufacturability problems are often solved

through negotiation between product design and manufacturing after they have occurred.

However, some manufacturing system constraints are reflected in product design. For

example, the chassis hard points for different vehicles are set to utilize just one fixed jig

instead of developing many different jigs.
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5.6 Detailed Answers to the First-round Questionnaire

5.6.1 Design Guideline for Manufacturing

The first-round questionnaire starts by asking questions regarding the availability of

written document of product design guidelines from manufacturing people. As is shown

in Table 5-1, different companies seem to use different formats of the design for

manufacturing documents. However, actual use of the available document seems to be

different depending on companies according to the interviews with the engineers. Some

engineers showed their concerns on the continuous update and management of the

document available.

Questions asked regarding the availability of written product design guideline for

manufacturing are as follows:

. Some literature addresses the frequent use of product design guideline originated

from manufacturing in benchmark companies. This document contains the

requirements from the manufacturing or production engineering side to product

design side. Does your company use a formal document like this?

If your company has the equivalent one:

- How has it been developed?

- What is its content?

- How is it related to their manufacturing system design? Is there any good example

of design constraints imposed by manufacturing system issues?

- Is there any performance measure for product designers related to this issue? (Are

product designers evaluated by being committed to this guideline?)

If your company does not have the equivalent one:

- How are the manufacturing requirements fed back to the product design side?

- Which one is more frequently used for the feedback process, documented

(written) information or tacit knowledge through human network?
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. If a manufacturing engineer found a product design problem, for example, how

would the problem be informed to the product designers? (e.g., product

development team meeting, product development process gate review, etc.)

. What activities are done to prevent repeating problems?

TABLE 5-1. THE SUMMARY OF THE ANSWERS TO THE DESIGN GUIDELINE FOR
MANUFACTURING QUESTIONS

Availability of Who developed? (if no
Company written DFM document what Content (or substitute method) PM*

document alternative?)
Structural requirements (before a

project), general requirements
A Yes Production engineering (during a project), improvements Yes

by design - manufacturing
collaboration.

Slight modification of Lessons learned, FMEA, content
X Yes one used in mother is agreed and audited by product Yes

company engineering

Developed and Lessons learned, best practice,
Climate Yes maintained by cross- manufacturing feasibility,
control finctional teams product design related No

information

Human network with Feasibility meetings that happen
Exterior No tacit knowledge randomly, depend on memories No

B & tacit knowledge of engineers

Yes (design Product engineering in Lessons learned, Do's and

Powertrain guide based consultation with Don'ts based on current No
on avoiding manufacturing manufacturing procedures and
mistakes) engineering practices

Panel size optimization, solder
Yes (IT ability, load balance to optimize No /

Electronics knowledge Copy-Exact team facility usage, test strategy, Yes
tool) equipment specification,

material sources, tool design
Product design in Modified form of the APQP,

C Yes consultation with DFM/DFA workshops No
outside consultants

Feasibility dept. used to Manufacturing feasibility
Yes (but own and maintain the reference based on past

D obsolete, not guideline - no longer xNo
updated) has the resources for experience with sections &

this task. sketches by part types

Human network with Periodical quality meetings, PC-
E No tacit knowledge network based change-request No

system

Human network, prototype building is done by

F No engineers' experience deinrsorduto
and tacit knowledge engineering reviews the design No

with the beta prototype.
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* PM: Performance Measurement

In the following section, detailed information regarding the written DFM documents used

in each company is described.

5.6.1.1 Company A

Company A has a product design guideline originated from manufacturing that is called

Yoken-sho (requirement sheet). There are two types of Yoken-sho. One defines the

general structural requirements applied commonly to all the models; the other regulates

the requirements applied to each individual model. Both are formal documents.

The general structural requirement means a general solution applied to any vehicle

regardless of the model. General requirements are submitted from the manufacturing to

the design side at the earlier stage of product design. The answers to these general

requirements are Ippan-kai (general solutions). For global standards, Ippan-kai should be

universal, not unique to the problems, so that designers can easily check their drawings.

Countermeasure ideas of the current vehicle problems are recorded in Ippan-kai. For

example, once the position of the fuel inlet is decided to be at the right (or left) side of the

body, designers of any vehicle must observe these regulations without any exception as to

the general structural requirements.

The specific structural requirements are incessantly issued from the manufacturing or

production engineering side to the product designers in the development process of any

specific model. Upon receiving the requirements, product designers are required to

decide as early as possible whether to accept the requests, or stick to their original ideas

although they contradict to what the other party claims. When both parties disagree, they

meet together and discuss thoroughly until they reach some specific solution or some

optimal compromise.

Some plants within company A use a different tool called a Pre-Product-Check (PPC)

instead of using Yoken-sho. PPC is an advanced version of Yoken-sho. However, PPC is

not thoroughly formalized. Additionally, every plant within company A develops and

implements its own version of PPC. This separate development of PPC by each plant is

due to the loose control over the plants from the headquarters of company A. PPC was
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originally developed in a format of written documents but now an electric database

version is available. Product designers can easily access and search the data in many

different categories with this electronic database. For example, the part number can be

used for data search since company A has a unique part numbering system. Every part

used in company A has a 10 digit part number. The first five numbers indicate part type

(e.g., bumper, display panel, etc.) and the rest shows model. Therefore, if an engineering

designer is designing a bumper, he can easily learn about the previous mistakes made and

the problems that have occurred with bumpers of other similar models as well as those of

previous models. In addition, the possible solutions to the problems are recommended by

the database. According to the interviewed engineer, 90% of the mistakes made during

the product development are repeated mistakes. By using the PPC, these problems can be

prevented.

In company A, a designer's commitment to problem solving with manufacturing

engineers is promoted by performance measure. Acceptance ratio is the ratio of the

number of indications the design side admitted as rational to all the number of indicated

items reported by manufacturing.

Company A, however, seems to suffer from the lack of integration of the tools used in

different plants. Some plants claim that they use different sets of tools, which they

believe is more effective (than tools used in other plants) to avoid iterations at the phase

of production realization due to lack of producibility of product design. Improvement

activities in different plants are also done in different ways and the best practice cases are

not implemented in every plant. Instead of implementing the same practice, each plant

pursues a better one. The difference becomes more serious when it comes to the case of

oversea plants. Each plant seems to pursue its own version of best practices. This practice

is not far from what engineers of company A believes. For example, the view of the

engineers of company A is that standardization is obsolete in the company in terms of

PPC. This results from relatively loose control from the company A headquarters in

Japan over overseas plants. For example, company A does not have a standardized single

cost accounting and thus, cannot effectively compare costs of different plants. Most of

the engineers of company A, however, did not seem to be concerned a lot about the level
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of integration within company A in terms of tools used. A general manager commented

about the different tools used as follows:

"It is like a pride of engineers. Company A engineers do not think that

there exists any best practice. If they see some 'good' practices, they

compete with those who developed the good practices by developing

'better' practices."

5.6.1.2 Company B

Five answers from five different product groups were received from company B.

Respondents from company B include engineers from interior (instrument panel, doors,

seats, etc), exterior (bumpers, etc.), electronics, power train, and climate control.

It is interesting to see that some divisions of company B implement their own version of

tools to stimulate the information sharing between the product design group and the

manufacturing group. The use of different tools is caused by the fact that company B is a

spin-off company from the mother OEM company. Each product division of company B

had worked for a different organization of the mother company in different environment

and thus, it had developed its own version of communication tools that was adequate to

their situation. However, this difference caused the problem of a low level of integration

throughout the company. For example, significant achievement of one division in terms

of time and money saving in product development is not likely to propagate to the other

divisions of the company. Company B is trying to solve this problem by encouraging

each division to use the company wide manual for product development.

Within a division, however, the level of integration seems to be high. A very high level of

integration is observed in the electronics group, for example. The electronics group forces

the use of the Copy-Exact tool to its plants worldwide and supports this activity by

assigning a designated team to update and maintain the tool. In addition, the Copy-Exact

tool is available as a software tool, which allows easy use of the tool by its plants. They

claim that this tool covers every aspect of circuit board manufacturing and test,

mechanical assembly, and shipping best practices. This tool is developed and maintained

by a central Copy Exact team focusing on each step of the electronics manufacturing
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process. This Copy Exact team is a cross-functional team that includes representatives

from each functional group involved with product development. Every plant establishes a

lead in one of the areas of the process to create refined equipment, maintenance, material

and design requirements, and is responsible to feed the central Copy Exact Team with the

requirements to ensure all plants benefit. Much of the knowledge is captured in

continually updated IT knowledge tools that layout new circuit board designs.

Other divisions use similar tools. The power train group, for example, uses a Design

Guide to avoid mistakes. It is developed by the product engineering group as a result of

lessons learned and in consultation with manufacturing engineering. This guideline

describes "Do's" and "Don'ts." The Design Guide is based on current manufacturing

procedures and practices. For example, the design of corners or radii of blow-molded

components is critical to prevent excessive thinning in the corners of the product. The

design guide specifies the minimum radius required to avoid excessive thinning in those

corners. There is a manufacturing feasibility sign-off process required in the product

development process. However, the manufacturability feasibility review result does not

necessarily affect the performance review of product design engineers.

The climate control group also uses a Design Guide that includes manufacturing lessons

learned through product launches and manufacturing best practices. It is developed and

maintained by cross-functional teams through experience of design validation testing,

product launches, and concern resolution processes. This guideline contains primarily

product design related information with manufacturing best practices and manufacturing

feasibility information. The results of the use of the Design Guide are more

manufacturable product designs. For example, heater core connector tubes with bends are

designed with oval ends at tank connection to insure correct orientation. Another example

is that radiator end tank designs include sufficient spacing between the crimp surface and

connectors to allow for tooling to properly crimp. There is no specific performance

measure related to the use of the Design Guide, but problems related to designs would

reflect negatively on the designers' performance evaluation.

Another division (division X) in company B directly counts on the corporate-wide

product development manual, in which cross-functional product development teams
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maintain specific product development milestones to ensure design for manufacturability,

production feasibility, tooling buyoff, and lessons learned. As is previously described,

this manual is an extension of the manual used in the mother company of company B. It

requires the review of lessons learned to feed the product FMEAs (Failure Mode and

Effect Analysis), which feed the process FMEAs which culminates into a manufacturable

product controlled by a dimensional control plan agreed to and audited by product

engineering. Product engineers are evaluated by their performance and participation in

product development teams.

Exterior / Interior division, on the other hand, does not use any written design guideline.

Often verbal communication of requirements is ignored. The manufacturing requirements

fed back to product design side in the feasibility meetings when manufacturing engineers

are invited. The meetings occur randomly. Therefore, the feedback process counts on

manufacturing engineers' tacit knowledge and their human network in product design

groups.

5.6.1.3 Company C

Company C does not seem to have enjoyed the luxury of well supported communication

between manufacturing and product design. Since company C is a U.S. operation of a

major German company, a lot of products are designed and validated in Germany.

However, company C maintains quite a significant product design capability - around

200 product design engineers in the U.S. In addition, over the past couple of years,

company C has been actively involved with activities to strengthen the link between the

manufacturing group and the product design group by deploying several tools such as

DFM tools and APQP (Advanced Product Quality Planning) processes. The deployment

of those tools is done as a part of a focused effort to streamline the product development

process to minimize the time-to-market. A result of the efforts may be the new integrated

air fuel manifold of which complex wiring harness was completely redesigned by

assembly concerns. Still, no performance measure of product designers related to design

manufacturable product is established. Company C is working to establish baseline

metric information.
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5.6.1.4 Company D

It may not be appropriate to generalize the DEM practice of company D from a set of

answers received from a die manufacturing engineer. In fact, the respondent does not

seem to be aware of company D's manual for product development that the author is

aware of and is frequently discussed by academia. However, this fact itself shows that it

is not an easy task at all to make the communication happen between manufacturing

engineers and product designers even with the enormous amount of resources spent to

support the communication.

In the die engineering group of company D, manufacturing feasibility reference books are

available. They are somewhat old but still relevant according to the respondent. However,

the feasibility department which owned and maintained this book no longer has the

resources for this task. The feasibility reference books are developed based on past

experience, and include sections and sketches by type of part. However, the feasibility

book assumes a standard type of stamping process and is not specific enough to go

beyond basic formability, trim, flange issues, etc. No performance measure is there to

encourage product designers to design truly manufacturable products.

Overall, the respondent claims that the product design group is not very interested in

what makes a part truly manufacturing friendly. If the parts meet their engineering design

requirements, and are "feasible" to be manufactured, no other changes are likely to

happen to make the part truly manufacturing friendly.

5.6.1.5 Company E

Company E does not have a documented design guideline for manufacturable products.

However, there are several other methods implemented to facilitate the communication

between product design and manufacturing. One of them is periodical quality meetings.

There are various sources of information related to manufacturing requirements that

should be reflected in product design. For example, suggestions for ease of installation

may be raised from the assembly track. In addition, some relevant information may be

provided by the sales departments or quality audit teams. All this information is collected

and presented in the quality meetings, where the representatives from relevant functional
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parties including product design are present. The participant list at this meeting and the

ideas/solutions generation is based on the human network. The participants are assembled

for each unique case. However, the concrete information is passed on in a written form.

In addition to the quality meeting, manufacturing engineers have other paths to provide

manufacturability information to design engineers. A manufacturing engineer has direct

personal contact that a design engineer uses to redesign the part. Furthermore, a

manufacturing engineer can raise a change request through a PC-network-based solution

to which product design engineers and other involved parties have accesses. Still,

however, human network plays a major role in preventing same types of problems from

occurring again.

5.6.1.6 Company F

In company F, a design guideline for engineering design is available. For example, the

range of allowable natural frequency is dictated in the guideline for a suspension design.

In a similar way, tire geometry design standard for designing tire clearance from the body

are pre-defined. However, company F does not seem to have a written product design

guideline for manufacturing.

Instead of relying on a documented design guideline for manufacturing, product

designers get their feedback from manufacturing by personal contact. For example, when

the drawing is released, a manufacturing group reviews the drawing and gives such

feedback as the given tolerance cannot be met. In addition, the production engineering

group solves manufacturing problems with product design group with a beta prototype,

which is typical in auto industry. Other design problems are solved by team meetings or

discussion between relevant parties over the telephone when they arise. Therefore,

company F seems to focus on solving problems after they occur instead of preventing

them from occurring.

However, some important manufacturing information is available from the beginning of

the design. For example, chassis hard points for different vehicles are set to utilize one

fixed jig instead of creating many different jigs according to the vehicle types.

Furthermore, product designers participate in building the alpha prototype in order to
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solve manufacturability problems in the early stage of product development. In addition,

product designers have personal experience in manufacturing in many cases and thus,

they understand basic constraints in manufacturing through their hands-on experience.

Still, this type of knowledge and information is not documented and captured in a

knowledge base.

5.6.2 Interface between Manufacturing and Product Design

The second group of questions asked in the first-round questionnaire is about the

interface between manufacturing and product design. The questions are intended to

capture the actual practices in the company such as communication processes between

manufacturing and product design, types of documents shared or exchanged, contents of

the information transferred between product design and manufacturing, and use of

performance measurement to support the activities.

Questions asked regarding the interface between manufacturing and product design are as

follows:

* What is the system interface between manufacturing and product design during

the product development processes?

. Is there any standardized information exchange between two parties? For

example, when designing a steering gear, is there exchange of standardized (e.g.,

information contents are pre-specified) information such as manufacturing rate,

capacity of existing line, process capability, etc.?

. How is that information (capacity of existing line, process capability, etc.)

reflected in product design?

* What kind of information is transformed and shared between two functional

parties?

" What does your company do to make that information exchange really happen?

" Is there any performance measure to enhance this information exchange?
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. What is the problem solving process if the transplant overseas finds some

manufacturing problems associated with product design? Does she ask for design

modification to product designers in the mother company?

. When is it decided during the product development processes where to produce

the new product? Even in case that there is only one plant available for a certain

type of product (for example, your company may have only one plant for a

bumper production), it should be decided which production lines/machines within

the plant will product the new product).

Table 5-2 below shows the summary of the answers for the questions about the interface

between product design and manufacturing. Interestingly, most companies count on

cross-functional product development teams as a primary way for enhancing

communication between manufacturing and product design. Some companies, however,

complement cross-functional product development teams with pre-specified product

development processes, which are available in a form of manual.

Detailed information on the actual practices of each company is described in the

following section.
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TABLE 5-2. THE SUMMARY OF THE ANSWERS TO THE INTERFACE BETWEEN
MANUFACTURING AND PRODUCT DESIGN QUESTIONS

Interface Standardized
Company between PD and information Content of PM When to decide

MFG exchange information exchange production line?

QIR and DIR, Bothparties Early in the
A product Yes aggressively No product

development exchange information development
team

Any pertinent
Cross functional production data, Early in the

X product Yes tooling diagrams, Yes product
development machine drawing, 3d es lprout

team simulation models, development
container sizes, etc.

Varies. Core Feasibility studies, Preliminary

Climate product FMEA, control plans, sor gfinathe
control development Yes quality forecasts, cost Yes decision before

teams / domain reduction pcsefof
experts opportunities, etc. purchase of

special tooling

PD asks for It is typically
B feedback if PD Yes if a Little or no manufacturing's

Exterior knows where company B information is No problem to find
production takes facility, no if eetdinesgprbetofd

place tier 2 supplier reflected in design the capacity

Cross functional Volume, timing, Prior to initial

product tooling, facilities, quote by
Powertrain put Yes labor, bill of Yes strategic

team materials, make/buy business
assumptions, etc. plannimg

Collocation of Corporate-wide At die time of

Electronics manufacturing Yes product development Yes quote,
& product manual specifies the /No manufacturing

design contents plant is identified
Production

development Drawings, Early in the

C team and DFM Yes specifications, and No product

workshops DFMEA development

Product design data Early in the

Dedicated CAl release from productderoductDDeiae CArees engineering and No development but
representative event only p edcernge N press line and

proposed changes plant changes are
from manufacturing cmocommon

Manufacturing Varies from

E experts in No except Drawings No proiect to
design module drawings project.

meetings

Beta prototype, No except Very beginning
F Drawings No of the product

project teams drawings development
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5.6.2.1 Company A

In company A, there are two types of interface for formal communication between

manufacturing and product design. One is for manufacturability and called as DIR

(Design Investigation Requests). This form is used when manufacturing finds some

problems associated with the product design and asks for appropriate changes. The other

is for quality assurance and called a QIR (Quality Investigation Requests). QIR is the

same problem information sheet as DIR, but QIR is for suppliers or in-house production

departments. These two requests forms were called as "Mon-ren-syo," which means

"problem reporting sheet," but now they are called as "Mon-tei-sho," which means

"problem sheet with proposal." It implies that manufacturing is encouraged to propose

possible solutions to the identified problems rather than just reporting them. DIR and QIR

are applied to all groups of company A regardless of geographic locations.

For any project, engineering designers are supposed to check the PPC or Yoken-sho when

they design. The result of product designers' checking is reviewed by production

engineering engineers. If there is any issue associated with the checking of product

designers, production engineering engineers issue DIR to product designers. However,

the scope of DIR is not limited to the checking of the PPC or Yoken-sho. DIR covers

design issues during prototype development or production trial stages.

Mon-tei-sho is different from Yoken-sho in several points. Yoken-sho contains general

requirements used even before the start of design. There is no why to Yoken-sho and

designers are supposed to know the reasons behind the requirements in Yoken-sho.

Before the start of detailed design, production engineering group sends Yoken-sho to

engineering design group, which contains structural requirements. Then, before the

release of the drawings, problems are reviewed and recorded in Mon-tei-sho. Mon-tei-sho

is a claim for designers after the design is done in this sense. Engineering change request

(ECR) is made based on the review. Still, negotiation always exists and in some sense,

this negotiation is more important than the exchange of Yoken-sho or Mon-tei-sho. Since

short time length of development time cause an overlap of manufacturing and product

design, collaboration between designers, production engineering engineers, and

manufacturing engineers is very important. The engineers of company A stressed that
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collaboration is more important than any documentation. Mon-tei-sho is just a report.

Moreover, in fact, the product design drawing itself is the result of co-work of

engineering design, production engineering, and manufacturing. Big three companies in

the U.S. are known to use similar tools. Examples of Yoken-sho and Mon-tei-sho (DIR)

are available in the appendix.

In addition to the DIR and QIR, there is a standardized format applied to each stage of

product development in which pre-specified checkpoints such as the 'capacity of the

existing line,' 'processing time,' etc. are described. Details of drawings are thoroughly re-

examined and solutions are sought when problems are identified on each checkpoint.

Company A has five stages for the design information to be exchanged with

manufacturing. They are:

1) No drawing stage

2) Virtual design stage (simulation by means of 3-D CAD etc.)

3) Real drawing

4) Semi-trial production (not on real production line)

5) On-the-line final trial

Different checkpoints are established at each of these stages. At each stage, drawings are

checked out by the discussion of two parties with prescribed checkpoints in a standard

format. These standardized checkpoints are pre-specified. Some of the examples are,

'capacity of the existing line,' and 'processing time.' The details of drawings are under

strict surveillance, and solutions are sought when problems are identified on each

checkpoint. Their contents, interestingly, are not fixed at all. They are subject to

continuous improvement through kaizen activities.

Even with these well-standardized communication channels, company A has a different

attitude towards two groups (product design and manufacturing), compared to its western

competitors. Company A regards both groups as an inseparable, integrated part for

product development that interact and collaborate with extensively shared information as

if they are one group, standing on the slightly different perspectives. Consequently, both

parties aggressively exchange information. Problems are proposed from the standpoint of
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manufacturing - for example, the 'size,' the 'kinds of color,' and the 'number of parts'

that could incur additional costs or hamper manufacturability. Once the manufacturing

side insists that special considerations for high quality in some portion of drawings could

increase product costs, or some drawings lack the considerations for ergonomics in

workers' motion in the assembly line, and then detailed discussions on why and how to

do with the problems follow. For example, manufacturing insists to make the workers'

motions easy in assembling dashboards in terms of ergonomics. Product designers reflect

this issue to the product design. Aggressive exchange of information and enthusiastic

collaboration in problem solving of manufacturing and product design are a natural and

established custom in company A.

However, there is no particular performance measure associated with the use of

standardized processes at the interface between manufacturing and product design.

Again, concurrent and close information exchange between manufacturing and product

design is viewed as an established custom in company A as is previously described.

The system of DIR and QIR is applied to overseas plants as well. DIR is issued from an

overseas plant to company A in Japan, on whatever problems associated with product, for

the new model or for the current model, body fabrication, and assembly line. There,

however, was a learning period on a trial-and-error basis for the very first time. Language

problems were significant and there was a problem of different time zone. No emails

were available at that time. It took almost two weeks to solve even a small problem and

three months when the problem was just a little bigger. Occasionally, a large number of

technicians from the overseas plant directly visited company A in Japan to solve

technical problems. At present, however, thanks to the development of latest technology

in communication such as video conferencing and emails, a much higher level of

communication is kept. Technologies like virtual review of the mock-up through 3-

dimensional CAD also helps a lot for smooth communication. Now, the motto of

company A in communication is 'visual and virtual communication.'
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5.6.2.2 Company B

The system interface between manufacturing and product design of company B is

typically cross-functional product development team. Collocation of engineers and

product development meetings are considered important for the communication. To some

extent, the process and content of information exchange seem to be standardized in the

corporate-wide manual for product development, and many of the divisions follow the

standardized processes. The issue might be the level of understanding of the manual of

each division and how aggressively each division uses the manual.

As is previously described, in the electronics division, the integration between

manufacturing and product development is achieved by the core cross-functional team,

'Copy-Exact' team. Electronics division counts on collocation of manufacturing

engineering with the design team to ensure first time right implementation of the

manufacturing design rules. In addition to informal communication within a team, the

Copy-Exact team supports the software tool that is globally used to check the

manufacturability of new product design, the new process technology options, and the

availability of new components. For example, this software tool prevents mistakes from

occurring by making a complete scan of the circuit board layout. After the scan, a list of

issues with the layout design is generated by the software tool based on the rules

developed by the Copy-Exact team. Designers are supposed to look at this list and double

check the listed issues. However, since this system is based on the rules developed by the

Copy-Exact team, sometime problems occur when new process technologies or new

components are used. When a problem occurs, it is stored in the knowledge database and

a new rule is generated to prevent this problem from occurring again. A separate E-CAD

team supports the use of this software tool and updates it. The use of this software tool is

possible partly because of the unique manufacturing environment. Manufacturing of the

electronic circuit board products within company B consists of three general steps (Figure

5-1).
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FIGURE 5-1. SCHEMATIC VIEW OF THE MANUFACTURING SYSTEM FOR CIRCUIT BOARD
PRODUCTS

The first step is SMD (surface mount device) process. This process is a common process

for all different types of products and thus, machines with a high level of flexibility are

used. This process is expensive because expensive flexible machines are used, though.

Therefore, design rules are heavily applied during the product design phase to minimize

the mistakes when the parts are actually produced in the line. The second step is a drop-in

manual insert process. More like dedicated machines are used in this process. The third

step is the final assembly and a large number of small assembly cells are used. Each

assembly cell is not very flexible but the large number of different assembly cells ensures

the necessary flexibility. Each cell costs not so much and the design rules do not matter

so much.

With this unique type of manufacturing system, a lot of information related to

manufacturability issues is fed back to product design groups using the 'Copy-Exact'

tool. For example, capability (e.g., throughput time, quality, inventory, etc.) of the

production line is known for each of design steps. Capacity is generic for process centric

aspects like component placement but product specific for final assembly and test.

Eventually, this information drives the overall design. All plants around the world have

basically the same manufacturing systems and the best practices found in one of the

plants are updated to every plant through the 'Copy-Exact' tool. In this sense, the Copy-

Exact tool is the keeper of the best-known methods for approved equipment.

Other information is shared such as benchmarks for operating efficiency, throughput of

processes, and poka yoke best practices for different design alternatives. These factors are
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weighed to provide the best total cost solution. The content, timing and standards of

information flow between all departments, and aspects of product design and

manufacturing are all specified in the corporate-wide manual for product development.

There is no specific direct performance measure for individual product designers for their

performance in designing manufacturable products even though 'Green, Yellow, Red'

process monitors the programs for specific high level of timing and cost. Event timing

and cost management are reviewed monthly. Manufacturing plant for the production of

new product is considered early in the product development. The business plan includes a

manufacturing strategy for each product and for each plant. At the time of quote,

however, the manufacturing plant is identified.

In the powertrain division, cross-functional product development team is the system

interface. Both product design and manufacturing engineers are team members

throughout the product development processes and are responsible for deliverables of the

product development manual. These two groups work together to prepare the design and

manufacturing assumptions worksheet, which contains information such as volume,

timing, tooling, facilities, labor, bill of materials, make/buy assumptions, testing,

assembly, packaging, product complexity, among other things. These assumptions are

reviewed prior to submission of the initial quote, and then again at the 'design freeze and

release to manufacturing' gateways.

In this division, the product development processes described in the corporate-wide

product development manual are faithfully followed. Manufacturing site is decided at

strategic business planning stage prior to initial quote, as is dictated by the manual.

Performance of the engineers is evaluated by the program managers at the gateway

reviews.

In the climate control division, the system interface between manufacturing and product

design varies depending on product. Some groups use core product development teams

with design, manufacturing, and purchasing representatives on the teams. In addition,

domain experts in manufacturing disciplines are available and used as resources for

designers. Most of the manufacturing issues except production rates and capacities are

already reflected in the Design Guide or the KBE (Knowledge Based Engineering) tool
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and product designers are required to meet Design Guide criteria and KBE rules while

satisfying customer requirements. Production rates and capacities are considered with

manufacturing and sourcing strategy. Information such as feasibility studies, FMEA,

control plans, quality forecasts, and cost reduction opportunities (TQCM - total quality

and cost management) is shared between product design and manufacturing. Information

exchange is ensured by requiring product development teams to follow the processes

described in the product development manual of company B. The documentation required

by this manual is audited by program managers, internal and external audits, and

management program reviews, which are all directly reflected to individuals'

performance.

Preliminary sourcing decision is made at the quote stage and final sourcing is determined

prior to purchase of special tooling. When a problem associated with product design is

found in the plant after the start of production, a concern system is used to help divisional

cross-functional teams to identify problems and resolve them. All plants regardless of

their locations use the same concern system.

In the division X, the cross-functional product development teams utilizing all of the

engineering tools such as design models and simulations are the primary system interface

between manufacturing and product design. The product development teams are the first

level of problem solving and are empowered to solve their issues within financial

constraints. The product development teams are complemented by the product

development manual of company B, which contains regular program reviews in which

issues requiring additional management intervention can occur.

In the product development team meetings, issues like customer requirements, and

current production capacity and capability are discussed to find opportunities and to

avoid potential problems in the program direction. For example, throughout these

meetings, product designs may be redirected to accommodate an existing production

process that has open capacity in order to achieve investment efficiency. Furthermore,

information such as pertinent production data, tooling diagrams, machine drawings, 3D

simulation models, product math models, and container sizes is exchanged between
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manufacturing and product design to ensure the smooth transition from design to

production.

This information exchange is enforced by two ways. The first way is to require product

development teams to follow the product development manual which describes the

standard product development processes. The other way is to have performance measures

designed into the system such as first-time-through design changes, engineering costs as

a percentage of revenue, and on-time delivery of prototype parts.

Manufacturing sourcing is decided at the first phase of the development processes, which

is strategic intent. Therefore, it is possible to reflect plant specific constraints in product

design. After the start of production, an on-site resident engineer who is an expert on the

product requirements takes care of product design problems. This resident understands

the product requirements, makes decisions, and documents the decisions with the

manufacturing and production team at the plant.

In exterior division, if product design group knows where production will take place, they

will ask for feedback. However, product design group does not typically consider where

to produce when developing a design. Therefore, the feedback from manufacturing side

often happens only after the design, which is pointed out by academia as a typical

problem with the traditional functional chimney organization of product development.

Historical process assumptions typically prevail and no or little information is reflected in

the design. Another problem is that there is no standardized decision process for selecting

manufacturing site. For example, sometimes, product designers work with a supplier and

source a product with them, even a competitor, without determining if process could be

done intemally. The design engineers may know someone who did it before and they

simply direct the product to that company. In this case, no standardized information

exchange between product design of company B and manufacturing of the suppliers is

done unless the suppliers have residents on-site. If it is made internally within company

B, it is typically the manufacturing site's problem to find capacity. However, when the

new product is produced internally, standardized information is shared between

manufacturing and product design even though it is not done early in the product

development.
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In case that the plants outside of the U.S. found some product design problems, they

would ask for design modification to product designers in the U.S. since those plants

typically do not have any design support.

5.6.2.3 Company C

In company C, the system interface between manufacturing and product design lies in the

production development team and the DFM workshops. Standardized information such as

test specifications, manufacturing guidelines, projected volume requirements, similar

process capacity information, and process capability requirements, is shared through this

interface. To make the information exchange really happen, company C has weekly

product development team meetings and joint workshops.

One interesting and unique approach of the company C that defines the relationship

between manufacturing and product design is that manufacturing plants financially

support product design groups. In other words, product design groups are supposed to

solicit the support from manufacturing and manufacturing budgets the funds. In return,

there are licensing fees and royalties paid to product development groups by

manufacturing plants. With this unique relationship between manufacturing and product

design, a high level of manufacturing involvement in product design is assured.

After production, the 'lead plant' system of company C supports the information

exchange between manufacturing and product design. All company C products are

identified with a 'lead' plant.' Then, that plant has overall responsibility for product

design after start of manufacturing. If there were a request for product design change, that

request for modification would go through the 'lead' plant of that product.

Location decision for initial production of new products is based on the location of the

largest market share (e.g., North America vs. Europe) and availability of capacity for

appropriate core plants, which are plants with core competencies. The organization of

company C is structured around core competencies. For example, plant A is the center of

competence in North America for electronics. In addition to these considerations (market

share and capacity of core plants), product cost calculations are made for plants that are
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interested in manufacturing a product. All this information is considered together and a

decision is made at the Board of Director level.

5.6.2.4 Company D

Company D uses a dedicated representative for information exchange between

manufacturing and product design. For large programs, a dedicated representative makes

feasibility assessments. This feasibility engineer uses his reference materials and draws

expertise from the core process groups as necessary to guide product during vehicle

development. The feasibility is done around the exterior clay (class one surface), master

section (early inner panel geometry), and structure review meetings (3d inner panel

geometry). However, the feasibility analysis is not standardized. The only standardized

exchange of information between product design and manufacturing is from product to

manufacturing in the form of CAD drawing release events. There is no performance

measure to enhance the information sharing.

At the process decision stage, surrogate processes are evaluated for known issues and that

information is used to help to drive feasibility decisions. However, more significant

drivers of product design are part function and knowledge that some other OEM is

making a similar part. In addition, outside stamping sources are usually very willing to

accept difficult designs and are used as leverage.

Initial consideration of production site is done at the SC (Strategic Confirmation)

milestone (36 months before production), and the final decision is done at the program

approval for the approximate costing (30 months before production). However, press line

and plant changes are common up to and beyond initiation of die design.

5.6.2.5 Company E

The system interface between manufacturing and product design in company E is design

meeting. Manufacturing experts are represented in design module meetings from the

early phases of the development processes and thus, manufacturing system issues can be

considered from the start of the product development. Especially, manufacturing planners

attend early stage design meetings and have the ability to influence product design.

Various kinds of information are exchanged in various formats such as verbal
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conversation, written documents, and drawings. To ensure the information exchange,

several methods are implemented. For example, all involved parties have accesses to the

PC-network based system and temporary project offices are used for collocation of

relevant engineers. In addition, project leaders play as integrators of various functional

parties including product design and manufacturing. However, there is no performance

measure in use to enhance the information exchange.

The timing of the manufacturing site decision for a new product varies from project to

project. The aim is to maintain maximum flexibility to allocate the product to a plant at

the latest feasible stage, bearing in mind the design support that factory representatives

give to the design departments.

5.6.2.6 Company F

The formal system interface between manufacturing and product design in company F is

the prototype development. Product designers develop the first prototype by themselves

with the help from the model shop workers. In this process, many manufacturability

problems are solved and product designs are modified accordingly. The second prototype

is built with the tools that will be used in the mass production. In this stage, production

engineering group reviews every aspect of product designs and uncovers

manufacturability problems that can arise in the plant such as ergonomic issues of

assembly workers. Then, production engineering issues an official product problem

report to product design group and product design group makes modification on product

design through official engineering order.

In addition to the prototyping activities, a project team is established for each vehicle

development program. This project team manages product development schedules and

layout packaging. Furthermore, the project team organizes various team meetings to

solve arising problems and invites engineers from involved functional groups whenever

necessary. In this sense, company F does not rely on standardized information exchange

between functional groups to prevent problems from occurring. Rather, company F

solves arising problems with a case-by-case approach.
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The manufacturing site is planned from the very beginning of the product development.

Usually, one assembly line is capable of dealing with two or three variations of the

vehicles.

5.6.3 Product Design Decision in General

Four general questions on product design strategy of each company are asked in the first-

round questionnaire for extra information to help the understanding of the practices of the

design for manufacturing. They are:

0 What is the basic strategy of your company in product design? How are the

products of your company different from those of your competitors in terms of

external design, performance, etc.?

* How is you company different from others on its design decision processes?

. What are the decision criteria for product variety? How does your company

decide product variety?

a What is your company's perspective on customer desire for product variety? How

does your company optimize between customer requirements and manufacturing

constraints? Is there any optimization strategy?

Due to the limitation of the knowledge of the respondents, some respondents did not

answer the questions. However, the received answers show each company's unique view

on product design especially in terms of product variety and differentiation.
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TABLE 5-3. THE SUMMARY OF THE ANSWERS TO THE PRODUCT DESIGN DECISION IN
GENERAL QUESTIONS

Basic design Design process Variety decision Optimization: variety
Company strategy differentiation criteria vs. manufacturing

constraints

Offer cars Chief engineer Investment The higher the
A welcomed to controls the efficiency, target number of kinds is,

customers timely development costing the higher the cost
becomes

Total systems Cross fimctional Flexible
X engineering product Product complexity manufacturing

approach development technologyteam
Marketing to Meet customer

Climate Design systems direct customers requirements, Meet customer
first then toward its best- quality, and cost requirements as much

control components in-class targets; reduce as possible

technology. complexity
Design to satisfy Typically

customers; limited Satisfying the manufacturing is
B Exterior responsibility for N/A customer is expected to deliver

performance to paramount whatever it is asked
budget to deliver

Safety first; Customer gets what

Powertrain minimum cost; N/A and business sense they ask for. More
performance; meet N/Aradobusnsn complex product,

regulations higher price
Modularity; Commonality where
driving part Quality Complexity of a customer does not see

Electronics commonality; first performance product and variety in
time through standards

designappearancedesign

Fill a niche around Development Try to build
high tech products group must Customer flexibility into the

- for the solicit financial
C - strive for tie requirements are product design based

highest quality support from dominant on feedback from
product manufacturing different customers

locations
Draws are Give the customers

D typically deeper N/A N/A what company D
for body sides, think they want as

doors, etc. long as feasible

Customers have a
maximum desire for

E N/A N/A N/A variety, trying to
increase the scope of

variety

In bus production,
Customer customization such as

F N/A N/A requirements are painting and seat
dominant layout is very

important
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5.6.3.1 Company A

The basic product design strategy of company A is to offer cars welcomed by customers,

on time. Company A has four centers of external vehicle design around the world.

Usually, all of these four design centers participate in the competition of the best design

for a specific model and the winner is chosen among four proposals. In the time of

globalization, however, the sensitivity toward localism seems to be gaining importance.

In other words, the design sense relevant to each individual marketing area is considered

most important. In addition to the localized design, company A is trying to keep

designer's intention to the final end while encouraging designers to make bold adventure

in terms of their design concept.

Company A uses a unique design process. Its design decision is made by CE (chief

engineer), who has the authority on the overall features of the particular model. CE

provides the conceptual design and the business plan based on the demand forecast of the

model. The number of units to be produced, unit price, and other major factors are

proposed by CE as a 'vehicle plan.'

The vehicle plan mirrors the CE's thoughts and desires about the vehicle. Occasionally,

top down policy is enforced on the CE's plan, like safety, the specifications for the air

bag, for example. Target costing is the tool that materializes the vehicle plan. Staffs from

all the related functions such as corporate planning, finance, production engineering, and

manufacturing get together to review and discuss the vehicle plan that CE proposed.

There are pre-determined vehicle plan assessment items according to the type of the

vehicle for big, medium, small, and special cars, respectively. Assessment items and the

assigned weight factors vary according to the type of the planned vehicle.

In making decisions on vehicle variety, "the higher the number of product types is, the

higher the cost becomes" is the basic belief reflected on the vehicle plan. Through target

costing, investment efficiency is estimated in order to identify the optimum correlation

between the number of kinds and the associated vehicle costs. Besides, the target costing,

production engineering engineers conduct similar calculations to assess the investment

efficiency from their own engineering perspective. These evaluation processes and the

negative view on the variety of product which once company A was famous for seem to
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be the result of their learning on product variety. The respondent of the questionnaire

claimed, "What is the rationale of the remaining 17 models among 20 models if only

three models represent the 90% of the total sales of the 20 models?" In the past, however,

the marketing group of company A tended to increase the number of kinds for ease of

sales, and the design side accepted that request too faithfully. The result was additional

cost. For example, about 10 years ago, when a new model was introduced to the market,

remaining stock of service parts of an old model was surveyed to close the old model.

What they found was some first-lot service parts from suppliers remained intact, which

means that those parts had never been used to serve customers during the past four years.

Still, company A believes that the product variety decision is the most difficult decision

to make.

One way to deal with product variety may be modularization. In company A, modules are

interpreted as 'sub-assembly' and have been promoted as a natural result of

standardization. For example, if the standardization of the structure such as developing a

common chassis is promoted, it naturally leads to the sub-assembly or module.

Modularization has been sought to optimize the speed or the takt time within each

individual cell. However, the characteristics of a module vary according to the concept of

a production line, production scale, available space of a factory site, and even the

difference of nationality.

Two categories of module characteristics are recognized in company A: module for

manufacturability and module for design efficiency. Characteristics of modules are to be

diversified according to its purpose.

5.6.3.2 Company B

The electronics division of company B tries to take a full advantage of the characteristics

of electronic goods. Core mechanical and electrical circuits are used as proven building

blocks, which results in part commonality for manufacturing efficiency and first time

through designs (error free designs). The electronics division has quality performance

standards for electrical, mechanical, thermal, and durability, which is an inherent base

line in all its product designs.
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The decision criterion for product variety is complexity. Platform designs are employed

for commonality where the customer does not see, touch or feel while variety is provided

by differentiating in the appearance items. This variety is supported by flexible

manufacturing represented by dedicated lean assembly cells with poka yoke (error

proofing) devices. The electronics division sees the inefficiency associated with variety

mainly in the purchased incoming material and required inventory by the customer.

From the practices of the electronics division described in the previous paragraphs, it can

be inferred that the division is effectively dealing with product variety. The electronics

division is faithfully following the methods proposed by academia to deal with increased

product variety such as product platform for commonality, modular designs, and flexible

manufacturing. The result is successful product development and production while

limiting penalties of product variety to incoming material and finished goods inventory.

In the division X, products are highly engineered products designed for specific

applications. It seems that company B's advantage is to take a total systems engineering

approach to product application, which is enabled by its past history as a complete

vehicle manufacturer. As for variety, chassis division tries to minimize product variety by

thoroughly reviewing customer requests based on its experience with specific sub-system

design requirements. In addition to this effort, flexible manufacturing technologies are

pursued to negate the process differences dictated by product variety. For example,

changeover can be reduced or, ideally, eliminated by the flexible manufacturing

technologies. Furthermore, manufacturing technologies can make a component such as a

gear stronger through greater accuracy thereby encompassing a greater torque range,

which results in one gear size instead of two gear sizes required in the past.

The climate control division sees advantages over its competitors as a full-service

supplier with global engineering and manufacturing capability. Based on this advantage,

climate control division tries to design systems first and then components second. Its

view on design decision is slightly different from some other divisions. Instead of just

following customer requests, the climate control division tries to direct the customer

toward its best-in-class technologies and systems approach through marketing strategy.

Still, however, meeting customer requirements is a most important decision criteria for
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product variety along with meeting quality and cost targets, and reducing complexity. It

seems that complexity problems arising from variety are partly solved by outsourcing

components of which requirements are beyond its manufacturing capability.

In fuel storage and delivery system of the powertrain division of company B, safety is

considered first due to the product characteristic, followed by minimum cost to meet

customer expectations. In addition, emission performance is seriously taken to meet

regulations. Usually, customers get what they ask for, but if a cost reduction is available

for reduced complexity by minor modification of customer requirements, it is offered to

customers.

In the exterior division, their basic design strategy is the design to satisfy the customer

while limited responsibility for performance to budget is assumed. Suppliers are invited

to solve problems together. Product variety is also decided by the customer requirements

since satisfying customers has the highest priority. The problem with this practice,

however, is that manufacturing constraints are not considered with this practice.

Typically, manufacturing is expected to deliver what it is asked to do.

5.6.3.3 Company C

The product strategy of company C is to fill a particular niche market around high

technology or cutting edge products. Ultimately, company C strives to create the highest

quality product designed to give superior functionality at a competitive price. Therefore,

traditionally functionality of a product has earned priority over manufacturability. This

preponderance for functionality seems to be balanced by the company C's unique

development process, in which product development groups must solicit financial support

from manufacturing locations. However, in recent years, product variety is largely

determined by customer requirements and customers tend to increase their appetite for

variety. Therefore, the traditional system is not working effectively and thus company C

tries several new methods to overcome the problems of variety. For example, company C

tries to build flexibility into its design based on feedback from different customers

regarding their potential specific needs, which can decrease the total variety. Company C

uses a quite effective product development process that balances manufacturing
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constraints against the need for a product capable of being easily adapted to various

customer needs.

5.6.3.4 Company D

From a sheet metal perspective, the draw design of company D is typically deeper than

that of Japanese competitors for body-sides, doors, etc. As unique products with lower

demand volume are becoming more the norm rather than the exception, company D now

tries to give what company D believes the customer wants as long as it is deemed

feasible. To support this strategy, design for manufacturing earns a lot of attention within

company D, but in practice, this approach has not been so successful.

5.6.3.5 Company E

The respondent refuses to reveal the strategy of company E in product design as well as

its unique design decision process, claiming that they are strategic and confidential

issues. The only answer is available for product variety issue. Company E believes that

customers have a maximum desire for variety. Therefore, company E individuals try to

widen the scope of variety beyond the capabilities that are possible for series production.

5.6.3.6 Company F

The respondent is an engineer in the bus division of company F. The respondent was not

aware of product design strategy of company F but it seems to be partly because the

respondent works in the bus division that does not deal with high volume customers. In

other words, the bus division produces according to customer specific requirements.

Company F designs a bus platform and makes variations such as express bus and local

bus. The differences between these variations are seat arrangement, interior designs,

painting, and suspensions. Customer requirements decide many features such as painting

operation and seat arrangement. In other words, customized buses are designed and

produced.
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5.6.4 Manufacturing System Design in General

It is important to understand the manufacturing system design processes of each company

in order to understand the communication between manufacturing and product design,

since interactions of manufacturing with product design should be reflected in

manufacturing system design. Several questions were asked to capture each company's

view on manufacturing system design. They are:

. Does your company have pre-defined manufacturing system design steps?

. What are the general processes of designing a new manufacturing system or

modifying an existing manufacturing system?

. How does your company do the capacity planning?

. What feedback is used from the previous manufacturing system design projects?

. What efforts are made to enable a 'vertical/super-fast' ramp up?

. How does your company decide on the mix-capability of each production line?

. What kind of role does product design or product variety play in the decision

process of detailed manufacturing system design?

. Is there any special strategy or methodology pursued to maintain manufacturing

flexibility?

. What are the challenges your company sees from the mix production? How does

your company handle them?

. How does your company schedule the mix of production?

. How does your company optimize between the cost of system and the simplicity?

For example, how is the number of cells decided? (if your company has many

cells, your company can have focused flows to each customer but in that case the

system cost may not be minimized)

As is the same with the previous questions on product design, due to the limitation of the

knowledge of the respondents, some respondents did not answer the questions. In

Yong-Suk Kim 129



III

addition, the answers are subject to the respondents' personal understanding or

expectations of manufacturing systems. However, the received answers show somehow

each company's unique view on manufacturing system design. Some representative

results are summarized in Table 5-4.

TABLE 5-4. THE SUMMARY OF THE ANSWERS TO THE MANUFACTURING SYSTEM DESIGN
IN GENERAL QUESTIONS

Pre-defmned Feedback from Manufacturing Simplicity vs. cost
Company MFG system previous project flexibility decision

design steps
Simplicity is the

A No Yes Yes (level production) norm and total cost
is considered
Investment

Yes - process efficiency is

X Partly yes FMEA's, lessons Lean manufacturing compromised by

learned, etc. principles and tools the characteristics
of manufacturing

process technology
Depends on cases

Climate No formal feedback No other than lean but meeting

control No system manufacturing customer
B principles requirements is

most critical

Yes but No formal feedback No due to the lack of Varies depending
Exterior v . on plant and

varies process funds department

Powertrain Yes Lessons learned and Lean manufacturing N/Abest practices principles
Eletroics YesYesYes, software Part commonality

Electronics Yes Yes changeover, removable for simplicity
fixtures, etc.

No formal decision Simplicity and

C Partly yes Minor feedback process yet but flexibility are seen
developing one now for as better total cost

more flexibility solution
Quality,

D Yes productivity, Not pursued in die Simpler design
maintainability from design costs less
the production plant

E Yes Yes Yes Simplicity is
secondary to cost

F N/A Minor Yes N/A

In the following section, various aspects of manufacturing system design of each

company are described in detail. Some descriptions may not be directly related to the
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asked questions but are necessary to draw a big picture of manufacturing system design

process of each company and thus, provided.

5.6.4.1 Company A

Company A does not have any standardized manufacturing system design steps.

However, some engineers participate in the design process repeatedly and thus, they have

their own way of managing the processes. In a formal sense, gate way/milestone review

during the product development processes is related to manufacturing system design.

These reviews are standardized as well as output of each phase.

In the following sections, several unique characteristics of manufacturing system design

of company A are addressed.

5.6.4.1.1 General Manufacturing System Design Concept

Basic principle of manufacturing system design of company A is to design a product

oriented flow, which is achieved by linked cells. Sometimes, transfer machines are used

within a cell but still basic characteristics of a cell such as U-shape, process after process

type machine line up, single piece flow, machine cycle time to match the takt time, and

man-machine separation are kept. In other words, a cell is always used in all situations

except a special process such as heat treatment and casting. For special processes such as

heat treatment, stamping, and casting, a principle of single piece flow may not be

followed and a process layout is used. There are several guidelines for production flow

designs. They are:

. Product oriented flow with U-shaped cells

. Machining cells should be located as close to the assembly lines as possible.

. One cell does all necessary processes

. Locate input and output of a cell close to each other
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5.6.4.1.2 Manufacturing System Design Process in General

A typical manufacturing system design project takes about 27 to 30 months, which can

significantly vary depending on the case. The approximate time line is as follows:

- Planning: 6 months

. Design: 9 months

" Equipment Preparation: 6 months

" Installation and Adjustment: 6-9 months

The planning and design phases consist of four sub-steps. The first step is process design

in which operation drawing by production engineering group and tooling group is

released as a basic output. An example of an operation drawing is shown in Table 5-5.

TABLE 5-5. AN EXAMPLE OF OPERATION DRAWING

Op. No. Operation Cycle Time

10 Drilling 1.5 inch holes 7 seconds

20 Milling ... 2 seconds

Detailed process design steps are:

(1) Basic product design concept (input)

(2) Process design

(3) Sequence design

(4) Tooling design

(5) Basic machine specification based on (2), (3), and (4)

(6) Type of manufacturing system - transfer or flexible

(7) Number of machines
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(8) Simultaneous engineering

(9) Automation

The second step is plant layout design and physical layout of production site is decided as

well as machine specification on dimensions. The output of this step is layout drawing.

Along with operation drawing, this layout drawing goes to equipment vendors for

equipment development. Equipment vendors usually get general specifications such as

equipment dimensions on the plant layout, cycle time, and process capability. Vendors

will decide how to build a machine. In addition, manufacturing group starts to design the

operations, which do not affect plant layout design but do affect detailed layout design

(see Figure 5-2).

The third step is detailed line layout design and details of plant design such as the

orientation of input/outputs are completed. The final step is real detailed design and the

small details of plants such as tool locations, lights, and garbage can locations are

designed.

Production Engineering Group Manufacturing Group

Starts to design

operations

Operation design
Parallel [etnie nlautdoes not affect plant

processes layout but affects
Realdetaile ddesign detailed layout

FIGURE 5-2. PLANNING PHASE OF MANUFACTURING SYSTEM DESIGN

Feedback from the previous project is not formally taken into account. During the SE

(simultaneous engineering) study phase, there are some feedbacks from the people in the

plants in terms of quality, maintenance, and manufacturability. However, this feedback is

based on individual experiences rather than knowledge captured in documents.
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5.6.4.1.3 Capacity Planning

Capacity planning starts from a make vs. buy decision in which various factors must be

considered. Availability of suppliers is a basic requirement for a buy decision and the

technology used for the outsourced products should not be critical. Company A wants to

keep a critical technology inside to prevent the competition from other makers as well as

to maintain its core capability. Internal capacity is also an important factor to be

considered.

A decision on the takt time considers many factors but one of the most important factors

is operators. A balance between worker's capability and interests is important. If the takt

time is too short, keeping the work interesting is very difficult. On the other hand, if the

takt time is too long, it is hard for a worker to remember all processes that should be

done. In this sense, a takt time shorter than 40 seconds or a takt time longer than 10

minutes is not usual. In addition, if the takt time is too short, it is difficult to have enough

time for trouble-shooting.

A capacity of a production line or a cell is decided by considering sales as well as lower

limit of takt time. A cell is seen as a unit of capacity. Therefore, if the demand steadily

goes up, cells can be duplicated to meet the increased demand. In fact, company A

exploits a few different strategies to deal with the demand volume fluctuation. They are

summarized in Table 5-6.

TABLE 5-6. CAPACITY ADJUSTMENT METHODS ACCORDING TO THE LEVEL OF REQUIRED
ADJUSTMENT

Required adjustment Methods

Small Overtime work

Medium Change takt time, change manual work allocation

Large Modify equipment capacity / add a cell

For a small size volume fluctuation, usually overtime work is used. In company A, two

shifts operation with overtime is preferred over three shifts operation. Three shifts
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operation is not typical since it is very difficult to manage three shifts operation and three

shifts operation does not give a lot of addition to the capacity. It is believed that a three

shifts operation gives less than 20 % increase of capacity compared to a two shifts

operation with overtime work due to many practical difficulties in managing three shifts

operation (e.g., less motivated workforce, minimum support from engineering, etc.).

Within company A, three shifts operation is used in limited cases such as casting (huge

investment required) and heat treatment (long cycle time). Small and medium size

adjustments can be done anytime after the start of production and they are easily

adjustable. Large size adjustment, however, can be done only before the line changeover

installation since it requires equipment capacity modification. Still, constantly adjusting

the planned capacity to the real situation is considered as the basis of company A's

operation. Therefore, capacity adjustment frequently happens. For example, production

schedules are changed on a daily basis

Another factor that affects the capacity of a production line greatly is product allocation.

In company A, products are grouped and assigned to each production line with the

principle of bridge production, which is level production in large scale. Bridge production

principle designs support capacity to fill in demand volume gaps as is shown in Figure 5-

3. For example, assume that component A or B is attached to component C to build a

sub-assembly part. Component C is supplied from the outside vendors. In Japan, 90 % of

the sub-assembly parts are composed of component B and C, and only 10 % of the sub-

assembly parts consist of component A and C. In the US, however, the reverse is the

case. In this case, a cell producing component B is constructed in Japan and a cell

producing component A is implemented in the US in order to minimize the investment

required. Then component B will be exported to the US from Japan and component A

will be exported from the US to Japan. The decisions, however, will depend on the ratio

of component A and B that need to be supplied in each country, logistics costs, and the

expected investment savings.
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FIGURE 5-3. BRIDGE PRODUCTION CONCEPT

5.6.4.1.4 Process Planning and Routing

Manufacturing processes are decided by the production engineering group and tooling

group as briefly explained in section 5.6.4.1.2. As for routing (designing possible

material flows for a product), there is no back up routing planned, which puts a lot of

pressure to upstream processes since their failure to feed the downstream processes

directly affects the final production. This pressure, however, has worked so far and there

are not so many cases of supply failure of upstream processes. Sometimes, manual

backup plans are prepared for the assembly line but in machining, there is no back up

plan. There should not be any problem and that is why company A puts a lot of effort

(e.g., preventive maintenance) to prevent a problem from occurring.

5.6.4.1.5 Equipment Design

There are many factors considered for equipment design, including ergonomics, power,

emission, noise, manpower, etc. However, detailed design of equipment is done by

equipment vendors as is previously explained. Company A provides only operation

drawing and layout drawing, which specifies necessary processes and physical

dimensions of the equipment. There is one more thing with the equipment design that
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company A controls. It is a line control methodology that specifies how machines are

connected to a signal board for failure cases.

For example, different machine vendors can supply different machines (e.g., company X

for machine #1, company Y for machine #2, and company Z for conveyor belt). Even in

this case, a standardized interface is implemented to each equipment and thus, each

machine can communicate with a programmable line control unit of which logic is

designed and specified by company A. For instance, at the machine #1, it can be checked

whether enough torque was given to the part and the machine tool came back to the

original position. If these two check points turned to be ok, an ok sign goes to the

conveyor so that the conveyor can move the part to the next machine. It is checked again

if the part arrives to the machine #2 and the machine #2 is allowed to start to work on the

part. Therefore, operation control can be conducted as company A's way regardless of

the machine suppliers.

Machine #1

SOp. 10 is ok:

- torque was ok ~he

- drill returned to the original position Signal board

(2) Part arrives
Conveyor

(Company C)

Machie #1Macine #2
(Company A) (Company B)

Programmable

line control unit

: logic is designed and

specified by TMMNA

Machine #1 is done (torque was ok) and the tool is in the original position

4 it is ok for conveyor to move parts

O Part arrives 4 it is ok for machine #2 to work on the part

FIGURE 5-4. A SCHEMATIC VIEW OF LINE CONTROL AT COMPANY A.
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Equipment is usually designed before material container size and material supply

frequency is determined. In fact, the material container size decision is an in-house

engineering decision.

5.6.4.1.6 Operation and Supply

In company A, run size is not optimized but decided by the final assembly. An exact

sequence from the final assembly dictates the sequence of production in upstream cells.

Therefore, virtually the run size is one. Some exceptions exist, though. For example,

stamping and casting process have a run size more than one because of long die change

over time.

Information technology (IT) is viewed as important for cell operation but not very

important for overall plant operation. In cell operation, IT provides an easy way for

trouble shooting. However, in overall plant operation, trouble shooting using IT is

difficult considering the level of system complexity. Developing a simpler system is the

key in the control of overall plant operation, rather than applying IT heavily to a complex

system. In company A's plants, materials are supplied according to actual consumption,

and operator's work is designed and standardized. The training process is also

standardized.

5.6.4.1.7 Inventory Level

Typically, company A does not design in buffers. Therefore, only standard WIP exists as

pipeline WIPs in processes and logistics channels. The number of Kanban is decided by

factors such as a desired standard WIP level and container sizes. A target number of

Kanban is always a theoretical minimum but in real situations, small safety factors are

considered (about 10 %).

5.6.4.1.8 Vertical Ramp-Up

Company A is famous for its almost instant ramp-up process. This fast ramp up process is

a result of careful coordination of various activities toward actual production. For the

vertical ramp up, company A uses a "degree of perfection" system in the development

stage. The items of this system include the depth of trained skill of workers and suppliers.
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The degrees of perfection are carefully monitored throughout the development processes

in terms of the "proceedings of development schedule," "readiness for production,"

"maturity of workers' skill including temporary helpers," "procurement relations,"

"degree of completion of drawings including the design revision through DIR or QIR,"

and "degree of precision of fabricated parts." All items to be checked are aligned and

executed to achieve the required operating ratio and the takt time in real production on

predetermined D-day (product launch). Under the basic principle that every item required

for the real production should be completed until the D-day, the gate is installed at each

node of the processes toward the D-day. The actual progresses in product development

are constantly checked at each gate, which is called the gate control, of which central

target is to assure the performance of the vehicle. The ramp up lead-time represents the

generic capabilities of a company as well as all the agents including the suppliers to

identify problems and make solutions as fast as possible. The result of this effort is

enormous. Company A was able to decrease its ramp up time from 60-70 days to only 10

days.

5.6.4.1.9 Investment Criteria

The basic idea behind investment decision criteria is not to spend more than the similar

previous project. According to this basic idea, company A keeps a lot of records of past

projects in a database format and uses these stored data to compare the new project plan

with previous experiences. Items such as costs are subject to the comparison. If the

proposed design is revealed to require higher costs, production engineering and product

design work together to make new designs. This decision, however, is not made in an

individual machine level. It is made in a cell or production line level, which helps to

avoid maximizing efficiencies of each machine instead of the total system. Figure 5-5

briefly shows how this approach works.

During the process design phase, exact values are not available and thus estimated values

are used for this purpose. Other factors such as required man-power are also compared to

those of past projects and benchmark results are often used to set up a goal/target (Figure

5-6). The final decision is made based on the comparison result of many factors.
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If a new project is positioned
here, it is way too expensive!
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FIGURE 5-5. INVESTMENT FEASIBILITY ANALYSIS AT COMPANY A.
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FIGURE 5-6. INVESTMENT FEASIBILITY ANALYSIS AT COMPANY A - THE USE OF BENCH
MARK RESULT
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5.6.4.2 Company B

The response from each division varies again for the manufacturing system design related

questions. Therefore, the response from each division is provided separately.

The electronics division uses pre-defined manufacturing system design steps that are a

part of the Copy Exact process. The general process of manufacturing system design is

identifying, developing, and experimenting with equipment to provide information on its

reliability, serviceability in conjunction with its capability to produce capable high

quality product. This usually entails new technologies for which significant

characteristics are defined and capability is established. Capacity planning process starts

from estimating the volumes from customer over the life of the product. Then the

volumes are meshed with planned new business to create a percentage of utilization rates

for each equipment or cell. Floor space is allocated and booked in the same way. During

these processes, feedback from the previous manufacturing system design projects

heavily affect the decisions so that much is copied forward as is appropriate based on the

type of product.

As is stated previously, manufacturing systems of the electronics division are very

flexible to handle a large number of product types. In the upstream, flexible equipment is

implemented to handle the product variety while dedicated assembly cells are used for

the same purpose in the downstream. If the upstream equipment runs at a pre-determined

speed, then it indicates that the process is optimized. Boards with the common parts run

down the same line using different placement programs. The final assembly cells are

dedicated and run at the takt time of the customer. Interestingly, the equipment and

processes are considered first over product variety decisions and these drive design

requirements for commonality and standards. The flexibility of manufacturing systems is

maintained through quick software changeovers, removable fixtures with common test

equipment, and assembly fixtures that can be replaced within minutes to build a different

product. Still, customer demand instability is seen as a challenge to the flexibility since it

affects more through the supply chains as the division becomes leaner.

In the division X, the corporate wide manual for product development is extensively

utilized. The manual has built-in deliverables for manufacturing required at each of the
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product development process milestones. These deliverables are directly related to the

manufacturing system design steps and linked to the product design phases. The manual

has nine phases from strategic intent to launch readiness in which manufacturing works

with the cross functional product development team to achieve each milestone while

satisfying the APQP (Advanced Product Quality Planning) requirements.

Capacity planning is performed at the staff level using plant data related to each product

family and production system. Faster ramp up process is achieved through information

sharing on shared resources such as company intranet. The shared information includes

process FMEA, dimensional control plans, manufacturing process sheets, and lessons

learned.

Flexibility of each production line for a specific product application is assessed by the

manufacturing engineering. Manufacturing flexibility is further reinforced by pursuing

lean manufacturing principles, and utilizing lean tools such as value stream mapping and

reliability techniques. Mix capability of a production line is ensured by pursuing lean

principles. Customer focused lean manufacturing system with linked cells is considered

as the most effective tool in achieving customer mix requirements. However, the

challenge is to achieve the flexibility with the existing equipment designs. Most plants

use MRP (Manufacturing Resource Planning) based system to schedule customer mix

requirements. Newer production systems are directly linked to the customer and have a

single point of scheduling in which continuous flow to the customer is achieved.

Investment efficiency may be compromised when the equipment cycle time and customer

takt time are not in concert with each other due to the nature of certain processes.

Sometimes, cells that are larger than desired may be required when volume fluctuation

reaches peak demand before additional cells are added to production. Specific decisions

are made according to customer requirements.

The climate control division does not have any pre-defined manufacturing system design

steps. However, lean manufacturing principles and manufacturing system design steps are

being implemented and taught throughout the division. Many of the manufacturing

problems are approached from the lean manufacturing perspective. For example, the

respondent pointed out that fast ramp up process or flexible mix-capability of a
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production line would be ensured through the extensive application of lean principles. On

the other hand, it seems that the continuous improvement aspect of lean principles has not

been fully exploited yet even since no formal feedback system is in use. However, the

newly formed Lean group attempts to distribute lessons learned. Capacity planning is

done by a special cross-functional team that is responsible for periodic capacity studies.

No special strategy is implemented for flexible manufacturing other than the

implementation of lean manufacturing principles. The production mix is handled through

scheduling due to required changeover and labor variation, and existing mass production

equipment. The scheduling of production mix is based on customer forecasts and

releases.

The powertrain division uses manufacturing system design steps that are pre-defined as

part of corporate-wide product design manual and production system design manual.

Still, there is no integrated step-by-step design manual for manufacturing system design.

Capacity planning is done through the strategic manufacturing and business planning

activities with the help from plant industrial engineers. The mix capability of each line is

determined by capacity and customer complexity requirements. Required product

complexity drives the manufacturing process design. In the process design, product

variety plays a key role. In the past, manufacturing lines tend to be dedicated to

individual product lines with the design driven by the product complexity determined by

customers. Now, lean manufacturing principles are applied to manufacturing system

design. However, major challenges are recognized for this change including the potential

for mixed stocks and lost capacity for changeovers. Considering these challenges,

production schedules are developed to minimize the number of changeovers and optimize

delivery while based on customer demand.

The exterior group has manufacturing system design steps defined. It uses a corporate-

wide guide manual for manufacturing system design that provides only principles.

Therefore, the design steps vary a lot, and each plant and product design department has

its own processes. Exterior group seems to suffer from the lack of standardization. A

significant number of critical decisions are made plant-by-plant on a department-by-

department basis. For example, capacity planning is done differently depending on the

Yong-Suk Kim 143



III

organizations doing the planning and there is no formal feedback from the previous

projects. In addition, no standard process is available for mix capability decision for

production lines. The mix schedule is typically decided based on what the customer

requires and what parts are available to produce. A typical reason for a low level of

standardization is claimed to be a lack of fund. For example, there was an attempt to

standardize molds in late 90s but failed due to the lack of funds.

5.6.4.3 Company C

Company C does not have pre-defined steps for overall manufacturing system design.

However, there are organizations within company C specializing in equipment building,

of which expertise has typically been used to design the manufacturing process. In

addition, these organizations have processes that they use to develop the manufacturing

system. Local plants have begun to exert much more influence in manufacturing system

design and are beginning to use some tools proposed from academia.

5.6.4.3.1 Manufacturing System Design Process in General

A cross-functional team works together to design the manufacturing system. Generally, a

project gets started by determining how to build a part in an informal place such as

private garage. Then, about hundred parts are tried. In this trial, a time defining process is

used to determine a natural cycle time that cannot naturally be broken down further.

Based on this experience, capacity is planned, equipment is designed, and physical layout

is determined

5.6.4.3.2 Capacity Planning

Previously, the estimated volumes and plan for a capacity 15% above the maximum sales

forecast would be taken for a necessary capacity. In recent years, the concept of natural

cycle time that cannot be naturally broken down further is considered for a capacity

planning and manufacturing cells are reproduced according to actual sales. With this

approach of the incremental capacity through manufacturing cells, no learning curve

effect exists as production volumes increase.
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5.6.4.3.3 Mix Capability of a Production Line

In the past, the objective of line mix capability was to run as many part types on a line as

possible so that ultimately, all products can be run on a single line. If large hardware

changes are needed, the line may be split up into families. In recent years, however, an

analysis is made to determine the best possible mix per cell. Sometimes, it is determined

that no changeovers should be made and a simple cell should be dedicated to a product.

Mostly, high levels of flexibility are pursued in order to changeover in less than one

minute regardless of the product.

5.6.4.3.4 Equipment Design

Two basic design philosophies are pursued for manufacturing system design and they are

simplicity and flexibility. Simplicity means simplicity of equipment used in

manufacturing systems and it often results in low level of automation in the initial

equipment. This simplicity in equipment contributes to fast learning curve and prompt

problem solving. Automation is added later, as necessary, mostly to solve quality

problems. Error proof devices (poka yoke) are specified into the line from the beginning

of development to avoid the need for visual inspection for quality control. More devices

are added as knowledge is accumulated through the experience with the product.

During the equipment development, product engineers also participate in the equipment

design. For example, product design engineers attended the initial equipment design

workshop. Company C is now trying to invite design engineers to every equipment

design workshops. The timing of the equipment design workshop is as follows:

1st DFM -4 1st prototype build

42" prototype batch build 4 2 nd DFM

+ "equipment design workshop" -* 3rd prototype build

Still, company C is in its early stage of restructuring its product development processes

and thus, there is no established formal follow-up structure available to ensure flexible

equipment design.
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5.6.4.3.5 Operation and Supply

In general, a weekly mix is reviewed and a schedule is created for the assembly line.

Some areas are trying to go toward daily mix management. A pull system with customers

is not yet established even though some of its suppliers are connected with company C by

a pull system.

It is planners at company C who are responsible for receiving information from the

customers and transferring that into a schedule for the manufacturing process. They are

also responsible for giving orders to suppliers, based on customer releases and long term

forecasts, depending on supplier lead times. Planners update schedules as the orders from

customers change. In some areas, however, there are still a significant number of

expediting activities based on the MRP (Manufacturing Resource Planning) system but

this varies greatly depending on the customers' ability to minimize significant demand

swings.

5.6.4.3.6 Investment Criteria

In the past, cost was the key requirement for a design. Today, however, simplicity and

flexibility are seen as better total cost solutions. Therefore, simplicity and flexibility are

prioritized over costs as long as they make sense.

5.6.4.4 Company D

Company D has pre-defined manufacturing system design steps. For stamping, the rough

steps are such that the engineers identify and review the surrogate processes, propose a

process that improves on the surrogate processes, review it with the production plant, and

proceed into design.

Product design affects the selection of surrogate process that will drive the process and

the estimated production volume affects class of dies. Due to the characteristic of

stamping process, flexibility is not considered much during the die design process.

However, stamping machines are subject to flexibility. For example, single minute

exchange of die (SMED) can improve the flexibility of stamping process by minimizing

Yong-Suk Kim 146



the die changeover time. The press loading group determines press line using various

criteria including the size and tonnage constraints. Information such as quality,

productivity, and maintainability are collected from production plants and fed back to die

engineering group.

All vehicle programs have plans that are intended to track various key milestones, which

die engineering group currently has difficulty in delivering on the many of the plans. The

performance of engineers is assessed by their level of achievement of the planned

objectives, which affects pay, bonus, and potential promotion.

5.6.4.5 Company E

Company E has pre-defined manufacturing system design steps in a form of planner

handbook and pro-planner. These documents describe the general manufacturing system

design processes. Lessons learned from the previous manufacturing system design

projects are documented through Lessons Learned meetings held after every project. At

company E, a long-term model capacity planning is performed with all factories

involved, while factory specific capacity planning is done together with unions and

factory planning departments. For each line, planned times for model-specific activities

are summed to give critical line capacities. Internal and external suppliers limit the

absolute maximum capacity for individual models.

Several methods are in use to shorten the ramp-up time such as virtual tools, sufficient

pre-production vehicles, early supplier involvement, strict project dating, and detailed

vehicle scheduling in launch and volume production.

In company E, a manufacturing system is designed to offer maximum flexibility, not only

for current models, but also for future models, especially with regard to new logistics

concepts such as just-in-sequence delivery of parts and modularization. However, the

variety in the mix needs to be controlled throughout the process chain, starting from the

design engineers, involving the supplier control, vehicle scheduling, process control, and

ultimately the production workers. For example, production workers need to receive clear

communication, which part should be fitted to which vehicle. These things are recognized

as a challenge toward the mix production. Mix production is scheduled by random
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scheduling of vehicle production within the constraints of the planned time per activity.

For example, no three convertibles can be built in sequence because the planned time to

assemble the roof is longer than the same activity for other models.

As is traditionally thought, at company E, simplicity is recognized to be secondary to

cost. Solutions are sought to satisfy customer needs to the maximum and most cost-

efficient extent, even if the solutions are not the simplest.

5.6.4.6 Company F

The respondent of company F was not familiar with manufacturing system design

processes of company F. However, the respondent has some experience in the assembly

line as an observer and as a line worker. According to his/her experience, final assembly

lines of bus division are flexible to deal with two or three different models

simultaneously. Furthermore, due to the characteristics of bus business, typical order

number is in two digits and thus the production run size is. In other words, since the

exterior painting and seat arrangement should be different for each order from different

companies, the final assembly lines should be flexible enough to deal with this type of

variation. Scheduling of mix production is usually done by the customer order, which

becomes the run size of the final assembly lines.

5.6.5 Performance Measurement

Performance measurement system is important to achieve the objectives of a

manufacturing firm because performance metrics drive the behavior of the system.

Several questions were asked to capture each company's view on performance

measurement in general. They are:

. What is your company's financial accounting system used for the internal control

purpose?

. What does your company have as performance measures for a plant as a whole?

" How are those performance measures different from each level of plant

management? (operator level, engineers level, line managers level, and plant

manager level, etc.)
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. What efforts are made to keep your company's employees fully motivated? (For

example, some companies make a lot of effort to keep its people's sense of

'emergency' for everyday operation. Is there any equivalent effort in your

company?)

Due to the limitation of the knowledge of the respondents, some respondents did not

answer certain questions. However, the received answers show the each company's own

view on performance measurement and employee motivation (Table 5-7).

TABLE 5-7. THE SUMMARY OF THE ANSWERS TO THE PERFORMANCE MEASUREMENT
QUESTIONS

Plant-wide Optimized PMs

Company Accounting forperformance measures according Motivation of
py internalcontrol pearaeto the level of employees

measures organization

General expense Labor productivity, Special skill
control monthly; lead time to master system;

A no accounting for customers, due day N/A 'no change is
day-to-day observance ratio, evil' phiosophy

operation control safety, waste control
Safety, overall Team based

Cost accounting equipment approach; safety,
B X based on effectiveness (OEE), N/A health, and

allocations dock-to-dock time, wellness
on time delivery, programs

total cost
Quarterly

Accounting Quality, delivery, performance
Climate information premium freight, Different measures review,
control system and inventory, labor and at different levels initiatives such

finance manual overhead as 6 sigma and
lean

Hourly operators

Varies by location by punishments
for failure and

Exterior Varies by location (however, safety has Varies by location profitushang
the highest priority) profit sharing;

salaried people

by bonuses
No measures for

Total cost operators,

oacsatengineers & Try to keep them
Powertrain approach as a part Safety, quality, cost, managers have informed and

of QOS (quality and delivery some limited by involved
operating system) their areas of

control
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Several methods Cascaded into Focusing each
are used to objectives that team toward a

Electronics estimate costs, Safety, quality, cost, have meaning and customer and
overall project delivery, people is measurable at product - pride
profitability each level and team awards

Productivity, defect
Traditional cost monthly The measures are

accounting system production to the samefor all Profit sharing
C (profit = sales schedule, piece price, levels of system

price - (material + indirect material cost, management
labor + overhead) headcount, safety,

gross margin

The objectives of Reward and
A system to Specific objectives each employee are recognition

D provide payment on safety, quality, aligned with the program to
and tack stamping delivery, cost and higher level plant highlight

tool cost morale objectives extraordinary
effort

General measures Financial

Budget adherence, are identical across retds, part-

E N/A personnel absence alltlevels but desirable
rate, product ququalit yuality goals are projects, and

specific to a pos ndeparmentpromotion
department possibilities

F N/A N/A N/A N/A

5.6.5.1 Company A

Company A keeps financial accounting and day-to-day factory operation separate. In

other words, company A focuses on continuously improving itself with the non-financial

indicators in everyday factory operation. After achieving the non-financial indicators,

company A tries to minimize the controllable cost drivers such as energy and defects

cost. There is the general expense control on monthly basis by the financial department.

Cost improvement targets are assigned to each section of a plant in terms of controllable

expenses such as materials, payroll, energy, defects cost, and so forth. However, the

factory's day-to-day operation runs autonomously with non-financial indicators such as

first time through rate, dock-to-dock time, and on time delivery.

The managerial indicators of company A are generated from each functional organization

such as sales, engineering, procurement, manufacturing, and quality control. This brings

multi-performance measures that are linked to each managerial function. With these
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performance measures, the performance of a plant is evaluated from various perspectives.

There is no single most important indicator that represents the performance of a plant.

For example, corporate wide quality target is announced by the top manager of quality

control function and delivered to each related organization in the factory. Two ratios are

considered as the most important with regard to achieving given quality target; direct run

ratio and final assembly run ratio. The direct run ratio by assembly lines and by major

fabrication departments represents the percentage of units that pass through the line

without off-line repair work before reaching the end of the line. The final assembly run

ratio is the ratio of vehicles produced to the number required to meet customer orders.

These two major indicators are monitored and updated in real time and is reported on big

electronic boards throughout the plant, and complied into monthly trend analysis.

However, there is no authorized decree that these two measures are the most important

indicators for the plant. There is no specific coordination, from the aspect of the factory-

wide optimum, among all the indicators from each functional department. In this sense,

as far as the integration of managerial indicators is concerned, company A still has a

room for improvement. Under these circumstances, various indicators are used to

measure such functionally assigned performance of a plant. For example, such

performance measures are used as labor productivity (human performance), stroke per

hour (facilities performance), lead time to customers (production control), due day

observance ratio (production control), injury and accident ratio (safety), and industrial

waste control ratio (green factory). All these indicators are accepted by the frontline

managers, supervisors, and workers, and faithfully followed. In addition, these indicators

are the objects of kaizen activities.

Even though the above-mentioned measures are widely accepted and used for improving

the operation, company A does not have any formally arranged performance indicators

list categorized by the level of management. However, they seem to be aware of this

problem. Corporate planning division of company A is now working on developing a

systematic framework of managerial performance measures starting from the top

management down to the frontline operators.
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With regard to competence management, company A has 'special skill master' system, in

which individual workers are assessed in terms of the degree of their multi-work

capability and the depth of skill in each respective work. Those who mastered all the

designated skills are nominated as Kogi, which represents the highest skill rank in

company A. Climbing up the ladder of the skill rank is not necessarily directly linked to

pay, but strongly motivates frontline operators and technicians as the symbol of

invaluable honor. Acquiring higher grade of skill is appreciated in human assessment

system. General qualitative measures are added to assess the capability of individuals as a

team member such as leadership, collaboration, and inter-organizational coordination.

Maintaining the sense of emergency is very important in managing a factory. Company A

believes the key to keep tension in work is kaizen, continuous improvement, and their

deep-rooted philosophy of "no change is evil." For example, if engineering managers

came to the factory floor after one or two months of absence, the layout or something in

the plant would have been changed.

5.6.5.2 Company B

In the electronics division, several methods are used to estimate resources and costs for

quotes in order to enable budgeting once business is sourced, and overall project

profitability. As for the plant evaluation, plants are evaluated in terms of such criteria as

safety, quality, cost, delivery, and people. These general evaluation criteria are cascaded

into objectives that have specific meanings and can be measured at the operator level.

Number of days without an accident may be a good example of safety measures.

Employees are motivated by focusing each team toward a customer and product. For this,

a lot of product training is provided, and teams are exposed to the customers. Team

members are even sent to customer operations to better understand customer needs and

expectations. Taking through this type of activities, employees establish a pride in

knowing their customer and delivering perfect quality parts on time. Team awards are

given as one way to keep teams motivated with other various actions taken by plants.

In the division X of company B, cost accounting based on allocations is the primary

financial accounting system used. Activity Based Costing (ABC) is being considered for
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the future implementation. However, plants are evaluated by metrics established in the

production system design manual of company B. In addition to the safety metrics, these

metrics include overall equipment effectiveness (OEE), first time through quality, dock-

to-dock time, on time delivery, and total cost. To motivate the employees, several

methods are in use. Employee involvement teams and communication meetings are used

to keep the employees informed on critical information required. Safety, health, and

wellness programs are supported at al the manufacturing locations.

The climate control division of company B counts on the AIS (Accounting Information

System) and FM (Finance Manual) of the mother company of the company B as its

financial accounting system. These systems are implemented in software to which new

organization of company B is reflected. However, not only financial measures are used to

evaluate the performance of its plant, but also quality measures are exploited. Examples

of financial measures are labor and overhead, launch, premium freight, inventory, and

capital spending cost. Quality measures include on-going PPM (part per million),

delivery metrics, launch performance, stop shipment alerts, owner notification and recall,

and customer warranty.

There are different performance measurables applied to different level of management.

Operators are evaluated in terms of their responsible part (narrowly focused) quality and

production rates. Engineers are assessed by process results in quality, productivity, and

warranty. Labor and overhead cost performance, and quality metrics are important for

line manager while total cost and overall quality matter for plant managers.

To keep the employees fully motivated, several methods are used together. They are;

quarterly performance reviews, initiatives such as six sigma and lean, and special team

building events days.

The powertrain division of company B uses a total cost approach as a part of the QOS

(Quality Operating System) process. QOS is a package of procedures that plants use. It

has a set of measurables through which the plant can be analyzed. Among the

performance measurables, safety is considered as the most important one, followed by

customer satisfaction (quality and delivery) and then cost. Within this system, however,

operators do not have any performance measure. Engineers are judged on their individual
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performance relative to their areas of responsibility and relative to their objectives. Line

managers and plant managers share the same performance measures limited by their areas

of control. To motivate employees and keep their sense of emergency, there is an effort to

keep them informed of and involved with continuous improvement. However, the result

is considered as mixed.

In the exterior division, financial accounting system and performance measures of a plant

vary by manufacturing locations. However, some common efforts are made to keep

employees fully motivated. The way to motivate employees is slightly different according

to their status - hourly employed and salaried. Hourly employed personnel is motivated

by punishments for failure to perform to individual job standards and profit sharing from

the mother OEM company. Company B does not have an incentive/motivation system for

hourly employed personnel. Salaried employees are motivated by performance bonuses,

stock options for a few, and re-organization.

5.6.5.3 Company C

Company C uses a traditional accounting practice, which may be represented by the

following well-known equation; profit = sales price - (material cost + labor cost +

overhead cost). Traditional metrics for plant performance measures include productivity,

defect cost, monthly production to schedule, piece price, indirect material cost,

headcount, safety, and gross margin. Some 'lean' metrics are in implementation process

such as dock-to-dock time, first time through rate, and overall equipment efficiency

(OEE). In addition, company C is in its early stage of implementing total plant cost

metric. However, performance measures are same for all levels of management. To

overcome this problem, company C is conducting baseline studies on metrics designed

for specific levels in the organization. Employees are motivated by a profit sharing

program based on the traditional metrics. The bonus pay is visible in real time and is

regularly reviewed by all associates including management.

5.6.5.4 Company D

Die engineering division of company D has a mainframe computer system to provide

payment and track stamping tool costs. The plants have very specific overall objectives in
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the SQDCM format (safety, quality, delivery, cost, and morale), in terms of which plants

are evaluated. The objectives of each employee are aligned with these higher level plant

objectives and adjusted to be job specific. There is a reward and recognition program to

highlight extraordinary effort for improvement.

5.6.5.5 Company E

Plants of company E have performance measures such as budget adherence, personnel

absence rate, and product quality. Generic performance measures for individuals are

identical across all levels of management but quality goals are specific to the department.

There are no efforts to keep the sense of emergency among its employees. Motivation is

achieved through encouraging the use of the suggestion scheme, financial rewards, part-

taking in desirable projects, and promotion possibilities.

5.6.5.6 Company F

The respondent of company F refuses to answer the questions related to the performance

measurement system of company F.

5.7 Conclusion

In this chapter, different interfaces between manufacturing and product design of

different companies are identified and reviewed. It is recognized that various methods are

in use in different companies but all methods share the same common objective of

smooth design-to-production process in order to save costs and time while ensuring

quality products. It can be also identified that many tools proposed by the academia such

as cross-functional product development teams, design for manufacturing tools, and the

knowledge management database, are becoming a norm in the companies in auto

industry. Almost all companies report their dedication to the cross-functional teams in

use for product development, for example. On the other hand, some company-specific

unique methods are identified such as 'Copy-Exact' and 'DIR/QIR.' Those unique

methods seem to be the results of product characteristics and the dominating culture

within the companies. However, they are all same from the perspective that they are
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developed and used to achieve the goals of minimum development time and cost of

quality products.

In addition to the communication interfaces between two groups, general information on

the product design decisions, manufacturing system design processes, and performance

measurement is provided for easier understanding of the rationale behind the

implemented communication interfaces. They are all very closely linked to the

communication interface designs. For example, the company-specific strategy of the

product design heavily affects the characteristics of the product designs and thus,

influences manufacturing systems design. Therefore, the communication between design

groups and manufacturing groups is essential to set the strategy and modify it.

Manufacturing system design decisions will significantly affect the manufacturing

capability of a company and thus, will decide the constraints to be met by product

designs. Manufacturing system design even can be seen as a part of product development

in a broad sense. In addition, performance measurement system influences the behavior

of system constituents. Therefore, it is often insightful to look at performance

measurement system to indirectly understand the rationale behind the product

development system design.

A question arising from the investigation is how to compare and evaluate those different

communication methods described in this report. There can be several ways to assess

their effectiveness. One way may be to compare the performance of each company's

product development in terms of losses occured due to the ineffective communication

between two parties. For example, total product development time span or the number of

design iterations made due to the miscommunication between two parties can be one of

the comparison criteria. However, the problem with this approach is that objective

comparison based on one criterion is very difficult to be made because of numerous

factors involved with the product development. In fact, the companies of which examples

are provided in this report develop and produce very different products with various

levels of complexity. In addition, collecting associated performance data is not an easy

task at all. It would be very time consuming to count the number of design iterations

caused by lack of effective communication or to assess the difficulties and costs that

manufacturing has to bear for inappropriate product designs. Most importantly, this
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method does not show why a certain communication method works better than the other

does.

Another way is to focus on the issues that each communication method covers. In other

words, it can be investigated whether the design-manufacturing communication method

in use at each company covers the necessary items for design for manufacturing systems.

For example, it can be studied if the method in use at a certain company asks the product

designers and manufacturing engineers to see the consequences of proposed designs in

terms of manufacturing issues such as operator training, problem solving practices in the

plants, material flows in the plants, and scheduling of mix production. For this purpose, a

new framework based on the MSDD (Manufacturing System Design Decomposition) is

proposed to clearly identify the manufacturing system issues that should be considered in

the product development. Based on this newly proposed framework, the second-round

questionnaire has been developed and distributed to the same respondents for their

answers. The second round-questionnaire is to evaluate the collective exhaustiveness of

the scopes of the different communication methods deployed in different companies. Five

points survey type questions are prepared for easier responses.

Except the proposed approach, other approaches are possible. Some human factors such

as the loyalty to the given methods and the competency level of the employees can be

studied. Or else, the level of details each communication method encompasses can be

focused. The adequateness of the tools deployed within the communication methods

framework (i.e., DFM rules) may be tested. However, the comparison based on these

criteria is out of the scope of this research.

5.8 Chapter summary

In this chapter, the industry practices to facilitate the communication between

manufacturing and product development is presented. Additional information on the

general practices of the participating companies in manufacturing system design, product

design, and performance measurement are also provided to enhance the understanding of

company practices from the system level viewpoint. As data collection protocols, the first

round questionnaire is developed and used while complemented by observations and
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face-to-face interviews with the engineers in the participating companies. Six companies

participated in the case study around the world. Four of six companies are OEM

companies in automotive industry and two are first-tier automotive parts suppliers.

The data collected from the answers to the first round questionnaire from six companies,

personal observations, and face-to-face interviews with the engineers at participating

companies are analyzed. The results of the analysis shows that many companies are

adopting the newest solutions available in academia and benchmark companies such as

cross functional product development teams and knowledge management tools. All

companies strive for minimizing manufacturing problems after product design is

completed by facilitating the communication between manufacturing engineers and

product design engineers. Still, some weaknesses are observed. For example, most of the

companies do not pursue the standardization of the content of the information exchanged

among functional groups. Some companies do not use any knowledge management tool

to avoid the mistakes made in the past. Even the companies implementing knowledge

management tools rely too much on the previous experiences instead of using a

systematic framework, so that it is difficult to prevent new problems that have never

occurred.

In the next few chapters, a systematic approach to capture the impact of product design

decisions on manufacturing systems is presented. This approach makes it possible to

identify possible sources of conflicts between manufacturing and product design in a

systematic way so that manufacturing problems due to new product designs can be

prevented.
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6 MANUFACTURING SYSTEM DESIGN

DECOMPOSITION

This chapter presents the development of the Manufacturing System Design

Decomposition (MSDD). The motivation and basic ideas behind the MSDD are provided

along with a brief introduction of underlying design methodology, Axiomatic Design,

which is used to develop the MSDD. Furthermore, detailed explanation on the high level

FRs and DPs are stated in order to facilitate the understanding of the MSDD.

6.1 Introduction

The Manufacturing System Design Decomposition (MSDD) has been developed by

Cochran and his colleagues at MIT for last 7 years. The MSDD is a decomposition of the

requirements for a manufacturing system, linked to the design parameters. The

framework of the Axiomatic Design was applied for the development of the MSDD. The

very first idea of the MSDD started from the dissertation of Cochran [1994] but the first

version of the MSDD in its current form was first introduced in 1998.

The first version of the MSDD was developed to rationalize the tools of lean

manufacturing and to see the inter-relationships among the tools in order to understand

how they interact to serve for the high level objectives [Suh et al. 1998]. Therefore, many

of the design parameters in the first version of the MSDD were popular buzzwords for

the tools such as 'heijunka', 'poka-yoke', and '5S'.

During the development of the second version of the MSDD, the solution neutral

environment that the Axiomatic Design theory requires, was faithfully kept. The

zigzagging process was loyally followed and true design parameters were sought for

associated functional requirements instead of merely adopting lean manufacturing

buzzwords. The result was a very different MSDD from the previous version [Cochran et

al. 2000a].

In the following sections, Axiomatic Design is briefly introduced and the details of the

MSDD are presented.
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6.2 Axiomatic Design

Axiomatic Design has been developed by Suh and his colleagues at MIT in the U.S.A. for

more than 20 years. The first paper describing the early idea of Axiomatic Design was

published in 1978 [Suh et al. 1978] and the current framework was established with the

publication of the first Axiomatic Design book by [Suh 1990]. Axiomatic Design is

recognized to provide designers with a tool to structure their thought processes in the

early design stages using two design axioms. The main driver for developing axiomatic

design was to give scientific basis for the field of design [Suh 1990] so that teaching and

learning of the design can be more systematic and generalizable [Suh 1995c]. Suh

believed that designers should learn how to make a good decision based on the scientific

basis. In this sense, one of the primary motivations for axiomatic design development

was education. Axiomatic Design has been applied in a number of disciplines including

software design [Harutunian et al. 1996], design of systems [Suh 1995b, Suh 1997],

quality [Suh 1995c], manufacturing system design [Cochran 1994], and design process

roadmap [Tate and Nordlund 1996, Tate 1999].

In this chapter, a brief introduction of Axiomatic Design is provided. For detailed

discussion on Axiomatic Design, please consult the references [Suh 1990], [Suh 1995a],

[Suh 2001], [Tate 1999].

6.2.1 Basics of Axiomatic Design

The underlying belief of axiomatic design is that there are fundamental axioms that

govern the design process. Originally, many axioms were proposed [Suh et al. 1978] but

redundant axioms have been integrated or eliminated so that finally only two axioms are

survived. Suh [1995c] claimed that these two axioms were identified by examining

common elements in good designs of products, processes, or systems.

The first axiom is the independence axiom. The independence axiom indicates that the

independence of functional requirements (FRs) must be maintained. In other words,

design decisions must be made without breaking the independence of each functional

requirement from other functional requirements. The functional requirements must be
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independent to each other and their number must be minimized to be just enough to

characterize the design.

The second design axiom is the information axiom. Information axiom dictates to

minimize the information content of the design. Among the design options that satisfy the

first independence axiom, the design with the minimum information content is the best

design. Axiomatic design defines the information content as the log inverse of probability

of success to satisfy the functional requirements. Based on the two axioms, theorems and

corollaries are derived [Suh 1990].

Axiomatic design sees the design world as consisting of four domains. They are:

customer domain, functional domain, physical domain, and process domain. Figure 6-1

schematically illustrates these four domains. The elements associated with each domain

are customer attributes (CAs), functional requirements (FRs), design parameters (DPs),

and process variables (PVs). The domain on the left relative to the domain on the right

represents the objectives to be achieved (or what the problems are), while the domain on

the right indicates the ways to achieve the objectives (or how to solve the problems). For

instance, customer attributes (CAs) are to be satisfied by corresponding functional

requirements that are the results of mapping customer attributes from the customer

domain to the functional domain.

Mapping 0. MappigMapping

{CAs} {FRs} {DPs} {PVs}

Customer Functional Physical Process
domain domain domain domain

FIGURE 6-1. FOUR DESIGN DOMAINS IN THE AXIOMATIC DESIGN [SUH 1990]
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Axiomatic Design dictates to keep two governing rules during this mapping process for a

good design. The first one is to follow the two design axioms during the mapping process

and the second is to do the zigzagging during the decomposition. The zigzagging is a

principle that guides the decomposition process from a high level to low detailed levels.

The zigzagging principle guides designers to zigzag between domains when they do

designs. For example, during the mapping between functional domain and physical

domain, lower level FRs should be derived from the higher level FR while considering

the corresponding DP of the higher level FR. In other words, before the higher level FRs

are decomposed into sub-requirements, designers must decide the corresponding higher

level DPs that satisfy the FRs. The zigzagging process is shown in Figure 6-2.

FR I I ZIG DP I

FRI1I FR 12 DP 11 DP 12

FIGURE 6-2. ZIGZAGGING PROCESS BETWEEN FUNCTIONAL AND PHYSICAL DOMAINS

In the design decomposition hierarchy, design matrix describes the relationships between

the elements in the adjacent domains. For example, the relations between functional

requirements and design parameters can be described by a design matrix (DM).

{FRs} = [DM] {DPs} (6-1)

The elements of the design matrix show the effects of the changes in the DPs on the FRs.

For example, consider the following design matrix:

{FR1 1 FXO1 F0DP1 (6-2)
FR2 _X X_ DP2

The X's of the design matrix indicate the presence of a relationship between a FR and the

corresponding DP, while the O's mean that there is no relationship between them. In the

design matrix, X's are always present along the diagonal elements since each DP is

selected to satisfy its corresponding FR. The lower off-diagonal X shows that DP1 affects
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FR2. Therefore, DPI affects both FRI and FR2. However, FRi and FR2 can be satisfied

independently since DP2 affects FR2 only. In other words, DPI can be determined first

and then, DP2 can be adjusted to satisfy FR2. In this way, the design matrix provides the

sequence of design implementation. If the upper off-diagonal element of the design

matrix is X, however, the design is coupled. Therefore, FRI and FR2 cannot be

independently satisfied by adjusting DPI and DP2. It can be only "optimized" by

adjusting DPI and DP2 with a trial-and-error method. The coupled design matrix

indicates that the first design axiom of independence is violated. To keep the

independence axiom, design matrix should be either diagonal (uncoupled) or triangular

(partially-coupled or decoupled). Figure 6-3 illustrates these design matrices.

x 0 X 0 X X

o X X X 0 X

FIGURE 6-3. EXAMPLES OF DIAGONAL (LEFT) AND TRIANGULAR (MIDDLE AND RIGHT)
DESIGN MATRIX

The information that a design matrix represents is shown in Figure 6-4 along with the

graphical representation of the relationship and the dependency. In the graphical

representation of the relationship, an arrow from a DP to an FR indicates the presence of

off-diagonal X's in the design matrix.
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Uncoupled
design

Partially coupled
design

Coupled
design

Mathematical FR, X 0 ifDP 1 {FR f[X 0 ]fDP ;FR1 f[XX] fDP
representation fFRJ 0 X DP {FR{ x X DPJ FRJ[X xj DP,2

FR 1  FR 2  FR 1  FR2  FR 1  FR2
Graphical
representation

DP1  DP2  DP1  DP2  DP, DP2

FR2 FR2 FR2 DP2

DP2

Illustration of DPI DPI
path dependency FRI FRI FRI
going from A to
B

FRFR2(B)R2(B) FR2(B)

FR2(A) A FR2(A) A FR2(A) A

FR(A) FRI(B) FR(A) FRI(B) FR(A) FR(B)

FIGURE 6-4: THE MATHEMATICAL AND GRAPHICAL REPRESENTATION OF UNCOUPLED,
PARTIALLY COUPLED, AND COUPLED DESIGN (ADAPTED FROM [LINCK 2001]).

In summary, from the perspective of Axiomatic Design, 'design' is a mapping process

between domains, developing a hierarchy from a system level to a detailed component

level with the zigzagging principle, while observing two design axioms. However, the

mappings between customer domain and functional domain, and the mapping between

physical domain and process domain are loosely defined and structured, compared to the

mapping between functional domain and physical domain.

6.2.2 An Example of Axiomatic Design

A good and simple example of the axiomatic design way of thinking is water faucet

design. This example is used by many Axiomatic Design advocates due to its clearness

and simplicity (e.g., [Suh 2001], [Kurr 1998], [Nordlund 1996]). Not too long ago, even

now, faucets that look like the one in Figure 6-5 are often used.

Yong-Suk Kim

I I

164



FIGURE 6-5. SINK WITH TRADITIONAL FAUCET [KURR, 1998]

This type of faucet consists of cold and hot water valves that manipulate both the flow

rate and the temperature of the water. Therefore, two top-level FRs and corresponding

DPs may be stated in the following way.

FRI: control water flow rate

FR2: control water temperature

DP1: cold water valve

DP2: hot water valve

Hence, the design matrix might be represented in the way given below.

tFRl1 FX XI DPl1
FR2 iXX c{}I(6-3)
FR2 X X_ DP2

The design matrix shows that the design is coupled. Whenever a user needs water, the

user has to turn on both hot and cold water valves and then adjust the temperature of the

water at the tap by adjusting the flow rate of cold and hot water through the valves. If, for

example, one wants to have warmer water, one can decide to either turn down the cold

water valve or turn up the hot water valve. In the same way, the water flow rate can be

adjusted by either turning up or down only one valve or both of them. Therefore, from the

perspective of the independence axiom, this faucet design is not a good design and thus

can be further improved by changing DPs to eliminate this coupling. There can be several

different improved designs and they are presented in Figure 6-6. Among the four
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available options, the design with the minimum information content is the best design

since it has the highest probability to satisfy the functional requirements. A most popular

design is presented in Figure 6-7.

Cold Water Hot Water

C r H--a te--- r

Cold Water Hot Water

Cold Water Hot Water

Cold Water Hot Water

FIGURE 6-6. VARIOUS UNCOUPLED FAUCET DESIGNS [SUH, 2001]

FIGURE 6-7. A MOST POPULAR UNCOUPLED FAUCET DESIGN
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6.3 Manufacturing System Design Decomposition

The motivation of developing the Manufacturing System Design Decomposition

(MSDD) is the desire to develop an approach to achieve four objectives [Cochran et al.

2000a] in manufacturing system design. These four objectives are:

2) Clearly separate objectives from the means of achievements

3) Relate low-level activities and decisions to high-level goals and requirements

4) Understand the interrelationships among the different elements of a system design

5) Effectively communicate this information across the organization

To achieve these objectives, Axiomatic Design theory is adopted and variety of sources

are consulted to generate adequate functional requirements and design parameters. Some

of the sources used are: systems engineering literature, Toyota Production System (lean

manufacturing) related literature, manufacturing system design literature, industrial

engineering literature, and industrial projects in a variety of fields including automotive,

aerospace, consumer goods, electronics, and food processing. It was aimed to develop the

MSDD general enough to be applicable to repetitive and discrete part manufacturing

systems in a wide range of industries.

6.3.1 The Use of Axiomatic Design

As is previously indicated, the fundamental design concept of Axiomatic Design theory

and its design methodology are adopted in the development of the MSDD. The design

processes of Axiomatic Design start from the identification of customer attributes (CAs)

and the conversion of these CAs into a set of functional requirements (FRs). A minimum

set of FRs that completely cover all desired function of the design should be developed

and these FRs become the highest-level FRs. Then corresponding design parameters

(DPs) are identified with guidance from two design axioms. After the design parameters

are identified, the high-level FRs are further decomposed into sub-FRs while following

the zigzagging principle, if necessary. The design processes used in the development of

the MSDD is shown in Figure 6-8.
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.o Synthesis of
Dofe inia n potential Evaluation of Is th..e IN o Do DP's N Decomposition

functional - design - design matrix matrix require further complete
requirements parameters to coupled? decomposition?

satis FRsleveF
Yes Yes

Synthesis of an
-alternative set 4-

of DP's

Determination

of next lower-mil
level FR's

FIGURE 6-8. THE DECOMPOSITION PROCESS USED FOR THE DEVELOPMENT OF THE MSDD

USING AXIOMATIC DESIGN [ADAPTED FROM COCHRAN ET AL 2000A]

During this design process, the formulation of FRs and the selection of DPs are solely a

product of creativity of designers. Therefore, to avoid the ambiguity, high level FRs and

DPs should be clearly stated before further decomposition. This was particularly

important in the development of the MSDD because of the broad context of

manufacturing system design. The decomposition process used in the development of the

MSDD is described in more details by [Cochran et al. 2000a] and [Linck 2001].

This decomposition process is a simpler version of more precise and rigorous

decomposition process proposed by Tate [1999]. Tate [1999] examined the

decomposition process and proposed guidelines to aid designers. Compared to his

decomposition processes, for example, the decomposition processes used in the MSDD

development loosely consider the existence of design constraints. His roadmap of

activities in decomposition and the design process roadmap of Tate and Nordlund [1996,

1998] are shown in Figure 6-9 and Figure 6-10 respectively. For detailed discussion on

the decomposition processes, please refer to [Tate and Nordlund 1996], [Tate and

Nordlund 1998], and [Tate 1999].

The benefits of using the Axiomatic Design instead of other design tools such as Quality

Function Deployment (QFD) or IDEFO are two-fold. First, Axiomatic Design stresses on

the separation of the objectives (FRs) from the means (DPs). Second, it provides a

structured decomposition process with decision criteria of two design axioms. Combined

together, these characteristics of the Axiomatic Design make it well suited to achieve the
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four objectives of the MSDD [Cochran et al. 2000a]. QFD is a good method to capture

customer needs and convert them to engineering requirements but lacks effective

guidance on decomposition process. IDEFO is not very effective to separate the

objectives from the means to achieve them. More discussion on different design

methodologies can be found in [Tate and Nordlund 1995], [Tate and Nordlund 1996], and

[Tate 1999].

The decomposition process resulted in the MSDD with six different main areas of

quality, problem solving, predictable outputs, delay reduction, operational costs, and

investments (Figure 6-11). The general structure of the MSDD is discussed in the

following section as well as the details of each area.
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6.3.2 General Structure of the MSDD

A complete version of the Manufacturing System Design Decomposition (MSDD) is

available in Appendix A. As is previously described, the MSDD consists of six major

branches and the general structure of the MSDD is shown in Figure 6-11.

FR

DP

Quality - Predict- uperauonal I
able vest

... ...... output ment

FIGURE 6-11. THE GENERAL STRUCTURE OF THE MANUFACTURING SYSTEM DESIGN
DECOMPOSITION (MSDD)

The Manufacturing System Design Decomposition (MSDD) starts from the functional

requirement (FR) of "maximize long-term return on investment (ROI)," which is very

general managerial objective of a company. To avoid the shortcomings of the ROI

[Johnson and Kaplan 1987], the term of 'long-term' was chosen. It stresses the

importance of long-term improvements rather than short-term profit-seeking thinking.

For example, activities to improve customer relationships or to create flexible systems

may not contribute to the short-term profit and it is difficult to estimate their benefits in

terms of dollar value. However, they are essential to keep the company in the business

from a long-term perspective. The corresponding design parameter (DP) is manufacturing

system design. This DP implies that the scope of the MSDD is limited to manufacturing

and thus, other important functions of an enterprise such as product development and

marketing would be excluded during the further decomposition processes. The

zigzagging principle of the Axiomatic Design ensures that the characteristics of the lower

level FRs and DPs are confined to manufacturing issues.

The first level FR is further decomposed into three sub-FRs of
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FRI 1: Maximize sales revenue,

FR12: Minimize production costs, and

FRI13: Minimize investment over the production system life cycle.

These three sub-FRs are derived from the ROI formula,

ROI = Revenue -Cost (6-4)
Investment

These FRs are satisfied by the following DPs respectively.

DP11: Production to maximize customer satisfaction,

DP12: Elimination of non-value adding sources of cost, and

DP13: Investment based on a long-term system strategy.

The design matrix that governs the relationship between the FR-DP pairs is as follows:

'FRIll X 0 O]FDPll1

< FRl2f>=X X O -DP12 (6-5)

FR13J X X XiDPl3

The rationale behind the design matrix (6-5) is that if the produced product failed to

satisfy the customer, the product would not be sold very well and thus, cause unnecessary

costs and investment. Therefore, DPI1 affects FR12 and FRO3 as well as FRI 1. In

addition, the elimination of non-value adding sources of cost may require a certain

amount of investment. Consequently DP12 affects FR13 along with FR12. It can be

argued that DP12 may affect FRI11. However, FRI1 may be satisfied without eliminating

non-value adding sources of cost and thus, DP 12 would not affect FRI 1. With the term of

non-value adding sources of cost, it is implicitly assumed that the eliminating cost drivers

does not affect producing customer-satisfactory products.

As is described above, production to maximize customer satisfaction (DP 11) is chosen as

a design parameter to achieve the FRl11, maximize sales revenue. Having the DPI1 in

mind, FR 1 is further decomposed into three sub-FRs
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FRI111: Manufacture products to target design specifications

FRI112: Deliver products on time

FRI113: Meet customer expected lead time

The decomposition is based on the core manufacturing performances that can greatly

contribute to the customer satisfaction - quality and delivery (on-time delivery and

minimal delivery lead time). The following DPs are chosen to satisfy each FRs.

DP 111: Production processes with minimal variation from the target

DP 112: Throughput time variation reduction

DP 113: Mean throughput time reduction

The design matrix that describes the relationship between FRs and DPs are as follows:

FRIlli X 0 O0 DP1i11

FRIl2f>=X X 0 DP112 (6-6)

FRi13 X X DP113

The design matrix shows that quality should be ensured first to deliver products on time

and meet the customer expected lead time. Quality problems cause production disruptions

and thus affect the stability of the system performance as well as the lead time.

DP111 is focusing on increasing process capabilities rather than relying on final

inspection to avoid the shipment of poor quality products. From a manufacturing

perspective, a quality product is a product that is produced to meet all design

specifications. Therefore, the quality branch represented by the FRI111 and the DP 111

provides the FRs and DPs to ensure the product conformance to the design specifications

at the first time. In other words, quality should be ensured by perfect first-time

processing, not by inspection or re-work. The quality branch suggests the FRs and DPs to

ensure perfect first-time processing.

DP 112 is about reducing the time variation in throughput time in order to ensure on-time

delivery to the customer. There can be numerous sources of time variation in throughput

time. For example, unpredictable machine downtime or unavailable component parts can
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cause the disruption of production, which affects the overall throughput time. To deliver

products on time (FRI 12) by reducing throughput time variation (DP112), two kinds of

system capability are required. One is to respond rapidly to production disruptions (FR-

Rl) and the other is to minimize the production disruptions themselves (FR-P1).

Therefore, FRl12 is further decomposed into FR-Rl and FR-P1. A standardized

procedure for detecting and responding to production disruptions greatly helps to respond

rapidly to production disruptions and thus, it is selected as DP-Rl for FR-Ri. To

eliminate the production disruptions themselves, it is important to ensure predictable

production resources such as people, equipment, and information (DP-P1) in terms of

their availability and their performance. The design matrix between these two FR and DP

pairs are:

FR --RI =X 0]DP - R1
FRPl>L xjD-l(6-7)FR - PI X X_ DP - P1

Compared to the FRl 12 and DP112 pair that focuses on eliminating sources of variation,

the FRI113 and DP113 pair stresses the minimization of the throughput time of which

predictability is already ensured by the FRl112 and DP112 branch. The short delivery

time expected from the customer (FRI 13) can be met through mean throughput time

reduction (DP 113). Five different categories of delays are identified and thus, FRI113 is

further decomposed into five sub-FRs while keeping the throughput time reduction

(DP113) in mind.

Production costs branch (FR12) mainly deals with the elimination of the non-value

adding sources of costs (DP12). This is quite a different approach from the traditional

cost-based approach since the MSDD shows that the customer satisfaction through the

quality and the delivery should come first than the cost. The underlying thought is that

when the FR 1 is satisfied by perfect quality, immediate problem identification and

solving, predictable outputs from the production resources, and minimum throughput

time, operation costs are already reduced as a result of this achievement. For example, no

more material and manpower are wasted to produce scrapped parts since quality is

ensured. Expensive scheduling software and the manpower to support it will not be
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necessary due to the simple material flow. In other words, the wastes hided in the

inefficient system structure are already eliminated by achieving the FRI11. Therefore, the

FR12 branch deals with what left such as efficient use of direct and indirect labor, and

facility cost (plant wide energy cost, etc.).

As for the investment area, the MSDD does not further decompose the FR13 minimize

investment over production life cycles and DP13 investment based on a long-term

strategy. This is because the investment decision should be considered after satisfying all

previous FRs in the customer satisfaction branch and the operational cost reduction

branch. If the project satisfied all those FRs before the investment decision, there would

be less room for investment decision and the investment decision would become more or

less obvious. In addition, the investment decision is significantly affected by the

enterprise strategy since once the investment is made, the enterprise should live with the

investment made for a relatively long time. Therefore, investment decision can be too

company-specific to be incorporated into the general MSDD. From these reasons, the

MSDD proposes to consider the investment from the long-term perspective and does not

propose detailed decomposition. For possible further decomposition of the investment

branch of the MSDD, please refer to the diploma thesis of Szentivanyi [2002].

Upper levels of the MSDD are summarized in Figure 6-12. As is previously stated, the

MSDD considers customer satisfaction as a prerequisite for a successful manufacturing

system design over operational costs and investment. In other words, maximizing

customer satisfaction determines the basis for minimizing operational costs and

investment. Since operational costs and investment greatly vary depending on customer

satisfaction through quality and delivery, setting solutions for minimum operational costs

and investment is not very meaningful. This dependency is dictated in the design matrices

as shown earlier.

In this sense, the MSDD provides a desirable sequence of design implementation in

manufacturing system design. According to the dependencies of each branch, quality

should be ensured first, then problem solving, predictable output, and delay reduction

should be followed. Only after satisfying these four branches, financial target can be met

without deteriorating the operational performance of the manufacturing system.
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6.3.3 Quality

Manufacturing quality is recognized as a norm by today's customers. In today's highly

competitive market, no customer will tolerate dealing with defective products. In other

words, products are expected to function as they are designed from the very beginning of

their usage throughout their entire lifecycle. The quality branch of the MSDD focuses on

what manufacturing can do to satisfy customers in terms of product quality. It is to ensure

individual manufacturing processes consistently produce products according to the

product specifications. A complete decomposition of quality branch is provided in Figure

6-13.

The quality branch consists of three main requirements and they are:

FR-Q 1: Operate processes within control limits,

FR-Q2: Center process mean on the target, and

FR-Q3: Reduce variation in process output.

The letter Q indicates the FRs and DPs belong to quality branch. These FRs are chosen

based on the traditional quality related research in quality loss function and statistical

quality control (SPC) [Taguchi 1989], [Montgomery 1985], [Bothe 1997], [Phadke

1989]. Three FRs stresses first to get the process controllable (FR-Q1) by eliminating

assignable causes (DP-Ql), then to get the process mean to the target value (FR-Q2) by

adjusting parameter value (DP-Q2), and finally to reduce the output variation caused by

process noise (FR-Q3) by reducing the production noise (DP-Q3).

The design matrix of these FRs and DPs are as follows:

FR -Q1 FX 0 O7FDP-Q1'

FR-Q2>= X X < DP-Q2 (6-8)

FR-Q3JLX X XjLDP-Q31

The design matrix is decoupled and it shows that the process should be first controllable

by eliminating assignable causes since the existence of assignable causes affects other

FRs. In some cases, it may be difficult to adjust processes without affecting their
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robustness to external noises, which may lead to coupling between FR and DP-Q2 and

Q3. It is then necessary to determine process parameters that simultaneously shift process

means and reduce variation [Arinez 2000].

The FR-Q1 is further decomposed into four sub-FRs and their corresponding DPs are

selected to keep the independence axiom of the Axiomatic Design. The four sub-FRs are

about equipment (FR-Q11), operators (FR-Q12), process plan (FR-Q13), and the

incoming materials (FR-Q14). It should be ensured that equipment is capable of

producing to target specifications by efforts such as failure mode and effect analysis

(FMIEA) (DP-Ql) to analyze and correct machine assignable causes. Operators must be

properly trained (DP-Q121) to have knowledge required for their tasks (FR-Q121) and

their consistent performance (FR-Q122) should be supported by standard work method

(DP-Q122). Researchers such as Monden [1998] stress the importance of the training by

calling it as "a key to implementing a successful system." In addition, their mistakes

should not be translated to defective parts (FR-Q123) by mistake proof devices (Poka-

Yoke) (DP-Q123). Hirano [1988] discusses the use of the poka-yoke devices in detail.

Processes should be designed from the beginning (DP-Q13) to ensure effective

conversion of raw material to planned products and thus eliminate the method assignable

causes (FR-Q13). Finally, the incoming materials to the process should have perfect

quality (FR-Q14) through quality insurance program with the material suppliers (DP-

Q14).

FR-Q2 does not need to be further decomposed considering the generality kept in the

MSDD. However, FR-Q3 needs to be further decomposed into FR-Q31 (reduce noise in

process inputs) and FR-Q32 (reduce impact of input noise on process outputs). These two

FRs focus on eliminating the noise itself (FR-Q3 1) and design the process to be robust to

the noise (FR-Q32). The corresponding DPs are DP-Q31 (conversion of common causes

into assignable causes) and DP-Q32 (robust process design).
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FIGURE 6-13. QUALITY BRANCH OF THE MSDD.
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6.3.4 Identifying and Resolving Problems

Identifying and resolving problems branch is one of two branches to reduce the variation

of throughput time. Since identifying and resolving production problems affect

predictable output of the system, this branch comes before the predictable output branch

of the MSDD. The main objective of this branch is to design a manufacturing system to

be quick at finding unplanned production disruptions and correcting them. The examples

of unplanned production disruptions may be machine down, material shortage, and

mistakes from operators affecting production timing. The unplanned disruptions lead to a

loss in system availability. Quality problems, though they are disruptive, are not included

in the production disruptions since they have been addressed in the quality branch. A

complete decomposition of the identifying and resolving problems branch is presented in

Figure 6-14. The letter 'R' after the FRs and DPs in this branch stands for responding to

disruptions.

The identifying and resolving problems branch starts with the FR-Ri (respond rapidly to

production disruptions) and the DP-Rl (procedure for detection and response to

production disruptions). Three sub-FRs are recognized from the decomposition process.

They are: to rapidly recognize production disruptions (FR-Ri11), then to communicate

those recognized problems to the right people (FR-R12), and finally to solve them as

quickly as possible (FR-R13).

To rapidly recognize production disruptions, it is more effective to organize the system

itself to support the operators to recognize the problems rather than assigning a special

task force to watch and investigate them. Therefore, subsystem configuration to enable

operator's detection of disruptions is chosen as DP-R1I. The underlying belief of the DP-

R 1 is that system operators are the ultimate cores to recognize and identify problems,

even though technology can be a great help to deal with the disruptions through instant

feedback about the state of the manufacturing system. The sub-FRs and sub-DPs of the

FR-R1I reflect this idea, and describe 'where, when, and what' aspects of the disruptions

and how to recognize those aspects. Again, the idea is that the design of the work tasks

and systems should be integrated with the human being inside of the system who

performs the tasks in order to achieve fast recognition of the problems.
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FIGURE 6-14. IDENTIFYING AND RESOLVING PROBLEMS BRANCH OF THE MSDD.

To solve the disruptions immediately identified according to the FR-R1I branch, the

disruption information should be transmitted to the right people. The DP-R12 (process

for feedback of operation's state) is selected as a solution, stressing the importance of

standard communication channels among the constituents of the manufacturing system.
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To have the standardized communication channels, specified support resources should be

assigned to each failure mode (FR and DP-R121) and contacting the right support

resources should be quick (FR and DP-R122). Then, to minimize the time for problem

analysis, the content of disruptions should be transmitted along with the disruption report

(FR and DP-R123). Eventually, the root causes of the disruptions should be immediately

eliminated by following well-defined and standardized procedures.

6.3.5 Predictable Output

Once the production disruptions can be quickly identified and solved, the next step is to

eliminate the disruptions themselves. The predictable output branch focuses on

minimizing production disruptions (FR-P 1) through predictable production resources

such as people, equipment, and information (DP-P 1). Four sub-FRs are recognized in the

area of information (FR-P 11), equipment (FR-P 12), operators (FR-P 13), and materials

(FR-P14). A complete version of the decomposition of the predictable output branch is

shown in Figure 6-15. The letter 'P' after the FRs and DPs in the predictable output

branch indicates 'predictable output'.

Figure 6-15 highlights the importance of the capable and reliable information system

(DP-P 11) to ensure the availability of relevant production information (FR-P 11). The DP-

P11 affects all other FRs in the predictable output branch and thus, should be

implemented prior to the other DPs in the branch.

Predictable equipment output is ensured (FR-P12) by maintenance of equipment

reliability (DP-P12). Therefore, one of the two sub-FRs deals with securing easily

serviceable equipment (FR and DP-P121) and the other stresses regular preventive

maintenance of the equipment (FR and DP-P122). In other words, after implementing

easily serviceable equipment in the manufacturing system, regular preventive

maintenance programs should follow to service the equipment. Further details on the

equipment maintenance are well described in the total preventive/productive maintenance

(TPM) literature [Nakajima 1989].
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FIGURE 6-15. PREDICTABLE OUTPUT BRANCH OF THE MSDD.

To ensure predictable output from the operators (FR-P13), two factors are important.

First, the operators should be motivated to perform their work tasks consistently. They

should be well aware of the consequences of their abnormal work completion and should

be willing to avoid problems that might be caused by the inconsistency of their work

completion time. In addition, this motivation should be systematically supported in their

working environment by means of standardized works. Three sub-FRs are recognized for
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the FR-P13 and they are: reducing variability of task completion time (FR-P131),

ensuring worker availability (FR-P132), and not interrupting production for worker

allowances (FR-P133). Variation in the task completion time is minimized through

defining standardized work methods (DP-P131). The attendance program to draw the

perfect attendance from the workers (DP-P132) should be implemented to ensure the

worker availability when the production tasks need to be done (FR-P 132). Mutual relief

program (DP-P133) enables avoiding production disruptions due to worker allowances.

Detailed discussion on the design of work systems in terms of ergonomics and

psychology is available in [Grote et al. 2000].

There can be many methods to ensure the material availability for predictable output. For

example, a manufacturing system can increase its WIP (work-in-process) level to damp

any variation in material supply and thus to ensure the material availability. In the

MSDD, standard material replenishment system (DP-P14) is chosen as a DP for the FR-

P14. There can be two cases when the material is not available. The first is when the

upstream production is not finished and thus, material handlers cannot deliver parts to the

downstream operators due to the lack of parts. The other case is when the incoming

material is not arriving at the right timing. In this sense, FR-P14 can be further

decomposed into two sub-FRs. First, the parts should be available when they are

demanded by the material handlers (FR-P141) and the parts should be arrived at the

production stations at the right timing (FR-P142). As corresponding DPs, standard work

in process between sub-systems (DP-P141) and parts moved to downstream operations

according to pitch (DP-P 142) are selected respectively. Standard work in process (SWIP)

between subsystems serves as a buffer against production uncertainties and transportation

delays. The emphasis is on keeping defined levels of inventory between processes instead

of having uncontrolled levels of inventory. The DP-P142 describes a synchronous

material replenishment system in which material handlers regularly replenish the

consumed materials following a defined route at defined time. However, low volume and

high variety manufacturing may pursue different strategy from keeping SWIP between

sub-systems since it may not be feasible to keep standard number of thousands types of

materials between manufacturing processes.
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6.3.6 Delay Reduction

The decomposition process of the delay reduction branch is about identifying the types of

the delays in manufacturing systems and finding possible ways to eliminate the root

causes of them. A delay is defined as time that a part spends in the manufacturing system

when no value is added to the part from a customer perspective. Therefore, all time that a

part spends in the manufacturing system except when they are processed is delay. In the

MSDD, five distinctive types of delays are identified and they are: lot delay (FR-TI),

process delay (FR-T2), run size delay (FR-T3), transportation delay (FR-T4), and

systematic operational delay (FR-T5). The complete delay reduction branch is shown in

Figure 6-16. The dependencies between the delays are shown with arrows.

Lot delay occurs when a plural number of parts are transported between operations at a

time. Since a plural number of parts are transported, parts that finished their processing

earlier than the others should wait for the other parts to be processed. In other words, in

case of a lot size greater than one, parts accumulate in a lot, waiting for being transported.

Therefore, to reduce lot delay, transfer batch size should be reduced, ultimately, to one

(single-piece-flow) (DP-T1). Reduction of transfer batch size (DP-T1) affects other FRs

such as FR-T2 (process delay) and FR-T4 (transportation delay). For example, parts

transfer frequency affects the arrival rate of parts and if the arrival rate of parts is faster

than the service rate of the downstream process, parts are accumulated in front of the

process and cause process delay. Parts transfer with a large lot size, therefore, causes

process delay since some of the parts in a lot should wait to be processed while the first

few parts are processed. In addition, smaller transfer batch size means more frequent part

transfers, which may increase transportation delay.

Production delay is a result of faster part arrival rate than part service rate. In other

words, if more parts arrive at a process than the instant capacity of the process, some

parts need to wait for their turns in front of the process. This time delay is production

delay. Therefore, assuming the long-term average part arrival rate is equal to the average

service rate of a process, process delays occur only for short time intervals when the

arrival rate is larger than the service rate. Otherwise, an infinite number of parts would

accumulate in front of the process. The production delay can be minimized by pacing all
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processes according to a pitch that is sometimes called as takt time. Giving a periodicity

into the operation of manufacturing system smoothens the material flow and solves the

process delay problems. This is often called as balancing the system [Monden 1998],

[Hopp and Spearman 1996].

Pacing all manufacturing operations according to takt time significantly affects the design

and the operation of the manufacturing system [Linck and Cochran 1999]. To make all

manufacturing operations pace together according to takt time, takt time should be

defined first (FR and DP-T21), subsystem should be designed to meet the takt time (FR

and DP-T22), and the parts transportation system should be designed to operate

according to the takt time (FR and DP-T23). Monden [1998] and Mierzejewska et al.

[2000] discuss the takt time calculation in detail. Since factors such as machine down

time, setup time, and worker allowances should be considered in the takt time calculation,

it is somewhat complicated to get the right number for the pitch that all manufacturing

operations can follow.

When processing times vary significantly depending on the types of products, small run

size may be required to ensure the balancing within the manufacturing system. Therefore,

DP-T2 (production designed for the takt time) may affect FR-T3 (reduce run size delay).

In addition, balanced production requires proper timing of material deliveries, which may

affect FR-T4 (reduce transportation delay) by increasing the frequency of transportation.

Run size delay (FR-T3) occurs when a plural number of part types are produced but the

sequence of production does not match the sequence of the customer demand. Here, run

size is defined as the number of products in one type produced before changing over to a

different product type. Run size delay is typically a result of efforts to save setup

changeover time since setup changeover time usually leads to a loss of available

production time. Run size delay usually leads to increased inventory to cover the

customer demand while waiting for the next run of demanded part production.
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FIGURE 6-16. DELAY REDUCTION BRANCH OF THE MSDD.

To minimize run size delay, production mix sequence should be matched to customer

demand sequence during each demand interval (DP-T13). The demand interval is the

time interval between deliveries to the customer, which may vary significantly depending

on many factors such as transportation cost. To ensure the production of the desired mix
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and quantity during each demand interval (DP-T3), demanded product mix information

(part types and quantities) should be provided to the production (FR-T3 1) and the run

size should be small enough to catch up the required mix production (FR-T32).

Information flow from downstream customer (DP-T31), and quick changeover of

material handling and equipment (DP-T32) are selected as corresponding DPs

respectively. DP-T31 refers to pull system in lean manufacturing literature and DP-T32

reflects the ideas of SMIED (single-minute-exchange of die) proposed by Shingo [1985,

1989].

Transportation delay (FR-T4) is defined as the total time from the moment when a full

transfer batch of parts is ready to be transported until these parts arrive at the downstream

operation and are ready for processing [Cochran et al. 2000a]. Transportation delay

includes the time that parts spend for waiting to be transported, the time in transit, and the

time for loading and unloading of the parts. To minimize transportation delay, it is best to

eliminate the need for transportation itself Therefore, the material flow oriented layout

(DP-T4) is chosen as the solution for transportation delay. Material flow oriented layout

indicates that parts should be transported not for non-value adding activities such as

temporary storage, but for value-adding activities such as next processing. By arranging

equipment according to product flow, transportation distance can be minimized. In this

sense, a cell is a good example of material flow oriented layout since the downstream

processing machine is located right next to the upstream processing equipment, which

minimizes the transportation distance.

Systematic operational delays (FR-T5) are caused by the interference of production

resources with each other, which leads to a loss of available production time. The MSDD

distinguishes the production resources (operators, equipment, etc.) that add value to the

product and the support resources (material supply, maintenance, chip removal, etc.) that

support production activities. To eliminate systematic operational delays, a careful

planning of operation and a thorough subsystem design (DP-T5) are required. All support

resources should be ensured not to interfere with production resources such as people and

automated equipment (FR-T51), and the production resources (FR-T52) and the support

resources (FR-T53) should not interfere with one another. Various solutions can exist, but

the MSDD chose subsystems and equipment configured to separate the access
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requirements from support and production resources (DP-T51), coordinated and

separated production work patterns (DP-T52), and coordinated and separated support

work patterns (DP-T53).

6.3.7 Operational costs

The operational costs branch of the MSDD deal with the efficient use of labor and

facility. It is noteworthy that the cost branch is located to the next of quality, identifying

and resolving problems, predictable output, and delay reduction branches. The MSDD

treats customer satisfaction through quality and delivery as a prerequisite for a successful

manufacturing system design. In other words, maximizing customer satisfaction

determines the basis for minimizing operational costs as is dictated by the design matrix.

With the philosophy embedded in the MSDD, many of the cost drivers are already

minimized through the design of efficient manufacturing systems to achieve the

objectives of quality and delivery. Therefore, in terms of cost reduction from the

manufacturing point of view, engineers only need to focus on minimizing facility costs

(FR-123) that are not directly connected to quality and delivery (i.e., energy cost, etc.)

and utilizing human resources as efficient as possible without deteriorating the system

design for quality and delivery (FR121 and FR122).

For example, Linck [2001] discusses the view of the MSDD to the total cost approach

proposed by Son [1991]. As is shown in Figure 6-17, Son categorized the cost drivers

into three groups of productivity cost, quality cost, and flexibility cost. Among these

three groups of costs, quality cost and flexibility cost are addressed and minimized in the

customer satisfaction branch. Among the productivity cost items, labor and floor space

items are addressed in the operational cost branch of the MSDD. Some cost drivers are

assumed that manufacturing does not have direct control (material), since product design

is assumed to be given. The use of computer software is minimized through the design of

simple but efficient manufacturing systems through the customer satisfaction branch.

Depreciation is a result of accounting customs and investment. Tool and machine issues

are not directly addressed.

Yong-Suk Kim 190



- Productivity cost

Quality cost

Flexibility cost

" labor
" material
- depreciation
- machine
- tool
" floor space
- computer software

" prevention
- failure

- setup
e waiting
- idle
- inventory

FIGURE 6-17. COST STRUCTURE FOR ADVANCED MANUFACTURING SYSTEMS [SON, 1991]

In the direct labor branch of the MSDD (FR-12 1), three factors are considered:

eliminating operators' waiting for machines (FR-D 1), eliminating wasted motion of

operators (FR-D2), and eliminating operators' waiting on other operators (FR-D3).

Human-machine separation (DP-D1), workstation and work-loop designs (DP-D2), and

balanced work-loops (DP-D3) are chosen as corresponding DPs respectively.

In the indirect labor branch (FR-122), effective production management (FR-Il) through

self directed work teams (DP-Il) and elimination of information disruption (FR-2) by

visual factory (DP-12) are addressed to minimize waste in indirect labor.

A complete decomposition of the operational cost branch is provided in Figure 6-18.
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FIGURE 6-18. OPERATIONAL COSTS BRANCH OF THE MSDD.
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6.3.8 Investment

As is previously discussed, the MSDD does not decompose the investment branch,

mainly because the investment decision is heavily dependent on company specific

situation. In addition, the basic idea of the MSDD regarding investment decisions is that

the system design should drive the investment decisions. In other words, meeting the FRs

of the MSDD in other branches are first considered and then given the solutions, the

investment decisions should be made. Therefore, the investment decisions do not drive

the system design. This is very different from the traditional approach to design the

systems constrained by the budget, which may lead to sub-optimization of the system

forced by the budget calculation 'methods' [Cochran et al. 2000b, 2000c]. This is not a

right sequence. After identifying the various system design options that satisfy the FRs

imposed by the MSDD, the final investment decisions should be made, considering the

investment constraint. If the investment constraints cannot be met or modified to

accommodate the manufacturing system design options, new designs should be sought to

widen the design solution pools.

6.4 Supportive Evidences of the MSDD

The MSDD considers customer satisfaction through quality and delivery as a prerequisite

for a successful manufacturing system design. Quality is considered as the first that must

be ensured for successful manufacturing system design. Then, delivery aspects of

manufacturing system performances are stressed, followed by operational cost and

investment. In this chapter, several empirical and theoretical evidences that support the

general structure of the MSDD are discussed.

Toyota, as a benchmark of lean manufacturing, has a similar view to successful

manufacturing with that of the MSDD. One of the managers in a plant located in Japan

developed a decomposition of the roles in plant based on the return on asset (ROA). A

schematic view of his decomposition is shown in Figure 6-19. It is noteworthy that the

decomposition starts with the ROA (the MSDD starts with the ROI) and sales increase by

quality and delivery are addressed first and followed by cost and assets.
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FIGURE 6-19. ROLES OF MANAGEMENT IN PLANT - VALUE MANAGEMENT BY ROA
(ADAPTED FROM [TOYOTA 2001])

In addition to the decomposition, the view to the cost within Toyota is interesting. An

engineer at Toyota confessed that each plant of Toyota has different costing systems and

thus, the unit costs of a car in different plants are not comparable to each other. However,

every plant strives to continuously improve its operation and thus overcome the cost

target that is planned during the product development with the target costing process. At

any rate, it is evident that Toyota has never lost money since the 1950s and this offers a

complete review of the traditional manufacturing system design approach driven by

traditional cost accounting practices. Some authors address this issue [Cochran et al.

2001b and 2001c], [Cochran et al. 2002], [Johnson 1992, 2001], [Johnson and Kaplan

1987], [Kaplan 1984], [Kaplan and Norton 1992, 1996].

In addition to Toyota's example, it is interesting to see the cost reduction campaign of a

Toyota's subsidiary company, Aisin AW. This company tries to cut its cost by 30% in 5

years. Their first motto for this aggressive cost cut target is to maximize customer
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satisfaction by producing quality products, and delivering them faster than its competitors

and on time. Some savings such as floor space saving was seen as a by-product of its

efforts to minimize the time to the customers. Typical view of western counterparts on

cost reduction that is represented by head count cut could not be found. The only cost

items addressed in this cost-cutting activity was plant-level cost drivers such as energy

saving and was suggested as a minor activity to follow.

Cforate

Objectives i4 n Measures

Business
Financial units

i Business

operating
s a F bility Productivity systems

. .. ...... ...... ... .. D epartm ents
e Waste and work

Operations

s Internal Efficiency

FIGURE 6-20. THE PERFORMANCE PYRAMID (ADAPTED FROM [MCNAIR ET AL. 1990])

In the academia, Ferdow and De Meyer [1990] propose a "sand cone model" for system

improvement, which starts with quality, then reliability, and finally efficiency and costs,
which is similar to the structure of the MSDD. Filippini et al. [1998] performed an

analysis of 45 manufactuning companies in Italy and found that "compatibility between

punctuality and economic performance has been found only in the presence of high

values of quality consistency and delivery time." Linck [2001] proposes to use the

MSDD to evaluate the state of manufacturing systems and presents interesting research

results on the relationship between the confonnance level to the MSDD and the
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traditional performance metrics. McNair et al. [1990] propose to use a 'performance

pyramid' as is shown in Figure 6-20. They categorized the objectives of an enterprise and

the performance measures into external effectiveness and internal efficiency and stressed

the importance of quality, delivery, cycle time, and waste.

6.5 Application of the MSDD

The MSDD has successfully served as a platform to link the various disciplines of the

enterprise system design to manufacturing system design (Figure 6-21). The linkage

between the existing framework for each discipline and the MSDD can be easily found

due to the structure of the MSDD that separates the objectives from the means.

Enterprise System Design

Manufacturin

Finance -Strategy

Human [2000] Capacity

as aso Reourv qimntdsg urement..Heproposed.four.design.steps.o

Res......ce... Planning
.... ..........D D

Material Equipment Product IT
supply Design Design

FIGURE 6-21. THE MSDD AND OTHER DISCIPLINES OF THE ENTERPRISE SYSTEM DESIGN

For example, Arinez [2000] developed an equipment design approach using the MSDD

as a source to derive equipment design requirements. He proposed four design steps of

equipment design: identification of the set of manufacturing system requirements that

affect equipment design, transformation of the requirements into views for the various

equipment designers with different interests, analysis of requirements, and decomposition
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of the requirements into equipment design parameters. Duda [2000] proposed a process

for linking manufacturing strategy with the MSDD. The process aims to guide the

designer from the statement of strategic objectives through trade-off analysis of design

alternatives relative to the objectives, to the final evaluation of the relative strength of

design alternatives. Cochran et al. [2000d] suggested a process that uses the MSDD for

facility design. In this process, the MSDD is combined with a procedural system design

approach proposed by Kettner et al. [1984]. The MSDD is used to provide the design

objectives, which become the input in the design phases of the procedural approach.

The benefits of using the MSDD come from its clear separation of the objectives from the

means and its clear identification of functional dependencies between the objectives and

the means. This benefit is sought again in this thesis to link product design with

manufacturing system design.

6.6 Top-Down Approaches vs. Bottom-Up Approaches

The MSDD is based on the Axiomatic Design methodology that is a top-down approach.

Therefore, the MSDD holds the benefits and detriments of the top-down approach. Much

of the discussion in this section is based on the systems engineering literature (i.e.,

[Blanchard and Fabrycky 1998]).

Design methodologies can be categorized into two groups: top-down approach and

bottom-up approach. Top-down approach starts from general requirements for system

performance, whereas bottom-up approach starts with a set of known design elements. In

the top-down approach, the required system performance is analyzed to identify its

functional characteristics and these functional elements to meet the functional

requirements are sought. Design is completed by further decomposing the requirements

into lower levels of abstraction and finding functional elements to satisfy the

requirements. Finally, all functional elements are synthesized to verify their

appropriateness. On the other hand, the bottom-up process uses a synthesis to create the

system. However, it is unlikely that the functional need is met on the first attempt.

Therefore, after measuring the product's performance and its deviation from the

requirement, the system elements and their combination are altered for another solution.
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Therefore, the design process is iterative and the number of design iterations greatly

depends on designer's knowledge, creativity, and experience as well as the complexity of

the products [Blanchard and Fabrycky 1998].

The benefits of the top-down approach are many-folds. First, the general application of

the framework is possible since the beginning of the top-down approach involves the

general requirements of the system. Second, all functional requirements are satisfied by

the inherent virtue of design process. Furthermore, a small number of functional elements

can represent a series of different physical implementations. However, the feasibility of

physical realization is not assured with the top-down approach. Contrastingly, the

bottom-up approach ensures the physical realization of design solutions, but the

satisfaction of the functional requirements is not guaranteed.

For further discussion on the top-down and bottom-up design approach, please refer to

[Blanchard and Fabrycky 1998].

6.7 Chapter Summary

In this chapter, the Manufacturing System Design Decomposition (MSDD) is presented

and the rationale behind the decomposition is explained in detail. In addition, a brief

introduction of the Axiomatic Design theory is provided since it constitutes a basis of the

MSDD development.

The decomposition process of the MSDD starts from the high level business objective of

increasing long term return on investment (ROI) and ends with six distinctive branches of

quality, identifying and resolving problems, predictable output, delay reduction,

operational cost reduction, and investment. Except the investment branch, other branches

are further decomposed into specific objectives and corresponding means to achieve

them. The decomposition process ends at the level that is specific enough to be applied to

manufacturing system design process while keeping general applicability to repetitive,

high-volume manufacturing systems.

In addition, empirical and theoretical evidences that support basic ideas of the MSDD are

provided. With the help of the well-defined decomposition processes of the Axiomatic

Design theory, the MSDD is the result of logical decomposition processes of a business
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objective based on the knowledge of world-class manufacturing system designs.

Therefore, it is natural to see that many authors and practices have similar ideas with

those of the MSDD.
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7 A METHODOLOGY TO INTEGRATE PRODUCT

DEVELOPMENT AND MANUFACTURING SYSTEM

DESIGN

7.1 Introduction

The objective of this thesis is to develop a methodology that can be applied to see the

effects of product development decisions on manufacturing systems. This methodology

will serve for the integration of product development decisions with manufacturing

system design decisions by providing a way to see the interactions.

The Oxford Dictionary [1992] defines a methodology as the 'study of systematic methods

of scientific research,' used in a particular branch of activity. Tate [1999] distinguishes a

methodology from a technique and a philosophy. According to him, strictly speaking, a

methodology may lack the precision of a technique, but is a better guide to an action than

a philosophy. Whereas a technique enlightens the user how to do something and a

philosophy indicates what needs to be done, the methodology contains elements of

principles related to both the how and the what. A methodology is, therefore, an explicit

way of structuring one's thinking and actions, and showing what steps to take, how those

steps are performed, and why those steps should be followed in the suggested order. A

methodology may not offer solutions for specific problems, but it can provide a method

of assessing the likelihood of success in order to allow an informed decision to be made

[Tate 1999].

Therefore, the approach proposed in this thesis is going to be called as a methodology

since it provides a way of structuring thinking and steps to enable educated decisions to

be made.

7.2 Background Ideas

In this section, the background ideas of the proposed methodology are explained in detail.

The methodology proposed in this thesis is provided in section 7.3. This section describes
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the ideas behind the proposed answers to the first three sub-problems presented in section

3.4.2. The three subproblems are:

1) How can we represent the logic of manufacturing system design?

2) How can we represent product development?

3) What decisions in product development (especially related to product/process design)

affect manufacturing system design?

In addition to the background ideas used to find the proposed answers to the above sub-

problems, the basic assumptions made and the scope of the proposed methodology are

provided.

7.2.1 MSDD Development

The first sub-problem is how to represent manufacturing system design. Since the main

objective of the research is to develop a methodology to capture the interactions between

product development decisions and manufacturing system design, it is important to

systematically represent manufacturing system design. The systematic representation of

manufacturing system design enables a clear definition of the interface between product

design and manufacturing system design. For this purpose, the manufacturing system

design decomposition (MSDD) is applied. As is explained in Chapter 4, the MSDD is a

systematic representation of manufacturing system design that clearly separates the

objectives of manufacturing systems from the means to achieve the objectives. The

development of the MSDD is explained in detail in Chapter 4.

The MSDD presents effectively the interrelationships between the different elements of a

system design in different system design hierarchies by adopting the Axiomatic Design

methodology. Some other models of manufacturing system design (see Figure 7-1, 7-2,

and 7-3 for some examples of them) may be used instead of the MSDD, but the MSDD

has several advantages over the other representations.
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First, as is previously discussed in Chapter 4, the MSDD provides a clear separation

between the objectives and the means of achievement, which makes it easier to see how a

product decision affects the achievement of the goals of a manufacturing system. In

addition, the MSDD presents the 'decoupled' interrelationships between the system

activities in a hierarchy. Even though the MSDD assumes an ideal case, these decoupled

interrelationships among the system design elements can provide an ideal sequence of

implementation among different system design elements (see Chapter 4 or [Suh 1990] for

detailed discussion on decoupling and sequence of implementation).

Moreover, the MSDD is developed to be general enough to be applicable to repetitive

and discrete part manufacturing systems in a wide range of industries. Therefore, a
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methodology that is developed around the MSDD is applicable in a wide range of

industries of repetitive and discrete part manufacturing.

More importantly, the MSDD has been validated through the successful applications on

equipment design [Arinez 2000], and performance measurement and manufacturing

strategy [Duda 2000]. In addition, Linck [2001] attempts to validate several premises and

propositions of the MSDD using a questionnaire approach based on the MSDD.

Considering these advantages of the MSDD over other representations, it seems to be

appropriate to use the MSDD to represent the manufacturing system design. Therefore,

the MSDD is adopted in this thesis in order to represent the manufacturing system design.

Some arguments on the validity of the MSDD may be possible, but strictly proving the

validity of the MSDD is out of scope of this thesis. This thesis is going to accept the

MSDD as it is and assume that the MSDD is a valid representation of manufacturing

system design. The main aim of the thesis is to develop a methodology to see the

interactions between manufacturing system design and product development and a

successful development of the methodology will indirectly contribute to the validation of

the MSDD.

There is one thing, however, that should be kept in mind with the use of the MSDD. One

basic assumption made with the adoption of the MSDD is that "lean" manufacturing is

the most appropriate manufacturing system design that serves best to satisfy the

requirements of contemporary customers. The MSDD has been developed keeping "lean"

manufacturing principles in mind and thus, reflects the principles of "lean"

manufacturing in many ways. Therefore, it may be argued that the proposed methodology

may not be applicable to a manufacturing system that is not designed to achieve the FRs

provided by the MSDD.

However, the MSDD starts by describing the general requirements for manufacturing

systems and develops by decomposing the requirements into sub-level requirements

while finding an adequate solution to each requirement. The general requirements in the

higher levels (quality, delivery, operating cost, and investment) of the MSDD are

believed to be generally applicable to many manufacturing systems. Therefore, even the

enterprises with manufacturing systems designed with different FRs (i.e., mass
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manufacturing) should be able to get benefits from applying the proposed methodology

as an ideal case. These enterprises may have to adopt the proposed methodology while

trying to improve their manufacturing systems to follow the principles provided by the

MSDD.

There are some cases that the MSDD may not be applicable and need to be modified. In

the case that new FRs are requested from customers that add or modify the FRs stated in

the MSDD, the MSDD itself may need to be modified to accommodate the changes in its

FRs. In addition, the MSDD may need to be changed when new solutions (DPs) for the

requirements (FRs) are found. However, within this thesis, the MSDD is accepted as it is

since there is no evidence of new FRs or DPs that are generally accepted as replacing the

current FRs and DPs of the MSDD.

7.2.2 Product/Process Design Representation

The second sub-problem is how to represent product development. In fact, product

development refers to many activities beginning with recognizing market opportunities

and ending with delivery of a product. Therefore, strictly speaking, the aim of the

proposed methodology that will be described in section 7.3 is to provide a way to see the

interactions between the activities of product design and process design, and

manufacturing system design. Therefore, the scope of the proposed methodology

excludes such areas of product development as marketing, customer relations, and

distribution. The proposed methodology of this thesis focuses on the interactions between

product/process design decisions and manufacturing system design. In addition,

considering the main aim of the proposed methodology, it is important not to model the

entire product/process design procedures but to find out the general elements of

product/process design that significantly interacts with manufacturing systems.

Several models of product development are reviewed to see if they are appropriate to

achieve the main objective of the research: to see the interactions between manufacturing

systems and product/process design. Process oriented approaches are introduced in

section 7.2.2.1 and decomposition based approaches are reviewed in section 7.2.2.2.
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7.2.2.1 Process oriented approaches

Process oriented approaches model product development procedures. In general, they

provide sequenced steps of product development and activities to be done at each step.

For example, Ulrich and Eppinger [2000] model the product development process in six

phases as is shown in Figure 7-4.

Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Planning -b Concept System-level -,DetailDesign-b Testing and - Production
Development Design Refinement Ramp-up

FIGURE 7-4. THE PRODUCT DEVELOPMENT PROCESS [ULRICH AND EPPINGER 2000]

Each phase comprises of a series of activities and feedback processes. For instance,

Ulrich and Eppinger [2000] present the front-end activities comprising the concept

development phase (see Figure 7-5).

Mission Development
statement Identify Establish Generate Select Testpoduct set fal PapL

custorer -10 target -- product - product -0. cp~s pcfiain downstream
needs specifications conceps concept(s) neis ecfcfos devlopnrnt

PerfenaEonodeAnlyska

BeaehmrkCisnpetitre Produets

Baldtswd Test Medea aand h-ototypEs

FIGURE 7-5. THE FRONT-END ACTIVITIES COMPRISING THE CONCEPT DEVELOPMENT
PHASE [ULRICH AND EPPINGER 2000].

The process oriented approaches may differ from each other in terms of details provided

in the description of product development steps or terminologies used. However, from the

perspective that they propose the steps to take for product development and provide

rationale behind the propositions, the process oriented approaches are very similar. It is

evident when the procedures proposed by Phal and Beitz [1996] (Figure 7-6) after

consulting VDI (Verein Deutscher Ingenieure) guidelines are compared to those of Ulrich

and Eppinger [2000] (Figure 7-4 and 7-5). Except the terms used in a different way, the

basic procedures proposed by both approaches are very similar.
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(CTask: Market, company, economy

Plan and clarify the task:
Analyze the market and the company situation

Find and select product ideas
Formulate a product proposal

Clarity the task
Elaborate a requirements list

Requirements list (Design specification)

Develop the principle solution:
Identify essential problems

Establish function structures
Search for working principles and working structures

Combine and firm up into concept variants
Evaluate against technical and economic criteria

Concept (Principle Solution)

Develop the construction structure:
Preliminary form design, material selection and calculation

Select best preliminary layouts
Refine and improve layouts

Evaluate against technical and economic criteria

Preliminary layout

Definitive layout

Prepare production and operating documents:
Elaborate detail drawings and parts lists

Complete production, assembly, transport, and operating instructions
Check all documents

Product documentation

Solution

FIGURE 7-6. STEPS OF THE PLANNING AND DESIGN PROCESS (ADOPTED FROM PHAL AND
BEITZ [1996])
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These approaches, however, do not show what functional department should be involved

with each step. In other words, organizational issues are excluded in the presentation of

the product development procedures. Therefore, Ulrich and Eppinger [2000], and

Wheelwright and Clark [1992], add organizational information to the procedural models.

They are shown in Table 7-1 and 7-2 respectively. The diagrams shown in Table 7-1 and

7-2 include general activities to be taken by each functional department during each

phase of product development.

TABLE 7-1. THE GENERIC PRODUCT DEVELOPMENT PROCESS (ADAPTED FROM [ULRICH
AND EPPINGER 2000]).

Planning Concept System-level Detail desgn Testing and Production

development design refinement ramp-up

Marketing * Collect customer * Develop plan * Develop * Develop * Place early

" Articulate market needs. for product marketing plan. promotion and production

opportunity. * Identify lead options and launch materials. with key

usersextended 0Facilitate field customers.

" Define market u product family. testing.
segments. * Identify

competitive
products.

Design * Investigate * Generate 9 Define part * Reliability testing. * Evaluate

" Consider product feasibility of alternative geometry. * Life testing early

platform and product concepts. product a Choose materials. production

architecture. 9 Develop architectures. a Performance output

industrial design * Define major e Assign tolerances. testing.

technologies. concepts. sub-systems 9 Complete 9 Obtain regulatory
s Build and test and interfaces. industrial design approvals.

experimental * Refine co na . 0 Implement design
prototypes. industrial documentation. changes.

design.

Manufacturing e Estimate a Identify a Define piece-part e Facilitate supplier * Begin

" Identify manufacturing suppliers for production ramp-up. operation

production cost. key processes. * Refine fabrication of entire

constraints. 9 Assess components. e Design tooling. and assembly production

" Set supply chain production * Perform make- e Define quality processes. system.

strategy.fassurance o Train work force.
a Define final processes. e Refine quality

assembly 9 Begin assurance
scheme. procurement of processes.

long-lead tooling.

Other functions

* Research: 9 Finance: * Finance: * Sales: Develop

Demonstrate Facilitate Facilitate make- sales plan.

available economic buy analysis.

technologies. analysis. * Service:

" Finance: Provide * Legal: Identify service
planning goals. Investigate patent issues.

" General issues.

Management:
Allocate project
resources.
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TABLE 7-2. FUNCTIONAL ACTIVITIES UNDER CROSS-FUNCTIONAL INTEGRATION
(ADAPTED FROM [WHEELWRIGHT AND CLARK 1992])

Phases of Development

Functional Detailed design and
activities Concept Product development Commercial Market

development planning preparation introduction
Phase I Phase II

Engineering Choose Do detailed
Propose new components design of product Refine details
technologies; and interact and interact with of product
develop product with suppliers; process; build design; Evaluate and Evaluate field
ideas; build build early full-scale participate in test pilot units; experience with
models; system prototypes; building solve problems product
codut rootpe-, conduct second-phase
simulations define product prototype testing prototypes

architecture

Marketing Define target Conduct

customer's second-phase Prepare for

Provide market- parameters; Conduct customer market rollout;
Prsedinpuat-; paradeve ; usomertestsof tests evaluate train sales force Fill distribution

prototypes; and field channels; sell
propose and estimates of prototypes; plan service and promote;
investigate sales and participate in marketing personnel; inter;t with
product margins; prototyping mretg pronl neatwt

concepts conduct early evaluation rollout; prepare order key customers

interaction with establish entry/process

customers distribution system
plan

Manufac- Do detailed Test and try Build pilot units
Develop cost design of out tooling & in commercial
estimates; process; design equipment; Process; refine Ramp up plant

Process and define process and develop build second- process based to volume
investigate architecture; tooling and phase on pilot targets; meet

process conduct process equipment prototypes; .etargets for
concepts simulation; eqiipaen installtrxperone quality, yield,

validatebuilding full- equipment and train personnel and cost

suppier buldig fll- bring up new and verifysuppliers scale prototypes pringupes supply channel

procedures

As is previously explained, it is important to find the elements of product/process design

that affect manufacturing systems. Therefore, among the described steps and activities of

these approaches, those that are related to manufacturing systems are identified. The

identified steps and activities are summarized in Table 7-3. As for the procedural

approach, the procedures proposed by Phal and Beitz [1996] are used. Among the

procedural approaches with organizational consideration, the sequenced activities

proposed by Wheelwright and Clark [1992], and Ulrich and Eppinger [2000] are

investigated. Investigating representative models should be enough since process oriented

approaches propose more or less similar product development procedures as is discussed

earlier.

Yong-Suk Kim 209



II

TABLE 7-3. ACTIVITIES / STEPS OF PRODUCT / PROCESS DESIGN THAT MAY AFFECT
MANUFACTURING SYSTEMS

Phal and Beitz Wheelwright and Ulrich and Eppinger
[1996] Clark [1992] [2000]

. Find and select product o Product platform and
ideas architecture

Planning o Identify production
constraints

. Set supply chain strategy

. Evaluate the concept . Investigate process o Assess production
against technical criteria concepts feasibility

* Develop the construction e Choose components and o Generate alternative
structure interact with suppliers product architectures

o Material selection . Define product & Define major sub-

. Prepare preliminary parts architectures systems and interfaces.

System level design list and production and . Define process . Identify suppliers for key
assembly documents architecture components

. Validate suppliers o Make-buy analysis

* Define final assembly
scheme

9 Elaborate detail drawings . Detailed design of o Choose materials
and parts lists process * Assign tolerances

Detail design . Complete production, 9 Design and develop o Define piece part
assembly, transport, and tooling and equipment production processes
operating instructions

I Design tooling

7.2.2.2 Decomposition oriented approaches

Stimulated by the successful application of the MSDD in manufacturing system design,

several attempts have been made to approach product development in the same way.

These approaches are characterized by the development of a decomposition of product

development and thus, can be called as decomposition oriented approaches.

Decomposition oriented approaches aim to develop a MSDD for product development so

that the benefits that the MSDD provides in manufacturing system design can be

achieved in product development. Researchers such as Bocanegra [2001], Lenz and

Cochran [2000], and Dobbs [2001] propose Product Development Design Decomposition

(PD3 ), Product Development System Design Decomposition (PDSDD), and Aerospace

Manufacturing System Design Decomposition (AMSDD).
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The PD3 was developed to provide a standard way to develop products throughout an

enterprise, emphasizing the importance of communication between product design and

manufacturing [Bocanegra 2001] (see Figure 7-7 and Appendix B). Since the PD3

developed for an aerospace company, it contains FRs and DPs specific to the need of

aerospace industry. For example, to avoid risk associated with misunderstanding baseline

requirements (FR-U 11), the contract is studied and understood (DP-U11). The contract

with the government is a typical starting point in the development of military aircraft.

NGC/ MIT - PD 3 Product Development Design
Decomposition (PD3)

NGC/MT-PD Prouct DvelomentDesig......-....,

~ lii...........

Quality: Satisfy End-user's Quality: Satisfy Schedule: Cost Reduction: Continuous
Requirements Manufacturing Eliminate Delays, Direct and Improvement:

Requirements Reduce Inventory Indirect Labor Process
(Producible Design) improvement

Initiatives

FIGURE 7-7. PRODUCT DEVELOPMENT DESIGN DECOMPOSITION (PD3 ) [BOCANEGRA 2001]

The PD3 has five high-level functional requirements (FRs). They are:

FRO11: Design a functional product that satisfies the external customer requirement,

FRO12: Design a producible product that satisfies the internal customer requirements,

FRO13: Reduce the overall product design and process definition time,

FRO14: Ensure product is profitable, and

FRO15: Ensure continuous improvement.

These FRs of the PD3 use an analogy to the FRs of the MSDD. For example, FR01 1 and

FR0l2 are considered as 'quality' branches that address the issues of satisfying internal
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(manufacturing) and external (government) customer requirements. FRO13 is considered

as 'schedule' branch, which is about eliminating delays and reducing inventory. Then,

"cost reduction by efficiently utilizing direct and indirect labor" (FRO 14) and "continuous

improvement" (FRO 15) follow.

In the context of the aim of this thesis, it is noteworthy that the PD3 has a branch of

satisfying internal customer requirements, which are manufacturing requirements. In this

branch, Bocanegra decomposes FRO13 into three sub-FRs of:

FR-El: Understand and document manufacturing processes and process capabilities,

FR-E2: Design product for optimized manufacturing processes and within process

capabilities, and

FR-E3: Validate producibility.

The corresponding solutions (DPs) for these requirements are:

DP-El: Process to identify and document process capabilities,

DP-E2: Process to ensure design for assembly and design for manufacturing

(DFA/DFM), and

DP-E3: Compile and document producibility validation and testing.

Then, FR-E2 and DP-E2 are further decomposed into lower levels to elaborate the

elements of existing DFM/DFA approaches. In addition to these FR-DP pairs, some other

DPs in quality branch of satisfying end-user's requirements affect the FRs in this

manufacturable product design branch. Table 7-4 lists the FR-DP pairs that are linked to

manufacturing system design issues.

The producible product design branch, however, has a limited scope to overlook

manufacturing system issues, while the traditional DFMA knowledge is extensively

reflected. For example, it does not address the impact of product design on setup

changeover, which is an important issue in many manufacturing systems. In addition, the

decomposition of the producible product design branch is not collectively exhaustive so

that there are some factors that are not considered in the decomposition. For example,

product architecture design is not addressed even though it can affect the

Yong-Suk Kim 212



manufacturability of a product design. Furthermore, a very complex nature of

dependencies between detailed product design, material selection, and process selection

is not clearly addressed in detail but simplified.

TABLE 7-4. A LIST OF THE FR-DP PAIRS IN THE PD3 THAT AFFECT MANUFACTURING
SYSTEM DESIGN.

FR DP

U21 Statement of work allocated to sub-teams Closed loop requirement flow-down
according to their core competencies process/matrix

U2 Assure needed resources in the design process Organize team and supply tools as required
are available

U23 Design to allocated requirements Detailed design process

U31 Design data validated Receive data from as-designed and
producibility plan validations

U32 Part(s) and/or sub-assembly(ies) validated Perform validation of actual part(s) and/or sub-
assembly(ies)

El Understand and document manufacturing Process to identify and document process
processes and process capabilities capabilities

E21 Optimize assembly and sub-assembly plan Apply optimum assembly and sub-assembly
capabilities

E22 Optimize details for assembly and sub- Integrate DFA/DFM techniques to the details of
assemblies assembly and sub-assemblies

E23 Specify the best components and materials Make or buy process

E3 Validate producibility Compile and document producibiity validation
and testing

T31 Improve communication among customer, Environment that fosters open communication
team members, and suppliers

K1 Ensure useful knowledge is identified, Northrop-Grumman's knowledge management
captured, and organized accurately initiative

K(2 Allow sharing, adoption, and utilization of Easy to access and user-friendly database
knowledge

The PDSDD is developed by Lenz and Cochran [2000] and focuses on the product

development system design (see Figure 7-8 and Appendix C). Starting from the highest

level FR-A, "define and design a manufacturable product," the PDSDD focuses on the

integration of product development activities. The PDSDD aims to facilitate the general

design process of a product development system (or product development organization)

and elaborate environment-neutral design issues [Lenz 1999]. The PDSDD is comprised
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of four major branches: total product quality, development lead time, development

operating cost, and development investment. This structure is exactly same as that of the

MSDD since the PDSDD is developed using the analogy with the MSDD. For example,

in the PDSDD, information flows between functional parties of product development are

viewed as material flows between machines of a manufacturing system.

Total Product Development Operating Cost

- - - Investment

External = = - -Task Simuitaneous
Integration ~- _-tSpCouprng Design Task

...te......nal... ........ Configuration. .

....t...Inailn

Integration

FIGURE 7-8. PRODUCT DEVELOPMENT SYSTEM DESIGN DECOMPOSITION [LENZ AND
COCHRAN 2000]

In the total quality branch of the PDSDD, FR 11 (maximize total product quality) is

satisfied by DP111 (highly coordinated process arrangement). The term, 'coordinated,'

characterizes the extent of the alignment and adjustment of organizational activities. Lenz

and Cochran [2000] claim that in product development, quality is obtained when all

discrete design processes incorporate the restrictions that limit their scope. Therefore,

from their perspective, quality can be assured by 'coordinating' the product development

processes (or activities). Lenz and Cochran further distinguish external integration from

internal integration. External integration refers to the alignment of the internal design

process with external requirements and restrictions. Internal integration indicates the

integration within the product development system. For example, product design meets

the constraints of the manufacturing system. To ensure the internal integration, Lenz and

Cochran [2000] stress information flow coordination, engineers' knowledge, and the
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alignment of development activities. The integration through information flow

coordination is important, but it does not provide what kind of impact product design

endows on manufacturing systems. In other words, the content of the information flows

that need to be coordinated is not discussed in the PDSDD while the coordination of

information flows is suggested as a solution for the internal integration. The content of

the information flow is provided by the engineers' knowledge and documentation of

former projects (FR-Il l) instead of a systematic framework.

Product development lead time is minimized (FRI 12) by highly overlapping product

development processes (DP112) through uncoupling coupled tasks (FR-L1) and

encouraging simultaneous execution of product development activities (FR-L2). Product

development operating cost is minimized (FR12) by efficiently using direct (FR/DP121)

and indirect labor (FR/DP122). Investment efficiency (FR13) is guaranteed by flexible

(FR-DP 13 11) and highly utilized development resources (FR-DP 1312).

As discussed previously, the PDSDD is strong at presenting the coordination of the

product development activities but is weak to reveal what interactions exist between

product development decisions and manufacturing systems. A list of the FR-DP pairs that

affect manufacturing system design is shown in Table 7-5.
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TABLE 7-5. A LIST OF THE FR-DP PAIRS IN THE PDSDD THAT AFFECT MANUFACTURING
SYSTEM DESIGN.

FR DP

Eli Ensure the exchange of the coordination Information exchange mechanism
dependent information

111 Install the skills and knowledge required to Well selected work force
execute the design process

1112 Improve the skills and knowledge of the Training program, knowledge data bases,
designers and engineers functional expertise gathering

Ensure the documentation and storage of the Work-flow integrated documentation system
1121 information and general databases (CAX-applications)

1122 Ensure the accessibility to the required Open-access information system, physically
information and/or virtually collocated workforce

.dtStandardized information distribution
1123 Ensure the disiribution of the information mechanisms.

1135 Align by mutual adjustment Design decision process

L13 Ensure upstream-downstream and downstream- Bi-directional information flow setup (feedback
upstream information flow system)

D11 Enable a broad applicableness of designers and Cross functional training and job rotation
engineers

Provide the designers and engineers with Continuously updated product plan
D22 sufficient information of the design task specifications

objective and content

The AMSDD extends the MSDD into the product design area. The AMSDD adds an

additional branch of product design to the MSDD, while some of the MSDD branches are

modified to be applicable in aerospace industry, which is characterized by a small total

production volume rather than repetitive mass production. The schematic view of the

AMSDD is provided in Figure 7-9 and the AMSDD itself is presented in Appendix D.
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Continuous Cost
Improvement Reduction

Pru Identifying & dProduct ~ResolvngPrdcalDey
Desin Qaity Output Reduction

FIGURE 7-9. A SCHEMATIC VIEW OF THE AMSDD [DOBBS 2001]

The product design branch of the AMSDD discusses product design issues that affect

manufacturing system design while avoiding the decomposition of whole product design,

which is out of the scope of the AMSDD research [Dobbs 2001]. A list of the FR-DP

pairs that interact with manufacturing system design is provided in Table 7-6. In the

product design branch, FR-D1 (design products that can be manufactured) is satisfied by

DP-D1 (integrated product and manufacturing system design), and then further

decomposed into FR-Dl1 (design stable processes) and FR-D12 (design products for

defect-free fabrication and assembly). These two sublevel FRs are satisfied by DP-D1 1

(equipment and part feature selection) and DP-D12 (product designs facilitate use of

mistake proofing devices), respectively. Further decomposition of this branch is available

in Appendix C. In addition, FR-D4 (design products the customer can afford) branch also

describes some popular ways of decreasing manufacturing burdens by designing

standardized parts, using commodity raw materials and off-the-shelf parts, and using

simple processes. However, the product design branch of the AMSDD shows weaknesses

such as not providing rich content of the interactions between manufacturing system

design and product design. This branch shows only nine leaf FR-DP pairs and does not

provide further insights on the manufacturing-product design interactions than existing

approaches such as using commodity parts and design standardization.
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TABLE 7-6. A LIST OF THE FR-DP PAIRS IN THE PRODUCT DESIGN BRANCH OF THE AMSDD
THAT AFFECT MANUFACTURING SYSTEM DESIGN.

FR DP

Dill Design equipment for high process yield Selection / development of manufacturing
processes

D112 Design products for high process yield Specification of tolerances that can be achieved

D12 Design products for defect-free fabrication and Product designs facilitate use of mistake
assembly proofing devices

D3 Accommodate future changes in product desin Standard method to incorporate new features
3 egninto design

D41 Reduce processing requirements Standardized part designs

Preferential use of 'off the shelf parts and
D42 Specify affordable components and materials commodity raw materials

D431 Reduce processing complexity Parts designed to minimize processing
requirements

D432 Reduce cost of processing equipment Simple processing equipment

In this section, three decomposition approaches to represent product development are

reviewed. It is noteworthy that all three approaches stress the importance of designing

producible or manufacturable products while failing to propose a method to see the

interactions between product design and manufacturing system design. Adopting the

insights provided by existing approaches such as design standardization to design a

manufacturable product can be a good starting point. However, those insights usually see

a facet of the interactions between manufacturing system design and product design.

Therefore, in order to capture the manufacturing-product development interactions from a

system perspective, a new methodology is necessary.

7.2.2.3 Representation of product development decisions

As is previously claimed, considering the main aim of the proposed methodology, it is

important not to model the entire product/process design procedures but to find out the

general elements of product/process design that significantly interacts with

manufacturing systems.

One of the reasons to take this approach is practical difficulty to model the product

design and process design. For example, product design and process design to physically
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realize the product design are very case-specific. Different product and process designs

are prepared for different products. Therefore, in order to make the methodology

generally applicable, general elements of product and process design need to be

extracted. In other words, instead of trying to find out the impact of the decision of the

wire diameter of a clip on clip manufacturing systems, it is more beneficial to think about

the impact of detail design on manufacturing systems in order to make the proposed

method be generally applicable to wide variety of products.

Before trying to figure out what elements of product/process design significantly affect

manufacturing systems, it should be first considered when manufacturing issues arise

during product design. As is defined in Chapter 3, product design itself is nothing but a

planning of a product. Product design itself is not physical but conceptual. Therefore, a

product design should be physically realized. When the physical realization does matter,

manufacturing issues arise and thus, manufacturing system issues arise. However, it is

difficult to clearly separate the product design phase and the physical realization phase

since many aspects of product design in various levels of details are related to its physical

realization. For example, product architecture determines the physical structure of a

product, which is closely related to manufacturing systems. Detailed design also affects

manufacturability of a product, which is directly related to manufacturing systems. Some

of the researchers in product design theory area already addressed this issue. For

example, in his Axiomatic Design, Suh [1990] claims that the design should be done by

the zigzagging between three design domains of functional, physical, and process. Phal

and Beitz [1994] describes "embodiment phase" of product design process as is presented

in Figure 7-6. Both approaches reveal that a product cannot be designed in detail unless

high level physical realization planning (e.g., material selection, principle process

selection) is not made.

Having in mind that manufacturing system issues arise because of physical realization of

product design, a thorough review is given to the elements of product/process design that

affect manufacturing systems, which are presented in Table 7-3, 7-4, 7-5, and 7-6. The

can be categorized into six different groups: 1) product variety (PV), 2) product

architecture (PA), 3) purchasing decision (P), 4) material selection (MS), 5) process
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selection (PS), and 6) detailed design (DD). The summary of the categorization of those

elements is presented in Table 7-7.

TABLE 7-7. THE CATEGORIZATION OF PRODUCT/PROCESS DESIGN ACTIVITIES THAT
AFFECT MANUFACTURING SYSTEMS.

I 7 I

Phal and Beitz
Wheelwright

and Clark
Ulrich and
Eppinger

PD 3

* product ideas e product platform

. develop the * define product * product architecture
construction architecture . generate alternative

PA structure.0 choose product architecture
" prepare preliminary components e define major sub-

part list systems and interfaces

. interact with 9 supply chain strategy * E23
suppliers * identify suppliers for

. validate suppliers key components

* make-buy analysis

MS e material selection * choose materials

. prepare production e define process . final assembly scheme * El,

& assembly architecture E21,
documents .* define piece part E22

Sinvestigate production processes
PS process concepts . design tooling

. design & develop
tooling &
equipment

e detail drawings * assign tolerances * U23,
DD U31

PDSDD AMSDD
.................... -......

......... - -........................................................ ............................................................................................I.....................,-.-..-..--.-......::.,:::::::::::::::::::::: a.... D41........................ ............................................................................................................................................................. - D42.... ............................................................................................................... D3 D41... ... ...............................
..................... ..........D42............................ ......

" D42

" DIll,
D431,
D432

" D112,
D12,
D431

In the categorization presented in Table 7-7, the elements address the issues of

organization, knowledge management, and communication are excluded since they are

not directly related to product/process design. All elements of the PDSDD are about the

free exchange of information through enhanced communication and thus, are excluded

from Table 7-7. In addition, the elements that address the issue of validation of product

design in general are excluded. They do not provide any useful information how to

validate product designs. Furthermore, the elements that describe the manufacturing

system design such as equipment design, part transportation, and operating instruction
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documentation are excluded. The scope of the research is limited to product/process

design phases during product development.

7.2.3 How to See the Interactions

The interactions between manufacturing system design and six categories of

product/process design can be captured by reviewing each category against the FRs and

DPs of the MSDD. For example, the product variety decisions can be reviewed from the

perspectives of each FR-QI111 and DP-Q 111 of the MSDD. FR-QI111 states to "ensure

operator has knowledge of required tasks" and this is achieved by DP-Q11 "training

program." Product variety decisions can affect the achievement of FR-Q 111 by changing

the amount of knowledge of required tasks for operators. Therefore, when a product

variety decision is made, its on required operator knowledge should be reviewed and

considered for a better manufacturing system design. This reviewing process can be

repeated to the other FRs and DPs of the MSDD so that a complete map of the

interactions of each category with the FRs and DPs of the MSDD can be developed.

The reason why both the FRs and DPs of the MSDD are considered in the reviewing

process is that the DPs stated in the MSDD are believed to be a reasonable way to satisfy

the FRs. Therefore, it is believed to be beneficial to check if product/process design

decisions are appropriate from the suggested DPs point of view. In addition, the

decomposition itself cannot be completed without specifying the DPs and thus, it is

necessary to include DPs in the reviewing process.

The results of the reviewing process for the six categories of product/process design are

presented in the next section. In the reviewing process, all leaf FRs and DPs of the

MSDD are primarily considered. However, since the MSDD assumes given product

design and process design, high level FRs and DPs are considered whenever necessary to

reflect product/process design issues.

7.2.3.1 Product variety

Product variety significantly affects manufacturing systems in various ways. It is directly

related to the required flexibility of the manufacturing system, which is closely linked to

Yong-Suk Kim 221



III

operating costs and investment. The FRs and DPs of the MSDD that can be affected by

product variety decisions are shown in Figure 7-10 as black boxes.

Identifying & Predictable
Resolving Output
Problems

Operating Invest
Cost -ment

FIGURE 7-10. THE FRS AND DPS OF THE MSDD THAT CAN BE AFFECTED BY A PRODUCT
VARIETY DECISION

As is indicated in Figure 7-10, product variety decisions heavily affect quality,

identifying and resolving problems, and delay reduction branches. Predictable output and

operating cost branches are also affected by product variety decisions along with the

investment branch. Detailed explanations of the impact of product variety decisions on

the FRs and DPs of the MSDD are provided in the following sections.

7.2.3.1.1 Quality Branch

In the quality branch of the MSDD, product variety decisions are related to seven FR-DP

pairs out of nine leaf FR-DP pairs and one higher level FR-DP pair. The list of the FR-DP

pairs that are affected by product variety decisions is provided in Table 7-8.
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TABLE 7-8. LIST OF THE FR-DP PAIRS IN THE QUALITY BRANCH OF THE MSDD THAT ARE
AFFECTED BY PRODUCT VARIETY DECISIONS.

FR DP

Qill Ensure that operator has knowledge of Training programQ11required tasks Tann rga

Q112 Ensure that operator consistently performs Standard work methodtasks correctly

Q4 13 Ensure that operator human errors do not Mistake proof operations (poka-yoke)
translate to defects

Q12 Eliminate machine assignable causes Failure mode and effects analysis

Q13 Eliminate method assignable causes Process plan design

Q14 Eliminate material assignable causes Supplier quality program

Q32 Reduce impact of input noise on process Robust process design

III Manufacture products to target design Production processes with minimal variation
specifications from the target

A product variety decision can affect the achievement of FR-Ql11l by changing the

required tasks for operators. For example, a wider product variety may increase the

amount of operator knowledge required to perform his/her tasks by increasing required

tasks. In a similar way, FR-Q112 and DP-Q112 may be affected by a product variety

decision. Increased level of product variety may require changes in the standard work

method in use or deteriorate consistent operator performance by confusing them with

increased work tasks. FR-Q 113 and DP-Q 113 can be also affected by a product variety

decision. Increased product variety can increase operator human errors that should not be

transferred to defects. The mistake proof devices used in the manufacturing system may

need to be modified according to the given product variety while the level of product

variety in a production line may need to be adjusted to avoid too many mistakes from the

operators.

Increased product variety may also require a higher level of flexibility from the existing

equipment (e.g., machine, fixture, tools). Otherwise, the equipment would not be able to

produce parts according to the design specification, which can be interpreted as machine

assignable causes of quality problems (FR-Q12). In the same way, increased product

variety may require a higher level of flexibility from the production method in use. A

Yong-Suk Kim 223



II

careful study on the capability of the applied production method should be conducted to

understand the possible limitation in the capability of the production method. In addition,

the quality of incoming materials should be good enough to satisfy various processing

requirements caused by product variety in order to eliminate material assignable causes

(FR-Q4). Likewise, it is important to make different processes robust to input noises for

all types of products within a product family (FR-Q32).

FR- 11 describes that products should be manufactured to target design specifications.

Similar levels of tolerances can be given to the products within a product family in order

to avoid the possible manufacturing complexity associated.

The summary of the interactions described in this section is recorded in the second round

questionnaire that will be explained in Chapter 9. Even though the questionnaire is

developed to evaluate the existing interfaces between product/process design and

manufacturing system design, it can also serve as a quick reference on the forms of

interactions.

7.2.3.1.2 Identifying and Resolving Problems Branch

In the identifying and resolving problems branch of the MSDD, product variety decisions

are related to four FR-DP pairs out of seven leaf FR-DP pairs. The list of the FR-DP pairs

that are affected by product variety decisions is provided in Table 7-9.

FR-R112 and DP-R112 state to identify where disruptions occur through simplified

material flow paths. Since product variety decisions can significantly alter the material

flow paths in a manufacturing system, this FR-DP pair is affected by product variety

decisions. Simple material flow paths should be maintained for quick problem

identification and resolution in manufacturing systems and thus, the product variety

decision should be made after considering the capacity, capability, and material flow

paths of a selected production site. In addition, product variety may affect the form of

disruptions at sub-systems (FR-R113). Possible disruptions that can be caused by

increased product variety may be studied to keep the capability of quick response to the

problems.
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TABLE 7-9. LIST OF THE FR-DP PAIRS IN IDENTIFYING AND RESOLVING PROBLEMS
BRANCH OF THE MSDD THAT ARE AFFECTED BY PRODUCT VARIETY DECISIONS.

FR DP

R112 Identify disruptions where they occur Simplified material flow paths

R113 Identify what the disruption is Feedback of sub-system state

R121 Identify correct support resources Specified support resources for each failure
mode

R13 Solve problems iediately Standard method to identify and eliminate
root cause

FR-R121 indicates to identify correct support resources by specified support resources

for each failure mode (DP-R121). Increased product variety may require additional

support personnel to support the failures caused by product variety and it is necessary to

specify support personnel for product variety related problems.

FR-R13 is to solve problems immediately and DP-R13 states to achieve it through

standard method to identify and eliminate root causes. In this case, it may need to be

studied if the standard method is applicable to the given product variety. Some

modifications on the level of product variety or the standard method in use may be made

based on the study.

7.2.3.1.3 Predictable Output Branch

In the predictable output branch of the MSDD, product variety decisions are related to

five FR-DP pairs out of eight leaf FR-DP pairs and one highest FR-DP pair. The list of

the FR-DP pairs that are affected by product variety decisions is provided in Table 7-10.
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TABLE 7-10. LIST OF THE FR-DP PAIRS IN THE PREDICTABLE OUTPUT BRANCH OF THE
MSDD THAT ARE AFFECTED BY PRODUCT VARIETY DECISIONS.

FR DP

P11 Ensure availability of relevant production Capable and reliable information system
information

P121 Reduce vaniabihity of task completion tune Standard work methods to provide repeatable
2ipprocessing time

P132 Service equipment regularly Regular preventative maintenance program

P141 Ensure that parts are available to the material Standard work in process between sub-
handlers systems

P142 Ensure proper timing of part arrivals Parts moved to downstream operations at
pace of customer demand

Minimize production disruptions Predictable production resources (people,
P1 equipment, information)

FR-P 11 and DP-P 11 address the issue of production information management. More

production information may need to be managed to produce more variety of products,

which requires a more capable and reliable information system. For example, e-kanban

may be more appropriate to deal with high product variety than conventional paper

kanban. Therefore, the existing information system should be reviewed in terms of its

capability to deal with the proposed level of product variety during product development.

Sometimes, operators may find it difficult to properly handle the proposed product

variety. This can lead to the increased variation of each task completion time (FR-P 121),

which should be avoided. In addition, increased product variety may require various

processing capability to the individual equipment. In this case, the preventative

maintenance program should be modified to accommodate the changes (FR-P 132).

FR-P141 states to ensure the availability of parts to the material handlers by maintaining

standard work in process (SWIP) between sub-systems (DP-P141). Product variety

decisions significantly affect the level of SWIP in the manufacturing systems. SWTP is

necessary to prevent part shortages but should be minimized since it increases

manufacturing throughput time as well as costs. Product variety strategies such as

modular design and standardized parts sharing may be considered to minimize the level

of SWIP within a manufacturing system. In addition, product variety affects part
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transportation. To ensure proper timing of part arrivals (FR-P 142), the consequence of

product variety decisions on transportation planning should be thoroughly studied.

Sometimes, the efforts to reduce product variety lead to reduced production disruptions

by reducing the sources of disruptions. For example, if the designs of different parts were

standardized to reduce product variety in a stamping process, it would eliminate the need

for die changeover, which takes out the need for die changeover activity and die

transportation activity. These activities can be sources of production disruptions.

7.2.3.1.4 Delay Reduction Branch

In the delay reduction branch of the MSDD, product variety decisions are related to seven

FR-DP pairs out of twelve leaf FR-DP pairs. The list of the FR-DP pairs that are affected

by product variety decisions is provided in Table 7-11.

TABLE 7-11. LIST OF THE FR-DP PAIRS IN THE DELAY REDUCTION BRANCH OF THE MSDD
THAT ARE AFFECTED BY PRODUCT VARIETY DECISIONS.

FR DP

T21 Define takt time(s) Definition or grouping of customers to
achieve takt times within an ideal range

T221 Ensure that automatic cycle time minimum Design of appropriate automatic work
takt time content at each station

T222 Ensure that manual cycle time minimum takt Design of appropriate operator work content /
time loops

T223 Ensure level cycle time mix Stagger production of parts with different

Tlecycle times

T23 Ensure that part arrival rate is equal to service Arrival of parts at downstream operations
rate (ra = r,) according to pace of customer demand

T3 1 Provide knowledge of demanded product mix Information flow from downstream customer
T31__ (part types and quantities)

T32 Produce in sufficiently small ran sizes Design quick changeover for material
handling and equipment

The delay reduction branch starts from defining takt time (FR-T21) by defining or

grouping customers (DP-T21). Product variety decisions may influence the customer

demand volume and thus, affect the takt time of a production line. Product variety plays

an important role in reducing delays in a manufacturing system. The automatic cycle time
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of the different types of parts should be ensured to be less than the minimum takt time

(FR-T221). The same rule applies to manual cycle time to process the parts (FR-T222).

Leveling cycle time mix may help to respond to unexpected variations and be applied to

the case that the automatic cycle time is longer than the takt time. However, if different

types of products are produced at the same station, their cycle times should not be very

different to maximize the efficiency.

Balancing different production groups (e.g., cell, department) to downstream operations

in order to have part arrival rate equal to service rate (FR-T23) can be difficult in the case

that each production group needs to manage various products. Therefore, the balancing

should be carefully coordinated according to the product variety strategy implemented

(e.g., modular design, part sharing, delaying differentiation points).

Product variety is also closely related to reducing run size delay. More careful and

complex handling of production mix information may be required for increased product

variety (FR-T3 1). In addition, setup changeover capability is heavily influenced by the

product variety (FR-T32). Therefore, deep consideration of changeover requirement

should be made when product variety decisions are made. For example, a family of

products can be designed to minimize the setup changeover requirement. The mix

capability of a production line that will produce new products should be considered to

check if it is adequate for planned product variety under the selected variety strategy such

as modular design and part sharing.

7.2.3.1.5 Operating Cost Branch

In the operating cost branch of the MSDD, product variety decisions are related to four

FR-DP pairs out of nine leaf FR-DP pairs and one high level FR-DP pair. The list of the

FR-DP pairs that are affected by product variety decisions is provided in Table 7-12.

Product variety may require many types of tools, which can make it difficult to

standardize tools used at each station and locate them in designated places (FR-D22). On

the other hand, it stresses the importance of the standardization of the tools and their

locations. Serious consideration needs to be given to the tools in use in case of increased

product variety. In a similar way, product variety may increase the kinds of standard
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work tasks performed at each station. In this case, it may be difficult to assure ergonomic

interface designs between the operator, machine, and fixture (DP-D23).

TABLE 7-12. LIST OF THE FR-DP PAIRS IN THE OPERATING COST BRANCH OF THE MSDD
THAT ARE AFFECTED BY PRODUCT VARIETY DECISIONS.

FR DP

D22 Minimize wasted motion in operators' work Standard tools/equipment located at each
preparation station (5S)

D23 Minimize wasted motion in operators' work Ergonomic interface between the worker,
tasks machine, and fixture

12 Eliminate information disruptions Seamless information flow (visual factory)

122 Reduce waste in indirect labor Reduction of indirect labor tasks

123 Minimize facilities cost Reduction of consumed floor space

Product variety also affects the information flows within a manufacturing system by

increasing the content of information that needs to be transferred (DP-12). Seamless

information flow through visual factory may not be achieved with high product variety.

In addition, higher product variety usually requires more indirect labor to coordinate

complicated work tasks such as scheduling, tool management, and SWIP management

(FR-122). Therefore, the consequence of product variety decisions on indirect labor

requirements should be carefully reviewed when product variety decisions are made.

Furthermore, the facilities cost that may be increased by product variety should be also

considered (FR-123). The results of high product variety such as more tools in use and

higher level of SWIP can lead to the consumption of more floor space.

7.2.3.1.6 Investment Branch

Product variety may be provided with increased costs associated with the equipment

since it requires flexibility to the equipment. Minimization of investment should be

sought but all other requirements described previously should be met first. After

resolving all other conflicts, a rational investment decision can be made since the stability

of manufacturing systems is kept.
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7.2.3.2 Product architecture

Product architecture is closely related to how product variety is provided to the

customers. For example, modular design to minimize the complexity associated with the

product variety is a result of product architecture design. Therefore, product architecture

can affect manufacturing systems by affecting product variety strategy. On the other

hand, product architecture itself significantly interacts manufacturing systems in various

ways. It is directly related to the structure or layout of manufacturing systems. The FRs

and DPs of the MSDD that can be affected by product architecture decisions are shown in

Figure 7-11 as black boxes.

Quality Identifying & Predictable Delay Reduction Operating Invest
Resolving Output Cost -ment
Problems

FIGURE 7-11. THE FRS AND DPS OF THE MSDD THAT CAN BE AFFECTED BY A PRODUCT
ARCHITECTURE DECISION

As is indicated in Figure 7-11, product variety decisions heavily affect quality and delay

reduction branches. Identifying and resolving problems, and predictable output branches

are also affected by product architecture decisions along with the investment branch

while the impact on operating costs is minimal. Detailed explanation of the impact of

product architecture decisions on the FRs and DPs of the MSDD is provided in the

following sections. The definition of product architecture used in this thesis is the

mapping of functional elements on physical elements as is given in Chapter 3.
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7.23.21 Quality Branch

In the quality branch of the MSDD, product architecture decisions are related to five FR-

DP pairs out of nine leaf FR-DP pairs and one highest level FR-DP pair. The list of the

FR-DP pairs that are affected by product architecture decisions is provided in Table 7-13.

A product layout design or a bill of materials that is a result of product architecture

design influences operator's work tasks. First, often it defines the required tasks for

operators and thus, it decides their knowledge requirement (FR-Q111). An inappropriate

product layout design may cause inconsistent operator performance in terms of quality

(FR-Q112) and thus, the standard work methods in use need to be reconsidered (DP-

Q112). In addition, product architecture should be designed to support product variety

strategy so that it can contribute to minimize the product variety exposed to operators.

This may decrease operator human errors caused by product variety (FR-Q113).

TABLE 7-13. LIST OF THE FR-DP PAIRS IN THE QUALITY BRANCH OF THE MSDD THAT ARE
AFFECTED BY PRODUCT ARCHITECTURE DECISIONS.

FR DP

Q 111Ensure that operator has knowledge of Training programQ11required tasks Tann rga

Q112 Ensure that operator consistently performs Standard work methodtasks correctly

Q113 Ensure that operator human errors do not Mistake proof operations (poka-yoke)1 translate to defects

Q13 Eliminate method assignable causes Process plan design

Q14 Eliminate material assignable causes Supplier quality program

Manufacture products to target design Production processes with minimal variation

specifications from the target

In some cases, the product architecture may not conform to the production method in use

(FR-Q13). For example, inappropriate part division may lead to a bad design for casting

by requiring extra joining processes. In addition, the materials used to realize the product

design may not be adequate with a certain product architecture design (FR-Q14). The

material conformance between adjacent parts should be assured in terms of the chemical

characteristics as well as mechanical characteristics, for example.
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Products should be designed in a way that they work properly when products are

manufactured to target design specifications. Product architecture designs are closely

related to the propagation of tolerances and thus, inappropriate product architecture may

lead to internal failure of product design itself (FR- 111). In addition, product architecture

designs may lead to a reduced number of assembly processes that are subject to quality

control, which may ease the quality control and improve the quality.

7.2.3.22 Identifying and Resolving Problems Branch

In the identifying and resolving problems branch of the MSDD, product architecture

decisions are related to three FR-DP pairs out of seven leaf FR-DP pairs. The list of the

FR-DP pairs that are affected by product architecture decisions is provided in Table 7-14.

TABLE 7-14. LIST OF THE FR-DP PAIRS IN IDENTIFYING AND RESOLVING PROBLEMS
BRANCH OF THE MSDD THAT ARE AFFECTED BY PRODUCT ARCHITECTURE DECISIONS.

FR DP

R1 12 Identify disruptions where they occur Simplified material flow paths

R121 Identify conrect support resources Specified support resources for each failure
mode

Standard method to identify and eliminate
Rl13 Solve problems immediately root cause

Product architecture decisions are closely linked to material flow paths since they decide

the physical division of a product into its components. Therefore, product architecture

decisions can affect material flow paths and thus, they should be made after considering

their impact on material flow paths (FR-R112).

In addition, specific support resources should be allocated to the failures related to

product architecture decisions (DP-R121) and product architecture may be designed in a

way that the disruptions related to the design of a component can be solved without

affecting other components, which may enhance the speed of problem solving (FR-R13).
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7.2.3.23 Predictable Output Branch

In the predictable output branch of the MSDD, product architecture decisions are related

to four FR-DP pairs out of eight leaf FR-DP pairs. The list of the FR-DP pairs that are

affected by product architecture decisions is provided in Table 7-15.

A product architecture design may affect the assembly of a product since it decides the

physical structure of a product to be assembled. Depending on the structures that product

architecture designs provide, the task completion time of the assembly operators may

vary due to the assembly difficulties (FR-P121). In a similar way, maintenance

requirements of the equipment in use may be changed depending on the product

architecture designs (FR-P132).

TABLE 7-15. LIST OF THE FR-DP PAIRS IN THE PREDICTABLE OUTPUT BRANCH OF THE
MSDD THAT ARE AFFECTED BY PRODUCT ARCHITECTURE DECISIONS.

FR DP

P121 Reduce variability of task completion time Standard work methods to provide repeatable
processing time

P132 Service equipment regularly Regular preventative maintenance program

P141 Ensure that parts are available to the material Standard work in process between sub-
handlers systems

P142 Ensure proper timing of part arrivals Parts moved to downstream operations at
pace of customer demand

Product architecture design can influence FR-P141 indirectly through supporting the

product variety strategies such as modular design and part sharing. Part transportation

methods, routes, and schedules are subject to changes according to the product

architecture designs and thus, they need to be carefully planned to ensure the part supply

at the proper timing (FR-P 142).

7.2.3.2.4 Delay Reduction Branch

In the delay reduction branch of the MSDD, product architecture decisions are related to

seven FR-DP pairs out of twelve leaf FR-DP pairs. The list of the FR-DP pairs that are

affected by product architecture decisions is provided in Table 7-16.
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The bill of material is the final result of product architecture design decisions and

indicates how many components need to be made to build a final product. Therefore, the

bill of material is closely related to takt time calculation since takt time is calculated by

dividing the available time with customer demand volume (FR-T21). Customer demand

volume can be divided into the demand for components, which decide the takt time of the

sub production groups (e.g., cells for sub-components, production departments for

components).

TABLE 7-16. LIST OF THE FR-DP PAIRS IN THE DELAY REDUCTION BRANCH OF THE MSDD
THAT ARE AFFECTED BY PRODUCT ARCHITECTURE DECISIONS.

FR DP

Definition or grouping of customers to
T2 1 Define takt time(s) achieve takt times within an ideal range

T221 Ensure that automatic cycle time minimum Design of appropriate automatic work

takt time content at each station

T222 Ensure that manual cycle time minimum takt Design of appropriate operator work content!

time loops

T23 Ensure that part arrival rate is equal to service Arrival of parts at downstream operations
rate (r = r) according to pace of customer demand

T31 Provide knowledge of demanded product mix Information flow from downstream customer
(part types and quantities)

T32 Produce in sufficiently small run sizes Design quick changeover for material
handling and equipment

T4 Reduce transportation delay Material flow oriented layout design

Product architecture design is about the physical division of a product. Therefore, product

architecture design modification may be considered in cases when the automatic cycle

time or manual cycle time at a production station is longer than minimum takt time (FR-

T221, FR-T222). In addition, as is discussed in the previous section, product architecture

affects the material flows within a manufacturing system. When the material flows within

a plant are decided, the balancing between production groups to ensure part arrival rate

equal to service rate should be reflected in product architecture design (FR-T23).

Reducing transportation delay can be also considered at the same time (FR-T4).
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Furthermore, product architectures can be designed to support the product variety

strategy to minimize the impact of product variety exposed to manufacturing systems, so

that the product mix information within a manufacturing system can be reduced (FR-

T3 1). This may lead to the reduced setup changeover requirements since the level of

product variety itself is reduced at each station (FR-T32).

7.2.3.2.5 Operating Cost Branch

In the operating cost branch of the MSDD, product architecture decisions are related to

one FR-DP pairs out of nine leaf FR-DP pairs and one high level FR-DP pair. The list of

the FR-DP pairs that are affected by product architecture decisions is provided in Table

7-17.

TABLE 7-17. LIST OF THE FR-DP PAIRS IN THE OPERATING COST BRANCH OF THE MSDD
THAT ARE AFFECTED BY PRODUCT ARCHITECTURE DECISIONS.

FR DP

122 Reduce waste in indirect labor Reduction of indirect labor tasks

123 Minimize facilities cost Reduction of consumed floor space

Labor requirements are linked to the product structure decisions (FR-122). For example,

if a product is divided into more physical chunks, more direct labors to assemble them

and more indirect labors to manage the chunks as well as direct labors may be necessary.

To the contrary, the fine segmentation of a product may lead to easier fabrication which

leads to less indirect labor to assure quality, for instance. Therefore, instead of blindly

pursuing the famous DFMA rule to minimize the number of parts, indirect labor

requirements according to different product architecture design options should be

reviewed when product architecture is designed along with their benefits and losses. In a

similar way, product architecture decisions affect the consumed floor space (DP-123).

7.2.3.2.6 Investment Branch

The investment requirements of different product architecture design options may be

considered as a decision criterion during the product architecture design decision process.
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7.2.3.3 Purchasing

Purchasing decisions are made when make or buy decisions are made. If the products are

decided to be produced in house, the other five categories such as product variety are

applied. However, if the products are decided to be outsourced, some special

considerations should be given to the decision in order to keep the stability of the

manufacturing system. The FRs and DPs of the MSDD that can be affected by

purchasing decisions are presented in Figure 7-12 as black boxes.

Quality Identifying & Predictable Delay Reduction Operating Invest
Resolving Output Cost -ment
Problems

FIGURE 7-12. THE FRS AND DPS OF THE MSDD THAT CAN BE AFFECTED BY A PURCHASING
DECISION

As is shown in Figure 7-12, purchasing decisions significantly affect quality, and

identifying and resolving problems. Predictable output, delay reduction, and operating

cost branches are also affected by purchasing decisions along with the investment branch.

The general problems with the purchased parts are that they are produced by suppliers

and thus, the necessary information to assemble the purchased parts may not be available

in house. In addition, the supply of the purchased padts should be aligned with in-house

productions while minimizing the labor requirements to manage the supplied parts.

Detailed explanation of the impact of purchasing decisions on the FRs and DPs of the

MSDD are provided in the following sections.
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7.23.3.1 Quality Branch

In the quality branch of the MSDD, purchasing decisions are related to eight FR-DP pairs

out of nine leaf FR-DP pairs and one highest level FR-DP pair. The list of the FR-DP

pairs that are affected by purchasing decisions is provided in Table 7-18.

Assembly operators need to be well trained on how to assemble the purchased parts.

Other operators that deal with the purchased parts should be also trained on the

characteristics of the purchased parts that require their special attention (FR-Q 111).

Standard assembly methods need to be prepared for purchased parts (FR-Ql12). In black

box purchasing cases [Clark and Fujimoto 1991], incorporation of poka-yoke features

into the purchased parts may be asked to the part suppliers for easy and defect-free

assembly (FR-Q113). Of course, close collaboration between OEM companies and part

suppliers is prerequisite for this.

TABLE 7-18. LIST OF THE FR-DP PAIRS IN THE QUALITY BRANCH OF THE MSDD THAT ARE
AFFECTED BY PURCHASING DECISIONS.

FR DP

Qill Ensure that operator has knowledge of Training programrequired tasks

Q112 Ensure that operator consistently performs Standard work methodtasks correctly

Ensure that operator human errors do not tistake proof operations (poka-yoke)
113 translate to defects

Q12 Eliminate machine assignable causes Failure mode and effects analysis

Q13 Eliminate method assignable causes Process plan design

Q14 Eliminate material assignable causes Supplier quality program

Q31 Reduce noise in process inputs Conversion of common causes into

assignable causes

Q32 Reduce impact of input noise on process Robust process design
output

Manufacture products to target design Production processes with minim al variation
specifications from the target

After human related quality issues are solved, other sources of assignable causes should

be reviewed. The suitability of purchased parts to existing equipment (FR-Q12) needs to
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be checked as well as the conformance to the assembly methods in use (FR-Q13). To

eliminate material assignable causes (FR-Q14), a new supplier quality program needs to

be prepared whenever new purchasing is considered. Through the supplier program,

incoming part quality should be guaranteed so that no additional work force is assigned to

inspect the incoming purchased parts.

Regarding the noise effect, purchased parts can be a source of noise in process inputs

(FR-Q3 1) and thus, are subject to thorough investigations. To reduce the noise effect, the

assembly processes of purchased parts may be designed to be robust to the variation of

purchased parts (FR-Q32).

Overall, target design specifications of purchased parts need to be set through discussion

with part suppliers (FR-111). In addition, it should be considered that purchasing may

eliminate the need for quality assurance of fabrication of sub-assembly parts in house but

slow feedback from the suppliers on quality problems may deteriorate the parts quality

and require additional workforce to fix the problems.

7.2.3.3.2 Identifying and Resolving Problems Branch

In the identifying and resolving problems branch of the MSDD, purchasing decisions are

related to four FR-DP pairs out of seven leaf FR-DP pairs. The list of the FR-DP pairs

that are affected by purchasing decisions is provided in Table 7-19.

TABLE 7-19. LIST OF THE FR-DP PAIRS IN IDENTIFYING AND RESOLVING PROBLEMS
BRANCH OF THE MSDD THAT ARE AFFECTED BY PURCHASING DECISIONS.

FR DP

Rl 12 Identify disruptions where they occur Simplified material flow paths

Rl121 Identify correct support resources Specified support resources for each failure
mode

R122 Minimize delay in contacting correct support Rapid support contact procedure
resources

Standard method to identify and eliminate
Rl13 Solve problems immediately root cause
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Purchasing of parts eliminates the need for constructing production lines for the

purchased parts. Therefore purchasing may contribute to simplified material flow paths

(DP-Rl112), which serve to identify disruptions where they occur (FR-Ri112).

As is discussed before, communication problems can be critical to identify and resolve

production disruptions in the purchasing case since the parts are produced in suppliers'

plants. To identify correct support resources (FR-R121), specified support personnel need

to be assigned in both OEM company and supplier companies for each failure mode. To

minimize delay in contacting correct support resources (FR-R122), the communication

channels with the part suppliers should be well established to ensure quick exchange of

information.

To solve problems related to purchased parts immediately (FR-R13), close collaboration

with part suppliers is necessary. Standard procedures to solve the disruption problems

associated with purchased parts may be prepared in advance and part suppliers may be

evaluated based on their ability to immediately respond to and solve the disruption

problems.

7.2.3.3.3 Predictable Output Branch

In the predictable output branch of the MSDD, purchasing decisions are related to four

FR-DP pairs out of eight leaf FR-DP pairs. The list of the FR-DP pairs that are affected

by purchasing decisions is provided in Table 7-20.

TABLE 7-20. LIST OF THE FR-DP PAIRS IN THE PREDICTABLE OUTPUT BRANCH OF THE
MSDD THAT ARE AFFECTED BY PURCHASING DECISIONS.

FR DP

P11 Ensure availability of relevant production Capable and reliable information systeminformation

P121 Reduce variability of task completion time Standard work methods to provide repeatable
processmg time

P141 Ensure that parts are available to the material Standard work in process between sub-
handlers systems

P 142 Ensure proper timing of part arrivals Parts moved to downstream operations at
pace of customer demand
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Production information of the OEM company is important for the part suppliers to

establish their own production schedules and supply parts in a just-in-time basis.

Therefore, sharing of relevant production information with part suppliers through a

capable and reliable information system is necessary. Production information sharing

with part suppliers should be planned in advance during product development in order to

avoid production disruptions (FR-P 11).

To reduce variability of task completion time (FR-P121), task completion time variation

related to the assembly of purchased parts is studied and the result is reflected in both

purchasing decision and work method design.

To avoid production disruptions caused by unavailability of materials when they are

necessary, the availability of materials to material handlers and their proper transportation

are important. The proper level of standard work in process (SWIP) for purchased parts

needs to be implemented to avoid unavailability of purchased parts (FR-P141) and the

proper level can be decided considering various factors such as transportation distance

from the suppliers. Delivery of purchased parts from the storage area to the point of use

according to pace of customer demand is necessary to ensure proper timing of purchased

parts arrivals (FR-P142).

7.2.3.3.4 Delay Reduction Branch

In the delay reduction branch of the MSDD, purchasing decisions are related to three FR-

DP pairs out of twelve leaf FR-DP pairs. The list of the FR-DP pairs that are affected by

purchasing decisions is provided in Table 7-21.

TABLE 7-21. LIST OF THE FR-DP PAIRS IN THE DELAY REDUCTION BRANCH OF THE MSDD
THAT ARE AFFECTED BY PURCHASING DECISIONS.

FR DP

T23 Ensure that part arrival rate is equal to service Arrival of parts at downstream operations
rate (ra = r,) according to pace of customer demand

T31 Provide knowledge of demanded product mix Information flow from downstream customer
(part types and quantities)

T4 Reduce transportation delay Material flow oriented layout design
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To satisfy FR-T23, the arrival rate of purchased parts to the point of use should be

considered. The part arrival rate is fine as long as it is determined by the pace of customer

demand. However, the amount of delivery per each shipment from the suppliers is

determined considering other factors such as transportation distance and shipping cost.

The sharing of production mix information with part suppliers is important to satisfy FR-

T3 1. For a sequenced delivery of parts from the suppliers in a just-in-time base, the

sharing of production mix information with the suppliers is essential.

Transportation delay (FR-T4) may be reduced by direct delivery of purchased parts to the

point of use by the part suppliers. Part supply paths should be aligned with material flow

oriented layout design of the OEM manufacturing system.

7.2.3.3.5 Operating Cost Branch

In the operating cost branch of the MSDD, purchasing decisions are related to two FR-

DP pairs out of nine leaf FR-DP pairs and one high level FR-DP pair. The list of the FR-

DP pairs that are affected by purchasing decisions is provided in Table 7-22.

TABLE 7-22. LIST OF THE FR-DP PAIRS IN THE OPERATING COST BRANCH OF THE MSDD
THAT ARE AFFECTED BY PURCHASING DECISIONS.

FR DP

12 Eliminate information disruptions Seamless information flow (visual factory)

122 Reduce waste in indirect labor Reduction of indirect labor tasks

123 Minimize facilities cost Reduction of consumed floor space

To eliminate information disruption (FR-12) between the OEM company and the part

suppliers, the information flows to and from the part suppliers should be carefully

reviewed so that sources of information disruption can be identified and eliminated. This

work should be done when purchasing decisions are made to prevent future

manufacturing problems. Some information technology (IT) tools may be considered to

reduce the indirect labor associated with the information management but the efforts to

clearly specify the information flows and simplify them should be made first.
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There can be various types of indirect labors associated with purchasing (FR-122). To

reduce the wastes in indirect labor, the impact of purchasing decisions on the indirect

labors should be identified first. For example, it should be studied how a purchasing

decision affects the work content of the purchasing department. A through study on the

impact of new purchasing decisions on the capacity and capability of the purchasing

functional group will prevent the capacity problems of the purchasing department, which

may call for more indirect labors to correct the problems (or to do fire-fighting).

Facility costs associated with part purchasing may be reduced by minimizing the number

of purchased parts stored as SWIP (FR-123). However, when the number of purchased

parts stored as SWIP is minimized, the requirements from other MSDD branches should

be met first.

7.2.3.3.6 Investment Branch

When selecting the part suppliers, it is important to evaluate the capability of the

suppliers in various aspects of manufacturing systems as is discussed so far in this

section. If only supply cost is considered for supplier selection, the cost saved now will

be smaller than the benefits that might be gained by considering other factors

concurrently. Suppliers need to interact with OEM companies in many ways as described

in this section and the close interaction between two groups will lead to enhanced quality,

improved delivery performance, and reduced operating costs in a long run.

7.2.3.4 Material selection

Material selection is an important issue during product development since it affects many

aspects of manufacturing systems. Material selection is closely linked to the

manufacturing quality. In addition, the selected material works as a constraint when the

production process is decided and detailed design is made. Therefore, the material should

be selected while considering both production process selection and detailed design

simultaneously. The FRs and DPs of the MSDD that can be affected by material selection

are presented in Figure 7-13 as black boxes.

Yong-Suk Kim 242



Quality Identifying &
Resolving
Pro blems

Predictable Delay Reduction
Output

Operating Invest
Cost -ment

FIGURE 7-13. THE FRS AND DPS OF THE MSDD THAT CAN BE AFFECTED BY MATERIAL
SELECTION

As is shown in Figure 7-13, material selection significantly affects quality and operating

cost. Identifying and resolving problems, predictable output, and delay reduction

branches are also affected by material selection. Detailed explanation of the impact of

material selection on the FRs and DPs of the MSDD are provided in the following

sections.

7.23.4.1 Quality Branch

In the quality branch of the MSDD, material selection is related to all nine leaf FR-DP

pairs and one highest level FR-DP pair. The list of the FR-DP pairs that are affected by

material selection is provided in Table 7-23.

Material selection is one of the critical decisions for manufacturing quality. With regard

to the human related causes of quality problems, new material may call for a different set

of required tasks for the operators (FR-Q 111) and the established standard work methods

are affected by the introduction of new material (DP-Q112). In addition, new material

may require mistake-proof features (FR-Q 113) when, for example, there is a direction in

the material that significantly affects its property (e.g., grain of wood). Therefore,
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improper consideration of material properties may lead to a big problem in quality by

operators' human errors.

Material selection also affects other sources of quality problems. The existing equipment

may not be appropriate to process the selected material (FR-Q12). In this case, failure

mode and effects analysis (FMEA) data may be reviewed to investigate the effect of

materials on the failure of existing equipment if the data are available. In addition to the

equipment related problems, the production methods in use may not match with the

selected material (FR-Q 13) or the quality of incoming materials may not be good enough

for processing (FR-Q14). In the latter case, new supplier quality program is necessary to

control the quality of incoming materials. The collaboration with material suppliers may

enable stable supply of quality materials.

TABLE 7-23. LIST OF THE FR-DP PAIRS IN THE QUALITY BRANCH OF THE MSDD THAT ARE
AFFECTED BY MATERIAL SELECTION.

FR DP

Q111 Ensure that operator has knowledge of Training program
required tasks

Q112 Ensure that operator consistently performs Standard work method
tasks correctly

Q 13 Ensure that operator human errors do not Mistake proof operations (poka-yoke)
translate to defects

Q12 Eliminate machine assignable causes Failure mode and effects analysis

Q13 Eliminate method assignable causes Process plan design

Q14 Eliminate material assignable causes Supplier quality program

Q2 Center process mean on the target Process parameter adjustment

Q31 Reduce noise in process inputs assignable causes

Q32 Reduce impact of input noise on process Robust process design
output

111 Manufacture products to target design Production processes with minimal variation

specifications from the target

To center process mean on the target (FR-Q2), it is necessary to thoroughly study

material properties and its interactions with process parameters during the material
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selection process. Then, the noise factor can be treated. To reduce impact input noise on

process output (FR-Q31), incoming materials need to be checked if any sources of noise

can come from the selected incoming materials. In addition, the production process for

the selected material should be designed to be robust to the material property variation

(DP-Q32).

Overall, meaningful tolerance levels (FR111) according to the material types should be

well understood and reflected in the material selection (e.g., achievable tolerance of

wooden product is different from that of aluminum alloy).

7.2.3.4.2 Identifying and Resolving Problems Branch

In the identifying and resolving problems branch of the MSDD, material selection is

related to three FR-DP pairs out of seven leaf FR-DP pairs. The list of the FR-DP pairs

that are affected by material selection is provided in Table 7-24.

TABLE 7-24. LIST OF THE FR-DP PAIRS IN IDENTIFYING AND RESOLVING PROBLEMS
BRANCH OF THE MSDD THAT ARE AFFECTED BY MATERIAL SELECTION.

FR DP

R113 Identify what the disruption is Feedback of sub-system state

R121 Identify correct support resources Specified support resources for each failure
mode

R13 Solve problems immediately Standard method to identify and eliminate
root cause

Material selection may affect FR-Ri 13 by adding new kind of disruptions that can

happen with new materials. Possible disruption states due to the introduction of new

materials (e.g., new material can damage tools in certain conditions) may be studied and

reflected in the feedback system in order to satisfy the FR-R113.

With regard to FR-R121, specific support resources should be assigned to the failure

modes related to the materials in both material suppliers and the OEM company. In

addition, standard procedures to solve the production disruptions associated with new

materials may need to be prepared in advance (FR-R13).
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7.23.4.3 Predictable Output Branch

In the predictable output branch of the MSDD, material selection is related to four FR-DP

pairs out of eight leaf FR-DP pairs. The list of the FR-DP pairs that are affected by

material selection is provided in Table 7-25.

TABLE 7-25. LIST OF THE FR-DP PAIRS IN THE PREDICTABLE OUTPUT BRANCH OF THE
MSDD THAT ARE AFFECTED BY MATERIAL SELECTION.

FR DP

P121 Reduce variability of task completion time Standard work methods to provide repeatable
processing tune

P132 Service equipment regularly Regular preventative maintenance program

P141 Ensure that parts are available to the material Standard work in process between sub-
handlers systems

P142 Ensure proper timing of part arrivals Parts moved to downstream operations at
pace of customer demand

The introduction of new materials may affect the variability of task completion time of

the workers and thus, the standard work methods may be modified accordingly to

minimize the variation of work completion time (FR-P121). In addition, new materials

may work differently to the equipment in use and change the maintenance requirements.

Therefore, the preventative maintenance program may be subject to modification

depending on the type of materials used (DP-P132).

Reliable and timely supply of new materials is important. Before selecting the material,

the material should be reviewed if it can be supplied reliably (FR-P141) and timely (FR-

P 142). Selecting commodity materials may help to minimize these problems.

7.2.3.4.4 Delay Reduction Branch

In the delay reduction branch of the MSDD, material selection is related to three FR-DP

pairs out of twelve leaf FR-DP pairs. The list of the FR-DP pairs that are affected by

material selection is provided in Table 7-26.

In case that a new material is used with the existing process, to ensure the FR-T221, the

new material should be checked if it affects automatic cycle time of the existing process
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and it should be assured that the automatic cycle time with new material is shorter than

minimum takt time. Otherwise, alternative materials need to be studied to keep automatic

cycle time under minimum takt time. Material properties can lead to different processing

time to achieve a certain level of quality. For example, drilling a hole on an aluminum

block is different from doing the same work on a steel block.

The same principle applies to the case of FR-T222. The consequence of new material on

the cycle time of existing manual operation in use needs to be thoroughly studied and

should be assured that the manual cycle time with new material is shorter than minimum

takt time.

The introduction of new materials on the shop floor may affect the requirements for the

changeover. For example, the introduction of different materials at the same machine

may require complete cleaning of the machine to minimize the contamination of the next

product. In addition, new material that helps quick changeover is continuously sought to

support production (e.g., new painting material that support changeover between colors).

TABLE 7-26. LIST OF THE FR-DP PAIRS IN THE DELAY REDUCTION BRANCH OF THE MSDD
THAT ARE AFFECTED BY MATERIAL SELECTION.

FR DP

T221 Ensure that automatic cycle time minimum Design of appropriate automatic work
takt time content at each station

T222 Ensure that manual cycle time minimum takt Design of appropriate operator work content /
time loops

T32 Produce in sufficiently small run sizes Design quick changeover for material
handling and equipment

7.23.4.5 Operating Cost Branch

In the operating cost branch of the MSDD, material selection is related to five FR-DP

pairs out of nine leaf FR-DP pairs and one high level FR-DP pair. The list of the FR-DP

pairs that are affected by material selection is provided in Table 7-27.

The introduction of a new material often requires special tools to handle the process. The

tool requirement of the new material needs to be studied and the standardization should
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be pursued, so that the tools can be shared in other processes. Tool management and

location should also be planned so that the operators do not need to waste their precious

time finding tools (FR-D22). For the same purpose, the impact of the new material on the

ergonomic design of interfaces between machine, fixture, and people may be studied

(FR-D23). Especially in the case that the selected material is not a commodity material, it

is important to check above-mentioned characteristics of the material.

TABLE 7-27. LIST OF THE FR-DP PAIRS IN THE OPERATING COST BRANCH OF THE MSDD
THAT ARE AFFECTED BY MATERIAL SELECTION.

FR DP

D22 Minimize wasted motion in operators' work Standard tools/equipment located at each
preparation station (5S)

D23 Minimize wasted motion in operators' work Ergonomic interface between the worker,
tasks machine, and fixture

D3 Eliminate operators' waiting on other Balanced work-loops
operators

12 Eliminate information disruptions Seamless information flow (visual factory)

122 Reduce waste in indirect labor Reduction of indirect labor tasks

123 Minimize facilities cost Reduction of consumed floor space

A new material may affect the design of operators' work tasks or the information

requirement. It needs to be clarified that the new material does not negatively affect the

existing operator work loops (FR-D3). In addition, the additional information

requirements due to the introduction of the new material should be identified and

incorporated into the visual information system to eliminate information disruptions (FR-

12).

The consequence of the use of new material on indirect labor requirement should be

reviewed and considered during material selection process (FR-122). A special material

may require additional indirect labor to inspect, store, and process it. Furthermore, it

needs to be checked if the use of a new material requires additional storage space and if

there is space available for the new material in the selected production site (FR- 123).
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7.2.3.4.6 Investment Branch

Any investment decision regarding the introduction of a new material is subject to

thorough financial analysis after resolving the conflicts with the previous FR-DP pairs.

7.2.3.5 Process selection

Process selection is a very important issue during product development with regard to

manufacturability since it directly and widely affects manufacturing systems. In other

words, selected processes define almost every aspect of manufacturing systems such as

the equipment to be used, the assembly sequence to be used, and the cycle time to be

achieved. Especially, process selection is closely linked to manufacturing quality, since

the quality of a product is a result of production processes. In addition, the selected

process works as a constraint when the detailed design is made. The detailed design

should be made to support the selected processes.

The FRs and DPs of the MSDD that can be affected by process selection are presented in

Figure 7-14.
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FIGURE 7-14. THE FRS AND DPS OF THE MSDD THAT CAN BE AFFECTED BY PROCESS
SELECTION

As is shown in Figure 7-14, process selection significantly affects quality, identifying and

resolving problems, reducing delays, and operating cost. Especially, all nine leaf FR-DP
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pairs in the quality branch of the MSDD are related to process selection. This is expected

natural since the quality branch of the MSDD is made up of FRs and DPs related to the

control of the manufacturing processes. Predictable output and investment branches are

also affected by process selection. Detailed explanation of the impact of process selection

on the FRs and DPs of the MSDD are provided in the following sections.

7.2.3.5.1 Quality Branch

In the quality branch of the MSDD, process selection is related to all nine leaf FR-DP

pairs and one highest level FR-DP pair. The list of the FR-DP pairs that are affected by

process selection is provided in Table 7-28.

TABLE 7-28. LIST OF THE FR-DP PAIRS IN THE QUALITY BRANCH OF THE MSDD THAT ARE
AFFECTED BY PROCESS SELECTION.

FR DP

Ql1l Ensure that operator has knowledge of Training program
required tasks

Q112 Ensure that operator consistently performs Standard work method
tasks correctly

QI 13 Ensure that operator human errors do not Mistake proof operations (poka-yoke)
translate to defects

Q12 Eliminate machine assignable causes Failure mode and effects analysis

Q13 Eliminate method assignable causes Process plan design

Q14 Eliminate material assignable causes Supplier quality program

Q2 Center process mean on the target Process parameter adjustment

Conversion of common causes into
Q31 Reduce noise in process inputs assignable causes

Q32 Reduce impact of input noise on process Robust process design
output

111 Manufacture products to target design Production processes with minimal variation

specifications from the target

A new process often requires new tasks from operators. Operators should be well aware

of new tasks from the new process and it is beneficial for operators to be familiar with a

new process since it may reduce possible sources of variation. Therefore, first, operators'

Yong-Suk Kim 250



capabilities and knowledge on the new process need to be reviewed and considered when

a major decision on process design is made. Then newly required operators' knowledge

for the new process should be identified and the planning of the operator training

program should follow (FR-QlI11). In addition, the new process calls for new standard

work methods to be used to ensure the operators consistently perform tasks correctly

(FR-Q112).

To satisfy FR-Q 113, typical operators' human mistakes with the new process should be

identified first. The sources of the human mistakes may be eliminated through changing

the proposed process or implementing mistake-proof devices that are appropriate with the

new process.

Other assignable causes of quality problems should be also studied. The suitability of the

existing or selected equipment should be reviewed, and possible machine assignable

causes need to be identified and eliminated (FR-Q12). The capability of the process may

need to be checked against the given product design and tolerances (FR-Q13), and the

adaptability of the selected process to the selected material should be checked (FR-Q 14).

In order to center process mean on the target (FR-Q2), it is essential to understand the

impacts of process parameters on the process output mean. In addition, the characteristics

of the equipment used for the new process may need to be studied through the close

collaboration with equipment vendors. In a similar way, the noise in process input may be

eliminated or compensated through a careful study of the effect of the noise on the output

quality of the new process (FR-Q3 1) and based on the gained knowledge, the robust

design of the process may be achieved (FR-Q32).

Choosing different processes may lead to a reduced number of production processes. For

example, near-net shape processes such as casting can greatly reduce the number of

production processes that are subject to quality control, which may contribute to quality

improvement (FR-111). The sensitivity of the process outputs on each process parameter

may be analyzed and used to control the variation of the process outputs.
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7.23.5.2 Identifying and Resolving Problems Branch

In the identifying and resolving problems branch of the MSDD, process selection is

related to four FR-DP pairs out of seven leaf FR-DP pairs. The list of the FR-DP pairs

that are affected by process selection is provided in Table 7-29.

Such processes as stamping and casting greatly affect the material flows within a plant

due to the associated huge investment or very short cycle time. Therefore, to identify

disruptions where they occur (FR-RI112) through simplified material flow paths (DP-

R1 12), the impact of a new process on the material flow paths within a selected

production site should be thoroughly studied so that the simplest material flow paths can

be maintained.

In addition, different processes may lead to different types of disruptions on the shop

floor. For example, a casting process may show different types of disruptions from a

machining process. Possible disruption states due to the new process need to be studied

and reflected in the feedback system (DP-Rl113). Specific support personnel in

manufacturing, production engineering, and produce design groups can be assigned to the

disruptions related to the new process (DP-R121).

The root causes of the production disruption due to the new process should be eliminated

by the standard procedures and thus, the standard procedures should be defined and

prepared in advance (FR-R13).

TABLE 7-29. LIST OF THE FR-DP PAIRS IN IDENTIFYING AND RESOLVING PROBLEMS
BRANCH OF THE MSDD THAT ARE AFFECTED BY PROCESS SELECTION.

FR DP

R112 Identify disruptions where they occur Simplified material flow paths

R113 Identify what the disruption is Feedback of sub-system state

R 121 Identify correct support resources Specified support resources for each failure
mode

R13Sv oStandard method to identify and eliminate
Solve problems immediately root cause
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7.23.5.3 Predictable Output Branch

In the predictable output branch of the MSDD, process selection is related to four FR-DP

pairs out of eight leaf FR-DP pairs. The list of the FR-DP pairs that are affected by

process selection is provided in Table 7-30.

The introduction of a new process may lead to variable task completion time. To reduce

the variation of task completion time, standard work methods for the new process need to

be developed (FR-P121). In addition, different production processes may call for

different maintenance requirements for the equipment (FR-P132). Therefore, the

consequence of the selected process on existing preventative maintenance programs

should be reviewed and appropriate changes should be made accordingly.

TABLE 7-30. LIST OF THE FR-DP PAIRS IN THE PREDICTABLE OUTPUT BRANCH OF THE
MSDD THAT ARE AFFECTED BY PROCESS SELECTION.

FR DP

P121 Reduce variability of task completion time Standard work methods to provide repeatable
processing time

P132 Service equipment regularly Regular preventative maintenance program

P141 Ensure that parts are available to the material Standard work in process between sub-
handlers systems

P142 Ensure proper tming of part arrivals Parts moved to downstream operations at
pace of customer demand

The proper level of standard work in process (SWIP) should be planned for the selected

process to ensure the parts availability after the selected process (FR-P141) and the

planning of the transportation of the parts to and from the selected process is necessary to

ensure proper timing of part arrivals (FR-P 142).

7.2.3.5.4 Delay Reduction Branch

In the delay reduction branch of the MSDD, process selection is related to four FR-DP

pairs out of twelve leaf FR-DP pairs and one high level FR-DP pair. The list of the FR-

DP pairs that are affected by process selection is provided in Table 7-31.
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When defining the lot size (or transfer batch size), it is necessary to consider the

characteristics of the selected process to decide the adequate lot size. For example,

casting of small parts may be done in a batch due to the required cooling time, mold

costs, or necessary investment on the casting equipment. Even in this case, it should be

reminded that single piece flow is the best way to reduce lot delay (FR-T1) and thus, the

minimization of the transfer batch size should be sought.

Estimated automatic cycle time of a new process should be shorter than the minimum takt

time (FR-T221). Otherwise, alternative processes may be considered to keep automatic

cycle time under minimum takt time. Duplication of the process may be another solution

but should be avoided if possible since it complicates the material flows and information

flows. In addition, production processes should be allocated to each machine in a way

that the total cycle time is less than minimum takt time. Otherwise, some of the processes

are allocated to another machine. The same rule applies to the manual cycle time (FR-

T222).

TABLE 7-31. LIST OF THE FR-DP PAIRS IN THE DELAY REDUCTION BRANCH OF THE MSDD
THAT ARE AFFECTED BY PROCESS SELECTION.

FR DP

Reduction of transfer batch size (single-piece
T 1 Reduce lot delay flow)

T221 Ensure that automatic cycle time minimum Design of appropriate automatic work
takt time content at each station

T222 Ensure that manual cycle time minimum takt Design of appropriate operator work content!
time loops

T32 Prodacein sufficiently small run sizes Design quick changeover for material
handling and equipment

TS Reduce systematic operational delays Subsystem design to avoid production
interruptions.

The changeover capability of the selected process needs to be considered (FR-T32). The

changeover capability of a process depends on the equipment used and the characteristics

of the process. A thorough review on the changeover capability is necessary to produce in

sufficiently small run sizes. This issue becomes more important in case of high product

variety.
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Systematic operational delay is caused by the interruption among production resources

with supportive resources (FR-T5). The consequence of the selected process on

systematic interruptions should be studied. For example, a new process may be

considered to eliminate the need for supportive activities. Using laser trimming instead of

stamping will eliminate the need for stamping die transportation activity, which is a

support activity.

7.2.3.5.5 Operating Cost Branch

In the operating cost branch of the MSDD, process selection is related to five FR-DP

pairs out of nine leaf FR-DP pairs and one high level FR-DP pair. The list of the FR-DP

pairs that are affected by process selection is provided in Table 7-27.

TABLE 7-32. LIST OF THE FR-DP PAIRS IN THE OPERATING COST BRANCH OF THE MSDD
THAT ARE AFFECTED BY PROCESS SELECTION.

FR DP

D11 Reduce time operators spend on non-value Machines and stations designed to run
added tasks at each station autonomously

D22 Minimize wasted motion in operators' work Standard tools/equipment located at each
preparation station (5S)

D3 Eliminate operators' waiting on other Balanced work loops
operators

12 Eliminate information disruptions Seamless information flow (visual factory)

122 Reduce waste in indirect labor Reduction of indirect labor tasks

123 Minimize facilities cost Reduction of consumed floor space

Efficient use of operators is possible by reducing the time operators spend on non-value

added tasks at each station (FR-D11). This is possible through the design of machines

and stations that run automatically and detect problems by themselves. Therefore, it is

necessary to study technical feasibility of automating the selected process. Another way

to maximize the operator utilization is to minimize wasted motion in work preparation

(FR-D22). Tools necessary for the selected process should be identified and their

standardization and storage need to be planned considering various factors such as the

frequency of changeover and operators' walking distance.
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The introduction of a new process on the shop floor may affect the operators' work loops,

which may lead to unbalanced operators work loops. The impact of the new process on

existing operators work loops should be thoroughly studied to avoid this conflict (FR-

D3). The new process may also affect the information flows. The effect of the new

process on the information flows should be reviewed in order to minimize information

disruptions. Eliminating the need for information flows is a good way to eliminate the

information disruptions. For example, laser cutting substituting stamping eliminates the

need for die changeover information flow (FR-12).

In addition, the introduction of a new process can affect indirect labor requirement in

various ways (FR-122). For example, laser cutting substituting stamping eliminates the

need for indirect labors that transport and maintain dies used in stamping, while increases

the need for maintenance resources for laser technology. The effect of new processes on

floor space consumption also needs to be reviewed (FR-123).

7.2.3.5.6 Investment Branch

The introduction of a new process on the shop floor is usually accompanied by the new

equipment for the new process. Therefore, investment efficiency evaluation is inevitable.

Various financial analyses may be conducted including net present value analysis (NPV)

of the savings and the necessary investment with the introduction of the new process.

However, financial analyses should not lead the process selection decisions. They should

be used as the final decision criterion to choose one among many options that resolve the

conflicts addressed in the previous sections.

7.2.3.6 Detailed design

Detailed design decisions are closely linked to other categories of product/process

decisions with regard to manufacturability. Detailed designs are made to support the

decisions made in upstream such as product variety, product architecture, materials, and

processes. For example, detailed design should support the selected process (e.g., casting)

with special features (e.g., draft angles) in order to facilitate manufacturing. Therefore,

detailed design affects the manufacturability of a product design indirectly. On the other

hand, detailed design directly affects the manufacturability by deciding the final
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geometry and tolerance of a product design. In this section, the term, detailed design, is

used to generally indicate the activity to finalize the details of a product design.

The FRs and DPs of the MSDD that can be affected by detailed design decisions are

presented in Figure 7-15 as black boxes.

Quality Identifying & Predictable Delay Reduction Operating Invest
Resolving Output Cost -ment
Pro blems

FIGURE 7-15. THE FRS AM) OPS OF THE MSDD THAT CAN BE AFFECTED BY DETAILED
DESIGN

As is shown in Figure 7-15, detailed design decisions significantly affect quality,

identifying and resolving problems, reducing delays, and operating cost. Predictable

output and investment branches are also affected by detailed design decisions. Detailed

explanation of the impact of detailed design decisions on the FRs and DPs of the MSDD

are provided in the following sections.

7.23.6.1 Quality Branch

In the quality branch of the MSDD, detailed design decisions are related to seven leaf

FR-DP pairs and one highest level FR-DP pair. The list of the FR-DP pairs that are

affected by detailed design decisions is provided in Table 7-33.

Regarding the operator assignable causes of quality problems, detailed design decisions

may negatively affect the efforts to eliminate quality problems in several ways. First

detailed design decisions can shape the tasks that are supposed to be performed by the
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operators (FR-Q111). The degree of the influence may not be as significant as that of

product architecture design, for example, but detailed design can certainly affect the

required tasks. Therefore, the consequence of detailed design decisions on the operators'

work tasks should be reviewed. Operators need to be trained on the required tasks set by

detailed design decisions. Another way that detailed design decisions influence the

operator assignable quality problems is by affecting the standard work methods. Changes

in detailed design may require corresponding changes in the existing standard work

methods and thus, disturb the achievement of FR-Ql12. The consequence of detailed

design decisions on standard work methods needs to be reviewed. Some design changes

may be made accordingly if necessary. Furthermore, detailed design decisions can

interrupt the satisfaction of FR-Q 113. Detailed design of a product is closely related to

the mistakes made by the operators and thus, can be used to eliminate the mistakes. For

example, if detailed design of a product supports easy and obvious assembly (e.g., it is

easy to locate a part in the right position and direction during the assembly), the operator

human mistakes can be greatly reduced during the assembly.

TABLE 7-33. LIST OF THE FR-DP PAIRS IN THE QUALITY BRANCH OF THE MSDD THAT ARE
AFFECTED BY DETAILED DESIGN DECISIONS.

FR DP

Q Ensure that operator has knowledge of Training program
required tasks

Q112 Ensure that operator consistently performs Standard work method
tasks correctly

13 Ensure that operator human errors do not Mistake proof operations (poka-yoke)
translate to defects

Q12 Eliminate machine assignable causes Failure mode and effects analysis

Q13 Eliminate method assignable causes Process plan design

Q14 Eliminate material assignable causes Supplier quality program

Q32 Reduce impact of input noise on process Robust process design
output

111 Manufacture products to target design Production processes with minimal variation
specifications from the target
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FR-Q12 is linked to the issue of equipment reusability. If new detailed design decisions

bring too many machine assignable quality problems, a new machine may need to be

implemented. In addition, if the existing machines are not capable of processing the given

detailed design, it can be another reason for investing in new machines. Therefore, the

consequence of the detailed design on the reusability of existing equipment needs to be

reviewed and design changes should be made accordingly to maximize the reuse of

existing equipment. It is often economical to change product designs instead of

manufacturing equipment.

Detailed design decisions also interact with production methods (FR-Q13). The

capability of the existing production methods against the given detailed design can be a

problem while the supportability of the detailed design to the given production methods

may cause some troubles. The decision will vary depending on where to place the

priority. Typically, detailed design changes are made according to the selected production

method since detailed design is easier to change, compared to the change of production

methods. In a similar way, detailed design affect the achievement of FR-Q14. Therefore,

it may need to be checked if detailed design decisions are appropriate with the current

quality level of incoming materials, for example.

Products may be designed to be robust to the variation of process output caused by input

noise (FR-Q32) by setting tolerances generously (FR-111). Tolerances need to be

optimized between engineering requirements and manufacturing requirements. It is

necessary to consider both aspects. As one way to consider the manufacturing side in

tolerance decision, process capability of the existing production line may be reviewed by

product designers so that the current process capability can be reflected in design

specifications in order to avoid further investment on improving the process capability.

7.2.3.6.2 Identifying and Resolving Problems Branch

In the identifying and resolving problems branch of the MSDD, detailed design decisions

are related to four FR-DP pairs out of seven leaf FR-DP pairs. The list of the FR-DP pairs

that are affected by detailed design decisions is provided in Table 7-34.
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Detailed design decisions may affect the material flow paths within the manufacturing

system (DP-Rl112). For example, as is presented in Chapter 2, angled fluid channels of an

ABS housing may require dedicated machines, which changes the material flow paths.

Product designers need to understand the consequences of detailed design on the material

flow paths. In addition, there may be some disruptions caused by detailed design

decisions, which should be reflected in the feedback system (FR-RI 13).

FR-R121 indicates to identify correct support resources. Particular support resources to

each failure mode related to detailed design can be specified for this purpose. Support

resources should be specified in manufacturing, production engineering, and product

design groups so that they can solve the problems together. These support resources may

solve the disruption problems associated with detailed design with the standard

procedures prepared in advance (FR-R13).

TABLE 7-34. LIST OF THE FR-DP PAIRS IN IDENTIFYING AND RESOLVING PROBLEMS
BRANCH OF THE MSDD THAT ARE AFFECTED BY DETAILED DESIGN DECISIONS.

FR DP

R112 Identify disruptions where they occur Simplified material flow paths

R113 Identify what the disruption is Feedback of sub-system state

R121 Identify correct support resources Specified support resources for each failure
mode

Ri3 3 eStandard method to identify and eliminate
Solve problems immediately root cause

7.2.3.6.3 Predictable Output Branch

In the predictable output branch of the MSDD, detailed design decisions are related to

three FR-DP pairs out of eight leaf FR-DP pairs and one highest level FR-DP pair. The

list of the FR-DP pairs that are affected by detailed design decisions is provided in Table

7-35.

Detailed design decisions can be made in a way to reduce the variations in the task

completion time (FR-P 121). For example, parts can be designed to be easily

maneuverable to reduce the variation of handling time. The new detailed design decisions
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made to satisfy FR-P121 may interact with the machine, which brings new maintenance

requirements. Therefore, the existing preventative maintenance programs should be

reviewed and modified to accommodate the new requirements (DP-P132).

The MSDD indicates to satisfy FR-P141 by standard work in process between sub-

systems (DP-P 141). Detailed design can support the satisfaction of FR-P 141 by enabling

part sharing through the use of common components within a product family

TABLE 7-35. LIST OF THE FR-DP PAIRS IN THE PREDICTABLE OUTPUT BRANCH OF THE
MSDD THAT ARE AFFECTED BY DETAILED DESIGN DECISIONS.

FR DP

P121 Reduce variability of task completion time Standard work methods to provide repeatable
processing time

P132 Service equipment regularly Regular preventative maintenance program

P141 Ensure that parts are available to the material Standard work in process between sub-
handlers systems

P1 Minimize production disruptions Predictable production resources (people,
equipment, information)

During the detailed design phase of product development, detailed design decisions

should be made in a way to minimize the production disruptions (FR-P1). Frequent

design change suggestions from manufacturing may greatly facilitate this.

7.23.6.4 Delay Reduction Branch

In the delay reduction branch of the MSDD, detailed design decisions are related to five

FR-DP pairs out of twelve leaf FR-DP pairs and one high level FR-DP pair. The list of

the FR-DP pairs that are affected by detailed design decisions is provided in Table 7-36.
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TABLE 7-36. LIST OF THE FR-DP PAIRS IN THE DELAY REDUCTION BRANCH OF THE MSDD
THAT ARE AFFECTED BY DETAILED DESIGN DECISIONS.

FR DP

T I Reduce lot delay Reduction of transfer batch size (single-piece
flow)

T221 Ensure that automatic cycle time minimum Design of appropriate automatic work
takt time content at each station

T222 Ensure that manual cycle time minimum takt Design of appropriate operator work content /

time loops

T223 Ensure level cycle ime mix Stagger production of parts with different
cycle times

T32 Produce in sufficiently small run sizes Design quick changeover for material
handling and equipment

T5 Reduce systematic operational delays Subsystem design to avoid production
interruptions

Once the production process is decided and thus, the lot size is decided, detailed designs

should be made to support the selected lot size (FR-Ti). For example, if four parts are

produced by the casting process at one cycle, detailed designs should be made to fit for

the given lot size.

Minor changes in detailed design that do not interact with other design decisions may be

sought to satisfy the sub-FRs of FR-T22. Detailed design changes may be sought to keep

automatic (FR-T221) and manual cycle time (FR-T222) under the minimum takt time. If

different types of products are to be produced at the same station/machine, detail designs

may be modified to make their cycle times similar (FR-T223). Furthermore, product

design engineers may be able to facilitate setup changeover by changing detailed design

(FR-T32). For instance, standardizing the location of holes of various products may lead

to the elimination of the stamping die changeover. This effort may result in the

elimination of the need for supporting activities (FR-T5). Standardizing the hole locations

eliminates the need for die changeover, which also gets rid of the need for die

transportation activity. Since less supporting activities are applied, the chance for a

production disruption caused by the supporting activities is lowered.
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7.23.6.5 Operating Cost Branch

In the operating cost branch of the MSDD, detailed design decisions are related to six

FR-DP pairs out of nine leaf FR-DP pairs and one high level FR-DP pair. The list of the

FR-DP pairs that are affected by detailed design decisions is provided in Table 7-37.

FR-DI1 states to reduce time operators spend on non-value added tasks at each station.

DP-D1I indicates to satisfy this FR by autonomously running machines. Autonomous

running means the simple and reliable automation with problem detection capability or

mistake proof capability. Product designers need to consider the issues related to the

automation of the production processes and reflect them into detailed design to facilitate

autonomous run of the equipment. In addition, the tool requirements caused by the

detailed design decisions should also be studied. Standardization of the tools should be

sought along with efficient tool retrieval and storage (FR-D22).

Detailed design decisions may negatively affect the interface design between man,

machine, and fixture. The impact of detailed designs on the ergonomic design of the

interfaces needs to be analyzed and detailed designs that support the ergonomic interfaces

should be sought (FR-D23).

TABLE 7-37. LIST OF THE FR-DP PAIRS IN THE OPERATING COST BRANCH OF THE MSDD
THAT ARE AFFECTED BY DETAILED DESIGN DECISIONS.

FR DP

D11 Reduce time operators spend on non-value Machines and stations designed to run
added tasks at each station autonomously

Minimize wasted motion in operators' work Standard tools/equipment located at eachD22 preparation station (5S)

D23 Minimize wasted motion in operators' work Ergonomic interface between the worker,
tasks machine, and fixture

D3 Eliminate operators waiting on other operators Balanced work-loops

12 Eliminate information disruptions Seamless information flow (visual factory)

122 Reduce waste in indirect labor Reduction of indirect labor tasks

123 Minimize facilities cost Reduction of consumed floor space
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There are several other manufacturability issues associated with detailed design

decisions. The balancing of the operators work loops should be maintained with the

selected detail design. If not, minor modification on detailed design may be sought to

regain the balance (FR-D3). The effect of new detailed design on information flow also

needs to be studied. A wise detailed design may eliminate the need for the information

flows and thus, reduces information disruptions. Standardizing the location of the holes

of a part in stamping process, for example, eliminates the need for the information flow

for die changeover (FR-12). Overall, the consequence of detailed design decisions on

indirect labor requirement should be studied and reflected in detailed design (FR-122).

Detailed design may be able to contribute to reduce the floor space consumption. It is

often done in an indirect way. For example, by supporting product variety strategies such

as component sharing, detailed design can reduce the consumed floor space (DP-123).

7.2.3.6.6 Investment Branch

Detailed design decisions are sometimes significantly related to the investment issues. As

is stated in Chapter 2, the angled fluid channels of the ABS housing lead to the additional

investment on fixtures and the dedication of the machines to a certain product type.

However, detailed design often indirectly affects the investment decisions by supporting

other categories of product/process design to minimize the total costs. For example,

detailed design should support the delaying of differentiation points as late as possible,

which can decrease the level of product variety exposed to the production. Decreased

product variety requires less equipment flexibility and this may lead to smaller

investment requirements.
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7.2.4 The Relationship Between Six Categories of Design Decisions

and the FRs of the MSDD

In the previous sections, the FR-DP pairs that are affected by each category of design

decisions are investigated. It is considered how a design decision may affect the FRs and

DPs of the MSDD. By reversing the order, however, some insights on the relationship

between the achievement of the FRs of the MSDD and the design decisions may be

obtained. In this way, when a FR of the MSDD is not satisfied well in a manufacturing

system, its root cause can be traced back to the design of the products that are produced

in the manufacturing system. In this section, it is reviewed what categories of design

decisions affect a FR-DP pair of the MSDD. The relationship between the FRs of the

MSDD and the design categories are presented in Table 7-38. As shown in Table 7-38,

the quality branch of the MSDD is most significantly affected by design decisions.

Therefore, it is no wonder to see that existing literature such as DFMA focuses on quality

issues.

A detailed study on the individual FR-DP pairs that are affected by each of the six design

decision categories reveals that some FR-DP pairs are affected by the most of the six

design decision categories. Table 7-39 shows the FR-DP pairs that are affected by more

than five categories of design decisions out of six categories.
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TABLE 7-38. THE RELATIONSHIP BETWEEN SIX CATEGORIES OF DESIGN DECISIONS AND
THE FRS OF THE MSDD
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TABLE 7-39. THE FR-DP PAIRS OF THE MSDD AFFECTED BY FIVE OR MORE CATEGORIES OF
DESIGN DECISIONS OUT OF SIX CATEGORIES.

Quality

111 Manufacture products to target design
specifications

Production processes with minimal
variation from the target.

Qll Ensure that operator has knowledge of Training programrequired tasks

Q112 Ensure that operator consistently Standard work methodsperforms tasks correctly

Q113 Ensure that operator human errors do Mistake proof operations (poka-yoke)not translate to defects

Q12 Eliminate machine assignable causes Failure mode and effects analysis

Q13 Eliminate method assignable causes Process plan design

Q14 Eliminate material assignable causes Supplier quality program

Q32 Reduce impact of input noise on
process output Robust process design

Rl112 Identify disruptions where they occur Simplified material flow paths
Identifying Specified support resources for each

and R121 Identify correct support resources failure mode
resolving
problems R13 Solve problems immediately Standard method to identify and

eliminate root cause

P121 Reduce variability of task completion Standard work methods to provide
time repeatable processing time

P132 Service equipment regularly Regular preventative maintenance
Predictable program

output P14 Ensure that parts are available to the Standard work in process between sub-
material handlers systems

P142 Ensure proper fiming of part arrivals Parts moved to downstream operation
at pace of customer demand

T221 Ensure that automatic cycle time is less Design of appropriate automatic work
than minimum takt time content at each station

Delay T222 Ensure that manual cycle time is less Design of appropriate operator work
reduction than minimum takt time content/loops

T32 Produce in sufficiently small run sizes Design quick changeover for material
handling and equipment

122 Reduce waste in indirect labor Reduction of indirect labor tasks

Operating 12 Eliminate information disruptions Seamless information flow (visual
cost factory)

123 Minimize facility cost Reduction of consumed floor space

Investment 13 Minimize investment over production Investment based on a long term
system lifecycle strategy
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From the result of Table 7-38, it is revealed that the FRs and DPs listed in Table 7-39 are

greatly linked to the product design decisions. Therefore, when a FR listed in Table 7-39

is not achieved satisfactorily in a manufacturing plant, product design decisions may need

to be reviewed as a probable source of problems.

The proportions of the FRs presented in Table 7-39 to the total FRs and total leaf FRs are

shown in Figure 7-16.

1 ___ __ ___ __ __I__ _I

FIGURE 7-16. PROPORTIONS OF THE FRS THAT ARE AFFECTED BY FIVE OR MORE DESIGN
DECISION CATEGORIES TO THE TOTAL FRS AND LEAF FRS OF THE MSDD

Figure 7-16 shows the proportions of the FRs that are affected by more than five design

decision categories to the total FRs and total leaf FRs of the MSDD. The left columns

show the proportion to the total FRs and the right columns present the proportion to the

total leaf FRs of the MSDD. As is shown in Figure 7-16, the quality branch of the MSDD

is the most significantly affected branch. About 80% of the leaf FRs in the quality branch

are affected by more than five categories of the design decisions. Therefore, it is

important to consider product design related causes when a quality problem is identified.
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Then, the predictable output branch and the identifying and resolving problems branch

follow the quality branch. The investment branch has the proportion of 100% since the

MSDD does not further decompose the FR13. There is only one FR in the investment

branch and every design decision is more or less related to investment regardless of the

category the design decision belongs to.

Figure 7-17 shows the proportion of the FRs in each branch of the MSDD that are

affected any of the six design decision categories. It is observed that all FRs of the quality

branch are affected by design decisions in any category. Figure 7-17 also reveals that

more than 50% of the FRs in any branch of the MSDD are affected by product design

decisions. Therefore, it is important to carefully consider product design decisions for

better achievement of the FRs in the MSDD.
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FIGURE 7-17. THE PROPORTION OF THE FRS THAT ARE AFFECTED BY AT LEAST ONE
DESIGN DECISION CATEGORY OVER THE TOTAL LEAF FRS.
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7.3 Manufacturability Evaluation Process

The manufacturability evaluation process proposed in this section attempts to see how a

product/process design decision affects the achievement of the FRs and DPs of the

MSDD in order to understand the impact of the design decision on manufacturing

systems. Based on the understanding, the manufacturability of a product is ensured

through resolving conflicts between product/process design and manufacturing system

design if there is any. A major assumption with this approach is that the MSDD reflects

the core characteristics of manufacturing system design. This assumption is supported by

successful applications of the MSDD in various disciplines. As is discussed in the

Chapter 4, several researchers address the use of the MSDD in various disciplines. For

example, Arinez [2000] discusses the use of the MSDD for equipment design. Duda

[2000] presents the use of the MSDD to link strategy, performance measurement, and

manufacturing system design. Especially, Linck [2001] addresses the issue of validating

the MSDD. He uses a questionnaire approach to validate the usefulness of the MSDD by

applying the questionnaire to several different industry cases. He claims that the MSDD

effectively reflects the elements of lean manufacturing and is useful to assess the level of

'leanness' of a plant.

Manufacturability should not be seen from the perspective of cost reduction or

investment reduction, only. It is true that a product design with perfect manufacturability

will eventually reduce the cost or investment associated with the introduction of the

product design to a manufacturing system. However, manufacturability problems should

not be approached purely from the financial viewpoint since this approach may lead to

the decisions that deteriorate the performance of a manufacturing system. Instead, it

should be approached to assure the stability of a manufacturing system against the

introduction of new products. The financial advantage should be a result of keeping the

stability of the manufacturing system, not a goal by itself In addition, from the viewpoint

that manufacturability is to keep the stability of a manufacturing system, the scope of

traditional DFMA (Design for Manufacturing and Assembly) approaches is too narrow,

focusing on quality issues. They need to be expanded to cover manufacturing system
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issues, which is one of the aims of the proposed evaluation process described in the next

section.

7.3.1 Steps of the Manufacturability Evaluation Process

The manufacturability evaluation process begins with a product/process design decision

to be reviewed. With this design decision, the level of abstraction or detail to study is

decided (step 1). This is to decide the details of the design decision to study since there

can be design decisions in various levels of product/process design from a product range

decision to a hole-diameter decision. Then, it is decided to which category of the

proposed six categories of product/process design the design decision belongs (step 2).

The category decision enables the understanding of the general interactions between the

category and manufacturing systems by reviewing the proposed interactions as discussed

in section 7.2.3 (step 3). Based on the understanding of the general interactions, the case

specific interaction can be studied by reviewing the design decision against each FR and

DP of the MSDD (step 4). The reviewing process will reveal if there is any conflict

between the design decision and the achievement of the FRs of the MSDD by the

proposed DPs (step 5). If there is no conflict, the manufacturability of the design decision

is confirmed. If there is any conflict, however, the conflict should be resolved by product

design modification, manufacturing system design modification, or both (step 6). In case

that product/process design modification is made, the new design decision is reviewed

again from the step 4. If only manufacturing system design modification is made, the

manufacturability of the design decision is confirmed with the modified manufacturing

system design (step 7). The flow diagram of the manufacturability evaluation process is

given in Figure 7-18.

In the following sections from 7.3.1.1 to 7.3.1.7, each of the steps is explained in detail.
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A Product / Process Design Decision

V

Decide the level of abstraction or detail to study

Decide which category the design decision belongs to

Understand the general interactions from 6 category examples

Review the design decision against each FR & DP of the MSDD

NO Does the design decision
conflict with the MSDD?

YES

Resolve conflicts by product design change, manufacturing system design
change, or both.

K? Confirmed Manufacturability

FIGURE 7-18. MANUFACTURABILITY EVALUATION PROCESS

7.3.1.1 Step 1: Decide the level of abstraction or detail to study

The first step of the manufacturability evaluation process is to decide the level of

abstraction or detail to study with the design decision in mind. The level of detail of both

the design decision and the manufacturing system design are important. As for the details
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of the design decision, there can be design decisions in various levels of product/process

design from a product range decision to a detailed design decision such as a hole-

diameter decision. If the design decision in consideration is in too much detail, it might

be difficult to see its impact on manufacturing systems or the manufacturability issues are

too trivial for a thorough study using the proposed evaluation process.

In addition, the level of detail of manufacturing system design should be also considered.

The decomposition of the MSDD is done down to the level that can be generally applied

to various industry. Therefore, if further analysis of manufacturability is necessary in a

specific manufacturing system, the MSDD may need to be further decomposed to reflect

the specific manufacturing system in further details.

Considering these issues, the details of the manufacturability study should be considered

at the first step.

7.3.1.2 Step 2: Decide which category the design decision belongs to

The proposed manufacturability evaluation process presents six categories of

product/process design that significantly affect manufacturing systems. They are 1)

product variety decision, 2) product architecture design, 3) purchasing decision, 4)

material selection, 5) process selection, and 6) detailed design. After deciding the level of

detail to study, it is considered which category the design decision in mind belongs to.

This step is necessary to use the general interactions between each category and

manufacturing systems presented in section 7.2.3. If the design decision in consideration

belongs to multiple categories, the general interactions of all applied categories may be

reviewed.

7.3.1.3 Step 3: Understand the general interactions from six category

examples

The interactions of each category of product/process design with manufacturing system

design are described in section 7.2.3. These general interactions may be understood first

before reviewing the specific design decision in mind against the FRs and DPs of the

MSDD. This understanding also provides the general idea of how the specific design

decision may affect the FRs and DPs of the MSDD. This step is important since it may be
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difficult to see the impact of a very detailed design decision on manufacturing systems.

For example, the interactions between the cap diameter decision of juice bottles and the

FRs and DPs of the MSDD may be difficult to be captured. In this case, the general

interactions between detailed design and the FRs and DPs of the MSDD can be reviewed

and used as a guideline.

As is discussed before, however, the general interactions presented in section 7.2.3 only

reflect the existing knowledge on the interactions between manufacturing systems and

product/process design. If new knowledge is gained in the interactions or new insights on

manufacturing systems are found, they are subject to modification to reflect the changes

in the existing knowledge.

7.3.1.4 Step 4: Review the design decision against each FR and DP of the

MSDD

The interactions between manufacturing system design and six categories of

product/process design are captured by reviewing each category against the FRs and DPs

of the MSDD. The same process is repeated to review how the specific design decision

affects manufacturing system design. Specific interactions may be found during this

process while general interactions are considered during the reviewing process. In some

cases, some of the FRs and DPs affected by the category that the design decision belongs

to may not be affected by the specific design decision.

Through this reviewing process, the manufacturability issues can be systematically

identified and thus, resolved accordingly.

7.3.1.5 Step 5: Does the design decision conflict with the MSDD?

After the reviewing process, it should be decided if there is any conflict with the design

decision in mind and the achievement of the FRs by the proposed DPs of the MSDD. The

reason why both FRs and DPs are considered is explained in section 7.2.3.

The conflicts between the design decision and the satisfaction of FRs by DPs in the

MSDD indicate the cases when the design decision makes it more difficult to satisfy the

FRs or fails to be compatible with the given DPs. For example, more product variety
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makes it more difficult to satisfy the FR-Q 111 (ensure that operator has knowledge of

required tasks). Therefore, there is a conflict with the increased product variety decision

and manufacturing systems. Another example is FR-R112 (identify disruptions where

they occur) and DP-R112 (simplified material flow paths). FR-R112 is satisfied by DP-

R112 and a product architecture design can affect DP-R112 and thus, FR-R112.

Therefore, any product architecture design that complicates material flow paths has a

conflict with the MSDD. These conflicts should be resolved in the step 6.

7.3.1.6 Step 6: Resolve conflicts by product design change,

manufacturing system design change, or both

After identifying the existence of the conflicts, those conflicts should be resolved. There

are fundamentally two ways to resolve the conflicts: change the design decision or

modify manufacturing system design. Since the manufacturability evaluation process will

be conducted during product development, it will be better to find alternative product

designs that will not make any conflicts with manufacturing systems. However,

sometimes it is necessary to prepare manufacturing system design changes to eliminate

the conflicts. The later case happens because the product design decision is a function of

many factors such as product development drivers, customer satisfaction, engineering

functionality satisfaction, manufacturability, and after-sale service. In other words, there

are a lot of factors that affect product design other than manufacturability issues. A

design decision should be made after considering all of these factors and thus, sometimes,

manufacturing system design modification is required instead of product design change.

For example, Ulrich and Eppinger [2000] categorize five different product development

drivers: generic market pull, technology push, platform products, process intensive, and

customized. The characteristics of each type of the product development drivers and the

examples are summarized in Table 7-40. Among these types of product development

drivers, process intensive product development may prefer product design changes,

compared to production process changes. In this case, it is most important to design a

product that can be produced with existing equipment and processes. On the other hand,

the technology push type focuses more on applying the developed technologies and thus,

manufacturing system design modification is preferred to design decision changes.
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Otherwise, a new manufacturing system is often constructed for this type of products. As

for the rest categories of generic - market pull, platform products, and customized, either

product/process design changes or manufacturing system design changes can be made

according to the specific situation.

TABLE 7-40. SUMMARY OF VARIANTS OF GENERIC DEVELOPMENT PROCESS (ADAPTED
FROM ULRICH AND EPPINGER [2000]).

Generic - Technology Platform Process Customized
Market Pull Push Products Intensive

Description The fin The finn The firm Characteristics New products
begins with a begins with a assumes that of the products are slight
market new the new are highly variations of

opportunity, technology, product will be constrained by existing
then finds then finds an built around an the production configurations

appropriate appropriate established process.
technologies to market. technological
meet customer sub-system
needs.

Distinctions Planning phase Concept Both process Similarity of

with respect involves development and product projects allows
matching assumes a must be for a highly

to generic technology and technology developed structured
process market. platform. together from development

the very process.
Concept beginning, or an
development existing
assumes a production
given process must be
technology specified from

the beginning.

Examples Most sporting Gore-tex Consumer Snack foods, Switches,
goods, rainwear, electronics, cereal, motors,
furniture, tools. Tyvek computers, chemicals, batteries,

envelopes printers. semiconductors. containers.

When product design decisions have conflicts with the FRs of the MSDD that are related

to equipment design, new equipment may be necessary. In this case, the new equipment

should be designed in a way that the FRs of the MSDD linked to equipment design, are

reflected in the equipment design. Arinez [2000] describes an equipment design approach

using the MSDD.
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The requirement for new equipment itself is a factor that affects the form of conflict

resolution, since new equipment is usually associated with large investment, which is an

important factor to decide whether product/process design changes or manufacturing

system design does. Therefore, it is natural to pursue the reuse of the existing equipment

by modifying product/process designs when there is no significant difference in the rest

of the factors that affect product/process design decisions.

7.3.1.7 Step 7: Is any product design change made?

After resolving the conflicts through the design decision changes with or without

manufacturing system design modification, the new design decision should be reviewed

again from the step 4 to re-confirm manufacturability of the proposed design decision.

When only manufacturing system design modification is made, the manufacturability of

the design decision is confirmed with the modified manufacturing system design.

7.3.2 Benefits of the Manufacturability Evaluation Process

The proposed manufacturability evaluation process has several advantages over the

traditional DFMA approach. First, the proposed methodology shows how a design

decision affects the achievement of the objectives of the manufacturing system. This is

possible since the MSDD is used in the proposed methodology. The MSDD separates the

objectives (FRs) from the means (DPs) to achieve them. This advantage can be used

when the DFMA practices are rationalized. The proposed methodology can present which

FRs and DPs of the MSDD are affected by the DFMA practices. Instead of claiming that

cost reduction is the only benefit of the DFMA practices, product engineers can show

how their DFMA practices will prevent manufacturing problems and even contribute to

the achievement of the objectives of manufacturing systems. The financial benefit is the

ultimate goal of the DFMA practices but it is the result of better achieving the objectives

of manufacturing systems.

Second, the proposed methodology enables product engineers to view the impact of their

design decision on manufacturing systems in a holistic way. Using the proposed method,

it can be known which areas of the manufacturing system design are affected by the

design decision: quality, time variation reduction, lead time reduction, operating cost
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reduction, or investment. With this approach, product engineers are able to consider other

objectives of manufacturing in addition to the traditional quality requirement, which will

prevent manufacturing system problems caused by blind pursuit of the traditional DFMA

guidelines. The benefits and losses of the application of the DFMA rules can be shown

with the proposed method.

Third, the proposed methodology can show the manufacturability of a design decision

without relying on accumulated experience. This advantage is important since the

analysis of the first round questionnaire shows that many companies have approached the

manufacturability problems with knowledge management tools. Accumulated experience

is important and useful but accumulated experience can be more effectively categorized

and utilized with the manufacturability evaluation process. In addition, the proposed

method can be applied to a completely new case, which cannot be supported by

accumulated experience.

Fourth, it allows room for strategic decisions. The proposed methodology shows which

FRs and DPs are affected by a design decision with some examples. However, it does not

force that the design should always be changed. Instead, it shows what conflicts need to

be resolved. Therefore, according to the other factors in consideration, various solutions

can be developed to eliminate the conflicts between a design decision and manufacturing

system design. The goal is to remove the conflicts, not to change the design decision.

Finally, the proposed methodology can be used as a base for an evaluation tool. The

analysis of the first round questionnaire shows that different companies implement

different approaches to the manufacturability problems. However, it is difficult to

compare the effectiveness of different approaches. The proposed methodology suggests

one way to compare those different approaches. They can be compared by the scope they

cover relative to the MSDD. This comparison using the proposed methodology is

discussed in more details in Chapter 9.

7.4 Chapter Summary

In this chapter, the manufacturability evaluation process is presented. The

manufacturability evaluation process is developed by resolving the research subproblems
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provided in Chapter 1. First, the MSDD is developed to represent the requirements and

the corresponding solutions of manufacturing system design. Then, six categories of

product design decisions are recognized. The six categories include product variety,

product architecture, purchasing, material selection, process selection, and detailed

design. The possible interactions between these six categories of product design decisions

and manufacturing system design are investigated using the MSDD. If the FRs and DPs

of the MSDD are affected by a certain product design decision in a negative way, the

conflicts should be resolved by either modifying the product design decision or changing

the manufacturing system design. Finally, the steps of the manufacturability evaluation

process are presented in detail along with a flow diagram shown in Figure 7-18.

The benefits of the proposed manufacturability evaluation process include:

. The proposed methodology shows how a design decision affects the achievement of

the objectives of the manufacturing system. This is possible since the MSDD is used

in the proposed methodology, which clearly separates the objectives (FRs) from the

means (DPs) to achieve them.

" The proposed methodology enables product engineers to view the impact of their

design decision on manufacturing systems in a holistic way. With the proposed

approach, product engineers are able to consider other objectives of manufacturing

(e.g., delay reduction, predictable output, etc.) in addition to the traditional quality

requirement.

. The proposed methodology can show the manufacturability of a design decision

without relying on accumulated experience.

. The proposed methodology allows room for strategic decisions by showing what

conflicts need to be resolved.

. The proposed methodology can be used as a base for an evaluation tool.
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8 APPLICATION EXAMPLES OF THE

MANUFACTURABILITY EVALUATION PROCESS

In this chapter, a couple of industry case examples are presented to show how the

proposed manufacturability evaluation process can be applied to the real industry

problems. Along with the detailed description on the steps of the application, several

issues associated with the actual application of the proposed method are discussed. The

first example is about a manufacturing improvement project in an automotive supplier

plant and the second example is the extended discussion of the plant C case in Chapter 2.

In addition to the industry case examples, it is reviewed how existing DFM approaches

can be viewed using the proposed framework.

8.1 Plant X Case

In this section, a manufacturing improvement project related to product/process design is

reviewed from the manufacturability perspective. It is shown what manufacturability

issues should have been considered during the improvement project. The proposed

manufacturability evaluation process is used to check the manufacturability of the

product/process design changes made for the manufacturing improvement.

8.1.1 Plant and Product Background

Plant X is one of the plants of a first tier supplier company in the automotive industry.

Plant X produces meters used in the instrument panel located in the dash board. The

schematic view of the product is shown in Figure 8-1.

FIGURE 8-1. INSTRUMENT PANEL METERS (LEFT: ANALOG TYPE, RIGHT: DIGITAL TYPE)
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Plant X started its first operation in 1974 and it is a huge plant with the floor space of 49

acres. The total plant area is up to about 90 acres. About 2,700 people work in plant X to

manufacture meters, portable cellular phones, displays, and sensors for air-conditioning,

etc. As for the meter production, about 300,000 analog meters are produced per month

along with about 370,000 self-lighting meters. Therefore, each month, about 670,000

units of the meters need to be produced in this plant. The more interesting part is that the

number of the types of the final meter assembly is up to 1,600. According to the

interview with a production engineer of this plant, the average number of products

produced per type is only about 10 units per day. Among 1,600 types of products, about

81 types have large production volumes that are about 1,800 units per day.

With the meter production of about 670,000 units per month, the mother company of the

plant X takes about 40 % of the domestic market and 15 % of worldwide market.

8.1.2 The Improvement Project

The fabrication of the meter plates is comprised of three major production processes:

1) screen printing

2) stamping (dedicated dies are used)

3) external shape inspection

In the screen printing process, the numbers, scales, and symbols that are typically seen in

the instrument panel are printed. In the stamping process the holes for further assembly

are made and the outlines of the meter plates are trimmed. Then, the external shape of the

meter plates is inspected with both operators' visual check and more complex automated

visual check using an optical technology.

In the stamping process, stamping dies are used to make holes and trim outlines. It is a

complicated process given that the product variety requires about 160 die changeovers

made per day. In addition, new dies are necessary whenever a new meter plate design is

introduced. Developing new dies requires significant financial and time investment. The

production preparation time is about 20 days-
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Two improvements have been made to simplify the stamping process while maintaining

flexibility required. First, the positions of holes in the meter plates are standardized to

minimize the number of die changeover time. Second, laser cutting technology is

implemented for outline cutting, which substitutes traditional stamping processes. With

these new methods, the number of die changeovers per day is decreased from 160 to zero

and the production preparation time is decreased from 20 days to 1 day.

In the next section, manufacturability issues that exist in this improvement project are

presented using the proposed manufacturability evaluation process.

8.1.3 Application of the Manufacturability Evaluation Process

The first step of the manufacturability evaluation process is to decide the level of

abstraction or details of the analysis on the design decision in mind. The design decisions

subject to the evaluation processes in this case are the standardization of the hole location

and the process changes from stamping to laser cutting. These two decisions will be

checked against the FRs and DPs of the MSDD. Further detailed analysis is avoided

since this analysis is to examine the general applicability of the proposed approach. Plant

specific analysis is not necessary for this purpose and therefore, further decomposition of

the MSDD is not required.

The second step of the manufacturability evaluation process is to decide which categories

the design decisions under consideration belong to. The proposed manufacturability

evaluation processes have six categories of product/process design that significantly

affect manufacturing systems. They are 1) product variety decision, 2) product

architecture design, 3) purchasing decision, 4) material selection, 5) process selection,

and 6) detailed design. In the Plant X case, standardization of hole locations belongs to

the product variety and detailed design categories among the six proposed categories

while the process change decision belongs to the process selection category. In the third

step, general interactions between the three categories and manufacturing system design

are then reviewed as are presented in section 7.2.3.

The fourth step is to review the design decisions against the FRs and DPs of the MSDD,

considering the general interactions of the relevant categories presented in section 7.2.3.
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The result of the reviewing process is presented in Figures 8-2, 8-3, and 8-4. The gray

colored blocks indicate the FRs and DPs of the MSDD that are relevant to the category

but not significantly related to the design decisions. The black colored blocks point out

the FRs and DPs that are positively affected by the design decisions in consideration. The

dashed blocks indicate the FR-DP pairs that require further consideration before

implementing the design decisions. After identifying the FR-DP pairs that are affected by

the design decisions, any conflicts between the design decisions and the satisfaction of

the FRs should be identified and resolved. After the manufacturability evaluation process,

it can be said that the manufacturability of the design decisions is confirmed.

8.1.3.1 Standardization of hole locations

The standardization of hole locations works to reduce the effective product variety to the

stamping process. Since hole locations on different products are the same, there is no

conflict coming from the increased product variety and most of the FRs and DPs that are

related to product variety are positively affected. For example, FR-T32 (produce in

sufficiently small run sizes) can be satisfied even without DP-T32 (design quick

changeover for material handling and equipment) since now there is only one type of

product from the stamping process point of view. The ideal run size of one can be

achieved. However, there are a couple of FRs on which the reduced product variety may

act negatively. FR-Q12 states to 'eliminate machine assignable causes.' Reduced product

variety results in more frequent use of the same die, which causes faster die wear, which

can cause quality problems. Furthermore, FR-P132 indicates to 'service equipment

regularly' and this FR is satisfied by the DP-P132, 'regular preventative maintenance

program.' The existing preventative maintenance program should be modified to reflect

the increased die wear rate in order to avoid disruptions caused by die failure.
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FIGURE 8-2. THE IMPACT OF STANDARDIZING HOLE LOCATIONS ON THE FRS AND DPS OF
THE MSDD FROM THE PRODUCT VARIETY PERSPECTIVE.

From the detailed design point of view, the quality issue is most significant. First, there

should be no quality problem after standardizing the hole locations. Many things should

be checked for quality assurance purposes but since the same stamping process is used to

make holes, the number of issues that are subject to strict scrutiny is greatly reduced. For

example, using the same stamping process may result in little change in the knowledge

required of operators on their tasks (FR-Q 111). It would be enough for the operators to

know that the locations of holes are standardized and they no longer need to make die

changeovers. In a similar way, existing standard work methods may be used with slight

modification (DP-Q112) along with existing mistake-proof devices (DP-Q113). More

consideration on mistake-proof devices may be given since now only one design is

processed and thus, it may be easier to develop more comprehensive mistake-proof

devices.

Other sources of quality problems include machine (FR-Q12), method (FR-Q13), and

material (FR-Q 14). Machine assignable causes of quality problems may not be significant

in this case since the same stamping machine can be used as long as the new design does

not require any additional capability from the machine (e.g., more force requirement).

The same failure modes and effects analysis (FMEA) data may be utilized to eliminate

machine assignable causes.
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FIGURE 8-3. THE IMPACT OF STANDARDIZING HOLE LOCATIONS ON THE FRS AND DPS OF
THE MSDD FROM THE DETAILED DESIGN PERSPECTIVE.

Some attention, however, needs to be paid to method assignable causes of quality

problems. For example, the standardized hole locations need to be appropriate to the

stamping process. The location of the holes should have a certain margin from the edge to

avoid the fracture of the meter plate. However, it would not be an unsolvable issue since

the plant has prior experience with the stamping process and meter plate design. In

addition, new hole locations should not affect quality due to the incoming material

quality.

The new design specification may affect manufacturing quality the most. If the designed

tolerance of hole locations or hole sizes is not in the same order as the previous design,

the existing process may need to be modified, requiring a complete manufacturability

review on the sources of quality problems. However, in the case presented, the same

machine and process can be used, which indicates that no significant changes are made in

terms of design tolerances.

In the identifying and resolving problems branch, the standardization of hole locations

does not seriously affect the FRs and DPs from a detailed design perspective. Different

patterns of production disruptions, however, are likely to happen. Disruptions caused by

die wear may increase while disruptions caused by maintenance and transportation of

different dies to the stamping machines are eliminated. Therefore, slight modification of

the existing feedback system is necessary. Less supportive resources may be required due
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to decreased product variety while the minor design change caused by the standardization

of hole locations may not significantly change the characteristics of the process. In a

similar way, the existing standard method to identify and eliminate root causes can be

used to solve disruption problems immediately.

In the predictable output branch, the standardization of the hole locations affects the FRs

and DPs in a similar way as it does in the identifying and resolving problems branch. The

reduced product variety due to the new design may diminish the variability of the task

completion time since now the operators need to manage only one pattern of the hole

location. Furthermore, standard work methods can be simplified. The new design itself

does not change the existing standard method in use. Similar pattern can be found with

the equipment maintenance (FR-P132) and parts availability (FR-P141). From the

detailed design perspective, the standardization of the hole locations does not

significantly affect the maintenance of the equipment or the standard work in process.

Production disruptions may be reduced by eliminating the need for die transportation and

die changeover. This is possible by the detailed design that supports the product variety

strategy of standardization.

In the delay reduction and the operating cost branches, the impact of the standardization

from the detailed design perspective is insignificant since the same process with the same

equipment is used. However, many benefits are achieved from the product variety

perspective. For example, the elimination of the die changeover reduces the indirect labor

associated with the maintenance, storage, and transportation of the dies as well as the

indirect labor related to the information management to signal die changeover. In

addition, the storage area for dies is eliminated and the time that operators spend on non-

value added tasks (die changeover) is reduced. As for the investment branch, not a big

investment is involved with the standardization of the hole locations.

So far, the impact of the standardization of hole locations on manufacturing system

design is reviewed and it is found that most of the benefits come from the reduced

variety. On the other hand, several conflicts with the manufacturing system design are

identified. It is shown that even the reduction of product variety may cause some

problems in the stamping process and there are several issues to be considered from the
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proposed manufacturability viewpoint with the design of the new hole locations that

looks quite simple and trivial.

8.1.3.2 Process change from stamping to laser cutting

The impact of process change on the manufacturing system is significant since

manufacturing systems are comprised of a series of production processes. Figure 8-4

presents the FRs and DPs that are affected by the process change from stamping to laser

cutting. Compared to Figure 8-2 and 8-3, much more dashed blocks are observed in

Figure 8-4. This difference indicates why new process technology is hard to be

implemented in manufacturing systems. There are numerous factors that should be

considered for successful implementation of the new process technology as presented in

Figure 8-4.

FIGURE 8-4. THE INTERACTIONS BETWEEN THE PROCESS CHANGE FROM STAMPING TO
LASER CUTTING ANT) THE FRS ANT) DPS OF THE MSDD.

The new laser cutting process should first satisfy quality requirements. Operators should

be trained in the new tasks associated with the laser cutting process (FR-Ql 11), and a

standard work method should be developed and tested for consistent operator

performance (FR-Q 112).

Changing the production process from stamping to laser cutting has a positive effect

similar to that of reducing product variety in that the impact of product variety on the

manufacturing process is reduced by the increased flexibility of the process. For example,
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die changeover is eliminated with the laser cutting process; therefore, the operator human

errors associated with setting the different dies (FR-Q 113) may be reduced.

Other factors that affect manufacturing quality are machine, method, and material. Since

laser cutting is a new process, information on machine assignable causes of quality

problems associated with the new equipment might not be available. Through a close

collaboration with the machine vendors and trial run of the equipment, however, many of

the machine assignable causes can be eliminated (FR-Q 12). Many other things need to be

checked before the introduction of laser cutting, such as whether the new laser process is

capable of processing a part within given tolerances and whether any unexpected

deformation of the material happens with applied laser cutting (FR-Q13). Then the

quality of the incoming materials is checked to be sure they are good enough for the laser

cutting process (FR-Q14). In order to center the process output mean on the target value

(FR-Q2), it is necessary to identify the process parameters of the laser cutting and

understand their effects on the process output. This information can be provided by the

machine vendors. Then, possible noise factors can be investigated and eliminated (FR-

Q31) along with the efforts to make the process robust to the noise (FR-Q32). On the

other hand, instead of resolving conflicts by modifying manufacturing, an alternative

process can be sought. For example, machine assignable causes may be solved by

changing the process to water jet cutting.

In the 'identifying and resolving problems' branch, the impact of the introduction of the

laser cutting process should be analyzed to evaluate the ability of the shop floor to

quickly respond to problems. First, the impact of laser cutting on material flow paths

(FR-R112) should be identified. Then the types of production disruptions need to be

predicted (FR-R113) and reflected in the feedback system. This is followed by the

planning of supportive work specifications that determine who is responsible for solving

each conflict (FR-R121). The existing standard method of eliminating the root causes of

disruptions may be used or a new one can be developed if the existing one does not apply

to the new laser cutting process (FR-R13).

In the predictable output branch, a new standard work method needs to be designed to

reduce variability of task completion time (FR-P 121), and it is necessary to plan the level
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of standard work in process (SWIP) (FR-P141) and part transportation method (FR-

P142). Because a new process is implemented, some safety factors might be considered

in the SWIP calculation and part transportation. More importantly, the new laser cutting

process brings new requirements for the preventative maintenance program (FR-P132),

which would be different from that for the stamping process.

In the delay reduction branch, the laser cutting process should be able to satisfy such

requirements as ensuring automatic and manual cycle times are less than minimum takt

time (FR-T221 and FR-T222). One of the most significant benefits in changing the

production process from stamping to laser cutting is the reduction of run size delay. An

example of this would be that where the control system allows, a run size of one can be

achieved without the expense on die changeover. The changeover of laser cutting is

possible by simple program change and thus, virtually no time is taken for changeover

(FR-T32). This change also improves systematic operational delays by eliminating the

need for die transportation, storage, management, and information management related to

die changeover (FR-T5).

In the operating cost branch, autonomous running of the laser cutting process (FR-D11)

should be sought along with the balance of the operators' work loops (FR-D3). Tools

used for laser cutting need to be standardized and maintained properly (FR-D22).

Information disruption may be reduced by eliminating die changeover information flows

while some space used for die storage and maintenance may be saved (FR-f2). There can

be an argument, however, with the indirect labor (FR-122) for die maintenance and

transportation. While this indirect labor may be reduced, indirect labor to take care of

laser cutting machines and update the software may increase.

When considering the financial benefit of the process change, it is also necessary to focus

on such factors as the drastic reduction in new design preparation time from 20 days to 1

day, which leads to the improved responsiveness to customer requirement. Other benefits

such as reduced run size delay and eliminated die changeover should be also reflected in

the decision.
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8.1.3.3 Product/process design and new equipment

When there is a conflict between a product/process design decision and the FR-DP pairs

of the MSDD, two types of solutions exist. One is to change the product design or the

selected process to meet manufacturing requirements. The other is to modify the

manufacturing system to accommodate given product/process design decisions. It is often

more economical, however, to change product/process design since the changes to a

manufacturing system require a large fixed investment in many cases. The problem is that

sometimes product design cannot be changed. A customer may require a specific feature

on a product, for example. In this case, to resolve the conflicts between product/process

design and FR-DP pairs of the MSDD, it is necessary to modify manufacturing, perhaps

requiring new equipment. In other words, the conflicts between the design decisions and

the FRs of the MSDD are the drivers for implementing new equipment. At Plant X, for

example, the process change from stamping to laser cutting indicates that some FRs of

the MSDD could not be satisfied with the existing equipment. FR-T32 (produce in

sufficiently small run sizes) is a good example, since with stamping process, the ultimate

run size of one cannot be achieved in order to compensate the die changeover time. In

this way, several FRs may not be satisfied by the existing stamping process, which leads

to the implementation of new laser cutting equipment.

When new equipment is implemented, many manufacturing system issues should be

considered in addition to the processing of a part. The equipment needs to be designed

that it satisfies the relevant FRs of the MSDD that are shown in Figure 8-5. Arinez [2000]

describes in his decomposition-based approach to the equipment design how the FRs of

the MSDD can be reflected in the design of the equipment. It is important to have right

equipment (e.g., machines, fixtures, etc.) that fits with the given manufacturing system as

well as the product/process design since it is most significant fixed investment item on

the shop floor.

Yong-Suk Kim 290



FIGURE 8-5. THE FRS OF THE MSDD RELEVANT TO EQUIPMENT DESIGN [ARINEZ 2000]

8.1.4 Conclusion

In this section, it is shown that many factors should be considered during the

implementation of product/process design decisions. The standardization of the hole

locations seems a simple implementation and appears to be beneficial for manufacturing

but it is found that the standardization may lead to quality problems by die wear and

preventative maintenance programs in the existing manufacturing system need to be

modified to accommodate the new design. The process change from stamping to laser

cutting is also involved with various manufacturing issues as previously discussed. As for

the process selection, it is closely linked to the new equipment implementation. The

conditions when new equipment is required are discussed from the manufacturability

perspective.

In summary, with the given example, it is shown that the manufacturability evaluation

processes can be used to identify the conflicts between design decisions and

manufacturing system design.

8.2 Plant C Case

In this section, it is presented how the manufacturability evaluation process can be

applied to solve the design problem discussed in section 2.2. As is discussed in section

2.2, the angled fluid channels of ASR/VDC housings cause many troubles in the

manufacturing system. The application of the proposed manufacturability evaluation

process reveals what went wrong with the design of the angled fluid channels and how

the problems would have been prevented. Three possible solutions are presented and their

advantages and disadvantages are discussed along with how the manufacturability
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evaluation process can be used during the problem solving. In addition, it is discussed

how the manufacturability evaluation process can be applied when the existing

manufacturing system is not designed according to the FRs and DPs of the MSDD.

In this section, the description of the background information on plant and product is

avoided, since they are already addressed in section 2.2. Therefore, please refer to section

2.2 for the detailed information on product design and manufacturing system design of

the plant C. However, the problem is stated in detail to avoid confusion.

8.2.1 Problem Statement

Before stating the problem that plant C confronts, detailed explanation on the angles

holes needs to be given for further understanding of the problem. First, a schematic view

of the outlook of the product is given in Figure 8-6. The product has six faces and there

are holes on all of the six faces to comprise the breaking fluid channels.

There are four angled holes in ASR housings. The rest of the holes that constitute the

fluid channels of the ABS are perpendicular to the faces of the housing. The direction of

the angled holes relative to the faces is shown in Figure 8-7. The type I angled holes are

not parallel to the planes of face 1 and 3, and face 2 and 4. Angles holes II, however, are

not parallel to the face 5 and 6, but are parallel to the face 2 and 4. This difference

combined with the manufacturing strategy of integrating operations causes manufacturing

system problems.

Yong-Suk Kim 292



FFace5

Face 2
Face 3

Face 4 < Face I
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FIGURE 8-6. A SCHEMATIC VIEW OF THE ASR/VDC HOUSING DESIGN

Angled Holes I

Angled

Holes II

Plane parallel to Face 2 and 4 Plane parallel to Face 1 and 3

FIGURE 8-7. ANGLED FLUID CHANNELS IN THE ASR/VDC HOUSINGS.

The manufacturing strategy of plant C is to integrate as many operations as possible into

one cycle of the machine so that the parts can be processed as much as possible with a

single fixturing. Therefore, as is explained in section 2.2, machining centers with

tombstone fixtures are implemented. In fact, since a housing can go through more than

one hundred operations with only two times of fixturing, this objective seems to be

achieved. ASR housings need to pass through about 170 operations on it and ABS

housings have about 105 operations. However, to achieve this objective, the housings are
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clamped to the fixture in two positions - A and C in Figure 2-5. As is shown in Figure 8-

8, clamping A is to process face 1, 2, and 4 while clamping C is to process face 3, 5, and

6. In the C clamping position, the angled holes II on the face 3 can be machined with the

rotating fixture. However, the angled holes I on the face 5 cannot be machined since the

holes are not perpendicular to the face 5 and they are angled relative to the plane parallel

to the face 1. Therefore, clamping B is necessary to process type I holes on the face 5.

For this reason, the changeover from ABS housings to ASR housings cannot be done

with a simple code change. New fixtures with clamping B are necessary and the

changeover time from ABS to ASR is longer than one day to keep the required tolerances

due to the required fixture changeover.

Face 4
Face I

Face 2 1

A .........................................

Clamp A

Face 5

Face 3

Clamp C

A Clamping Point Processing Face

FIGURE 8-8. CLAMPING POSITIONS AND THE FACES PROCESSED BY EACH CLAMPING.

8.2.2 Application of the Manufacturability Evaluation Process

The general steps of the manufacturability evaluation process presented in Figure 7-18

are followed to check the manufacturability of the angled fluid channel design. The first

step of the manufacturability evaluation process is to decide the level of abstraction or
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details of the analysis on the angled fluid channel design. This design decision is checked

against the FRs and DPs of the MSDD. Further detailed analysis is avoided since this

analysis is to see the general applicability of the proposed methodology. Plant specific

analysis is not necessary for this purpose either and thus, further decomposition of the

MSDD is not required.

The second step of the manufacturability evaluation process is to decide to which

categories the design decision belongs. In the plant C case, the angled fluid channel

design may belong to the detailed design category since the angled fluid channel design

itself is a detailed design while it contributes to the differentiation of ASR housings from

ABS housings along with other factors. After deciding the categories, the general

interactions between two categories and manufacturing system design are reviewed as

presented in section 7.2.3.

The fourth step is to review the design decision against the FRs and DPs of the MSDD,

considering the general interactions of the relevant categories presented in section 7.2.3.

This review is not easy since the existing manufacturing system is not designed to satisfy

the FRs of the MSDD. Therefore, in the following sections, it is discussed how we can

apply the proposed methodology when dealing with a manufacturing system that does not

follow the principles of the MSDD or lean manufacturing. Then, the angled fluid channel

design decision is first reviewed with the existing manufacturing system. During the

review, it is discussed how the conflicts found can be solved, which corresponds to step 5

and 6. After this analysis, the design decision is reviewed with the assumption that a

cellular manufacturing system (a 'lean' manufacturing system) is implemented. For the

assumed cellular manufacturing system, the cell design proposed in the paper of Cochran

et al. [Cochran et al. 2002] is used.

After the reviews with the existing manufacturing system and the new manufacturing

system, the advantages and disadvantages of the various solutions presented in two

reviews are discussed. This discussion presents the difficulties associated with resolving

the conflicts and proposes a way to deal with the difficulties.
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8.2.2.1 Reviewing the design decision with the existing manufacturing

system

When a detailed design decision like the decision on the angle of fluid channels is made,

many high level design decisions are already made. For example, product variety

decision is likely to have been made: ABS and ASR/VDC. Product architecture design is

also made (integrated) and the type of material is already selected (aluminum). In

addition, it is decided to use machining processes to make the fluid channels on the

housing. Therefore, these constraints should be always kept in mind during the reviewing

process. Furthermore, the design of the ASR housing is based on the ABS housing since

the fluid channels of the ASR are composed of the fluid channels for the ASR function

added on those of the ABS [Maisch et al. 1993], [Maier and M0ller 1995].

Consequently, it is acceptable to assume that the ASR production operations are

developed on top of the ABS production operations and this is supported by the

interviews with the engineers in plant C.

Under these conditions, the design of the four angled fluid channels affects the

manufacturing system in such ways as contributing to the product differentiation between

ABS and ASR housings and failing the equipment and process steps for ABS housings.

The result of the reviewing process is presented in Figure 8-9. The gray colored blocks

show the FRs and DPs of the MSDD that are relevant to the category but not significantly

affected by the given design decision. The black colored blocks indicate the FRs and DPs

that are directly related to the design decision in consideration.

In the quality branch, the most important impact of the angled fluid channel design is that

the angled fluid channels cannot be machined with the fixture that is used for ABS

housing production (FR-Q12) as is discussed in section 8.2.1. The CNC machining center

itself is capable of meeting all machining requirements of both ABS and ASR housings.

To solve this conflict, a new fixture is developed as is shown in Figure 2-5 and 7-24.

However, the new fixture is not designed in a way to achieve all relevant FRs of the

MSDD proposed by Arinez [2000] (Figure 8-5) except FR-Q12 (eliminate machine

assignable causes). Even for the FR-Q12, the new fixture design does not solve the

quality problem caused by the load of multiple parts per each cycle of the machining. As
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is discussed before, when chip-in-spindle problem occurs, for example, all of the loaded

parts should be scrapped, which deteriorates the quality level. From this sense, the

existing solution is just ad-hoc modification of the ABS housing machining operations in

order to produce ASR housings. In addition to the fixture change, some other sources of

the machine assignable causes should be reviewed. For example, the fixture rotation

system should be stiff enough for the machining operation of the angled holes.

FIGURE 8-9. THE IMPACT OF ANGLED FLUID CHANNEL DESIGN ON THE FRS ANT) DPS OF
THE MSDD FROM THE DET AILED DESIGN PERSPECTIWE.

As is explained before, the operation steps to machine the ASR housings are different

from the steps for the ABS housings due to the new fixture developed to machine the

angled fluid channels and other machining requirements such as increased number of

fluid channels and the increased size of the housings. Therefore, the operators need to be

trained on the new required tasks (FR-Ql 11) and new standard work methods (FR-Ql 12)

should be developed. Training of the operators or developing the new standard work

methods should not be difficult since the machining of the ASR housing is not very

different from that of the ABS housing in a fundamental way. Some mistake proof

devices can be developed to prevent the operators' mistakes caused by the introduction of

the new fixture and the operational change (FR-Ql 13).

The angled fluid channel design may be linked to the method assignable causes (FR-Q3)

or material assignable causes (FR-Q4). The location and direction of the angled fluid

channels relative to the other fluid channels may be reviewed to see if machining
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processes are adequate to make those fluid channels. If there is any interference in the

direction of the machining tool movement, the part design cannot be realized with the

machining process. Furthermore, if the angled fluid channels are located too close to

other fluid channels, the vibration and stress coming from the tool movement may cause

some deformation of other fluid channels. In this case, machining may be avoided. In a

similar way, the incoming material property may be checked if the material property

supports the design. To use the given product design and the machining process, the

material property may be improved by using forged aluminum blocks instead of casted

aluminum blocks.

With regard to the FR-111, the angular tolerance of the angled fluid channels needs to be

controlled in addition to the design specifications on the geometry of the housing. The

angular tolerance may greatly affect the location of the end of fluid channels and

additional efforts should be made to keep the angular tolerances. If there were no angled

fluid channels, no angular tolerance may need to be considered except the

perpendicularity from the face of the housing.

In the identifying and resolving problems branch, it should be first checked if the

introduction of the new fixture and the consequent new operation pattern deteriorates the

simplicity of the material flow paths within the existing manufacturing system (DP-

RI 12). The ABS housing machining area design is not affected significantly by the

introduction of the new fixture since the CNC machining centers for the ASR housing

machining are more or less dedicated to the ASR housing. In addition, the ABS housing

machining area is not designed to keep the material flow paths simple and thus, no

significant difference arises after the introduction of the new fixture. To identify

disruptions where they occur, simplified material flow paths should be sought in the

existing manufacturing system.

The introduction of the new fixture and the new operational steps may lead to new types

of production disruptions and the new production disruptions should be reflected to the

feedback system, which is overlooked in the existing system. In addition, new supportive

resources to solve the disruptions related to the new fixture and the new operational steps

should be specified. This factor is not thoroughly considered in the current system.
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In the predictable output branch, new standard methods to provide repeatable processing

time may need to be developed due to the new operational pattern caused by the

introduction of the new fixtures. Even though the machining operations are automated,

loading and unloading are conducted by the operators and the operators are required to

load and unload parts from three clamping positions, A, B, and C. The complexity

involved may lead to variation in task completion time of the operators (FR-P121). In

addition to this factor, preventative maintenance programs in use should be reviewed and

modified as necessary to accommodate the introduction of the new fixture (FR-P122).

FR-P141 and FR-P142 are not much affected by the introduction of the new fixture

because the manufacturing system designed for ABS production does not have SWIP and

the scheduling is done based on forecasting and MRP (material requirement planning)

system. Instead of SWIlP, a large number of inventories are kept to ensure the parts

availability. Proper timing of part arrivals (FR-P142) is not necessary to ensure material

availability even though fallout exists (FR-P14) since the fallouts are compensated by

inventories. Compensation of variation by inventories, however, deteriorates quick

response to the problems and short lead time to the customer demand (delay reduction).

In the delay reduction branch, improvement is made on the lot size of the process. The lot

size of the ABS machining is twelve parts but that of the ASR machining is eight. The lot

size of the ASR machining is decreased to eight since the clamping position B can hold

only eight parts. This reduces the lot delay. However, this lot delay reduction is minimal

since the CNC machining centers in use have three spindles and thus, can process three

parts in parallel, which minimizes the lot delay. This capability contributes to the large

investment made to procure the existing CNC machining centers.

FR-T221, FR-T222, and FR-T223 that are related to the takt time are not affected by the

introduction of the new fixture caused by the angled fluid channels. This is because the

manufacturing system design for ABS housing machining is not operated according to

the takt time. Instead, FR-T2 that is to reduce process delay is partially satisfied by

integrating machining operations into a cycle and operating the AGV (automated guided

vehicle) system in order to minimize the process delay between machining operation and

transportation operation. When the machining operations of the housings are done, the

AGVs deliver the parts to the next operation, which is deburring. The buffer between the
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machining and the AGV transportation is usually two containers which holds about 36

parts. However, more delay reduction can be achieved by using the concept of takt time.

The FR that is most significantly affected by the introduction of the angled fluid channels

is FR-T32. Within the ABS housing family, the changeover time is less than 5 minutes

since it is only a matter of changing machining programming. However, to change over

from ABS family to ASR family, it takes more than a day since huge tombstone fixtures

need to be exchanged and complex calibrations are required. In addition, two fixtures

need to be exchanged since two fixtures attached to two machining centers respectively

work as a group to produce ASR housings.

In the operating cost branch, FR-122 may be affected by the introduction of the new

fixtures that are developed because of the angled fluid channels. This is because two

more types of fixtures are added to the fixture for the ABS housing and thus, indirect

labor requirement to maintain the fixtures may be increased. In addition, the changeover

from ABS to ASR requires indirect labor, which would not be necessary if the same

fixture could be used for both ABS and ASR housings. Facilities cost may be also

increased since more fixtures need to be managed and this may require more space.

In the investment branch, the investment made to develop the fixtures for the ASR

housing would not be necessary if the fixture for the ABS housing could be used for the

ASR housing. This investment would not be necessary if the angled fluid channels are

changed into the fluid channels that are perpendicular to a housing face. Even in this

case, however, it needs to be compared which one is more expensive, developing new

fixture for the ASR housing or developing a fixture that can be used for both ABS and

ASR.

So far, the impact of the angled fluid channel design decision on the existing

manufacturing system is reviewed. The possible conflicts are investigated and explained.

Before looking at a couple of solution options through product design change, the

evaluation of the current manufacturing system is presented in Figure 8-10. Figure 8-10 is

developed based on the methods proposed by Linck [2001] and adapted from [Cochran et

al. 2001a]. As is shown in Figure 8-10, the existing manufacturing system with the
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angled fluid channels for ASR housings does not satisfy the FRs of the MSDD very well.

There is huge room for improvement.

Very poor * Poor | Moderate Good Very good

FIGURE 8-10. THE FRS OF THE MSDD THAT ARE SATISFIED BY THE EXISTING
MANUFACTURING SYSTEM WITH THE ANGLED FLUID CHANNEL DESIGN (ADAPTED FROM

[COCHRAN ET AL. 2001A])

The design change options to solve the conflicts caused by the angled fluid channels

There are a couple of ways to resolve the conflicts caused by the angled fluid channels

from a product design perspective. First, the angled fluid channels can be replaced by the

fluid channels that are perpendicular to the face of the housing. In this case, the special

fixtures for ASR housings are not necessary and the same fixture can be used for both

ABS and ASR housing machining, which eliminate the conflicts identified through the

manufacturability evaluation process. However, while this decision eliminates for the

need for the new fixtures and the new operational pattern, it is not enough to significantly

contribute to the achievement of the FRs of the MSDD. FR-T32 to reduce run size delay

through quick changeover can be better satisfied along with FR-Q12 to eliminate

machine assignable causes. FR-13 related to the investment associated with the new

fixtures may be better satisfied along with the FR-122 to reduce waste in indirect labor.

Other FRs are not affected much since the manufacturing system for the ABS machining

itself is not designed to satisfy the FRs of the MSDD. The modification of the

manufacturing system itself is necessary.
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The other way to eliminate the conflicts caused by the introduction of the angled fluid

channels is to change the product architecture. For example, the fluid channels that

provide ASR functions can be integrated into an ASR module and a manufacturing group

can be dedicated to the production of the ASR modules. In this way, the volume and mix

flexibility of the ABS and ASR housings are ensured at the assembly, which decreases

the complexity involved. There is a company taking this approach [Sekiguchi et al.

1993]. When this modular approach is taken, the manufacturability of the new design

should be reviewed through the manufacturability evaluation process. In addition, it is

likely that a new manufacturing system is implemented to support the change in the

product architecture.

The plant C adopted the first solution and the next generation ABS/ASR has fluid

channels, all of which are perpendicular to the face of the housing.

8.2.2.2 Reviewing the design decision with the new manufacturing

system

In the previous section, the angled fluid channel design decision is reviewed with the

existing manufacturing system that is not designed to satisfy the FRs of the MSDD. In

this section, it is discussed how the angled fluid channel design affects a new

manufacturing system that is designed to satisfy the FRs of the MSDD. The new

manufacturing system design is developed by Cochran et al. [2001a] and detailed

information about the design is available at [Weidemann 1998] and [Kim 1999]. Figure

8-11 represents the manufacturing cell that substitutes the ASR housing production in the

current machining area shown in Figure 2-3. The difference between the cells for the

ABS housing and the ASR housing is the number of machines and operators as well as

the fixtures applied to a certain machine.
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FIGURE 8-11. PROPOSED MACHINING CELL DESIGN FOR ASR HOUSING AT THE PEAK
DEMAND [COCHRAN ET AL. 2001A]

In the quality branch, the introduction of the angled fluid channels does not require any

special fixture since the part can be loaded in an angled position so that the rotation of the

fixture is not necessary. This is possible since a small number of the operation steps are

grouped and allocated to each machine within the cell. Each machine is required to

perform only a small number of operations and thus, is not necessary to be complex. A

simple and general-purpose CNC machining center will work. Quality problems such as

the chip-in-spindle problem can be identified more quickly since the operators can

perform inspection after a small number of operations. Therefore, FR-Q12 can be much

better satisfied. Still, operator training (FR-Q111) and standard work method

development (FR-Q 112) are necessary for the ASR housing cell but they are not required

because of the angled fluid channels. In addition, they are not very different from those of

the ABS housing cell. More specific mistake proof devices may be applied to the

machining of the angled fluid channels (FR-Q113).

The same issues as the existing manufacturing system case should be reviewed for FR-

Q13, FR-Q 14, and FR- 111 The location and direction of the angled fluid channels

relative to the other fluid channels and the faces of the housing may be reviewed to see

the appropriateness of the machining process for the angled fluid channels. For example,

if there is any interference in the direction of the machining tool movement, the part

design cannot be realized with the machining process. In a similar way, the incoming
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material property needs to be checked to see if the material property supports the angled

fluid channel design. With regard to the FR-111, the same requirement that the angular

tolerance of the angled fluid channels needs to be controlled applies to the new

manufacturing system as it does to the existing manufacturing system.

In the identifying and resolving problems branch, it should be first checked if the

introduction of the angled fluid channels deteriorates the simplicity of the material flow

paths of the new manufacturing system (DP-R112). In the new manufacturing system,

there are only four material flow paths as is shown in Figure 8-12 and the angled fluid

channels do not contribute to the material flow paths. Since the material flow paths are

simple and the operations are grouped into a small number, it is easy to identify

disruptions where they occur.

Before After

O lr ABS/ASR H.hg M.lhhg Cl ABS/ASR Asmb0 Cl

R::W]c i1P M tmtf10byAkl r

Customer ehous (sparte) .b + Je .s

Supplier Werd-ouse (s+parat) dSHw.q tM.+khhg Cn ABs AsseXlyCd

FIGURE 8-12. EXISTING MANUFACTURING SYSTEM (LEFT) VS. NEW MANUFACTURING
SYSTEM (RIGHT) (ADAPTED FROM [COCHRAN ET AL 2001A])

The angled fluid channels do not cause any new production disruptions in the new

manufacturing system since there is no difference between the machining of angled fluid

channels and the rest of the fluid channels (FR-Ri113). Still, new supportive resources to

solve the disruptions related to the machining of the angled fluid channels should be

specified to minimize the problem solving lead time (FR-Ri114). The ASR housing cell

may use the same procedure to solve problems as the ABS housing cell (FR-Ri 3).

In the predictable output branch, new standard methods to provide repeatable processing

time (FR-P 121) may need to be developed since the operator work loop in the ASR cell is

different from that in the ABS cell due to the increased number of required operations.
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Angled fluid channels contribute to the increase of the number of required operations.

Preventative maintenance programs for the ABS housing cell may be applied to the ASR

housing cell since there are few differences between them except the number of machines

(FR-P 122). FR-P 141 and FR-P 142 are little affected by the angled fluid channels.

In the delay reduction branch, the angled fluid channel design does not affect the lot size

since a single-piece-flow is accomplished in the new manufacturing system (FR-T 1). FR-

T221 and FR-T222 are related to the takt time and may be affected by the angled fluid

channel design. The automatic cycle time of the machine that processes the angled fluid

channels should be less than the takt time. The same rule applies to the manual cycle time

of the operator who is involved with the machining of the angled fluid channels. This

may not be an easy task since the angled fluid channel machining operations should be

grouped together and allocated to a single machine to avoid the complexity in fixturing.

The FR-T32 may be greatly affected by the introduction of the angled fluid channels. To

produce ABS housings in the ASR cell, the machines used for the production of the

angled holes should have the flexibility to deal with the ABS housing. For example, they

should be equipped with rotating fixtures or two-step fixtures that rotate from a certain

degree to a zero degree. Still the investment necessary to implement these fixtures would

be much less than the investment made to make the rotating tombstone fixtures. In a

similar way, the ABS housing cell cannot produce ASR housings due to the angled fluid

channels. However, variations within the same product family (ABS or ASR) can be

easily managed.

In the operating cost branch, FR-D23 may be affected by the angled fluid channel design.

When the angled holes are machined, ergonomic interface between the worker, machine,

and fixture may be broken due to the angles. When the work interface is designed, this

factor should be reflected in the manufacturing system design. FR-122 and FR-123 may

be little affected by the angled fluid channels.

In the investment branch, some additional investment needs to be made to develop the

fixtures for the angled fluid channel machining. When the flexibility matters, the ASR

housing cell need to have the flexibility to produce ABS housings and in this case, as is

previously explained, the fixtures should have the flexibility. This may lead to additional
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investment. This investment would not be necessary if the angled fluid channels are

changed into the fluid channels that are perpendicular to a housing face.

The summary result of the reviewing process is presented in Figure 8-13. As is shown in

Figure 8-13, different FRs are affected by the angled fluid channel design with the

different manufacturing system. The gray colored blocks show the FRs and DPs of the

MSDD that are relevant to the category but not significantly affected by the given design

decision. The black colored blocks indicate the FRs and DPs that are directly related to

the design decision in consideration.

FIGUkE 8-13. THE IMPACT OF THE ANGLED FLUID CHANNEL DESIGN ON THE FRS AND DPS
OF THE MSDD FROM THE DETAILED DESIGN PERSPECTIWE WITH THE NEW

MANUFACTURING SYSTEM.

So far, the impact of the angled fluid channel design decision on the new manufacturing

system is reviewed. The possible conflicts to arise are investigated and the new

requirements for the manufacturing system are presented. The evaluation of the new

manufacturing system with the angled fluid channel design decision is shown in Figure 8-

14. The questionnaire method proposed by Linck [2001] is used and the result is adopted

from [Cochran et al. 2001la].

By replacing the angled fluid channels with the perpendicular fluid channels, more

improvement in the changeover (FR-T32) is possible along with the quality (FR-l111) and

the investment (FR- 13).
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FIGURE 8-14. THE FRS OF THE MSDD THAT ARE SATISFIED BY THE NEW MANUFACTURING
SYSTEM WITH THE ANGLED FLUID CHANNEL DESIGN (ADAPTED FROM [COCHRAN ET AL.

2001A]).

The plant C case shows that the manufacturability of a product design depends on the

type of the manufacturing system accommodating the new design. For example, with the

cellular (differential) manufacturing system, the angled hole design affects 9 FR-DP pairs

while 18 FR-DP pairs are affected in the departmental (integral) manufacturing system.

Therefore, the cellular manufacturing system is more flexible to the introduction of new

product designs. This is partially due to the fact that the cellular (differential)

manufacturing system only integrates small number of operations into a machine while

the departmental (integral) manufacturing system integrates as many operations as

possible into a machine. In addition, the cellular manufacturing system has the additional

benefit of enhanced manufacturing system performance. Therefore, even though

eliminating the angled fluid channels can solve most of the conflicts between the existing

manufacturing system design and the angled hole product design, the change of

manufacturing systems may be pursued for a long-term efficiency. By adopting both

product design change (eliminating angled holes) and manufacturing system design

change, the best performance of the manufacturing system can be achieved while the

flexibility of manufacturing system to the introduction of new product design is greatly

enhanced. Table 8-1 summarizes the result.
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TABLE 8-1. THE RELATIONSHIP BETWEEN THE TYPE OF MANUFACTURING SYSTEMS AND
PRODUCT DESIGN. (*MS: MANUFACTURING SYSTEM, PD: PRODUCT DESIGN)

Manufacturing System Design

Differential Integral

(Cellular) (Departmental)

rJ)

0

"0

With * Good MS - Bad MS

angled performance performance

holes - Moderate PD - Significant PD
impact impact

Without Good MS - Bad MS

angled performance performance

holes - Minor PD impact - Minor PD impact

8.2.2.3 Integrated vs. differential in product design and manufacturing

system design

From the plant C case, a general rule can be derived that explains the role of product

architecture and manufacturing system design in deciding the flexibility of the

manufacturing system to product variety. This section describes the rule and discusses the

impact of the type of manufacturing system design and product architecture on the

system flexibility to product variety.

In product design, Phal and Beitz [1996] define differential construction as "breakdown

of a component (a carrier of one or several functions) into several easily produced parts,"

and integral construction as "combination of several parts into a single component." The

concept of differential construction and integral construction in product design is same as

the concept of product architecture. Using an analogy, in manufacturing, differential

construction can be seen as "breakdown of manufacturing processes (necessary to

produce a part) into several easily managed segments and their allocation into machines,"

and integral construction as "aggregation of the processes into a machine as many as

possible."
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As is shown in the previous section, the differential construction of the manufacturing

system is better than the integral construction at managing product variety. For example,

if the machining operations are integrated into a machine, a simple change of product

design (e.g., angled fluid channels) may require a significant change of the machine or a

complete reorganization of the machining operations (e.g., new fixtures). On the other

hand, if the machining operations are differentially constructed, a small segment of the

entire machining operations may be changed according to the design change. This is a

part of the reasons why lean manufacturing cell is more flexible than the traditional high-

speed machining department as is presented in the previous sections.

Similar patterns are observed in product design. Differential construction of the product

design combined with an appropriate strategy such as platform strategy or standardized

part sharing strategy, can lead to wide product variety without unacceptably affecting the

manufacturing. This is possible since customer perceived product variety can be provided

with less manufacturing perceived product variety through the combination of the limited

number of parts. In other words, through combination, a limited number of components

can provide wide product variety to the customers. Integral construction of the product

design, however, requires manufacturing to handle the same level of product variety that

is provided to the customers. Therefore, integral construction is not a good way to handle

the product variety. This observation is summarized in a matrix shown in Table 8-2.

Table 8-2 also shows the relationship between the above-mentioned categories of product

and manufacturing system design, and the production cost. The differential

manufacturing requires more machines than the integral manufacturing. To compensate

the increased cost caused by the increased number of machines, the differential

manufacturing uses simple machines and provides better quality. Since the manufacturing

operations are allocated to the machines in small segments, simple and general-purpose

inexpensive machines are enough for the allocated manufacturing operations. In addition,

it is easy to find where quality problems occur and thus, quality problems can be fixed

quickly. On the other hand, the integral manufacturing has the advantage of operating a

small number of machines with high production rate. Therefore, increasing the utilization

rate of the machines can contribute to cost saving.
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In product design, the differential design saves costs associated with the product variety

by sharing standardized parts. In addition, easily producible part designs enable the use of

simple operations to produce them, which further reduces the manufacturing costs

involved. On the other hand, the integral design has less number of parts and thus, has an

advantage in the assembly and fabrication by reducing the number of operations required.

TABLE 8-2. THE RELATIONSHIP BETWEEN DIFFERENTIAL AND INTEGRAL CONSTRUCTION
OF PRODUCT AND MANUFACTURING SYSTEM DESIGN.

Manufacturing System Design

Differential Integral

Differential Very Flexible
Flexible I

Integral Flexible Inflexible

Cost saving from
using standardized

part, simple
process

Cost saving from
using less number
of processes, less

assembly

Cost saving from Cost saving from
simple machine, less number of

high quality machines, high

* Pahl & Beit , 1996 util. rate, high
production rate

This result may be compared with the matrix proposed by Ulrich [1995], which is shown

in Table 8-3. In this matrix, Ulrich considers product architecture and component

process flexibility. He categorizes product architecture into modular and integrated

architectures, and manufacturing into low flexibility manufacturing and high flexibility

manufacturing. The product variety and production lead time issues are explained in each

case as is shown in Table 8-3.

The matrix shown in Table 8-2 is compatible with the matrix proposed by Ulrich since

the differential manufacturing is often more flexible than the integrated manufacturing.

The matrix in Table 8-2 shows how a component manufacturing can be more flexible to

the product variety and the design change.
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TABLE 8-3. RELATIONSHIP BETWEEN PROCESS FLEXIBILITY AND PRODUCT
ARCHITECTURE [ULRICH 1995]

Component process flexibility

Low High

Variety achieved by combinatorial 9 Components may be fabricated to
assembly from relatively few order as well as assembled to order
component types * Component inventories may be kept to

. Assembly to order from component minimize order lead times
inventories is possible . Infinite variety is possible when

. Minimum lead time dictated by final components are fabricated to order
assembly process

. High variety is not economically . Variety can be achieved without
feasible and would require high fixed relatively high inventory costs by

"0 costs (e.g., tooling), high setup costs, fabricating components to order

long order lead times and high . Minimum order lead times dictated by
cu inventory costs both component fabrication time and

final assembly time

Infinite variety is possible

8.2.3 Conclusion

In this section, the plant C case is presented. It is shown that the overlook of the product

designers on the manufacturability of the detailed design can lead to manufacturing

problems combined with the manufacturing system design and how the different types of

manufacturing system designs respond to the design decision. In addition, it is shown

how the proposed manufacturability evaluation process can be applied in case that the

existing manufacturing system does not follow the FRs of the MSDD.

It is important to design the manufacturing system to satisfy the FRs of the MSDD while

simultaneously considering the manufacturability issues of the product design.

Considering the manufacturing system that satisfies the FRs of the MSDD when a new

product design is made will lead to the new product design that does not prevent the

manufacturing system to achieve the FRs of the MSDD.
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8.3 Existing DFMA Approaches

The proposed framework can be used to investigate the scope of the existing DFMA

approaches relative to the achievement of the objectives of manufacturing systems. In

this section, the DFX approaches proposed by Boothroyd et al. [1994], and Phal and

Beitz [1996] are evaluated using the proposed framework. The other approaches focusing

on the communication improvement from the organizational viewpoint are excluded in

this evaluation since they do not provide in-depth information about what to

communicate.

Boothroyd et al. [1996] explain the manufacturability issues in the selection of materials

and processes, and the product design that fits with the selected processes. The addressed

DFX approaches include: design for manual assembly, electrical connections and wire

harness assembly, design for high-speed automatic assembly and robot assembly, design

for machining, printed circuit board design for manufacture and assembly, design for

injection molding, design for sheet metal forming, design for die casting, and design for

powder metal processing. The content of these DFX approaches can be reviewed using

the FRs and DPs of the MSDD and the result is shown in Figure 8-15.

Quality Problem Predictable Delay Operation Investment
solving output re duc tion cost

UStrongly addressed Somewhat addressed Weakly addressed

FIGURE 8-15. THE REVIEW OF THE DEX APPROACHES ADDRESSED BY BOOTHROYD,
DEWHURST, AND KNIGHT [1994] AGAINTST THE FRS AND DPS OF THE MSDD.
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As is shown in Figure 8-15, the DFMA discussion of Boothroyd et al. centers on the

manufacturing quality branch of the MSDD. They provide deep insights and guidelines to

eliminate the machine assignable causes, method assignable causes, and material

assignable causes of quality problems. The provided guideline is very practical and

detailed in its content. However, the scope of the approach is limited to the quality so that

the other manufacturing system design issues such as on-time delivery and delay

reduction are neglected in this approach.

Phal and Beitz [1996] explain a series of DFX approaches to provide the guidelines for

the embodiment design. The addressed DFX approaches include: design for safety,

design to allow for expansion, design to allow for creep and relaxation, design against

corrosion damage, design for ergonomics, design for aesthetics, design for production,

design for ease of assembly, design to standards, design for ease of maintenance, design

for recycling, and design for quality. The content of these DFX approaches can be

reviewed using the FRs and DPs of the MSDD and the result is shown in Figure 8-16.

Quality Problem Predictable Delay Operation Investment
solving output reduction cost

UStrongly addressed Somewhat addressed Weakly addressed

FIGURE 8-16. THlE REVIEW OF THE DFX APPROACHES ADDRESSED BY PHAL ANT) BEITZ
[1996] AGAINST THE FRS ANT) DPS OF THE MSDD.

As is shown in Figure 8-16, the discussion of the manufacturability in [Phal and Beitz

1996] focuses on the quality issues while addressing some delay reduction issues and
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operating cost issues. It contains wider scopes of the manufacturability issues in

comparison with the DFMA approaches of Boothroyd et al., but still many other

manufacturing system design issues are missing.

The above-mentioned DFX approaches, however, can provide the content of the

proposed manufacturability evaluation process. In other words, when the conflicts

between the design decision and the FRs and DPs of the MSDD are checked, the

guidelines and problem examples provided by these approaches can be used to decide the

conflicts. The proposed methodology systemizes the existing DFMA approaches by

seeing their impact on the achievement of the FRs of the MSDD and opens a way to

discover more DFMA issues in manufacturing by increasing the scope of the traditional

approaches relative to the FRs of the MSDD.

In this sense, some of the best practices for smooth transition from product design phase

to manufacturing phase may be replaced or supported with the proposed methodology.

For example, Clark and Fujimoto [1991] stresses the use of existing manufacturing lines

for prototyping and pilot production in Japanese automotive companies, which greatly

contributes to resolving manufacturing problems before the actual mass production

begins. The direct use of existing manufacturing lines becomes a very effective way to

solve manufacturing problems since the engineers can learn the impact of new product

design on the existing lines by actually producing them in the existing line. The engineers

are able to experience the problems and solve the problems with the real manufacturing

lines. However, this may not be done in the earlier product design phases. As the

computer simulation virtually shows the result of a certain decision, the proposed

methodology can show the possible conflicts in manufacturing in a virtual way.

Therefore, the advantage of using the real manufacturing lines in prototyping and pilot

production may be decreased with the application of the proposed manufacturability

evaluation process.
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8.4 Issues in Applying the Manufacturability Evaluation

Process

In this section, several issues are addressed that can arise when the proposed

manufacturability evaluation process is applied. First, it is addressed how to apply the

manufacturability evaluation process when the manufacturing system in consideration is

not designed to achieve the FRs of the MSDD. In section 8.2.2, this issue is addressed by

finding the conflicts of the design decision with the MSDD first, and then evaluating the

existing manufacturing system with and without the design decision modification. This is

possible since the MSDD describes the general requirements and general solutions of the

manufacturing system to achieve the today's manufacturing system requirements of

quality, on-time delivery, short lead time, reduced operating costs, and rational long-term

investment. However, the FRs become more important than the DPs when the

manufacturing system is not designed to achieve the FRs of the MSDD, which indicates

that the DPs of the MSDD are not accepted in the existing manufacturing system. Among

the FRs of the MSDD, in addition, the high level FRs can be considered when lower level

FRs are little meaningful with the given manufacturing system since the high level FRs

are more general than the lower ones. However, this is not likely since the FRs and DPs

of the MSDD reflects the best-known practices to achieve the objectives of the modem

manufacturing system. Therefore, as is presented with the example of section 8.2.2,

manufacturing system modification to satisfy the FRs of the MSDD should follow the

product design modification so that true achievement of the FRs of the MSDD is made.

The second issue is about the step 6 of the manufacturability evaluation process. In the

step 6, no rule is proposed to resolve the conflicts through a choice between product

design modification and manufacturing system design modification. Instead, possible

solutions in various situations are provided in section 7.3.1.6. In addition, in section

8.2.2, two cases are discussed when the product design is modified and manufacturing

system is modified. This is because there can be other factors that affect the success of

the product except the manufacturability of the product design. The ultimate objective of

the product development is to succeed in the market place, not to design a

manufacturable product.
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8.5 Chapter Summary

In this chapter, two application examples of the manufacturability evaluation process are

presented. In the first example of meter plates, it is shown how the proposed

manufacturability evaluation process can be applied in case of product design change,

which can be seen from product variety perspective and detailed design perspective. In

addition, the items that should be considered for a process change from stamping to laser

cutting are identified by applying the proposed manufacturability evaluation process.

With the meter plate example, the manufacturability evaluation process is shown to

effectively identify and explain the possible sources of manufacturing problems with the

introduction of certain product design decisions.

In the second example of ABS housings, it is discussed in detail how the conflicts

identified by the manufacturability evaluation process can be resolved. Manufacturing

problems caused by designing fluid channels of braking system housings to be angled to

two faces of housings are explained with the framework provided by the

manufacturability evaluation process. Then, different ways of resolving the identified

conflicts are reviewed in terms of their capability to resolve the conflicts and further

satisfy the FRs of the MSDD. The benefits and limitations of changing product designs

are provided as well as those of modifying manufacturing system designs. Both product

design modification and manufacturing system design change should be pursued to

maximize the satisfaction of the objectives (FRs) of manufacturing systems.

In addition, it is shown that the manufacturability of a product design can vary depending

on the type of the manufacturing system accommodating the new design. Differential

(cellular) manufacturing systems are observed to be more flexible to the introduction of

new product designs than integral (departmental) manufacturing systems. Furthermore,

combined with differential (modular) product design, cellular manufacturing systems can

be more flexible to the new product design introduction.
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9 THE EVALUATION TOOL

This chapter describes the development of a standardized evaluation tool. This tool

evaluates the practices of a company to ensure the design of manufacturable products in

terms of their scope relative to the MSDD. The issues related to the development of the

evaluation tool are discussed in the following sections along with a review on the existing

evaluation tools of the MSDD.

9.1 Introduction

The first round questionnaire aims to investigate what practices are made in the industry

to facilitate the information exchange between product design and manufacturing. As is

presented in Chapter 5, it is identified that many companies do not have standardized

methods in use for the information exchange between product design and manufacturing.

Even for the companies that implement standardized tools, the information regarding

manufacturing system design is often neglected. Many tools in use for the early

consideration of manufacturing issues are developed based on the knowledge gained

from previous projects instead of relying on a systematic framework. The first-round

questionnaire that is composed of open-ended questions shows this trend in the tools

deployed in the automotive industry. However, the first round questionnaire shows its

weaknesses in the following points:

. It is difficult to interpret the answers received

. It is difficult to receive the answers in a repeatable way

. It is difficult to compare the effectiveness of different approaches deployed in

different companies

The first two problems are mainly due to the characteristics of the questions asked in the

first-round questionnaire. The first round questionnaire is consisted of open-ended

questions and thus, the answers are subject to the view of the respondents to the

information exchange requirement between manufacturing and product development. If a

respondent thinks one aspect is more important than the other, the respondent describes in

detail what he/she thinks important while neglecting other aspects, which is linked to the
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misinterpretation of some questions. These problems coincide with the typical drawbacks

of the questionnaire approach discussed by [Leedy and Ormrod 2001]. Some drawbacks

such as misinterpretation are solved by the complementary interviews with the engineers

but it is difficult to completely eliminate all of the drawbacks. In addition, the open-ended

questions often lead to a problem in the repeatability of the questions. In other words, the

respondents may think different things whenever they face the questions.

Another problem of the first round questionnaire is that it is difficult to compare the

effectiveness of different approaches implemented by each individual company. For

example, it is very difficult to compare the PPC (Pre-Product Check) approach of the

company A with the Copy-Exact approach of company B as described in Chapter 5.

These two approaches cover different areas from the interface between manufacturing

and product design, too, which makes it difficult to compare the effectiveness of each

approach even though enough data are available. For example, both approaches are

capable of screening engineering design problems that are solely related to meeting the

engineering requirements, not manufacturing system requirements.

Considering these problems of the first round questionnaire, the second round

questionnaire is developed to evaluate the general approaches implemented in each

company to the information exchange in the interface area of manufacturing and product

design, relative to the MSDD. In this thesis, the manufacturability of a product/process

design decision is understood as how well the design decision contributes to the

achievement of the objectives of manufacturing systems that are represented by the

MSDD. From this perspective, the second round questionnaire attempts to collect data to

investigate how well the achievement of the FR-DP pairs in the MSDD are addressed by

the existing approaches of each company to the information exchange between

manufacturing and product design. By comparing the scope of the manufacturability-

ensuring approaches in the industry relative to the MSDD, it is possible to evaluate each

approach and find where the strengths and weaknesses of each approach are placed.
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9.2 Issues for the Evaluation Tool

The goal of the evaluation tool (or the data collection tool for evaluation) discussed in

this thesis is to enable the assessment of the industry practices that are conducted to

ensure the manufacturability of product design decisions relative to the MSDD. The data

collection tool must be able to relate the industry practices to the MSDD in a repeatable

way. The development of such tool poses several questions as Linck [2001] addresses in

detail in his dissertation. The issues related a standardized data collection tool for the

MSDD based on the questionnaire include:

. Simultaneous consideration of the FR and DP

. Quantitative vs. qualitative evaluation

. Leaf FR-DP pairs (the FR-DP pairs that are not decomposed any further) vs.

every FR-DP pair to be considered

The first issue is about whether the FR and DP should be considered together or only one

of them needs to be considered. A DP is a solution to the corresponding FR and there can

be many solutions for a FR. In other words, it does not matter so much what DP is

selected to satisfy the FR as long as the FR is well satisfied and the two design axioms

are satisfied. Therefore, it might be sufficient to consider only the FRs in the MSDD by

measuring the achievement of the FRs. However, the zigzagging principle of the

Axiomatic Design methodology indicates that without higher level DPs, lower level FRs

cannot be decomposed from higher level FRs. Consequently, measuring the achievement

of lower level FRs has the underlying assumption that the high level DPs are accepted. In

addition, the MSDD attempts to describe the FRs and DPs that are generally applicable to

discrete part manufacturing systems in many industries. The DPs in the MSDD are

believed to be reasonable general solutions to satisfy the FRs. Therefore, it is desirable to

see whether a design decision affect the DPs of the MSDD, which are reasonable

solutions to satisfy the FRs and underlying assumptions for the lower level FRs.

As the proposed manufacturability evaluation process considers both FRs and DPs

(Chapter 7), the proposed evaluation tool take into account both FRs and DPs.
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The second issue is whether to take a quantitative or qualitative approach in the

evaluation tool. As is pointed out by Linck [2001], some FRs of the MSDD are difficult

to be measured in a quantitative way. For example, FR-Rl 13 and DP-R1 13 state to

identify what the disruption is by feedback of subsystem states, which makes it difficult

to develop a quantitative measure of the achievement of FR-R113. Furthermore, it is

more difficult to quantitatively measure how much a product design decision affects the

achievement of the FR-Ri113. Therefore, qualitative evaluation is adopted in the proposed

evaluation tool. Qualitative evaluation by qualitative questions on the contents of the

activities done to achieve the FRs allows better consideration of the behind ideas of the

FR and DP in the MSDD of which meaning is limited by short sentences. However, when

qualitative measures are developed, it is necessary to consider the standardization of the

qualitative measures to ensure the consistency of data collection and analysis.

The third issue is about the FRs and DPs that are subject to the evaluation. Only the leaf

FRs and DPs that are not further decomposed in the MSDD may be used from a

perspective that the higher level FR are supposed to be satisfied by meeting the lower

level FRs. However, in the case of assessing the impact of a design decision on the

achievement of the FRs in the MSDD, higher level FRs should also be considered. This is

because the MSDD considers the product design and process design as given while the

evaluation tool aims to see how well the FRs and DPs are considered during the product

development process by the existing practices in the industry. Therefore, some high level

FRs and DPs that are affected by the design decision should also be considered. The

decomposition of those high level FRs and DPs that are affected by the design decision is

not exhaustive since the achievement of the decomposed FRs does not guarantee the

achievement of the high level FR when product or process designs can change.

9.3 Comparable Existing Measurement Tools for the MSDD

In this section, the existing measurement tools based on the MSDD are reviewed. Linck

[2001] provides a good review on the measurement tools for the MSDD. There are three

existing evaluation approaches for the MSDD: the MSDD evaluation tool, the

performance measures, and the MSDD questionnaire. The MSDD evaluation tool is

proposed by Cochran [1999] and Wang [1999]. Wang [1999] provides a good
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explanation of the MSDD evaluation tool including an application example. The MSDD

evaluation tool adopts a qualitative approach to assess a manufacturing system design

relative to the MSDD. This tool measures how well a manufacturing system design

satisfies sixteen FR-DP pairs of the MSDD from different levels. The FR-DP pairs

considered in the MSDD evaluation tool are presented in Figure 9-1.

PSD Decomposition

Highlighted boxes are the
FRs used as evaluation
criteria

Quality & Time Variation Delay reduction Direct labor Indirect Production
Stable Processes (a- of throughput time) (7xof throughput time) cost labor cost Investment

Et &ndhaedEbl tflmrintke Ep iminuc ffisp(Ond MikizcRdteReuf ld ERknnaeu Elirnt Elute Elivnwe~e

machine operator method material rapidly to Reduce run poss Reduce iransportalson systematic operators wasted mngra nomto

assignable assignable assignable assignable production d.su stonsse delay delays machinyesla operatin atngn m o rso tss dsrpin
. . ..causes causes causes causes disruptions ddisysruptionss--

FIGURE 9-1. SIXTEEN EVALUATION ERS DERIVED FROM THE MSDD [WANG 1999]

Step-by-step qualitative descriptions of the ideal situation are used to assess how well a

manufacturing system design satisfies each of the sixteen FRs considered in the MSDD

evaluation tool. For example, for the FR to eliminate operator assignable causes, six

different concrete descriptions of the shop floor are provided from level 1 to level 6. In a

shop floor in a stage of level 1, "workers learn tasks by watching others and tasks may be

done differently each lime." This is the worst case. On the other hand, the level 6

indicates the best conformance to the proposed FR. In this stage, on the shop floor,

"formal training is extended beyond the required skills by certified instructors, and the

work standards are followed and upgraded by workers. Any operator mistakes are not
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translated defects through mistake proofing devices." Figure 9-2 shows the description of

the shop floor in each level of conformance to the FR.

Level FR: Eliminate operator assignable causes

Workers leamrtasks by watChinl othrK Testis tay b$ lone.differenify With this design, there is a low probability that
each time. tasks will be done the same by different

operators, introducing assignable causes of
Limited amounts of formal skits training Workerslearn whallasks to do quality problems from the operators2ifrom instructons.

Increasing probability ronmal sluis training program in place. Workers learn tasks frmnsenior
that the FR is satisfied 3 workers Work standards exist but methods still vary.
by the design Manual tasks are defined so that they are done the same way each time.
described 4 Sandardtworklnsructions intieat how tasks are performed.

.Formal ranlIng is extended beyond skills to JT by erfiad irt0tt0ctr$.
Standards are followed and upgraded byworkers.

With standards, training and mistake proofing,
,. In additon to previous teva, Any nistdke$ssre not translated to detente there is a higher probability that there wil be fewero through mistake proofing (poka-yokes assignable causes of quality from operators.

FIGURE 9-2. QUALITATIVE ASSESSMENT OF HOW WELL AN FR IS SATISFIED [WANG 1999]

These descriptions on the shop floor are very concrete and derived from the physical

examples. Therefore, it is easier to understand than the often abstract statements of the

FR and DP of the MSDD. A pie chart is used to assess the stage in which the considered

manufacturing system design lies, since a manufacturing system can often be described

by a portion of different stages. The pie chart system is shown in Figure 9-3 along with

the explanation of the meanings of the partially filled pie charts.

Reduce process delay Notes:
Minewcpi3/ths of the plant is still organized as a job shop with

Ima...i.e.au.ul...Large.an.anpredJn.a...e.e.....W.Pmachines running at independent rates.2 etween p esesests maage systemaai id

Mech....p.cessein uctisirildep artmets ared
arranged fr prdurrttwe. Fighevels ofiivntry

etween dearens

Assemlyrtransferlinedesigns running at high seeds 1/8th of the plant (line A) is running as a transfer line feeding
feeding mliplacustmers. Large eamuntoainventary cells B, C and D. Large amounts of inventory after the line

are required so that the cells are not starved.

One half the plant has been organized into cells running at

SMehianand eples tapablexif sdg in tekte takt time but have not achieved standard inventory of one
between stations.

cellssub-sytama ring atattirme withstandard5 invetryf see batwenslatians. Machies and people
5 are capable sfwrkingtos inimum tak i tne.

Prducton balanced Is taki time throughu value streamn,6:Same fexihiity to prduce t differnt taid times
Mirwuw NIP betwee prsesess&

FIGURE 9-3. THE PIE-CHART SYSTEM [WANG 1999]
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This form of the evaluation tool is very intuitive since it provides a physical description

of the shop floor. However, it shows drawbacks when it is difficult to provide six

different shop floor descriptions. In addition, the descriptions may be biased and this can

cause some problems since the achievement of the FR are considered to depend on the

DP in the MSDD evaluation tool. Especially in the interface area between manufacturing

and product design where it is difficult to describe several stages to an ideal situation

intuitively, this approach may not be appropriate to be used in the evaluation tool.

The second one is the MSDD performance measures. The MSDD performance measures

are developed for each FR of the MSDD [Duda 2000], [Cochran et al. 2001b, 2001c,

2002]. The fundamental idea behind the development of the MSDD performance

measures is that the performance measures for a manufacturing system should measure

how well the FRs of the MSDD are satisfied by the manufacturing system. Therefore, a

performance measure is developed for each FR of the MSDD and the developed

performance measure attempts to quantify how well the corresponding FR is satisfied.

For example, for the FR-R1 to respond rapidly to production disruptions, a performance

measure of time between occurrence and resolution of disruptions is proposed.

Several problems are identified with this performance measure approach. First, while a

performance measure attempts to measure the achievement of the corresponding FR, it is

not obvious what magnitudes of the performance measure indicate a desirable

achievement of the FR [Duda 2000], [Linck 2001]. Second, some FRs are difficult to be

measured in a quantitative way. For example, the FR-T4 states to reduce transportation

delay, while it is difficult to measure 'delay' since it needs a reference point. The

performance measure proposed for the FR-T4 is inventory due to transportation delay.

Another problem is that it is often very difficult to actually measure the proposed

performance measures. For instance, the performance measure for the FR-R12

(communicate problems to the right people) is the time between identification of what the

disruption is and support resource understanding what the disruption is. In a real

manufacturing system, it is too cumbersome to assign specific personnel to track down

this time. The tracking of the time taken between the identification and the resolution of

the disruption may be impractical unless it is impossible.
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The MSDD questionnaire proposed by Linck [2001] provides a standardized data

collection tool to relate the knowledge on a manufacturing system gained by observations

and interviews to the MSDD. The MSDD questionnaire measures the achievement of

each individual FR by asking a series of questions that are directly linked to the

achievement of the FR. An example is shown in Figure 9-4. In this example, for the FR-

P122 (service equipment regularly) and the DP-P122 (regular preventative maintenance

program), four statements are provided to see if the respondents agree with the

statements, along with two questions asking specific data. The respondents are supposed

to mark the point in one (strongly disagree) to five (strongly agree) points scale to each

statement.

P122 Service eqtipnnt regularly strongly strongly does not

Regular preveftlive maintearce progam disQgrO agree appl

1 2 3 4 5 0 Comment

- We dedicate a portion of every day sdlelyto
preventive maintenance and followthe preventive 0 0 0_0_0_0
m aintenance scheduie.

- We are usually behind production schedule and 0 0 0 0 0have rm time for preventive m aintenance. Repair is
our maintenance.

- We emphasize proper m aintenance asastrategy 0 0 0 0 0 0for achieving schedule compliance.

- Our equipment and tools are in a high state of Q Q Q Q Q Q
readiness at all times,

- What percentage of time do you dedicate for
preventive maintenance? (time for preventive
m aintenarce / available production time)

- What percentage of time is lost due to unscheduled
m aintenance? (unscheduled maintenance /
available productiontime)

FIGURE 9-4. THE MSDD QUESTIONNAIRE DATA COLLECTION TOOL [LINCK 2001]

The MSDD questionnaire approach is different from the performance measures approach

in respect of the characteristics of the data collected. The MSDD questionnaire asks

qualitative questions to measure the achievement of the FR while the performance

measures approach attempt to quantitatively measure the achievement of the FR. The

MSDD questionnaire is also different from the MSDD evaluation tool in respect of the

way the questions are deployed. The MSDD questionnaire states a certain aspect of the
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ideal situation and then asks the respondent how much the manufacturing system is close

to the ideal situation. On the other hand, the MSDD evaluation tool tries to describe a

series of stages of a manufacturing system to the ideal situation and then, asks the

respondent in what stage the manufacturing system is. Both approaches, however,

attempt to use qualitative descriptions of the activities and the situations on the shop floor

that are close to the ideal situation, in order to measure the achievement of the FRs of the

MSDD.

The MSDD questionnaire approach has some advantages over the other two approaches

described in this section. First, the MSDD questionnaire can consider various aspects of

the issues linked to the achievement of a FR simply by increasing the number of

statements. In other words, the MSDD questionnaire can easily reflect new issues simply

by adding statements that can describe the shop floor activities or situations that can be

resulted from the achievement of the'FR. As for the MSDD evaluation tool, complete

restatements of the stages may be required. Second, the MSDD questionnaire approach

considers the background idea beyond the abstract statements of the FRs and DPs of the

MSDD through qualitative statements of the shop floor activities and situations.

Therefore, it is easier for the engineers to answer the questionnaire than collect the data to

calculate the performance measures. In addition, it is much easier for the respondents of

the questionnaire to understand the background ideas of the MSDD than the respondents

of the performance measures.

However, the MSDD questionnaire also has its weaknesses. One of the weaknesses is

that some statements of the MSDD may less contribute to the achievement of the FR. For

example, in the case shown in Figure 9-4, the first statement may contribute more to the

achievement of the FR-P 122 than the fourth statement. "Dedication of a portion of every

day solely to preventive maintenance" is an activity to satisfy the FR-P122 while the

"ready-to-use equipment and tools" are the result of the achievement of the FR-P122

(service equipment regularly). The "ready-to-use equipment and tools" may be the result

of other factors such as the procurement of more reliable equipment and tools. However,

no distinction is made between the statements in the MSDD questionnaire. The other

possible problem is that some of statements may be interconnected to one another. If one
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statement is a restatement of the other statement, it can increase the scores for a certain

FR.

9.4 The Second-Round Questionnaire

Considering the problems of the first round questionnaire described in section 9.1, the

second round questionnaire is developed to evaluate the general approaches implemented

in each company to the information exchange in the interface area of manufacturing and

product design, relative to the MSDD. In this thesis, the manufacturability of a

product/process design decision is understood as how well the design decision

contributes to the achievement of the objectives of manufacturing systems that are

represented by the MSDD. From this perspective, the second round questionnaire

attempts to collect data to investigate how well the achievement of the FR-DP pairs in the

MSDD are addressed by the existing practices of each company.

9.4.1 Development of Questionnaire

Based on the review of the existing approaches for the MSDD as presented in section 9.3,

a questionnaire approach with a 5-point scale is selected as the format of the data

collection tool. Therefore, the second round questionnaire is developed in a similar

format as the MSDD questionnaire with much more questions in order to reflect variety

of issues related to product design in addition to those related to manufacturing system

design.

The second round questionnaire is composed of specific statements that are developed

based on the descriptions of interactions between manufacturing and product design

presented in Chapter 7. The statements in the second round questionnaire are made in a

general way only to see if a certain issue is considered or not. The second round

questionnaire does not attempt to identify how product development teams consider a

certain issue in detail. As long as a certain issue is considered with any approach, it is

considered as good. This is because there are many factors that affect a certain decision in

the interface area of product design and manufacturing, and thus it is very difficult to

describe generally applicable practices or situations that are linked only to the specific FR

and DP. For example, for FR-R121 (identify correct support resources) and DP-R121
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(specified support resources for each failure mode), such general statement as "specific

support personnel are assigned to each failure mode related to purchased parts or

materials at both your company and the part suppliers" is provided without further asking

how specific support personnel are assigned. As long as specific support personnel are

assigned to each failure mode so that the engineers know who to contact for a certain

problem, it is fine from the perspective of the MSDD.

The statements in the second round questionnaire are categorized into six groups of

product variety, product architecture, purchasing, material selection, process selection,

and detailed design in addition to a general statement group. The general statement group

indicates that the statements in this group may apply to all categories of design decisions.

With this categorization, the general categorization proposed in Chapter 7 is followed.

The statements are formulated for the necessary FR-DP pairs in various levels of the

MSDD after an extensive review on all FR-DP pairs of the MSDD in terms of their

relationship with design decisions.

The respondents' views to the statements in the second round questionnaire are measured

by a five-point Likert scale. According to Leedy and Ormrod [2001], a rating scale is

useful when a behavior, attitude, or other phenomenon of interest needs to be evaluated

on a continuum of "strongly agree" to "strongly disagree." Rating scales were developed

by Rensis Likert in the 1930s to assess people's attitudes and thus, they are sometimes

called Likert scales. Linck [2001] reports that the respondents find Likert scales easy to

use in his MSDD questionnaire research.

A complete list of the questions in the second round questionnaire is provided in

Appendix F.

9.4.2 Reliability and Validity

Several tools are available to examine the reliability and validity of surveys, which can be

applied to the second round questionnaire. Reliability indicates the consistency and

repeatability of the result for each scale while validity is related to how well a tool

measures what it is intended to measure. In this thesis, Linck [2001]'s approach to

examine the reliability and validity of the MSDD questionnaire is adopted.
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9.4.2.1 Reliability of the second round questionnaire

Leedy and Ormrod [2001] define reliability as "the consistency with which a measuring

instrument yields a certain result when the entity being measured has not changed."

Therefore, in the second round questionnaire case, reliability is the extent to which the

second round questionnaire given to the same respondent yields the same results. In other

words, reliability measures the repeatability of a study.

The most commonly accepted measure for reliability in empirical research is Cronbach's

alpha [Cronbach and Meehl 1955]. The formula that determines Cronbach's alpha is is

shown in Equation 9-1. Cronbach's alpha is determined by the number of items per scale

(k) and the average correlation between pairs of items (r).

kcr
a =(9-1)

1+(k -1)r

Alpha ranges from zero to one and one is the highest possible reliability. The literature

suggests a minimum acceptable Alpha value of 0.70 for internal consistency. Linck

[2001] suggests using 0.60 for his MSDD questionnaire by citing Nunnally [1978] and

Sakakibara et al. [1993]. Nunnally [1978] suggests allowing values as low as 0.60 for

newly developed scales and the same value of 0.60 was also used by Sakakibara et al.

[1993] for the JIT (Just-In-Time) measurement instrument.

9.4.2.2 Validity of the second round questionnaire

Leedy and Ormrod [2001] define the validity of a measurement instrument as "the extent

to which the instrument measures what it is supposed to measure." In empirical study like

the second round questionnaire, validity indicates how well the developed questions for a

given scale measure the scale. For example, validity indicates how well the questions for

FR-DP Q11l measure the meaning of the FR-DP pair. Leedy and Ormrod [2001] classify

the following four types of validity (face validity, content validity, criterion validity, and

construct validity) and provide their definitions.

. Face validity is the extent to which an instrument looks like it is measuring a

particular characteristic. However, face validity relies entirely on subjective

judgment and thus, is not very convincing evidence of validity.
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. Content validity is the extent to which a measurement instrument is a representative

sample of the content area being measured. In other words, content validity is

related to how truly the questions in the second round questionnaire measure the

concept they intended to measure. High content validity is achieved if the questions

reflect the various parts of the content domain in appropriate proportions and if the

questions contain the particular behaviors and skills that are central to that domain.

In fact, one of the motivations to use a questionnaire format is to ensure high

content validity. The content are is defined by the MSDD and content validity is

ensured by asking several questions for each FR-DP pair. However, content validity

is subjective and should be supported by a quantitative evaluation tool.

. Criterion validity is the extent to which the results of an assessment instrument

(second round questionnaire) correlate with another, presumably related measure,

which is called as the criterion. For instance, an instrument designed to measure a

salesperson's effectiveness on the job should correlate with the number of sales the

individual actually makes during the course of a business day [Leedy and Ormrod

2001].

" Construct validity is the extent to which an instrument measures a characteristic that

cannot be directly observed but must instead be inferred from patterns in people's

behavior.

Among these four types of validity, face validity and content validity are ensured with the

second round questionnaire. However, criterion validity and construct validity are not

assured in this thesis since they require a large number of data points. Assuring criterion

validity and construct validity of the second round questionnaire remains as further

research to be completed after collecting enough data points.

Validity has a close relationship with reliability. Reliability by itself is not sufficient to

guarantee validity. For example, measuring something correctly requires measuring it

consistently. However, measuring something consistently does not guarantee measuring

something correctly [Leedy 2001].
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9.4.3 Limitations

A few problems have been identified with the answers from the respondents to the second

round questionnaire. Most of the respondents were engineers in automotive companies.

The first problem comes from the limited knowledge of the respondents. Product

development involves various groups specialized in their own functions and the

respondents often work for a specific function. For example, one respondent to the

second round questionnaire was a design engineer specialized in suspension system

design. However, the second round questionnaire contains the questions of various

functions and even some questions related to the interface are between different

functions, in order to obtain a system level view over the product development process.

Therefore, many people showed their frustration in filling out the questionnaire since

simply they did not know the answer. Sometimes, only a portion of the questionnaire

could be answered by an individual person. In some sense, this problem itself shows a

lack of knowledge of the relevant product development engineers in the big picture of the

product development process since most of the questions asked in the second round

questionnaire are quite general.

Another problem is a timing issue. Many of the activities described in the questions of the

second round questionnaire are more or less conducted by many companies. The critical

issue is when the activities are conducted since early consideration of manufacturing

system issues are important to minimize the waste associated with design iterations. For

example, many companies study the impact of new design on operators work content.

However, this study is meaningful when it is done before a specific design is set. In other

words, a new product design should reflect the consideration on the changes of operators

work content by the new product design. The new product may be designed in a way to

minimize the changes in operators work content.

In addition, lack of standardization on the definitions of the terms used causes the

respondents to interpret the questions in a wrong way. For example, component design

engineers often claim that they do not know answers for the questions related to product

architecture. However, this is not true since the component design itself may involve an

architecture design, considering its definition made in Chapter 4.
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Weight factors can also be a problem with the second round questionnaire. The second

round questionnaire does not give any weight factor to the questions. All questions are

considered to equally affect the achievement of the corresponding FRs, which may not be

true. However, this factor is somewhat compensated by asking many questions for each

FR-DP pair. Therefore, this problem is significant only for the FR-DP pairs that have a

relatively small number of questions.

9.5 Application of the Manufacturability Evaluation Tool

The second round questionnaire aims to collect the data necessary to evaluate the

practices of companies to design manufacturable products. The second round

questionnaire was sent to the same companies that answered the first round questionnaire.

Two companies answered the second round questionnaire and the results are provided in

the following sections. The second round questionnaire was translated into Japanese by

Prof Kawada at Meijo University in Japan for company A. The background information

of the participating companies is provided in Chapter 5.

9.5.1 Company A

The response from company A was prepared by its production engineering planning

division. A summary of the response is provided in Table 9-1 and graphically presented

in Figure 9-5. The score for each FR-DP pair is decided by averaging the scores for the

answered questions. The questions that are not answered by the respondent are excluded

when average scores are calculated.

As is shown in Figure 9-5, company A highly scores for most of the FR-DP pairs of the

MSDD that are related to product design decisions. This result is assured by the

comments from a manager at company A who responded to the second round

questionnaire. He commented that most of the items taken up as questions in the second

round questionnaire are, in fact, implemented by production engineers in company A. In

other words, most of the activities addressed in the questions are put into practice by the

company A engineers even though the engineers are not aware of the MSDD and the

manufacturability evaluation process.
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Very poor Poor Moderate Good Very good

1 -1.5 1.5-2.5 2.5-3.5 3.5-4.5 4.5-5.0

FIGURE 9-5. THE SECOND ROUND QUESTIONNAIRE RESULT OF COMPANY A

However, several blocks of relatively low scores are observed in Figure 9-5. They are

FR-DP Q2 pair, FR-DP R112 pair, FR-DP P132 pair, FR-DP T223, and FR-DP 13. The

FR-DP Q2 pair is about centering process mean on the target (FR-Q2: center process

mean on the target, DP-Q2: process parameter adjustment). Company A scores relatively

low for the questions related to process selection. The low scores indicate that company

A stays in the ordinary level of excellency in understanding the manufacturing processes.

Therefore, the low scores shows that company A needs to allocate more resources to

better understand the impact of process parameters on process mean during product

design phase. In addition, company A should collaborate with equipment vendors closely

to better understand the characteristics of equipment on parameter control.

The FR-DP RI 12 pair is about identifying disruptions where they occur (FR-Ri112:

identify disruptions where they occur, DP-Ri 12: simplified material flow paths). To

increase the score for the FR-DP R112 pair, product design engineers at company A need

to be better aware of the material flow paths to be used for new products and the

consequences of the detailed designs on the material flow paths. In addition, further

consideration should be given to product architecture designs so that the impact of

product architecture decisions on the material flow paths is clearly understood.
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TABLE 9-1. THE SECOND ROUND QUESTIONNAIRE RESULTS OF COMPANY A
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The FR-DP P132 pair is about equipment maintenance (FR-P132: service equipment

regularly, DP-P132: regular preventative maintenance program). More efforts are

requested to keep the existing preventative maintenance program undated to fit to the

new products.

The FR-DP T223 pair is to ensure level production. When different types of products are

to be produced at the same station machine, product designers should more seriously seek

detail designs to make their cycle times similar.

The FR-DP 13 pair is about investment (FR13: minimize investment over production

system life cycle, DP13: investment based on a long term strategy). It is noteworthy that

company A does not highly score for this FR-DP pair even though company A is

considered as a benchmark company in the automotive industry in terms of its

operational efficiency and profit generation. The low score for the FR-DP 13 pair seems

to be the result of company A's view to financial result. Company A sees financial

measures as consequences of its operation. In other words, efficient operation eventually

leads to good financial measures. Therefore, relatively less emphasis is given to financial

measures than operational measures (e.g., quality) at company A. Further explanation of

company A's view to financial results is given in Chapter 5.

Table 9-2 shows a list of questions for which company A scores relatively low points

(equal or less than 2 points).

TABLE 9-2. LIST OF QUESTIONS FOR WHICH COMPANY A SCORES LOW POINTS

FR-DP Question Scores

Q 13 Manufacturing group frequently suggests product design changes for 2
mistake-proof (poka-toke) purposes

FRI11 Tolerances are given generously 2

R112 Product architecture decisions are made after considering their 2impact on material flow paths
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In Table 9-2, the low score for the question for the FR-DP Q113 seems to indicate that

little feedback is made from manufacturing to product design. However, this question is

asked after another question, which asks "manufacturing, production engineering, and

product design engineers work together to incorporate mistake-proof (poka-yoke)

features (e.g., spider marks, colors, significantly different features, notch, special dent,

etc.) into product design." Company A scores four for the latter question and thus, it

might be interpreted in a different way. Poka-yoke features are already included in

product design phase and thus, manufacturing groups may not need to frequently suggest

product design changes for mistake-proof purposes.

As for setting product tolerances, company A is revealed somewhat strict. Considering

the engineering atmosphere of company A discussed in Chapter 5, company A deals with

strict tolerances with its superior manufacturing capability. However, further study needs

to be made to achieve the required product functionality with more generous tolerances in

order to minimize manufacturing efforts to meet the required tolerance.

It is remarkable that company A scores relatively low points for the question that address

a popular tool of product development. The question for the FR-DP Rl112 shown in Table

9-2 is closely related to a popular strategy that attempts to minimize the impact of

product variety by postponing the differentiation point proposed by Lee [1993]. Company

A is revealed to little consider this factor. A production engineering manager said that

company A faithfully follows the principle of level production instead of following this

strategy. However, company A may further leverage this postponement strategy.

The reliability cannot be checked since only one response is collected from company A.

However, the response is a result of discussion among several engineers and thus, is

assumed to reflect the general practices of company A.
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9.5.2 Company F

The response from company F is prepared by a design engineer in the bus division. A

summary of the response is provided in Table 9-3 and graphically presented in Figure 9-

6. The score for each FR-DP pair is decided by averaging the scores for the answered

questions. The questions that are not answered by the respondent are excluded when

average scores are calculated. The FR-DP pairs for which no answers are made are

represented as meshed blocks in Figure 9-6.

As is shown in Figure 9-6, company F scores high points for many FR-DP pairs of the

MSDD that are related to product design decisions. However, the number of the FR-DP

pairs with high scores is smaller than company A. For example, company A has three

FR-DP pairs that are moderately satisfied but there are nine FR-DP pairs that are

moderately satisfied by the practices of company F. Those nine FR-DP pairs are: FR-DP

111, FR-DP Q2, FR-DP Q32, FR-DP R13, FR-DP T221, FR-DP D1I, FR-DP D23, FR-

DP D3, and FR-DP 122.

N/A Very poor Poor
1-1.5 1.5-2.5

Moderate Good Very good

2.5-3.5 3.5-4.5 4.5-5.0

FIGURE 9-6. THE SECOND ROUND QUESTIONNAIRE RESULT OF COMPANY F.

The FR-DP 111 pair is closely linked to the tolerances of a product design (FRI11:

manufacture products to target design specifications, DP111: production processes with

minimal variation from the target). Company F shows its weakness in setting consistent

tolerances across different product types within a product family through a close
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collaboration between manufacturing, production engineering, and product design

groups. In addition, company F needs to further improve the relationship with its part

suppliers so that part suppliers participate in the tolerance decision process more actively.

The FR-DP Q2 pair is about centering process mean on the target (FR-Q2: center process

mean on the target, DP-Q2: process parameter adjustment). Company F scores relatively

low for a question related to equipment design. Company F should collaborate with

equipment vendors closely to better understand the characteristics of equipment on

process parameter control.

The FR-DP Q32 is about reducing impact of input noise on process output by robust

design of process (FR Q32: Reduce impact of input noise on process output, DP Q32:

robust design). Company F is revealed to have room for improvement in making different

processes robust to input noise across various types of products within a product family.

In addition, more consideration should be given for a robust assembly of purchased parts.

The FR-DP Rl 3 pair is linked to immediate solving of identified problems (FR P3: solve

problems immediately, DP R13: standard method to identify and eliminate root causes).

Company F shows its weakness in setting standard procedures to solve disruption

problems in advance during product development.

The FR-DP D23 is about minimizing wasted motion in operators' work tasks (FR-D23:

minimize wasted motion in operators' work tasks, DP-D23: ergonomic interface between

the worker, machine, and fixture). The respondent scored relatively low (3 points) for all

questions for this FR-DP pair. Therefore, more efforts should be made to consider the

impact of new product design on ergonomic design of operators' work tasks and

eliminate any conflict between new product design and operators' work task design.

The rest of the FR-DP pairs with low scores (FR-DP T22 1, D11, D3, and 122) are the

results of the fact that the respondent was not able to answer most of the questions and

scored low for a small number of answered questions. Therefore, it is not very

meaningful to analyze the results for those FR-DP pairs.
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It is noteworthy that the respondent marked more 'do not know' boxes for the questions

for the right side branches of the MSDD. The respondent commented that the production

engineering division might know the answers for those questions he was not able to

answer. This result may be interpreted that product design engineers at company F are

not very familiar with other manufacturing issues than quality. However, the number of

data points is too small to accept this conclusion as valid one. Further case study with

company F should be made to collect more data points that support this conclusion.

9.5.3 Conclusion

In this section, it is presented how the evaluation tool can be applied to real companies

and how the collected data can be interpreted. The data collection protocol used in this

section is the second round questionnaire that is composed of a list of questions for each

FR-DP pair.

Two industry case examples are presented. The data collected from the respondents at

each company are analyzed to evaluate the current practices of the participating

companies. The areas that need further improvement are recommended according to the

analysis of the data.

In the first and second round questionnaire case studies, it is observed that company A

which is known as a benchmark for its minimum manufacturing problems caused by

product design is not very different from other companies in terms of the application of

popular solutions such as modular product design and cross functional product

development teams. In order to achieve manufacturable product designs, more concerns

should be given to the satisfaction of the FRs of manufacturing systems represented by

the MSDD, instead of relying on radical popular solutions such as modular product

design, manufacturability simulation software, and cross functional product development

teams. In other words, simple solutions that support the satisfaction of the FRs in the

MSDD should be extensively applied rather than solving all problems with the

introduction of big solutions such as modular product design. As long as the conflicts

between manufacturing system design and product design decisions are eliminated, the
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product design is manufacturable and thus, there is no need to desperately pursue a

certain product design strategy for manufacturability purposes.

However, the validity of the second round questionnaire cannot be checked since the

number of collected data points is too small. About thirty data points are necessary to

check the validity of the second round questionnaire. Each data point should be the result

of one company (or one division of a company). In addition, the small number of

collected data points prevents to check the reliability of the second round questionnaire.

More rigorous case study is requested to check the validity and reliability of the second

round questionnaire approach to collect the data points necessary for the evaluation of the

company practices assuring manufacturable product designs.

In order to improve the validity of the conclusions derived from the data collected by the

second round questionnaire, different data collection protocol may be used. For example,

the responses for the second round questionnaire can be supported by supplementary

interviews with design engineers and personal observation (or experience) on the

company practices.

9.6 Chapter Summary

In this chapter, the evaluation tool derived from the proposed manufacturability

evaluation process is presented. The evaluation tool aims to evaluate the practices of a

company for desining manufacturable products. The data collection protocol used for the

evaluation tool is the second round questionnaire that is composed of a list of questions

for each FR-DP pair linked to product design decisions.

Several issues associated with the development of an evaluation tool are discussed and

comparable existing evaluation tools based on the MSDD are reviewed. As a

consequence of these studies, Linck [2001]'s questionnaire approach is adopted for its

advantages over other evaluation approaches. The advantages of the questionnaire

approach include: 1) good to consider various aspects of the issues linked to the

achievement of a FR and 2) good to consider the background idea beyond the abstract

statements of the FRs and DPs of the MSDD through qualitative statements. The first

advantage also improves the content validity of the data collection protocol.
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Two industry case studies are presented in order to show how the practices of a company

ensuring the design of manufacturable products can be evaluated relative to the MSDD.

Several recommendations are made based on the collected data through the second round

questionnaire.

Due to the small number of data points collected from industry, the validity and

reliability of the second round questionnaire was not able to be checked with the

presented case study examples. However, sevearl ways to check the validity and

reliavility of the data collection protocol, the second round questionnaire, are discussed

and one way to check the reliability is provided in section 9.4.2.1. Further study is

requested to check the reliability of the second round questionnaire and evantually the

validity of the evaluation tool.
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10 CONCLUSION AND FURTHER RESEARCH

PROBLEMS

10.1 Summary of the Research

In this thesis, an approach to capture the impact of product design decisions on

manufacturing systems is presented. The objective of the proposed approach is to provide

industry with a structured methodology to evaluate the manufacturability of product

designs. The manufacturability evaluation process proposed in Chapter 7 of this thesis

shows how the product design decisions affect manufacturing system design by

investigating the impact of the product design decisions on the functional requirements

(FRs) and design parameters (DPs) of the Manufacturing System Design Decomposition

(MSDD), which represents the "lean" manufacturing system.

The research of this thesis is comprised of two parts. The first part is the development of

the manufacturability evaluation process and the second part is the validation of the

manufacturability evaluation process.

The development of the proposed process to evaluate the manufacturability of product

designs is closely related to the resolution of the first three subproblems of the four

subproblems presented in Chapter 1 and 3. They are:

1) How can we represent manufacturing system design?

2) How can we represent product development? What decisions in product development

affect manufacturing system design?

3) How can we see the interactions between product design and manufacturing system

design?

In this thesis, the first subproblem is solved by developing the MSDD that represents the

objectives and their corresponding solutions of manufacturing systems. The second

subproblem is solved by investigating the design decisions that affect manufacturing

system design and categorizing the product design decisions into six general groups of

product variety, product architecture, purchasing, material selection, process selection,
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and detailed design. The third subproblem is solved by identifying the FRs and DPs of

the MSDD that are affected by a specific product design decision. Based on these

solutions, the manufacturability evaluation process shown in Figure 7-18 is proposed.

To investigate the solutions to the first three subproblems, vast literature is consulted

(Chapter 4) and industry practices implemented in auto industry are investigated (Chapter

5). The first round questionnaire is used to collect the information regarding the industry

practices of six companies to facilitate the design of producible products.

The second part of the thesis is the validation of the proposed manufacturability

evaluation process and is closely related to the fourth research subproblem.

4) What are the examples of interactions? How can the existing approach be viewed

with the new methodology?

A couple of case study examples are presented to show the application of the proposed

manufacturability evaluation process. In addition, the DFMA approach proposed by

[Boothroyd et al. 1994] and [Phal and Beitz 1996] are viewed using the framework of the

manufacturability evaluation process. In addition, a manufacturability evaluation tool is

proposed in Chapter 9 to see the differences of the practices pursued by different

companies in terms of their scope relative to the FRs of the MSDD. The second round

questionnaire of the proposed evaluation tool attempts to collect data to investigate how

well the achievement of the FR-DP pairs in the MSDD are addressed by the existing

practices of each company on the information exchange between manufacturing and

product design. Several case studies are presented to show how the proposed evaluation

tool can be applied in real industry cases. Several recommendations on the current

practices are made for each company based on the analysis of the collected data through

the second round questionnaire. However, due to the limited number of collected data

points, the reliability and validity of the data collection protocol are not checked and left

for future research. In this thesis, using the proposed evaluation tool, the difference in the

scopes of the practices of company A that is considered as a benchmark of designing

manufacturable products and company F that is rapidly growing in the U.S. market is

presented. By showing company A covers more FRs of the MSDD than company F
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during the product development, the proposed manufacturability evaluation process is

supported.

The resolution of the four subproblems results in resolving the two main questions of the

research: (1) how product development decisions interact with manufacturing system

design and (2) how we can systematically identify the interactions. The proposed

manufacturability evaluation process answers these two questions.

The manufacturability evaluation process, however, only shows the steps and methods of

evaluating the manufacturability of a design decision. Its content is subject to changes as

the requirements for manufacturing systems change and the knowledge on the

interactions between manufacturing and product design is accumulated. Therefore, the

efforts to reveal the interrelationship between product design and manufacturing should

be maintained in order to enrich the content of the proposed approach.

The real strength of the proposed approach is to expand the scope of the traditional

DFMA methods from the manufacturing process level into the manufacturing system

level. This expansion is done by identifying the requirements of manufacturing systems

and investigating how product design decisions affect the achievement of these

requirements. The manufacturability of a product/process design decision should be

understood as how well the design decision contributes to the achievement of the

objectives of manufacturing systems that are represented by the MSDD.

10.2 Recommendation for Further Research

10.2.1 Long-Terms Studies

In this thesis, two examples on the application of the proposed manufacturability

evaluation process are presented. In these examples, however, the focus is given to how

well the proposed approach can explain the possible manufacturability issues of the

cases. Only the possible benefits from the application of the proposed approach are

discussed instead of providing real benefits that were gained through the application of

the proposed approach. Therefore, it is desirable to apply the manufacturability

evaluation process in companies that are in the process of developing a new product. This
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kind of case study will reveal the difficulties and limitations of applying the proposed

approach while providing data to reveal the actual benefits of the proposed approach. It

may be difficult, however, to conduct the case study since the product development lead

time is often in the range of several years in the automotive industry. A development

project of a simple product with short product development time can be chosen to

overcome the time constraints. The development of a cellular phone may be a good

candidate considering its short product development time.

In addition, it is desirable to apply the evaluation tool derived from the manufacturability

evaluation process to many companies. First, the application of the evaluation tool in a

large number of companies can help the validation of the second round questionnaire in

terms of its reliability and validity to collect the data. Furthermore, by analyzing the data

obtained from the second round questionnaire of the evaluation tool and the actual

performance of product development of each company, it is possible to identify the

effectiveness of the proposed manufacturability evaluation approach. If enough data

points are collected, the validation of the proposed methodology is possible through

statistical analysis of the data.

The final goal of the studies on the interface area between manufacturing and product

development may be a clear representation of the relationships between product

development and manufacturing system design. Based on a clear understanding of the

relationships, it is possible to carefully sequence the activities of product development

and manufacturing system design so that no late iteration of product design or

manufacturing system design is required. One way to achieve this goal is to develop a

decomposition that incorporates the FRs and DPs of both manufacturing system design

and product development. The next section explains the benefits and the difficulties

associated with the development of a decomposition of both product development and

manufacturing system design.

10.2.2 Extension of the MSDD

In this section, further extension of the MSDD into product development is discussed.

Expected benefits of the extension are presented along with the limitations and
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difficulties associated with the extension. Existing decompositions attempting to model

product development and integrate product development and manufacturing system

design are reviewed. A summary of the characteristics of the existing decompositions is

provided. Several recommendations are provided for the decomposition that covers both

manufacturing system design and product development.

10.2.2.1 Existing decompositions of product development

The decomposition approaches using the Axiomatic Design methodology to model

product development have several benefits over the traditional process-oriented

approaches that are discussed in section 7.2.2.1. First, the Axiomatic Design

methodology clearly separates the objectives from the means to achieve them. The

separation of goals from means makes it possible to see the interrelationship between the

objectives of product development and the solutions to achieve the objectives. Therefore,

the decomposition approach makes it easier to satisfy the objectives, compared to other

approaches that investigate the interactions only between the solutions. Second, the

decomposition approach can show how a low level DP contribute to the achievement of a

high level FR. By relating low level decisions to high level system objectives, low level

decisions that better contribute to the achievement of high level system objectives can be

made. Furthermore, the decomposition approach enables clear identification of the

interactions between FRs and DPs in different branches, which leads to better

understanding of the interrelationships among the different elements of product

development. Better understanding of the interrelationships helps avoiding local

optimizations. Finally, the developed decomposition works as a communication tool that

delivers the ideas throughout the entire organization.

In order to leverage these benefits of the decomposition approach, there have been

several attempts to develop a decomposition of product development and integrate the

product development decomposition with the existing manufacturing system design

decomposition (MSDD). The three design decompositions of product development

presented in Chapter 7 are good examples of the existing attempts. A summary of the

characteristics of the three decompositions is shown in Table 10-1. For detailed

discussion of the three decompositions, please refer to section 7.2.22.
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TABLE 10-1. A SUMMARY OF THE CHARACTERISTICS OF THE THREE DECOMPOSITIONS OF
PRODUCT DEVELOPMENT.

PD3 PDSDD AMSDD

Scope . Product development . Product development - Producible product

. Designing a product that - Organization issues design and
satisfies both internal manufacturing system
and external customers . Information flow design

andocusextoaerl c er management . Focuses on aerospace
.Focuses on aerospace indusiry cases
industry cases

Strengths . Covers various aspects . Attempts to model the . Tries to integrate product
of product development organizational issues of design and

in detail product development manufacturing system

. Covers the development . Provides the FRs and design
of individual product DPs related to the . Tries to decompose the
(e.g., material selection) efficient coordination of elements that affect

design activities manufacturing system
design only to avoid

complex decomposition
of entire product
development

Weaknesses . Limited scope - little . Limited scope - little . Manufacturing system
consideration of consideration of design issues are buried
manufacturing system manufacturing system in the design matrix
design issues design issues . Limited scope in product

. Decoupling between . Focuses on information development - only
product design and flow management only - designing a producible
manufacturing is does not provide the product is considered.
unsatisfactory appropriate content of

the information flows

However, all of the three decompositions show a common weakness. All three

decompositions are unsuccessful in providing a clear explanation of the relationships

among the FRs and DPs in terms of their functional dependencies. As discussed in

Chapter 6, the Axiomatic Design methodology clearly dictates to maintain the functional

independency between FRs and DPs as its first independence axiom. Therefore,

according to the independence axiom, the design matrices that define the relationships

between the FRs and DPs of the three decompositions should be diagonal or at least
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triangular to maintain the functional independency. The proposed matrices of the three

decompositions are all triangular at least. However, there can be an argument in the

proposed design matrices of the three decompositions. For example, it is not very clear

how to deal with the issues of considering manufacturing in early product development

phase. As is presented in Chapter 7 and 8 of this thesis, various design decisions in six

categories affect manufacturing system design and sometimes, negatively affect the

achievement of the goals of manufacturing systems. The negative effects should be

thoroughly studied and eliminated by modifying the product design in advance or

modifying manufacturing system design, which indicates the coupling between

manufacturing and product design. However, in a product development decomposition,

by the nature of the independence axiom, the DPs should be developed to independently

satisfy the FRs of product design and manufacturing. The PD 3 and the AMSDD attempt

to go around this problem by providing a branch of "producible product design." In these

two decompositions, all design issues related to the manufacturability of the product

design are supposed to be dealt by the "producible product design" branch so that the

product design to satisfy the customer requirements can be done separately. In other

words, a product is designed first to satisfy the customer requirements of its functions and

then the manufacturability of the design is assured by the "producible product design"

branch. One of the problems with this approach is that some DPs in the "producible

product design" branch often affect the FRs in the branches to design a product to satisfy

the customer requirements. Detailed discussion on the problems associated with the

suggested "producible product design" branches of the two decompositions are presented

in section 7.2.2.2. The PDSDD goes around the same problem by focusing on organizing

the information flows to deliver downstream (manufacturing) constraints to upstream

product development processes. Still, as is discussed in section 7.2.2.2, the PDSDD does

not address the content of the information.

In order to develop a decomposition that integrates both manufacturing system design

and product development, the dependencies between product design and manufacturing

system design should be clearly identified.
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10.2.2.2 Integrated product development and manufacturing system

design decomposition (IPMD)

As discussed in the previous section, a decomposition approach adopting the Axiomatic

Design methodology can provide several benefits over process-oriented approaches.

Therefore, if a decomposition adopting the Axiomatic Design methodology that

integrates product development and manufacturing system design is developed, the same

benefits can be obtained, which can lead to better understanding of the relationship

between product development and manufacturing system design. In addition to the

benefits addressed in the previous section, the decomposition incorporating both

manufacturing system design and product development can provide the following

benefits:

1) It is possible to overview how a product is developed and manufactured from a

system level view point.

2) It is possible to know the right sequence of product development and

manufacturing system design, which eliminates what Suh [2001] calls "time-

independent imaginary complexity" caused by not knowing the design matrix.

The controllability of the entire process is assured since the applied independent

axiom ensures that each FR can be satisfied independently.

3) Organization of product development teams can be designed around the

decomposition since the decomposition dictates the FRs and DPs of product

development and manufacturing system design along with the relationship

between the FRs and DPs.

4) The content of the information flows between functional organizations can be

identified through the decomposition.

Even though these huge benefits are expected with the integrated product development

and manufacturing system design decomposition (IPMD), it is not easy to integrate

product development and manufacturing system design into one decomposition due to

several reasons.
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First, the design process is usually helical, not serial, which makes it difficult to keep the

independence axiom in the IPMD. For example, when a product is designed, a rough

functional design is first made in a high level of abstraction. Then, a material is selected

for the rough design along with production processes. After the material is selected and

the production processes are chosen, further detailed design is made. The detailed design

is also subject to the same decisions of material selection and process selection in order to

physically realize the design. In this helical way, a product design is completed.

Therefore, it is difficult to separate these three groups of product development activities.

Considering manufacturing process selection is closely linked to manufacturing system

design, clear separation of product design activities from manufacturing system design

activities is hard to be achieved. In other words, it is difficult to make product design

independent from manufacturing system design.

In the Axiomatic Design methodology, this helical product design process is explained as

zigzagging among three design domains of functional (FRs), physical (DPs), and process

(PVs). Therefore, it is difficult to explain the helical product design using only two

domains - functional domain and physical domain without the process domain. In fact,

the Axiomatic Design methodology does not provide a clear explanation on the

zigzagging design process among all three design domains while focusing on the

zigzagging process between the functional domain and the physical domain.

Second, as previously discussed in section 7.2.2.2, manufacturability issues arise when

physical realization of the product design matters. Therefore, in order to investigate the

manufacturability of a product design, a detailed decomposition of a product itself is

necessary to be developed. However, the decomposition of a product is usually case-

specific while the IPMD should be generally applicable. Consequently, any case-specific

product design decomposition should be avoided in the IPMD. In other words, the IPMD

needs to describe the general FRs and DPs of product development and manufacturing

system design, while the manufacturability issues may not be identified without the case-

specific detailed design decomposition of a product, which is contradictory.

The third cause is the creativity involved with product design. One of the reasons that the

MSDD can effectively reflect manufacturing system design is that manufacturing systems
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produce products according to drawings released from product development teams. The

released drawings, by its nature, serve as a reference point to enable the distinction

between good parts from bad parts. More importantly, the released drawings provide

information on the shape of a product to be made. Therefore, this standard (drawing) is

essential for frequent reviews on a product to check if the product is being produced

according to the plan at different phases of manufacturing. The frequent reviews make it

possible to identify defective parts after a small portion of the total necessary operations

are done to parts, which allows quickly resolving corresponding problems or reworking

defective parts. In product development, however, nothing plays a role of a drawing in

manufacturing. Rather, product designers are supposed to use their creativity to develop

new drawings for a new product to meet the specifications on the functional requirements

for the product according to aggressive time schedules. In other words, product

development has to deal with new products all the time. The effect of a new product

design on manufacturing systems is often different from that of the existing products and

is also unclear in the design stage. Therefore, the IPMD should be able to deal with the

manufacturability issues of new products by defining general FRs and DPs, which is not

easy considering there is no generally accepted theory explaining the interface area

between manufacturing and product development. The manufacturing evaluation process

proposed in this thesis provides a framework to capture the interactions between

manufacturing system design and product development but does not propose principles

that explain all aspects of the interactions.

In spite of all the problems addressed in this section, a decomposition approach can

provide many advantages that are discussed early in this section. Therefore, a study on

the development of the IPMD is necessary in a long run. Some comments for the

development of the IPMD are:

To make the IPMID generally applicable, the general product development activities

should be decomposed rather than a specific product itself For example, instead of

decomposing a FR for a specific product such as "to contain liquid" for a bottle, a FR

for general product development activities such as "to identify customer

requirements" should be decomposed.
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. Product development related branches should come in the left to the branches linked

to manufacturing system design. In general, product design is done prior to

manufacturing system design. In rare cases, however, manufacturing leads product

design. For example, a furniture company, IKEA, reuses the left-over materials to

produce cheap products. Product design is made to efficiently reuse the left-over

materials and manufacturing systems are thoroughly studied to carefully coordinate

manufacturing activities in order to maximize the utilization of the manufacturing

systems.

. It may need to develop the product design branch of the IPMD in a way that product

design provides perfect product designs that reflect every aspects of manufacturing

systems so that there is no manufacturing problem with the introduction of new

product designs. In this way, the independence axiom of the Axiomatic Design

methodology can be kept between the FRs and DPs of product design and

manufacturing system design.

* It may be a good idea to develop the decomposition to eliminate the sources of

manufacturability problems.

10.2.3 Further development of the Axiomatic Design

methodology

Another way to investigate the interface area between manufacturing system design and

product development is to further develop the Axiomatic Design methodology so that it

can clearly present the design process. In the previous sections, the limitations of the

current Axiomatic Design methodology are presented. The most significant one regarding

the manufacturability of a product design lies in the unclear relationship between process

domain (PV), and functional (FR) and physical domain (DP). Further study should be

conducted to answer the following questions:

. How should the zigzagging between process domain and design domain be done?

. What are the characteristics of process variables (PVs) in process domain?

" What are the examples of the zigzagging among the three domains of functional

domain, physical domain, and process domain?
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. In what level of the product design decomposition, does physical elements appear in

physical domain as DPs?

In addition to the efforts to fine-tune the Axiomatic Design methodology, the four design

domain model itself may be challenged as Sohelenius [2000] did. Figure 4-5 shows his

model integrating manufacturing system design domains into the conventional four

design domain model of the Axiomatic Design methodology. It is noteworthy that the

process domain of this model includes both process requirements and manufacturing

system design requirements to reflect manufacturing system issues in product design.

Still, this model lacks the detailed explanation of the design steps or the interactions

between the modified process domain and physical domain. Therefore, further study is

required to complete the detail of the model. For example, the relationship between

physical domain and process domain needs to be clearly defined and the product design

steps that the model suggests need to be explained in detail along with many examples.
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Manufacturing System Design Decomposition (MSDD) (page 2 of 2)
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APPENDIX B. PRODUCT DEVELOPMENT DESIGN

DECOMPOSITION (PD3) [BOCANEGRA 2001]
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APPENDIX C. PRODUCT DEVELOPMENT SYSTEM

DECOMPOSITION [LENZ 1999]
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APPENDIX D. AEROSPACE MANUFACTURING SYSTEM

DESIGN DECOMPOSITION [DOBBS 2001]
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PM-P11 PM-P12 Numberof PM-P14 Numberof
Number of Number of occurrences of Number of disruptions due to
occurreoces of disruptions due to unplarned disruptions due to material shortages,
infoiation tori or supplies equipment operators, amount of
disruptions, amount shortages, downtnime, amount of amount of interruption time
of interruption time for amountiof unplanned interruption time from material
information interruption time equipment downtime from operators shortages
disruptions from shortages

--- - -- - - - -- - - -- - - -

-----------

DP-P1I DP-P12 DP-P13 DP-P14 DP-P15
Capable and Standard Maintenance of Motivated work- Standard
reliable information inventory of equipment force material
system tools & supplies reliabiity performing replenishment

standard work sys tem

FR-P131 FR-P132
Ensure that Service
equipment is equipment
easily regularly
serviceable PM-P132
PM-P131 Frequency of
Amount of time equipment
required to servicing
s ervice
equipment

DP-P131 DP-P132
Macbones Regular
designed for preventive
serviceabilty maintenance

program

4P ;

FR-P143
Do not interrupt
production for worker
alowances
PM-P143
# of disruptions due
to operator allow-
ances, amount of
interruption time for
worker ztawances

DP-P143
Mutal Relief
System with cross-
trained workers

FR-PI151
Ensure that parts
are available to
the material
handlers
PM-PI51
Number of parts
shortages

DP-PI51
Standard work in
process between
sub-systerris

FR-P141 FR-P142
Reduce Ensure
variability of task avalablity of
complefion time workers
PM-P141 PM-P142
Variance in task Number of late
complelion time operators,

amount of time
lost to tardiness

DP-P141 DP-P142
Standard work Corporate
methods to programs that
provide provide for
repeatable employee work/life
processingtme needs

FR-PI52
Ensure proper
tining of part
arrivals
PM-P152
Parts demanded
- parts delivered

DP-P152
Parts moved to
downstream
operations
according to
pitch
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Level III

Delay
Rptbrtion

Le(
FR-115
Meet customer
expec ted bad tine
PM-115
Difference between
mean throughput
time and
customer's
expected lead tine

Contnuo
DP-115 improvn
Mean throughput
ime reduction

Xt

FR-T4
Reduce nn size
delay
PM-T4
inventory due to
run size dday

DP-T4
Productior cthe
desired mixand
quanlIty during
each denad
interval

gend

Wdoni ryng
and

Resong
Prcbems

FR-T31 FR-T32 FR-T33 FR-T41 FR-T42 FR-T61 FR-T62 PN-
Define Ensure that Ensure that part 1 Provide Produce in Ensure that support Ensure that Ensure that support
takt time(s) production arival rate is knowledge of sufideotty resorces don't production r55Ots resotrces (people/

PM-T31 cycle time balaced with demanded smal run sizes g interfere with (peoplal autor auoration)dont
Has takt tirne eqals takt time service rate (r,=r,) product nix (part PM-T42 I production resorces don't interfere with interfere with one
been deined? PM-T32 PM-T33 typ sand Actununsize- PM-T oneanothe another
(Yes/No) Difference Differerce between 1 quantities) target run size Prodction time lost PM-T62 PM-T63

between arrival and s Jervice PM-T41 due to support Production time Post Productko tine oat
production rates Has this resources interfering due to produtIon due to stport
cyle time and information been wit production resources interfergng
takt time provided? 1:resources with oneanother withoneanother

(Yes/No)

DP-T31 DP-T32 DP-T33 A DP-T41 DP-T42 DP-T61 DP-T62 DP-T63
Definition or Subsystem Arrival of parts at A Information Quick p:Subsystens and Coordination and Coordination and
grouping of enabled to meet downstream flcw from chang eover for I equipment separation of separaionof
customers to the desired takt operatons downstrearn material configured to production work supportwcrk
achieve tikt time (design according to pitch cotomer handing and separatesupport patterns patterns
Omneswithinan andop eration) :Iequipment and production
ideal range accessreq'Is

Ensure that Ensure that Ensure tevd
automatic cydle manta cycte gcycts time mix
Urns Cminiimern time C takt time tPM-T323
taki Urns PM-T322 t s sinrge cyd e
PM-T321 Has this been time tess than
Has this been achieved? takt time in Sub-branch only applies to
achieved? (YesilNo) desired ime mantufacturnng operations

iYsN)ntervat? producing mome than one
type of product

DP- T2321 DP- T2322 tDP-T323
Desage of Design of IStaggered
apprcornate apprcprate tprodoliton of
automatic work operator work pat with
content at such conten t/toops differentcydle

statio timL
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Level II

Cost
Reduction

FR-121e . Reduce wasted
processing
PM-121
Nunberoft
wasted
processing steps

DP-I21
Elirninaton of
non-valuaeaddg
processing steps

FR-12 FR-13
Minimize Miknize
manufacturing investment over
cOsts manufacturing
PM-12 system lifecycle
Manufacturing PM-13
costs Investment over

system lifecycle

-----------------------------------------------------------

DP-12 DP-13
Elimination of Investment
non-value addbg strategy to reduce

Sinvestmentover
manufacturing

Investm ent system ""fecysr'n

FR-122 FR-I23 FR-124 . Sub-branch only FR-Il
Reduce wasted Reduce waste in Reduce cost of I applies to Reduce cost of
use of indirect costs procured manufacturing futire
employees PM-123 materials I systems with investments
PM-I22 Indrect costs PM-I24 I multiple investment PM-11
Percentage of Cost of procured
errployee imne mts cycles Expectedcosntofmpye mematerials future
spent on non- investments
value addng
acties

DP-122 DP-123 DP-124 OP-11
Elimnation of Overhead Suppiers Manufacturing
non-value adding reduction integrated system adaptabilty
tasks throughout matched to

mnufacturing expe-ted market
system demands

FR-12
Reduce cost of
inital invesnent
PM-12
Initial nvestment
cost

DP-12
Reduction of
excess over-
capacity

IiMM

Sub-branch only
FR-C1 FR-C2 FR-C3 FR-C4 FR-111 FR-112 FR-113I appnlies to Eliminate Eliminate wasted Elirinate Improve Match adaplabilty to Match adaptability Match

processes using operators' motion of operators' effectiveness of product design to new products to adaptability to
mechantied waiting on operators waiting on other production changes to expected expected market production
equipment machines 1 PM-C2 operators managers market demands demands vdumnechanges

PM-C1 Percentage of PM-C3 PM-C4 PM-11I PM-112 to expected
Percentage of operators' time Percentage of Amount of time % equipment that # new products market demands

operators time spent an wasted operators' time required to can accommodate thatcan be added PM-lI3
spent waiting on motions spent waiting on managesystem A prod. design to manufacturing Allowable volume

Level IV equipmentother operators changes system change (%)

DP-C1 DP-C2 DP-C3 DP-C4 DP-111 DP-112 DP-113
Human-Machine Design of Balanced Self directed Manufacturing Manufacturig Manufacturng

F separation works tations / work-loops work teams I equipment designed system designed system designed
work-loops to (horizontal IA to accommodate to accommodate to accomrnodate
facifitate operator organization) A product design new products production
tasks changes volume changes

-r _______ A

FR-C11 FR-C12 F R-C21 FR-C22 FR-C23
Reduce time Enable worker to Minimize wasted Minimize wasted Minimize wasted
operators spend on operate more than motion of operators motion in moton in
non-value added one machine I between stations operators' work operators' work
tasks at each station PM-C21 preparation tasks
s tation PM-C1 2 Percentage of PM-C22 PM-C23
PM-C 1I Percentage of operators' time Percentage of Percentage of
% of operators' stations in a spent walking operators' time operators' tie
time spen t on non system that each between stations spent on wasted spent on wasted
value-adding tasks worker can operate 9 motions during motions during
while waiting atla work preparation work routine
s mtationz

DP-C1 I DP-C12 DP-C21 DP-C22 DP-C23
Machines & Workers trained Machines / Standard tools / Ergonoric
stations designed to operate stations equipment interface
to rn mLi tiple stations onfigured to located at each betweenthe
autonomously I reduce walking station worker, machine

Sdistance (5S) and fixture

lLevi v
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APPENDIX E. A FULL LIST OF THE FIRST-ROUND

QUESTIONNAIRE

Product design guideline from the manufacturing side:

. Some literature addresses the frequent use of product design guideline originated

from manufacturing in benchmark companies. This document contains the

requirements from the manufacturing or production engineering side to product

design side. Does your company use a formal document like this?

If your company has the equivalent one:

. How has it been developed?

. What is its content?

. How is it related to their manufacturing system design? Is there any good example

of design constraints imposed by manufacturing system issues?

. Is there any performance measure for product designers related to this issue? (Are

product designers evaluated by being committed to this guideline?)

If your company does not have the equivalent one:

. How are the manufacturing requirements fed back to the product design side?

. Which one is more frequently used for the feedback process, documented

(written) information or tacit knowledge through human network?

. If a manufacturing engineer found a product design problem, for example, how

would the problem be informed to the product designers? (e.g., product

development team meeting, product development process gate review, etc.)

. What activities are done to prevent repeating problems?
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Product design and manufacturing:

. What is the system interface between manufacturing and product design during

the product development processes?

. Is there any standardized information exchange between two parties? For

example, when designing a steering gear, is there exchange of standardized (e.g.,

information contents are pre-specified) information such as manufacturing rate,

capacity of existing line, process capability, etc.?

. How is that information (capacity of existing line, process capability, etc.)

reflected in product design?

. What kind of information is transformed and shared between two functional

parties?

. What does your company do to make that information exchange really happen?

. Is there any performance measure to enhance this information exchange?

. What is the problem solving process if the trans plant overseas finds some

manufacturing problems associated with product design? Does she ask for design

modification to product designers in the mother company?

. When is it decided during the product development processes where to produce

the new product? Even in case that there is only one plant available for a certain

type of product (for example, your company may have only one plant for a

bumper production), it should be decided which production lines/machines within

the plant will product the new product)

Product design decision:

. What is the basic strategy of your company in product design? How are the

products of your company different from those of your competitors in terms of

external design, performance, etc.?

. How is you company different from others on its design decision processes?

. What are the decision criteria for product variety? How does your company

decide product variety?
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. What is your company's perspective on customer desire for product variety? How

does your company optimize between customer requirements and manufacturing

constraints? Is there any optimization strategy?

1euiNaunuEygimrpEgu

. Does your company have a pre-defined manufacturing system design steps?

. What are the general processes of designing a new manufacturing system or

modifying an existing manufacturing system?

* How does your company do the capacity planning?

. What feedback is used from the previous manufacturing system design projects?

. What efforts are made to enable a 'vertical/super-fast' ramp up?

* How does your company decide on the mix-capability of each production line?

Product variety and manufacturing flexibility:

. What kind of role does product design or product variety play in the decision

process of detailed manufacturing system design?

. Is their any special strategy or methodology pursued to maintain manufacturing

flexibility?

. What are the challenges your company sees from the mix production? How does

your company handle them?

. How does your company schedule the mix of production?

* How does your company optimize between the cost of system and the simplicity?

For example, how the number of cells is decided? (if your company has many

cells, your company can have focused flows to each customer but in that case

system cost may not be minimized)

Planning and actual happening:

. What is the role or meaning of planning at your company?

" How does your company fill in the gap between planning and actual happening?
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III

. What is your company's financial accounting system used for the internal control

purpose?

. What does your company has as performance measures for a plant as a whole?

. How are those performance measures different from each level of plant

management? (operator level, engineers level, line managers level, and plant

manager level, etc.)

. What efforts are made to keep your company's employees fully motivated? (For

example, some companies make a lot of effort to keep its people's sense of

'emergency' for everyday operation. Is there any equivalent effort in your

company?)

Yong-Suk Kim 380



APPENDIX F. A FULL LIST OF THE SECOND-ROUND
QUESTIONNAIRE

Design for Manufacturing Systems Questionnaire

Company name:

Respondent's position/function:

Plant location:

Products involved:

Question Index

G: General questions - this category includes general questions related to all other
categories.

PV: Product Variety - product variety category includes questions related to product
variety.

PA: Product architecture - product architecture means the mapping of functional elements
on physical elements. Product architecture decides physical partition of a product. Product
architecture is closely related to product variety issues since such strategies as component
sharing, part standardization, and modular design are closely linked to product architecture
design.

P: Purchasing - make or buy decision is one of the most critical decisions that significantly
affect manufacturing system design. Once a product is decided to be made in house,
categories like material selection and detailed design should be considered. If a product is
to be purchased, different considerations are made for smooth supply from the vendors.

MS: Material selection - this is about the selection of raw material for a product. Usually

raw material is purchased from outside suppliers and thus, the purchasing of raw material is
dealt in this category, separately from the purchasing category.

PS: Process selection - in this category, the impact of process selection on manufacturing
system design are presented in terms of questions. Even though new processes usually
come with new equipment, equipment design issues are excluded in this category to keep
the focus on process selection.

DD: Detailed design - detailed design affects manufacturing system design in many ways.
In this category, general questions are asked with regard to the impact of detailed design on
manufacturing system design.
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III

Q111 Ensure that operator has knowledge of required strongly _ strongly does not
tasks disagree agree apply comments

Training program 1 2 3 4 5 0

PV The consequence of the product variety decision on
required operator knowledge is studied during the
design phase.

PA We study the impact of new product layout on required
operator knowledge.

0I LI L1IElI F1

LIIIILILILI L

p Training need for the assembly operators to learn how
to assemble purchased parts is studied.

Workers who handle purchased parts are trained to fully
understand the characteristics of purchased parts (e.g.,
what to be careful of, etc.).

MS Newly required operators' knowledge of their work tasks
due to the introduction of new material is identified and
studied during material selection phase.

PS Operators' capabilities and knowledge on processes are
reviewed and considered when major decision on
process design is made.

LILIILILIILI LII

LILIILIILILII LII

LILILILILI LI

Newly required operators' knowledge for a new process
is identified and studied during process selection phase.

DD The consequence of product geometry decision on the
operators' work content is well understood during the
product design phase.

LILILILILI LI __

Q112 Ensure that operator consistently performs tasks strongly strongly does not
correctly disagree agree apply comments

Standard work method 1 2 3 4 5 0

G Line operators participate in the design of standard
operators' work method during product development
processes.

Operators' standardized work in existing lines is
reviewed during the design phase. Any significant
change is discussed with operators for its feasibility.

LILLILLI I _

LILIILII L
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PV Possible confusion of operators when they perform
various work tasks required for product variety is
considered and reflected in the design of work methods
during product development.

PA We study the impact of product architecture (product
layout) on the existing standard work methods.

El0ll00l E

El0ll0l0 L0

p Standard assembly method is planned for purchased
parts.

MS The consequence of new material on standard work
methods is reviewed and considered during material
selection phase of product development.

00000 0LII LI

PS A new standard work method for a new process is
planned and considered during process selection phase. LIII lL L][ L

DD The consequence of new detailed design on existing
standard work methods is reviewed and design changes
are made accordingly if necessary.

ElDllUll E

Q113 Ensure that operator human errors do not translate strongly - strongly does not
to defects disagree agree apply comments

Mistake proof operations (poka-yoke) 1 2 3 4 5 0

G Manufacturing, production engineering, and product
design engineers work together to incorporate mistake-
proof (poka-yoke) features (e.g., spider marks, colors,
significantly different features, notch, special dent, etc.)
into product design.

Manufacturing group frequently suggests product design
changes for mistake-proof (poka-yoke) purposes.

El l lD l El _

ElDllDll E

PV Products are designed in a way that operators can
easily identify different types of products or components.

PA Product architecture design supports product variety
strategies to minimize effective product variety exposed
to operators.

ElODlOOl l _
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III

P Incorporation of poka-yoke features into purchased
parts for easy assembly is discussed with the part
suppliers.

MS Poka-yoke feature for new material is considered
according to the material characteristics (e.g., grain of
wood, texture of cloth, etc.)

PS The typical operators human mistakes caused by the
introduction of new process are studied and mistake-
proof methods are planned during process selection
phase.

DD Products are designed for easy and obvious assembly.
It is easy to locate a part in the right position and
direction.

Q12 Eliminate machine assignable causes

Failure mode and effects analysis (FMEA)

G We keep records of manufacturing defects for every
machine. The records are available to product designers
to see if product design may be changed to avoid some
machine assignable quality problems.

PV Flexibility of existing equipment (e.g., machine, fixture,
tools) is reviewed and considered when product variety El
decision is made.

ElElElElEl El]

DDDEZEl Eli

El0ll0ll E

ElDllOll E

does not
apply

0

strongly strongly
disagree agree

1 2 3 4 5

l ll lFElF_

E] l 1 llEl_

P Suitability of purchased parts to existing assembly E1E1E1 E E E
equipment is ensured during purchasing decision phase.

MS Failure Mode and Effects Analysis (FMEA) data are
reviewed to investigate the effect of materials on the
failure of existing equipment

Suitability of new material to existing equipment is
reviewed.

PS FMEA data of new equipment for new process is
obtained from equipment suppliers and reviewed.
Machine assignable causes are minimized from the
beginning through careful study of new equipment,
process, and design.

ElElElElEl El __

ElElElElEl El __

ElElElElEl El
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DD The consequence of the detailed design on the
reusability of existing equipment is reviewed and design
changes are made accordingly to maximize the reuse of Li1L 1 lJ l
existing equipment.

Q13 Eliminate method assignable causes strongly strongly does not
disagree agree apply comments

Process plan design 1 2 3 4 5 0

G There is a knowledge base available for method
assignable causes. Product designers review the
knowledge base to avoid problems made in the past
from recurring.

PV The flexibility of existing method is reviewed and
assured for planned product variety.

PA The production method in use conforms to the given
product architecture.

p Assembly method of purchased parts is designed with
part suppliers to prevent defective parts due to wrong
method.

MS It is reviewed if existing production methods are
adequate for new material. If not, a new method should
be designed.

PS When processes are selected for product design,
process characteristics are fully understood by design
engineers.

The capability of the selected method is checked to
assure that it is adequate for given product design and
tolerance.

DD The consequence of detail design on the selected
method is reviewed and design changes are made
accordingly (e.g., detail design to support a specific
method such as casting and automated assembly).

WHEEZ0 [I _

DEWEW0E _

EWEWE0E _
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III

Q14 Eliminate material assignable causes strongly strongly does not
disagree agree apply comments

Supplier quality program 1 2 3 4 5 0

PV The selected material is studied to ensure it is
appropriate for the various product designs during
product development.

The quality of incoming materials is ensured to be good
enough to meet various processing requirements
caused by product variety.

PA During product architecture design, the compatibility of
materials used in individual components of a product is
reviewed.

P New supplier quality program is prepared when new
purchasing is considered.

MS When material is selected, suppliers collaborate with
product designers so that stable supply of quality
material is ensured from the early stage of product
design.

We study if the selected material is adequate for the
production methods in use.

PS The impact of a new process on the material in use is
studied.

UDDDEE lD_

EDEDD El

DD It is checked if new detail design is appropriate with the
current quality level of incoming materials.lL[:][][] LI

Q2 Center process mean on the target strongly strongly does not
disagree agree apply comments

Process parameter adjustment 1 2 3 4 5 0

MS Material properties are thoroughly studied and the
interactions of those properties with process parameters
are well understood during the material selection
process.

PS Impacts of process parameters on process mean are
well understood during the product design phase.

The characteristics of equipment on parameter control
are well understood through the close collaboration with
equipment vendors.

EDDDD0El

DDDDD0El

DDDDD0El
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Q31 Reduce noise in process inputs strongly strongly does not
disagree agree apply cornments

Conversion of common causes into assignable causes 1 2 3 4 5 0

G Conversion of common causes into assignable causes
is recorded and stored in a database. This information is LI 1I1II l][ l
available to product designers and production
engineering engineers.

Plant environment is considered when the production
site is decided.

p Your company studies if any source of noise can be
carried by purchased parts during the purchasing
decision phase.

MS Your company studies if any source of noise can come
from the selected material.

PS You carefully study the effect of noise on the output
quality of the selected process.1_ElEl l E

Q32 Reduce impact of input noise on process output strongly strongly does not
disagree agree apply comments

Robust process design 1 2 3 4 5 0

PA Your company carefully studies how to make different
processes robust to input noises for all types of products
within a product family.

Fl FIII L

p Purchased parts assembly processes are designed to
be robust to the variation of purchased parts.

MS Your company studies if the production process for a
selected material is robust to the material property
variation.

LILIILII L

PS Robust product and process design is considered when
a selected process is significantly affected by noise.

DD Products are designed to be robust to variation of
process output caused by input noise. LILIILII L
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III

FR111 Manufacture products to target design specifications strongly strongly does not
disagree agree apply

commentsQ
Production processes with minimal variation from 1 2 3 4 5 0 ts

the target

G There is a clearly defined communication channel with
manufacturing, production engineering, and product
design groups to solve quality problems caused by
product/process design.

Product designers understand what and how products
are produced in a specific manufacturing site.

LILIILII L

LILIILII L

Products are designed without internal errors (e.g., partsL I IL I
are designed to fit together).

Manufacturing, production engineering, and product
design engineers work together when setting tolerances.

PV Similar level of tolerance is set for different product
types within the same product family in order to avoid LI I IILI I
manufacturing complexity.

P Tolerances for purchased parts are set through
discussion with part suppliers.

MS Meaningful tolerance levels according to the material
types are well understood and reflected in material
selection (e.g., achievable tolerance of wood is different LiDL11Li Li Li

from that of aluminum alloy).

PS Impacts of process parameters on process capability
are well understood and considered during product
development (e.g., sensitivity of the process on a certain
process parameter is studied.)

DD Process capability (Cp) of the existing production line is
known by product designers and reflected in design LIDLULI I]LI L
specifications.

R112 Identify disruptions where they occur strongly strongly does not
disagree agree apply comments

Simplified material flow paths 1 2 3 4 5 0

G Material flow paths in the selected plant are well
understood by product designers. LILIILII L

Product design engineers know which value stream will
be used for the production of new product LI1LI LI1LI1LI
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Product design, production engineering, and
manufacturing engineers work together to keep the
simplicity of material flow paths even with the production
of new product designs.

-IFlLI1IILIII L

PV Product family strategy and corresponding production L IL[ II: II L
facility planning are done concurrently.

Product family decisions, product variety decisions, and
product architecture decisions are made after
considering the capability of the selected value stream
and production site.

PA Product architecture decisions are made after
considering their impact on material flow paths.

p The consequence of purchasing decisions on the
material flow paths of the selected production site is
studied.

PS The impact of new processes (or new equipment for
new process) on the material flow within a selected
production site is thoroughly studied and simplest
material flow paths are sought.

DD Product designers understand the consequences of
detailed design in the selected value stream.

F-1] [F-1I1I0LEI LIII ___

LILILILIIILI LI __

LILIIILILIILI LI __

LILILILILI LI __

LILILILILI LI __

R113 Identify what the disruption is strongly strongly does not
disagree agree apply comments

Feedback of sub-system state 1 2 3 4 5 0

G Failure modes are analyzed and categorized according
to the root causes behind them. The gained information
is stored and reviewed by product designers.

LILIILII L

PV The consequence of product variety decisions on the
production disruption states of each station is studied.

MS Possible disruption states due to new materials are
studied and reflected in the feedback system (e.g., new
material can damage tools in certain conditions, etc.).

LILIILII E
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III

PS Possible disruption states due to new processes are
studied and reflected in the feedback system (e.g.,
casting may show different types of disruptions from
machining).

DD Possible disruption states due to new detailed designs
are studied and reflected in the feedback system.

LIILILIILIILII LII

LIILIILIILIILII LI

R121 Identify correct support resources strongly strongly does not
disagree agree apply comments

Specified support resources for each failure mode 1 2 3 4 5 0

G Manufacturing engineers know who to contact in product
design and production engineering groups for LI
product/process design related issues.

PV The need for additional support personnel due to
product variety is estimated and reflected in the product
variety decision and the strategy decision to achieve the
appropriate variety level (e.g., modular design, etc.)

-I LI 0II[1I FlI

LILILILI

PA Specific support personnel are assigned to the failures
related to product architecture.

P, MS Specific support personnel are assigned to each failure
mode related to purchased parts or materials at both
your company and the part suppliers.

PS Specific support personnel in manufacturing, production
engineering, and product design groups are assigned to
each failure mode related to the process.

DD There are specific support resources in manufacturing,
production engineering, and product design groups
assigned to each failure mode related to detail designs.

LI0LLILII L

Fl IIII I

LILIILII L
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R122 Minimize delay in contacting correct support strongly strongly does not
resources disagree agree apply corments

Rapid support contact procedure 1 2 3 4 5 0

G A clearly defined communication channel between
manufacturing, production engineering, and product LI0 lILiiILI I
design groups is planned to solve product design related
production problems.

Manufacturing engineers know how to contact product
design and production engineering groups for product LII]I FE LI
design related issues.

p During purchasing decision, the communication
channels with part suppliers are planned and reviewed0lII ][ L] I
to ensure a quick exchange of disruption information.

R13 Solve problems immediately strongly strongly does not
disagree agree apply

Standard method to identify and eliminate root 1 2 3 4 5 0 comments
causes

G We create a knowledge base that contains past
experience of problems and solutions. This knowledge
base is extensively used during the problem solving
processes.

You study the database of previous failure modes to see
if the product can be designed to minimize production
disruptions.

PV The consequence of product variety decision on
standard method to resolve production disruption
problems is reviewed in the product variety decision
phase.

PA Product architecture is designed in a way that the
disruption related to the design of a component can be
solved without affecting other components, which may
enhance the speed of problem solving.

P Part suppliers are evaluated based on their ability to
immediately respond to and solve the disruption
problems related to purchased parts.

Standard procedures to solve the disruption problems
associated with purchased parts are prepared in
advance during product development.

LILILILILI El __

ElElElElEl El __

ElElElElEl El __

ElElElElEl El __

ElElElElEl El __

ElElElElEl El __
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MS Standard procedures to solve the disruption problems
associated with new material are prepared in advance L0 I III I I
during product development.

PS Standard procedures to solve the disruption problems
associated with new processes are prepared in advanceLIIIID]IIH L
during product development.

DD Standard procedures to solve the disruption problems
associated with detail designs are prepared in advance LILI II I I
during product development.

P11 Ensure availability of relevant production strongly _ strongly does not
information disagree agree apply comments

Capable and reliable information system 1 2 3 4 5 0

G Product design related information is available to LI DIL]LI0I 1I
operators and manufacturing engineers.

PV Additional production information generated by planned
product variety is studied. It is reviewed if total
necessary production information can be processed withL ] LI H LIIDID
the capability of the existing information system.

P The sharing of relevant production information with part LIIILII l L] LI
suppliers is planned during product development.

P121 Reduce variability of task completion time strongly strongly does not
disagree agree apply

Standard work methods to provide repeatable 1 2 3 4 0comments

processing time

G Product design, production engineering, and
manufacturing groups work together to eliminate
sources of variability of task completion time.

pV Operators may find it difficult to properly handle product
variety. Standard work methods are designed to provide
clear distinction between product types and obvious
instruction of required tasks.

HHHHLIII LII __

HHHLIIILII LII __
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PA We study the impact of a product architecture design
(product layout) on assembly in terms of task completion
time variation.

p Task completion time variation related to the assembly
of purchased parts is studied and the result is reflectedH LI[ ] I [
in both purchasing decision and work method design.

MS The effect of the introduction of new material on task
completion time is reviewed during product
development.

pS The standardized work methods for a new process are
developed to ensure a constant task completion time LIII1LIIIlII] ] I
(e.g., fatigue, ergonomic issues, etc.)

DD Detail design is reviewed to avoid designs that can rz l:II:II:II 11
cause variable task completion time.

Parts are designed to be easy to handle. LIII:LI] lII :L 1LI

P132 Service equipment regularly strongly strongly does not
disagree agree apply comments

Regular preventative maintenance program 1 2 3 4 5 0

6 Preventative maintenance program is considered in
capacity calculation when a production site decision is
made during product development (e.g., no 3 shifts
model when capacity is planned).

The consequence of new product design on existing
preventative maintenance programs is reviewed and
appropriate changes are made accordingly.

LILILILIIILII LIII __

LILILILIIILI LII __
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P141 Ensure that parts are available to the material strongly - strongly does not
handlers disagree agree apply comments

Standard work in process between sub-systems 1 2 3 4 5 0

G Use of 'off-the-shelf' parts is strongly recommended.

PV, PA The consequence of product variety strategy (e.g.,
modular design) on the level of standard work in
process (SWIP) is carefully studied during product
development. Adequate level of SWIP is placed in the
production site according to the study.

Part sharing strategy is considered to minimize the
SWIP between sub-systems.

PA Product architecture design supports product variety
strategies.

P A proper level of SWIP for a purchased part is planned
considering various factors such as transportation
distance from the suppliers.

MS It is reviewed if the selected material can be reliably
supplied.

Product designers strive to use commodity materials for
reliable supply.

DEDDEI LII __

DEDEZEZ El __

DEDEZEI LI __

LILILIILIEI LII __

LIDLIEZEZ LII __

DEWED LI] __

ElLI~EDD El

PS The proper level of SWIP is planned for a new process. 0 1L 1IILI[1 LD

DD Detail design that enables part sharing (use of common
component part within a product family) is considered. 00DE0 u

P142 Ensure proper timing of part arrivals strongly strongly does not
disagree- agree apply

Parts moved to downstream operations according to 1 2 3 4 5 0 comments

pace of customer demand

PV The impact of a product variety decision on part
transportation is analyzed and reflected in product
variety decisions.

WLILIIIIIII LD
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PA Part transportation methods, routes, and schedules
according to the product architecture are carefully
planned to ensure the part supply at proper timing
during product development.

P Delivery of purchased parts from the storage area to the
point of use according to pace of customer demand is
planned during product development.

LILILILILI1 El

LILIILII E

MS It is reviewed if new material can be supplied according
to pace of customer demand in a just-in-time base.

PS Transportation of the parts to and from the new process
is planned in terms of frequency and part counts during
product development, considering customer demand
pace.

EllODOl E

P14 Ensure material availability even though fall out strongly - strongly does not
exists disagree agree apply comments

Standard material replenishment approach 1 2 3 4 5 0

G Product designers consider containers used in the
selected production site. A special set of containers may
be used if new products cannot be transported/stored El0l1l1L1LI 1L
with existing containers (e.g., dimension, chemical
property, etc.).

Number of parts that can be held in a container is
considered with new product design. If the number of
parts in a container has to be different from the current
one, its consequence on the production line is LI LI1ElL1I:LI 1LI
thoroughly studied (e.g., AGVs may have to transport
more containers, etc.).

T1 Reduce lot delay strongly strongly does not
disagree agree apply comments

Reduction of transfer batch size (single piece flow) 1 2 3 4 5 0

G Production engineering understands the consequence
of using a batch size larger than one on production with
a given product design (e.g., less flexibility, special
fixtures, etc.).

ElOllDll E
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III

PS The characteristics of different production processes are
considered to decide the adequate lot size (e.g., casting
of small parts may be done in a batch). The decided lot
size is then considered in the process selection.

_HE 111 1

Minimum lot size is pursued with the introduction of new
processes.

T1 Define the desired production pace(s) (or takt time) strongly strongly does not
disagree agree apply

Definition or grouping of customers to achieve comments
desired production pace (or takt time) within an 1 2 3 4 5 0
ideal range.

G Product design, production engineering, and
manufacturing groups work together to assign the
production of new product designs to adequate
production sites.

Future enterprise-wide capacity planning information is
available to the cross-functional product development
team and used to determine production sites.

Future capacity expansion is considered when a
production site is selected (e.g., enough free space
available?)

PV Product family decision reflects estimated demand
volume scenarios according to the customer groupings
to achieve desired production pace (or takt time) within
an ideal range.

Strategies to facilitate product variety (e.g., component
sharing) are considered to have the takt time within an
ideal range.

PA The consequence of product architecture decisions on
takt time calculation is studied. For example, the
customer demand volume for a specific component is
decided by product architecture design.

HHHH _

LLIHH H_
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T221 Ensure that automatic cycle time 5 minimum strongly strongly does not
desired production pace (or takt time) disagree agree apply

comments
Design of appropriate automatic work content at 1 2 3 4 5 0
each station

G Product design, production engineering, and
manufacturing groups work together to keep automatic
cycle time less than takt time.

PV Estimated automatic cycle times for different product
types at each station are assured to be shorter than
minimum takt time.

LILIILII [

LILIILII n

Different product architecture options are studied when
automatic cycle time is longer than minimum takt time.

MS The consequence of new material on automatic cycle
time is thoroughly studied. It is assured automatic cycle
time with new material is shorter than minimum takt
time. Otherwise, alternative materials are studied to
keep automatic cycle time under minimum takt time.

PS Estimated automatic cycle time of a new process is
assured to be shorter than minimum takt time.
Otherwise, alternative processes are considered.

Production processes are allocated to each machine in
a way that the total cycle time is less than minimum takt
time. Otherwise, some of the processes are allocated to
another machine.

Detail design changes are sought to keep automatic
cycle time under minimum takt time.

LILILILILII LI __

LILILILILI LI __

LILILILILI LI __

LILILILILI LI

T222 Ensure that manual cycle time 5 desired production strongly - strongly does not
pace (takt time) disagree agree apply comments

Design of appropriate operator work content/loop 1 2 3 4 5 0

G Product design, production engineering, and
manufacturing groups work together to keep manual
cycle time less than takt time.

PV Estimated manual cycle times for different product types
at each station are assured to be shorter than minimum
takt time.

LILIILII L

LILIILII L
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III

Different product architecture options are studied when
manual cycle time is longer than minimum takt time. LIII I[ L] I

MS The consequence of new material on manual cycle time
is thoroughly studied. It is assured manual cycle time
with new material is shorter than minimum takt time.
Otherwise, alternative materials are considered to keep
manual cycle time under minimum takt time.

PS Estimated average manual cycle time for a new process
is assured to be shorter than minimum takt time.
Otherwise, alternative processes are sought.

DD Detail design changes are considered when manual
cycle time is longer than desired production pace.

EIIIILLIIILII LI _

LILIIILIIL L0_

LILLIIOIII I0

T223 Ensure level cycle time mix strongly strongly does not
disagree agree apply

Stagger production of parts with different cycle 1 2 3 4 5 0 comments

times

PV If different types of products are produced at the same
station/machine, we do our best not to have their cycleLI I DI 0I LI
times very different.

DD If different types of products are to be produced at the
same station/machine, product designers seek detail LII 0I]II] L
designs to make their cycle times similar.

T23 Ensure that part arrival rate is equal to service rate strongly strongly does not
disagree agree apply

Arrival of parts at downstream operations 1 2 3 4 5 0 comments

according to the pace of customer demand.

PV Balancing of different production groups (department or
cell) to downstream operations is carefully coordinated
according to the product variety strategy (e.g., modular
product design) in order to assure proper part arrival
rate.

PA When product architecture is determined, material flows
in the selected production site are planned and
balancing of different production groups is sought. The
balancing is reflected to product architecture design.

LIILILLIL L

LILIILII L
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p Purchased parts arrival rate to the point of use is
determined according to the pace of customer demand.
The amount of delivery per each shipment is determinedE l l l
considering other factors such as transportation
distance and cost.

El

T31 Provide knowledge of demanded product mix (part strongly - strongly does not
types and quantities) disagree agree apply comments

Information flow from downstream customer 1 2 3 4 5 0

PV More careful and complex handling of production mix
information is required for more product variety. During
the review process of various product variety strategies
(e.g., modular design), the modification of information
system according to the planned strategy is considered
as a decision criterion.

PA Product architecture is designed to support the selected
product variety strategy to minimize the effective level ofE l l El
product variety.

p The sharing of production mix information with part
suppliers is reviewed and designed for sequenced
delivery of parts in just-in-time base during purchasing El lEl lEl El
plan phase.

T32 Produce in sufficiently small run sizes strongly strongly does not
disagree agree apply

Design quick changeover for material handling and 1 2 3 4 5 0 comments
equipment

G Changeover difficulties in manufacturing are well
understood by product designers and production
engineers.

pV Product variety decision is made through close
collaboration with manufacturing engineers considering
mix-capability of selected production lines.

ElElElElEl El

ElElElElEl El

A family of products is designed together to minimize set
up changeover. El1l1l1l1l1 El
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When multiple product types are to be produced in a
production line, manufacturing engineers always double
check possible problems associated with setup L L LI1II1L LI
changeover.

You study if the mix flexibility of existing lines is
adequate for planned product variety under the selectedL LL L ] l
variety strategy (i.e., modular design).

PA Product architecture is designed to support the selected
product variety strategy to minimize the effective level ofLIIIILIIl1[
product variety.

Product variety is achieved by attaching different
components to a common body rather than using
different bodies, which eliminates need for changeoverLIII E[] ] LI
itself.

MS New material that helps quick changeover is
continuously sought to support production (e.g., new
painting material that support changeover between ElIELIII lII l[
colors).

PS New process to support quick changeover or eliminate
changeover itself is sought in case of high level of LIII1LIIIlIILI ] ]
product variety during product development.

DD Product design engineers strive for minimizing setup
changeover by changing detail designs (e.g.,
standardizing the location of holes of various products to
eliminate the stamping die changeover).

T4 Reduce transportation delay strongly strongly does not
disagree agree apply comments

Material flow oriented layout design 1 2 3 4 5 0

G Product designers understand the difference between
material flow oriented layout design (cellular or lean)
and process oriented departmental layout design
(mass).

PA Product designers understand how the product
architecture may affect existing plant layout designs and
reflect it during the product architecture design.

P Direct delivery of purchased parts to the point of use is
considered as a part supply method during product
development.

LI -I- IIIL II _

LI -III- LI II _

LIILIILIIILI-I-
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T5 Reduce systematic operational delays strongly strongly does not
disagree agree apply comments

Subsystem design to avoid production interruption 1 2 3 4 5 0

PS A new process is considered to eliminate the need for
supportive activities (e.g., using laser trimming instead
of stamping will eliminate the need for die transportation
activity).

Products are designed to eliminate the need for some
DD supporting activities (e.g., standardizing hole location in

stamping process eliminates the need for die
changeover and thus, die transportation activity).

D11 Reduce time operators spend on non-value added strongly - strongly does not
tasks at each station disagree agree apply

comrnments
Machines and stations designed to run 1 2 3 4 5 0autonomously

PS Feasibility of automating new processes is carefully LI I ] I I
studied.

DD Product designers consider automated processes and
reflect them into detail design to facilitate autonomous LI I I LL L
run of equipment.

D22 Minimize wasted motion in operators' work strongly - strongly does not
preparation disagree agree apply

comments
Standard tools/equipment located at each station 1 2 3 4 5 0
(5S)

PV Tool requirements for planned product variety are
estimated during product development.

MS The special tool requirement of new material is studied
and its standardization is pursued. If special tools are
necessary, they are prepared and located at designated
locations considering timing of use and sharing.

LILILILILI L

LILIILII L
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PS Tools necessary for new process are identified and their
storage is planned considering various factors such as
the frequency of changeover and operators' walking
distance.

DD The consequence of detail design on tool requirements
is studied and reflected in the current set of standard
tools.

FlIIL EIIILLI LI _

LILLIIL L _

D23 Minimize wasted motion in operators' work tasks strongly strongly does not
disagree agree apply

commentsQ
Ergonomic interface between the worker, machine, 1 2 3 4 5 0
and fixture

G Product designers and production engineers take
ergonomic issues associated with production of new LILI1LI1L1L 1L
products into consideration.

PV Product variety may require various work tasks
performed at each station. All work tasks are designed
to be ergonomic and machine & fixture support
ergonomic work tasks.

MS You study if a new material affects the existing
ergonomic design of interfaces between machine, L0L [10 I]I [I
fixture, and people.

DD We study the impact of detailed designs on ergonomic
interfaces and seek for a design to support the LI1LI lLI I LI
ergonomic interfaces.

D3 Eliminate operators' waiting on other operators strongly strongly does not
disagree agree apply comments

Balanced work-loops 12 3 4 5 0

G When process cycle time needs to be adjusted due to
balancing problems, product designers consider product
design changes as one of options.

LI1 LILII LI

MS The effect of new material on existing operator work
loops is studied and reflected during material selection
process.

Yong-Suk Kim
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The impact of new processes on existing operator work
loops is thoroughly studied.

DD You study if operators' work loops are balanced for new
detail design. If not, minor detail design modification is
sought to regain the balance. ElE D Dl l

FR122 Reduce waste in indirect labor strongly strongly does not
disagree agree apply comments

Reduction of indirect labor tasks 1 2 3 4 5 0

PV Higher level of product variety usually requires more
indirect labor to coordinate complicated work tasks
necessary (e.g., more complex scheduling). The
consequence of product variety decisions on indirect
labor requirement is studied thoroughly.

PA We study the impact of product architecture on indirect
labor requirement for information management.

El

El

p It is reviewed how a purchasing decision affects the
existing work of purchasing department. The impact of
new purchasing decisions on the capacity and capability
of purchasing functional group is considered.

MS The consequence of the use of new material on indirect
labor requirement is reviewed and considered during
material selection process (e.g., special material may
require indirect labor to inspect and store it).

PS The consequence of the introduction of new processes
on indirect labor requirement is thoroughly studied and
reflected in process selection (e.g., laser cutting LI
substituting stamping eliminates the need for indirect
labors that transport/maintain dies used in stamping).

DD The consequence of new detail design on indirect labor
requirement is studied and reflected in design. FII

El F l lFlEl _

ElI l- l l ElF]_

D1 l lFl El _

E- l lFl1l El _

E- l F l [IE _

Eln l1lFl1El
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12 Eliminate information disruption strongly strongly does not
disagree agree apply conments

Seamless information flow (visual factory) 1 2 3 4 5 0

pV Under high product variety, information flow
management can be very difficult. The impact of product
variety strategy (e.g., modular design) on information
flow is studied and reflected in product variety decision
process.

p The information flow to and from suppliers is reviewed
and sources of information disruption are identified and LI 0LI LI FLI L
eliminated.

MS The effect of the introduction of new material on
information flow is studied

PS The effect of new processes on information flow is
studied (i.e., laser cutting substituting stamping
eliminates the need for die changeover information LIII L LIII I
flow).

DD The effect of new detailed design on information flow is
studied (e.g., communizing hoe location in stamping
process eliminates the information flow for die LI _LIIL]LIILII LI
changeover).

FR123 Minimize facility cost strongly strongly does not
disagree agree apply comments

Reduction of consumed floor space 1 2 3 4 5 0

PV The impact of product variety on consumed floor space
is studied. Product variety may lead to increased level of
WIP or more tools/equipment to be used, which take
floor space.

PA

lI Fl[I

We study the impact of a product architecture design on
consumed floor space.

p Storage areas for purchased parts are planned and
minimization of them is pursued while meeting the
requirements from other MSDD branches during product LI LI LI
development.

DlI L1 I
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MS You study if the use of a new material requires
additional space for storage and if there is space
available in the selected production site. ElOllDll E

PS The effect of new processes on floor space consumption
is reviewed. 1 1 1 1 :

DD The effect of new detail design on floor space
consumption is reviewed. Detail design is modified to
reduce floor space consumption by supporting
component sharing, etc.

DDDDI0E

FR13 Minimize investment over production system life strongly - strongly does not
cycle disagree agree apply comments

Investment based on a long term strategy 1 2 3 4 5 0

Minimization of new investment is sought.

Net present value (NPV) analysis is made to
estimate the economic impact of decisions made
during product development.

Economic benefit of operation improvement
(quality, delivery time, etc.) is considered in the
NPV analysis.

El0ll0ll E

ElOllDll E

ElOllDll E
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